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Abstracts 

 

Naturally induced CD8+ T cells do not clear human immunodeficiency virus (HIV) 

infection, partly because the virus rapidly escapes CD8+ T cell responses and the 

effector cells are excluded from HIV reservoirs sites. However, optimizing CD8+ T cell 

responses could potentially be leveraged in HIV vaccine or cure efforts if epitope 

escape and barriers to effector CD8+ T cells infiltrating the sites of HIV reservoirs are 

overcome. In our first study, we described a potential mechanism of HIV-1 control by 

CD8+ T cells targeting different variants in individuals infected with HIV-1. Our second 

study focused on describing the molecular regulation of CXCR5 expression in human 

CD8+ T cells.   

 

Study 1 

 

HLA-B*81 is associated with control of HIV-1 subtype C infection, while the closely 

related allele B*42 is not. Interestingly, both alleles present the immunodominant Gag 

TL9 epitope, and the magnitude of this response correlates negatively with viral load. 

To examine the role of T cell receptor (TCR) in this process, we characterized the 

sequence and function of TL9-specific CD8+ TCR in B*81 and B*42 individuals.  

TL9-specific CD8+ T cells were identified and isolated using B*81 and/or B*42 TL9 

tetramers. TCR beta genes were amplified from single sorted cells and sequenced. 

Paired alpha genes were identified for selected clones. TCR function was tested using 
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a reporter cell assay where TCR+ Jurkat cells were co-cultured with peptide-pulsed or 

HIV-1 infected B*81 or B*42 target cells, and signalling quantified by luminescence. 

TCR recognition was assessed against all single amino acid TL9 variants and results 

were compared to HIV-1 subtype C sequences. 

A population of dual-reactive T cells was detected by both B*81- and B*42-TL9 

tetramers in 7/9 (78%) B*81 and 4/11 (36%) B*42 individuals; and this population was 

associated with lower viremia. Mono- and dual-reactive TCR beta sequences were 

collected from six individuals. In B*81 individuals, all TCRs were highly restricted to 

TRBV12-3. In B*42 individuals, mono-reactive TCRs encoded a variety of V beta 

genes, while dual-reactive TCRs were restricted to TRBV12-3 and enriched for public 

clones. Functional analyses indicated that B*81 TCRs (1 mono, 2 dual) and a dual-

reactive public B*42 TCR displayed similar TL9 cross-reactivity profiles and enhanced 

capacity to recognize HIV-1 escape mutations compared to mono-reactive B*42 

TCRs. This work highlights the impact of TCR promiscuity on T cell-mediated control 

of HIV-1.  

 

Study 2 

 

HIV-1 infection is difficult to cure even with effective antiretroviral therapy (ART) 

because of persistent viral replication in immune privileged sites such as the B cell 

follicles of secondary lymphoid tissues. CD8+ T cells are generally excluded from B 

cell follicles, partially due to a lack of expression of the follicular homing receptor 

CXCR5. Recent murine studies have identified CXCR5+ CD8+ T cells, referred to as 
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follicular CD8+ T cells (fCD8s), that localize in B cell follicles. However, the 

mechanisms governing expression of CXCR5 on human CD8+ T cells are not known. 

We investigated the epigenetic and transcriptional mechanisms involved in the 

regulation of CXCR5 expression in human CD8+ T cells. 

We FACS-sorted CXCR5+CD8+ (fCD8s), CXCR5-CD8+ (non-fCD8s), naïve CD8+ T 

cells and germinal center T follicular helper cells (GCTfh) from the lymph node of HIV-

1 infected individuals and performed RNA-sequencing (RNA-Seq), DNA methylation 

assays and the assay for transposase-accessible chromatin using sequencing (ATAC-

Seq). RNA-Seq was used to quantify the expressed genes in FACS-sorted subsets 

and to determine transcriptional modules governing CXCR5 expression in CD8+ T 

cells. ATAC-Seq was used to quantify accessible genes, identify the transcriptional 

factors footprinting and determine epigenetic modules governing CXCR5 expression. 

DNA methylation, a major epigenetic gene silencing mechanism, was used to profile 

methylation pattern of the CXCR5 gene region in the sorted subsets.  

We observed hypermethylation of DNA around the transcriptional start site (TSS) of 

the CXCR5 gene in non-fCD8s but not in fCD8s. ATAC-Seq analysis revealed a closed 

chromatin conformation at the TSS in non-fCD8s, but not in fCD8s. Our gene 

expression data revealed significant differences in the CXCR5 associated factors 

between GCTfh and fCD8s. Computational analysis further revealed the presence of 

a nucleosome at the TSS of fCD8s, which could be a plausible explanation for lower 

expression of CXCR5 in fCD8s as compared to GCTfh. 

Together, we identified epigenetic regulations involved in CXCR5 expression in 

human CD8+ T cells and propose that DNA methylation, chromatin structure and 

nucleosome positioning cooperatively regulate the expression of CXCR5 in CD8+ T 
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cells. Our data open up the possibility of using epigenetic manipulation as a novel 

strategy for redirecting CD8+ T cells to B cell follicles where they are needed to 

eradicate HIV-1 infected cells.  
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CHAPTER 1: INTRODUCTION 

 

1.1 The HIV/AIDS Epidemic  

Human immunodeficiency virus (HIV) is the aetiological agent of acquired immune 

deficiency syndrome (AIDS) and is one of the most devastating pathogens known to 

man. Following its isolation in 1983, HIV has evolved to become a threat to global 

health 1 and over 25 million AIDS related deaths have been recorded since its 

discovery. In 2018, an estimate of 37 million people were living with HIV globally, with 

almost 70% of that figure living in sub-Saharan Africa 2. Furthermore, South Africa 

bears the highest burden of the HIV epidemic globally (Figure 1.1) 2. There are two 

types of HIV, namely HIV-1 and HIV-2. Although both HIV-1 and HIV-2 have similar 

modes of transmission and replication pathways, they are genetically different viruses 

with different ancestral origins 3. HIV has intrinsic mechanisms that ensure rapid viral 

evolution. The resultant HIV diversity has implications for possible differential rates of 

disease progression and vaccine development. For example, HIV-1 recombination 

can lead to further viral diversity and occurs when one person is co-infected with two 

separate strains of virus 4. HIV-1 has been divided into subtypes, denoted with letters 

for subtypes: A, B, C, D, F, G, H, J and K are currently recognized. The present study 

was conducted in South Africa where the HIV-1 subtype C is prevalent 5. Thus, the 

focus hereon will be on HIV-1 subtype C infection. 
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2 

Figure 1.1: Global HIV prevalence in 2018.  

 

1.2 HIV-1 Pathogenesis 

Exposure to HIV-1 is primarily through the mucosal route of either the gastrointestinal 

or the reproductive tract, which results in initial local replication of the virus within target 

cells of the mucosal tissue 6. This is followed by a systematic spread with considerable 

dissemination in the gut-associated lymphoid tissue (GALT) 7. The establishment of 

HIV-1 infection is dependent on the target cells expression of CD4 and a chemokine 

receptor, majorly, CCR5 or CXCR4 8. The course of HIV-1 infection can be categorized 

into 3 phases as illustrated in (Figure 1.2); (1) the acute phase, (2) the asymptomatic 

phase and (3) the AIDS phase.  
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        9. 

Figure 1.2: HIV-1 pathogenesis.  

Representation of a typical course of HIV-1 infection showing CD8+ T and CD4+ T cells 

dynamics and viral load changes over time of infection. 

 

1.2.1 The Acute Phase 

Following transmission of HIV-1, approximately 10 days are required for viral RNA to 

be detectable in the plasma 10. During this acute phase, diagnosis of acute HIV-1 

infection is often missed because the symptoms are similar to many other infections 

11. HIV-1 replicates rapidly during the acute phase of infection with viral titres reaching 

a peak of usually more than 100 million RNA copies per millilitre of blood. Also, CD4+ 
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T cells numbers are significantly lowered at the time of peak viremia 10. Subsequently, 

the emergence of CD8+ T cells responses coincides with a decrease in viremia 12, 

suggesting that the suppression of viral replication is largely mediated by CD8+ T cells 

10.  

A few studies have measured HIV-1 specific CD8+ T cells responses during early HIV-

1 infection 13-17. The HIV-1 specific CD8+ T cell responses peaks at about 1-2 weeks 

after viremia declines 10,18. Following the peak in HIV-1 specific CD8+ T cell responses, 

the virus sequence starts to change dramatically 10. Due to rapid selection of mutations 

at discrete sites in the virus genome 19,20. There is still a lot to learn on the early events 

during the acute phase of HIV-1 infection which determine the course of HIV disease 

progression. 

 

1.2.2 Asymptomatic Phase 

The asymptomatic phase of HIV-1 infection is characterized by the establishment of a 

viral set-point 10. During this phase, there is a gradual decline in the circulating CD4+ 

T cells and loss of immune function. The decline in the CD4+ T cells is not only caused 

by direct infection but also as a result of chronic immune activation and inflammation 

21. The steady replication of HIV-1 results in progressive exhaustion of HIV-1 specific 

CD8+ T cells as a result of continuous exposure to HIV-1 antigens, thus impairing the 

ability of the immune system to control the virus 10,21.  

1.2.3 The AIDS Phase 

In the absence of antiretroviral treatment, HIV-1 establishes a chronic, progressive 

infection of the host’s immune cells that, invariably, over the course of the years, leads 
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to its destruction and severe immunodeficiency 6. The AIDS phase is defined by the 

rapid decline in CD4+ T cell count with an increase in viral load. At this stage, the host 

becomes highly susceptible to opportunistic infections (e.g. tuberculosis, 

pneumococcal infections, oral candidiasis) and certain cancers (e.g. Kaposi’s 

sarcoma) 22. The average time from infection to full blown AIDS is 8-10 years, but this 

may vary considerably due to host and viral factors 23,24. During advanced disease, 

the immune cells are severely compromised, and death ensues as a result of 

opportunistic infections. 25,26. 

Both viral and host factors influence HIV-1 disease progression 27. In fact, emerging 

data now provide evidence that the immune system is a key player in the outcome of 

HIV-1 infection 28. As previously mentioned, a critical component of the adaptive 

immune response to HIV-1 infection is the CD8+ T cell response. CD8+ T cells directed 

against HIV-1 are commonly detectable in HIV-infected individuals and have been 

shown to effectively inhibit HIV-1 replication through several mechanisms that are 

increasingly being elucidated. 

 

1.3 CD8+ T Cells  

CD8+ T cells also referred to as cytotoxic T lymphocytes (CTLs), are the host’s major 

defence mechanism against invading intracellular pathogens 29. CD8+ T cells control 

HIV-1 replication and help to maintain clinical stability in infected individuals through a 

number of mechanisms 13,14. The role of CD8+ T cells in controlling HIV replication will 

be discussed in the subsequent chapters. 
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1.3.1 History of HIV-1 Specific CD8+ T Cells 

HIV-1 specific CD8+ T cells were first reported in 1987 by Walker et al., 30 and Plata 

et al., 31 where they measured the ability of freshly isolated peripheral blood 

mononuclear cells (PBMCs) to lyse autologous B cells infected with recombinant 

vaccinia-HIV vector 30 or by peptide-pulsed targets 32. Subsequent studies using other 

approaches such as detection of interferon-γ by enzyme-linked immune absorbent 

spot (ELISPOT) 33 and  intracellular cytokines (ICS) 34 were used to confirm HIV-1 

specific CD8+ T cells responses in HIV-1 infected individuals. Tetramer assay has also 

been developed to measure absolute number of cells that recognize a particular HIV-

1 epitope, without providing any information regarding the functionality of CD8+ T cells. 

35,36. Thus, most of these assays are used in concert to measure the quality and 

quantity of CD8+ T cells responses isolated from HIV-1 infected individuals.    

 

1.3.2 Mechanism of Action of CD8+ T Cells during Viral Infection 

During viral infections, CD8+ T cells are able to recognize the complex of class I human 

leukocyte antigen (HLA) molecules and viral peptides via CD8+ T cell receptors (Figure 

1.3). The recognition triggers signalling cascade via the CD8+ T cell receptor (TCR), 

resulting in the release of cytolytic molecules such as perforin and granzymes that 

cooperatively lyse the infected cell 37. These effector molecules are capable of direct 

killing of infected cells by inducing cellular apoptosis 38. CD8+ T cell responses in an 

individual mainly dependant on the TCR repertoire that recognise restricted peptides 

by class I HLA alleles. But, CD8+ T cells can also eliminate viral infected cells through 

the engagement of death-inducing ligands (FasL) 39,40. FasL expressed by activated 

CD8+ T cells interacts with the Fas receptors expressed on the surface of infected 
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cells. The binding causes trimerizing of the Fas molecules on the surface of target 

cells. The resultant activation of a caspase cascade leads to apoptosis of the target 

cell 41. In addition, CD8+ T cells can also secrete soluble antiviral factors that suppress 

viral replication 42-44.  

 

 

Figure 1.3: Schematic representation of CD8+ T cell killing mechanism and secretion 

of antiviral factors. The infected cell processes the viral peptide and presents it to a 

CD8+ T cell via a class I HLA molecule. The CD8+ T cell recognizes the presented 

peptide through the TCR and releases cytotoxic molecules into the infected cell, 

thereby resulting in the killing of the infected cell. CD8+ T cell also secrets antiviral 

factors that inhibit viral replication 45,46.  
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1.3.3 CD8+ T Cell Receptors  

The CD8+ T cell receptors (TCRs) are surface heterodimers consisting of disulphide-

linked α- and β-chains. Each TCR chain is composed of variable and constant Ig-like 

domains, followed by a transmembrane domain and a short cytoplasmic tail 47. CD8+ 

T cells recognize peptides presented by the infected cell through the α/β binding site 

of the TCR 48. Binding of the peptide fragment takes place through the third loop region 

on each of α and β chains and the complementarity determining regions (CDRs). The 

CDR is composed of three domains; CDR1, CDR2 and CDR3. The CDR3 is mainly 

involved in the interactions with the peptide fragment, while CDR2 interacts with the 

heavy chain of class I HLA molecule (Figure 1.4). In most TCRs, CDR1 has limited 

interaction with the peptide fragment and the class I HLA molecule 49. Studies have 

suggested that engineered TCRs might provide a means of generating HIV-1 specific 

polyfunctional T-cell responses and can engage epitope variants presented by the 

infected cells 50-52. Hence, engagement of TCRs could modulate viral inhibitory 

capacity and recognition of naturally occurring HIV-1 peptides.  
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Figure 1.4: Interaction of the TCR CDRs with the class I HLA allele/peptide complex. 

CDR1, CDR2 and CDR3 are colored in magenta, green and red respectively 53. CDR3 

(red) is mainly involved in the interraction with the peptide presented by the class I 

HLA molecule.  

 

1.4 Human Leukocyte Antigen (HLA)  

The major histocompatibility complex (MHC) coding region, known as HLA in humans 

is located on the short arm of chromosome 6, and is the most polymorphic region of 

the entire human genome 54,55. Genes in this complex are categorized into three 

groups: class I, class II and class III. Functional MHC molecules are made of a heavy 

(α) chain and a β2-microglobulin chain genes encoding class I loci 56. Peptide binding 

by MHC class I molecules is accomplished by interaction of the peptide amino acid 

side chains with discrete pockets within the peptide-binding groove of the MHC 
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molecule formed by the α1 and α2 domain of the heavy chain, (Figure 1.5), 56. The 

main binding energy of a peptide to the class I HLA molecule is provided by the 

interaction of residues in position 2 and the C-terminus of the peptide with the B and 

F binding pockets respectively, (Figure 1.6), 57.  

            

 

Figure 1.5: Schematic representation of HLA molecule housing a peptide. The peptide 

(blue) is the amino acid sequence sitting in the peptide binding pocket of HLA molecule 

58. 

 

Of the three MHC class I loci in humans (HLA-A, HLA-B and HLA-C), HLA-B is the 

most polymorphic, with 817 different HLA-B molecules described, compared to 486 

distinct HLA-A and 263 distinct HLA-C molecules 59. The polymorphism of HLA 

molecules influences the peptide-binding repertoire. However, multiple class I HLA 

alleles can bind identical peptides due to the similarity in their peptide binding motifs. 
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HLA alleles sharing similar peptide binding motifs have therefore been referred to as 

HLA supertypes, (Figure 1.6), 60. Polymorphisms of class I HLA molecules have been 

shown to contribute to differences in disease outcome 54.  

 

 

Figure 1.6: Interactions between HLA molecules and peptides. Panel A illustrates 

examples of peptide motifs. The listed amino acids as well as many others have been 

found to complex with the respective HLA class I molecules. The anchor residues are 

highlighted in yellow. Panel B is a longitudinal section through the peptide-binding 

groove of pocket A to F. Pocket B and F bind the peptide residue P2 and P9 

respectively. Some of the peptide residues pointing into the HLA molecule have a 

greater influence over binding while the residues that point outward interact with the 

T-cell receptor 61. 
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1.5 Role of CD8+ T Cells in HIV-1 Infection 

Numerous lines of evidence suggest that HIV-1 specific CD8+ T cells exert potent 

antiviral effect in HIV-1 infected individuals reviewed by 62. The magnitude and rapidity 

of HIV-1 specific CD8+ T cell activation in hyperacute infection correlate inversely with 

the viral load set point 18, indicating that these cells mediate antiviral pressure during 

peak viremia 13,63. The antiviral activity of HIV-1 specific CD8+ T cell is further indicated 

by rapid evolution of escape variants within targeted viral CD8+ T cell epitopes 

following acute infection 64,65. In vitro models provide additional evidence for an 

antiviral effect of CD8+ T cells, showing that these cells potently inhibit viral replication 

66,67. In addition, in-vivo studies on the control of viremia in macaques during primary 

simian immunodeficiency virus (SIV) infection show that the depletion of CD8+ T cells 

abrogates their ability to control primary viremia 68-70. However, the factors influencing 

the effectiveness of the HIV-1 specific CD8+ T cells responses in controlling viral 

replication and in subsequently establishing different viral set points in individuals are 

poorly understood.  

The relationship between the earliest CD8+ T cells responses, viral set point and 

disease progression remains controversial 62. Studies have suggested that the initial 

CD8+ T cells responses are low in magnitude and narrowly directed towards specific 

viral proteins 33,71-73. The responses may be localized at the T cell zone within the 

lymphoid tissue 74, and are most effective in controlling viral replication as they have 

the greatest antiviral activity 72. The responses detected in lymph nodes precede those 

detected in peripheral blood and are of higher magnitude 74. Although most of these 

detectable responses persist even in the chronic phase of infection 75, they are largely 
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ineffective at further reducing the viral load 76. Thus, there is a need to better 

understand the causes of ineffectiveness of the persistent responses at the chronic 

phase of HIV-1 infection. 

 

1.6 Activation of CD8+ T Cells in Lymph Nodes 

Lymph nodes (LN) represent immunological sites where lymphocytes are primed with 

antigens 77. Activation of CD8+ T cells is initiated within a specialized region of the LN, 

often referred to as the paracortex 78. Upon priming with antigen, naïve CD8+ T cells 

undergo activation, proliferation, clonal expansion and differentiation into effector 

CD8+ T cells 79. The effect of activated CD8+ T cells is seen in the vigorous destruction 

of infected cells presenting cognate peptides. Most of these activated CD8+ T cells die 

by apoptosis after eliciting their effector function. A few of the effector CD8+ T cells 

mature into memory CD8+ T cells, which can respond faster and more effectively upon 

re-encountering their cognate antigen 80. 

The majority of HIV-1 replication takes place in the lymphoid tissues, and it is not clear 

if HIV-1-specific CD8+ T cell responses found in the blood are representative of 

responses found in the lymphoid tissues 40. As such, we need to broaden our 

understanding of CD8+ T cell function and trafficking within lymphoid tissues to 

pinpoint mechanism of control. Data from lymph nodes are controversial. While Altfeld 

et al. 2002 reported a greater magnitude of HIV-1-specific CD8+ T cells in the lymph 

nodes than in peripheral blood, Connick et al. 2007 demonstrated that CD8+ T cells 

have limited access to lymphoid follicles, the primary site of HIV-1 replication within 

lymphoid tissues. Furthermore, Andersson et al. 2009 reported perforin expressing 

CD8+ T cells within the follicles, whereas subsequent studies have found no perforin 
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expression by lymph node-resident CD8+ T cells 81, particularly by those that do gain 

access to the follicle 82. It will be important to determine the true contribution of antiviral 

CD8+ T cell responses at lymph node sites given their role in HIV-1 replication and 

dissemination. This is of particular importance given publications reporting lymph node 

CD4+ T follicular helper cells as a new major reservoir of HIV-1 infection 83,84. 

 

1.7 CD8+ T Cell Differentiation   

During infection, many factors coordinate the induction, expansion and differentiation 

of CD8+ T cells either to effector or memory phenotypes, which help mediate pathogen 

clearance and provide long-term immunity 85. In the well characterized murine model 

systems of infection, such as lymphocytic choriomeningitis virus (LCMV), a small 

subset of effector CD8+ T cells that is enriched for memory precursor cells has been 

distinguished based on the increased expression of IL-7, CD27 and BCL-2, and 

decreased expression of KLRG1 86,87. After acute infection, CD8+ T cells are 

maintained in an antigen-independent, cytokine-dependent manner mainly through 

the action of IL-7 and IL-15, which promote memory CD8+ T cell survival and 

proliferation 88. Several potential mechanisms have been proposed to explain how a 

heterogenous pool of effector and memory CD8+ T cells arise during viral infections 

Reviewed in 85. Nevertheless, the question about how antigen-experienced CD8+ T 

cells maintain a balance to enable the formation of cells with different phenotypes, 

functions and short- or long-term fates remain unanswered.  
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1.7.1 Transcriptional Regulation of CD8+ T Cell Differentiation 

Several transcriptional factors that regulate the differentiation of CD8+ T cells to 

effector or memory phenotype have been identified. Interestingly, a number of them 

function in pairs that form counter-regulatory axes to simultaneously produce different 

types of antigen experienced CD8+ T cells that can provide both short- and long term 

protection 85. T-bet and eomesodermin (EOMES) play crucial roles in the generation 

of effector and memory CD8+ T cells with unique phenotype and function. In activated 

CD8+ T cells, T-bet and EOMES cooperate to create cytotoxic CD8+ T cells with the 

expression of CXCR3 and CXCR4, inflammatory chemokine receptors that guide 

effector CD8+ T cells towards inflamed tissues 89-93. Although T-bet and EOMES 

cooperate in many regards, their expression is somewhat reciprocal. For example, T-

bet expression is highest in early effector CD8+ T cells, but progressively declines as 

memory cells form 85,94. Conversely, EOMES is upregulated in early effector CD8+ T 

cells by IL-2, but in keeping with its role in memory T cell homeostasis its expression 

increases further during the effector to memory cell transition 91,94,95. Thus, 

transcriptional regulation may be crucial in the determination of phenotype and 

function of antigen specific CD8+ T cells.  

 

1.7.2 Epigenetic Regulation of CD8+ T Cell Differentiation 

Epigenetic changes occurring during CD8+ T cell differentiation provide a means for 

the initiation of transcriptional changes that drive the differentiation and maintenance 

of either effector or memory CD8+ T cells 96. Epigenetic changes such as DNA 

methylation and histone post-translational modification represent two major epigenetic 

mechanisms that guide differentiation of CD8+ T cells. DNA methylation is associated 
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with transcriptional repression, although it is also associated with transcriptional 

activation when found within gene bodies 97,98. This concept holds during CD8+ T cell 

differentiation, where genome-wide DNA methylation profiles indicate that methylation 

marks are lost at the promoters of genes whose expression increases during 

differentiation and are gained at the promoters of genes whose expression decreases 

99-101.  

Within the nucleus, DNA is organized into structural units termed nucleosomes that 

consist of eight histone subunits (two copies each of H2A, H2B, H3 and H4) that are 

subject to covalent post-translational modification 96. Histone modification profiles in 

CD8+ T cell subsets indicate that, as with DNA methylation, promoters and gene 

bodies undergo progressive changes in the distribution and accumulation of histone 

modifications during differentiation that correlate with gene expression patterns 

100,102,103. The initiation of epigenetic changes in CD8+ T cells following antigenic 

stimulation is illustrative of one of the functions of epigenetics, which is to facilitate 

transcriptional changes in response to external stimulus 101. 

 

1.7.3 Epigenetic Regulation of CD8+ T Cell during HIV-1 infection 

In order to develop strategies to boost CD8+ T cell function, we need a better 

understanding of the epigenetic changes in immune cells during HIV-1 infection. CD8+ 

T cells have been shown to be epigenetically modified during HIV-1 infection (Figure 

1.7), 104,105. For example, the expression of the inhibitory PD-1 molecules is regulated 

by methylation of the PD-1 promoter. CD8+ T cells from HIV-1 infected subjects with 

fully suppressed plasma viremia by ART have an unmethylated PD-1 promoter 104. 

Another study also reported that inability of the exhausted CD8+ T cells to produce 
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IFN-¡ and IL-2 positively correlates with low levels of di-acetyl-Histone-3 (diAcH3) in 

the regulatory regions of the Ifng and II2 genes 106. These data imply that CD8+ T cells 

function is epigenetically controlled during HIV-1 infection. Further understanding of 

the epigenetic mechanisms regulating CD8+ T cell differentiation and dysfunctionality 

during HIV-1 infection have implications for CD8+ T cell biology. 

 

107 

Figure 1.7: Epigenetic regulation of CD8+ T cell responses to HIV-1. 

(1) The antigen presenting cell (APC) presents the viral antigens on the surface via 

major histocompatibility complex (MHC) Class I molecules for recognition by the T-cell 

receptor (TCR) on CD8+ T cells. As the CD8+ T cell becomes activated, they also begin 

upregulating cytotoxic T lymphocyte-associated molecule (CTLA)-4. CTLA-4 binding 

with CD86 (B7.2) on APCs delivers an inhibitory signal to maintain immune 

homeostasis. (2) Upon CD8+ T cell activation, the chromatin within the nucleus 

“relaxes” into euchromatin conformation to allow the binding of various factors of the 
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transcriptional machinery. Chromatin remodelling enzymes such as histone 

acetyltransferases (HAT), histone methyltransferases (HMTs), DNA 

methyltransferases (DNMTs) and histone lysine methyltransferases (HKMTs) alter the 

accessibility of chromatin at specific sites based on the signals provided to direct the 

specific response. During HIV-1 infection, “relaxed” chromatin in gene promoter 

regions allows for the active transcription of antiviral genes such interleukin IL-2 and 

IFN-¡, TNF-a, perforin and granzyme B . (3) Illustrates the interaction of activated HIV-

specific CD8+ T cell with productively HIV-infected CD4+ T cell. Upon recognition, the 

infected CD4+ T cell undergo lysis and apoptosis due to the action of perforin, 

granzyme B 107. 

 

1.8 Trafficking of Effector CD8+ T Cells 

When naïve CD8+ T cells are primed and become effector CD8+ T cells, they display 

a dramatic shift in the expression of genes, surface proteins and inflammatory-specific 

receptors 108. Effector CD8+ T cells lose expression of CD62L and CCR7, thereby 

losing their ability to access lymph nodes through the high endothelial venues 109. 

Instead, effector CD8+ T cells gain expression of a cohort of homing molecules that 

enables them to traffic to infected tissues. The recruitment of CD8+ T cells to the site 

of infection requires changes in the expression of adhesion molecules on the vascular 

endothelium 110. Effector CD8+ T cells upregulate chemokine receptor CXCR3 that 

binds inflammatory chemokines CXCL9 and CXCL10 secreted by infected tissues. 

The binding of CXCR3 receptor to these chemokines causes activation of lymphocyte 

function-associated antigen 1 (LFA-1) and newly expressed integrins, which enable 

rolling of effector CD8+ T cells on endothelium 108. Further expression of chemokines 
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by infected tissue facilitates extravasation of effector CD8+ T cells into the tissues to 

exert their antiviral effect. Thus, chemokines and chemokines receptors are crucial for 

trafficking of CD8+ T cells to the site of infection. 

