Se behavior in the Boom Clay system: spectroscopic evidence

Se Redox Chemistry

- Oxidising Conditions
 - Selenate (SeO$_4^{2-}$)
 - Weakly adsorbed on oxide surfaces
 - Reduction kinetically hindered / poorly known
 - No solubility limitation

- Mild Oxidising Conditions
 - Selenite (SeO$_3^{2-}$)
 - Strongly adsorbed on oxide surfaces
 - Reduction faster than SeO$_4^{2-}$; important process for storage
 - No solubility limitation

- Reducing Conditions
 - Se0, Selenide (Se^-II)
 - Limited solubility
 - Not well known

Boon Clay + Se(IV)

- Boom Clay: mixed clay minerals (illite, interstratified illite-smectite, kaolinite), pyrite (FeS$_2$), immobile and dissolved natural organic matter
- Se solid phase speciation in Boom Clay conditions: Se(0), Se(II)?
- Can Se(IV) + BC behaviour be explained by reducing properties of pyrite?

XAS measurements

- Sample preparation in glovebox (N$_2$/CO$_2$; < 2ppm O$_2$)
- Shock-frozen and transported in liquid N$_2$
- Cryo-XAS measurements (15K) at ROBL beamline (ESRF Grenoble) → preventing oxidation & beam induced speciation changes
- Energy calibration: Au L$_3$ edge
- Linear Combination XANES analysis

Conclusions

- Boom Clay conditions
 - Se(IV) → Se(IV) confined to solution phase
 - Se(IV) adsorbed → Se reduced
 - Se_{red} → XANES identical to Se(IV) + pyrite
 - Se_{red} → Se^0 [Breynaert et al.; ES&T 2008, 42 (10), 3595-3601]
 - Se_{red} ≠ red, grey elemental Se
- Pyrite determines Se(IV) behaviour in Boom Clay
- Knowledge Gaps
 - Identity of Se0 phase formed
 - Se(VI) sorption/reduction on Boom Clay

Acknowledgements: ONDRAF/NIRAS – KULEUVEN – FWO Vlaanderen

E.B. acknowledges a fellowship as Postdoctoral Onderzoeker van het Fonds Wetenschappelijk Onderzoek – Vlaanderen

Katholieke Universiteit Leuven