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ABSTRACT 

 

Dopamine (DA) governs movement, sleep, reward, and cognition. The presynaptic 

dopamine transporter (DAT), clears released DA, controlling DA signaling and 

homeostasis. Genetic DAT ablation causes hyperactivity, sleep reduction, and 

altered psychostimulant response. DAT surface expression is dynamic; DAT 

constitutively internalizes and recycles to and from the plasma membrane, and 

acute PKC activation stimulates DAT endocytosis. Cell line experiments 

demonstrated that PKC-stimulated DAT endocytosis requires Ack1 inactivation 

and the GTPase, Rit2. How Rit2 controls PKC-dependent DAT internalization, or 

whether regulated DAT endocytosis impacts behavior, is unknown. Here, I present 

data supporting that PKC activation stimulates Rit2/DAT dissociation, mediated by 

the DAT N-terminus. Further, Ack1 and Rit2 function independently to facilitate 

PKC-stimulated DAT internalization. Moreover, PKC-stimulated DAT endocytosis 

was limited to ventral striatum in ex vivo slice preparations, and required Rit2. Our 

lab previously demonstrated that certain DA-dependent behaviors required 

DAergic Rit2 in mice, however whether this was due to perturbed PKC-stimulated 

DAT internalization, or DAT-independent Rit2 function(s) remains untested. To 

address this, I turned to Drosophila and its Rit2 homolog Ric.  I found that Ric and 

dDAT proteins interact in cell lines, and that constitutively active Ric (RicQ117L) 

increased dDAT function in cultured cells and ex vivo whole fly brains. However, 

neither DAergic Ric knockdown nor RicQ117L altered overall locomotion or sleep, 
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suggesting that these fundamental behaviors do not require DAergic Ric. 

Together, these results expand our understanding of intrinsic mechanisms 

controlling DAT endocytosis, and their impact on behavior. 
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CHAPTER I 

Introduction 

I.A Dopamine Signaling and Circuitry 

Dopamine (DA) is a catecholamine neurotransmitter synthesized from the 

essential amino acid, tyrosine. Tyrosine hydroxylase (TH) hydroxylates the 

tyrosine phenol ring, generating L-dihydroxyphenylalanine (L-DOPA), which is 

then decarboxylated by DOPA decarboxylase to produce DA (Blaschko, 1952). In 

noradrenergic neurons, DA is further processed by dopamine b-hydroxylase into 

norepinephrine (NE; noradrenaline) (Molinoff and Axelrod, 1971). Though initially 

thought to simply serve as a precursor to NE, DA was later proposed to be a 

neurotransmitter itself, due to its high levels in the brain and ability to rescue 

reserpine-mediated tranquilization and akinesia in mice (Carlsson et al., 1957; 

Carlsson et al., 1958; Carlsson, 1959). These results, coupled with the discovery 

that DA concentrations are drastically reduced in Parkinson’s disease (PD) 

patients, led to the development of L-DOPA as a clinical treatment for PD patients 

(Cotzias et al., 1967; Carlsson, 2002). DA is required for a wide variety of behaviors 

and cognitive functions such as movement, sleep, learning, memory, and reward 

(Wise, 2004; Hyman et al., 2006), and disruptions in DA signaling are implicated 

in many neuropsychiatric diseases and disorders, including PD (Geibl et al., 2019), 

attention deficit/hyperactivity disorder (ADHD) (Swanson et al., 2007), autism 

spectrum disorder (ASD) (Paval, 2017), schizophrenia (Owen et al., 2016), and 

bipolar disorder (BPD) (Ashok et al., 2017). Moreover, DA neurotransmission is an 
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essential component in reward and development of addiction (Hyman et al., 2006; 

Schultz, 2007b; Sulzer, 2011). Given its central role in behavior and disease, it is 

imperative to better understand the mechanisms underlying DA 

neurotransmission. In this section, I provide a broad overview of DA circuitry and 

the mechanisms fundamental to DA release and reuptake. 

 

Basal Ganglia and Striatal Circuitry 

Early experiments characterized the presence of high DA levels in the mammalian 

caudate and lentiform nuclei, which are core components of the basal ganglia 

(Carlsson, 1959; Moore and Bloom, 1978). The subcortical nuclei comprising the 

basal ganglia are the dorsal striatum (DS, or caudate nucleus and putamen), 

ventral striatum (VS, or nucleus accumbens), globus pallidus internal (GPi) and 

external (GPe) segments, subthalamic nucleus (STN), thalamus, substantia nigra 

pars compacta (SNc) and pars reticulata (SNr), and ventral tegmental area (VTA) 

(Smith et al., 1998; Bolam et al., 2000; Gerfen and Surmeier, 2011). Dopaminergic 

neurons form three major projections within the basal ganglia originating from the 

VTA and SNc. VTA DA neurons that terminate in the VS (mesolimbic pathway) are 

critical for reward and goal-directed behavior (Di Chiara and Imperato, 1988; 

Morales and Margolis, 2017). VTA DA neurons also project to the prefrontal cortex 

(PFC; mesocortical pathway), and are involved in executive function and cognitive 

control (Miller and Cohen, 2001). SNc DA neurons project to the DS (nigrostriatal 

pathway), and are involved in complex behaviors, such as movement initiation and 
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habit formation (Faure et al., 2005; Kravitz and Kreitzer, 2012). Subpopulations of 

VTA DA neurons also project to the interpeduncular nucleus (Molas et al., 2017), 

hippocampus (Gasbarri et al., 1997), amygdala (Inglis and Moghaddam, 1999), 

anterior cingulate nucleus (Narita et al., 2010), and olfactory tubercle (Voorn et al., 

1986). The STN also receives DAergic input from the SNc (Cragg et al., 2004). 

Finally, another population of DA neuron cell bodies resides in the hypothalamus 

and projects to the pituitary, forming the tuberoinfundibular pathway (Stagkourakis 

et al., 2016) (Figure I.1).  
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Figure I.1 Dopamine projections in the mouse brain. Major DA projections 
originate in the ventral midbrain regions. Ventral tegmental area (VTA) DA neurons 
form two main projections: the mesolimbic pathway, which projects into the ventral 
striatum (blue, VTA à VS), and the mesocortical pathway, which terminates in the 
prefrontal cortex (orange, VTA à PFC). Substantia nigra pars compacta (SNc) DA 
neurons terminate in the dorsal striatum, forming the nigrostriatal pathway (green, 
SNc à DS). There are also DA neuron cell bodies in the hypothalamus (Hy), which 
project to the pituitary gland (Pit), and constitute the tuberoinfundibular pathway 
(red). Subpopulations of DA neurons project from the VTA into the olfactory 
tubercule (OT), amygdala (Am), and hippocampus (Hipp), as well as from the SNc 
to the subthalamic nucleus (STN). 
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The striatum also receives input from numerous other, non-DAergic brain nuclei, 

including cortex, thalamus, hippocampus, and amygdala (Burke et al., 2017). Input 

to the DS is then transmitted one of two ways within the basal ganglia: the “direct” 

or “indirect” pathways, which are comprised of inhibitory g-aminobutyric acid 

(GABA) projection neurons, or medium spiny neurons (MSNs) (Smith et al., 1998; 

Bolam et al., 2000). The direct pathway transmits inhibitory information via a single 

synapse to the inhibitory SNr and GPi regions, thereby disinhibiting the thalamus, 

and stimulating locomotion. The indirect pathway involves an inhibitory projection 

directly into the GPe, which releases its inhibition of the STN, facilitating STN-

mediated excitation of the SNr and GPi, and thus maintaining baseline motor 

inhibition (Smith et al., 1998). In general, direct pathway MSNs express the D1 DA 

receptor subtype and neuropeptides substance P and dynorphin, whereas indirect 

MSNs express the D2 subtype and the neuropeptide enkephalin (Gerfen et al., 

1990; Smith et al., 1998). Some studies have reported D1 and D2 co-expression, 

nevertheless, the majority of evidence supports that the direct and indirect 

pathways signal through D1 and D2 receptor subtypes, respectively (Bertran-

Gonzalez et al., 2010).  

 
DA receptors are G-protein coupled receptors (GPCRs) that signal through G-

proteins to modulate adenylyl cyclase (AC) activity and downstream cyclic AMP 

production (Kebabian et al., 1972; Kebabian and Calne, 1979; Vallone et al., 2000; 

Beaulieu and Gainetdinov, 2011). The D1 receptor subtype consists of DA 

receptors 1 and 5 (DRD1 and DRD5), which stimulate AC activity via Gs-coupled 
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cascades. DRD1 is expressed on direct pathway MSNs in the striatum, as 

mentioned previously, as well as in the SN, olfactory bulb, amygdala, frontal cortex, 

hippocampus, cerebellum, thalamus, and hypothalamus. DRD5 is lowly expressed 

in multiple brain areas that include the PFC, striatal MSNs, SN, and hippocampus 

(Beaulieu and Gainetdinov, 2011). On the other hand, D2 receptors are coupled to 

Gi/o signaling pathways and therefore inhibit AC activity. This subtype includes DA 

receptors 2, 3, and 4 (DRD2, DRD3, and DRD4), and while DRD3 and DRD4 have 

relatively limited expression patterns in the brain, DRD2 is highly expressed on 

indirect MSNs in the striatum, and in SN, VTA, olfactory tubercle, amygdala, 

hippocampus, and hypothalamus (Missale et al., 1998; Gerfen and Surmeier, 

2011). In addition to expressing postsynaptically on MSNs, DRD2 and DRD3 are 

also present presynaptically on DA neurons where they function as autoreceptors 

(Missale et al., 1998). Additionally, DA neurons express DRD2 and DRD3 in the 

somatodendritic region, and these receptors modulate DA neuron activity via 

activation of G protein-gated inwardly rectifying K+ (GIRK) channels (McCall et al., 

2016).  

  

GABAergic and cholinergic interneurons are also present in the striatum. These 

neurons express DA receptors, and are therefore also sensitive to DA release 

(Kreitzer and Malenka, 2008). Moreover, DA terminals express both glutamate and 

cholinergic receptors, which in turn can regulate DA neuron activity and release 

(Cachope et al., 2012; Sulzer et al., 2016). This high level of circuit complexity 
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likely allows for further shaping of striatal output, beyond simply promoting or 

suppressing locomotion. For instance, since its initial characterization as a hub of 

motor behavior, the DS has been implicated in motor planning and habit formation, 

and the VS is specialized for reward-based learning (Isomura et al., 2013). Given 

its critical role in controlling myriad behaviors within this complex circuit, it is crucial 

to understand the mechanisms that control DA signaling and homeostasis.   

 

DA release and reuptake 

Several factors contribute to striatal DA release, such as neuronal firing rate and 

receptor activation (Sulzer et al., 2016). DA neurons exhibit two distinct firing 

patterns: tonic firing (~3-8 Hz), which establishes a baseline DAergic tone, and 

phasic (or burst) firing (>10 Hz) in response to salient behavioral stimuli (Grace 

and Bunney, 1984; Grace, 1991; Sulzer, 2011). Rewarding stimuli increase phasic 

firing, and phasic DA neuron firing suffices to drive behavioral conditioning (Tsai 

et al., 2009; Keiflin and Janak, 2015). DA release is negatively regulated by the 

DRD2, presumably functioning cell-autonomously within the DA neuron, however 

postsynaptic DRD2 activation and downstream indirect mechanisms cannot be 

completely ruled out (Anzalone et al., 2012). DRD2 reduces TH activity, the rate-

limiting enzyme in DA synthesis, via Gi-coupled signaling, which decreases cAMP 

production and protein kinase (PKA)-dependent TH phosphorylation and activity 

(Kehr et al., 1972; Wolf and Roth, 1990; Pothos et al., 1998). Furthermore, DRD2 

expressed in the somatodendritic regions of the DA neurons decreases DA release 
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probability by hyperpolarizing the DA neuron via GIRK channel activation (Schmitz 

et al., 2002; Schmitz et al., 2003).  

 

Once released, extracellular DA must be cleared in order to terminate the signal.  

Originally, Axelrod and colleagues proposed that this process was governed by 

metabolism via the enzymes monoamine oxidase (MAO) and catechol-O-

methyltransferase (COMT) for neurotransmitters including DA and NE (Axelrod 

and Tomchick, 1958; Fowler and Benedetti, 1983; Axelrod, 2003). However, direct 

COMT inactivation did not cause NE accumulation, indicating the presence of a 

separate mechanism that functions to clear released transmitter (Axelrod, 2003). 

Using tritiated monoamines, researchers later discovered the existence of distinct 

reuptake mechanisms for DA, NE, serotonin (5-HT), and others (Hertting and 

Axelrod, 1961; Blackburn et al., 1967; Snyder and Coyle, 1969). Below, I will 

discuss DA uptake in greater detail, focusing on the transport mechanism and in 

vivo consequences for overall DA homeostasis and behavior that result from 

dysregulated DA uptake function. 

 

I.B The Dopamine Transporter 

Synaptic DA clearance is mediated by the presynaptic dopamine transporter 

(DAT). DAT is a member of the large solute carrier gene family (SLC) comprised 

of over 300 distinct transporters classified into 55 subfamilies (Kristensen et al., 

2011). DAT is an SLC6 transporter (SLC6A3), as are the neurotransmitter 
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transporters for 5-HT and NE (SERT and NET, respectively), two glycine 

transporters (GLYT1, GLYT2), and four GABA transporters (GAT1, GAT3, GAT4, 

and BGT1) (Kristensen et al., 2011). Despite numerous studies characterizing the 

behavioral relevance and function of these transporters, the rodent and human 

DAT, SERT, and NET genes were not cloned until the early 1990s (Blakely et al., 

1991; Kilty et al., 1991; Giros et al., 1992; Ramamoorthy et al., 1993; Brüss et al., 

1997). DAT hydropathy analysis predicted a topology of 12 transmembrane 

domains (TMDs), 6 extracellular loops (ELs), 5 intracellular loops (ILs), and 

intracellular N- and C-termini (Giros et al., 1992; Torres et al., 2003a). DAT is 

expressed exclusively in DA neurons, and resides outside of synaptic active zones 

(i.e. perisynaptically), therefore DAT is particularly well-positioned for its critical 

function: spatially and temporally limiting DA neurotransmission (Nirenberg et al., 

1996; Hersch et al., 1997). DAT translocates DA via an “alternating-access” 

mechanism in which extracellular DA interacts with its substrate binding pocket 

when DAT is outwardly-facing, and releases into the cytoplasm following DAT’s 

conformational change to inwardly-facing. DAT’s affinity for DA has been 

measured in an array of model systems, and ranges from approximately 0.25-

5.25µM, depending on the expression context. The transport cycle is completed 

when DAT re-establishes its outwardly-facing conformation, translocating on 

average 0.75-2.0 DA molecules per second (Kristensen et al., 2011; Pramod et 

al., 2013). 
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Although the mammalian DAT structure remains unsolved, solution of the 

evolutionarily related bacterial leucine transporter (LeuT) supported the predicted 

topology and substrate translocation process of mammalian SLC6 transporters 

(Yamashita et al., 2005). The crystal structure of the Drosophila melanogaster DAT 

(dDAT), which shares more than 50% sequence identity with human DAT (Porzgen 

et al., 2001), was recently reported by the Gouaux group. The dDAT crystal 

structure solution was a major breakthrough in the field’s understanding of inhibitor 

binding and substrate translocation process for the SLC6 transporter family. 