 

1.9 Thesis Outline 

 

HIV-1 is essentially an infection of the immune system. It infects and depletes CD4+ T 

cells that normally coordinate the adaptive T and B cell responses that defend against 

both intracellular and extracellular pathogens, respectively. Studies have 

demonstrated the role of CD8+ T cells in HIV-1 control Reviewed in 62. It has also 

become clear that among the strongest association with disease outcome, is the 

expression of certain class I HLA alleles 111, thus, implicating class I HLA restricted 

CD8+ T cells responses as a major modulator of disease progression. Studies on viral 

fitness, particularly those in epitopes restricted by protective alleles such as HLA-

B*81:01 in HIV-1 subtype C 55,112 and HLA-B*27:01 in HIV-1 subtype B 113 infections, 

further suggest a persisting antiviral effect. Although, the relationship between the 

immune function of CD8+ T cells and viral control have been demonstrated, the precise 

role of CD8+ T cells in HIV-1 control, and the precise phenotype and function that 

should be harnessed in HIV-1 vaccine or curative strategies remain unclear. The first 

part of this thesis focuses on understanding the mechanisms of HIV-1 control by HIV-

1 specific CD8+ T cells in peripheral blood. 

Effective antiviral CD8+ T cells responses depend on the ability of CD8+ T cells to 

traffic into tissue sites of active viral replication 114,115. Chemokines and their receptors 
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direct the movement of CD8+ T cells between the circulatory system and specific 

tissues throughout the body 116. The established model of CD8+ T cell trafficking is that 

naïve CD8+ T cells home to lymphoid tissues guided by chemokines CCL19 and 

CCL21 and their receptor, CCR7. In contrast, effector CD8+ T cells exit lymphoid 

tissues and traffic to peripheral sites of infection guided by inflammatory chemokines 

and chemokine receptors, such as CXCR3 117. In HIV-1 infection, B cell follicles within 

the lymphoid tissues are major sites of viral replication 118-120. Persistence of HIV in B 

cells follicle is largely due to exclusion of CD8+ T cell from this microanatomical tissue 

site 121. Several studies have focussed on developing novel strategies for attracting 

CD8+ T cells to B cells follicles. For effector CD8+ T cells to achieve this, they must 

express CXCR5, a chemokine receptor that is normally present on B cells, CD4+ T 

follicular helper (Tfh) cells and other follicular homing cells. Recent studies have 

described some CD8+ T cells that express CXCR5 but the molecular mechanism 

regulating the expression of CXCR5 on human CD8+ T cells, is largely unknown. The 

second part of this thesis describes the transcriptional and epigenetic regulation of 

CXCR5 in human CD8+ T cells isolated from the lymphoid tissue of HIV-1 infected 

individuals. By elucidating molecular mechanisms that regulate CXCR5, these studies 

might lead to the development of novel strategies for increasing trafficking into the B 

cells follicles where they are needed to control HIV-1 infection. 

 

The aims of the present study are as follows: 

Aim 1: To investigate the mechanisms associated with CD8+ T cell mediated control 

of HIV-1 subtype C infection by characterizing peripheral blood (PB) HIV-1 specific 

CD8+ T cell responses in individuals expressing protective and less protective alleles.  
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Aim 2: To define the molecular regulation of CXCR5 expression in human CD8+ T 

cells isolated from the lymphoid tissues of HIV-1 infected individuals. 

 

Chapter 1 is the introduction of the thesis. It includes a review of relevant topics related 

to the defined aims of the study. 

 

In chapter 2, we conducted a detailed characterization of PB CD8+ T cell responses 

to the HIV-1 Gag epitope TL9 (TPQDLNTML180–188), which is immunodominant in the 

context of both HLA B*81:01 and B*42:01 alleles.   

 

In chapter 3, we extended our study to lymphoid tissues and described the molecular 

regulation of CXCR5 expression in human CD8+ T cells.  

 

Chapter 4 is a general discussion and overall implications of our findings and future 

directions of our studies. 
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CHAPTER 2 

 

Aim: To investigate the mechanisms associated with CD8+ T cell mediated control of 

HIV-1 subtype C infection by characterizing peripheral blood (PB) CD8+ T cell 

responses in individuals expressing protective and non-protective alleles.  

 

Chapter 2 Overview 

Host genetic variation and the considerable genetic diversity of HIV-1 are the major 

obstacles to designing an effective HIV-1 vaccine. Although several studies have 

demonstrated the crucial role of CD8+ T cells in immune mediated control of HIV-1 

infection, developing a broadly cross-reactive T cell-based vaccine remains an elusive 

goal. In chapter 2, we present a study conducted to determine the mechanism by 

which protective HLA-B*81:01 mediates natural control of HIV-1 subtype C while 

closely related HLA-B*42:01 does not. We identified an unexpected population of T 

cells that responded to TL9 when presented by B*81:01 and B*42:01, even in 

monoallelic individuals. The dual-HLA reactive response was more common in 

B*81:01-expressing individuals and it was associated with lower plasma viral loads, 

indicating that it contributes to the control of infection. In-depth analysis of TL9-specific 

T cell receptors (TCR) uncovered genetic and functional similarities between B*81:01-

derived T cell responses and dual-HLA reactive responses from B*42:01 individuals. 

In addition, mono-reactive responses from B*42:01 individuals were genetically and 

functionally distinct. Notably, TCR clones isolated from dual-reactive cells from 

B*42:01 individuals displayed a broader ability to recognize TL9 polymorphisms that 
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contribute to immune evasion, providing a mechanism to explain their association with 

lower viremia. These results have been published in Nature Communications, 2018 

Nov 27; 9(1):5023. doi:10.1038/s41467-018-07209-7. PMID: 30479346. 
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2.1 Abstract 

Some closely related human leukocyte antigen (HLA) alleles are associated with 

variable clinical outcomes following HIV-1 infection despite presenting the same viral 

epitopes. Mechanisms underlying these differences remain unclear but may be due to 

intrinsic characteristics of the HLA alleles or responding T cell repertoires. Here we 

examine CD8+ T cell responses against the immunodominant HIV-1 Gag epitope TL9 

(TPQDLNTML180-188) in the context of the protective allele B*81:01 and the less 

protective allele B*42:01. We observe a population of dual-reactive T cells that 

recognize TL9 presented by both B*81:01 and B*42:01 in individuals lacking one 

allele. The presence of dual-reactive T cells is associated with lower plasma viremia, 

suggesting a clinical benefit. In B*42:01 expressing individuals, the dual-reactive 

phenotype defines public T cell receptor (TCR) clones that recognize a wider range of 

TL9 escape variants, consistent with enhanced control of viral infection through 

containment of HIV-1 sequence adaptation.  
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2.2 Introduction 

The rate of clinical progression following human immunodeficiency virus type 1 (HIV-

1) infection is variable, with rare individuals maintaining plasma viral loads below 50 

RNA copies mL-1 in the absence of therapy 122,123. Host and viral mechanisms 

associated with relative control of infection indicate that the ability of HIV-1 to adapt to 

a new host is a critical determinant of pathogenesis 124,125. Multiple lines of evidence 

support the central role of CD8+ T cells in this process 13,14,62. Expression of certain 

class I human leukocyte antigen (HLA) alleles, particularly at the HLA-B locus 111,126, 

is associated with lower plasma viral loads, higher CD4+ T cell counts and delayed 

onset of AIDS 127,128. Interaction between CD8+ T cells and viral peptide epitopes 

presented on HLA determines breadth and other characteristics of the antiviral 

response 129,130, while rapid development of viral mutations in targeted epitopes 

facilitates evasion from host immunity 124,131,132. CD8+ T cells that target epitopes 

derived from p24 Gag are associated with better control 64,133, likely due to their relative 

immunodominance and greater fitness constraints on this major viral structural protein 

112,132,134,135. 

Recognition of a peptide/HLA (pHLA) ligand by a CD8+ T cell is determined by the 

sequence and functional characteristics of its T cell receptor (TCR) 47,48. The 

exceptional diversity of the TCR repertoire, generated by somatic recombination of 

variable (V), diversity (D), and joining (J) gene segments, junctional modifications, and 

differential pairing of 𝛼 and 𝛽 chains, has profound implications for immune coverage 

136. In addition to defining antigen specificity, TCR affinity for pHLA can dictate the 

strength of intracellular signaling events that modulate T cell effector functions, 

including cytotoxicity and proliferative capacity 137. Characteristics of TCR clonotypes 
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that contribute most effectively to CD8+ T cell-mediated control of HIV-1 infection are 

largely unknown, since data linking individual TCR sequences with measures of 

antiviral function remains limited. In previous studies of p24 Gag epitopes TW10 

(TSTLQEQIGW240-249) and KK10 (KRWIILGLNK263-272), presented on protective HLA 

alleles B*57:01 and B*27:05, respectively, CD8+ T cell clones displaying higher 

functional avidity or greater ability to cross-recognize epitope variants were shown to 

have enhanced antiviral activity 52,138-140. In the case of B*27-KK10, public TCR 

clonotypes, defined as having identical (or nearly identical) TCR β sequences in the 

antigen-specific repertoire of at least two unrelated individuals 48,141, displaying high 

avidity against the consensus epitope were also associated with a more effective T 

cell response 140,142. 

Following infection with HIV-1 subtype C strains that are prevalent in sub-Saharan 

Africa, expression of HLA allele B*81:01 is associated with improved clinical outcomes 

111,143, while the genetically-related allele B*42:01 is less protective 133,143-148. Both 

alleles belong to the HLA B7 supertype 60,149 and present similar viral peptides, 

including the immunodominant p24 Gag epitope TL9 (TPQDLNTML180-188) 146,150-153. 

The magnitude of the TL9 response has been associated with lower plasma viremia 

and improved clinical outcome in the case of B*81:01 154. TL9 is located on helix 3 of 

the p24 protein, which is critical to form the mature viral capsid. Circulating subtype C 

strains display >99% sequence identity at all TL9 residues except positions 3 (88.5%) 

and 7 (93.5%) (HIV Databases; www.hiv.lanl.gov). Positions 3 and 7 are the principal 

sites for viral escape from CD8+ T cell pressure 124,151,152,155; however, mutations at 

these residues also impair fitness 55, indicating that HIV-1 adaptation at TL9 must 

balance these counteracting pressures. Structural studies indicate that the TL9 

residues exposed to T cells differ in its bound conformations with B*81:01 and B*42:01 
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156, and some evidence suggests that enhanced antiviral T cell function is related to 

distinct TCR sequences elicited in the context of B*81:01 151. These observations are 

consistent with delayed viral escape in B*81:01 expressing individuals compared to 

B*42:01 expressing individuals 155 and selection of TL9 escape mutations by B*81:01 

that tend to be more difficult to compensate for 55. An improved understanding of 

clonotypic differences among CD8+ T cells responding to TL9 could highlight features 

that contribute to HIV-1 control in the context of B*81:01 and B*42:01. 

Here we investigate the mechanisms associated with immune-mediated control of 

HIV-1 subtype C infection by examining the CD8+ T cell response to the 

immunodominant p24 Gag epitope TL9 in virus-infected individuals expressing HLA 

B*81:01 or B*42:01 alleles. We identify a subset of T cells that recognize TL9 epitope 

presented on both B*81:01 and B*42:01 alleles, despite individuals lacking one allele. 

The presence of a dual-reactive T cell population is associated with lower plasma viral 

loads after controlling for differences in HLA expression. Notably, the dual-reactive 

population in B*42:01 expressing individuals is dominated by several public TCR 

clonotypes that encoded TRBV12-3. In contrast, while mono- and dual-reactive 

populations in B*81:01 expressing individuals are enriched for TRBV12-3 usage, no 

public clonotypes are observed. Comprehensive in vitro functional analyses of 

selected TCR clones demonstrated that B*81:01-derived clones and public dual-

reactive B*42:01-derived clones display greater ability to cross-recognize HIV-1 Gag 

TL9 escape pathways compare to mono-reactive TCR clones isolated from B*42:01 

expressing individuals. These results illustrate a use of HLA-tetramers and in vitro 

functional assays to identify and characterize TCR clonotypes that display enhanced 

ability to recognize a rapidly evolving HIV-1 infection. 
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2.3 Materials and Methods 

 

2.3.1 Study subjects 

Twenty-one antiretroviral naïve individuals were enrolled in Durban, South Africa 

through the HIV Pathogenesis Programme (HPP) acute infection cohorts. The clinical 

characteristics are shown in Table 1. All individuals were infected with HIV-1 subtype 

C. The Biomedical Research Ethics Committee of the University of KwaZulu-Natal and 

the Massachusetts General Hospital Ethics committee approved this study. All 

subjects provided written informed consent.  

 

2.3.2 HLA typing 

HLA typing was conducted by the laboratory of Dr. Mary Carrington (National Cancer 

Institute, Fredrick, USA), as previously described 111. DNA samples obtained from 

peripheral blood mononuclear cells (PBMC) were first oligo-typed using Dynal 

RELITM reverse Sequence Specific Oligonucleotide (SSO) kits for the HLA-A, HLA-B 

and HLA-C loci (Dynal Biotech). Genotypes were refined to the allelic level using the 

Dynal Biotech Sequence Specific priming (SSP) kits in conjunction with the previous 

SSO type. In cases where alleles were still not well-defined at the allelic level, 

sequence-specific primers were used 157. All class I HLA alleles in the IMGT allele 

release 24.0 were considered in the typing.  
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2.3.3 Tetramer staining, cell sorting and cell line generation 

To identify and characterize TL9-specific CD8+ T cell populations, PBMC were first 

stained with a cell-viability dye (Fixable Blue Dead Cell Stain Kit, Invitrogen) for 10 

minutes at room temperature. Cells were washed with 2% fetal calf serum (FCS) in 

phosphate buffered saline (PBS) and then stained with B*42:01-APC and/or B*81:01-

PE TL9 HLA class I tetramers (obtained from the laboratory of Dr. Soren Buus), for 30 

mins at room temperature. Subsequently, cells were washed, and surface stained with 

anti-CD8-BV786, CD3-BV711 and CD4-BV650 for 20 minutes at room temperature. 

Stained cells were analyzed by flow cytometry and/or tetramer-specific CD8+ T-cells 

were sorted for TCR sequencing. To generate TL9-specific CD8+ T-cell lines, cells 

were pulsed with 5 µl (200 µg ml-1) of TL9 peptide at 37 ºC for 3 hours and 

subsequently cultured in RPMI medium containing 10% heat-inactivated fetal calf 

serum (R10 medium) supplemented with 50 units ml-1 of recombinant human 

interleukin 2 (IL-2) (R10/50 medium) for 2 weeks. Expanded TL9-specific CD8+ T cells 

were validated for specificity by tetramer staining and isolated using a cell sorter (BD 

FACSAria, Germany). 

 

2.3.4 Tetramer intracellular cytokine staining and ELISPOT assay 

To assess the functional quality of TL9-specific CD8+ T cells, PBMC from B*81:01 and 

B*42:01 subjects were stimulated with 1.2 µl (200 µg ml-1) of TL9 peptide for 6 hours. 

After stimulation, cells were stained with an equal mixture of B*81:01 and B*42:01 TL9 

tetramers for 30 minutes at room temperature, washed in PBS containing 2% FCS 

and then stained with viability dye, anti-CD8-BV786, CD3-BV711, and CD4-BV650 for 

20 minutes at room temperature. Cells were fixed, permeabilized, stained 
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intracellularly with anti-IFN-g-PE-Cy7 and analyzed on the BD LSRFortessa. HIV-1 

immune responses were enumerated by IFN-g enzyme-linked immunosorbent spot 

(ELISPOT) assay as previously described 111,158. Briefly, PBMCs were stimulated with 

optimal HIV-1 subtype C peptide corresponding to each patient’s HLA-A, B and C 

alleles at a final concentration of 2 µg ml-1 peptide. 

 

2.3.5 TCR Vβ antibody staining 

TCR Variable β (Vβ) expression on mono- and dual-tetramer+ cells was assessed by 

flow cytometry as described previously 159. PBMC were stained with B*81:01 and/or 

B*42:01 TL9 tetramers conjugated to different fluorochromes, followed by TCR Vβ 

family labeling using IOTest Beta Mark TCR Vβ repertoire Kit (Beckman Coulter, 

Pasadena, United States) for 30 minutes at room temperature. Subsequently, cells 

were stained with viability dye, anti-CD8-BV786, CD3-BV711, and CD4-BV650. The 

percentage of each Vβ family was determined for a minimum of 100,000 CD8+ T cells 

using FlowJo software (Treestar, Ashland, United States). TCR Vβ staining was also 

performed on expanded mono- and dual- TL9 tetramer+ cell lines. 

 

2.3.6 TCR sequencing 

Amplification of TCR β CDR3 coding regions from single T cells was performed as 

described previously by Han et al 160 with modifications to obtain ~230 bp amplicons 

for Sanger sequencing (ABI 3130xl). Primers are included in Supplementary Tables 2 

and 3. The one-step SuperScript III kit (ThermoFisher) was used for RT-PCR and 
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Expand High Fidelity PCR system (Roche) was used for subsequent rounds. TCR α 

amplicons were TOPO cloned and screened to ensure productive CDR3 

rearrangement. Sequences were examined using the ImMunoGeneTics (IMGT)/V-

quest tool (www.imgt.org) to characterize Variable gene usage and CDR3 diversity. 

Full-length TCR alleles were reconstructed using Variable and Constant gene 

sequences obtained from the IMGT database, codon-optimized using the CodonOpt 

tool (Integrated DNA Technologies; www.idtdna.com) and synthesized as double-

stranded DNA gBlocks by IDT. Full-length genes were cloned into pSELECT_GFPzeo 

(Invivogen) for functional studies. 

 

2.3.7 TCR reporter assay 

TCR antigen recognition was examined using a previously described in vitro reporter 

T cell assay 161. Briefly, Jurkat T cells were co-transfected with TCR α, TCR β, CD8 α 

and NFAT-driven luciferase reporter plasmids by electroporation (BioRad MxCell). 

Target cells consisted of a CEM-derived GXR cell line 162 stably expressing either 

HLA-B*42:01 or B*81:01. TCR-transfected Jurkat effector cells (50,000 cells) were co-

cultured with 50,000 target cells either pulsed with 20 µM TL9 peptide (purchased from 

GenScript at >90% purity) or infected with HIV-1 in a total volume of 100 µL, and TCR 

recognition activity was quantified by luminescence after 6 hours (Tecan M200). Viral 

stocks were generated by co-transfection of HEK293T cells with pBR4.3∆Nef∆Env 

and pVSV-g using Lipofectamine 2000 (ThermoFisher Scientific). Infected GXR target 

cells were isolated by FACS based on GFP expression prior to co-culture with Jurkat 

T cells. To screen antigen cross-recognition, a peptide panel consisting of all single 

amino acid TL9 variants (180 total peptides) was purchased from GenScript. This 
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panel was prepared using microscale synthesis methods and individual peptides were 

aliquoted to 96-well plates at 0.5 to 2.0 mg total weight and >75% purity. Target cells 

were pulsed with ~20 µM peptide; however, due to variations in peptide sequence, 

total weight, Molar weights and purity, actual concentrations were anticipated to range 

between 8.4 and 20 µM. 

 

2.3.8 HIV sequence analysis 

To determine the frequency of naturally occurring Gag TL9 variants in HIV-1 subtype 

C infection, all subtype C TL9 amino acid sequences (N=5,481) were downloaded 

from the Los Alamos National Laboratory (LANL) HIV sequence database 

(www.hiv.lanl.gov) and analyzed. Sequences encoding consensus TL9 (N=4,526), 

multiple substitutions or mixed residues (combined N=217) and those appearing fewer 

than five times (N=53) were removed to generate a list of the most probable single 

amino acid TL9 variants (N=685). The proportion of each variant within this population 

was calculated to determine the likelihood of viral escape. Critical transition mutations 

(i.e. those that must to occur for consensus TL9 to evolve into escape variants) were 

identified using the standard amino acid codon table for eukaryotes. Sequence 

conservation frequencies for TL9 residues were estimated using the QuickAlign tool 

on the LANL web site (based on N=1,865 protein sequences). 

 

2.3.9 Statistical analysis 

Statistical analyses were conducted using Prism software, version 6.0 (GraphPad, 

Inc.). Two-tailed tests were employed, and p-values less than 0.05 were considered 



 
55 

to be significant. Comparisons between groups of continuous variables were assessed 

using parametric (unpaired Student’s T) or non-parametric (Mann-Whitney U) tests. 

Differences in categorical variables between groups were assessed using Fisher’s 

exact test. A multivariable linear regression analyses was conducted using Stata, 

version 14 (Stata Corp), to assess the independent predictive ability of HLA and dual 

reactivity on plasma viral loads. Hierarchical clustering analysis was performed using 

pvclust software 163 (http://stat.sys.i.kyoto-u.ac.jp/prog/pvclust), implemented in R. 

Data was grouped according to correlation distances using single linkage methods. 

Approximately unbiased (au) p-values and bootstrap probability (bp) values were 

based on 5,000 iterations. 
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2.4 Results 

 

2.4.1 Characterizing CD8+ T cell responses in study participants 

Population-level studies have demonstrated that HLA-B*81:01 is associated with 

better control of HIV-1 subtype C infection than the closely related allele B*42:01 

111,124; however, mechanisms to explain this remain unclear. To examine this, we 

recruited 21 treatment-naïve HIV-infected individuals expressing B*81:01 (n = 9), 

B*42:01 (n = 11), or both alleles (n = 1) from Durban, South Africa. Individuals co-

expressing other protective class I HLA alleles (namely B*57:03, B*58:01 and 

B*39:01) were excluded from this study. The clinical characteristics and class I HLA 

genotypes of participants are shown in Table 2.1 and 2.2, respectively. Consistent with 

prior reports 151,164,165, we observed that untreated B*81:01 expressing individuals 

displayed lower plasma viral loads (median 3.38 log10 RNA copies ml-1 [IQR 2.36-

3.99]) compared to untreated B*42:01 expressing individuals (4.15 log10 RNA copies 

ml-1 [IQR 3.40-4.84]) (p=0.03, Mann-Whitney U-test) (Fig. 2.1A). The difference in CD4 

counts between groups was not statistically significant (median 625 cells µl-1 in 

B*81:01 vs. 555 cells µl-1 in B*42:01; p = 0.14, Mann-Whitney U-test). While the 

individual who co-expressed HLA-B*81:01 and B*42:01 alleles was not included in our 

analysis of clinical correlations, this participant displayed the lowest plasma viral load 

(2.11 log10 RNA copies ml-1) and highest CD4 count (1,002 cells µl-1). 
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Table 2.1: Demographic and clinical characteristics of the study participants. 

All values in parenthesis were expressed as inter-quartile range. Participants with 

other protective alleles present in the cohort of study were excluded in the study. 

 

Immune targeting of dominant CD8+ T cell epitopes contributes to long-term 

suppression of HIV-1 viremia 166-168. The p24 Gag-derived epitope TL9 is 

immunodominant in both B*81:01 and B*42:01 expressing individuals 150,151, and the 

magnitude of the TL9 response has been associated with improved clinical outcome 

in the context of B*81:01 154. To characterize the TL9 response in our cohort, we 

quantified antigen specific CD8+ T cells using B*81:01 and B*42:01 tetramers. We 

observed no difference in the frequency of tetramer+ CD8+ T cells between individuals 

expressing B*81:01 (median 2.08%) compared to B*42:01 (1.14%) (p=0.50; Student’s 

T test) (Fig. 2.1B). Notably, intra-patient comparison of responses in either B*81:01 or 

B*42:01 participants showed that TL9 was the most dominant response compared to 
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other responses (p=<0.0001, Student’s T test) by both tetramer staining and ELISPOT 

(Supplementary Fig. 2.1A-C and Supplementary Table 2.1). These data are consistent 

with previous studies 151,156. The proportion of TL9-specific CD8+ T cells expressing 

IFN-g following peptide stimulation was also not significantly different between 

individuals expressing B*81:01 (median 47%) and B*42:01 (27%) (p=0.09, Student’s 

T test) (Fig. 2.1C); however, the observed trend in favor of B*81:01 participants is 

consistent with prior work describing moderately higher TL9-specific IFN-g secretion 

and higher functional avidity in the context of B*81:01 151. 

 

2.4.2 Dual HLA reactivity is associated with lower viral load 

To investigate if there were any qualitative differences in TL9-specific CD8+ T cells 

restricted by these two HLA alleles, we first made a direct comparison between 

antigen-specific T cells in the individual who co-expressed B*81:01 and B*42:01. 

Intriguingly, when we double-stained cells from this individual with both HLA tetramers, 

we observed a dominant T cell subset that was labelled using the B*81:01-TL9 

tetramer as well as a secondary subset that was labelled by both B*81:01-TL9 and 

B*42:01-TL9 tetramers, which we will refer to as the dual-reactive population (Fig. 

2.1D). 
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Table 2.2: List of class I HLA type of the study participants  

Detail class I HLA profiles of the study participants. 

 

To explore whether the dual-reactive T cell population was unique to this individual, 

we re-examined all study participants using both class I HLA tetramers. We observed 

dual-reactive TL9 responses in the majority of participants, indicating that a subset of 

CD8+ T cells elicited in the context of both B*81:01 and B*42:01 could cross-recognize 
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TL9 bound to the other class I HLA allele, even when it was not expressed by the host. 

Representative results for two individuals are also shown in Fig. 2.1D. The dual-

reactive population was seen more frequently in individuals expressing B*81:01 (7 of 

9; 78%) compared to B*42:01 (5 of 11; 46%) (Fig. 2.1E), but this difference was not 

statistically significant (p=0.19, Student’s T test). While CD8+ T cell promiscuity is 

frequently observed towards peptide variants presented on the same HLA allele, we 

know of only one prior report that described CD8+ T cell cross-reactivity to the same 

peptide presented on two different class I HLA alleles 169. In a multivariable linear 

regression model, we identified dual-reactivity, but not HLA, as a significant 

independent predictor of lower plasma viral load in our participants (p=0.02) (Fig. 

2.1F), suggesting that this T cell phenotype is associated with a clinical benefit. We 

therefore hypothesized that features associated with dual-reactive CD8+ T cells could 

provide insight into mechanisms of HIV-1 control.  
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Figure 2.1: A dual TL9 tetramer+ response is associated with lower plasma viral load.   

A comparative analysis indicated lower plasma viral loads (log10) among participants 

expressing B*81:01 compared to participants expressing B*42:01 (p=0.03, Mann-
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Whitney U-test test) (A). Representative flow plots display TL9 tetramer responses 

observed in one B*81:01 expressing individual (top) and one B*42:01 expressing 

individual (bottom). A comparative analysis of TL9 tetramer+ frequencies observed no 

difference between participants expressing B*81:01 compared to those expressing 

B*42:01 (p=0.5; Mann-Whitney U-test) (B). A comparative analysis of IFN-g secretion 

following stimulation with TL9 peptide indicated a trend towards higher activity among 

individuals expressing B*81:01 versus B*42:01 (p=0.09, Mann-Whitney U-test) (C). 

Representative flow plots display the dual TL9 tetramer-reactive T cell population in 

B*81/42:01 expressing participant, one B*81:01 expressing participant and one 

B*42:01 expressing participant (D). A higher proportion of B*81:01 expressing 

participants displayed dual tetramer reactivity (p=0.19, Chi-square test) (E). 

Multivariable linear regression analyses that included HLA allele and presence of dual 

tetramer-reactive T cells as independent variables indicated that dual-reactivity 

(p=0.02) but not HLA (p=0.23) was a significant determinant of plasma viral load (F). 

