Tunable anisotropic nonlinearity in superconductors with asymmetric antidot array

A. Yu. Aladyshkin,1,2,a J. Van de Vondel,1 C. C. de Souza Silva,3 and V. V. Moshchalkov1

1INPAC-Institute for Nanoscale Physics and Chemistry, Nanoscale Superconductivity and Magnetism Group, K.U. Leuven, Celestijnenlaan 200D, B-3001 Leuven, Belgium
2Institute for Physics of Microstructures RAS, GSP-105, 603950 Nizhny Novgorod, Russia
3Departamento de Física, Universidade Federal de Pernambuco, Cidade Universitaria, 50670-901 Recife-PE, Brazil

(Received 1 April 2008; accepted 1 August 2008; published online 25 August 2008)

The influence of the spatial asymmetry of the pinning potential on the spectral composition of the voltage, induced in perforated superconducting Al bridges by the injection of a sinusoidal bias current, was investigated. The loss of the mirror symmetry of the pinning potential leads to the appearance of even Fourier components in the induced voltage in the vicinity of the superconducting phase transition line on the H-T diagram (H is the external magnetic field, and T is the temperature). Artificially-introduced asymmetry for vortex motion makes it possible to create low-resistive materials, in which nonlinearity depends on the direction of injected electrical currents.

The controlled manipulation of magnetic flux quanta (or vortices) in superconducting films under the action of nonequilibrium fluctuations or external excitations with zero average (vortex ratchet) has recently attracted a lot of interests (see, e.g., Refs. 1–15 and references therein). A preferable vortex motion in a certain (“easy”) direction can be experimentally realized in various one-dimensional (1D) and two-dimensional (2D) systems of reduced symmetry: in films modulated by triangular dots,7 in perforated films with regular arrays of asymmetric antidots,8–11 in mesoscopic singly connected superconductors,12 and in superconductors placed in a spatially modulated magnetic field.13–15 All these systems can be potentially used for designing flux pumps for connected superconductors,12 and in superconductors placed in a spatially modulated magnetic field.13–15

In this letter, we are aiming at the generalization of the concept of unidirectional vortex dynamics in a ratchet potential for the case of higher harmonics generation. Indeed, passing a alternating current of certain frequency through any medium should generally induce voltage oscillations at multiple frequencies nft (n is integer). However, the appearance of even harmonics (regardless on the frequency range) is known to be forbidden for a material with spatial inversion symmetry.16 One can expect that an artificially introduced asymmetry for vortex motion, occurring in all ratchet systems, will lead to a nontrivial nonlinear response. In the presence of a ratchet potential the static I-V dependence of the perforated superconducting bridge will lose symmetry.17 V(I) ≠ −V(−I). Since the voltage drop in a sample should be zero at I=0, the expansion of V versus I in power series has the following form: V=α1I+α2I2+α3I3+... , where αi are the constants depending on the external magnetic field H and temperature T. Substituting I(ℏ) = sin(2πft), one can see that the time-dependent voltage V(t) oscillates at multiple frequencies, including zero frequency. Provided V(I)=−V(−I), both the diode effect and the even Fourier components should disappear. It is worth noting that breaking the sample symmetry in 2D superconducting films can affect only a certain direction, while keeping the symmetry in the perpendicular direction unaltered. It gives us a possibility to fabricate an artificial material with anisotropic nonlinearity, depending on the orientation of the injected electrical currents.

Two perforated Al microbridges of the width 600 µm and thickness d=50 nm, which have the critical temperatures Tc close to 1.3 K, were prepared by dc sputtering on a Si/SiO2 substrate. The pinning landscape, prepared with electron beam lithography, has the period a=3000 nm and it can be represented as a superposition of two interpenetrated square sublattices of big and small microholes (“antidots”) of 1200×1200 nm2 and 600×600 nm2 in size (Fig. 1). Depending on the separation s between centers of these antidotes, the resulting complex array can be symmetrical (s=1500 nm) or asymmetrical (s=1100 nm) with respect to the ɣ-axis. For brevity, we introduced notations “sample S” and “sample A” (either symmetrical or asymmetrical pinning potential).

Our ac four-probe measurements were carried out as follows: a sinusoidal driving current I=Iac sin(2πft), applied to such a bridge (the amplitude Iac=141 µA and the frequency f=1.11 KHz), generates a voltage drop V(t). This time-dependent voltage can be represented as V(t)=Σ∞n=0 Vnf sin(2πnft+φn), where Vnf and φn are the amplitude and the phase of the nth Fourier component. The am-

FIG. 1. (Color online) (a) A schematic view of the perforated superconducting Al bridge, [(b) and (c)] Atomic force microscopy images of samples A and S. The white dashed lines depict the unit cells (3×3 µm2).

aElectronic mail: aladyshkin@yandex.ru.
FIG. 2. (Color online) The dependencies of the voltage V_{ν}, measured at zero, fundamental, double, and triple frequencies, on the external magnetic field H and temperature T: (a) V_{ν}, (b) V_{ν}, (c) V_{ν}, (d) V_{ν}, (c) V_{ν}, (f) V_{ν}, (g) V_{ν}, and (h) V_{ν}. Only one-half of the H-T diagrams were shown since $V_{\nu}(H,T)=|V_{\nu}(H-H,T)|$. The solid black lines correspond to the conditions $V_{\nu}(H,T)=\alpha_{N} a_{\nu}$, $a_{\nu}=0.1,0.5,0.95$. All insets show the dependencies of the Fourier components of the mean instant velocity u_{ν} and u_{ν} on H and the effective inverse temperature $1/T_{\nu}$. Calculated with the assumption of the logarithmic intervortex interaction $V(r)=-E_{0} \ln(r) / \lambda$, where E_{0} is the pinning energy. Note that the periodic changes in u_{ν} and u_{ν} at sweeping H resemble the variations of the Fourier components of the voltage. Color scales for all plots and insets are chosen in the same way.