Previous studies established that SLC6 transporters require cotransport of 

extracellular Na+ and Cl- ions for substrate reuptake. Moreover, when DA transport 

properties were measured in transfected cells, researchers found that Na+-

dependent DA uptake rate was sigmoidal, indicating participation of multiple Na+ 

ions (Gu et al., 1994). Penmatsa and colleagues indeed found all three ions bound 

to dDAT, and also observed an interaction with a cholesterol molecule (Penmatsa 

et al., 2013). The dDAT crystal structure confirmed the predicted topology and also 

revealed 1) a kink in TMD12 which oriented distal residues away from the core of 

the transporter, and 2) that the C-terminus is stabilized via hydrogen bonds with 

sites in IL1, forming a latch-like structure. Given the critical role of the C-terminus 

in DAT endocytic regulation and protein-protein interactions (discussed in detail in 

“DAT Endocytic Regulation”), these structural data shed light on how 

conformational changes may impact DAT’s ability to undergo functional or surface 

expression changes.   
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Psychostimulant Pharmacology 

DAT is the primary molecular target for addictive and therapeutic 

psychostimulants, which include cocaine, amphetamine (AMPH), and 

methylphenidate (MPH; Ritalin). Although all rewarding drugs increase 

extracellular DA in the VS, psychostimulants specifically increase extracellular DA 

by competitively inhibiting DAT with sub-micromolar potency, further potentiating 

DA neurotransmission (Han and Gu, 2006; Sulzer, 2011). Typical psychostimulant 

behavioral phenotypes include increased locomotor activity, arousal, attention, 

and wakefulness (Wood et al., 2014). While these drugs also target other 

neurotransmitter reuptake systems (NET and SERT), DAT is absolutely essential 

for their hyperlocomotive and rewarding effects (discussed in further detail in 

“Cocaine-insensitive DAT”). 

 

Cocaine and MPH bind to DAT and inhibit DA reuptake, but AMPH is a DAT 

substrate that also facilitates reverse DA transport (efflux) through DAT once inside 

the cell (Fischer and Cho, 1979; Kantor and Gnegy, 1998; Sitte et al., 1998; 

Khoshbouei et al., 2003). Typically, the vesicular monoamine transporter 2 

(VMAT2) loads synaptic vesicles with DA. However, in order for AMPH to cause 

DA release through DAT, it must redistribute DA out of synaptic vesicles. The 

mechanism underlying how AMPH mobilizes DA from vesicles into the cytosol has 

been the subject of debate in the field. One possible explanation for how AMPH 



 13 

causes DA release is the “weak base hypothesis”, in which AMPH disrupts the 

vesicular pH gradient required for VMAT2-mediated DA transport, and increases 

cytosolic DA levels. Freyberg and colleagues tested this hypothesis in vivo for the 

first time using a false fluorescent neurotransmitter and pH biosensor, dVMAT-

pHluorin, in whole Drosophila brain preparations. Investigators determined that 

AMPH dose-dependently alkalizes DA terminal vesicles in a dDAT- and dVMAT-

dependent manner, by genetically and pharmacologically disrupting the 

transporters (Freyberg et al., 2016). Notably, MPH had no effect on vesicular pH, 

indicating that the alkalization is specific to substrates of dDAT and dVMAT. 

However, 1-methyl-4-phenylpyridinium (MPP+), a substrate for both transporters, 

but not a weak base, also alkalized the synaptic vesicles, suggesting that the 

antiport of 2 H+ ions by VMAT, which occurs during substrate translocation, is 

sufficient for vesicle alkalization (Freyberg et al., 2016). Thus, AMPH increases the 

pH of synaptic vesicles, which consequently increases cytoplasmic DA levels (via 

an unknown mechanism) and promotes reverse DA transport through DAT. While 

these data illustrate DAT’s requirement for psychostimulant actions at DAergic 

synapses, genetic DAT ablation animal models (described below) provide further 

evidence of DAT’s critical role in regulating DA homeostasis and the in vivo 

response to psychostimulants.  

 

DAT Animal Models 

DAT-/- Mice 
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The DAT knockout (DAT-/-) mouse line was generated and characterized over 

twenty years ago (Giros et al., 1996). These mice are slightly underweight and die 

earlier compared to wildtype littermates, but are fertile despite the reported 

reduction in maternal behavior. Locomotor activity is dramatically increased in 

DAT-/- mice, and habituation to a novel environment takes twice as long as DAT+/+ 

and DAT+/- mice (Giros et al., 1996). Moreover, using fast-scan cyclic voltammetry 

(FSCV), Giros and colleagues found that DAT-/- mice have reduced DA release, 

slower DA reuptake kinetics, and no AMPH-stimulated DA efflux. Accordingly, 

DAT-/- mice also do not display acute hyperactivity following psychostimulant 

injection (Giros et al., 1996). In a follow-up study, researchers confirmed the critical 

role of DAT in maintaining presynaptic DA stores. Quantitative microdialysis 

experiments revealed markedly increased extracellular DA concentrations and 

decreased tissue DA stores in DAT-/- animals (Gainetdinov et al., 1998). 

Interestingly, DA synthesis rates in DAT-/- mice were increased two-fold (Jones et 

al., 1998), indicating that DA synthesis by TH cannot suffice to maintain synaptic 

DA stores in the absence of DAT.  

 

In order to test whether DAT is required for psychostimulant-induced addictive 

behaviors, researchers measured self-administration in DAT-/- mice. The self-

administration behavioral paradigm involves training animals to learn to perform 

an action in order to receive an intravenous injection of a drug, and measures the 

animal’s drug-seeking behavior. To the researcher’s surprise, DAT-/- mice self-
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administered cocaine, although they required significantly more sessions to meet 

acquisition criteria (5 versus 10 sessions, on average) (Rocha et al., 1998). 

Additionally, DA concentrations did not increase in DAT-/- mice during cocaine 

administration as measured by in vivo microdialysis (Rocha et al., 1998). Taken 

together, researchers hypothesized that other catecholamine systems, such as 5-

HT, suffice in absence of DAT for cocaine-dependent reward. Alternatively, DAT 

may not be as critical for psychostimulant reward as previously thought.  

 

Cocaine-insensitive DAT  

Given the result that DAT was not required for cocaine self-administration in mice, 

(Rocha et al., 1998), scientists were prompted to take an alternative approach to 

test the specific requirement for DAT in cocaine reward. To do this, Chen and 

colleagues screened for DAT residues required for cocaine binding, but not DA 

reuptake and identified L104V, F105C, and A109V, within TM2 of DAT (Chen et 

al., 2005). The cassette containing these mutations was inserted into the 

endogenous mouse DAT gene to generate a cocaine-insensitive DAT (DAT-CI) 

mouse model. Protein expression and DA transport in DAT-CI mice were 

comparable to wildtype (Chen et al., 2006). Importantly, the cocaine affinity of 

DAT-CI mice was approximately 35µM, almost two orders of magnitude less potent 

than in wildtype mice (0.39µM) (Chen et al., 2006). As predicted, in vivo 

microdialysis measurements of DA concentrations revealed that the DAT-CI mice 

were insensitive to cocaine-mediated increases. This was specific to cocaine, as 
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AMPH treatment elevated DA levels in both wildtype and DAT-CI mice (Chen et 

al., 2006). 

 

Finally, acute i.p. cocaine injection no longer increased locomotor activity in DAT-

CI mice; in fact, these mice had significantly reduced locomotion following cocaine 

treatment (Chen et al., 2006). Consistent with the microdialysis experiments, 

AMPH- and morphine-induced hyperactivity remained intact. Cocaine-mediated 

reward was also disrupted in the DAT-CI mouse model. Cocaine preference, 

measured by conditioned place preference (CPP), and self-administration were 

completely absent in DAT-CI mice, whereas AMPH-dependent reward remained 

intact (Chen et al., 2006; Thomsen et al., 2009). Thus, despite the initial conclusion 

that DAT is not required for cocaine-dependent behavior, the DAT-CI mouse 

revealed that DAT is, in fact, indispensable for cocaine-mediated hyperactivity and 

reward.  

 

DATfmn Drosophila melanogaster 

In addition to mammalian animal models, DAT-dependent behaviors can be 

modeled in Drosophila melanogaster (Kaun et al., 2012; Martin and Krantz, 2014). 

Of the three monoamine transporters, Drosophila only express DAT and SERT 

(Demchyshyn et al., 1994; Porzgen et al., 2001). A null mutation in the Drosophila 

DAT (dDAT) gene was serendipitously discovered and characterized by Kume and 

colleagues (Kume et al., 2005). These flies exhibit significantly more locomotor 
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activity and reduced sleep (Kume et al., 2005). Given the sleepless nature of these 

flies, the mutant allele was dubbed “fumin” (fmn), the Japanese translation for 

“sleepless”. In addition, whereas wildtype flies show sleep rebound (increased 

sleep following mechanical sleep deprivation for 2, 4, or 6 hours), fmn flies did not, 

indicating a requirement for dDAT in homeostatic sleep (Kume et al., 2005). 

Remarkably similar phenotypes were observed in flies fed methamphetamine 

(Andretic et al., 2005), further highlighting the conserved role of DA and DAT in 

regulating locomotor and sleep behavior. Importantly, dDAT is also required for 

psychostimulant-induced hyperlocomotion, as demonstrated by loss of AMPH- 

and MPH-dependent hyperactivity in fmn larvae (Pizzo et al., 2013). These data 

support that the DAergic system is highly conserved, and regulates similar 

functions and behaviors in invertebrates and mammals.  

 

Disease-Associated DAT Coding Variants  

DAT genetic variation has been studied in the context of human patients with 

neuropsychiatric diseases and disorders. Variable number of tandem repeats 

(VNTRs) in the downstream 3’ region of the DAT gene are tenuously linked to 

patients with schizophrenia, PD, ADHD, and alcoholism (Fuke et al., 2001; Hahn 

and Blakely, 2007). DAT missense mutations and single nucleotide 

polymorphisms (SNPs) have also been found in patients with these diseases, as 

well as in infantile parkinsonism-dystonia (IPD) patients, a degenerative 

neurological disorder (Table I.1). DAT mutations found in IPD cause almost 
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complete or total loss-of-function, with very little to no DAT protein expressed, 

hence this disorder is also referred to as dopamine transporter deficiency 

syndrome (DTDS) (Kurian et al., 2009; Kurian et al., 2011; Pramod et al., 2013; 

Ng et al., 2014; Asjad et al., 2017). Of particular interest, researchers have 

characterized more subtle changes in DAT function and expression in ADHD, 

ASD, BPD, and schizophrenia patients (described in further detail below) that, in 

some cases, significantly disrupt DA-dependent behaviors. Overall, these coding 

variants highlight DAT’s fundamental role in controlling DA synaptic homeostasis 

and behavior.  
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Table I.1 Disease-associated DAT Coding Variants 
 
Disorder DAT 

Variant 
Functional Effect(s) Behavioral 

Phenotype(s) 
 
References 

  DA 
uptake 

Surface 
expression 

DA efflux   

ADHD V55A 
 

¯ (Km) n.c. n.d. n.d. Lin and Uhl 
(2003)  

 
V382A 

 
¯ (Vmax) 

 
¯ 

 
n.d. 

 
n.d. 

 
Lin and Uhl 
(2003), Mazei-
Robison and 
Blakely (2005) 
 

A559V 
 

¯ (Vmax; 
DS only) 

 

­ (DS only), 
­ lateral 
mobility 

 

ADE; 
blocked 

by AMPH 
 

¯ rearing, ­ 
darting, ¯ 

MPH & AMPH 
hyperactivity 

Mazei-
Robison et al. 
(2005), Mazei-
Robison et al. 
(2008), 
Gowrishankar 
et al. (2018), 
Thal et al. 
(2019) 
 

R615C ¯ (Vmax) ­ trafficking, 
­ lateral 
mobility 

n.c. n.d. Sakrikar et al. 
(2012), 
Kovtun et al. 
(2015), Wu et 
al. (2015)  

ASD 
 
 

R51W n.c. n.d. ¯ AMPH-
stim 
efflux 

¯ AMPH 
hyperactivity 

(Dmel) 
 

Cartier et al. 
(2015) 

T356M ¯ (Vmax) n.c. ADE ¯ baseline & 
AMPH 

hyperactivity 
(Dmel, Mmus) 

Neale et al. 
(2012), 
Hamilton et al. 
(2013), 
DiCarlo et al. 
(2019)  
 

A559V     Bowton et al. 
(2014) 

BPD A559V  
 

 
 

  Grünhage et 
al. (2000) 
 

E602G n.c. n.c. n.d. n.d. Herborg et al. 
(2018) 

IPD R85L ¯¯ ¯ n.d. n.d. Asjad et al. 
(2017) 
 

V158F* ¯¯ ¯ n.d. reduced sleep 
(Dmel) 

Asjad et al. 
(2017) 
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L224P 
 

¯¯ 
 

¯ n.d. n.d. Asjad et al. 
(2017) 
 

A314V ¯¯ ¯ n.d. n.d. Asjad et al. 
(2017) 
 

G327R* ¯¯ 
 

¯ 
 

n.d. 
 

reduced sleep 
(Dmel) 

Asjad et al. 
(2017) 
 

L368Q* ¯¯ ¯ n.d. n.d. Kurian et al. 
(2009); Asjad 
et al. (2017) 
 

G386R ¯¯ ¯ n.d. n.d. Asjad et al. 
(2017) 
 

P395L ¯¯ ¯ n.d. n.d. Kurian et al. 
(2009); Asjad 
et al. (2017) 
 

R445C ¯¯ ¯ n.d. n.d. Asjad et al. 
(2017) 
 

Y470S ¯¯ ¯ n.d. n.d. Asjad et al. 
(2017) 
 

R521W ¯¯ ¯ n.d. n.d. Asjad et al. 
(2017) 
 

P529L ¯¯ ¯ n.d. n.d. Asjad et al. 
(2017) 
 

P554L ¯¯ ¯ n.d. n.d. Asjad et al. 
(2017) 

Unknown  R237Q n.c. n.c. n.c. n.d. Mazei-
Robison et al. 
(2005)  

n.c. no change; n.d. not determined; ADE: anomalous DA efflux; ¯: reduced Vmax; 
¯¯: virtually undetectable DA uptake; *loss of uptake reduced with 
pharmacochaperoning; Dmel: Drosophila melanogaster; Mmus: Mus musculus 
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V382A, V55A, R237Q, and E602G 

DAT coding variants V382A, V55A, R237Q, and E602G were originally found in 

human patients with ADHD or BPD (Cargill et al., 1999; Vandenbergh, 2000). 

These mutations only mildly, if at all, affect DAT function or expression. The ADHD-

associated mutation in DAT EL4, V382A, displayed reduced DA transport activity 

and surface expression, but has not yet been linked to behavioral phenotypes  (Lin 

and Uhl, 2003). The missense variant in the DAT N-terminus, V55A, was also 

found in an ADHD proband, but had no effect on DAT surface expression or total 

DA uptake (Lin and Uhl, 2003). R237Q-DAT, a TMD4 mutation originally identified 

in a screen for single nucleotide polymorphisms (SNPs), was later demonstrated 

to function and express equally to wildtype DAT in all parameters tested (DA 

uptake kinetics, psychostimulant affinity, DAT surface expression, and PKC-

stimulated DAT functional downregulation) (Cargill et al., 1999; Mazei-Robison 

and Blakely, 2005; Mazei-Robison et al., 2008). Finally, in a screen of patients with 

BPD, the DAT C-terminal mutation E602G was identified (Grünhage et al., 2000), 

however E602G did not alter DAT function or surface expression (Mazei-Robison 

and Blakely, 2005). 

 

R51W 

The R->W substitution at position 51 in the DAT N-terminus was identified in 

siblings with ASD, and while R51W-DAT functioned similar to wildtype, it exhibited 

reduced AMPH-stimulated DA efflux, proposed to be due to reduced syntaxin 1A 
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(Syn1A) binding (Cartier et al., 2015). Given this loss in AMPH-stimulated DA 

efflux, the researchers tested whether this mutation altered AMPH-dependent 

hyperactivity. Using Drosophila, Cartier and colleagues replaced endogenous 

dDAT with either wildtype hDAT or R51W-hDAT and measured locomotion in adult 

flies fed 1mM AMPH. Flies expressing R51W-hDAT displayed normal levels of 

baseline locomotor activity, but had significantly reduced AMPH-stimulated 

hyperactivity compared to hDAT-expressing flies (Cartier et al., 2015). 