 

2.4.3 Constrained Vβ genes in B*42-derived dual-reactive TCR 

The ability of dual-reactive CD8+ T cells to recognize TL9 bound to different, albeit 

related, class I HLA alleles suggested that they harbored distinct characteristics. Since 

individual TCR clonotypes have been associated with improved control of HIV-1 

52,139,140,170-173, we analyzed the TCR repertoire found in mono- and dual-reactive TL9-

specific T cells. First, we investigated TCR b expression using flow cytometry by co-

staining PBMC with B*81:01- and B*42:01-TL9 tetramers plus a cocktail of Vb-specific 

antibodies. Representative results for one B*42:01 expressing individual are shown in 

Fig. 2.2A. Consistent with prior studies that described a high frequency of TRBV12-3 
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gene usage among TL9-specific T cells 151,152, we observed that both mono- and dual-

reactive T cells from B*81:01 expressing individuals were highly enriched for Vb 12-

3/12-4 (Fig. 2.2B). In contrast, while mono-reactive T cells from B*42:01 individuals 

expressed multiple Vb families, the dual-reactive T cells from these individuals were 

highly enriched for Vb 12-3/12-4 (Fig. 2.2C). These results suggested that TCR 

clonotypes expressed by dual-reactive CD8+ T cells elicited in the context of HLA 

B*42:01 shared distinct features with T cells that dominated TL9 responses elicited by 

the more protective B*81:01 allele. To confirm these observations, we sorted mono- 

and dual-reactive T cells using FACS and generated separate TL9-specific cell lines. 

Similar Vb staining profiles were observed following ex vivo expansion 

(Supplementary Fig. 2.2), confirming that dual-reactive T cells were a bona fide 

population and not an artifact of tetramer staining. 
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Figure 2.2: Enrichment of TCR Vβ 12-3/12-4 in dual-reactive T cells.   

A representative flow plot for one B*42:01 expressing individual displays mono- and 

dual-TL9 tetramer reactive T cell populations and linked TCR Vβ expression profiles 

based on antibody staining (A). Aggregate results for TCR Vβ usage are shown for 
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mono- (blue) and dual-reactive (red) T cells from six B*81:01 expressing individuals 

(B) or six B*42:01 expressing individuals (C).   

To gain additional molecular insight into the TCR clonotypes present within each TL9-

specific T cell population, we sequenced the TCR b gene repertoire in single tetramer-

labeled T cells isolated by FACS from three B*81:01 and three B*42:01 expressing 

individuals who displayed mono- and dual-reactive responses. Consistent with 

antibody staining results, Vb gene usage for mono- and dual-reactive B*81:01-derived 

populations, as well as dual-reactive B*42:01-derived populations, was highly 

restricted to TRBV12-3/12-4 (Fig. 2.3A, B). In contrast, while the mono-reactive 

population in one B*42:01 expressing individual (participant 11) was comprised largely 

of T cells encoding TRBV12-3/12-4, the primary Vb gene present in the other two 

individuals (participants 13 and 17) was TRBV7-9 (Fig. 2.3B). Notably, we observed 

that the dual-reactive population in all three B*42:01 expressing individuals was 

dominated by four public Vb sequences (highlighted CDR3 regions in Fig. 2.3B) that 

were never observed in B*81:01-derived TCR sequences. Enrichment of TRBV12-

3/12-4 usage by TL9-specific TCR in the context of B*81:01 as well as the public dual-

reactive TCR in B*42:01 expressing individuals suggested that features of these TCR 

clonotypes contribute to control of HIV-1 infection. 
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Figure 2.3: Molecular analysis of TCR β clonotypes in mono- and dual-reactive T cells. 

TCR β sequencing was performed on single FACS-sorted mono- and dual-TL9 

tetramer reactive T cells from three B*81:01 expressing participants (A) and three 

B*42:01 expressing participants (B). TRBV and CDR3 sequences were determined 

using the IMGT V-quest tool (www.imgt.org). The total number of sequences collected 

per population is indicated under each pie chart. Unique TCR β clones are displayed 

as wedges in the pie chart. The size of the wedge indicates the frequency of each 

sequence within the population and the color represents TRBV usage. TCR β 

sequences in mono- and dual-reactive populations from B*81:01 expressing 
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individuals were highly enriched for TRBV12-3/12-4 usage (indicated in grey); 

however, no public sequences were observed among these individuals. Mono-reactive 

populations from B*42:01 expressing individuals encoded diverse TRBV and also 

lacked public sequences.  In contrast, dual-reactive populations from B*42:01 

expressing individuals were enriched for TRBV12-3/12-4 usage (grey), and these 

sequences were comprised predominately of four identical (public) TCR β clones 

(highlighted by colored boxes). Notably, these public clones were distinct from any 

TCR observed in B*81:01 individuals. 

 

2.4.4 Isolation and validation of TL9-specific TCR clones 

To provide a more complete understanding of mono- and dual-reactive CD8+ T cell 

phenotypes, we identified the paired TCR a gene from eight dominant TCR clones 

representing the mono- and dual-reactive populations from B*81:01 and B*42:01 

expressing individuals (Fig. 2.4A) and directly assessed TCR function using a 

previously described in vitro reporter T cell assay 161. Briefly, full-length TCR a/b genes 

were reconstructed and transiently expressed in Jurkat T cells. TCR-mediated NFAT 

signaling was quantified by luminescence following co-culture with HLA-expressing 

target cells presenting the TL9 epitope. Since methods used for TCR staining and 

sequencing could not distinguish between TRBV12-3 and TRBV12-4, which differ by 

two amino acids in the CDR1, TCR b genes were synthesized encoding both alleles; 

however, only TRBV12-3 constructs were functional (Supplementary Fig. 2.3). TCR 

clones displayed dose-dependent responses to consensus TL9 over a range of 

peptide concentrations (5 nM to 20 µM) (Supplementary Fig. 2.4), indicating that the 

reporter assay was sensitive and specific. Furthermore, reconstructed TCR 
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maintained mono- or dual-reactivity against TL9 peptide-pulsed (Fig. 2.4B) and HIV-

infected (Fig. 2.4C) target cells expressing B*81:01 or B*42:01, confirming that dual-

reactive T cells were a distinct population in both B*81:01 and B*42:01 expressing 

individuals, and that phenotypic differences in pHLA specificity were due to TCR 

sequence. 
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Figure 2.4: In vitro validation of TCR specificity and dual reactivity.  Details for the eight 

TL9-specific TCR clones investigated in this study are shown, including donor HLA, 

mono- or dual-reactivity phenotype, paired TCR a/β V gene usage and CDR3 

sequences (A).  Jurkat T cells were co-transfected with TCR a/β, CD8 a  and an NFAT-

driven luciferase reporter vector, and then co-cultured with TL9 peptide-pulsed (B) or 

HIV-infected (C) target cells stably expressing B*81:01 or B*42:01. TCR-dependent 

NFAT signaling was quantified by luminescence. The expected mono- or dual-reactive 

phenotype was observed for all reconstructed TCR clones, as indicated by greater 

luminescence (absolute light units, y-axis) in the presence of TL9-pulsed or virus-

infected target cells compared to no-peptide or uninfected controls. Assays were 

conducted at least three times. Results from a representative experiment are shown 

as the mean of three co-culture reactions, plus standard deviation. 

 

2.4.5 Analyses of TL9 variant recognition by TCR clones 

The ability of TCR to cross-recognize epitope variants is associated with enhanced 

antiviral activity of CD8+ T cells 52,139,174. If indeed the dual-reactive population 

contributes to control of HIV-1, we hypothesized that it should be able to respond to a 

variety of TL9 variants. To explore this, we assessed the ability of each reconstructed 

TCR to respond to a panel of 180 peptides representing TL9 and all possible single 

amino-acid TL9 variants. These results are displayed as heat maps in Fig. 2.5.  

Collectively, the eight TCR clones recognized 114 (of 171, 67%) TL9 variants at a 

normalized luminescence value of 0.1 or greater (which was ~10-fold above negative 

control wells). In addition to consensus TL9, individual B*81:01-derived clones 

responded to 67 (11A10, mono-reactive), 53 (12A11, dual), and 94 (18A2, dual) 
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variant peptides, while B*42:01-derived clones responded to 48 (7A10, mono), 46 

(13A10, mono), 54 (14A4, public dual), 34 (16A11, public dual), and 34 (14D7, public 

dual) variant peptides. No correlation was observed between the total breadth of TL9 

variant recognition and dual-reactivity, suggesting that qualitative features of TCR 

function contributed to this phenotype. The three TCR clones isolated from B*81:01 

expressing individuals (one mono- and two dual-reactive) displayed similar overall TL9 

variant cross-recognition profiles, as demonstrated by Spearman R-values >0.80 for 

all pair-wise associations; however, greater breadth against variants at position 4 

(aspartic acid) was seen for clone 18A2. In contrast, the five TCR clones isolated from 

B*42:01 expressing individuals displayed more disparate cross-recognition profiles, 

which was reflected by pair-wise Spearman R-values between 0.12 and 0.67. Notable 

differences were observed among B*42:01-derived TCR clones for recognition of TL9 

peptide variants at positions 3 and 7, which are discussed below. To further evaluate 

the degree of functional similarity among these TCR clones, we performed a 

hierarchical clustering analysis based on their TL9 variant recognition profiles. Results 

are shown as a dendrogram in Figure 2.5. We observed that all three of the public 

dual-reactive B*42:01-derived clones grouped together with bootstrap values of 100. 

Furthermore, this group of public clones clustered more closely with the three B*81:01-

derived clones (bootstrap value of 97), compared to the two mono-reactive B*42:01-

derived clones. Together, these results indicate that the epitope binding properties of 

the public dual-reactive B*42:01-derived TCR clones are more similar to those of 

clones elicited in the context of the more protective B*81:01 allele, despite TL9 peptide 

being presented on a different HLA allele. 
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Figure 2.5: Functional clustering of TCR clones based on TL9 variant recognition 

profiles. TCR recognition of TL9 variants was assessed by pulsing target cells 

expressing the donor HLA (B*81:01 or B*42:01) with a panel of 180 peptides 

encompassing all single amino acid substitutions at epitope positions 1 through 9 prior 

to co-culture with Jurkat T cells expressing the TCR of interest. TCR-dependent NFAT 

signalling was quantified by luminescence. Values were normalized to the mean signal 

obtained for consensus TL9 (set to 1.0), which was tested nine times in each 

experiment. Results are displayed as heatmaps, where the warmer color reflects 

higher relative luminescence values indicative of better TCR recognition. Peptide 

positions are shown at the top of each heatmap; amino acid substitutions on the 

consensus TL9 backbone are shown on the left-hand side. Amino acids are grouped 

according to chemical properties: polar residues (G, S, T, Y, C, Q, N) are highlighted 

in green; basic residues (K, R, H) are blue; acidic residues (D, E) are red; and 

hydrophobic residues (A, V, L, I, P, W, F, M) are black. For reference, the consensus 

TL9 residue at each position is indicated using a box. TCR were grouped according to 

their functional profiles by hierarchical clustering using correlation distances and single 

linkage methods (5,000 iterations) implemented in pvclust (http://stat.sys.i.kyoto-

u.ac.jp/ prog/pvclust/). The dendrogram (top) displays approximately unbiased (au) p-

values in red text and bootstrap probability (bp) values in green text. The three 
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B*81:01-derived TCR clustered with bp values of 93 or higher. The three public dual-

reactive B*42:01-derived TCR clustered with bp values of 100; and, notably, they 

grouped more closely with B*81:01 clones (bp value of 97), rather than mono-reactive 

B*42:01-derived TCR. 

 

2.4.6 Dual-reactive TCR recognize more TL9 escape mutations 

We observed substantial differences in TL9 variant recognition among TCR clones, 

particularly at epitope positions 3 and 7.  To examine the impact of these differences 

on viral adaptation, we restricted our analysis to 19 TL9 polymorphisms present in 

circulating HIV-1 subtype C sequences at a prevalence of ~0.1% or greater, which 

were considered as viable escape mutations. The ability of each TCR to recognize 

this panel of mutants is illustrated as a SequenceLogo in Figure 2.6 (panels A-H). 

Collectively, the eight TCR clones recognized 16 (of 19, or 84%) TL9 escape mutants; 

none responded to a threonine, glycine or aspartic acid substitution at position 3, which 

together accounted for 26.1% of circulating variant sequences. These results were 

highly consistent with prior studies of T cell cross-reactivity based on IFN-g ELISPOT 

assays using PBMC 151,152,154, with 7 (of 8; 88%) TCR clones recognizing serine at 

position 7 or alanine at position 3, whereas responsiveness to other natural 

polymorphisms at position 3 (histidine, 13%; serine, 13%; threonine, 0%) and position 

7 (valine, 75%; methionine, 25%) were less common. While the total number of TL9 

escape mutants recognized by B*81:01-derived TCR clones (range, 8-14), public dual-

reactive B*42:01-derived clones (6-9) and mono-reactive B*42:01-derived clones (6-

7) was not significantly different between groups, we observed that the two mono-

reactive B*42:01-derived TCR clones responded primarily to variants located at either 
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position 7 (for 7A10) (Fig. 6A) or position 3 (for 13A10) (Fig. 2.6B), indicating a limited 

ability to control escape mutations that occur at the other residue. In contrast, B*81:01-

derived TCR clones and public dual-reactive B*42:01-derived clones each displayed 

broader recognition of variants at both position 3 and 7 (Fig. 2.6C-H), suggesting a 

distinct mechanism(s) of binding that accommodated changes at these residues. 

B*81:01-derived TCR clones also displayed broader recognition of TL9 variants at 

position 5. These results demonstrate functional differences among TCR clonotypes 

that may contribute to control of naturally occurring TL9 variants, particularly at epitope 

positions 3 and 7. 

HIV-1 adaptation to CD8+ T cells is highly dynamic 175,176, but escape in TL9 is limited 

by functional constraints 55. Since common TL9 variants, such as serine at position 7 

(S7; 23.4% of non-consensus sequences in LANL), are presumed to encounter a 

relatively lower barrier for escape compared to rare variants, such as isoleucine at this 

position (I7: 0.7%), we reasoned that TCR recognition of more common TL9 variants 

would be beneficial for viral control. To explore this, we plotted these 19 TL9 

polymorphisms using pie charts with wedges sized according to their prevalence in 

subtype C sequences (Fig. 2.6I-P) and then determined the percent coverage of TL9 

escape mutations for each TCR by calculating the proportion of total sequence 

variation that was recognized (see wedges highlighted in Red). Based on this 

frequency-adjusted analysis, individual clones displayed 22% (Fig. 2.6J) to 67% (Fig. 

2.6P) coverage of TL9 variants. While differences between groups were not 

statistically significant, B*81:01-derived TCR clones and public dual-reactive B*42:01 

clones tended to display greater coverage (40-67% and 36-41%, respectively) 

compared to the mono-reactive B*42:01 clones (22% and 32%). These results indicate 
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that individual TCR clonotypes display variable capacity to recognize more common 

TL9 variants that are likely to constitute preferential escape mutants. 
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Figure 2.6: Enhanced recognition of TL9 escape by B*81:01-derived and B*42:01-

derived dual-reactive TCR clones. The ability of each TCR clone to respond to HIV-1 

escape mutants was determined by comparing its recognition profile to a panel of 19 

naturally occurring subtype C TL9 variants, found at a prevalence of ~0.1% or greater 

in the LANL HIV Sequence Database (HIV Databases; http://www.hiv.lanl.gov). 

Recognition breadth for each TCR is illustrated as a SequenceLogo, demonstrating 

variable responsiveness towards relevant TL9 mutations located primarily at epitope 

positions 3 and 7. Mono-reactive TCR from B*42:01 expressing individuals displayed 

narrower profiles that recognized TL9 variants at either position 7 (7A10, A) or position 

3 (13A10, B), whereas public dual-reactive B*42:01-derived clones (C-E) and B*81:01-

derived clones (F-H) demonstrated broader ability to recognize TL9 variants at both 

positions 3 and 7. To account for constraints on TL9 escape, epitope variants were 

displayed using pie charts where the size of each wedge is proportional to variant 

frequency in circulating subtype C isolates (I-P). Serine at position 7 (S7), serine at 

position 3 (S3), and threonine at position 3 (T3) accounted for the majority (55%) of 

population-level variation. For each chart, the wedge is shaded in Red (R) if the TCR 

responded to the escape mutant or in Yellow (Y) if the TCR recognized all transitional 

mutations required to generate that escape mutant from consensus TL9. The sum of 

all Red wedges is displayed under each chart as the total percentage of Variant 

Epitope Recognition and the sum of all shaded wedges, Red plus Yellow, is displayed 

as the total percentage of Escape Pathway Recognition, where recognition of all 

circulating TL9 variants would be 100%. Overall, B*81:01-derived TCR (N-P) and 

public dual-reactive B*42:01-derived TCR (K-M) displayed better ability to cross-

recognize circulating TL9 escape variants and pathways compared to mono-reactive 

B*42:01-derived clones (I-J). 
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Since codon usage places additional constraints on viral sequence evolution, we 

reasoned that TCR recognition of transitional variants would hinder the development 

of TL9 escape . For example, substitution of glutamine at position 3 (Q3) with serine 

(S3) requires a minimum of two nucleotide changes with transition through proline (P3) 

or a stop codon. Thus, TCR recognition of the P3 variant would be expected to prevent 

formation of S3, even in cases where the TCR did not respond to the S3 variant itself. 

For each TCR clone, we determined which TL9 escape mutations were inhibited due 

to recognition of critical transitional variants (see Yellow wedges in Figures 2.6I-P). 

We then calculated the total coverage of TL9 escape pathways by summing the 

proportion of variant sequences that were recognized or prevented by each TCR (i.e. 

Red plus Yellow wedges). Based on this pathway-adjusted analysis, individual TCR 

clones displayed 32% to 83% coverage of TL9 escape mechanisms. Notably, 

B*81:01-derived clones (range, 57-83%, Fig. 2.6N-P) and public dual-reactive 

B*42:01-derived clones (range, 52-83%, Fig. 2.6K-M) displayed broader coverage 

compared to mono-reactive B*42:01-derived clones (both 32%, Fig. 6I-J) (p = 0.05 

and p = 0.11, respectively; Student’s T test); highlighted by one public dual-reactive 

B*42:01-derived clone (14A4) and one B*81:01-derived clone (18A2). Notably, 

extended coverage of TL9 escape pathways was due mainly to the ability of TCR 

clones 14A4 (K), 14D7 (L), 16A11 (M), 11A10 (N), and 12A11 (O) to respond to the 

P3 variant, which is anticipated to impair development of the S3 escape mutation that 

accounts for 16.5% of TL9 variant sequences. Together, these results illustrate the 

functional diversity that exists among antigen-specific T cells and demonstrate the 

impact of TCR sequence on recognition of HIV-1 Gag TL9 escape mutations. This 
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work highlights the role of TCR clonotype differences as a correlate of HIV-1 control 

in the context of HLA B*81:01 and B*42:01. 
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2.5 Discussion 

The characteristics that determine effectiveness of adaptive host immune responses 

to rapidly evolving pathogens such as HIV-1 are not fully defined. In this study, we 

examined the CD8+ T cell response against the immunodominant HIV-1 p24 Gag TL9 

epitope in the context of two closely related class I HLA alleles, B*81:01 and B*42:01, 

that both display differential abilities to control viral subtype C infection 111. We 

identified a population of dual HLA tetramer-reactive T cells that recognized TL9 

presented in the context of either B*42:01 or B*81:01 alleles and observed that the 

presence of this dual-reactive population was an independent predictor of lower 

plasma viral load. In B*42:01 expressing individuals, dual-reactive populations were 

dominated by public TCR clonotypes that encoded TRBV12-3. A comprehensive in 

vitro functional analysis of selected TCR clones indicated that B*81:01-derived clones 

(regardless of mono- or dual-reactive phenotype) and public dual-reactive B*42:01-

derived TCR clones displayed greater ability to recognize TL9 escape pathways, 

compared to mono-reactive clones from B*42:01 expressing individuals. While the 

dual-reactive T cell phenotype reported here is a phenomenon of tetramer binding to 

pHLA that is not expressed by the host, our results indicate that it identifies T cell 

subsets within diverse antigen-specific repertoires that share important features, 

including Vb gene sequences and the ability to recognize HIV-1 epitope variants. A 

similar dual HLA-reactive phenotype has been described for one CTL clone 169, but 

here we demonstrate the extent to which dual-reactive T cells exist in vivo and link this 

phenotype to functional characteristics of individual TCR clonotypes. It will be critical 

to examine this phenomenon further to see if it is a common feature of T cell responses 

elicited in the context of other HLA supertypes, such as members of the B57 family 

that also show differential abilities to control HIV-1 infection 111.  
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It is important to note that antigen sensitivity appeared to be independent of cross-

reactivity for TCRs examined in this study. While more detailed biochemical analyses 

will be necessary to fully assess the affinity of TL9-specific TCR clones, our reporter 

assay provides a surrogate measure of antigen sensitivity based on strength of NFAT 

signalling. The activities of dual-reactive B*42:01-derived TCR clones were lower 

compared to those of mono-reactive B*42:01-derived clones. We observed similar 

differences in the sensitivity of representative TCR clones tested over a range of TL9 

concentrations (Supplementary Fig. 3), indicating that this result was not an artefact 

of peptide dose. In addition, TCR sensitivity towards consensus TL9 did not correlate 

with cross-recognition of TL9 variants in our more comprehensive analysis, although 

it will be important to confirm this observation using a larger panel of TL9-specific TCR 

clones.  

Although B*81:01 and B*42:01 are both members of the B7 supertype and known to 

present many of the same HIV-1 peptides, the dual-reactive T cell phenotype is 

unexpected since structural data indicated that TL9 adopts a distinct conformation 

upon binding to each allele 156. Our analysis demonstrated that B*81:01-derived TCR 

clones and public dual-reactive B*42:01-derived clones recognized TL9 variants at 

both principal sites of viral escape, position 3 and 7. This is interesting since both 

residues are buried in the B*81:01 structure, while position 7 is solvent-exposed in the 

context of B*42:01 156. It remains to be determined whether TCR recognition reflects 

direct binding to these TL9 variants, or rather is due to conformational changes in the 

pHLA or indirect effects on other TL9 residues. In contrast, mono-reactive B*42:01-

derived TCR displayed breadth against TL9 variants at either position 3 or position 7, 

but not both. While both types of mono-reactive TCR may be present within the 

repertoire of B*42:01 expressing individuals, skewing of the immune response towards 



 
80 

either mono-reactive TCR subset could facilitate viral escape at the alternative TL9 

position.  

Our detailed functional data provides insight into characteristics of TL9-specific TCR 

clones that might be overlooked using more conventional methods based on HIV-1 

sequences alone. For example, all TCR clones were sensitive to changes at TL9 

position 6, demonstrating that this highly conserved polar asparagine residue is critical 

in the context of both HLA alleles, despite it being solvent-exposed in the B*81:01 

structure and buried in the B*42:01 structure 156. In addition, most TCR were sensitive 

to changes at position 4, indicating that this negatively charged, polar aspartic acid 

residue (which is solvent-exposed in both structures 156) is critical for recognition; 

however, the B*81:01-derived clone 18A2 tolerated mutations at this residue, 

suggesting a distinct mechanism of interaction in this case. Structural flexibility is a 

crucial feature of the interaction between TCR and pHLA 177-179; thus, changes in 

conformation induced upon TCR binding may be relevant to recognize TL9 variants in 

the context of both B*81:01 and B*42:01. Because such conformational 

rearrangements are difficult to predict 180, more detailed structural analyses will be 

necessary to explore this issue. In the absence of such data, we are unable to define 

structural determinants of cross-reactivity for the TCR clones examined in our 

study.  Nevertheless, our results highlight peptide-recognition properties that may 

contribute to future studies of these and other TL9-specific TCRs. 

This work extends prior efforts to examine TL9-specific CD8+ T cell responses. In 

particular, Leslie et al. 151 and Geldmacher et al. 152 observed enrichment of TRBV12-

3 usage in B*81:01 and some B*42:01 expressing individuals, while Leslie et al. 151  

and Kloverpris et al 146 described public TCR ß sequences in B*42:01 expressing 
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individuals that correspond to the dual-reactive TCR clones 14A4 

(CASSFSKNTEAFF) and 14D7 (CASSHSKNTEAFF) examined here and 

demonstrated that the presence of these public clones was associated with TL9 

immunodominance 146. These earlier reports suggested that CD8+ T cell responses in 

B*81:01 expressing individuals displayed broader recognition of TL9 variants, but 

individual T cell clones (or TCR clonotypes) were not explored. Here, we re-discovered 

public TCR ß clonotypes in B*42:01 expressing individuals by their dual HLA-reactive 

phenotypes. Extensive functional analyses of selected TCR clones demonstrated 

substantial diversity in their abilities to recognize TL9 variants. Our results emphasize 

the role of cross-reactive public TCR clones encoding TRBV12-3 for effective TL9 

responses in B*42:01 expressing individuals; however, differences in TL9 variant 

recognition among these public clones also suggests a functional hierarchy that may 

be clinically relevant. Furthermore, it should be noted that B*42:01-derived clone 7A10 

encoded TRBV12-3 but did not demonstrate dual-reactivity or broad recognition of 

TL9 escape variants, indicating that phenotypic differences among TCR were not 

driven entirely by V gene usage. 

Several observations from this study are relevant for the design of vaccines or 

therapeutics. Vaccine antigens that can elicit effective cross-reactive TCR clonotypes 

might provide better protection against HIV-1 infection or enhance the ability of the 

immune system to recognize latent viral reservoirs encoding escape variants. We 

observed that public dual-reactive TCR clones from B*42:01 expressing individuals 

were unique in their ability to recognize a proline variant at TL9 position 3 (Q3P). It 

would be interesting to examine ex vivo responses to this rare TL9 variant as a 

surrogate marker for public dual-reactive T cells in HIV-infected individuals or vaccine 

recipients; or to consider vaccination with this variant TL9 sequence to elicit a more 
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broadly reactive T cell response in B*42:01 expressing individuals. We have also 

identified and validated the recognition profiles of eight TL9-specific TCR clones, 

including several with dual HLA-reactive phenotypes. These TCR clones may be 

attractive products for future T cell therapy strategies that aim to reduce or eliminate 

viral reservoirs encoding escape mutations in the context of HIV-1 subtype C infection. 

In summary, we have identified characteristics of TCR clonotype sequence and 

function that are associated with variable control of HIV-1 infection in the context of 

B*81:01 and B*42:01. We observed a unique dual HLA-reactive CD8+ T cell population 

that was highly enriched for a small number of public TCR clonotypes in B*42:01 

expressing individuals. Mono- and dual-reactive TCR clones from individuals 

expressing the protective B*81:01 allele displayed broad recognition of TL9 variants, 

suggesting that they provide comparable abilities to contain HIV-1 Gag escape 

mutants. In contrast, only public dual-reactive TCR clones from B*42:01 expressing 

individuals displayed similar broad TL9 variant recognition, suggesting that these 

public clonotypes provide enhanced ability to control HIV-1 escape mutants in the 

context of this less protective HLA allele. While additional studies will be necessary to 

fully assess the structural mechanisms and clinical relevance of these observations, 

this work provides a strong foundation and rationale to further explore the impact of 

TCR clonotype differences on HIV-1 outcomes. Together, our results highlight the 

feasibility and use of detailed molecular analyses that link TCR sequences with 

functional characteristics to improve understanding of T cell responses against diverse 

and rapidly evolving pathogens. Similar investigations might be beneficial to enhance 

the development of vaccines and T cell-based immunotherapies against HIV or other 

human diseases. 
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2.6 Supplementary Data 

 

Supplementary Figure 2.1: Intra-patient comparison of TL9 response with responses 

restricted by other alleles. Flow plot showing HIV-specific responses in a B*81:01 and 

B*42:01 representative donors (A), and aggregate data of TL9 responses compared 

to other responses (B) showing that TL9 responses are maintained at significantly 
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higher frequencies than other responses. ELISPOT data showing the magnitude of 

TL9 responses compared to other responses in B*81:01 and B*42:01 participants (C). 

 

 

Supplementary Figure 2.2: TCR-Vβ is conserved in dual TL9 tetramer+ CD8+ T cell 

lines. Representative flow plot and TCR-Vβ family usage is shown for mono- and dual-

reactive TL9 tetramer+ T cells isolated from a B*42:01 donor after expansion for 2 
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weeks (A). Aggregate data on TCR-Vβ family usage by mono-reactive compared to 

dual-reactive TL9 tetramer+ T cells in six B*81:01 donors (B) and six B*42:01 donors 

(C).  