The voltage pattern in the H-T diagram demonstrates the series of sign inversions which were recently explained in Ref. 10 by taking into account the intervortex interaction for a dense vortex lattice in the presence of a ratchet potential. Under the same conditions, the diode effect for sample S is practically absent, except in the vicinity of the third matching field ($H/H_{1} \approx 3$). The origin of such ‘resonant’ rectification for the nominally symmetrical sample is currently unclear.

As expected, the loss of mirror symmetry of the pinning landscape along the y-axis significantly increases the dc rectification for sample A [compare panels (a) and (b) in Fig. 2]. The voltage pattern in the H-T diagram demonstrates the series of sign inversions which were recently explained in Ref. 10 by taking into account the intervortex interaction for a dense vortex lattice in the presence of a ratchet potential. Under the same conditions, the diode effect for sample S is practically absent, except in the vicinity of the third matching field ($H/H_{1} \approx 3$). The origin of such ‘resonant’ rectification for the nominally symmetrical sample is currently unclear.

The H-T diagrams of the response at the second Fourier harmonic, V_{ν}, and V_{ν} seem to be similar to that for the dc response in many respects [compare panels (a), (b), (e), (f) in Fig. 2]. Due to a larger "signal-to-noise" ratio for measurement of the second Fourier harmonic in comparison to dc measurements, this modulation measurements appear to be more effective for probing the symmetry properties of samples. Finally, we showed the results of the measurements at the triple frequency, V_{ν} and V_{ν} [panels (g) and (h)]. We emphasize that the field-induced oscillations of the critical temperature, related to the formation of stable vortex structures, become more pronounced as compared with the T_{c} oscillations observed in the linear response. Thus, the experimental treatment of the nonlinear response is a rather sensitive and powerful technique for studying the commensurability effects in nanostructured superconductors.

In order to illustrate correlations between the symmetry of the pinning potential and the spectral composition of the induced voltage, we simulated the low-frequency dynamics of a vortex chain in an asymmetrical 1D periodic potential under the sinusoidal current excitation and estimated the instantaneous mean vortex velocity $<u_{\nu}(t)>$ as well as its dc value, $<u_{\nu}>$, as well as its Fourier components V_{ν} and V_{ν}. We considered both long-range vortex-vortex interaction, $V(r)=-E_{0} \ln(r) / \lambda$, and short-range one, $V(r)=-E_{0} K_{0}(r) / \lambda$ (K_{0} is the modified Bessel function), used recently for describing ratchet phenomena in superconducting systems with the period comparable with the penetration length λ. The Fourier components of the mean vortex velocity, $<u_{\nu}>$, are determined by the main contribution to the spectrum of the voltage: $V_{\nu} \approx H_{1}(u_{\nu})$ and $V_{\nu} \approx H(u_{\nu})$. It was found that independently on the type of the intervortex interaction, this simple model does explain how an ac excitation of interacting vortices in the ratchet potential leads to a generation of even Fourier harmonics observed experimentally. The results of our simulation are plotted in the $H/H_{1} \approx U_{c}/E_{0}$ plane (see the insets of Fig. 2), where U_{c} is the characteristic pinning strength. Since U_{c} is known to decrease at increasing temperature and vanish at $T=T_{c}$, we can consider a wide range of the pinning strengths (and temperatures), starting from $U_{c}=0$. It should be noted that our 1D model cannot describe the rectification at $H=H_{1}$ for sample S. This indicates out that the dynamics of 2D vortex lattice in the 2D pinning potential is crucial for explaining all observed peculiarities in nonlinear response. However, this issue goes beyond the subject of this letter, and the detailed treatment in the framework of a full 2D model similar to that used in Refs. 6 and 15 will be considered separately.

In summary, we presented a comparative study of the linearity and nonlinearity properties of the perforated superconducting films. We demonstrated that the nonlinear properties of the nanostructured superconductors can be tuned by making the pinning landscape of a required symmetry, and thus we proposed a tunable vortex frequency converter. Interestingly, such a symmetry-breaking induced harmonics generation could be a basis for designing the materials with an anisotropic nonlinearity.

This work was supported by the K.U. Leuven Research Fund GOA/2004/02 program, NES-ESF program, the Belgian IAP, the Fund for Scientific Research-Flanders (F.W.O.-Vlaanderen), the bilateral project BIL/05/25 between Flanders and Russia, the Brazilian research agency CNPq, and the Fund for Scientific Research-Flanders (IAP). The authors are grateful to M. Vlaanderen for helpful discussions.
the RFBR fund, RAS under the program “Quantum macro-
physics,” and the Presidential grant MK-4880.2008.2.