 

A559V 

Interestingly the TMD12 DAT mutation, A559V, was identified independently in 

patients with BPD (Grünhage et al., 2000), ADHD (Mazei-Robison et al., 2005), 

and ASD (Bowton et al., 2014). While, A559V-DAT did not disrupt DAT function or 

steady-state surface expression in transfected COS-7 cells (Mazei-Robison and 

Blakely, 2005), A559V-DAT displayed significantly higher rates of lateral 

membrane diffusion as measured by single quantum dot imaging, potentially 

denoting a general destabilization of A559V-DAT  (Thal et al., 2019). In a follow-

up report, researchers determined that the A559V mutation altered DAT surface 

expression when expressed in the appropriate context.  Using A559V-DAT knock-

in mice, Gowrishankar and colleagues found that A559V-DAT expressed on the 

cell surface significantly more than wildtype DAT, but only in the DS, and retained 

normal surface expression in the VS (Mergy et al., 2014; Gowrishankar et al., 

2018). Moreover, A559V-DAT supported anomalous DA efflux (ADE), in which the 
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transporter constitutively effluxes DA backwards out of the cell (Mazei-Robison et 

al., 2008). Of note, AMPH treatment completely abolished A559V-DAT-mediated 

ADE (Mazei-Robison et al., 2008). Furthermore, while AMPH stimulates wildtype 

DAT internalization and surface loss (discussed further in “DAT endocytic 

regulation”), AMPH had no effect on A559V-DAT surface expression, which was 

further shown to be due to the inability of A559V-DAT to translocate AMPH into 

the cell (Bowton et al., 2014). In accordance with these results, A559V-DAT knock-

in mice exhibited a blunted locomotor response to acute AMPH injection (3 mg/kg) 

compared to wildtype mice (Mergy et al., 2014).  

 

T356M 

The first ASD-associated DAT coding variant identified was a threonine to 

methionine substitution (T356M) (Neale et al., 2012). T356M-DAT had significantly 

decreased transport velocity compared to wildtype DAT, but equal steady-state 

surface expression when measured in transfected CHO cells (Hamilton et al., 

2013). Similar to the A559V-DAT mutation, the T356M-DAT also exhibited ADE 

that was significantly blocked by AMPH (Hamilton et al., 2013). Because T356M-

DAT displayed reduced DA uptake, investigators predicted that this mutation would 

cause hyperactivity due to increased extracellular DA concentrations. In fact, fruit 

flies expressing T356M-DAT were significantly hyperactive compared to hDAT-

expressing controls (Hamilton et al., 2013). This hyperactive phenotype was 

recapitulated in a follow-up study in which the T356M mutation was knocked into 
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the mouse SLC6A3 (DAT) gene and expressed under the endogenous DAT 

promoter (DiCarlo et al., 2019). Using carbon fiber amperometry, DiCarlo and 

colleagues observed T356M-DAT mice had significantly decreased rate of DA 

reuptake but no overall difference in overall DAT protein, confirming earlier results 

obtained in cell culture models, (DiCarlo et al., 2019). These data indicate that the 

behavioral hyperactivity phenotype is likely due to reduced synaptic DA clearance 

by T356M-DAT.  

 

R615C 

The variant R615C was identified in an ADHD proband, and displays the most 

profound trafficking defect of the coding variants identified to date (Sakrikar et al., 

2012). AMPH-stimulated efflux was unaffected by the R615C mutation, in contrast 

to other disorder-associated variants. Instead, the mutation caused a significant 

loss in DAT function, surface expression, and AMPH- and PKC-stimulated 

endocytosis (Sakrikar et al., 2012; Wu et al., 2015) (described in detail in “DAT 

Endocytic Regulation”). Like the A559V-DAT mutation, R615C-DAT also 

demonstrated increased membrane mobility compared to wildtype DAT, further 

supporting that DAT lateral mobility may be important for proper DAT function and 

regulation (Kovtun et al., 2015). However, it remains unknown whether R615C-

DAT alters DA-dependent behaviors or DAergic signaling in vivo.     
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I.C DAT Endocytic Regulation 

DAT plasma membrane presentation is regulated by a variety of cellular 

mechanisms that include kinase signaling, protein-protein interactions, transporter 

substrates, and cellular activity. DAT surface expression changes are often a result 

of altered rates of endocytosis (internalization), plasma membrane insertion 

(recycling), or both. DAT can also move laterally between membrane domains 

(Adkins et al., 2007; Navaroli and Melikian, 2010; Gabriel et al., 2013; Kovtun et 

al., 2015). Both DAT intracellular termini critically control DAT surface expression 

and regulated endocytic trafficking (Torres et al., 2003b; Miranda et al., 2004; 

Holton et al., 2005). Kinases including protein kinase A (PKA), Akt, protein kinase 

C (PKC), and protein kinase G (PKG) stimulate DAT trafficking (Bermingham and 

Blakely, 2016). Many of these kinases function downstream of cell surface receptor 

activation, such as GPCRs and receptor tyrosine kinases (RTKs) (Chen et al., 

2013; Zhu et al., 2015). Additionally, DAT substrates DA and AMPH can also alter 

DAT surface expression and endocytic rates (Saunders et al., 2000; Chi and Reith, 

2003). Finally, membrane potential can also influence DAT trafficking  (Richardson 

et al., 2016). Altogether, since DAT function and expression exert fine control over 

DA homeostasis, it is likely that intrinsic mechanisms that alter DAT surface 

expression contribute to DA-dependent behaviors in vivo. However, despite 

decades of evidence defining the molecular mechanisms that control DAT surface 

expression, this hypothesis remains untested. In this section, I highlight many of 

the mechanisms underlying regulated DAT trafficking to illustrate the complexity of 
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this phenomenon, and to explore the possibility that DAT trafficking may occur in 

vivo in response to various stimuli to acutely regulate DA neurotransmission.  

 

Forward, biosynthetic trafficking 

DAT function relies on its proper localization to the plasma membrane.  DAT exit 

from the endoplasmic reticulum (ER) has been shown to rely on specific residues 

and domains, as well as the protein transport protein, SEC24 (Sucic et al., 2011). 

SEC24 is a component of the coat protein complex II (COPII), and is responsible 

for vesicle formation off of ER membranes (Barlowe, 1994). Specifically, in HeLa 

cell experiments, DAT, NET and GAT1 ER export required the SEC24D isoform, 

whereas SERT required SEC24C (Farhan et al., 2007; Sucic et al., 2011; Sucic et 

al., 2013).  

 

DAT domains, in particular the amino and carboxy termini, contribute to DAT 

plasma membrane delivery. Increasingly large truncations of the DAT N-terminus 

(the first 11, 20, 48, or 60 amino acids) progressively decreased DAT function, 

culminating in a complete loss of DA reuptake by the ∆60 mutant, likely due to 

improper biosynthetic processing leading to reduced plasma membrane  

expression (Torres et al., 2003b). Sorkina and colleagues demonstrated that YFP 

replacement of the N-terminus (1-65) also reduced DAT surface levels and 

increased endosomal localization (Sorkina et al., 2009). Early termination 

mutations at amino acids Q611, R601, L591, or S582 in the DAT C-terminus 
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significantly also reduced DAT plasma membrane insertion (Torres et al., 2003b). 

In fact, the largest truncation (S582) exhibited virtually no uptake function nor 

surface expression (Torres et al., 2001; Torres et al., 2003b). Sorkin’s group also 

reported DAT terminal truncations beginning at 598 and 586 also drastically 

reduced surface expression and increased intracellular DAT (Miranda et al., 2004), 

and the point mutation G585A-DAT did not express on the cell surface in 

heterologous models and cultured primary DA neurons due to ER retention 

(Miranda et al., 2004).  

 

Of note, multiple DAT mutants associated with IPD (discussed above) exhibit 

significant decreases in DA uptake function due to protein misfolding and failure to 

exit the ER (Kasture et al., 2016; Asjad et al., 2017). The deficit in transport function 

and the sleeplessness phenotype caused by some of these mutants when 

expressed in Drosophila were both rescued by treatment with the drug 

noribogaine, a DAT ligand that binds the inward-facing DAT conformation, and 

presumably assisted in its protein folding and ER exit (Kasture et al., 2016; Asjad 

et al., 2017). These mutants provide further evidence to support that DAT’s 

expression at the plasma membrane is required for proper spatial and temporal 

regulation of DA reuptake and behavior. 

 



 28 

PKC-stimulated DAT trafficking 

Early studies in Xenopus laevis  oocytes, COS cells, and striatal synaptosomes 

demonstrated that the Vmax of DA uptake rapidly decreases in response to acute 

protein kinase C (PKC) activation with phorbol esters (Huff et al., 1997; Zhu et al., 

1997; Pristupa et al., 1998), suggesting that DAT may be subject to either PKC-

mediated catalytic inactivation, decreased surface expression, or both. 

Subsequent studies in heterologous expression systems demonstrated that acute 

PKC activation decreases DAT surface expression (Daniels and Amara, 1999; 

Melikian and Buckley, 1999), and that the shift in DAT from the cell surface to 

endosomal loci is mediated by increased DAT internalization combined with 

decreased plasma membrane delivery (Pristupa et al., 1998; Loder and Melikian, 

2003; Hong and Amara, 2013) (Figure I.2). Although PKC activation leads to 

phosphorylation of serine residues within the DAT N-terminus (Foster et al., 2002; 

Cervinski et al., 2005; Gorentla et al., 2009; Moritz et al., 2013), and mutating Ser7 

to alanine significantly blocked PKC-mediated DAT phosphorylation and functional 

loss, PKC-mediated DAT phosphorylation is not required for PKC-stimulated DAT 

surface loss (Moritz et al., 2015).  

PKC-stimulated DAT internalization is clathrin- and dynamin-dependent. In an 

early report, investigators speculated that PKC-stimulated DAT internalization 

requires clathrin via overexpression of the dominant negative dynamin mutant, 

K44E (Daniels and Amara, 1999). Additionally, siRNA-mediated clathrin heavy 

chain or dynamin knockdown blocked constitutive and PKC-stimulated DAT 
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endocytosis in transfected porcine aortic endothelial (PAE) cells measured using 

fluorescence microscopy (Sorkina et al., 2005). A later study similarly reported a 

significant reduction in PKC-mediated DAT downregulation with the K44A dynamin 

mutant (Foster et al., 2008). In experiments performed in intact DA terminals, PKC-

mediated DAT surface loss was blocked by pre-treatment with the noncompetitive 

dynamin inhibitor, Dynole (Gabriel et al., 2013). Moreover, direct clathrin inhibition 

with pitstop2 abolished PKC-stimulated DAT internalization in the DAergic human 

neuroblastoma SK-N-MC cells stably expressing DAT (Wu et al., 2015).  

 

PKC-stimulated DAT internalization requires residues and domains in both 

intracellular termini. The DAT C-terminus is required for PKC-stimulated DAT 

endocytosis. Alanine mutations of residues 587-589 (“FRE”) in the DAT C-terminus 

significantly increased DAT internalization rates basally, but did not block PKC-

dependent endocytosis. However, just one additional alanine mutation (587-590, 

“FREK”) significantly increased basal DAT internalization, and also abolished 

PKC-stimulated endocytosis (Boudanova et al., 2008b). These data suggest that 

residues 587-590 constitute a negative regulatory mechanism, or “endocytic 

brake”, that curbs DAT internalization rates in the absence of stimuli. Alanine 

substitutions at these amino acids increased basal DAT endocytosis to levels 

equivalent to PKC-stimulated wildtype DAT, indicating a possible ceiling effect to 

stimulated DAT internalization. In argument against this hypothesis, Boudanova 

and colleagues found that residues 587-590 were not required for AMPH-
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stimulated endocytosis (Boudanova et al., 2008a), and AMPH exposure in 

combination with PKC activation can additively stimulate DAT internalization rates 

(Hong and Amara, 2013).  

 

The N-terminus also contributes to the DAT endocytic brake mechanism that 

tempers basal endocytosis. Initial reports found that deleting DAT’s first 22 amino 

acids (Granas et al., 2003) or the whole amino terminus (residues 1-65) (Sorkina 

et al., 2005) did not block PKC-stimulated DAT surface loss. However, these data 

were later challenged by follow-up studies by Sorkin’s group. Sorkina and 

colleagues found that replacing the N-terminus with a YFP tag significantly 

increased internal DAT localization, suggesting that the N-terminus negatively 

regulates constitutive internalization and is required to stabilize DAT surface 

expression (Sorkina et al., 2009). Furthermore, N-terminal DAT lysines 19 and 35 

were found to be ubiquitinated following PKC activation (Miranda et al., 2005), and 

Miranda and colleagues found that the triple mutation (K19R/K27R/K35M) blocked 

PKC-stimulated DAT ubiquitination and surface loss (Miranda et al., 2007). These 

data indicate that residues within the DAT N-terminus are also required for PKC-

mediated endocytic brake release. 

 

Recently, our lab identified two of the proteins required for PKC-mediated DAT 

endocytic brake release. PKC activation reduces phosphorylation and activity of 

the nonreceptor tyrosine kinase, Ack1 (activated by cdc42 kinase 1; Tnk2), 
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(Linseman et al., 2001; Wu et al., 2015). Moreover, direct Ack1 inactivation with 

AIM-100 significantly increases DAT internalization rates and decreases DAT 

surface expression in transfected cells and ex vivo striatal slices. Using a 

constitutively-active Ack1 mutant (S445P-Ack1), our lab demonstrated that Ack1 

inactivation is absolutely required for PKC-stimulated DAT internalization (Wu et 

al., 2015). Thus, at basal states Ack1 activity negatively regulates DAT 

endocytosis (Figure I.2). The R615C-DAT mutant internalizes and recycles at 

significantly higher rates than wildtype DAT (Sakrikar et al., 2012), suggesting that 

R615C-DAT is destabilized in the membrane due to a lack of endocytic braking. In 

support of this hypothesis, our lab found that we could restore R615C-DAT 

internalization rates to wildtype levels by overexpressing S445P-Ack1, imposing 

the Ack1-dependent endocytic brake (Wu et al., 2015). These results suggest a 

potential therapeutic route to reinstate normal endocytosis for trafficking-defective 

DAT mutants. However, it remains unknown whether the R615C-DAT alters DA-

dependent behaviors, including locomotor activity or psychostimulant response, or 

whether suppressing the trafficking dysfunction via Ack1 activity in vivo would 

ameliorate any behavioral phenotypes. 
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Figure I.2 PKC-stimulated DAT trafficking and endocytic brake model. Under 
basal conditions, DAT undergoes slow rates of internalization and surface delivery. 
PKC activation increases the DAT internalization rate and decreases the DAT 
recycling rate, leading to reduced overall DAT surface expression. The slower DAT 
endocytic rate is referred to as “brake on”, and relies on residues within the DAT 
N and C termini, as well as Ack1 activity. PKC activation indirectly 
dephosphorylates and inactivates Ack1 (“brake off”), stimulating DAT 
internalization, and reducing DAT surface expression (Adapted from Wu et al., 
2015).  
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In addition, our lab discovered that the DAT binding protein, Rit2, a neuronal 

GTPase (see “Rit2 GTPase” section) plays an integral role in PKC-dependent DAT 

endocytosis (Navaroli et al., 2011). The DAT-Rit2 interaction was originally 

identified in a yeast two-hybrid screen using the DAT C-terminal “FREKLAYAIA” 

domain as bait. Given its role in PKC-dependent and constitutive DAT 

internalization (discussed below), Rit2 was hypothesized to contribute to PKC-

stimulated endocytic brake release. In support of this prediction, putatively 

dominant-negative Rit2 mutant, S34N, blocked PKC-stimulated DAT 

internalization in transfected PC12 cells (Navaroli et al., 2011). We further 

hypothesized that if Rit2 was a component of the endocytic brake, then the DAT-

Rit2 interaction would be disrupted by a) PKC activation, and b) mutating DAT 

residues required for braking (“FREK”). Paradoxically, however, co-

immunoprecipitation (co-IP) experiments demonstrated that both of these 

manipulations increased the DAT-Rit2 association. Given these conflicting results, 

Rit2’s exact role in the DAT endocytic brake mechanism remains unclear.  