 

 

Supplementary Figure 2.3: TCR signalling in response to TL9 peptide dilutions. Mono-

reactive TCR clones 11A10 (B*81; red) and 13A10 (B*42; green) and dual-reactive 

TCR clone 14A4 (B*42; orange) were tested using target cells expressing HLA-

B*42:01. Similar mono- or dual-reactive phenotypes were observed over a range of 

TL9 peptide doses (5 nM to 20 µM). The mono-reactive B*42:01-derived clone 13A10 

displayed greater signalling activity compared to the dual-reactive clone 14A4 at all 

peptide doses tested. In addition, the mono reactive B*81:01-derived clone 11A10 was 
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unable to recognize TL9 bound to HLA-B*42:01 at all peptide doses tested. Combined 

with data shown in Figure 4, these results confirm the mono- and dual-reactive 

phenotypes of these TCR clones and also suggest that antigen sensitivity is 

independent of dual-reactivity for the B*42:01-derived public TCR clones examined in 

this study.  
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Supplementary Table 2.1: 
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CHAPTER 3 

 

Aim: Investigate the molecular mechanisms governing the expression of CXCR5 on 

CD8+ T cells isolated from lymphoid tissues of HIV-1 infected individuals.  

 

Chapter 3 Overview 

In chapter 2, we identified CD8+ T cell subsets in peripheral blood with diverse antigen-

specific repertoires, and the potential to cross-recognize HIV-1 epitope variants. Even 

though these CD8+ T cells have a higher capability to control viral replication in vivo, 

their effect could be greatly enhanced if they efficiently accessed the micro-anatomical 

sites of HIV-1 replication, especially the B-cell follicles where HIV-1 replication persists 

even during highly active antiretroviral therapy (HAART). Indeed, animal studies have 

identified a unique subset of CD8+ T cells termed follicular CD8+ T cells (fCD8s) based 

on the expression of follicular homing marker CXCR5, and have demonstrated that 

fCD8s have the capacity to selectively enter B cell follicles and eradicate HIV-1 

infected cells. In these studies, they identified a network of transcriptional factors that 

regulates the expression of CXCR5 on CD8+ T cells, but it is not clear if similar or 

additional regulatory elements are involved in regulating CXCR5 in human CD8+ T 

cells. In chapter 3 of this thesis, we describe the molecular regulation of CXCR5 in 

human CD8+ T cells. We showed that CXCR5 expression in human CD8+ T cells 

isolated from the lymphoid tissues of HIV-1 infected individuals is tightly regulated by 

distinct epigenetic and transcriptional mechanisms. We reported epigenetic and 

transcriptional targets that can be used to manipulate human CD8+ T cells to express 
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CXCR5 and infiltrate B cell follicles to clear viral reservoirs. This manuscript is under 

review by the co-authors.  
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3.1 Abstract 

CD8+ T cells located in B cell follicles play an important role in viral and tumor control. 

However, in human lymph nodes (LN), only a small subset of CD8+ T cells called 

follicular CD8+ T cells (fCD8s) express CXCR5, the chemokine receptor required for 

cell migration into B cell follicles. We investigated why most lymph node CD8+ T cells 

(non-fCD8s) do not express CXCR5, and why there is reduced CXCR5 expression in 

fCD8s relative to Germinal centre T follicular helper cells (GCTfh). Our results show 

that DNA hypermethylation and closed chromatin at the transcriptional start site (TSS) 

prevent CXCR5 expression in non-fCD8s. We also found that greater nucleosomal 

density at the CXCR5 TSS is responsible for reduced CXCR5 expression in fCD8s 

relative to GCTfh. Together, these data provide critical insights into both the underlying 

molecular mechanisms that repress CXCR5 in non-fCD8s and the mechanisms 

responsible for the low CXCR5 expression in fCD8s, with implications for HIV cure 

strategy or eradication of B cell-derived tumors. 
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3.2 Introduction 

Secondary lymphoid tissues (SLT) are the major site of human immunodeficiency 

virus (HIV) replication 1-3. Germinal center follicular CD4+ T cells (GCTfh) in the B cell 

follicles serve as major targets of infection 4-6. The partial exclusion of the CD8+ T cells 

from B cell follicles within lymph nodes (LN) 7,8 is thought to be partly responsible for 

HIV persistence in this compartment, particularly during suppressive antiretroviral 

therapy (ART) 9,10. A recently described CXCR5 expressing CD8+ T  cell subset called 

fCD8 can infiltrate B cell follicles and eliminate HIV infected cells or tumor cells11-13. 

Human and animal studies have shown that the frequency of fCD8s inversely 

correlates with HIV or SIV viral load 11,14,15, suggesting that increased infiltration of 

fCD8s in B cell follicles can result in viral clearance. Detailed understanding of the 

mechanisms that govern the expression of CXCR5 in human CD8+ T cells during 

differentiation can lead to the discovery of novel strategies for boosting fCD8s 

frequency in B cell follicles, required to suppress HIV replication or eliminate tumor 

cells. 

Upon infection, viral antigens prime naïve CD8+ T cells in the SLT to differentiate into 

effector cells and migrate to the site of infection, guided by chemokine-chemokine 

receptor interactions 16. In the case of HIV infection, HIV-specific CD8+ T cells need to 

be redirected to the B cell follicles. CXCR5 direct trafficking of CD8+ T cells to LN 

germinal centers (GCs) where CXCL13 producing cells reside 17-19. Paradoxically, only 

a proportion of HIV-specific cells differentiate into fCD8s and migrate to B cell follicles 

14. Molecular mechanisms that regulate the expression of CXCR5 in CD8+ T cells 

during differentiation are poorly understood. Animal studies have attempted to define 

the transcriptional regulatory network that differentiate fCD8s from non-fCD8s. They 
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show that Blimp1 and BCL6 coupled with TCF1, Id2 and Id3 form a transcriptional 

circuit that govern fCD8 differentiation 11,20. Additionally, an in vitro study in rhesus 

macaques showed that CD8+ T cell stimulation with inflammatory cytokines such as 

TGF-b, IL-12 and IL-23 promotes fCD8 differentiation 21, but the underlying molecular 

processes that govern fCD8 differentiation remain largely unknown. Moreover, most 

of what is currently known about fCD8 differentiation is derived from animal studies, 

such that the direct relevance to human diseases has not yet been fully established.  

Here, we investigated how fCD8s are generated in the setting of HIV infection. We 

posit that epigenetic mechanisms are involved in regulation of CXCR5 in human CD8+ 

T cells. Epigenetic mechanisms such as DNA methylation can influence gene 

expression by affecting the binding affinity of transcriptional factors (TFs) 22. This is 

evident in the enrichment for binding sites of effector-associated TFs within the 

demethylated regions of effector CD8+ T cells 23. In addition, regulation of gene 

expression requires binding of TFs at specific regulatory loci, which is affected by 

chromatin state and accessibility 24,25. Furthermore, the density and positioning of 

nucleosomes around the genomic DNA can regulate the levels of gene expression by 

modulating DNA accessibility to TFs 26.   

Therefore, in this study we used DNA bisulphite sequencing in combination with the 

Assay for Transposase-Accessible Chromatin using Sequencing (ATAC-Seq) and 

RNA-Seq to define the epigenetic mechanisms underpinning CXCR5 gene regulation 

in human CD8+ T cells. We found that the CXCR5 gene was highly methylated around 

the transcription start site (TSS) in non-fCD8s. Treatment of non-fCD8s with a 

methyltransferase inhibitor (5-aza-2’-deoxycytidine) resulted in increased expression 

of CXCR5 mRNA transcripts, directly implicating DNA methylation in CXCR5 gene 
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repression. Additionally, closed chromatin conformation was observed at the TSS of 

the CXCR5 gene in non-fCD8s but not in fCD8s and GCTfh, signifying that there are 

addition epigenetic regulatory mechanism involved in CXCR5 gene expression. 

Furthermore, we also investigated why CXCR5 expressing CD8+ T cells (fCD8s) 

generally express less CXCR5 compared to GCTfh and GC B cells, which is thought 

to limit their migration into the interior of the B cell follicle. Computational analysis 

revealed a potential difference of both nucleosomal occupancy and positioning around 

the TSS of the CXCR5 gene in fCD8s relative to GCTfh. This result suggests that 

fCD8s have high occupancy of nucleosomes around the TSS, which interfere with 

transcriptional efficiency leading to reduced CXCR5 mRNA levels. Together, these 

data demonstrate that CXCR5 gene expression in human CD8+ T cells is tightly 

regulated by multitiered processes involving DNA methylation, chromatin accessibility 

and nucleosomal occupancy. Importantly, our study describes potential mechanisms 

leading to the expression of CXCR5 in human CD8+ T cells. This knowledge will be 

useful for targeted manipulation of CD8+ T cells to induce and augment the expression 

of CXCR5 required to attract CD8+ T cells into B cell follicles where they are needed 

to clear infections such as  HIV and B-cell derived tumors. 

 

3.3 Materials and Methods 

 

3.3.1 Human samples 

Fresh human inguinal lymph nodes (LNs) were obtained for research purposes from 

the Prince Memorial Mshiyeni Hospital, Umlazi township, Durban, South Africa. Most 



 
105 

of the LNs were from adults. Age, sex, treatment status and clinical parameters such 

as viral load and CD4 counts of the study participants are summarized in Table 1. A 

section of the excised LN was sliced and processed for tissue staining and the 

remaining section was meshed to isolate lymph node mononuclear cells (LNMCs). 

LNs were homogenized using a syringe plunger and passed through a cell strainer 

(BD, Biosciences Germany) to make a single-cell suspension. Mononuclear cells were 

isolated using RPMI medium (Sigma-Aldrich, St. Louis, MO) containing 10% heat-

inactivated fetal calf serum (R10 medium). Extracted LNMCs were frozen for 

downstream experiments. All protocols were approved by the Biomedical Research 

Ethics Committee of the University of KwaZulu-Natal and the Massachusetts General 

Hospital Ethics committee. 

 

3.3.2 Flow cytometry and cell sorting 

For phenotypic characterization, cells were surface stained with cell-viability dye 

(Fixable Blue dead cell stain kit, Invitrogen), followed by anti-CD3-BV711 (Biolegend), 

anti-CD4-BV650 (BD Biosciences), anti-CD8-BV786 (BD Biosciences), anti-PD-1-

BV421 (Biolegend), anti-CXCR5-AF488 (BD Biosciences), anti-CD45RA-A700 

(Biolegend), anti-CCR7-PerCPcy5.5 (Biolegend). HIV-specific tetramers used in this 

study were conjugated to either PE or APC fluorochrome. 

All cells were sorted for ATC-Seq and RNA-Seq using a BD FACSAria. Gating 

strategies for sorted subsets were as follows: fCD8; CD3+CD4-CD8+CD45RA-

CXCR5+, non-fCD8; CD3+CD4-CD8+CD45RA-CXCR5-, Naïve CD8+ T cells; 

CD3+CD4-CD8+CD45RA+CCR7+, Tfh; CD3+CD4+CD8-PD-1highCXCR5 high. For RNA-

Seq, cell subsets were sorted in RLT buffer (Qiangen, Invitrogen) containing 1% Beta-
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mercaptoethanol. For ATAC-Seq, cell subsets were sorted in PBS containing 2% FCS 

for downstream processing. 

 

3.3.3 Immunofluorescence staining 

Localization of CD8+ T cell subsets was assessed as described by Banga et al., 2016 

5. Briefly, slides were prepared from 4 µm sections of paraffin-embedded tissue blocks 

and immunostained using in-house optimized protocols. For each LN, serial sections 

were stained singly with antibodies against BCL6 and CD8 and a DAB DAB 

visualization kit (Envision Double Stain system, Dako; USA) for bright field 

microscopy. Alternatively, we used the Opal 4-Color Fluorescent IHC Kit (PerkinElmer, 

USA) for immunofluorescence microscopy light. Slides were mounted and viewed 

using the Axio observer and TissueFAXS imaging software (TissueGnostics). 

Quantitative imaging analysis was conducted with TissueQuest (TissueGnostics). 

Medians of the cell density in the scanned germinal centers were used to perform 

statistical analysis. 

 

3.3.4 DNA methylation and drug treatment assays 

Specific CpG within the CXCR5 gene region was measured for DNA methylation 

according to a protocol from Paulin et al., 1998 27. Briefly, a minimum of 500ng of 

genomic DNA was bisulfide treated and amplified using a primer designed to cover 

500bp around the TSS. Amplified product was then analysed using Agena MassArray 

platform.  
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Drug treatment was then performed on the same samples used for DNA methylation 

assay. Briefly, an average of 10,000 non-fCD8s was sorted from the lymph node 

tissues and treated with 10µM  of 5’-aza-2-deoxycytidine; a drug that inhibits the 

activity of methyl-transferases genome-wide drugs for 24hrs. Thereafter, cells were 

washed, lysed and RNA were extracted and purified. cDNA was generated from the 

purified RNA using (BioRAD). CXCR5 mRNA transcripts were then measured from 

the generated cDNA using digital droplet PCR (ddPCR). 

 

3.3.5 Chemotaxis assay 

Chemotaxis assay were performed as previously described by Allen et al., 2004 28. 

Briefly, LNMCs were suspended at a density of 1 X 106 in RPMI 1640 medium 

containing L-glutamine, antibiotics, 10 mM HEPES buffer and 0.5% fatty acid-free 

BSA. Cells were re-sensitized for 30-60 min at 37 0C before being plated in trans-well 

inserts with a pore size of 5 𝑢m and a diameter of 6.5 mm in 24-well plates (Corning 

Costar). 100ul cells (1 X 106) were added to the upper wells and 580 𝑢l diluted CXCL-

13 chemokine (Peprotech) at 50 ng/ml was placed in the bottom wells, and plates were 

incubated for 3 hours at 37 0C in 5% CO2.  Migrated cells were stained with viability 

dye, CD3, CD4, CD8, CXCR5 and PD-1 and counted using flow cytometry. 

 

3.3.6 Assay for Transposase-Accessible Chromatin 

Library preparations were performed as described by (Buenrostro et al., 2013). Briefly, 

an average of 20,000 cells was sorted from lymph node for GCTfh, Naïve CD8+ T 

cells, CXCR5+CD8+ T cells and CXCR5-CD8+ T cells. Five biological replicates were 
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sorted for each subset. Sorted cells were lysed using lysis buffer (10mM Tris-HCL, pH 

7.4, 10mM NaCl, 3mM MgCl2, 0.1% IGEPAL CA-630). Lysed cells were treated with 

2.5ul of Tn5 Transposase (Illumina, San Diego, CA) suspended in 50ul of 1X TD buffer 

for 30 minutes at 37OC. Thereafter, transposed DNA was purified using QiaQuick 

MiniElute columns (Qiagen, Valencia, CA). Purified transposed DNA was amplified by 

PCR using Nextera barcoded primers (Illumina, San Diego, CA) and NEBNext High-

Fidelity 2X PCR Master mix (New England Biolabs) with 12 cycles. Barcoded amplified 

libraries were purified using QiaQuick MiniElute columns (Qiagen, Valencia, CA) and 

quantified with Kapa real-time library quantification kit (Kapa, Wilmington, 

Massachusetts). Paired-end sequencing was performed using high throughput 

NextSeq 550 (Illumina, San Diego, CA). Raw data from sequencer were stored in an 

on-onsite database and is available on request. 

 

3.3.7 RNA-Sequencing 

An average of 20,000 cells were sorted directly into lysis (RLT) buffer (Qiagen, 

Valencia, CA) for RNA-Seq. Subsets that were sorted are: GCTfh, Naïve CD8+ T cells, 

CXCR5+CD8+ T cells and CXCR5-CD8+ T cells. Five biological replicates were used 

to perform this experiment. Total RNA was isolated from lysed cells using Qiagen 

RNeasy Mini columns (Qiagen, Valencia, CA) according to the manufacturer’s 

instructions. Purified RNA was evaluated with BioAnalyzer RNA pico kit (Agilent 

Technologies Inc, Santa Clara, CA). Messenger RNA (mRNA) was isolated from total 

RNA using NEBNext oligo dT beads (New England Biolabs). Isolated mRNA was 

fragmented and thereafter reverse transcribed to cDNA using NEBNext ultra RNA 

library preparation kit (New England Biolabs). The cDNA products were purified using 
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AmpureXP beads (Beckman Coulter, Danvers, MA) and indexed using NEBNext 

multiplex oligo (New England Biolabs). Size distribution was evaluated using Agilent 

high-sensitivity DNA chip and initial quantification was performed using Qubit dsDNA 

high sensitive kit (ThermoFisher Scientist, Waltham, MA) and the median obtained on 

the Tapestation (Agilent Technologies Inc). KAPA kit was used for final quantification 

of obtained cDNA libraries molarity for sequencing. Index libraries were pooled and 

sequenced using high throughput NextSeq 550 (Illumina, San Diego, CA). Raw data 

from sequencer was stored in an on-onsite database and is available on request. 

 

3.3.8 Statistical analysis 

Statistical analyses were conducted using Prism software, version 6.0 (GraphPad, 

Inc.). Two-tailed tests were employed, and p-values less than 0.05 were considered 

to be significant. Other analysis on the next generation sequencing data is described 

in the Bioinformatics analysis below. 

 

3.3.9 Assay for Transposase-Accessible Chromatin analysis 

To detect open chromatin regions (OCR), ATAC-seq Illumina reads were first filtered 

and trimmed for quality using TrimGalore and passed through the Kundaje lab pipeline 

29 that performed the necessary quality controls (filtering of duplicate reads, removing 

reads mapping to the mitochondria) and peak detection together with irreproducible 

discovery rate (IDR) analysis using the biological replicates for each cell type. A cutoff 

of 0.1 was chosen for IDR. An optimal set of peaks that was produced for each cell 

type by the Kundaje pipeline was used for downstream analysis. OCR regions were 
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compared between cell types using the DiffBind and EdgeR 30. A cut-off of 0.05 was 

chosen for FDR. We calculated the differential OCR using only the cell subsets as 

contrasts and subsequently paired the samples according to the patient from which 

the cells were extracted. The second method proved to be more sensitive at the same 

FDR of 0.05. Principal component analysis (PCA) was performed using the top 1000 

OCR by variance. The same sites were also used to construct a heatmap using the 

dba.heatMap function. Peak regions were annotated with the annotatePeak function 

from the ChIPseeker package 31. Annotations further than 50kb upstream from the 

TSS or those 10kb beyond the 3’-end of the gene were excluded. Gene ontology (GO) 

term enrichment was calculated with the enrichGO function from clusterProfiler 31. 

 

3.3.10 RNA-Sequencing analysis 

RNA-Seq short reads were quantified using Kallisto (Bray et al., 2016). The Ensembl 

version 85 (GRCh37) was used as a transcriptome reference. Options were included 

to correct for “GC bias” and bootstrap sampling of 100. The Sleuth R package was 

used for downstream quantification and differential expression analysis 32. Gene 

transcripts were aggregated to gene level using internal sleuth functions.  Due to the 

natural variation of expression data between subjects, when doing pairwise 

comparisons (e.g. fCD8 vs non-fCD8), the design matrix was constructed in a way that 

would take this effect into account.  Thus, the reduced design formula took the shape 

of ~pid, while the full model ~ pid + condition, where pid refers to the patient id and 

condition refers to the cell type.  The likelihood ratio test of Sleuth was used to 

determine differential expression of genes by determining whether the condition 

variable added significant contribution in explaining the count data. The beta statistic 
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obtained from the Wald test was used as a proxy for log-fold differences in gene 

expression between conditions. For visualization purposes, the batch effects 

introduced by individual patients were removed using the remove Batch Effects 

function of the R package limma. Functional enrichment was determined using both 

the enrichGO and gseGO functions of the clusterProfiler package. 

 

3.3.11 Transcription factor footprinting and enrichment 

Wellington-bootstrap was used for footprint detection 33. To increase sensitivity of 

footprint prediction, aligned reads in the form of BAM files were merged for each cell 

type: fCD8, non-fCD8, Naive CD8+T cells, GCTfh.  For the HIV-Specific cell sets, reads 

were not merged to determine HIV-Specific footprinting sets. Predicted footprints were 

extended by 5 bp at each end and TF matching was performed using RGT 34. We used 

both the HOCOMOCO 35 and JASPAR 36 databases to complement mutually exclusive 

transcription factors from each set, e.g. Id2 is not included in JASPAR, but is included 

in HOCOMOCO. Predicted footprints were filtered if they were more than 50 kilobases 

upstream from the transcription start site.  Transcription factors that did not have 

evidence of expression from the RNA-Seq data were also filtered. We determined TF 

enrichment by comparing the frequency of predicted TF motifs in footprints compared 

to a background random set generated by RGT using a Fisher exact test.  FDR values 

were determined using the R package qvalue 37 and a cut-off of 0.01 was used to filter 

out non-significant hits. We contrasted subjects for differential enrichment of TF motifs 

detected within the predicted footprints. Furthermore, we used the Wellington 

Bootstrap method 38 to detect differential footprints that can indicate higher activity of 

a transcription factor at different footprint loci. Differential footprints were chosen on 
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the criteria of having a score >8 as produced by the wellington_bootstrap.py script or 

if a footprint was exclusively detected in a condition. 

We calculated the differentially enriched TF motifs between all the cell types, i.e. fCD8, 

non-fCD8, Naive CD8+ T cells, GCTfh and each of the HIV-Specific sets, yielding 27 

comparisons.  For the fCD8 and non-fCD8 subsets, we compared the enrichment of 

TF footprints between up and down regulated genes. This was done for both the 

predicted footprints from the whole set as well as the footprints demonstrating 

differential signal produced by Wellington bootstrap.  For the Wellington bootstrap, 

relative frequencies of TF motifs were calculated. We then clustered these relative 

frequencies and displayed them as a heatmap. 

Plots for the footprints were generated based on the average Tn5 insertion sites 200bp 

around the predicted footprinting sites.  Because Tn5 does have cleavage bias, the 

counts were corrected using the tracks module of the RGT-HINT package. Additional 

plots were generated for differential footprints. 

 

3.3.12 Weighted correlation network analysis 

We tested the modularity of gene expression using weighted correlation network 

analysis (WGCNA) 39. For the RNA-Seq data, raw count data was first regularized with 

the variance stabilizing transformation (vst) function from DESeq2 40. Network 

construction with WGCNA was done with CEMiTool 41. CEMiTool, by default, filters 

out the majority of input expression data to reduce complexity and noise. We 

augmented this set with additional genes that were predicted to be differentially 

expressed between fCD8 and non-fCD8 and were filtered out by CEMiTool.  We next 
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performed an enrichment analysis on each subset (fCD8, non-fCD8, Naive CD8+ T 

cells, GCTfh and HIV-Specific samples). Module enrichment per condition was 

performed and visualized. In particular, we wanted to investigate in which subsets the 

module containing CXCR5 was enriched or diminished. 

To determine whether there are modules of OCR specific to expressed genes, a 

WGCNA network for the OCR regions from the ATAC-Seq data was also constructed.  

We used the read counts from the merged peaks calculated by DiffBind as input and 

also regularized the input with variance stabilizing transformation. We imagined that 

while OCR in and around genes would be largely correlated, certain OCRs may be in 

different modules depending on the subset/cell condition. To test this, we assigned all 

the OCRs to modules and then used the OCR annotation as a gene reference. We 

then specifically looked at genes that are differentially expressed in fCD8 and GCTfh 

compared to non-fCD8 and cross-referenced this with the ATAC-Seq WGCNA 

network modules. We then determined which modules are enriched or diminished in 

the different subsets. Next, we intersected differentially expressed genes with their 

respective ATAC-Seq modules fCD8 and GCTfh and filtered by modules that are 

enriched in either. Finally, we compared the ATAC-Seq modules specific to fCD8 and 

GCTfh. 

 

3.3.13 Transcriptional network profiling 

We used the results from the differential footprinting to determine which transcription 

factors either increase or decrease expression in fCD8 and non-fCD8. A network was 

constructed by linking TF closer than 50kb to the promoter region of the top 

differentially expressed genes. We focused on genes specific to the modules for 
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CXCR5 and CXCL13 (CXCR5 chemokine attractant) that were differentially 

expressed. 

 

3.3.14 Nucleosomal positioning 

NucleoATAC 42 was used to predict nucleosome occupancy and position from the 

ATAC-Seq data. For each subset, MACS 2 was used with the --broadPeak option to 

localize regions for nucleosomal detection. These regions were further expanded by 

200bp on either end. To improve signal, samples reads were merged within each 

subset. 

To investigate differences in nucleosomal positioning within the promoter region of 

CXCR5 between GCTfh and fCD8, the region matching the promoter of TSS was 

successively trimmed from the 3’ end.  With each successive trim, NucleoATAC was 

again run on that region to calculate nucleosomal occupancy signals and positions. 

The idea is that this trimming will bias the removed shorter reads and reveal temporal 

positioning of the nucleosome. Importantly, the fragment size distribution files and V-

matrix files produced from the full peakset was used as input to eliminate fragment 

distribution bias, produce a BED file containing these overlapping regions. The 

smoothed signal was plotted and the combined position file was used for dyad 

positioning of the nucleosome. 
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3.4 Results 

 

3.4.1 Phenotypic characterization of fCD8s in HIV infected subjects 

Studies have demonstrated the potential role of fCD8s in clearing viral reservoirs and 

tumor cells in immune sanctuary sites such as B cell follicles 11-13. More recently, 

fCD8s have also been described as tissue resident CD8+ T cells 43. To assess whether 

CD8+ T cells that have a follicular-homing phenotype CXCR5+CD45RA-CD8+ T cells 

(fCD8s) were indeed localized in the lymphoid tissues during HIV infection, we first 

used flow cytometry to measure the frequency of fCD8s in lymph node (LN) and in 

peripheral blood (PB) during HIV infection. Consistent with a recent study 43, we 

observed significantly higher frequency of fCD8s in LN compared to PB (p<0.0001) 

(Fig. 3.1A).  

We next assessed the localization of fCD8s within the LN using multicolour 

immunofluorescence analysis, a technique that simultaneously permits quantitative 

assessment of cellular phenotype and positioning in tissues 44. We identified fCD8 as 

CXCR5+CD8+ and active germinal centers (GCs) were BCL6+ region within the B cell 

follicles. Our imaging confirmed that fCD8s were preferentially localized in the GCs 

compared to non-GC regions (Fig. 3.1B). Notably, we observed a significant positive 

correlation between the density of fCD8 localized in GCs and the frequency of fCD8s 

measured by flowcytometry (r=0.87, p=0.02) (Fig. 3.1C), consistent with the notion 

that CXCR5+CD8+(fCD8s) localization in GCs. 
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Previous studies have shown that antigen-specific fCD8s expand during persistent 

viral infection in mice and humans 11,20. Therefore, we evaluated the effect of HIV 

infection and treatment status on the induction of fCD8s in LNs obtained at least one 

year after treatment initiation in 12 early treated, 10 late treated and 6 untreated 

groups. The clinical characteristics of the study participants are summarized in Table 

3.1. We observed a significant increase in the frequency of fCD8s in late treated 

(p=0.01) and untreated donors (p=0.02) compared to uninfected donors (Fig. 3.1D). 

However, no difference was observed between early treated and HIV negative donors 

(p=0.92)  (Fig. 3.1D), suggesting that the HIV antigen load or inflammation 45 drives 

the differentiation of fCD8s during HIV infection. 