Which PKC isoform mediates DAT trafficking? PKCb is required for D2-dependent 

DAT insertion (see “D2-dependent DAT Plasma Membrane Insertion” below), 

however it remains unknown which PKC isoform(s) are required for PKC-

stimulated DAT internalization in response to phorbol ester treatment. The vast 

majority of studies to date (including those described above) use phorbol 12-

myristate 13-acetate (PMA) to study PKC-dependent trafficking. PMA activates 
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two diacylglycerol (DAG)-sensitive PKC isozyme subtypes: classical (DAG- and 

Ca2+-dependent) and novel (DAG-dependent, Ca2+-independent) PKCs 

(Steinberg, 2008). Candidate PKCs can be further narrowed, as PMA-stimulated 

DAT internalization is blocked by the PKC inhibitor, bisindolylmaleimide I (BIM I, 

GF 109203X, Gö 6850) (Melikian and Buckley, 1999; Gorentla and Vaughan, 

2005; Boudanova et al., 2008a), which is selective for a, bI, d, e, and z PKC 

isozymes. However, PKCz is not DAG-dependent, and therefore not activated by 

PMA. Thus, PKC-stimulated DAT internalization likely requires either PKCa, bI, d, 

or e.  

What are the physiological mechanisms that drive PKC-stimulated DAT 

internalization? Conventional and novel PKCs are typically activated in response 

to stimulating Gq-coupled GPCRs (G-protein-coupled receptors), which activate 

PKC and release Ca2+ from intracellular stores, in parallel, downstream of 

phospholipase C activation. However, it still is not clear whether activating 

endogenously expressed, Gq-coupled GPCRs stimulates DAT internalization in 

intact DA terminals. Studies in transfected HEK293 and N2a cells demonstrated 

that activating the Gq-coupled receptor neurokinin (NK)-1 with its endogenous 

ligand, substance P, reduced DAT surface expression in a PKC-dependent 

manner (Granas et al., 2003), providing a possible candidate for endogenous PKC-

dependent DAT endocytosis. However, substance P-dependent DAT 

internalization has not yet been reported in DAergic terminals. The Gq-coupled, 
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Group I metabotropic glutamate receptor 5 (mGluR5) has also been implicated in 

DAT functional downregulation. DHPG, a Group I selective mGluR agonist, 

decreased DAT function in rat striatal synaptosomes, which was blocked by the 

mGluR5-specific antagonist, MPEP, as well as the PKC inhibitor, Ro-31-8220 

(Page et al., 2001). However, Ro-21-8220 was used at a relatively high 

concentration that can also inhibit other kinases (e.g. GSK3b, MAPKAP-K1b), 

raising the possibility that mGluR5-mediated DAT downregulation may be 

mediated via signaling pathways other than PKC. Fast-scan cyclic voltammetry 

studies from Alvarez and colleagues recently found that activating the muscarinic 

receptor M5, a Gq-coupled GPCR selectively expressed in DA neurons (Bendor 

et al., 2010; Foster et al., 2014), significantly decreased DA clearance rates in VS 

(Shin et al., 2015). Given that mGluR5, and possibly M5, receptors are expressed 

on other cell types throughout the striatum, such as cholinergic interneurons and 

medium spiny neurons, it is unclear whether or not mGluR5 and M5-mediated DAT 

downregulation occur cell autonomously. Thus, whether activating a Gq-coupled 

GPCR expressed on DA terminals can stimulate PKC-dependent DAT 

internalization, and whether this mechanism is subject to regional differences, 

remains to be tested.  

Constitutive DAT Trafficking  

Constitutive DAT internalization and recycling has been reported in a variety of 

heterologous expression systems (Loder and Melikian, 2003; Holton et al., 2005; 

Furman et al., 2009a; Eriksen et al., 2010b; Sakrikar et al., 2012; Gabriel et al., 
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2013; Wu et al., 2017), as well as in primary DAergic neuronal cultures (Eriksen et 

al., 2010b; Hong and Amara, 2013), as measured using biochemical and imaging 

approaches (Loder and Melikian, 2003; Holton et al., 2005; Sorkina et al., 2005; 

Eriksen et al., 2010b; Navaroli et al., 2011; Sakrikar et al., 2012; Gabriel et al., 

2013; Hong and Amara, 2013; Wu et al., 2015). Constitutively internalized DAT 

can reportedly target to several endocytic compartments (discussed in further 

detail in the following section), including those positive for EEA1, rab4, rab5, and 

the Vps35 retromer complex component. DAT also targets, albeit to a lesser 

extent, to rab11- and rab7-positive loci (Eriksen et al., 2010b; Hong and Amara, 

2013; Wu et al., 2017). Moreover, Vps35 is required for constitutive DAT recycling 

to the plasma membrane (Wu et al., 2017).  

In contrast to PKC-stimulated DAT internalization, constitutive DAT trafficking is 

clathrin-independent. Inhibiting dynamin in acute striatal slices with Dynole 

significantly reduced steady-state DAT surface levels. This result indicates that 

constitutive DAT internalization is dynamin-independent, whereas constitutive 

DAT surface delivery, or recycling, is dynamin-dependent (Gabriel et al., 2013). 

Another report from the same year further supported this conclusion by 

demonstrating that the dominant negative dynamin K44A mutant did not alter 

constitutive DAT internalization when transfected into cultured midbrain DA 

neurons (Rickhag et al., 2013b). In a follow-up study, our laboratory also 

demonstrated that directly inhibiting clathrin with pitstop2 also had no effect on 

DAT constitutive internalization rates (Wu et al., 2015).  
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The DAT domains required for constitutive internalization are distinct from those 

necessary for PKC-stimulated endocytosis. Whereas the amino terminus contains 

residues critical for PKC-mediated DAT internalization and endocytic braking 

(Miranda et al., 2007), the domain as a whole is not sufficient to drive basal 

endocytosis. This was demonstrated using a peptide fusion approach in which the 

DAT N-terminus (residues 1-44) failed to induce endocytosis when fused to an 

endocytic-deficient transferrin receptor (TfR) (Holton et al., 2005). The DAT C-

terminus is also required for plasma membrane expression, and contains an 

intrinsic endocytic signal. As discussed earlier, C-terminal truncations result in DAT 

ER retention and loss of surface expression. However, DAT residues 587-596 

(FREKLAYAIA) suffice to drive constitutive endocytosis of the endocytic-deficient 

interleukin 2a receptor (Holton et al., 2005), demonstrating that constitutive DAT 

internalization occurs via a nonclassical endocytic determinant. Specifically, 

mutating amino acid L591, Y593, or I595 to alanine significantly reduced DAT 

basal endocytosis, but had no effect on PKC-mediated functional or surface 

downregulation (Holton et al., 2005).  

 

Constitutive DAT trafficking in intact DA terminals has proven difficult to assess. In 

cell lines, basal DAT endocytic trafficking can be readily measured using reversible 

biotinylation assays (Gabriel et al., 2009). However, the rapid and dramatic 

temperature shifts required for this approach are not optimal for acute brain slice 
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viability, creating a sizable obstacle in measuring DAT internalization in bona fide 

DAergic terminals. Using cultured rat midbrain DA neurons and the fluorescent 

cocaine analog JHC 1-64, which selectively labels DAT (Eriksen et al., 2009), 

Gether and colleagues found that native DAT indeed constitutively internalizes 

(Eriksen et al., 2010b). Hong and Amara further confirmed this finding, and found 

that internalized DAT co-localizes with Rab11+ recycling endosomes in rat 

embryonic mesencephalic primary cultured neurons (Hong and Amara, 2013). To 

track DAT internalization in DAergic terminals in situ, Sorkin and colleagues 

generated a DAT knock-in mouse, in which an HA epitope was engineered into the 

DAT extracellular loop 2 (HA-EL2-DAT), and used this mouse to monitor DAT 

internalization by tracking anti-HA antibody internalization in ex vivo striatal slices. 

They found only sparse intracellular HA immunoreactivity via electron microscopy 

(Block et al., 2015), and therefore concluded that DAT undergoes little, if any, 

constitutive or regulated endocytosis in axon terminals. This result is in contrast to 

biochemical studies that demonstrate that various stimuli can modulate DAT 

surface expression in ex vivo striatal slices, and raises the possibility that technical 

obstacles may have impacted their study. For example, studies were performed in 

800 µm brain slices, which are relatively thick in comparison to the standard 250-

400 µm thickness typically prepared, which maximizes tissue oxygenation for ex 

vivo studies. Moreover, several recent reports demonstrated that large 

immunoglobulins cannot efficiently penetrate thick tissue slices beyond 50-100µm 

(Biermann et al., 2014; Wakayama et al., 2017). Similarly, our laboratory recently 
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reported that although PRIME (PRobe Incorporation Mediated by Enzyme) 

labeling can efficaciously label surface DAT and track its internalization in 

monolayer culture, it cannot be used to successfully label DAT in 300µm acute 

brain slices, presumably due to an inability of the lipoic acid ligase (LpIA) enzyme 

to effectively penetrate the slice (Wu et al., 2017). Given that the HA-EL2-DAT 

mouse study did not present controls for either slice viability or antibody access to 

deep tissue loci, it is not clear whether the approach used was able to accurately 

measure endogenous DAT trafficking events. 

In summary, the mechanisms underlying constitutive DAT endocytosis are distinct 

from stimulated endocytosis. Additionally, multiple approaches have detected the 

existence of an internal DAT population in DA terminals, and DAT can internalize 

in acute striatal slices in the absence of stimulation (Gabriel et al., 2013), indicating 

that DAT indeed constitutively internalizes in the striatum. Despite support of 

constitutive DAT internalization via biochemical methods, researchers have not yet 

been able to visualize basal DAT trafficking in intact DA neurons. Recent studies 

using super-resolution microscopy techniques such as PALM (photoactivated 

localization microscopy) and STORM (stochastic optical reconstruction 

microscopy) have allowed researchers to more precisely measure DAT surface 

dynamics in cultured DA neurons (Rahbek-Clemmensen et al., 2017), however 

this type of high-resolution approach has not yet been employed to study basal or 

stimulated DAT trafficking in DA terminals.  
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Post-endocytic DAT localization 

DAT endocytic sorting following constitutive and stimulated internalization has 

been a subject of contention within the field. Does DAT degrade once internalized, 

or can it be recycled back to the plasma membrane? Does PKC-stimulated 

endocytosis alter DAT’s intracellular fate? Early reports found DAT associated with 

early endosome markers EEA1 and rab5 (Daniels and Amara, 1999; Melikian and 

Buckley, 1999), as well as lysosomes (Daniels and Amara, 1999), opening up the 

field to numerous follow-up reports. DAT recycling and cell surface insertion was 

demonstrated, either by colocalization with recycling endosomes (rab11+), or by 

biochemical measurements, in a wide variety of cell types and models (Loder and 

Melikian, 2003; Lee et al., 2007; Boudanova et al., 2008a; Furman et al., 2009b; 

Furman et al., 2009a; Eriksen et al., 2010b; Rao et al., 2011; Sakrikar et al., 2012; 

Chen et al., 2013; Gabriel et al., 2013; Hong and Amara, 2013; Richardson et al., 

2016; Vuorenpaa et al., 2016; Wu et al., 2017). Moreover, DAT can also be 

ubiquitinated and targeted to late endosomes and lysosomes (Miranda et al., 2005; 

Sorkina et al., 2006; Miranda et al., 2007; Eriksen et al., 2010b; Hong and Amara, 

2013; Vuorenpaa et al., 2016; Wu et al., 2017). On the other hand, some groups 

reported little or no change in DAT targeting following PKC activation (Melikian and 

Buckley, 1999; Loder and Melikian, 2003; Rao et al., 2011), whereas others found 

that PKC increased DAT ubiquitination, enhanced its lysosomal targeting, and led 

to degradation (Daniels and Amara, 1999; Miranda et al., 2005; Sorkina et al., 

2006; Miranda et al., 2007; Hong and Amara, 2013). Nevertheless, neither DAT 
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ubiquitination nor PKC-mediated degradation has been confirmed in DA terminals, 

where DAT protein is not artificially overexpressed.  

 

DAT protein levels are fairly stable (Kimmel et al., 2000), seemingly in contradiction 

with its propensity to colocalize with late endosomes in transfected AN27 cells 

(approx. 20% of DAT colocalized with the late endosome marker rab7 after 30 

minutes, compared with only approx. 5% colocalized with rab11 after the same 

amount of time, under basal conditions (Wu et al., 2017)). Moreover, DAT only 

colocalized with lysosomal markers after drug treatment (Hong and Amara, 2013), 

indicating that rab7 colocalization may not be indicative of lysosomal targeting. 

Recently, rab7 was implicated in retromer-dependent cargo selection (Rojas et al., 

2008; Seaman et al., 2009). Although originally characterized for its role in 

endosome-to-trans golgi trafficking (Seaman et al., 1997), retromer has now come 

to light as a critical component of recycling and endocytic sorting (Kleine-Vehn et 

al., 2008; Temkin et al., 2011; Seaman, 2012). The mammalian retromer complex 

is comprised of a trimer of vacuolar protein sorting-associated (Vps) proteins: 

Vps35, Vps26, and Vps29 (Seaman et al., 1997; Seaman, 2004), which facilitates 

cargo selectivity (Seaman et al., 1998), and a sorting nexin (SNX) dimer (Rojas et 

al., 2007). Using the PRIME labeling technique described above our group tested 

whether DAT traffics through a retromer-dependent mechanism. DAT colocalized 

with retromer component Vps35 in cultured cells, midbrain DA neuron cell bodies, 

and striatal DA terminals. Moreover, Vps35 knockdown via shRNA significantly 
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reduced DAT protein expression and recycling rate in cells (Wu et al., 2017). 

Finally, stimulating DAT internalization via Ack1 inhibition did not dramatically alter 

DAT/Vps35 colocalization over time in cells, indicating that under basal and 

stimulated conditions DAT traffics through a retromer-dependent mechanism (Wu 

et al., 2017).   

 

Substrate-mediated DAT endocytosis 

DA-dependent 

DAT substrates have additionally been demonstrated to regulate DAT trafficking 

and surface expression. DA itself induced DAT functional and surface 

downregulation, though the mechanism by which this change occurs is unknown 

(Daniels and Amara, 1999; Chi and Reith, 2003). Chi and colleagues found that 

exposure for 1 hour with at least 10µM DA decreased DAT function in HEK-293 

cells transfected with hDAT and in rat striatal synaptosomes (Chi and Reith, 2003). 

Researchers further found that DA decreased DAT surface expression in their cell 

culture experiments (Chi and Reith, 2003). In contrast, a separate team observed 

no differences in DAT surface levels after DA treatment (10µM, 10min) in MDCK 

cells stably expressing hDAT (Daniels and Amara, 1999). This disparity may have 

arisen from the treatment times or cell lines employed in these experiments. In 

support of the latter possibility, a follow-up study found that DA increased DAT 

surface levels via total internal reflection fluorescence (TIRF) microscopy in N2A 

cells, and that this occurred within a very short time frame (10µM, 120sec) (Furman 
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et al., 2009b). Moreover, surface biotinylation in rat striatal synaptosomes 

confirmed that DA increased DAT surface expression after 1 minute in a DRD2-

dependent manner (Furman et al., 2009b). The MDCK cells used in the earlier 

study, in contrast, are canine kidney cells that may not endogenously express 

DRD2, thereby precluding DA-dependent increases in DAT surface expression in 

this system (see “DRD2-mediated DAT surface delivery” section).  

 

AMPH-stimulated 

Amphetamine (AMPH) is an addictive psychostimulant that increases extracellular 

DA concentrations via multiple actions at the DA terminal (as described earlier). In 

addition, AMPH exposure induces DAT internalization from the plasma membrane, 

thus decreasing surface DAT availability (Saunders et al., 2000; Sandoval et al., 

2001; Gulley et al., 2002; Johnson et al., 2005b; Kahlig et al., 2006; Boudanova et 

al., 2008a; Hong and Amara, 2013; Wheeler et al., 2015; Underhill et al., 2019).  

AMPH-stimulated DAT surface loss was originally characterized in HEK293 cells 

treated with AMPH (Saunders et al., 2000), and was later demonstrated to be 

CaMKII-dependent (Wei et al., 2007). This result was later replicated in 

synaptosomes made from whole rat striatum (Johnson et al., 2005b) and in primary 

DA neuronal cultures (Wheeler et al., 2015). AMPH-stimulated DAT endocytosis 

is likely not a clathrin-mediated process, as AMPH treatment did not stimulate 

appreciable DAT and clathrin light chain colocalization in transfected neuronal SK-

N-SH cells (Wheeler et al., 2015). AMPH-induced DAT internalization was further 
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demonstrated in ex vivo mouse midbrain slices, and was dependent on Rho 

GTPase activity downstream of the trace amine-associated receptor (TAAR) 1 

(Wheeler et al., 2015; Underhill et al., 2019).  

 

It is still unknown whether AMPH stimulates DAT internalization in bona fide DA 

terminals. Using the HA-EL2-DAT and electron microscopy techniques, Block and 

colleagues found that i.p. AMPH injection did not subsequently affect DAT surface 

distribution in axon terminals or DA cell bodies. However, it is unclear whether the 

DAT labeling method employed was sufficient to detect drug-induced changes 

(see “Constitutive Internalization” section above) (Block et al., 2015). Finally, 

trafficking dysregulated DAT mutant, R615C-DAT, does not internalize in response 

to AMPH (Sakrikar et al., 2012), further implicating the DAT C-terminus in 

mediating DAT’s endocytosis in response to various stimuli.   

 

Receptor-mediated DAT trafficking 

DRD2-mediated DAT surface delivery 

Multiple lines of evidence, both from ex vivo and transfected cell line studies, 

support that DRD2 activation increases DAT function and plasma membrane 

expression. Initial studies in rat striatal synaptosomes revealed that the DRD2-like 

agonist, quinpirole, increased DA uptake as measured by rotating disk 

voltammetry (Meiergerd et al., 1993). Moreover, in vivo chronoamperometry 

demonstrated that DA clearance decreased following systemic injection with the 
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broad-spectrum DRD antagonist, haloperidol (Meiergerd et al., 1993). Subsequent 

kinetic studies in Xenopus oocytes co-expressing DAT and DRD2 observed both 

increased DA uptake Vmax and [3H]WIN35,428 whole cell binding Bmax, suggesting 

that DRD2 activation may increase DAT activity via enhanced surface expression 

(Mayfield and Zahniser, 2001). DRD2-mediated DAT functional upregulation was 

further confirmed by Liu and colleagues (Lee et al., 2007), who reported that DRD2 

associates with DAT in isolated protein complexes from rat striatal lysates, and 

that DAT residues 1-26 were sufficient to recover DRD2 in vitro. One potential 

confound in studies using [3H]DA uptake to measure how DRD2 activation impacts 

DAT function, is that the inherent addition of DA to the assay will also activate 

DRD2. To eliminate this potential pitfall, Shippenberg and colleagues leveraged 

the fluorescent DAT substrate, 4-[4-(diethylamino)-styryl]-N-methylpyridinium 

iodide (ASP+), which is taken up by DAT, but does not activate DRD2 (Bolan et al., 

2007). Using ASP+ uptake, these studies found that DRD2-mediated increases in 

DAT function required ERK1/2, but not PI3-kinase, activity (Bolan et al., 2007) in 

HEK and N2a cells. Further, using bioluminescence resonance energy transfer 

(BRET) they confirmed the DRD2-DAT association, but co-IP experiments 

suggested that DAT N-terminal residues 1-55 were not required for the DRD2-DAT 

association. Taken together, these initial studies clearly demonstrated that DRD2 

increases DAT activity, and were consistent with the hypothesis DRD2-mediated 

DAT upregulation was likely due to enhanced surface expression. However, the 
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influence of the DRD2-DAT interaction on DRD2-dependent DAT surface delivery, 

and the DAT domains required for the interaction remain unknown. 

 

DRD2-mediated DAT surface delivery in DA terminals was first directly 

demonstrated by Gnegy and colleagues, using a surface biotinylation approach in 

ex vivo mouse striatal synaptosomes prepared from total striatum that included 

both DS and VS (Chen et al., 2013). Moreover, using both PKCb-specific inhibitors 

and PKCb-/- mice, they found that DRD2-mediated DAT surface delivery requires 

PKCb (Chen et al., 2013; Luderman et al., 2015).  

 

These landmark results have opened the door to a variety of new potential 

questions regarding DRD2-mediated DAT trafficking: Is DRD2-activated DAT 

trafficking mediated by DRD2 autoreceptors, or is there a retrograde signaling 

contribution via DRD2 receptors expressed throughout the striatum? Are there 

regional differences in DRD2-mediated DAT surface delivery? Blakely and 

colleagues recently reported that DRD2-dependent DAT trafficking differs between 

DS and VS in ex vivo slices, where the DRD2 agonist, quinpirole, significantly 

increased DAT surface expression in DS, but had no effect on DAT surface levels 

in VS (Gowrishankar et al., 2018). The mechanisms governing these regional 

differences remain unknown. However, it should be noted that quinpirole can 

activate all D2-like receptors (i.e. DRD2, DRD3, DRD4; Ki~4.8, 24, and 30nM, 

respectively), as well as DRD1 (1.9µM). Since their study used 1µM quinpirole, 
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there is a possibility that region-specific effects reported may reflect a net 

integrated signal from multiple DRDs, which would be equally interesting to 

discern. Alternatively, region-specific, DRD2-mediated DAT trafficking could arise 

from distinct DRD2 signaling, which is differentially sensitive to DA in the DS vs. 

VS (Marcott et al., 2018).  

 

Does DRD2-dependent DAT trafficking occur in vivo? In vivo chronoamperoetric 

studies revealed that hypoinsulinemic rats exhibit reduced DA clearance, due to 

decreased insulin receptor-mediated PI3K/Akt signaling (Owens et al., 2005). 

Interestingly, DAT activity in hypoinsulinemic rats was restored in a DRD2-

dependent manner by treating with AMPH (Owens et al., 2012), which drives DA 

efflux through the DAT (Sitte et al., 1998; Sulzer et al., 2005). These results 

strongly suggest that DRD2-mediated DAT membrane insertion occurs in vivo, in 

response to elevated extracellular DA.  

 

Kappa opioid receptor 

The k-opioid receptor (KOR) is a Gi-coupled GPCR expressed in DA neurons 

(Svingos et al., 2001) that also interacts with and regulates DAT activity and 

expression. Studies from Shippenberg and colleagues found that KOR activation 

increased DA uptake and DAT surface expression in cell lines and synaptosomes, 

and likewise found that KOR activation increased DA uptake in minced striatal 

preparations, using rotating disk voltammetry (Kivell et al., 2014a). KOR-mediated 
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DAT upregulation was further found to require ERK1/2 signaling. Researchers also 

demonstrated a direct interaction between DAT and KOR using co-IP, BRET, and 

fluorescence resonance energy transfer (FRET) techniques (Kivell et al., 2014a). 

Further, KOR activation increased the DAT/KOR FRET signal, suggesting that 

KOR activation may anchor DAT at the plasma membrane, precluding it from 

constitutively internalizing, and thereby increasing overall DAT surface levels. 

Interestingly, KOR-dependent DAT regulation is reminiscent of DRD2-mediated 

DAT trafficking. DRD2 is also a Gi-coupled GPCR that binds to DAT and stimulates 

DAT plasma membrane insertion, raising the possibility that this DAT trafficking 

event may be a general phenomenon of Gi-coupled, ERK1/2-dependent signaling 

cascades. However, whether DAT’s interaction with either DRD2 or KOR also 

contributes to their influence on DAT surface expression remains unknown. Finally, 

KOR activation has aversive properties, thus KOR-mediated DAT trafficking is 

poised as a pivotal interaction point between the opiate and reward circuitry, and 

may have future therapeutic potential (Kivell et al., 2014b). 

 

Receptor Tyrosine Kinases 

DAT surface expression is also regulated by RTKs. Broad-spectrum tyrosine 

kinase inhibitors, such as genistein, tyrphostin 23, and tyrphostin 25, significantly 

decreased DAT function in DS synaptosomes and Xenopus oocytes (Simon et al., 

1997; Doolen and Zahniser, 2001). Additional studies indicate that direct RTK 

activation modulates DAT surface expression (Carvelli et al., 2002; Garcia et al., 
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2005; Hoover et al., 2007; Zhu et al., 2015). Insulin-like growth factor receptor 

(IGFR-1) activation increased DAT function and surface expression in transfected 

cell lines, and was dependent on PI3-kinase and Akt activity, as defined with PI3-

kinase and Akt inhibitors (Carvelli et al., 2002; Garcia et al., 2005). Moreover, 

hypoinsulinemia induced either by streptozotocin treatment or high fat diet 

significantly reduced DA clearance rates, DA reuptake, and DAT surface 

expression compared to controls, as measured in rat striatal synaptosomes 

(Owens et al., 2005; Williams et al., 2007; Speed et al., 2011), consistent with the 

results obtained in cell lines.  

 

Glial cell line-derived neurotrophic factor (GDNF) also regulates DAT surface 

expression through receptor Ret activation and downstream signaling (Zhu et al., 

2015). GDNF+/- mice exhibited increased DA uptake in the VS, but not DS, as 

measured via in vivo chronoamperometry, and reduced striatal DA tissue content 

in both VS and DS (Littrell et al., 2012). Furthermore, a similar, regional-specific 

increase in DA levels and DAT function was observed in synaptosomes prepared 

from Ret+/- DS and VS (Zhu et al., 2015). GDNF/Ret-dependent negative regulation 

of DAT surface expression was demonstrated to require Vav2, a guanine 

exchange factor (GEF) that activates Rho and Rac GTPases (Zhu et al., 2015). In 

striatal synaptosomes prepared from Vav2-/- mice, DAT exhibited enhanced DA 

uptake and surface expression specifically in the VS, but not DS. Moreover, 

GDNF-dependent Ret activation increased Vav2 phosphorylation, and Ret co-
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expression increased the DAT-Vav2 interaction, suggesting that Ret RTK signaling 

may negatively regulate DAT surface expression through Vav2 activation (Zhu et 

al., 2015).  

 

DAT Protein-Protein Interactions 

DAT exists at the plasma membrane as part of a multi-protein complex. Over 

twenty proteins have been identified to directly interact or associate with DAT. A 

number of these interactions play critical roles in regulating DAT function or surface 

expression, as well as DA-dependent behaviors (Table I.2). Some of these 

proteins have already been discussed, given their roles in stimulated DAT 

trafficking (e.g. Rit2 and DRD2). However, DAT’s interactions with proteins such 

as CaMKIIa (Fog et al., 2006; Steinkellner et al., 2012; Rickhag et al., 2013a), 

Epsin/Eps15 (Sorkina et al., 2006), Flot1 (Cremona et al., 2011), Nedd4-2 (Sorkina 

et al., 2006), PICK1 (Torres et al., 2001; Bjerggaard et al., 2004), RACK1 (Lee et 

al., 2004; Franekova et al., 2008), and Syn1A (Lee et al., 2004; Binda et al., 2008; 

Cervinski et al., 2010) have also been studied in the context of regulated DAT 

endocytosis. Overall, these data highlight the importance of the DAT interactome 

in maintaining appropriate DAT function, trafficking, and psychostimulant 

response. 
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Table I.2 DAT Protein-Protein Interactions 
 
Protein DAT Interaction 

Domain(s) 
Impact on DAT function 
and/or expression 

References 

a-synuclein C-terminus (598-
620) 

Increased DA uptake & 
DAT surface expression, 
increased AMPH-stimulated 
DA efflux 

Lee et al. (2001), 
Moszczynska et al. 
(2007), Butler et al. 
(2015) 

s1R n.d. Increased DA uptake, 
blocked METH-stimulated 
DA efflux and hyperactivity 

Hong et al. (2017), 
Sambo et al. (2017) 

14-3-3z n.d. Required for DAT protein 
expression 

Ramshaw et al. (2013) 

CaMKIIa C-terminus (612-
617) 

Required for AMPH-
stimulated DA efflux and 
hyperactivity 

Fog et al. (2006), 
Steinkellner et al. (2012), 
Steinkellner et al. (2014) 

Carboxy-
peptidase E 

C-terminus (583-
620) 

Increased DAT function Zhang et al. (2009) 

Ctr9 C-terminus (577-
579) 

Increased DAT function De Gois et al. (2015) 

DRD2 N-terminus (1-
15)* 

D2 activation increased 
DAT function & surface 
expression 

Lee et al. (2007), Bolan 
et al. (2007)* 

Disc1 n.d. Mutant Disc1 increased 
surface DAT 

Trossbach et al. (2016) 

DJ-1 IL4 Increased DA uptake Luk et al. (2015) 
Epsin/Eps15 n.d. Required for PKC-

stimulated DAT endocytosis 
Sorkina et al. (2006) 

Flot1 n.d. Required for PKC-
stimulated DAT endocytosis 
and AMPH-stimulated efflux 
and hyperactivity  

Cremona et al. (2011), 
Sorkina et al. (2013)+, 
Pizzo et al. (2013) 

GPR37 n.d. GPR37-KO mice have 
increased DA uptake & 
DAT surface expression 

Marazziti et al. (2007) 

Gbg C-terminus (587-
590) 

Decreased DA uptake, 
promoted DA efflux (AMPH-
independent) 

Garcia-Olivares et al. 
(2013), Garcia-Olivares 
et al. (2017) 

Hic-5 C-terminus (571-
580) 

Decreased DAT function & 
surface expression 

Carneiro et al. (2002) 

KOR n.d. Increased DAT function Kivell et al. (2014a) 
Kv2.1 n.d. Decreased DAT function, 

internalization & lateral 
mobility 

Lebowitz et al. (2019) 

Nedd4-2 n.d. Required for PKC-
stimulated DAT endocytosis 
and ubiquitination 

Sorkina et al. (2006) 

Parkin C-terminus (583-
620) 

Increased DA uptakea, 
decreased DA uptakeb 

Jiang et al. (2004)a, 
Moszczynska et al. 
(2007)b 
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PICK1 C-terminus (618-
620) 

Increased DA uptake, 
required for DAT protein 
expression 

Torres et al. (2001), 
Bjerggaard et al. (2004), 
Madsen et al. (2012), 
Rickhag et al. (2013b) 

PKCbI, PKCbII n.d. Required for D2-dependent 
DAT surface delivery, 
AMPH-stimulated efflux 

Johnson et al. (2005a) 

PP1/2Ac n.d. Decreased DAT function Bauman et al. (2000), 
Yang et al. (2019) 

RACK1 N-terminus (1-65) n.d. Lee et al. (2004), 
Franekova et al. (2008) 

Rit2 C-terminus (587-
596) 

Required for PKC-
stimulated DAT endocytosis 
and acute cocaine 
hyperactivity 

Navaroli et al. (2011), 
Sweeney et al. (2020) 

Syn1A N-terminus (1-33) Potentiated AMPH-
stimulated DA efflux, 
decreases DA uptake 

Lee et al. (2004), Binda 
et al. (2008), Cervinski et 
al. (2010) 

Synaptogyrin-3 N-terminus (1-60) Increased DAT function Egana et al. (2009) 
n.d. not determined; *N-terminus not required for co-IP; +No association detected 
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CaMKIIa 

A yeast two-hybrid screen with the DAT C-terminal domain as bait identified 

calmodulin kinase II a (CaMKIIa) as a direct DAT interactor, which was later 

confirmed via GST fusion proteins in vitro and demonstrated to require amino acids 

612-617 of the DAT C-terminus (Fog et al., 2006). Moreover, researchers 

demonstrated DAT/CaMKIIa colocalization in midbrain DAergic neurons. 