 

 

Table 3.1: Demographic and clinical characteristics of the study participants 

 

Participants HIV-Negative Early treated Late treated Untreated

n 9 12 10 6

Female n 
(%)

9
(100%)

12
(100%)

10
(100%)

5
(83.3%)

Age 21
(20.5-22)a

21
(19-22)a

26
(23-36) a

22
(18-26)a

CD4 counts, 
cells/mm3 N/A

772
(657.5-833.5)a 

667
(401-1189) a

436
(355-718)a

Viral load
RNA copies/ml N/A �20 5343 

(20-15000) a
15068

(1200-23000)a

Time post 
treatment to LN 

excision 
(weeks)

N/A 89 
(52-179)a

98 
(64-249)a >1year

a Values expressed as median (interquartile range)
N/A means not applicable
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Figure 3.1: Phenotypic characterization of fCD8s during HIV-1 infection  

(A) Paired comparative analysis of the frequency of fCD8s in lymph node (LN) and 

peripheral blood (PB) of HIV-1 infected individuals indicated significant increase of 

fCD8s in the LN compared to PB. (B) Tissue imaging showing the density of fCD8s 

infiltrating the germinal centre (GC) and statistical analysis showing significant 
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increase in the fCD8s localized in the GCs compared to non-GCs. (C) Correlation 

analysis showing significant positive correlation between the frequency of fCD8s 

measured by flow with the density of fCD8s in GCs quantified by TissueQuest. (D) 

Flow plot showing the frequency of fCD8s in HIV-1 infected individuals initiating 

treatment at different time points and statistical analysis showing significant increase 

in late treated and untreated groups when compared to HIV-1 negative individuals. 

 

3.4.2 Transcriptional and epigenetic factors are differentially expressed between 

fCD8s and GCTfh 

Recent animal studies have defined the regulatory networks that govern the 

expression of CXCR5 in CD8+ T cells 11,12,20,21. However, it is not clear if similar 

regulatory networks regulate CXCR5 expression in human CD8+ T cells. To address 

this question, we performed RNA-Seq on sorted cells from the excised LN of five HIV 

infected individuals. Study participants were selected based on HIV infection status, 

high frequency of fCD8s and sample availability. The following cell populations were 

FACs sorted from each individual based on the following phenotypic markers; bulk 

fCD8s (CD3+CD8+CD45RA-CXCR5+), non-fCD8s (CD3+CD8+CD45RA-CXCR5-), 

naïve CD8+ T cells (CD3+CD8+CD45RA+CCR7+), and GCTfh 

(CD3+CD4+CXCR5+PD1high) (supplementary Fig. 3.1). GCTfh served as the positive 

control condition because they constitutively express high levels of CXCR5, whereas 

naïve CD8+ T cells were the negative control condition because they do not express 

CXCR5. Principal component analysis of 5 biological replicates separated all 

experimental groups in two dimensional space based on quantification of mRNA 

transcripts (Fig. 3.2A). fCD8s and non-fCD8s had minimal separation, understandably 
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so, given the phenotypic similarities between the two subsets. Nonetheless, there 

were 1,095 transcripts (FDR<0.1) that were differentially expressed between the two 

populations, which are mostly likely involved in CXCR5 gene regulation.  

To identify the key genes involved in CXCR5 gene regulation, we first analysed genes 

that have previously been implicated in CXCR5 regulatory circuitry in animal studies. 

We started by analysing BCL6 because it has been described as the master regulator 

of CXCR5 expression in GCTfh and murine fCD8s 11,12,20,25,46-48. We found that BCL6 

was highly expressed in GCTfh, consistent with previous findings (Fig. 3.2B). 

However, fCD8s expressed very low BCL6 relative to GCTfh (p<0.00001), with no 

significant difference between fCD8s and non-fCD8s (p=0.64) (Fig. 3.2B). To 

determine if BCL6 expression levels seen by RNA-Seq correlate with protein levels, 

we measured BCL6 expression by flow cytometry. BCL6 expression in CD8+ T cells is 

significantly lower in fCD8s compared to expression in GCTfh (p<0.0001) (Fig. 3.2C). 

Together, these data suggest that BCL6 may not be critical for CXCR5 expression in 

human CD8+ T cells. 

Next, we investigated other genes that were shown to be similarly expressed between 

murine fCD8s and GCTfh 20. We determined the expression of Id3 and TCF1 genes 

that were implicated in the transcriptional circuitry that positively regulates fCD8s 

differentiation in murine studies 11. Interestingly, Id3 and TCF1 were significantly 

downregulated in human fCD8s relative to GCTfh (Id3: p<0.0001, TCF1: p<0.0001), 

with no apparent difference between fCD8s and non-fCD8s (Id3: p=0.50, TCF1: 

p=0.90) (Fig 3.2D). Similarly, negative regulator Id2 was significantly higher in fCD8s 

compared to GCTfh (Id2: p=0.0005) and PRDM1 was significantly higher in fCD8s 

compared to GCTfh (p=0.0197, Log-fold change 0.76) (Fig. 3.2D). Together, these 
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data suggest that an alternative transcriptional circuitry may be involved in the 

regulation of fCD8s differentiation in human CD8+ T cells.  

To gain further insight into the transcriptional mechanisms responsible for the CXCR5 

gene regulation in human CD8+ T cells, we focused on differentially expressed genes 

between fCD8s and non-fCD8s in our RNA-Seq data. We identified 43 genes 

(FDR<0.1) of differentially expressed epigenetic factors between fCD8s and non-

fCD8s 49. Interestingly, epigenetic factors such as JADE2 and SETD7 that antagonize 

DNA and histone methylation and participate in chromatin remodelling 50-52, were 

among the most highly differentially expressed genes between fCD8s and non-fCD8s 

(Fig. 3.2E and extended data in supplementary Fig. 3.2). This analysis gave us a 

strong hint that epigenetic mechanisms were heavily involved in CXCR5 gene 

regulation. 
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Figure 3.2: Differential expression of TF between fCD8s compared to GCTfh  

(A) Principal component analysis of the RNA-Seq data from the four cell subsets, 

colour labeled according to cell subset. The top 500 genes by variance were used to 

construct the PCA plot. Clear separations are observed between most of the subsets, 
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with the fCD8s and non-fCD8s subsets showing closest proximity. (B) Statistical 

analysis showing significant increase of BCL6 expression in GCTfh compared with 

fCD8s and non-fCD8s. (C) Statistical analysis showing mean fluorescence intensity 

(MFI) of BCL6 in GCTfh compared with fCD8s and non-fCD8s. (D) Expression values 

of CXCR5 regulating genes. Batch and patient corrected TPM values for genes 

previously shown to be involved in the regulation of CXCR5 expression. FDR values 

are obtained from the differential expression analysis using the sleuth package in the 

R statistical environment. (E) Ranked expression of selected epigenetic modifiers. 

Epigenetic modifiers were grouped according to functional attributes, i.e. chromatin 

remodeling, histone chaperone, histone modification and by Transcription activity. 

Genes were ranked from highest (red) to lowest (blue) expression. Each column 

represents the expression level for a particular patient and was labelled on the x-axis 

accordingly. 

 

3.4.3 CXCR5 gene is tightly regulated by DNA methylation and chromatin landscape 

in human CD8+ T cells 

Given that a large number of epigenetic regulation genes were among the most highly 

differentially expressed between fCD8s and non-fCD8s, we hypothesized that distinct 

epigenetic mechanisms such as DNA methylation and chromatin landscape regulate 

the expression of CXCR5 in human CD8+ T cells. To test this hypothesis, we first 

investigated if DNA methylation was involved because it is the most common 

epigenetic regulatory mechanism 22,53. We measured DNA methylation levels proximal 

to CXCR5 gene using loci-specific bisulfite-treated sequencing of DNA samples 

extracted from the same cell populations used for RNA-Seq. This technology is 
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commonly used to detect DNA methylation at CpG sites within the genome regardless 

of chromatin structure 54-57. Experimental details are described in the method section. 

Briefly, we FAC-sorted GCTfh, fCD8s, non-fCD8s and naïve CD8+ T cells and 

extracted DNA from 3 biological replicates, followed by bisulfite treatment before 

sequencing. Bisulfite DNA treatment converts unmethylated cytosine to uracil giving 

rise to base-specific cleavage products that reflect underlying DNA methylation 

patterns 58. We measured DNA methylation levels in CpG islands spanning 500bp 

(300bp upstream and 200bp downstream of the TSS) of the CXCR5 gene. 

Interestingly, we observed significantly higher methylation levels proximal to the 

CXCR5 promoter region as indicated by the shaded circles of naïve CD8+ T cells 

(Average methylation 88%), non-fCD8s (Average methylation 69%). In contrast, 

fCD8s and GCTfh had minimal levels of methylation at equivalent sites; fCD8s 

(Average methylation 7%) and GCTfh population (Average 6%) (Fig. 3.3A and B). To 

verify if methylation was responsible for CXCR5 gene silencing, we incubated FAC-

sorted non-fCD8s with 10µM of 5’-aza-2-deoxycytidine (Aza drug), which inhibits the 

enzymatic activity of DNA methyl transferases 59. After 24 hours of incubation, we 

measured CXCR5 mRNA transcript levels by digital droplet PCR  (ddPCR). We found 

that Aza drug treatment significantly increased CXCR5 mRNA levels (p=0.002) (Fig. 

3.3C). Together, these data strongly suggest that CXCR5 gene locus-specific DNA 

methylation is involved in repressing the CXCR5 gene in human non-fCD8s. 

Although our data shows that DNA methylation was involved in repressing CXCR5, 

we noted that RNA-Seq data (Fig 3.2E), revealed several other differentially 

expressed genes that are involved in epigenetic regulatory processing such as 

chromatin remodelling and histone modification. This was a signal that other 

epigenetic regulatory mechanisms contribute to CXCR5 regulation. Thus, to gain 
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comprehensive mechanistic insights into the epigenetic processes that regulate 

CXCR5 gene expression in CD8+ T cells, we used the Assay for Transposase-

Accessible Chromatin using Sequencing (ATAC-Seq). We chose this technology 

because it provides a genome wide accessible regions and can be used to identify TF 

footprinting and nucleosomal positioning, all of which cooperatively regulate gene 

expression 60,61. Briefly, ATAC-Seq analysis was performed on the DNA samples 

isolated from the same cell populations used for RNA-Seq studies diagrammed in 

(supplementary Fig. 3.1). We performed a principal component analysis on the top 

10% variably accessible regions. We calculated a set of 66,514 open chromatin 

regions (OCRs) (see materials and methods). This analysis revealed clear delineation 

of cell subsets based on the chromatin accessibility profiles (Fig. 3.3D and 

supplementary Fig. 3.3A). The subset separation was strikingly similar to RNA-Seq 

data, suggesting that there is significant overlap between accessibility and gene 

expression. Indeed, there was a strong association between chromatin accessibility 

and gene expression between fCD8s and non-fCD8s (R2= 0.6) (supplementary Fig. 

3.3B). Next, we profiled accessibility of CXCR5 gene and revealed a closed chromatin 

conformation at the TSS of CXCR5 gene in non-fCD8s, and naïve CD8+ T cells. In 

contrast, fCD8s and GCTfh had opened chromatin conformation (track with peak in 

black box) at the equivalent site (Fig. 3.3E). These data confirm that chromatin 

accessibility also contributes to the repressed state of the CXCR5 gene in non-fCD8s 

and naïve CD8+ T cells. The observed DNA methylation and closed chromatin 

structure of the CXCR5 TSS are consistent with the notion that DNA methylation 

promotes nucleation of repressed chromatin structure  26,62.  

To gain more mechanistic insight into the molecular processes that govern DNA 

methylation and chromatin accessibility, we performed differential expression analysis 
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on epigenetic modifying factors. Interestingly, JADE2 and SETD7 were among the 

most significantly differentially expressed between fCD8 and non-fCD8s (Fig. 3.3F). 

The two genes are known to play a key role in regulating gene expression via DNA 

and histone methylation 51,63,64. Our differential mRNA expression data suggest that 

JADE2 and SETD7 might be involved in regulating chromatin accessibility of the 

CXCR5 gene in human CD8+ T cells, however, more direct evidence will be required 

to ascertain their precise role.  
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Figure 3.3: Epigenetic regulation of CXCR5 expression  

(A) Quantitative measurement of DNA methylation levels within specific cell subsets; 

GCTfh, fCD8s, Non-fCD8s and Naïve-CD8+ T cells were determined using the 

EpiTYPER® DNA Methylation Analysis. Methylation levels were measured from bi 
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sulfite treated genomic DNA, followed by PCR amplification of a 500bp fragment 

containing 15 CpG sites (red). The naïve- and non-fCD8s cells show higher levels of 

methylation within several sites (darker circles), while the GCTfh and fCD8s show 

lower levels of methylation (lighter circles). The position of CpG sites are represented 

relative to the transcription start site (TSS). (B) Percentage levels of methylation are 

depicted in bar graph for each subset analyzed across the 15 CpG sites. (C) Non-

fCD8s were FAC-sorted and treated with 10µM 5-aza-2'-deoxycytidine (Aza drug), a 

DNA methyltransferase inhibitor that causes hypomethylation of DNA, for 24 hours. 

Fold change relative to the B2M house keeping control indicated significant increase 

in the CXCR5 expression levels after treatment. (D) PCA plots obtained from the 

ATAC-Seq cut count data. The top 10% of ATAC-Seq peaks (merged between 

subsets) by variance were used to create the PCA plot. (E) Overview of the ATAC-

Seq signal around the CXCR5 gene loci. ATAC-Seq signal is shown for different 

marked (in grey) loci where differential binding was detected in at least one sample. 

The black box shows the TSS region where there is clear equivalence between fCD8s 

and GCTfh ATAC-Seq signals, while very low signal was observed for both non-fCD8s 

and Naive CD8+ T cells. (F) Expression values of SETD7 and JADE2 showing 

significant increase in fCD8s and GCTfh.  

 

3.4.4 Similar potential TF binding sites are shared around the TSS of CXCR5 gene 

between fCD8s and GCTfh 

To identify epigenetic factors that may directly regulate chromatin accessibility of the 

CXCR5 gene, we performed a TF motif search around the CXCR5 TSS. We restricted 

the motif search to regions that were inputted to have TF footprint proximal to the TSS 
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33,38. Our analysis revealed that fCD8s and GCTfh shared binding motifs at the CXCR5 

gene TSS for several epigenetic regulatory proteins namely, POU3F1, POU3F3, 

E2F6, and ZNF384 (Fig. 3.4A). Given that POUs-TFs function as pioneering factors 

that interact with the closed chromatin at enhancer and/or promoter regions to open-

up the regions for transcriptional activities 24,65-67, and the fact that POU3F1 and 

POU3F3 binding sites were observed for both fCD8s and GCTfh, suggest that these 

two pioneering factors are more likely be directly involved in opening the chromatin 

structure at the CXCR5 TSS. 

Opening chromatin structure is not sufficient to drive gene expression. Several TFs 

are needed to bind to open chromatin and recruit the transcription machinery that drive 

mRNA expression 68. Therefore, we next investigated the potential transcription 

factors that drive CXCR5 gene expression. A larger proportion of the regulatory 

information that is necessary for gene expression is confined to the enhancer and 

promoter gene regions usually located upstream of TSS 69. Our ATAC-seq data 

identified two peak regions upstream of CXCR5 TSS, which mostly likely represent 

enhancer regions. We labelled them U1 (-6.5kb), and U2 (-11kb) (supplementary Fig. 

3.4A). We performed a TF motif search within these regions for each subset to identify 

specific TFs that bind in this region and found that MAFB was highly enriched in fCD8s 

and GCTfh, while TGIF1 and TGIF2 were enriched in fCD8s but not in GCTfh (Fig. 

3.4B). Together, these data suggest that POUs pioneer the opening of chromatin 

around the CXCR5 TSS, which allows key TF such as MAFB, TGIF1 and TGIF2 to 

bind around the TSS and recruit the transcription machinery to drive CXCR5 

expression in human CD8+ T cells. 
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Figure 3.4: Shared and different transcriptional factors footprint proximal to the CXCR5 

gene.  

(A) Footprints in selected regions predicted footprinted regions respective cell subsets. 

The pie charts show the relative wellington bootstrap scores for each subset against 
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all others acting as a proxy for the relative TF activity observed in that region. The bars 

indicate the extent of the predicted TF footprint, with colours assigned to each subset. 

Footprints with unassigned TFs are also included. (B) Assignment of TF to subsets. 

Enrichment of TF motifs (restricted differential footprints between subsets) of each 

subset is depicted in the heatmap. The TFs are sorted in ascending order of 

importance in the fCD8 subset. 

 

3.4.5 WGCNA reveals alternative pathway involved in the expression of CXCR5 in 

human CD8+ T cells 

Cell types are controlled by complex layers of regulators resulting in co-expression of 

multiple receptors which are used in eliciting their effector functions. To identify 

potential common and cell-type specific signatures in the epigenetic and 

transcriptional circuitry that regulates CXCR5 gene in human CD8+ T cells, we 

performed Weighted Gene Correlated Network Analysis (WGCNA) on our ATAC-Seq 

and RNA-Seq data sets. WGCNA is a network analysis that is used to identify modules 

of highly co-expressed genes 39 or chromatin accessible gene networks. The program 

assigns colours to modules as an identification mark. We first applied this network 

analysis on our ATAC-Seq data to identify chromatin accessibility networks from the 

ATAC-Seq data. We hypothesized that the mechanisms governing chromatin 

accessibility may not act on open chromatin regions (OCRs) in isolation, but rather are 

grouped into programs that change the accessibility of multiple chromatin loci.  

We performed WGCNA on 12000 ATAC-Seq peaks after excluding sites with high 

technical variance. The expected was that OCRs proximal to CXCR5 gene would fall 

within the same module. Interestingly, we observed that the CXCR5 TSS and U2 
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OCRs were assigned by WGCNA to the same module called grey60  module (Fig. 

3.5A). This suggested that the U2 (enhancer region) interacted with the TSS to 

promote CXCR5 transcription. Notably, enrichment analysis on the grey60 modules 

revealed striking similarity in accessibility pattern between fCD8s and GCTfh (Fig. 

3.5B), in spite of very clear difference in overall genome-wide accessibility between 

the two cell subsets as depicted in ATAC-Seq PCA plot (Fig. 3.3D). These data 

suggest that accessible regions that drives the CXCR5 gene expression (contained in 

the grey60 module) are shared between fCD8s and GCTfh.  

Given that gene accessibility does not always translate into gene expression, we 

repeated the WGCNA analysis on the RNA-Seq data to identify regulatory genes that 

are actually transcribed. We constructed the network using the four cell subsets. We 

included 20,987 genes that were found to be expressed in fCD8s and non-fCD8s. The 

resultant network consisted of 91 modules, each containing a set of highly co-

expressed genes. We batch normalized the data to account for heterogeneity of 

expression between patients and used the expression values to calculate gene set 

enrichment analysis (GSEA) for each subset for the 91 detected modules. We 

observed a significant enrichment of CXCR5, MAF, Id3, POU3F1 and CXCL13 genes 

in the honeydew module which was shared by fCD8s and GCTfh (Fig. 3.5C). 

Interestingly, ATAC-Seq data identified footprinting motifs for the same set of genes 

in U2 and TSS regions of the CXCR5 gene (Fig. 3.4B and supplementary Fig. 3.4A). 

Notably, GSEA demonstrated significant enrichment of GCTfh and fCD8s subsets in 

honeydew module (Fig. 3.5D). Gene ontology (GO) analysis on the CXCR5-centric 

module, i.e, honeydew module showed enrichment of terms associated with “cell 

migration” (Fig. 3.5F), suggesting that a subset of genes governing the expression of 

CXCR5 in human CD8+ T cells are intricately involved in cell migration. Collectively, 
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our data identify MAF, Id3 and POU3F1 act as a putative gene circuitry that are 

involved in driving the expression of CXCR5 in human CD8+ T cells. 
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Figure 3.5: Regulatory pathways in CXCR5 expression  

(A) The figure shows the OCR regions observed in at least one of the cell subsets. 

Peaks are either prefixed with U to indicate upstream, or D to indicate downstream of 

the CXCR5 TSS.  The colors represent the WGCNA modules. The module names (as 

colors) appear above the peaks. ATAC-Seq WGCNA around the CXCR5 gene region. 

Modules are sized according to enrichment and significance. The highlighted grey60 

module contains both the TSS of CXCR5 and the U2 region. (B) GSEA plot of the 

grey60 module of ATAC-Seq WGCNA enrichment values. Peaks belonging to the 

grey60 module for each subset are plotted according to the rank within each subset. 

High correspondence and enrichment are seen for the GCTfh and fCD8s subsets, 

while no enrichment is shown for non-fCD8s and negative enrichment is shown for 

naïve CD8+ T cells. (C) Overview of the RNA-Seq WGNCA modules. Selected 

modules are shown. The modules are colored according to their Gene Set Enrichment 

Analysis (GSEA) score. Positive values indicating positive enrichment. The size of the 

module corresponds to the -log P-value. The panel to the right indicates the number 

of genes that are up-regulated in fCD8s and non-fCD8s for each module. (D) GSEA 

analysis shows the overall enrichment of the CXCR5 containing in honeydew module, 

with corresponding enrichment scores and significance values. The bottom bar shows 

the concentration of genes within a subset according to the rank of expression. (E) 

GO enrichment of the honeydew module showing positive enriched GO terms in the 

honey dew module ranked according to significance. Cell migration is an important 

factor in the honeydew module. 
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3.4.6 Reduced turnover rate of the nucleosome at the promoter region of CXCR5 

could lead to lower levels of CXCR5 expression 

CD8+ T cells do not typically express CXCR5, but even for fCD8 subset that do, the 

level of expression is generally much lower than GCTfh expression levels 15,70. 

Consequently, this reduces their sensitivity to cognate chemoattractant CXCL13, 

resulting in inefficient infiltration into B cell follicles 20, where CXCL13 producing cells 

reside. To investigate epigenetic mechanism that regulate the level of CXCR5 

expression, we first compared CXCR5 protein expression levels and found 

significantly higher expression in GCTfh compared to fCD8s (p=0.0001) (Fig. 3.6A). 

This was true for mRNA levels as well (Fig. 3.6B). A recent study reported similar 

results 45. We then performed a trans-well experiment to assess if the expression of 

CXCR5 affects the rate of fCD8s chemotaxis towards a CXCL13 gradient. Indeed, 

fCD8s exhibited significantly lower chemotaxis capacity compared to GCTfh (p=0.01) 

(Fig. 3.6C). Moreover, a GO analysis on the RNA-Seq data showed enrichment of 

genes associated with cell migration/leukocyte migration in fCD8s relative non-fCD8s 

(Fig. 3.6D). Together, these data confirm that lower expression of CXCR5 reduces 

chemotaxis capacity of fCD8s towards CXCL13. 

Given high frequency of methylated CpG islands in the CXCR5 gene which tend to 

attract nucleosomes 26,71, we posit high nucleosomal occupancy at the TSS lowers 

CXCR5 expression in fCD8s. We reasoned that nucleosome positioning and 

occupancy around the TSS would interfere with transcription machinery resulting in 

mitigated gene expression 72. To test this hypothesis, we used the recently developed 

NucleoATAC tool (Schep et al., 2015) to impute the presence of nucleosomes in and 

around the CXCR5 gene. Interestingly, the presence of nucleosome was imputed in 
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both fCD8s and GCTfh at the TSS. However, nucleoATAC also reported higher 

nucleosomal occupancy in predicted TF footprint regions around the TSS in fCD8s, 

whereas GCTfh exhibit less nucleosomal occupancy in the same region (Fig. 3.6E). 

Computationally, the nucleosomal occupancy was calculated for a wider range 

upstream of the TSS in GCTfh than fCD8s (blue and red dotted lines), which extended 

beyond the point where a nucleosome may occupy TF binding regions (black dashed 

line) (Fig. 3.6E). Collectively, these data suggest higher nucleosomal occupancy in 

fCD8s at the TSS. Computational simulation of nucleosomal occupancy confirm the 

notion that nucleosomal occupancy interferes with transcriptional machinery, reducing 

the transcription of the CXCR5 gene in fCD8s (supplementary Fig. 3.5). 
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Figure 3.6: Nucleosome interfere with CXCR5 expression in fCD8s  

(A) Mean fluorescence intensity (MFI) of CXCR5 on fCD8s and GCTfh shows 

significant increase in the expression of CXCR5 on GCTfh compared to fCD8s. (B) 
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RNA-Seq expression values of CXCR5 showing the batch-normalized expression 

values in different cell subsets. (C) Relative migration of Tfh, fCD8s and non-fCD8s 

subsets in response to CXCL13; a ligand for CXCR5. Graph shows the number of 

cells that migrated in each subset after 3 hours (D) The GSEA plot of GO terms 

between fCD8s and non-fCD8s. Cell migration and Leukocyte migration shows the 

ranked differential expression of genes belonging to these terms between the fCD8s 

and non-fCD8s subsets. (E)  The figure depicts the nucleosomal occupancy scores 

(top line plot) and the nucleosomal signal (bottom heatmap) as produced by 

NucleoATAC around the TSS region of CXCR5 in fCD8s (red) and GCTfh (blue) 

subsets. The colored vertical dashed lines show the range of predicted nucleosomal 

occupancy. The thin dashed line shows the approximate location of the nucleosomal 

dyad where the nucleosome will occlude the TSS region. Height of the occupancy 

score shows the fraction of nucleosomal sized fragments at the chromosome 11 

position. Predicted transcription factor footprints are shown as bars for the respective 

cell subsets.  

 

3.4.7.1 Proposed model of how human CD8+ T cells achieve CXCR5 expression 

Based on experimental and computational evidence generated in this study, we 

propose a model of how CXCR5 gene transcription is epigenetically regulated in 

human CD8+ T cells. In naïve CD8+ T cells, DNA methylation of CpG islands around 

the TSS stably silence CXCR5 gene expression by attracting chromatin remodelling 

proteins and histone modifiers to the loci which compact chromatin around the TSS 

into heterochromatin state. Cell division following TCR stimulation results in passive 

DNA demethylation around the promoter region allowing for basal transcriptional 
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activity observed in non-fCD8s relative to naïve CD8+ T cells. As the cells continue to 

divide, a small proportion of cells become more extensively demethylated at the 

CXCR5 gene loci and gradually accumulate epigenetic regulatory proteins including 

pioneering factors (the POUs), namely POU3F3 and POU3F1 and methyltransferases 

(SETD7) which are recruited to the TSS proximal regions. These factors decondense 

the chromatin at the TSS thereby exposing unmethylated DNA for transcription, thus 

allowing the transcription machinery to bind and transcribe the CXCR5 gene (Fig. 

3.7A). 

 

3.4.7.2 Proposed model of how the level of CXCR5 gene expression is 

moderated in human CD8+ T cells 

Nucleosomal positioning can dictate transcription efficiency. We postulate that fCD8s 

have less CXCR5 expression relative to GCTfh due to higher nucleosomal density 

around the CXCR5 TSS. The rationale is as follows, although, we detected primary 

nucleosomal signal over the TSS in both fCD8s and GCTfh, the secondary 

nucleosomal signal is closer to the TSS in fCD8s but further upstream in GCTfh (Fig. 

3.7B). This suggest that the repositioning of the nucleosome further away from the 

TSS, in GCTfh, makes it easier for the transcriptional machinery to access the 

promoter and initiate transcription. Nucleosomes are pushed away from gene 

promoter regions by a family of proteins called nucloesomal remodellers. Some 

remodellers are more efficient at evicting nucleosomes from active gene loci than 

others 73. Interestingly, fCD8s and GCTfh express different types of nucloesomal 

remodellers. Therefore, we postulate that nucleosomal remodellers in GCTfh are more 

efficient at pushing the nucleosome further upstream, which completely uncovers the 
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CXCR5 TSS for transcription whereas, fCD8s nucleosomal remodellers are less 

efficient at pushing the nucleosome away from the TSS, hence the attenuated CXCR5 

gene expression. 

 

Figure 3.7: Proposed model for CXCR5 regulation in human CD8+ T cells 
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3.5 Discussion 

Understanding how to increase trafficking of CD8+ T cells to B cell follicles has far 

reaching implications for developing strategies to eradicate HIV infected cells in 

follicles for HIV cure and to treat B cell-derived malignancies. In this study, we 

assessed the epigenome and the transcriptome of human fCD8s and non-fCD8s to 

determine the molecular mechanisms that limit CXCR5 expression in human CD8+ T 

cells. We show that CXCR5 expression in CD8+ T cells is tightly controlled by at least 

three key epigenetic mechanisms; namely, DNA methylation, chromatin structure and 

organization and nucleosomal occupancy.   