Interestingly, although CaMKIIa did not interact with the DAT N-terminus, CaMKIIa 

phosphorylated DAT N-terminal peptides (Fog et al., 2006; Gorentla et al., 2009). 

Importantly, CaMKIIa activity and interaction with DAT were both found to be 

required for AMPH-stimulated efflux and internalization, but not steady-state DAT 

surface expression (Fog et al., 2006; Wei et al., 2007; Steinkellner et al., 2012; 

Rickhag et al., 2013a). The in vivo impact of CaMKIIa on DAT function was more 

closely investigated in CaMKIIa knock-out (CaMKIIa-KO) mice. These mice 

exhibited baseline hyperactivity compared with wildtype controls, which could be 

attributed to their elevated extracellular DA concentrations and DA release 

(Steinkellner et al., 2014). Furthermore, the CaMKIIa-KO mice displayed 

significantly less, if any, AMPH-stimulated DA efflux or locomotor hyperactivity 

(Steinkellner et al., 2014).  

 

Flot1 

The caveolar-associated protein, Flotillin-1/Reggie-2 (Flot1), associates with DAT 

and is required for PKC-stimulated DAT endocytosis (Cremona et al., 2011). In 
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stably-transfected HEK293 cells and cultured mouse midbrain DA neurons siRNA-

mediated knockdown of endogenous Flot1 blocked PMA-induced DAT 

internalization, as measured by both confocal microscopy and cell surface 

biotinylation methods. Flot1 knockdown did not affect DAT steady-state surface 

expression. Co-IP experiments defined an association between Flot1 and DAT that 

was increased upon PKC activation.  Interestingly, Flot1 silencing in DA neurons 

also blocked AMPH-stimulated DA efflux, indicating that Flot1-dependent DAT 

regulation is broader than trafficking alone(Cremona et al., 2011).  

 

In contrast, Sorkina and colleagues reported that Flot1 knockdown did not block 

PKC-dependent DAT endocytosis in HEK293 or HeLa cells, and were further 

unable to recapitulate a specific protein-protein association (Sorkina et al., 2013). 

Instead, researchers found that Flot1 knockdown resulted in increased DAT lateral 

mobility using FRAP (fluorescence recovery after photobleaching), suggesting a 

role for Flot1 in regulating DAT plasma membrane compartmentalization. 

Discrepancies in methodology likely explain the differing results across these two 

studies. Importantly, Cremona et al. measured PKC-stimulated DAT trafficking in 

DA neurons, the more physiologically relevant model (Cremona et al., 2011).  

 

Finally, the best evidence that Flot1 regulates DAT comes from in vivo experiments 

done in Drosophila larvae. To test whether Flot1 was required for DAT-dependent 

behavior in vivo, researchers fed larvae psychostimulants MPH and AMPH and 
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observed significantly increased larval crawling speed that was dose-dependent 

(Pizzo et al., 2013). Importantly, flies lacking DAT did not display psychostimulant-

induced hyperactivity. Researchers knocked down Flot1 in DA neurons using cell-

specific RNAi and found that DAergic Flot1 was required for AMPH-stimulated 

hyperlocomotion, but not MPH-induced. Given that Flot1 silencing blocked both 

PKC-stimulated DAT trafficking and AMPH-stimulated DA efflux (Cremona et al., 

2011), it cannot be distinguished whether DAT trafficking or DA efflux causes the 

behavioral disruption. However, as the phenotype appears to be specific to AMPH 

and can be rescued with phosphomimetic mutations at DAT residues required for 

AMPH-stimulated efflux, it can likely be attributed to the loss of DA efflux.   

 

Nedd4-2, Epsin, and Epsin15 

The neuronal E3 ubiquitin ligase, Nedd4-2 (neural precursor cell expressed, 

developmentally downregulated 4-2) was identified in an RNAi screen for proteins 

required for PKC-stimulated DAT endocytosis (Sorkina et al., 2006). Sorkina and 

colleagues further proposed that this was due to the concomitant loss of PMA-

induced DAT ubiquitination, that they previously demonstrated to be required for 

PKC-dependent DAT surface loss (Miranda et al., 2005; Miranda et al., 2007). 

Moreover, Nedd4-2 co-immunoprecipitated with DAT. Epsin (epidermal growth 

factor pathway substrate) and Epsin clone 15 (Eps15) were also identified in this 

screen. Epsins are important for endocytosis of ubiquitinated membrane proteins 

(Chen et al., 1998), and pooled siRNAs targeted against Epsin/Eps15/Eps15R 
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blocked PKC-stimulated DAT endocytosis (Sorkina et al., 2006). Eps15 

colocalized with DAT in rat DA neuron cultures, and both Epsin and Eps15 

associated with DAT as measured by co-IP. However, whether the Nedd4-2 or 

Epsin association with DAT is required for PKC-stimulated internalization remains 

untested. 

 

PICK1 

Multiple DAT domains have been identified that are required either 1) to maintain 

DAT surface expression, or 2) to promote biosynthetic (i.e. “forward”) DAT 

trafficking (described above). The final carboxy terminal amino acids of DAT, 

“LKV”, constitute a PDZ-binding domain, and are required for DAT binding to the 

PDZ protein, PICK1 (protein interacting with C kinase 1) (Torres et al., 2001). Initial 

studies in HEK293 cells and cultured DA neurons found that PICK1 potentiated 

DAT function in an LKV-dependent manner. Moreover, truncating the LKV 

residues from the DAT carboxy terminus substantially reduced DA uptake and DAT 

axonal targeting, suggesting that the PDZ domain, possibly through the PICK1 

association, is required for DAT surface delivery (Torres et al., 2001). A 

subsequent study by Gether and colleagues confirmed that truncating the LKV 

motif indeed resulted in DAT retention in the endoplasmic reticulum (ER). They 

further found that replacing the LKV motif with the b2-adrenergic receptor PDZ 

domain (SLL) sufficed to rescue DAT surface targeting, but not PICK1 binding, 

indicating that PDZ-dependent plasma membrane targeting may not be solely 
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dependent upon the DAT-PICK1 interaction (Bjerggaard et al., 2004). Moreover, 

using an alanine substitution mutant (DAT-AAA), our laboratory recently found that 

the LKV PDZ domain is required for retromer-dependent, DAT endosomal surface 

delivery in the rat mesencephalic cell line, AN27 (Wu et al., 2017). However, DAT-

AAA relative surface levels were comparable to wildtype DAT, indicating that the 

DAT LKV motif, per se, might not be required for DAT biosynthesis and forward 

trafficking in AN27 cells (Wu et al., 2017).  

  

In order to address the role of the LKV motif in situ, Gether and colleagues 

generated a knock-in mouse expressing DAT-AAA, which had significantly 

reduced affinity for purified PICK1 protein (Rickhag et al., 2013b). The DAT-AAA 

mouse had a striking loss in striatal DAT protein. Furthermore, DAT-AAA was not 

retained in the ER in neuronal cultures made from the knock-in mouse, in 

agreement with their previous cell line report (Bjerggaard et al., 2004). However, 

PICK1 was not required in vivo for proper DAT protein levels or axonal targeting, 

as demonstrated by the PICK1 knockout mouse (Rickhag et al., 2013b). In 

summary, these data indicate that 1) the DAT PDZ domain is required in vivo for 

DAT protein expression, but not for DAT’s overall surface:intracellular distribution, 

and 2) PICK1, though initially thought to be required for PDZ-dependent DAT 

plasma membrane targeting, is not required in vivo for DAT protein expression.  

 

RACK1 & Syntaxin 1A 
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The receptor for activated C kinase (RACK1) and syntaxin 1A (Syn1A) interact 

with the DAT N-terminus. These interactions were originally identified in the same 

yeast two-hybrid screen of a human brain cDNA library and confirmed using a His-

tagged DAT N-terminal (1-65) fragment to pulldown RACK1 and Syn1A from rat 

brain synaptosomes (Lee et al., 2004). The first 33 DAT amino acids were later 

found to be sufficient for the Syn1A/DAT interaction in a GST pull-down experiment 

(Binda et al., 2008). Using Co-IP, Lee and colleagues also found an association 

between Syn1A and RACK1, however the Syn1A/RACK1 association could be a 

result of the two proteins’ interaction with DAT. How or whether RACK1 regulates 

DAT function or expression remains completely unexplored.  

 

In contrast, researchers demonstrated that Syn1A is required for, or involved in, 

multiple DAT functions. The membrane protein Syn1A is a neuron-specific isoform 

of Syntaxin that also interacts with GAT1 (Beckman et al., 1998), SERT (Haase et 

al., 2001), and NET (Sung et al., 2003) and regulates their function and surface 

expression. Co-expression of Syn1A significantly decreased DA uptake in LLCPK1 

cells and potentiated PKC-dependent DAT functional downregulation (Cervinski et 

al., 2010). However, PKC-stimulated DAT internalization was not blocked by 

Syn1A overexpression (Cervinski et al., 2010). Interestingly, co-expression of 

Syn1A and DAT potentiated AMPH-stimulated DA efflux in both HEK293 cells and 

cultured mouse midbrain neurons (Binda et al., 2008). Together, these data 



 59 

indicate that Syn1A is important for mediating the actions of AMPH on DAT, but 

does not regulate DAT trafficking.  

 

Membrane potential-dependent DAT trafficking 

Neuronal activity can also regulate DAT function and trafficking. Early studies 

reported reduced DA uptake in synaptosomes at depolarized states (Woodward et 

al., 1986) and increased uptake at hyperpolarized potentials in Xenopus oocytes 

(Sonders et al., 1997). In a follow-up report, researchers found that KCl-mediated 

depolarization decreased DAT surface expression, as measured by TIRF 

microscopy, surface biotinylation, and JHC 1-64 internalization tracking in cultured 

cells and primary neurons (Richardson et al., 2016). Shifting the cell to a 

hyperpolarized state increased DAT surface expression, demonstrating a direct 

bidirectional effect on DAT surface levels within the same cell mediated by 

membrane potential. Furthermore, membrane depolarization-stimulated DAT 

endocytosis required CaMKIIa, likely activated as a consequence of KCl-mediated 

Ca2+ release (Richardson et al., 2016). Despite the potential relevance to 

physiological DA neuron firing, it remains untested whether neuronal activity 

directly controls DAT endocytic trafficking in intact DA neurons. 

 

DAT lateral mobility and plasma membrane distribution 

DAT not only recycles and internalizes to and from the cell surface, but also moves 

laterally within the plasma membrane. Numerous reports support that DAT 
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localizes to particular membrane domains measured by  colocalization with cholera 

toxin (CTX), and fractionation with GM1 glycosphingolipid, markers of lipid rafts 

(Adkins et al., 2007; Foster et al., 2008; Navaroli et al., 2011; Gabriel et al., 2013; 

Butler et al., 2015). Evidence that DAT function is influenced by its microdomain 

association stems from early experiments that described decreased DAT function 

following cholesterol depletion via methyl-b-cyclodextrin (mbCD) treatment 

(Adkins et al., 2007; Foster et al., 2008; Hong and Amara, 2010). Moreover, DAT 

lateral diffusion in the membrane was demonstrated by FRAP experiments in live 

cultured cells and DA neurons (Adkins et al., 2007; Eriksen et al., 2009; Butler et 

al., 2015; Lebowitz et al., 2019). Finally, quantum-dot labeling experiments have 

enabled examination of the membrane diffusion dynamics of single DAT molecules 

in live cells (Kovtun et al., 2015; Kovtun et al., 2019; Thal et al., 2019), revealing 

signaling- and conformational-dependent changes. 

 

DAT lateral mobility and microdomain localization are altered by a variety of stimuli. 

PKC activation shifts DAT out of CTX+ microdomains, whereas AMPH 

redistributes DAT into CTX+ domains (Gabriel et al., 2013; Butler et al., 2015), 

raising the possibility that the machinery required for stimulated DAT endocytosis 

is spatially restricted at the plasma membrane. This is consistent with data 

supporting that PKC- and AMPH-stimulated DAT internalization are 

mechanistically distinct (Boudanova et al., 2008a; Hong and Amara, 2013; 

Wheeler et al., 2015), and that DAT’s conformational state and its protein-protein 
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interactions differ depending on its membrane context (Hong and Amara, 2010; 

Navaroli et al., 2011; Butler et al., 2015). DAT also forms smaller sub-clusters at 

the plasma membrane, termed DAT “nanodomains” (Rahbek-Clemmensen et al., 

2017).  NMDA receptor activation can stimulate burst firing of DA neurons, and 

given DAT’s ability to traffic with changes to membrane potential (Richardson et 

al., 2016), researchers were prompted to test whether neuronal activity alters DAT 

membrane distribution. Using stochastic optical reconstruction microscopy 

(STORM), Rahbek-Clemmensen and colleagues tested whether NMDA receptor 

activation altered DAT surface distribution in cultured rat midbrain DA neurons. 

Basally DAT is clustered into cholesterol-sensitive nanodomains, however 

exposure to 20µM NMDA for 5 minutes significantly reduced DAT clustering 

(Rahbek-Clemmensen et al., 2017).  

 

Finally, disease-associated DAT mutants exhibit disrupted microdomain 

localization and baseline lateral mobility. The R615C-DAT variant found in an 

ADHD patient associates with CTX+ microdomains significantly less than wildtype 

DAT (Sakrikar et al., 2012) and displayed significantly a higher diffusion rate 

compared with wildtype DAT, as measured by single-molecule quantum dot 

labeling at basal states (Kovtun et al., 2015). Both AMPH treatment and cholesterol 

depletion by mbCD treatment increased wildtype DAT lateral mobility, however 

R615C-DAT was resistant to further increases in membrane diffusion (Kovtun et 

al., 2015), supporting that R615C-DAT is mislocalized at the plasma membrane. 
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A559V-DAT had similarly increased membrane diffusion rates that were likewise 

insensitive to PKC-stimulated increases observed in wildtype DAT (Thal et al., 

2019).  

 

As a whole, these data emphasize that many intrinsic mechanisms within the DA 

neuron contribute to DAT function and surface expression. Given that DAT surface 

availability is fundamental to DA homeostasis and psychostimulant action, it is 

likely that perturbations in DAT endocytic regulation will impact DA-dependent 

behaviors. However, this hypothesis remains to be tested directly.  

 

I.D Rit2 GTPase  

Rit subfamily of small GTPases 

The Ras superfamily includes over 150 distinct GTP-binding proteins that function 

as “molecular switches” in a wide variety of cellular processes, including cell 

growth, proliferation, differentiation, endocytosis, and exocytosis (Wennerberg et 

al., 2005). Ras guanosine triphosphate phosphatases (GTPases) bind to GTP and 

GDP, and generally display higher affinity for downstream effector proteins in the 

GTP-bound, or active, form. GTPase intrinsic GDP/GTP exchange and GTP 

hydrolysis rates are very slow, but are accelerated by guanine nucleotide 

exchange factors (GEFs), which activate Ras GTPases, and GTPase-activating 

proteins (GAPs), which inactivate GTPases by hydrolyzing the bound GTP for 

GDP (Vetter and Wittinghofer, 2001). GTPases contain five functional domains 
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(G1-G5), where G1 and G3 are involved in phosphate binding, the G2 domain 

binds to downstream effector proteins, and G4 and G5 are involved in GTP binding 

and hydrolysis (Colicelli, 2004). In most cases, Ras GTPases contain a C-terminal 

motif, CAAX (C=Cys, A=aliphatic, X=any amino acid), that is required for 

membrane targeting (Wennerberg et al., 2005).  