This study set out to address two key questions. First, why most CD8+ T cells do not 

express CXCR5. Second, why fCD8s express low CXCR5 relative to GCTfh. To 

address the first question, we studied two antigen-experienced CD8+ T cell subsets 

called fCD8s and non-fCD8s that were phenotypically matched except for the 

expression of CXCR5 on the cell surface. This meant that the difference in 

transcriptional expression and gene accessibility observed was more likely to be 

involved in CXCR5 gene regulation. Interestingly, transcriptional analysis in 

combination with locus-specific bisulfite-treated sequencing and the genome-wide 

chromatin accessibility data identified DNA-hypermethylation and closed chromatin 

structure as the two epigenetic mechanisms that are involved in repressing CXCR5 

expression in human non-fCD8s. To address the second question of why there is 

reduced expression of CXCR5 on fCD8s, relative to GCTfh, we focused our analysis 

CXCR5+ subsets (fCD8s and GCTfh) because of the significant differences in their 

CXCR5 expression levels. We began by verifying in our setting that indeed fCD8s had 

reduced CXCR5 expression and were inefficient at trafficking towards CXCL13 
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chemokine compared to GCTfh. We went on to identify nucleosomal occupancy and 

positioning as a plausible mechanism that moderates the expression of CXCR5 in 

fCD8s.  

Conceptualization of this study was motivated by three studies in mice that recently 

described a subset of CXCR5 expressing CD8+ T cells, which they termed fCD8s 

because of their ability to accumulate in B cells follicles 11,12,20. The striking findings in 

murine models was that fCD8s were transcriptionally closely related to GCTfh and less 

so with non-fCD8s. More importantly they showed that following infection, these cells 

readily accumulated in B cells follicles and were able to eradicate infected GCTfh 

11,12,20. A subsequent rhesus macaques study showed similar results 21. So, we 

wondered if CXCR5+CD8+ T cells (fCD8s) were also increased in HIV infection in 

human lymph nodes (LN), and if their differentiation profile was similar to what was 

described in mice. Indeed, our data showed increased frequency of fCD8s in LN of 

HIV infected individuals compared to uninfected individuals. Early initiation of antiviral 

therapy mitigated the fCD8s response, suggesting that fCD8s induction is antigen 

driven as described in animal studies 15. 

Given that mice studies identified several TFs that were common between fCD8s and 

GCTfh, including; BCL6, Id3, Id2, PRDM1 and TCF-1 11,12,20,46,74. We investigated 

whether similar TFs were operating in human LN CD8+ T cells in the setting of HIV 

infection. We sorted LN fCD8s and non-fCD8s from HIV infected and uninfected 

individuals. Our sorting panels were based on similar markers used in mice studies.  

RNA-Seq analysis showed that TF expression profiles in human GCTfh cells was 

similar to what was reported in mice 20. However, unlike mice studies, we found 

significant differences in TF expression profiles between human GCTfh and fCD8s. In 
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fact, based on the reported TFs governing CXCR5 expression, human fCD8s were 

more similar to non-fCD8s than GCTfh, suggesting that most of the TFs that were 

shown to be critical for fCD8 differentiation in mice might not be essential for human 

fCD8 differentiation. These results led us explore to other mechanisms that could 

possibly regulate CXCR5 expression in human CD8+ T cells. 

The observation of many differentially regulatory epigenetic genes between fCD8s and 

non-fCD8s in our RNA-Seq data provided the first clue that epigenetic mechanisms 

might play a key role CXCR5 gene regulation. Locus-specific bisulfite-treated 

sequencing revealed hypermethylation in CpG islands proximal to promoter regions 

of subsets that lack CXCR5 expression (non-fCD8s and naïve CD8+T cells) and less 

methylation in CXCR5+ cells (fCD8s and GCTfh). Moreover, inhibition of enzymatic 

activity of methyltransferase that is essential for re-methylation of DNA during cell 

division using aza drug treatment increased CXCR5 expression in CXCR5 negative 

cells, providing compelling evidence that DNA methylation was a major epigenetic 

mechanism involved in silencing CXCR5 expression 51. Consistent with the notion that 

DNA methylation increases nucleosome compaction and rigidity 62, ATAC-Seq data 

revealed closed chromatin conformation at the CXCR5 TSS in non-fCD8s, further 

implicating condensed chromatin at the TSS as another epigenetic mechanism 

involved in CXCR5 gene silencing. 

Histone modification is essential in maintaining accessibility of gene regions. Our 

RNA-Seq studies identified several key epigenetic modifying enzymes that were 

significantly upregulated in fCD8s and GCTfh relative to non-fCD8s and naïve CD8+ 

T cells. Two of such enzymes are SETD7 and JADE2 which have been shown to 

respectively mediate mono-methylation of lysine 4 on histone 3 (H3K4me1) and 



 
143 

counteract the activity of a gene silencing epigenetic enzyme called LSD1 51,63. It is 

therefore, not far-fetched to implicate SETD7 and JADE2 in orchestrating methylation 

of histone around CXCR5 gene leading to opening of the chromatin for transcription 

of fCD8s and GCTfh. Furthermore, overlapping predicted footprints of POU3F1 and 

POU3F3 binding motif at the TSS of both fCD8s and GCTfh suggest that these factors 

could be initiating the decompaction of chromatin at the CXCR5 TSS following TCR 

stimulation 24,66,75.  

To identify key genes and pathways involved in CXCR5 gene regulation, we performed 

WGCNA on the ATAC-Seq and RNA-Seq data. This allowed us to identify circuits of 

correlated chromatin accessibility as well as gene expression. WGCNA analysis 

identified modules of highly correlated open chromatin regions that indicated 

chromatin accessibility of the CXCR5 promoter region is part of a larger epigenetic 

circuit. We identify grey60 module as an important module that contains the TSS and 

U2 peaks (a putative enhancer region). Strikingly, this module was highly enriched in 

fCD8s and GCTfh which confirms similar epigenetic circuitry shared between fCD8s 

and GCTfh in the context of CXCR5. Further we used WGCNA to identify 

transcriptional modules that governs the expression of CXCR5 in human CD8+ T cells. 

An interesting module from this analysis is the honeydew module containing CXCR5, 

MAF, Id3, POU3F1 and CXCL13 which was enriched for fCD8s and GCTfh. GSEA on 

honeydew module confirms a stepwise significance of genes skewed for GCTfh and 

fCD8s and this corroborates with the expression pattern of CXCR5. Indeed, GO 

analysis of honeydew module clearly demonstrated chemotaxis and B cell migration 

as the key modules common to the two cell subsets. This implies that the 

transcriptional factors governing the expression of CXCR5 in human CD8+ T cells may 
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be present in honeydew modules of which Id3, MAF and POU3F1 are the key 

members more likely to be directly involved in regulating the gene.  

Accumulation of high frequencies of CD8+ T cells in the B cell follicles is desirable for 

HIV cure. Our flow data and in vitro chemotaxis experiments suggest that lower 

expression level of CXCR5 in fCD8s contribute to the inefficient infiltration of B cell 

follicles observed in our imaging experiments. Importantly, nucleosomal occupancy 

emerged as a key molecular mechanism that most likely lowers CXCR5 expression in 

fCD8s. Recent studies have shown how two different chromatin remodellers, ISW1a 

and SWI/SWF have different capacities to shift nucleosomal position in yeasts 73,76,77. 

The different potential of these remodellers to shift nucleosomes becomes apparent 

when an obstruction, such as a bound TF, is in the way (see cartoon in Figure 7). 

ISW1a lacks the ability to remove a bound TF and thus constrains the movement of 

the nucleosome, whereas SWI/SNF was shown to successfully dislodge the TF and 

move the nucleosome further away 78. To test this hypothesis, future studies should 

use CRISPR-Cas9 technology to modify the nucleotides in the footprint region 

identified from the ATAC-Seq data to abrogate binding of TFs to this region and 

determine if this would lead to increase in CXCR5 expression.   

Differential chromatin accessibility observed at the TSS of fCD8s but not in non-fCD8s 

suggests that there is a difference in histone modification pattern between the two 

subsets 53,79-84. This can be confirmed by chromatin immunoprecipitation (ChIP-Seq) 

analysis. However, we could not perform ChIP-Seq because we did have not sufficient 

number of cells required for this assay. Nonetheless, ChIP-Seq data set on B cell line 

GM12787 (ENCODE Project Consortium 2012) shows H3K4me2 within the accessible 

regions around the CXCR5 gene, which is consistent with our ATAC-Seq data. Also, 
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the differential positioning of a nucleosome transiently occupying the TSS region of 

CXCR5 gene in fCD8s and GCTfh as imputed from the ATAC-Seq data is intriguing. 

However, we could not validate this phenomenon due to the technical difficulties 

associated with measuring nucleosomal positioning. Development of assays that can 

precisely track positioning of nucleosome is warranted.  

In conclusion, our data provide evidence of coordinated epigenetic and transcriptional 

involvement in the tight regulation of the CXCR5 gene in human CD8+ T cells. 

Importantly, we identified a putative transcription circuitry that include Id3, MAF and 

POU3F1 TFs, SETD7, and JADE2 and epigenetic signatures such as DNA 

methylation and nucleosomal occupancy that could be manipulated to induce and 

maximize CXCR5 expression on  CD8+ T cells, which would enhance trafficking of 

CD8+ T cells to B cell follicles where they are needed to eradicate HIV infected cells 

or cancerous cells. 
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3.6 Supplementary Data 

 

Supplementary Figure 3.1: Experimental design for ATAC-Seq, RNA-Seq and DNA 

methylation.  
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Supplementary Figure 3.2: Extended data for differentially expressed epigenetic 

factors 

Heatmap of up-regulated genes with epigenetic function in fCD8s. The heatmap 

shows the relative rank of gene expression (after batch-adjustment) of the epigenetic 

Extended differential expression of epigenetic factors

non-fCD8 fCD8

GCTfh Naïve CD8
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genes. Majority of the genes are involved in histone modification as shown in the 

heatmap. 
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Supplementary Figure 3.3: ATAC-Seq signal and correlation between OCRs and gene 

expression 

(A) The heatmap shows a condensed overview of ATAC-Seq signal of the top 10% 

ATAC-Seq peaks by variance. The clusters are organized in a hierarchical fashion 

showing subset specific clusters. (B) The figure shows deferentially expressed genes 

with corresponding differential accessibility OCRs between fCD8s and non-fCD8s. 

The y-axis represents the log2 fold change in gene expression, while the x-axis 

represents the log fold change in chromatin accessibility. A regularized regression line 

is fitted to the data. Example genes are annotated.  The gene of interest, CXCR5 is 

coloured in red. 
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Supplementary Figure 3.4: Transcription factor footprinting track 

(A) We determined the top TF enriched using WB for each subset and plotted the 

results on pie chart. ATAC-Seq peaks 11kb from the TSS region of CXCR5 ATAC seq 

peaks within 11kb of the TSS of CXCR5 are shown. The boxes indicate the named 
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upstream regions, i.e. U1 (-6.5kb) and U2 (-11kb). (B) Set enrichment of TF. We 

ranked ATAC-Seq signals of OCRs within the grey60 module with the representative 

eigengene of the grey60. Regions were sorted in descending order depending on their 

correlation with the grey60 module. For each subset, we used the calculated TF 

footprints in each region and determined by set enrichment analysis whether these 

TFs were likely enriched in regions higher correlated with the grey60 eigengene. That 

is, we hypothesize TF showing higher SEA enrichment with the grey60 eigengene to 

be more associated with the hub regions that are purported to be central in governing 

accessibility programs across this module. TF were aggregated at family level. From 

the figures, it becomes apparent that there is a progressive enrichment of MAF-family 

related factors from non-fCD8s to the enrichment of pioneering POU-family 

transcription factors in fCD8s with GCTfh sharing these TFs.  High enrichment is 

shown as positive (red) values, while negative enrichment (i.e. TF depleted grey60 

OCRs) are shown in blue. 
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CHAPTER 4 

 

4.1 General Discussion 

Studies on T-cell function among HIV-1 infected persons revealed new insights into 

previously unknown mechanisms of HIV-1 immunopathogenesis. Induction of HIV-1 

specific CD8+ T cell responses is expected to eliminate or significantly and durably 

control HIV-1 infected cells. However, there are barriers to CD8+ T cell mediated 

elimination or control of HIV-1 infected cells including: (i) HIV-1 continuous evolution 

to escape detection by CD8+ T cells, (ii) reduced frequency of CD8+ T cells infiltrating 

the sites of HIV-1 reservoirs within the lymphoid tissues, and (iii) inactive state of CD8+ 

T cells in the lymphoid tissues. Therefore, for CD8+ T cells to eliminate active HIV-1 

infected cells, these barriers need to be overcome.  

CD8+ T cell responses in natural control of HIV-1 is associated with specific class I 

HLA alleles, like B*27, B*57 and B*81 111,253. Class I HLA alleles dictate which epitopes 

from HIV-1 are presented to and recognized by CD8+ T cells, and “protective” HLA 

alleles 254 drive potent and effective CD8+ T cell responses 255. Interestingly, some 

HIV-1 Gag epitopes presented by the protective alleles are also presented by less 

protective alleles due to the homology in their peptide binding grove 56,60,151. Thus, we 

first investigated the mechanism of HIV-1 control by peripheral CD8+ T cells when 

presented with identical immunodominant Gag epitopes restricted by protective and 

less protective alleles. We reported a unique population of CD8+ T cells with greater 

capacity to recognize variant TL9 epitopes, and this was associated with lower viral 

load in protective and less protective individuals.  
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Responses of antiviral CD8+ T cells with greater capacity to recognize variant HIV-1 

epitopes depend on their ability to traffic into tissue sites of active viral replication 

114,115. Indeed, studies have identified B-cell follicles in the secondary lymphoid organs 

as significant reservoirs of residual HIV-1, even in individuals that naturally control 

viremia 82,83,121,184,185,256,257. The viral persistence is, at least in part, due to the 

apparent absence of effective antiviral CD8+ T cells responses inside the B-cell 

follicles 82,121,184,258. This deficiency is attributed to a relative inability of CD8+ T cells to 

effectively traffic to B cell follicles within the secondary lymphoid tissues and suppress 

HIV-1 replication 121,184,258. The movement of CD8+ T cells to different anatomical 

locations within the secondary lymphoid tissues is directed by the interplay of 

chemokine receptors and their endothelial ligands 6. The chemokine receptor CXCR5 

guides cells into B cell follicles in response to CXCL13 259. The CXCR5 receptor is 

usually not expressed on most CD8+ T cell subsets, but is required for their migration 

into B cell follicles. Recent studies in humans and mice have demonstrated that few 

CD8+ T cells express CXCR5 187,188. However, another study demonstrated that 

CXCR5 expressing CD8+ T cells are located predominantly outside the B cell follicles 

(Im et al., 2016), partly due to lower expression of CXCR5 on CD8+ T cells as 

compared to GCTfh. Improving our understanding of how CD8+ T cells express 

CXCR5 will be useful for redirecting antiviral CD8+ T cells to B cell follicles to eliminate 

HIV-1 infected cells. In our second study, we investigated why most lymph nodes CD8+ 

T cells do not express CXCR5 and why there is reduced CXCR5 expression in fCD8s 

relative to the GCTfh. We reported that DNA hypermethylation and a closed chromatin 

structure at the transcription start site (TSS) of CXCR5 gene repress CXCR5 

expression in non-follicular CD8+ T cells (non-fCD8s). We also found that greater 

nucleosomal density at the TSS of CXCR5 gene which could be a plausible 
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mechanism responsible for the reduced expression of CXCR5 in fCD8s relative to 

GCTfh. 

 

4.2 Study Implications and Future Directions 

Overall, our studies describe important immune parameters that are useful for: (1) 

HIV-1 vaccine design, and (2) functional cure approaches that seek to redirect CD8+ 

T cells to the B cell follicles within the lymphoid tissues and eliminate HIV-1 reservoirs. 

Our first study identified an unexpected population of CD8+ T cells that responded to 

TL9 when presented by protective HLA-B*81 and the less protective HLA-B*42, even 

in individuals who lacked one allele. This dual-HLA reactive response was more 

common in protective HLA-B*81-expressing individuals and it was associated with 

lower plasma viral loads, indicating that it may contribute to control of HIV-1 infection. 

Detailed analysis of TL9 specific CD8+ TCRs uncovered genetic and functional 

similarities between HLA-B*81-derived CD8+ T cell responses and dual-HLA reactive 

responses from B*42 individuals. Notably, TCR clones isolated from dual-reactive 

cells in B*42 individuals displayed a broader ability to recognize TL9 polymorphisms 

that contribute to immune evasion. This study provides a possible mechanism for 

lower viremia in individuals expressing HLA-B*81:01. Furthermore, we identified TL9 

position 3 (Q3P) variant that selectively stimulates dual-reactive TCRs. It would be 

interesting to further examine ex vivo responses to this TL9 variant which could be 

included in immunogen design that could induce dual tetramer populations with broad 

TCR cross recognition, even in less protective individuals. The TCR clones we 

described in this study are more cross reactive, meaning that CD8+ T cells harbouring 

such TCRs may be better equipped to respond to not just the epitopes encoded by 
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the infecting virus but also variant epitopes that arise due to HIV-1’s virus escape from 

CD8+ T cell recognition. Together, the dual-reactive CD8+ T cells we described in this 

study that can cross recognize variant TL9 epitopes, are vital for HIV vaccine design. 

A vaccine that can induce effective cross reactive TCR clones might provide better 

protection against HIV-1 infection. Cross reactive CD8+ T cells as such, may be 

important effectors for functional cure, where CD8+ T cells of an infected individual are 

redirected to immune sanctuary sites of HIV-1 replication and eliminate HIV-1 infected 

cells presenting variant epitopes. Efforts to identify variant epitopes that can induce 

such cross reactive responses in HIV-1 infected individuals will be important for future 

studies.  

In the second part of this thesis, we identified molecular mechanisms governing the 

expression of CXCR5 in human CD8+ T cells. The hypermethylation of DNA and 

closed chromatin conformation we observed around the TSS of the CXCR5 gene 

strongly suggesting that epigenetic mechanisms are involved in silencing of CXCR5 

gene in human CD8+ T cells. The increased expression of CXCR5 mRNA we observed 

after treatment with Aza drug, provide strong evidence that CXCR5 gene in human 

CD8+ T cells is silenced by DNA methylation. Efforts to directly target 

methyltransferases involved in the methylation of this region will be important for future 

studies. Transcriptional factors have instructive roles in lineage determination. 

Exploration of BCL6 gene, a known master regulator of CXCR5 expression in mice 

studies, revealed no difference between human fCD8s and non-fCD8s, suggesting 

that additional or different regulators maybe involved in the expression of CXCR5 in 

human CD8+ T cells. Consistent with this notion, lower expression of Id3; a known 

established positive co-regulator of the CXCR5 gene was also observed in fCD8s 

compared to GCTfh. This further strengthens the notion that additional regulators may 
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be involved in expression of CXCR5 in human CD8+ T cells. The MAF and POU3F1 

we observed in our study to be significantly upregulated in fCD8s compared to non-

fCD8 and the upstream 2 (U2) with significant transcriptional activity of these factors 

in fCD8s gave us an insight on the regulation of the CXCR5 gene in human CD8+ T 

cells. Our studies indicate that the U2 region may be an enhancer region for the 

CXCR5 gene and cross-talk between the bound TFs in U2 and the TSS could be an 

important pathway in the establishment of CXCR5 expression in human CD8+ T cells. 

Another striking finding from our gene expression analysis was the differential 

expression of epigenetic factors between fCD8s and non-fCD8s, which further 

confirms the role of epigenetic mechanisms in the regulation of the CXCR5 gene in 

human CD8+ T cells. It makes sense that CD8+ T cells in the lymph nodes should be 

epigenetically and transcriptionally programmed to silence the expression of CXCR5, 

because they could interfere with the process of affinity maturation of antibody-

producing cells. Thus, failure of the majority of CD8+ T cells to express CXCR5 during 

differentiation within lymphoid tissues likely results from the normal biology of 

lymphoid tissue microenvironment. Through this study, we have been able to identify 

some important epigenetic parameters that will need to be tested in the future studies 

to assess their roles in enhancing the expression of CXCR5 in human CD8+ T cells. 

It is important to note that the expression level of CXCR5 on fCD8s is lower when 

compared to GCTfh. The theory that nucleosomes and transcription factors (TFs) 

compete for access to DNA by regulatory machineries 260 holds in our study because 

we observed an increase in nucleosomal occupancy at the TSS region of CXCR5 

gene in fCD8s which was not present in GCTfh. This could be the reason why CXCR5 

expression in fCD8s is lower compared to GCTfh, and lower expression of CXCR5 in 

fCD8s could impact localization of CD8+ T cells to B cell follicles. Efforts to interrupt 



 
165 

nucleosome positioning at the TSS region of the CXCR5 gene could enhance CXCR5 

expression levels on CD8+ T cells and facilitate their migration to the B cell follicles. 

These findings have implications for HIV cure strategy that seek to redirect CD8+ T 

cells to B cell follicles and eliminate HIV reservoirs. 

 

4.3 Concluding Remarks 

The novel CD8+ T cell population we described in our first study highlights one of the 

mechanisms by which CD8+ T cell control HIV-1 infection. We have demonstrated that 

the CD8+ T cell receptor in protective individuals are better equipped at cross-

recognizing epitope variant of immunodominant Gag-p24 TL9. A fraction of CD8+ T 

cells in less protective individuals harbouring such unique TCRs can be boosted, thus 

enhancing HIV-1 control. We identified TL9-epitope variants that can possibly be used 

to induce such novel populations even in less protective individuals. The novel CD8+ 

T cell population we described here is relevant for the design of HIV-1 vaccines.  

In our second study, we described the pathways involved in the tight regulation of 

CXCR5 expression in human CD8+ T cells. We identified unique epigenetic 

mechanisms involved in repression of CXCR5 in human CD8+ T cells. We 

demonstrated that DNA methylation directly contributes to the tight regulation of 

CXCR5 expression in human CD8+ T cells. We also described the role of chromatin 

architecture in the regulation of CXCR5 gene. Additionally, we computationally 

demonstrated the interference of nucleosome with transcriptional machineries in 

fCD8s. Together, our second study identified unique pathways involved in the tight 

regulation of the CXCR5 gene in human CD8+ T cells. Efforts to interrupt pathways 

that antagonize the expression of CXCR5 in human CD8+ T cells will be important for 
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engineering CXCR5+CD8+ T cells that can safely infiltrate the B cell follicles and 

eliminate HIV-1 reservoirs.  

In summary, we have described a novel mechanism by which HLA class I-restricted 

CD8+ T cell responses contribute substantially to the control of HIV-1 replication in 

HIV-1 infected individuals. We also described molecular events limiting the recruitment 

of effector CD8+ T cells to sites of HIV-1 persistence even during ART. Findings from 

these studies are useful in the generation of effective CD8+ T cells with broad 

recognition of a highly variable pathogen, such as HIV-1 and for redirecting effector 

CD8+ T cells to sites where they are needed to clear viral reservoirs. This information 

is useful for T cell based vaccine design and for functional cure strategies aimed at 

eliminating HIV-1 reservoirs from immune privilege sites, such as B cell follicles. 

Validation of the parameters highlighted in these studies should be an important focus 

for future studies.    

 

 

4.4 References 

1 De Cock, K. M., Jaffe, H. W. & Curran, J. W. The evolving epidemiology of 
HIV/AIDS. Aids 26, 1205-1213, doi:10.1097/QAD.0b013e328354622a (2012). 

2 UNAIDS. UNAIDS report on global AIDS epidemic update 

.  (2018). 

3 Nyamweya, S. et al. Comparing HIV-1 and HIV-2 infection: Lessons for viral 
immunopathogenesis. Reviews in medical virology 23, 221-240, 
doi:10.1002/rmv.1739 (2013). 

4 Taylor, B. S. & Hammer, S. M. The challenge of HIV-1 subtype diversity. The 
New England journal of medicine 359, 1965-1966, doi:10.1056/NEJMc086373 
(2008). 



 
167 

5 Avert. Global information and education on HIV and AIDS.  (2019). 

6 Douek, D. C., Picker, L. J. & Koup, R. A. T cell dynamics in HIV-1 infection. 
Annual review of immunology 21, 265-304, 
doi:10.1146/annurev.immunol.21.120601.141053 (2003). 

7 Yuki, Y., Nochi, T. & Kiyono, H. Progress towards an AIDS mucosal vaccine: 
an overview. Tuberculosis (Edinburgh, Scotland) 87 Suppl 1, S35-44, 
doi:10.1016/j.tube.2007.05.005 (2007). 

8 Doms, R. W. Chemokine receptors and HIV entry. Aids 15 Suppl 1, S34-35 
(2001). 

9 Munier, M. L. & Kelleher, A. D. Acutely dysregulated, chronically disabled by 
the enemy within: T-cell responses to HIV-1 infection. Immunol Cell Biol 85, 6-
15 (2007). 

10 McMichael, A. J., Borrow, P., Tomaras, G. D., Goonetilleke, N. & Haynes, B. F. 
The immune response during acute HIV-1 infection: clues for vaccine 
development. Nat Rev Immunol 10, 11-23 (2010). 

11 Altfeld, M. & Walker, B. D. Less is more? STI in acute and chronic HIV-1 
infection. Nat Med 7, 881-884 (2001). 

12 Mogensen, T. H., Melchjorsen, J., Larsen, C. S. & Paludan, S. R. Innate 
immune recognition and activation during HIV infection. Retrovirology 7, 1742-
4690 (2010). 

13 Borrow, P., Lewicki, H., Hahn, B. H., Shaw, G. M. & Oldstone, M. B. Virus-
specific CD8+ cytotoxic T-lymphocyte activity associated with control of viremia 
in primary human immunodeficiency virus type 1 infection. Journal of virology 
68, 6103-6110 (1994). 

14 Koup, R. A. et al. Temporal association of cellular immune responses with the 
initial control of viremia in primary human immunodeficiency virus type 1 
syndrome. J Virol 68, 4650-4655 (1994). 

15 Pantaleo, G. et al. Major expansion of CD8+ T cells with a predominant V beta 
usage during the primary immune response to HIV. Nature 370, 463-467 
(1994). 

16 Wilson, J. D. et al. Direct visualization of HIV-1-specific cytotoxic T lymphocytes 
during primary infection. Aids 14, 225-233 (2000). 

17 Ndhlovu, Z. M. et al. Magnitude and Kinetics of CD8(+) T Cell Activation during 
Hyperacute HIV Infection Impact Viral Set Point. Immunity 43, 591-604, 
doi:10.1016/j.immuni.2015.08.012 (2015). 

18 Ndhlovu, Z. M. et al. Magnitude and Kinetics of CD8+ T Cell Activation during 
Hyperacute HIV Infection Impact Viral Set Point. Immunity 43, 591-604, 
doi:10.1016/j.immuni.2015.08.012 (2015). 



 
168 

19 Bernardin, F., Kong, D., Peddada, L., Baxter-Lowe, L. A. & Delwart, E. Human 
immunodeficiency virus mutations during the first month of infection are 
preferentially found in known cytotoxic T-lymphocyte epitopes. J Virol 79, 
11523-11528, doi:10.1128/jvi.79.17.11523-11528.2005 (2005). 

20 Salazar-Gonzalez, J. F. et al. Genetic identity, biological phenotype, and 
evolutionary pathways of transmitted/founder viruses in acute and early HIV-1 
infection. J Exp Med 206, 1273-1289, doi:10.1084/jem.20090378 (2009). 

21 Appay, V. & Sauce, D. Immune activation and inflammation in HIV-1 infection: 
causes and consequences. J Pathol 214, 231-241 (2008). 

22 Paranjape, R. S. Immunopathogenesis of HIV infection. Indian J Med Res 121, 
240-255 (2005). 

23 Derdeyn, C. A. & Silvestri, G. Viral and host factors in the pathogenesis of HIV 
infection. Curr Opin Immunol 17, 366-373 (2005). 

24 Chatterjee, K. Host genetic factors in susceptibility to HIV-1 infection and 
progression to AIDS. J Genet 89, 109-116 (2010). 