 

The Ras superfamily GTPases is divided into five classes based on sequence 

homology: Ras, Rho, Rab, Ran and Arf (Wennerberg et al., 2005). Contained 

within the Ras subfamily are the Rit small GTPases, which include the Drosophila 

protein, Ric (Ras-like protein which interacted with calmodulin), and vertebrate 

homologs, Rit1 (Ric-related gene expressed throughout the organism), and Rit2 

(Ric-related gene expressed in neuronal tissues) (Lee et al., 1996; Wes et al., 

1996). Ric shares 66% and 71% amino acid identity with Rit1 and Rit2, 

respectively, and Rit1 and Rit2 are 64% identical. The unique G2 effector domain 

within this subfamily, however, is absolutely identical between Rit1 and Rit2 

(HDPTIEDAY), and differs by only one residue in Ric (HDPTIEDSY) (Shi et al., 

2013). The Rit subfamily lack the canonical CAAX domain and instead rely on 

highly polybasic C-termini for membrane targeting. Moreover, Rit1 and Rit2 require 

C-terminal tryptophan residues W204 and W202, respectively, and PI(4,5)P2 and 

PI(3,4,5)P3, lipids for proper membrane localization (Heo et al., 2006).  Rit1 and 

Ric RNA is expressed across all tissues and developmental stages. In contrast, 

Rit2 RNA is only detected in the brain of human and mouse tissues, and has 
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considerably greater abundance in adult mice than embryonic, P7 and P21 mice 

(Lee et al., 1996; Wes et al., 1996; Spencer et al., 2002b). Of note, Rit2 neuronal 

expression is specifically enriched in the SNc, a DAergic cell body region, as 

measured by in situ hybridization (Zhou et al., 2011).  

 

Ric was originally identified in a screen for Drosophila retinal calmodulin-binding 

proteins (Wes et al., 1996). In this initial report, researchers confirmed, in vitro, that 

Ric binds to calmodulin, but does not require calcium to interact. The Rit2-

calmodulin interaction was also demonstrated in vitro, however this interaction was 

calcium-dependent (Lee et al., 1996; Wes et al., 1996). Shortly after the 

identification of Rit1 and Rit2, Shao et al. confirmed their GTPase functionality in 

vitro using C-terminally truncated GST fusion proteins. Both Rit1 and Rit2 bound 

GTPgS in a Mg2+-dependent manner, and were specific for guanine nucleotides 

(Shao et al., 1999). This study further demonstrated that the putative constitutively 

active Rit2 mutant (Q78L) and Rit1 mutant (Q79L) had significantly reduced GTP 

hydrolysis, indicating that they are indeed constitutively active (Shao et al., 1999). 

Specific GAPs, GEFs, and effector proteins for Rit1, Rit2, and Ric have not yet 

been identified. Shao and colleagues employed in vitro binding assays to test 

whether C-terminally truncated Rit1 or Rit2 GST fusion proteins interacted with 

other Ras effector proteins, including RalGDS, RIN1, Raf kinase, RLF, and AF6. 

Rit1 and Rit2 bound to RalGDS, RLF, and AF6, but not full-length Raf kinase, 

RIN1, or the catalytic domain of PI3-kinase, p110 (Shao et al., 1999). Another 
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group later identified a Ral-Ras-binding domain (RBD) interaction with Rit2, again 

using a truncated protein in vitro (Hoshino and Nakamura, 2002). They also 

proposed that Rit2 interacts with the Ras GEF, mSOS, and the cell adapter protein, 

PAR6 (Hoshino and Nakamura, 2002; Hoshino et al., 2005). However, these 

results have not been replicated nor validated in physiologically-relevant 

conditions. Furthermore, endogenous Rit2 GAPs, GEFs, and effectors remain 

unknown.   

 

Rit subfamily cellular function 

Despite the lack of information regarding the Rit1/Rit2/Ric interactome, a role in 

neurite outgrowth has been described for this family of proteins. EGF (epidermal 

growth factor)- and NGF (nerve growth factor)-dependent Rit2 activation was 

demonstrated by two groups who assessed GTP-dependent Rit2 binding to 

putative effectors as a measure of activation (Hoshino and Nakamura, 2002; 

Spencer et al., 2002b; Hoshino and Nakamura, 2003). Overexpression of the 

constitutively active Rit2 (Rit2-Q78L) in PC6 and PC12 cells (but not NIH-3T3 cells) 

suffices to induce neurite outgrowth to a similar degree as NGF alone (Hoshino 

and Nakamura, 2003; Shi et al., 2005), and Rit1 activity similarly stimulates neurite 

outgrowth in PC6 cells (Spencer et al., 2002a). Shi and colleagues further 

demonstrated that Rit2 interacts with B-Raf in order to activate ERK and p38 MAP 

kinase, and that this mechanism is required for NGF-dependent neurite outgrowth 

(Shi et al., 2005). Moreover, the Rit2-dependent outgrowth required calmodulin 
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and Rac/Cdc42 activity (Hoshino and Nakamura, 2003). Rit2 also associates with 

the neuronally-expressed plexin B3, which also stimulates neurite outgrowth in 

NIH-3T3 cells; however, whether Rit2 is required for plexin B3-dependent 

outgrowth was not examined (Hartwig et al., 2005), and Rit2 is not endogenously 

expressed in NIH-3T3 cells (see Chapter II). Finally, the Rit2/B-Raf interaction was 

later confirmed in a report that also demonstrated that Rit2 is required for ERK 

phosphorylation and cell viability in human neuroblastoma SH-SY5Y cells (Uenaka 

et al., 2018).  

 

Ric-dependent neurite outgrowth is conserved in Drosophila, and was 

demonstrated in vivo. Putative constitutively active Ric mutant, Ric-Q117L, 

overexpression causes neurite outgrowth in PC6 cells and Drosophila wing veins 

when expressed using a tissue-specific driver (Harrison et al., 2005). Given its 

initial identification in Drosophila retina, researchers also tested whether Ric 

activity was required for eye formation. They found that Ric-Q117L expression 

causes eye deformation phenotypes, wherein the eyes were visibly reduced or 

misshapen (Harrison et al., 2005). Both Ric-Q117L phenotypes are exacerbated 

by concomitant calmodulin mutations, further supporting the interdependent roles 

of Ric and calmodulin in regulating cellular outgrowth (Harrison et al., 2005).  
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Rit2 genetic variations in neuropsychiatric diseases and disorders 

Numerous reports utilizing genome-wide association studies (GWAS) have 

identified Rit2 genetic anomalies associated with multiple diseases and disorders, 

including PD (Bossers et al., 2009; Latourelle et al., 2012; Pankratz et al., 2012; 

Lin et al., 2013; Emamalizadeh et al., 2014; Nalls et al., 2014; Liu et al., 2015; Lu 

et al., 2015; Nie et al., 2015; Wang et al., 2015; Zhang et al., 2015; Chan et al., 

2016; Chang et al., 2017; Emamalizadeh et al., 2017; Li et al., 2017; 

Daneshmandpour et al., 2018; Liu et al., 2019), essential tremor (Emamalizadeh 

et al., 2017), schizophrenia (Glessner et al., 2010; Emamalizadeh et al., 2017), 

ASD (Liu et al., 2016; Hamedani et al., 2017), BPD (Emamalizadeh et al., 2017), 

and speech delay (Bouquillon et al., 2011) (Table I.3). Interestingly, all of these 

disorders are DAergic in nature, further highlighting the importance of appropriate 

Rit2 expression and function specifically in DA neurons. Both SNPs and copy 

number variations (CNVs) have been discovered within the Rit2 genomic region, 

and may be specifically associated with a disease or disorder. In particular, the 

rs12456492 SNP is associated with PD and essential tremor across different 

patient populations and in numerous reports (Daneshmandpour et al., 2018). Of 

note, rs12456492 is not associated with PD patients in studies performed in 

Taiwanese populations, indicating possible genetic distinctions between 

populations (Lin et al., 2013; Li et al., 2017; Liu et al., 2019). On the other hand, 

rs16976358 was associated with schizophrenia, ASD, and BPD, but not PD 

(Emamalizadeh et al., 2017). Finally, a large (5.3 Mb) chromosomal deletion was 
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found in two patients with speech delay, and while the closest gene is Rit2, it is not 

clear whether Rit2 deletion itself is responsible for this cognitive impairment 

(Bouquillon et al., 2011).   
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Table I.3 Neuropsychiatric diseases and disorders associated with Rit2 
genetic variations.  
 
Associated 
Disease /Disorder 

Genetic Variation References 

PD Reduced Rit2 mRNA 
 
rs12456492 (SNP) 
 

Bossers et al. (2009) 
 
Pankratz et al. (2012), Lin et al. (2013)*, 
Emamalizadeh et al. (2014), Nalls et al. 
(2014)+, Liu et al. (2015), Lu et al. (2015)+, Nie 
et al. (2015), Wang et al. (2015), Zhang et al. 
(2015)+, Chan et al. (2016), Chang et al. 
(2017)+, Emamalizadeh et al. (2017), Li et al. 
(2017)*, Daneshmandpour et al. (2018)â, Liu 
et al. (2019)*,+ 
 

rs9948019 (SNP) Latourelle et al. (2012) 
Essential Tremor 
 

rs12456492 (SNP) Emamalizadeh et al. (2017) 

Schizophrenia CNV (deletion) 
 
rs16976358 (SNP) 

Glessner et al. (2010) 
 
Emamalizadeh et al. (2017) 

ASD rs16976358 (SNP) 
 

Liu et al. (2016), Hamedani et al. (2017) 
 

rs4130047 (SNP) Hamedani et al. (2017) 
BPD rs16976358 (SNP) 

 
Emamalizadeh et al. (2017) 

Speech Delay 5.3 Mb chromosomal 
deletion (18q12.3) 

Bouquillon et al. (2011) 

*No association with PD; +Meta-analysis; âReview 
rs12456492: intronic; rs16976358: downstream of Rit2 
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The mechanism(s) by which Rit2 may influence disease predisposition or 

progression remain completely unknown. The original report that identified Rit2 as 

a potential PD risk allele reported that Rit2 was among genes most highly 

downregulated in the SNc of PD patients, as compared to healthy controls 

(Bossers et al., 2009). Rit2 gene expression was decreased by approximately 

65%, even after accounting for DAergic cell death in the samples. However, it is 

not known how, or if, the disease-associated SNPs affect Rit2 gene expression or 

protein function. Given that Rit2 is involved in neurite outgrowth and cell survival, 

it is possible that these signaling pathways are disrupted by Rit2 genetic variations, 

thus resulting in reduced DA neuron viability and/or function. This hypothesis, 

however, has not been tested.  

 

Rit2 function in DA-dependent behavior 

Given that Rit2 binds to DAT and is somehow involved in PKC-stimulated DAT 

internalization, our laboratory recently leveraged a conditional and inducible gene 

knockdown approach to evaluate the behavioral impact of DA neuron-specific Rit2 

knockdown (Rit2-KD). We demonstrated that AAV-mediated, conditional Rit2-KD 

in DA neurons significantly reduced anxiety behaviors in mice. Moreover, we found 

that DAergic Rit2 modulates the locomotor response to a single cocaine injection 

(Sweeney et al., 2020). Interestingly, the Rit2-KD phenotype was sexually 

dimorphic. In male mice, Rit2-KD increased the sensitivity to cocaine such that a 

previously-determined sub-threshold dose now induced hyperactivity. Conversely, 
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in female mice Rit2-KD significantly attenuated cocaine-stimulated hyperactivity 

(Sweeney et al., 2020). Given that DAT is required for cocaine-dependent 

behavior, we tested whether Rit2-KD altered DAT protein and/or surface 

expression. Rit2-KD had no effect on overall DAT protein levels in female mice, 

but significantly decreased DAT protein in male mice by approximately 50% 

(Sweeney et al., 2020). Whether these phenotypes are driven by Rit2-dependent 

changes in DAT function, expression, or PKC-stimulated DAT endocytosis 

remains unknown.  

 

I.E Summary 

DAT critically regulates DA neurotransmission with spatial and temporal precision, 

and is required for maintaining synaptic DA homeostasis. Mutations that affect 

DAT function and/or expression disrupt DA-dependent behaviors, highlighting the 

importance of proper DAT regulation in vivo. It is well-established that DAT surface 

expression is dynamic and highly regulated, yet whether regulated DAT trafficking 

impacts behavior is not known. Our laboratory discovered that Rit2 interacts with 

DAT, and its activity is required for PKC-stimulated DAT internalization in 

transfected PC12 cells (Navaroli et al., 2011). However, questions still remain 

regarding the cellular mechanisms and in vivo impact of regulated DAT trafficking. 

First, the mechanisms by which Rit2 mediates PKC-dependent DAT endocytosis 

are unknown. Does Rit2 coordinate its action with the nonreceptor tyrosine kinase, 

Ack1, to facilitate DAT internalization? What is the influence of the DAT terminal 
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domains on the DAT/Rit2 interaction and, if relevant, the Rit2-dependent 

mechanism? Moreover, it remains unknown whether Rit2 is required in DA 

terminals for PKC-stimulated DAT downregulation. Second, despite multiple 

decades worth of evidence supporting that DAT trafficking occurs in heterologous 

cells, as well as in native DA neuron preparations, the physiological impact of 

regulated DAT endocytosis remains untested. Here, I present the molecular 

mechanisms of Rit2-dependent DAT trafficking (Chapter II) and use Drosophila 

melanogaster to test whether the DAT-Rit2 interaction is conserved in flies, and 

whether DAergic Ric and/or regulated DAT trafficking impact DA-dependent 

behaviors (Chapter III).   
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CHAPTER II 

 

Dopamine transporter trafficking and Rit2 GTPase: Mechanism of action 

and in vivo impact 

 

Rita R. Fagan, Patrick J. Kearney, Carolyn G. Sweeney, Dino Luethi, Florianne 

E. Schoot Uiterkamp, Klaus Schicker, Brian S. Alejandro, Lauren C. O’Connor, 

Harald H. Sitte, and Haley E. Melikian 

 

II.A Summary 

Following its evoked release, dopamine (DA) signaling is rapidly terminated by 

presynaptic reuptake, mediated by the cocaine-sensitive DA transporter (DAT). 

DAT surface availability is dynamically regulated by endocytic trafficking, and 

direct protein kinase C (PKC) activation acutely diminishes DAT surface 

expression by accelerating DAT internalization. Previous cell line studies 

demonstrated that PKC-stimulated DAT endocytosis requires both Ack1 

inactivation, which releases a DAT-specific endocytic brake, and the neuronal 

GTPase, Rit2, which binds DAT. However, it is unknown whether Rit2 is required 

for PKC-stimulated DAT endocytosis in DAergic terminals, or whether there are 

region- and/or sex-dependent differences in PKC-stimulated DAT trafficking. 

Moreover, the mechanisms by which Rit2 controls PKC-stimulated DAT 

endocytosis are unknown. Here, we directly examined these important questions. 
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Ex vivo studies revealed that PKC activation acutely decreased DAT surface 

expression selectively in ventral, but not dorsal, striatum. AAV-mediated, 

conditional Rit2 knockdown in DAergic neurons impacted baseline DAT 

surface:intracellular distribution in DAergic terminals from female ventral, but not 

dorsal, striatum. Further, Rit2 was required for PKC-stimulated DAT internalization 

in both male and female ventral striatum. FRET and surface pulldown studies in 

cell lines revealed that PKC activation drives DAT-Rit2 surface dissociation, and 

that the DAT N-terminus is required for both PKC-mediated DAT-Rit2 dissociation 

and DAT internalization. Finally, we found that Rit2 and Ack1 independently 

converge on DAT to facilitate PKC-stimulated DAT endocytosis. Together, our data 

provide greater insight into mechanisms that mediate PKC-regulated DAT 

internalization, and reveal unexpected region-specific differences in PKC-

stimulated DAT trafficking in bona fide DAergic terminals. 

 

II.B Introduction 

DA neurotransmission is required for motor control, learning, memory, motivation, 

and reward (Wise, 2004; Iversen and Iversen, 2007). DAergic dysregulation is 

evidenced in numerous neuropsychiatric disorders, including ADHD, ASD, 

schizophrenia, BPD, addiction, and PD (Hyman et al., 2006; Sharma and Couture, 

2014; Ashok et al., 2017; Howes et al., 2017; Eissa et al., 2018; Geibl et al., 2019). 