25 Mueller, Y. M. et al. Increased CD95/Fas-induced apoptosis of HIV-specific 
CD8(+) T cells. Immunity 15, 871-882 (2001). 

26 Kostense, S. et al. Persistent numbers of tetramer+ CD8(+) T cells, but loss of 
interferon-gamma+ HIV-specific T cells during progression to AIDS. Blood 99, 
2505-2511 (2002). 

27 Phair, J. P. Determinants of the natural history of human immunodeficiency 
virus type 1 infection. The Journal of infectious diseases 179 Suppl 2, S384-
386, doi:10.1086/513839 (1999). 

28 Cohen, D. E. & Walker, B. D. Human immunodeficiency virus pathogenesis and 
prospects for immune control in patients with established infection. Clinical 
infectious diseases : an official publication of the Infectious Diseases Society of 
America 32, 1756-1768, doi:10.1086/320759 (2001). 

29 Lehmann-Grube, F., Assmann, U., Loliger, C., Moskophidis, D. & Lohler, J. 
Mechanism of recovery from acute virus infection. I. Role of T lymphocytes in 
the clearance of lymphocytic choriomeningitis virus from spleens of mice. J 
Immunol 134, 608-615 (1985). 

30 Walker, B. D. et al. HIV-specific cytotoxic T lymphocytes in seropositive 
individuals. Nature 328, 345-348 (1987). 

31 Plata, F. et al. AIDS virus-specific cytotoxic T lymphocytes in lung disorders. 
Nature 328, 348-351 (1987). 

32 Nixon, D. F. et al. HIV-1 gag-specific cytotoxic T lymphocytes defined with 
recombinant vaccinia virus and synthetic peptides. Nature 336, 484-487 (1988). 



 
169 

33 Dalod, M. et al. Weak anti-HIV CD8(+) T-cell effector activity in HIV primary 
infection. J Clin Invest 104, 1431-1439 (1999). 

34 Maecker, H. T. et al. Use of overlapping peptide mixtures as antigens for 
cytokine flow cytometry. J Immunol Methods 255, 27-40 (2001). 

35 Altman, J. D. et al. Phenotypic analysis of antigen-specific T lymphocytes. 
Science (New York, N.Y.) 274, 94-96 (1996). 

36 Ogg, G. S. et al. Quantitation of HIV-1-specific cytotoxic T lymphocytes and 
plasma load of viral RNA. Science (New York, N.Y.) 279, 2103-2106, 
doi:10.1126/science.279.5359.2103 (1998). 

37 Hersperger, A. R. et al. Perforin expression directly ex vivo by HIV-specific CD8 
T-cells is a correlate of HIV elite control. PLoS pathogens 6, e1000917, 
doi:10.1371/journal.ppat.1000917 (2010). 

38 Gandhi, R. T. & Walker, B. D. Immunologic control of HIV-1. Annu Rev Med 53, 
149-172 (2002). 

39 Rouvier, E., Luciani, M. F. & Golstein, P. Fas involvement in Ca(2+)-
independent T cell-mediated cytotoxicity. The Journal of experimental medicine 
177, 195-200, doi:10.1084/jem.177.1.195 (1993). 

40 Demers, K. R., Reuter, M. A. & Betts, M. R. CD8(+) T-cell effector function and 
transcriptional regulation during HIV pathogenesis. Immunological reviews 254, 
190-206, doi:10.1111/imr.12069 (2013). 

41 Kagi, D. et al. Fas and perforin pathways as major mechanisms of T cell-
mediated cytotoxicity. Science (New York, N.Y.) 265, 528-530 (1994). 

42 Betts, M. R. et al. HIV nonprogressors preferentially maintain highly functional 
HIV-specific CD8+ T cells. Blood 107, 4781-4789, doi:10.1182/blood-2005-12-
4818 (2006). 

43 Streeck, H. et al. Antigen load and viral sequence diversification determine the 
functional profile of HIV-1-specific CD8+ T cells. PLoS medicine 5, e100, 
doi:10.1371/journal.pmed.0050100 (2008). 

44 Hersperger, A. R. et al. Increased HIV-specific CD8+ T-cell cytotoxic potential 
in HIV elite controllers is associated with T-bet expression. Blood 117, 3799-
3808, doi:10.1182/blood-2010-12-322727 (2011). 

45 Yewdell, J. W., Reits, E. & Neefjes, J. Making sense of mass destruction: 
quantitating MHC class I antigen presentation. Nat Rev Immunol 3, 952-961 
(2003). 

46 Jixin Zhong, J.-F. X., Ping Yang, Yi Liang and Cong-Yi Wang. Innate Immunity 
in the Recognition of β-Cell Antigens in Type 1 Diabetes, Type 1 Diabetes - 
Pathogenesis, Genetics and Immunotherapy. doi:10.5772/22264 (2011). 



 
170 

47 Davis, S. J. & van der Merwe, P. A. The structure and ligand interactions of 
CD2: implications for T-cell function. Immunol Today 17, 177-187 (1996). 

48 Turner, S. J., Doherty, P. C., McCluskey, J. & Rossjohn, J. Structural 
determinants of T-cell receptor bias in immunity. Nature reviews. Immunology 
6, 883-894, doi:10.1038/nri1977 (2006). 

49 Rudolph, M. G., Stanfield, R. L. & Wilson, I. A. How TCRs bind MHCs, peptides, 
and coreceptors. Annu Rev Immunol 24, 419-466 (2006). 

50 Price, D. A. et al. T cell receptor recognition motifs govern immune escape 
patterns in acute SIV infection. Immunity 21, 793-803 (2004). 

51 Varela-Rohena, A. et al. Control of HIV-1 immune escape by CD8 T cells 
expressing enhanced T-cell receptor. Nat Med 14, 1390-1395 (2008). 

52 Chen, H. et al. TCR clonotypes modulate the protective effect of HLA class I 
molecules in HIV-1 infection. Nat Immunol 13, 691-700 (2012). 

53 Zoete, V., Irving, M., Ferber, M., Cuendet, M. A. & Michielin, O. Structure-
Based, Rational Design of T Cell Receptors. Frontiers in immunology 4, 268, 
doi:10.3389/fimmu.2013.00268 (2013). 

54 Goulder, P. J. & Watkins, D. I. Impact of MHC class I diversity on immune 
control of immunodeficiency virus replication. Nat Rev Immunol 8, 619-630 
(2008). 

55 Wright, J. K. et al. Impact of HLA-B*81-associated mutations in HIV-1 Gag on 
viral replication capacity. Journal of virology 86, 3193-3199, 
doi:10.1128/jvi.06682-11 (2012). 

56 Sidney, J., Peters, B., Frahm, N., Brander, C. & Sette, A. HLA class I 
supertypes: a revised and updated classification. BMC Immunol 9, 1471-2172 
(2008). 

57 Madden, D. R. The three-dimensional structure of peptide-MHC complexes. 
Annu Rev Immunol 13, 587-622 (1995). 

58 Khan, A. R., Baker, B. M., Ghosh, P., Biddison, W. E. & Wiley, D. C. The 
structure and stability of an HLA-A*0201/octameric tax peptide complex with an 
empty conserved peptide-N-terminal binding site. J Immunol 164, 6398-6405 
(2000). 

59 Mungall, A. J. et al. The DNA sequence and analysis of human chromosome 6. 
Nature 425, 805-811 (2003). 

60 Sette, A. & Sidney, J. Nine major HLA class I supertypes account for the vast 
preponderance of HLA-A and -B polymorphism. Immunogenetics 50, 201-212 
(1999). 

61 Klein, J. & Sato, A. The HLA system. First of two parts. N Engl J Med 343, 702-
709 (2000). 



 
171 

62 Walker, B. & McMichael, A. The T-cell response to HIV. Cold Spring Harbor 
perspectives in medicine 2, doi:10.1101/cshperspect.a007054 (2012). 

63 Whitney, J. B. et al. Rapid seeding of the viral reservoir prior to SIV viraemia in 
rhesus monkeys. Nature 512, 74-77, doi:10.1038/nature13594 (2014). 

64 Goonetilleke, N. et al. The first T cell response to transmitted/founder virus 
contributes to the control of acute viremia in HIV-1 infection. The Journal of 
experimental medicine 206, 1253-1272, doi:10.1084/jem.20090365 (2009). 

65 Kim, J. et al. CD8(+) Cytotoxic T Lymphocyte Responses and Viral Epitope 
Escape in Acute HIV-1 Infection. Viral immunology 31, 525-536, 
doi:10.1089/vim.2018.0040 (2018). 

66 Yang, O. O. et al. Suppression of human immunodeficiency virus type 1 
replication by CD8+ cells: evidence for HLA class I-restricted triggering of 
cytolytic and noncytolytic mechanisms. Journal of virology 71, 3120-3128 
(1997). 

67 Chen, H. et al. Differential neutralization of human immunodeficiency virus 
(HIV) replication in autologous CD4 T cells by HIV-specific cytotoxic T 
lymphocytes. Journal of virology 83, 3138-3149, doi:10.1128/jvi.02073-08 
(2009). 

68 Schmitz, J. E. et al. Control of viremia in simian immunodeficiency virus 
infection by CD8+ lymphocytes. Science (New York, N.Y.) 283, 857-860 (1999). 

69 Jin, X. et al. Dramatic rise in plasma viremia after CD8(+) T cell depletion in 
simian immunodeficiency virus-infected macaques. The Journal of 
experimental medicine 189, 991-998, doi:10.1084/jem.189.6.991 (1999). 

70 Schmitz, J. E. et al. Effect of CD8+ lymphocyte depletion on virus containment 
after simian immunodeficiency virus SIVmac251 challenge of live attenuated 
SIVmac239delta3-vaccinated rhesus macaques. J Virol 79, 8131-8141 (2005). 

71 Altfeld, M. et al. Cellular immune responses and viral diversity in individuals 
treated during acute and early HIV-1 infection. J Exp Med 193, 169-180 (2001). 

72 Cao, J. et al. Comprehensive analysis of human immunodeficiency virus type 
1 (HIV-1)-specific gamma interferon-secreting CD8+ T cells in primary HIV-1 
infection. J Virol 77, 6867-6878 (2003). 

73 Radebe, M. et al. Limited immunogenicity of HIV CD8+ T-cell epitopes in acute 
Clade C virus infection. J Infect Dis 204, 768-776 (2011). 

74 Altfeld, M. et al. Expansion of pre-existing, lymph node-localized CD8+ T cells 
during supervised treatment interruptions in chronic HIV-1 infection. The 
Journal of clinical investigation 109, 837-843, doi:10.1172/jci14789 (2002). 

75 Koibuchi, T. et al. Limited sequence evolution within persistently targeted CD8 
epitopes in chronic human immunodeficiency virus type 1 infection. J Virol 79, 
8171-8181 (2005). 



 
172 

76 Reuter, M. A. et al. HIV-Specific CD8(+) T Cells Exhibit Reduced and 
Differentially Regulated Cytolytic Activity in Lymphoid Tissue. Cell reports 21, 
3458-3470, doi:10.1016/j.celrep.2017.11.075 (2017). 

77 Bogle, G. & Dunbar, P. R. Agent-based simulation of T-cell activation and 
proliferation within a lymph node. Immunology and cell biology 88, 172-179, 
doi:10.1038/icb.2009.78 (2010). 

78 Willard-Mack, C. L. Normal structure, function, and histology of lymph nodes. 
Toxicologic pathology 34, 409-424, doi:10.1080/01926230600867727 (2006). 

79 Abbas, A. K., Murphy, K. M. & Sher, A. Functional diversity of helper T 
lymphocytes. Nature 383, 787-793 (1996). 

80 Roderick Nairn., M. H. Immunology for Medical Students. 2nd edition edn,  108-
120 (Elsevier, 2007). 

81 Andersson, J. et al. Low levels of perforin expression in CD8+ T lymphocyte 
granules in lymphoid tissue during acute human immunodeficiency virus type 1 
infection. The Journal of infectious diseases 185, 1355-1358, 
doi:10.1086/340124 (2002). 

82 Folkvord, J. M., Armon, C. & Connick, E. Lymphoid follicles are sites of 
heightened human immunodeficiency virus type 1 (HIV-1) replication and 
reduced antiretroviral effector mechanisms. AIDS research and human 
retroviruses 21, 363-370, doi:10.1089/aid.2005.21.363 (2005). 

83 Banga, R. et al. PD-1(+) and follicular helper T cells are responsible for 
persistent HIV-1 transcription in treated aviremic individuals. Nature medicine 
22, 754-761, doi:10.1038/nm.4113 (2016). 

84 Perreau, M. et al. Follicular helper T cells serve as the major CD4 T cell 
compartment for HIV-1 infection, replication, and production. The Journal of 
experimental medicine 210, 143-156, doi:10.1084/jem.20121932 (2013). 

85 Kaech, S. M. & Cui, W. Transcriptional control of effector and memory CD8+ T 
cell differentiation. Nature reviews. Immunology 12, 749-761, 
doi:10.1038/nri3307 (2012). 

86 Schluns, K. S., Kieper, W. C., Jameson, S. C. & Lefrancois, L. Interleukin-7 
mediates the homeostasis of naive and memory CD8 T cells in vivo. Nature 
immunology 1, 426-432, doi:10.1038/80868 (2000). 

87 Joshi, N. S. & Kaech, S. M. Effector CD8 T cell development: a balancing act 
between memory cell potential and terminal differentiation. Journal of 
immunology (Baltimore, Md. : 1950) 180, 1309-1315 (2008). 

88 Surh, C. D. & Sprent, J. Homeostasis of naive and memory T cells. Immunity 
29, 848-862, doi:10.1016/j.immuni.2008.11.002 (2008). 



 
173 

89 Joshi, N. S. et al. Inflammation directs memory precursor and short-lived 
effector CD8(+) T cell fates via the graded expression of T-bet transcription 
factor. Immunity 27, 281-295, doi:10.1016/j.immuni.2007.07.010 (2007). 

90 Intlekofer, A. M. et al. Requirement for T-bet in the aberrant differentiation of 
unhelped memory CD8+ T cells. The Journal of experimental medicine 204, 
2015-2021, doi:10.1084/jem.20070841 (2007). 

91 Pipkin, M. E. et al. Interleukin-2 and inflammation induce distinct transcriptional 
programs that promote the differentiation of effector cytolytic T cells. Immunity 
32, 79-90, doi:10.1016/j.immuni.2009.11.012 (2010). 

92 Sullivan, B. M., Juedes, A., Szabo, S. J., von Herrath, M. & Glimcher, L. H. 
Antigen-driven effector CD8 T cell function regulated by T-bet. Proceedings of 
the National Academy of Sciences of the United States of America 100, 15818-
15823, doi:10.1073/pnas.2636938100 (2003). 

93 Takemoto, N., Intlekofer, A. M., Northrup, J. T., Wherry, E. J. & Reiner, S. L. 
Cutting Edge: IL-12 inversely regulates T-bet and eomesodermin expression 
during pathogen-induced CD8+ T cell differentiation. Journal of immunology 
(Baltimore, Md. : 1950) 177, 7515-7519, doi:10.4049/jimmunol.177.11.7515 
(2006). 

94 Joshi, N. S. et al. Increased numbers of preexisting memory CD8 T cells and 
decreased T-bet expression can restrain terminal differentiation of secondary 
effector and memory CD8 T cells. Journal of immunology (Baltimore, Md. : 
1950) 187, 4068-4076, doi:10.4049/jimmunol.1002145 (2011). 

95 Banerjee, A. et al. Cutting edge: The transcription factor eomesodermin 
enables CD8+ T cells to compete for the memory cell niche. Journal of 
immunology (Baltimore, Md. : 1950) 185, 4988-4992, 
doi:10.4049/jimmunol.1002042 (2010). 

96 Henning, A. N., Roychoudhuri, R. & Restifo, N. P. Epigenetic control of CD8(+) 
T cell differentiation. Nature reviews. Immunology 18, 340-356, 
doi:10.1038/nri.2017.146 (2018). 

97 Ball, M. P. et al. Targeted and genome-scale strategies reveal gene-body 
methylation signatures in human cells. Nature biotechnology 27, 361-368, 
doi:10.1038/nbt.1533 (2009). 

98 Jones, P. A. Functions of DNA methylation: islands, start sites, gene bodies 
and beyond. Nature reviews. Genetics 13, 484-492, doi:10.1038/nrg3230 
(2012). 

99 Scharer, C. D., Barwick, B. G., Youngblood, B. A., Ahmed, R. & Boss, J. M. 
Global DNA methylation remodeling accompanies CD8 T cell effector function. 
Journal of immunology (Baltimore, Md. : 1950) 191, 3419-3429, 
doi:10.4049/jimmunol.1301395 (2013). 

100 Rodriguez, R. M. et al. Epigenetic Networks Regulate the Transcriptional 
Program in Memory and Terminally Differentiated CD8+ T Cells. Journal of 



 
174 

immunology (Baltimore, Md. : 1950) 198, 937-949, 
doi:10.4049/jimmunol.1601102 (2017). 

101 Abdelsamed, H. A. et al. Human memory CD8 T cell effector potential is 
epigenetically preserved during in vivo homeostasis. The Journal of 
experimental medicine 214, 1593-1606, doi:10.1084/jem.20161760 (2017). 

102 He, B. et al. CD8(+) T Cells Utilize Highly Dynamic Enhancer Repertoires and 
Regulatory Circuitry in Response to Infections. Immunity 45, 1341-1354, 
doi:10.1016/j.immuni.2016.11.009 (2016). 

103 Nguyen, M. L. et al. Dynamic regulation of permissive histone modifications and 
GATA3 binding underpin acquisition of granzyme A expression by virus-specific 
CD8(+) T cells. European journal of immunology 46, 307-318, 
doi:10.1002/eji.201545875 (2016). 

104 Youngblood, B. et al. Cutting edge: Prolonged exposure to HIV reinforces a 
poised epigenetic program for PD-1 expression in virus-specific CD8 T cells. 
Journal of immunology (Baltimore, Md. : 1950) 191, 540-544, 
doi:10.4049/jimmunol.1203161 (2013). 

105 Youngblood, B., Hale, J. S. & Ahmed, R. T-cell memory differentiation: insights 
from transcriptional signatures and epigenetics. Immunology 139, 277-284, 
doi:10.1111/imm.12074 (2013). 

106 Zhang, F. et al. Epigenetic manipulation restores functions of defective CD8(+) 
T cells from chronic viral infection. Molecular therapy : the journal of the 
American Society of Gene Therapy 22, 1698-1706, doi:10.1038/mt.2014.91 
(2014). 

107 Nag, M., De Paris, K. & J, E. F. Epigenetic Modulation of CD8(+) T Cell Function 
in Lentivirus Infections: A Review. Viruses 10, doi:10.3390/v10050227 (2018). 

108 Slaney, C. Y., Kershaw, M. H. & Darcy, P. K. Trafficking of T cells into tumors. 
Cancer research 74, 7168-7174, doi:10.1158/0008-5472.Can-14-2458 (2014). 

109 Chen, A., Engel, P. & Tedder, T. F. Structural requirements regulate 
endoproteolytic release of the L-selectin (CD62L) adhesion receptor from the 
cell surface of leukocytes. The Journal of experimental medicine 182, 519-530, 
doi:10.1084/jem.182.2.519 (1995). 

110 Nolz, J. C. Molecular mechanisms of CD8(+) T cell trafficking and localization. 
Cellular and molecular life sciences : CMLS 72, 2461-2473, 
doi:10.1007/s00018-015-1835-0 (2015). 

111 Kiepiela, P. et al. Dominant influence of HLA-B in mediating the potential co-
evolution of HIV and HLA. Nature 432, 769-775, doi:10.1038/nature03113 
(2004). 

112 Wright, J. K. et al. Gag-protease-mediated replication capacity in HIV-1 subtype 
C chronic infection: associations with HLA type and clinical parameters. Journal 
of virology 84, 10820-10831, doi:10.1128/JVI.01084-10 (2010). 



 
175 

113 Carlson, J. M. et al. HIV transmission. Selection bias at the heterosexual HIV-
1 transmission bottleneck. Science (New York, N.Y.) 345, 1254031, 
doi:10.1126/science.1254031 (2014). 

114 Cerwenka, A., Morgan, T. M. & Dutton, R. W. Naive, effector, and memory CD8 
T cells in protection against pulmonary influenza virus infection: homing 
properties rather than initial frequencies are crucial. Journal of immunology 
(Baltimore, Md. : 1950) 163, 5535-5543 (1999). 

115 Cerwenka, A., Morgan, T. M., Harmsen, A. G. & Dutton, R. W. Migration kinetics 
and final destination of type 1 and type 2 CD8 effector cells predict protection 
against pulmonary virus infection. The Journal of experimental medicine 189, 
423-434, doi:10.1084/jem.189.2.423 (1999). 

116 Charo, I. F. & Ransohoff, R. M. The many roles of chemokines and chemokine 
receptors in inflammation. The New England journal of medicine 354, 610-621, 
doi:10.1056/NEJMra052723 (2006). 

117 Luster, A. D., Alon, R. & von Andrian, U. H. Immune cell migration in 
inflammation: present and future therapeutic targets. Nature immunology 6, 
1182-1190, doi:10.1038/ni1275 (2005). 

118 Cohen, O. J. et al. Pathogenic insights from studies of lymphoid tissue from 
HIV-infected individuals. Journal of acquired immune deficiency syndromes 
and human retrovirology : official publication of the International Retrovirology 
Association 10 Suppl 1, S6-14 (1995). 

119 Pantaleo, G. & Fauci, A. S. New concepts in the immunopathogenesis of HIV 
infection. Annual review of immunology 13, 487-512, 
doi:10.1146/annurev.iy.13.040195.002415 (1995). 

120 Iyengar, S., Chin, B., Margolick, J. B., Sabundayo, B. P. & Schwartz, D. H. 
Anatomical loci of HIV-associated immune activation and association with 
viraemia. Lancet (London, England) 362, 945-950, doi:10.1016/s0140-
6736(03)14363-2 (2003). 

121 Connick, E. et al. CTL fail to accumulate at sites of HIV-1 replication in lymphoid 
tissue. Journal of immunology (Baltimore, Md. : 1950) 178, 6975-6983 (2007). 

122 Deeks, S. G. & Walker, B. D. Human immunodeficiency virus controllers: 
mechanisms of durable virus control in the absence of antiretroviral therapy. 
Immunity 27, 406-416, doi:10.1016/j.immuni.2007.08.010 (2007). 

123 Migueles, S. A. & Connors, M. Long-term nonprogressive disease among 
untreated HIV-infected individuals: clinical implications of understanding 
immune control of HIV. Jama 304, 194-201, doi:10.1001/jama.2010.925 
(2010). 

124 Frater, A. J. et al. Effective T-cell responses select human immunodeficiency 
virus mutants and slow disease progression. J Virol 81, 6742-6751, 
doi:10.1128/JVI.00022-07 (2007). 



 
176 

125 Kawashima, Y. et al. Adaptation of HIV-1 to human leukocyte antigen class I. 
Nature 458, 641-645, doi:10.1038/nature07746 (2009). 

126 Migueles, S. A. et al. HLA B*5701 is highly associated with restriction of virus 
replication in a subgroup of HIV-infected long term nonprogressors. 
Proceedings of the National Academy of Sciences of the United States of 
America 97, 2709-2714, doi:10.1073/pnas.050567397 (2000). 

127 Kaslow, R. A. et al. Influence of combinations of human major histocompatibility 
complex genes on the course of HIV-1 infection. Nature medicine 2, 405-411 
(1996). 

128 Gao, X. et al. Effect of a single amino acid change in MHC class I molecules 
on the rate of progression to AIDS. The New England journal of medicine 344, 
1668-1675, doi:10.1056/nejm200105313442203 (2001). 

129 Draenert, R. et al. Constraints on HIV-1 evolution and immunodominance 
revealed in monozygotic adult twins infected with the same virus. J Exp Med 
203, 529-539 (2006). 

130 Kosmrlj, A. et al. Effects of thymic selection of the T-cell repertoire on HLA class 
I-associated control of HIV infection. Nature 465, 350-354, 
doi:10.1038/nature08997 (2010). 

131 Leslie, A. J. et al. HIV evolution: CTL escape mutation and reversion after 
transmission. Nat Med 10, 282-289 (2004). 

132 Crawford, H. et al. Evolution of HLA-B*5703 HIV-1 escape mutations in HLA-
B*5703-positive individuals and their transmission recipients. J Exp Med 206, 
909-921, doi:10.1084/jem.20081984 (2009). 

133 Kiepiela, P. et al. CD8+ T-cell responses to different HIV proteins have 
discordant associations with viral load. Nature medicine 13, 46-53, 
doi:10.1038/nm1520 (2007). 

134 Yang, O. O. et al. Determinant of HIV-1 mutational escape from cytotoxic T 
lymphocytes. J Exp Med 197, 1365-1375, doi:10.1084/jem.20022138 (2003). 

135 Brockman, M. A. et al. Early selection in Gag by protective HLA alleles 
contributes to reduced HIV-1 replication capacity that may be largely 
compensated for in chronic infection. J Virol 84, 11937-11949, 
doi:10.1128/JVI.01086-10 (2010). 

136 Nikolich-Zugich, J., Slifka, M. K. & Messaoudi, I. The many important facets of 
T-cell repertoire diversity. Nature reviews. Immunology 4, 123-132, 
doi:10.1038/nri1292 (2004). 

137 Lissina, A., Chakrabarti, L. A., Takiguchi, M. & Appay, V. TCR clonotypes: 
molecular determinants of T-cell efficacy against HIV. Current opinion in 
virology 16, 77-85, doi:10.1016/j.coviro.2016.01.017 (2016). 



 
177 

138 Lee, K. H. et al. The immunological synapse balances T cell receptor signaling 
and degradation. Science (New York, N.Y.) 302, 1218-1222, 
doi:10.1126/science.1086507 (2003). 

139 Ladell, K. et al. A molecular basis for the control of preimmune escape variants 
by HIV-specific CD8+ T cells. Immunity 38, 425-436, 
doi:10.1016/j.immuni.2012.11.021 (2013). 

140 Iglesias, M. C. et al. Escape from highly effective public CD8+ T-cell clonotypes 
by HIV. Blood 118, 2138-2149, doi:10.1182/blood-2011-01-328781 (2011). 

141 Miles, J. J., Douek, D. C. & Price, D. A. Bias in the alphabeta T-cell repertoire: 
implications for disease pathogenesis and vaccination. Immunology and cell 
biology 89, 375-387, doi:10.1038/icb.2010.139 (2011). 

142 Turner, S. J., La Gruta, N. L., Kedzierska, K., Thomas, P. G. & Doherty, P. C. 
Functional implications of T cell receptor diversity. Current opinion in 
immunology 21, 286-290, doi:10.1016/j.coi.2009.05.004 (2009). 

143 Ntale, R. S. et al. Temporal association of HLA-B*81:01- and HLA-B*39:10-
mediated HIV-1 p24 sequence evolution with disease progression. Journal of 
virology 86, 12013-12024, doi:10.1128/jvi.00539-12 (2012). 

144 Bihl, F. et al. Impact of HLA-B alleles, epitope binding affinity, functional avidity, 
and viral coinfection on the immunodominance of virus-specific CTL responses. 
Journal of immunology 176, 4094-4101 (2006). 

145 Carlson, J. M. et al. Correlates of protective cellular immunity revealed by 
analysis of population-level immune escape pathways in HIV-1. J Virol 86, 
13202-13216, doi:10.1128/JVI.01998-12 (2012). 

146 Kloverpris, H. N. et al. CD8+ TCR Bias and Immunodominance in HIV-1 
Infection. Journal of immunology (Baltimore, Md. : 1950) 194, 5329-5345, 
doi:10.4049/jimmunol.1400854 (2015). 

147 Moosa, Y. et al. Case report: mechanisms of HIV elite control in two African 
women. BMC infectious diseases 18, 54, doi:10.1186/s12879-018-2961-8 
(2018). 

148 Koofhethile, C. K. et al. CD8+ T cell breadth and ex vivo virus inhibition capacity 
distinguish between viremic controllers with and without protective HLA class I 
alleles. J Virol, doi:10.1128/JVI.00276-16 (2016). 

149 Sidney, J., Peters, B., Frahm, N., Brander, C. & Sette, A. HLA class I 
supertypes: a revised and updated classification. BMC Immunol 9, 1, 
doi:10.1186/1471-2172-9-1 (2008). 

150 Goulder, P. J. et al. Differential narrow focusing of immunodominant human 
immunodeficiency virus gag-specific cytotoxic T-lymphocyte responses in 
infected African and caucasoid adults and children. J Virol 74, 5679-5690. 
(2000). 



 
178 

151 Leslie, A. et al. Differential selection pressure exerted on HIV by CTL targeting 
identical epitopes but restricted by distinct HLA alleles from the same HLA 
supertype. Journal of immunology (Baltimore, Md. : 1950) 177, 4699-4708 
(2006). 

152 Geldmacher, C. et al. Minor viral and host genetic polymorphisms can 
dramatically impact the biologic outcome of an epitope-specific CD8 T-cell 
response. Blood 114, 1553-1562, doi:10.1182/blood-2009-02-206193 (2009). 

153 Kloverpris, H. N. et al. HIV control through a single nucleotide on the HLA-B 
locus. J Virol 86, 11493-11500, doi:10.1128/JVI.01020-12 (2012). 

154 Geldmacher, C. et al. CD8 T-cell recognition of multiple epitopes within specific 
Gag regions is associated with maintenance of a low steady-state viremia in 
human immunodeficiency virus type 1-seropositive patients. Journal of virology 
81, 2440-2448, doi:10.1128/jvi.01847-06 (2007). 

155 Ntale, R. S. et al. Temporal association of HLA-B*81:01- and HLA-B*39:10-
mediated HIV-1 p24 sequence evolution with disease progression. J Virol 86, 
12013-12024, doi:10.1128/JVI.00539-12 (2012). 

156 Kloverpris, H. N. et al. A molecular switch in immunodominant HIV-1-specific 
CD8 T-cell epitopes shapes differential HLA-restricted escape. Retrovirology 
12, 20, doi:10.1186/s12977-015-0149-5 (2015). 

157 Bunce, M. PCR-sequence-specific primer typing of HLA class I and class II 
alleles. Methods in molecular biology (Clifton, N.J.) 210, 143-171 (2003). 

158 Thobakgale, C. F. et al. Human immunodeficiency virus-specific CD8+ T-cell 
activity is detectable from birth in the majority of in utero-infected infants. 
Journal of virology 81, 12775-12784, doi:10.1128/jvi.00624-07 (2007). 

159 Bernal-Estevez, D., Sanchez, R., Tejada, R. E. & Parra-Lopez, C. 
Chemotherapy and radiation therapy elicits tumor specific T cell responses in 
a breast cancer patient. BMC cancer 16, 591, doi:10.1186/s12885-016-2625-2 
(2016). 

160 Han, A., Glanville, J., Hansmann, L. & Davis, M. M. Linking T-cell receptor 
sequence to functional phenotype at the single-cell level. Nature biotechnology 
32, 684-692, doi:10.1038/nbt.2938 (2014). 

161 Anmole, G. et al. A robust and scalable TCR-based reporter cell assay to 
measure HIV-1 Nef-mediated T cell immune evasion. Journal of immunological 
methods 426, 104-113, doi:10.1016/j.jim.2015.08.010 (2015). 

162 Brockman, M. A., Tanzi, G. O., Walker, B. D. & Allen, T. M. Use of a novel GFP 
reporter cell line to examine replication capacity of CXCR4- and CCR5-tropic 
HIV-1 by flow cytometry. Journal of virological methods 131, 134-142, 
doi:10.1016/j.jviromet.2005.08.003 (2006). 



 
179 

163 Suzuki, R. & Shimodaira, H. Pvclust: an R package for assessing the 
uncertainty in hierarchical clustering. Bioinformatics 22, 1540-1542, 
doi:10.1093/bioinformatics/btl117 (2006). 

164 Leslie, A. et al. Additive contribution of HLA class I alleles in the immune control 
of HIV-1 infection. Journal of virology 84, 9879-9888, doi:10.1128/jvi.00320-10 
(2010). 

165 Prentice, H. A. et al. HLA-B*57 versus HLA-B*81 in HIV-1 infection: slow and 
steady wins the race? Journal of virology 87, 4043-4051, doi:10.1128/jvi.03302-
12 (2013). 

166 Goulder, P. J. et al. Evolution and transmission of stable CTL escape mutations 
in HIV infection. Nature 412, 334-338, doi:10.1038/35085576 (2001). 

167 Goulder, P. J. et al. Late escape from an immunodominant cytotoxic T-
lymphocyte response associated with progression to AIDS. Nature medicine 3, 
212-217 (1997). 

168 Pereyra, F. et al. HIV control is mediated in part by CD8+ T-cell targeting of 
specific epitopes. Journal of virology 88, 12937-12948, doi:10.1128/jvi.01004-
14 (2014). 

169 Threlkeld, S. C. et al. Degenerate and promiscuous recognition by CTL of 
peptides presented by the MHC class I A3-like superfamily: implications for 
vaccine development. Journal of immunology 159, 1648-1657 (1997). 

170 Allen, T. M. et al. De novo generation of escape variant-specific CD8+ T-cell 
responses following cytotoxic T-lymphocyte escape in chronic human 
immunodeficiency virus type 1 infection. Journal of virology 79, 12952-12960, 
doi:10.1128/jvi.79.20.12952-12960.2005 (2005). 

171 Ueno, T., Idegami, Y., Motozono, C., Oka, S. & Takiguchi, M. Altering effects 
of antigenic variations in HIV-1 on antiviral effectiveness of HIV-specific CTLs. 
Journal of immunology (Baltimore, Md. : 1950) 178, 5513-5523 (2007). 

172 Almeida, J. R. et al. Antigen sensitivity is a major determinant of CD8+ T-cell 
polyfunctionality and HIV-suppressive activity. Blood 113, 6351-6360, 
doi:10.1182/blood-2009-02-206557 (2009). 

173 Akahoshi, T. et al. Selection and accumulation of an HIV-1 escape mutant by 
three types of HIV-1-specific cytotoxic T lymphocytes recognizing wild-type 
and/or escape mutant epitopes. Journal of virology 86, 1971-1981, 
doi:10.1128/jvi.06470-11 (2012). 

174 Gillespie, G. M. et al. Cross-reactive cytotoxic T lymphocytes against a HIV-1 
p24 epitope in slow progressors with B*57. AIDS 16, 961-972 (2002). 

175 Sunshine, J. E. et al. Fitness-Balanced Escape Determines Resolution of 
Dynamic Founder Virus Escape Processes in HIV-1 Infection. J Virol 89, 
10303-10318, doi:10.1128/JVI.01876-15 (2015). 



 
180 

176 Henn, M. R. et al. Whole genome deep sequencing of HIV-1 reveals the impact 
of early minor variants upon immune recognition during acute infection. PLoS 
Pathog 8, e1002529, doi:10.1371/journal.ppat.1002529 (2012). 

177 Borbulevych, O. Y. et al. T cell receptor cross-reactivity directed by antigen-
dependent tuning of peptide-MHC molecular flexibility. Immunity 31, 885-896, 
doi:10.1016/j.immuni.2009.11.003 (2009). 

178 Willcox, B. E. et al. TCR binding to peptide-MHC stabilizes a flexible recognition 
interface. Immunity 10, 357-365 (1999). 

179 Armstrong, K. M., Piepenbrink, K. H. & Baker, B. M. Conformational changes 
and flexibility in T-cell receptor recognition of peptide-MHC complexes. 
Biochemistry Journal 415, 183-196, doi:10.1042/BJ20080850 (2008). 

180 Miles, J. J., McCluskey, J., Rossjohn, J. & Gras, S. Understanding the 
complexity and malleability of T-cell recognition. Immunology and cell biology 
93, 433-441, doi:10.1038/icb.2014.112 (2015). 

181 Pantaleo, G. et al. HIV infection is active and progressive in lymphoid tissue 
during the clinically latent stage of disease. Nature 362, 355-358, 
doi:10.1038/362355a0 (1993). 

182 Horiike, M. et al. Lymph nodes harbor viral reservoirs that cause rebound of 
plasma viremia in SIV-infected macaques upon cessation of combined 
antiretroviral therapy. Virology 423, 107-118, doi:10.1016/j.virol.2011.11.024 
(2012). 

183 Kohler, S. L. et al. Germinal Center T Follicular Helper Cells Are Highly 
Permissive to HIV-1 and Alter Their Phenotype during Virus Replication. 
Journal of immunology (Baltimore, Md. : 1950) 196, 2711-2722, 
doi:10.4049/jimmunol.1502174 (2016). 

184 Fukazawa, Y. et al. B cell follicle sanctuary permits persistent productive simian 
immunodeficiency virus infection in elite controllers. Nature medicine 21, 132-
139, doi:10.1038/nm.3781 (2015). 

185 Streeck, H. AIDS virus seeks refuge in B cell follicles. Nature medicine 21, 111-
112, doi:10.1038/nm.3795 (2015). 

186 Velu, V., Mylvaganam, G., Ibegbu, C. & Amara, R. R. Tfh1 Cells in Germinal 
Centers During Chronic HIV/SIV Infection. Frontiers in immunology 9, 1272, 
doi:10.3389/fimmu.2018.01272 (2018). 

187 Leong, Y. A. et al. CXCR5(+) follicular cytotoxic T cells control viral infection in 
B cell follicles. Nature immunology 17, 1187-1196, doi:10.1038/ni.3543 (2016). 

188 He, R. et al. Follicular CXCR5- expressing CD8(+) T cells curtail chronic viral 
infection. Nature 537, 412-428, doi:10.1038/nature19317 (2016). 

189 Chu, F. et al. CXCR5(+)CD8(+) T cells are a distinct functional subset with an 
antitumor activity. Leukemia, doi:10.1038/s41375-019-0464-2 (2019). 



 
181 

190 Petrovas, C. et al. Follicular CD8 T cells accumulate in HIV infection and can 
kill infected cells in vitro via bispecific antibodies. Science translational 
medicine 9, doi:10.1126/scitranslmed.aag2285 (2017). 

191 Cyster, J. G. Chemokines and cell migration in secondary lymphoid organs. 
Science (New York, N.Y.) 286, 2098-2102, 
doi:10.1126/science.286.5447.2098 (1999). 

192 Moser, B. & Ebert, L. Lymphocyte traffic control by chemokines: follicular B 
helper T cells. Immunology letters 85, 105-112 (2003). 

193 Hansell, C. A., Simpson, C. V. & Nibbs, R. J. Chemokine sequestration by 
atypical chemokine receptors. Biochemical Society transactions 34, 1009-
1013, doi:10.1042/bst0341009 (2006). 

194 Im, S. J. et al. Defining CD8+ T cells that provide the proliferative burst after 
PD-1 therapy. Nature 537, 417-421, doi:10.1038/nature19330 (2016). 

195 Mylvaganam, G. H. et al. Dynamics of SIV-specific CXCR5+ CD8 T cells during 
chronic SIV infection. Proceedings of the National Academy of Sciences of the 
United States of America 114, 1976-1981, doi:10.1073/pnas.1621418114 
(2017). 

196 Iwafuchi-Doi, M. & Zaret, K. S. Pioneer transcription factors in cell 
reprogramming. Genes & development 28, 2679-2692, 
doi:10.1101/gad.253443.114 (2014). 

197 Yu, B. et al. Erratum: Epigenetic landscapes reveal transcription factors that 
regulate CD8(+) T cell differentiation. Nature immunology 18, 705, 
doi:10.1038/ni0617-705b (2017). 

198 Collings, C. K. & Anderson, J. N. Links between DNA methylation and 
nucleosome occupancy in the human genome. Epigenetics & chromatin 10, 18, 
doi:10.1186/s13072-017-0125-5 (2017). 

199 Allen, C. D. et al. Germinal center dark and light zone organization is mediated 
by CXCR4 and CXCR5. Nature immunology 5, 943-952, doi:10.1038/ni1100 
(2004). 

200 Sloan, C. A. et al. ENCODE data at the ENCODE portal. Nucleic acids research 
44, D726-732, doi:10.1093/nar/gkv1160 (2016). 

201 Robinson, M. D., McCarthy, D. J. & Smyth, G. K. edgeR: a Bioconductor 
package for differential expression analysis of digital gene expression data. 
Bioinformatics (Oxford, England) 26, 139-140, 
doi:10.1093/bioinformatics/btp616 (2010). 

202 Yu, G., Wang, L. G. & He, Q. Y. ChIPseeker: an R/Bioconductor package for 
ChIP peak annotation, comparison and visualization. Bioinformatics (Oxford, 
England) 31, 2382-2383, doi:10.1093/bioinformatics/btv145 (2015). 



 
182 

203 Pimentel, H., Bray, N. L., Puente, S., Melsted, P. & Pachter, L. Differential 
analysis of RNA-seq incorporating quantification uncertainty. Nature methods 
14, 687-690, doi:10.1038/nmeth.4324 (2017). 

204 Piper, J. et al. Wellington: a novel method for the accurate identification of 
digital genomic footprints from DNase-seq data. Nucleic acids research 41, 
e201, doi:10.1093/nar/gkt850 (2013). 

205 Gusmao, E. G., Allhoff, M., Zenke, M. & Costa, I. G. Analysis of computational 
footprinting methods for DNase sequencing experiments. Nature methods 13, 
303-309, doi:10.1038/nmeth.3772 (2016). 

206 Kulakovskiy, I. V. et al. HOCOMOCO: towards a complete collection of 
transcription factor binding models for human and mouse via large-scale ChIP-
Seq analysis. Nucleic acids research 46, D252-d259, doi:10.1093/nar/gkx1106 
(2018). 

207 Khan, A. et al. JASPAR 2018: update of the open-access database of 
transcription factor binding profiles and its web framework. Nucleic acids 
research 46, D1284, doi:10.1093/nar/gkx1188 (2018). 

208 Storey, J. D. & Tibshirani, R. Statistical significance for genomewide studies. 
Proceedings of the National Academy of Sciences of the United States of 
America 100, 9440-9445, doi:10.1073/pnas.1530509100 (2003). 

209 Piper, J. et al. Wellington-bootstrap: differential DNase-seq footprinting 
identifies cell-type determining transcription factors. BMC genomics 16, 1000, 
doi:10.1186/s12864-015-2081-4 (2015). 

210 Langfelder, P. & Horvath, S. WGCNA: an R package for weighted correlation 
network analysis. BMC bioinformatics 9, 559, doi:10.1186/1471-2105-9-559 
(2008). 

211 Love, M. I., Huber, W. & Anders, S. Moderated estimation of fold change and 
dispersion for RNA-seq data with DESeq2. Genome biology 15, 550, 
doi:10.1186/s13059-014-0550-8 (2014). 

212 Russo, P. S. T. et al. CEMiTool: a Bioconductor package for performing 
comprehensive modular co-expression analyses. BMC bioinformatics 19, 56, 
doi:10.1186/s12859-018-2053-1 (2018). 

213 Schep, A. N., Wu, B., Buenrostro, J. D. & Greenleaf, W. J. chromVAR: inferring 
transcription-factor-associated accessibility from single-cell epigenomic data. 
Nature methods 14, 975-978, doi:10.1038/nmeth.4401 (2017). 

214 Buggert, M. et al. Identification and characterization of HIV-specific resident 
memory CD8(+) T cells in human lymphoid tissue. Science immunology 3, 
doi:10.1126/sciimmunol.aar4526 (2018). 

215 Gerner, M. Y., Kastenmuller, W., Ifrim, I., Kabat, J. & Germain, R. N. Histo-
cytometry: a method for highly multiplex quantitative tissue imaging analysis 



 
183 

applied to dendritic cell subset microanatomy in lymph nodes. Immunity 37, 
364-376, doi:10.1016/j.immuni.2012.07.011 (2012). 

216 Ferrando-Martinez, S. et al. Accumulation of follicular CD8+ T cells in 
pathogenic SIV infection. The Journal of clinical investigation 128, 2089-2103, 
doi:10.1172/jci96207 (2018). 

217 Johnston, R. J. et al. Bcl6 and Blimp-1 are reciprocal and antagonistic 
regulators of T follicular helper cell differentiation. Science (New York, N.Y.) 
325, 1006-1010, doi:10.1126/science.1175870 (2009). 

218 Nurieva, R. I. et al. Bcl6 mediates the development of T follicular helper cells. 
Science (New York, N.Y.) 325, 1001-1005, doi:10.1126/science.1176676 
(2009). 

219 Crotty, S., Johnston, R. J. & Schoenberger, S. P. Effectors and memories: Bcl-
6 and Blimp-1 in T and B lymphocyte differentiation. Nature immunology 11, 
114-120, doi:10.1038/ni.1837 (2010). 

220 Medvedeva, Y. A. et al. EpiFactors: a comprehensive database of human 
epigenetic factors and complexes. Database : the journal of biological 
databases and curation 2015, bav067, doi:10.1093/database/bav067 (2015). 

221 Litterst, C. M., Kliem, S., Marilley, D. & Pfitzner, E. NCoA-1/SRC-1 is an 
essential coactivator of STAT5 that binds to the FDL motif in the alpha-helical 
region of the STAT5 transactivation domain. The Journal of biological chemistry 
278, 45340-45351, doi:10.1074/jbc.M303644200 (2003). 

222 Han, X. et al. Destabilizing LSD1 by Jade-2 promotes neurogenesis: an 
antibraking system in neural development. Molecular cell 55, 482-494, 
doi:10.1016/j.molcel.2014.06.006 (2014). 

223 Batista, I. A. A. & Helguero, L. A. Biological processes and signal transduction 
pathways regulated by the protein methyltransferase SETD7 and their 
significance in cancer. Signal transduction and targeted therapy 3, 19, 
doi:10.1038/s41392-018-0017-6 (2018). 

224 Little, D. P., Braun, A., O'Donnell, M. J. & Koster, H. Mass spectrometry from 
miniaturized arrays for full comparative DNA analysis. Nature medicine 3, 1413-
1416 (1997). 

225 Bocker, S. SNP and mutation discovery using base-specific cleavage and 
MALDI-TOF mass spectrometry. Bioinformatics (Oxford, England) 19 Suppl 1, 
i44-53, doi:10.1093/bioinformatics/btg1004 (2003). 

226 Hartmer, R. et al. RNase T1 mediated base-specific cleavage and MALDI-TOF 
MS for high-throughput comparative sequence analysis. Nucleic acids research 
31, e47, doi:10.1093/nar/gng047 (2003). 

227 Stanssens, P. et al. High-throughput MALDI-TOF discovery of genomic 
sequence polymorphisms. Genome research 14, 126-133, 
doi:10.1101/gr.1692304 (2004). 



 
184 

228 Ehrich, M. et al. Quantitative high-throughput analysis of DNA methylation 
patterns by base-specific cleavage and mass spectrometry. Proceedings of the 
National Academy of Sciences of the United States of America 102, 15785-
15790, doi:10.1073/pnas.0507816102 (2005). 

229 Yang, J. et al. 5-Aza-2'-deoxycytidine, a DNA methylation inhibitor, induces 
cytotoxicity, cell cycle dynamics and alters expression of DNA 
methyltransferase 1 and 3A in mouse hippocampus-derived neuronal HT22 
cells. Journal of toxicology and environmental health. Part A 80, 1222-1229, 
doi:10.1080/15287394.2017.1367143 (2017). 

230 Buenrostro, J. D., Giresi, P. G., Zaba, L. C., Chang, H. Y. & Greenleaf, W. J. 
Transposition of native chromatin for fast and sensitive epigenomic profiling of 
open chromatin, DNA-binding proteins and nucleosome position. Nature 
methods 10, 1213-1218, doi:10.1038/nmeth.2688 (2013). 

231 Winter, D. R., Jung, S. & Amit, I. Making the case for chromatin profiling: a new 
tool to investigate the immune-regulatory landscape. Nature reviews. 
Immunology 15, 585-594, doi:10.1038/nri3884 (2015). 

232 Choy, J. S. et al. DNA methylation increases nucleosome compaction and 
rigidity. Journal of the American Chemical Society 132, 1782-1783, 
doi:10.1021/ja910264z (2010). 

233 Wang, H. et al. Purification and functional characterization of a histone H3-
lysine 4-specific methyltransferase. Molecular cell 8, 1207-1217 (2001). 

234 Wang, J. et al. The lysine demethylase LSD1 (KDM1) is required for 
maintenance of global DNA methylation. Nature genetics 41, 125-129, 
doi:10.1038/ng.268 (2009). 

235 Lee, M. T. et al. Nanog, Pou5f1 and SoxB1 activate zygotic gene expression 
during the maternal-to-zygotic transition. Nature 503, 360-364, 
doi:10.1038/nature12632 (2013). 

236 Leichsenring, M., Maes, J., Mossner, R., Driever, W. & Onichtchouk, D. Pou5f1 
transcription factor controls zygotic gene activation in vertebrates. Science 
(New York, N.Y.) 341, 1005-1009, doi:10.1126/science.1242527 (2013). 

237 Iwafuchi-Doi, M. The mechanistic basis for chromatin regulation by pioneer 
transcription factors. Wiley interdisciplinary reviews. Systems biology and 
medicine 11, e1427, doi:10.1002/wsbm.1427 (2019). 

238 Chang, J. T., Wherry, E. J. & Goldrath, A. W. Molecular regulation of effector 
and memory T cell differentiation. Nature immunology 15, 1104-1115, 
doi:10.1038/ni.3031 (2014). 

239 Bulger, M. & Groudine, M. Functional and mechanistic diversity of distal 
transcription enhancers. Cell 144, 327-339, doi:10.1016/j.cell.2011.01.024 
(2011). 



 
185 

240 Yu, D. & Ye, L. A Portrait of CXCR5(+) Follicular Cytotoxic CD8(+) T cells. 
Trends in immunology 39, 965-979, doi:10.1016/j.it.2018.10.002 (2018). 

241 Lovkvist, C., Sneppen, K. & Haerter, J. O. Exploring the Link between 
Nucleosome Occupancy and DNA Methylation. Frontiers in genetics 8, 232, 
doi:10.3389/fgene.2017.00232 (2017). 

242 Svensson, J. P. et al. A nucleosome turnover map reveals that the stability of 
histone H4 Lys20 methylation depends on histone recycling in transcribed 
chromatin. Genome research 25, 872-883, doi:10.1101/gr.188870.114 (2015). 

243 Barisic, D., Stadler, M. B., Iurlaro, M. & Schubeler, D. Mammalian ISWI and 
SWI/SNF selectively mediate binding of distinct transcription factors. Nature 
569, 136-140, doi:10.1038/s41586-019-1115-5 (2019). 

244 Benezra, R., Davis, R. L., Lockshon, D., Turner, D. L. & Weintraub, H. The 
protein Id: a negative regulator of helix-loop-helix DNA binding proteins. Cell 
61, 49-59, doi:10.1016/0092-8674(90)90214-y (1990). 

245 Soufi, A., Donahue, G. & Zaret, K. S. Facilitators and impediments of the 
pluripotency reprogramming factors' initial engagement with the genome. Cell 
151, 994-1004, doi:10.1016/j.cell.2012.09.045 (2012). 

246 Choi, J., Jeon, S., Choi, S., Park, K. & Seong, R. H. The SWI/SNF chromatin 
remodeling complex regulates germinal center formation by repressing Blimp-
1 expression. Proceedings of the National Academy of Sciences of the United 
States of America 112, E718-727, doi:10.1073/pnas.1418592112 (2015). 

247 Menon, D. U., Shibata, Y., Mu, W. & Magnuson, T. Mammalian SWI/SNF 
collaborates with a polycomb-associated protein to regulate male germ line 
transcription in the mouse. Development (Cambridge, England), 
doi:10.1242/dev.174094 (2019). 

248 Li, M. et al. Dynamic regulation of transcription factors by nucleosome 
remodeling. eLife 4, doi:10.7554/eLife.06249 (2015). 

249 Araki, Y. et al. Genome-wide analysis of histone methylation reveals chromatin 
state-based regulation of gene transcription and function of memory CD8+ T 
cells. Immunity 30, 912-925, doi:10.1016/j.immuni.2009.05.006 (2009). 

250 Araki, Y., Fann, M., Wersto, R. & Weng, N. P. Histone acetylation facilitates 
rapid and robust memory CD8 T cell response through differential expression 
of effector molecules (eomesodermin and its targets: perforin and granzyme B). 
Journal of immunology (Baltimore, Md. : 1950) 180, 8102-8108, 
doi:10.4049/jimmunol.180.12.8102 (2008). 

251 Russ, B. E. et al. Distinct epigenetic signatures delineate transcriptional 
programs during virus-specific CD8(+) T cell differentiation. Immunity 41, 853-
865, doi:10.1016/j.immuni.2014.11.001 (2014). 



 
186 

252 Crompton, J. G. et al. Lineage relationship of CD8(+) T cell subsets is revealed 
by progressive changes in the epigenetic landscape. Cellular & molecular 
immunology 13, 502-513, doi:10.1038/cmi.2015.32 (2016). 

253 Troyer, R. M. et al. Variable fitness impact of HIV-1 escape mutations to 
cytotoxic T lymphocyte (CTL) response. PLoS pathogens 5, e1000365, 
doi:10.1371/journal.ppat.1000365 (2009). 

254 Goulder, P. J. & Walker, B. D. HIV and HLA class I: an evolving relationship. 
Immunity 37, 426-440, doi:10.1016/j.immuni.2012.09.005 (2012). 

255 Brennan, C. A. et al. Early HLA-B*57-restricted CD8+ T lymphocyte responses 
predict HIV-1 disease progression. Journal of virology 86, 10505-10516, 
doi:10.1128/jvi.00102-12 (2012). 

256 Fukazawa, Y. et al. Lymph node T cell responses predict the efficacy of live 
attenuated SIV vaccines. Nature medicine 18, 1673-1681, 
doi:10.1038/nm.2934 (2012). 

257 Deleage, C. et al. Defining HIV and SIV Reservoirs in Lymphoid Tissues. 
Pathogens & immunity 1, 68-106 (2016). 

258 Connick, E. et al. Compartmentalization of simian immunodeficiency virus 
replication within secondary lymphoid tissues of rhesus macaques is linked to 
disease stage and inversely related to localization of virus-specific CTL. Journal 
of immunology (Baltimore, Md. : 1950) 193, 5613-5625, 
doi:10.4049/jimmunol.1401161 (2014). 

259 Vinuesa, C. G. & Cyster, J. G. How T cells earn the follicular rite of passage. 
Immunity 35, 671-680, doi:10.1016/j.immuni.2011.11.001 (2011). 

260 Lickwar, C. R., Mueller, F., Hanlon, S. E., McNally, J. G. & Lieb, J. D. Genome-
wide protein-DNA binding dynamics suggest a molecular clutch for transcription 
factor function. Nature 484, 251-255, doi:10.1038/nature10985 (2012). 

 

 

 

 

 

 



 
187 

4.5 Funding Statement 

I would like to acknowledge the following funding sources; Sub-Saharan African 

Network for TB/HIV Research Excellence (SANTHE), a DELTAS-Africa Initiative 

(Grant # DEL-15-006). The DELTAS-Africa Initiative is an independent funding 

scheme of the African Academy of Sciences’s Alliance for Accelerating Excellence in 

Science in Africa and supported by the New Partnership for Africa’s Development 

Planning and Coordinating Agency with funding from the Wellcome Trust [Grant # 

107752/Z/15/Z] and the Government of the United Kingdom. Additional funding was 

received from the National Institutes of Health, U.S.A (R37-AI080289, R01-AI102660 

and UM1-AI126617), the International AIDS Vaccine Initiative (UKZNRSA1001), and 

the Canadian Institutes for Health Research (HIG-133050), HHMI International 

research scholar award (Grant #55008743). I would also like to thank Dr. Bruce Walker 

for providing part of the funding for the studies described in this thesis. 

 

   

 



 
188 

4.6 Ethics Approval for the Studies 

 



 
189 

 

 