DA signaling is tightly controlled by the presynaptic DAT, which rapidly clears 

synaptically released DA. DAT is also the primary target for addictive and 
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therapeutic psychostimulants, including AMPH, cocaine, and methylphenidate 

(Ritalin), which inhibit DAT as competitive substrates (AMPH) and antagonists 

(cocaine and methylphenidate) (Kristensen et al., 2011). Genetic DAT deletions in 

mice and Drosophila melanogaster elevate extracellular DA concentrations and 

evoke hyperactivity (Giros et al., 1996; Gainetdinov et al., 1998; Kume et al., 2005), 

and human DAT missense mutations have been reported in PD, ADHD and ASD 

patients (Mazei-Robison and Blakely, 2005; Kurian et al., 2009; Sakrikar et al., 

2012; Hamilton et al., 2013; Bowton et al., 2014; Ng et al., 2014; Herborg et al., 

2018). Together, these studies underscore that DAT is critical to maintain DAergic 

homeostasis (Kristensen et al., 2011).  

 

Given its central role in DAergic signaling, intrinsic neuronal mechanisms that alter 

DAT surface expression and function are likely to significantly impact DAergic 

transmission.  DAT surface availability is dynamically modulated by endocytic 

trafficking (Melikian, 2004; Eriksen et al., 2010b; Bermingham and Blakely, 2016). 

A negative regulatory mechanism, or “endocytic brake”, tempers basal DAT 

endocytosis (Boudanova et al., 2008b; Wu et al., 2015), and acute PKC activation 

disengages the DAT endocytic brake, stimulates DAT internalization, and rapidly 

diminishes DAT surface expression (Loder and Melikian, 2003; Gabriel et al., 

2013). The DAT N- and C-termini encode residues required to engage the DAT 

endocytic brake, and, when mutated, markedly accelerate DAT internalization 

(Boudanova et al., 2008b; Sorkina et al., 2009; Sakrikar et al., 2012). We 
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previously reported that the nonreceptor tyrosine kinase, Ack1 (AKA: TNK2), is a 

critical component of the DAT endocytic brake, and that Ack1 inactivation is 

required for PKC-mediated brake release (Wu et al., 2015).  

 

Rit2 (also known as Rin) is a neuronal small GTPase that lacks a CAAX domain, 

and associates with the plasma membrane in a phosphoinositide-dependent 

manner (Lee et al., 1996; Wes et al., 1996; Heo et al., 2006). RIT2 gene expression 

is highly enriched in DA neurons (Zhou et al., 2011), and several recent GWAS 

studies identified RIT2 SNPs and long tandem repeat variants associated with 

multiple DA-related disorders, including PD, ASD, and schizophrenia (Glessner et 

al., 2010; Pankratz et al., 2012; Zhang et al., 2015; Emamalizadeh et al., 2017; 

Foo et al., 2017; Hamedani et al., 2017). However, despite its disease association, 

relatively little is known about endogenous DAergic Rit2 function. We previously 

reported that DAT directly binds to Rit2, and that Rit2 activity is required for PKC-

stimulated DAT internalization (Navaroli et al., 2011). Moreover, we recently found 

that in vivo DAergic Rit2 knockdown (Rit2-KD) differentially alters acute cocaine 

sensitivity in males and females (Sweeney et al., 2020).  However, it remains 

unknown whether PKC-stimulated DAT internalization in DAergic terminals 

requires Rit2, and whether there are region- or sex-specific differences in DAT’s 

reliance upon Rit2. Further, it is unclear how intrinsic DAT domains influence the 

DAT-Rit2 interaction, or whether Rit2 and Ack1 coordinate to release the DAT 

endocytic brake. In the present study, we leveraged biochemical and genetic 
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approaches, in both cultured cells and ex vivo mouse striatal slices, to directly 

address these salient questions. 

 
II.C Results 

Rit2 cellular expression and antibody specificity 

In our previous study, in which we initially reported the DAT-Rit2 interaction 

(Navaroli et al., 2011), there were several paradoxical findings regarding 1) how 

PKC activation impacted the DAT-Rit2 interaction, and 2) the Rit2 expression 

profile across various cell lines. In cellular imaging studies, which used CFP-Rit2, 

Rit2 appeared to remain at the plasma membrane following PKC-stimulated DAT 

internalization, suggesting that PKC may drive DAT and Rit2 to dissociate. In 

contrast, parallel co-IP studies found that PKC activation increased the DAT-Rit2 

interaction in PC12 cells. Furthermore, although Rit2 expression is reportedly 

restricted to neurons (Lee et al., 1996; Wes et al., 1996; Zhou et al., 2011; Zhang 

et al., 2013), we detected a single, ~20kDa immunoreactive band by immunoblot 

in all neuronal and nonneuronal cell lines tested, as well as RIT2 mRNA expression 

in these cell lines by standard RT-PCR. The previous studies utilized the anti-Rit2 

monoclonal antibody, clone 27G2, and in that report, we additionally confirmed that 

27G2 specifically recognizes Rit2, but not Rit1, (the ubiquitously expressed Rit2 

homologue) using fluorescently-tagged Rit2 and Rit1 fusion proteins. Recently, we 

decided to take advantage of highly specific, Rit2-directed, real-time qPCR probes 

to reassess the Rit2 expression profile across a large panel of human, mouse and 

rat cell lines, as well as in mouse and rat midbrain, all of which exhibit the single, 
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20kDa immunoreactive band when probed with the anti-Rit2 27G2. To our 

surprise, RIT2 mRNA was undetectable in any of the mouse or rat cell lines tested, 

whereas a robust RIT2 mRNA signal was detected in both mouse and rat midbrain 

controls (Table II.1). Moreover, among the human cell lines tested, RIT2 mRNA 

was only detected in SK-N-DZ cells, as reported previously (Zhang et al., 2013), 

and at low levels in SH-SY5Y cells. However, SK-N-MC and HEK293T cells 

expressed markedly less/negligible RIT2 signal than SK-N-DZ cells, ranging from 

20-300-fold less (Table II.1).  
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Table II.1 Rit2 expression in mammalian cell lines and rodent brain regions 
Rit2 mRNA expression was determined by RT-qPCR and normalized to internal 
GAPDH values, n=2-4.  
 
Species/Cell line Rit2 (2-DCt x 104 ± S.E.M.) 
Mouse 

 

CAD 0.02 ± 0.0067  

N2a 0.09 ± 0.052 

NIH/3T3 No signal detected 

Midbrain 72.0 ± 12.8 

Cortex 54.8 ± 9.19 

Rat  

AN27 No signal detected 

PC12 No signal detected 

Midbrain 110.0 ±0.51 

Human 
 

HEK293T 0.40 ± 0.34 

SH-SY5Y 1.3 ± 0.56  

SK-N-MC 0.09 ± 0.07  

SK-N-DZ 27.2 ± 18.7 
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Our current RT-qPCR results raised the possibility that although 27G2 recognizes 

Rit2, it also may cross-react with a ubiquitously expressed protein that has an 

electrophoretic mobility close to that of Rit2. To test this, we screened several 

newer, commercially available anti-Rit2 antibodies using cell lysates from 

HEK293T cells transfected with CFP-Rit2. Consistent with our previous report, 

clone 27G2 identified a single 20kDa band in both transfected and nontransfected 

cells, and also detected CFP-Rit2 selectively in transfected cells (Figure II.1A). 

However, when immunoblots were probed with aRit2 clone 4B5, the low molecular 

weight immunoreactive band was not detected, whereas CFP-Rit2 was detected 

in transfected cells (Figure II.1A). These results are consistent with our RT-qPCR 

results and confirm that 27G2 detects an artifactual band with an electrophoretic 

mobility close to the Rit2 predicted size. We next used 4B5 to assess Rit2 in cells 

transfected with HA-Rit2 and in mouse DAergic tissues. Clone 4B5 detected a 

single, ~28kDa immunoreactive band selectively in cells transfected with HA-Rit2, 

which was identical in mobility to an immunoreactive band detected with aHA, in 

parallel (Figure II.1B). aHA also detected a higher molecular weight band (~30kDa) 

specifically in cells transfected with HA-Rit2, which we did not detect using 4B5 

(Figure II.1B), suggesting that Rit2 may have multiple isoforms, and that 4B5 may 

only detect one of these. 4B5 also detected bands at ~24kDa in mouse lysates 

enriched for either dorsal striatum or ventral midbrain (Figure II.1B). These 

immunoblot results were consistent with our RT-qPCR results, and confirmed that 

most cell lines either do not express Rit2, or express Rit2 at negligible levels. They 
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further support that the 27G2 antibody cannot reliably distinguish between Rit2 and 

a robust, artifactual, background band. It should also be noted that while 4B5 

specifically detects Rit2, it does so with extremely low sensitivity, even when Rit2 

is highly overexpressed. Indeed, using the 4B5 antibody, we could only detect Rit2 

by immunoblot in lysates from mouse tissues when a very high protein mass was 

loaded. Moreover, although both hRit2 and mRit2 are predicted to have identical 

number of amino acids, and a predicted mass of ~24kDa each, the overexpressed 

hRit2 protein ran slightly higher than the putative mRit2 band. There are two known 

hRit2 isoforms, variants 1 and 2, which are predicted to be ~24kDa and ~17kDa, 

respectively, and our hRit2 cDNA codes for variant 1. To date it is unknown 

whether there are tissue specific Rit2 isoforms in mouse neurons. Given that there 

is no global Rit2-/- mouse available, we therefore cannot say with absolute certainty 

that the single immunoreactive band in mouse tissue is definitively Rit2, or possibly 

a smaller splice variant. Therefore, for the majority of our cell line studies, we opted 

to use HA-Rit2 for greater sensitivity in cell lines and did not further assess Rit2 

protein in tissue.  
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Figure II.1 Rit2 protein is specifically detected by clone 4B5, but not clone 
27G2, aRit2 antibodies. A and B, Rit2 detection in transfected cell lines and 
mouse tissues by immunoblot analysis. A, HEK293T cells were transfected with 
either vector (-) or CFP-Rit2 (+), and cell lysates were assessed by immunoblot 48 
h post-transfection, probing with either aRit2 clones 27G2 (left) or 4B5 (right), as 
described under “Experimental procedures.” Molecular mass markers indicate 
kDa. B, HEK293T cells transfected with vector (-) or HA-Rit2 (+), mouse ventral 
midbrain (vMB), and striatum (Str) were assessed by immunoblotting, probing with 
either aHA (left) or aRit2 clone 4B5 (right). 10µg/lane and 100µg/lane were loaded 
for transfected cell lysates and mouse brain lysates, respectively. Arrowheads, 
Rit2-immunoreactive bands.  
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Rit2 is required for PKC-stimulated, but not basal, DAT internalization 

In our original DAT-Rit2 study (Navaroli et al., 2011), we used shRNA to silence 

Rit2 in SK-N-MC cells and to test whether Rit2 is required for PKC-stimulated DAT 

downregulation. In light of our current findings that SK-N-MC cells do not 

appreciably express Rit2, we were prompted to 1) re-screen Rit2 targeted shRNAs, 

and 2) reassess whether Rit2 is required for PKC-stimulated DAT internalization 

in SK-N-DZ cells, which endogenously express Rit2. We screened several 

candidate human Rit2-directed shRNAs, and identified two shRNAs (shRit2-104 

and -107) that significantly silenced CFP-hRit2 protein expressed in Neuro2a cells 

(Figure II.2A). Additionally, both shRit2-104 and -107 significantly silenced 

endogenous Rit2 mRNA expression in SK-N-DZ cells (Figure II.2B). We utilized 

shRit2-107 to ask whether Rit2 is required for PKC-stimulated DAT internalization 

in SK-N-DZ cells. Rit2-KD significantly blocked PKC-stimulated DAT endocytosis 

as compared to vector-transduced cells (Figure II.2C), consistent with a requisite 

role for Rit2 in PKC-stimulated DAT internalization. The ability of shRit2-107 to 

block PKC-stimulated DAT endocytosis was not likely due to off-target effects, as 

shRit2-107 did not decrease expression of RIT1, the closest homolog to Rit2 

(Figure II.2D). To further ensure that shRit2-107 effects were specific, we repeated 

these studies with shRit2-104. Similar to our findings with shRit2-107, Rit2 

silencing with shRit2-104 significantly blocked PKC-stimulated DAT internalization 

(Figure II.2E). 
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Figure II.2 Rit2 is required for PKC-stimulated DAT internalization in SK-N-
DZ cells. A, human Rit2 shRNA screen. Mouse N2a cells were co-transfected with 
human CFP-Rit2 and either pGIPZ vector, luciferase-293 control, or the indicated 
Rit2 shRNA-pGIPZ plasmids. Top, representative immunoblots. Bottom, average 
CFP-Rit2 levels, normalized to actin-loading controls, expressed as percentage of 
pGIPZ vector ±S.E.M. (error bars). Asterisks, significant difference from pGIPZ 
controls (one-way ANOVA F(4, 14) = 6.396, p=0.004; Dunnett’s multiple-comparison 
test, pGIPZ versus shRit2-104: **p=0.005; versus shRit2-105: p=0.36; versus 
shRit2-107: **p=0.006; versus luc693: p=0.95, n=3-5). B, shRit2-mediated 
knockdown in stable DAT-SK-N-DZ cells. DAT-SK-N-DZ cells were transduced 
with control, shRit2-104, or shRit2-107 lentiviral particles, and Rit2 mRNA 
expression was measured by RT-qPCR 96 h post-transduction. Average DDCt 
values are presented, expressed as percentage of control-transduced values 
±S.E.M. Asterisks, significant difference from pGIPZ controls (one-way ANOVA 
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F(2, 16) = 25.09, p=0.0001; Dunnett’s multiple-comparison test: pGIPZ versus 
shRit2-104: ***p=0.0001; versus shRit2-107: ****p<0.0001, n=4-9). C, DAT 
internalization assay. Stable DAT-SK-N-DZ cells were transduced with the 
indicated lentiviral particles, and DAT internalization rates were measured at 96 h 
post-transduction as described under “Experimental procedures.” Top, 
representative immunoblots depicting surface DAT expression at t=0 (T), strip 
control (S), and internalized DAT during either vehicle (V) or 1 µM PMA (P) 
treatment. Bottom, average DAT internalization rates expressed as percentage of 
vehicle treated control rates ±S.E.M. *p=0.04, one-tailed Student’s t test, n=6-8. D, 
Rit1mRNA expression specificity control. DAT-SK-N-DZ cells were transduced 
with control or shRit2-107 lentiviral particles, and Rit1 expression was measured 
by RT-qPCR 96 h post-transduction. Average DDCt values are presented, 
expressed as percentage of control-transduced values ±S.E.M. shRit2-107 
transduction did not significantly affect Rit1 mRNA expression, p=0.965, two-tailed 
Student’s t test, n=3. E, DAT internalization assays. Stable DAT-SK-N-DZ cells 
were transduced with the indicated lentiviral particles, and DAT internalization 
rates were measured 96 h post-transduction as described under “Experimental 
procedures.” Data are presented identically as in C. *p=0.03, one-tailed Student’s 
t test, n=5. 
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Rit2 is required for striatal steady state DAT surface expression and PKC-

stimulated DAT internalization in a region- and sex-specific manner 

PKC-stimulated DAT internalization in response to phorbol ester treatment has 

been reported by numerous laboratories, in a variety of transfected cell lines 

(Daniels and Amara, 1999; Granas et al., 2003; Loder and Melikian, 2003; Holton 

et al., 2005; Sorkina et al., 2005; Cervinski et al., 2010; Sakrikar et al., 2012). 

Moreover, we previously reported that phorbol 12-myristate 13-acetate (PMA) 

treatment decreases DAT surface levels in DAergic terminals in ex vivo total 

striatal slices containing both dorsal (DS) and ventral (VS) striatum (Gabriel et al., 

2013). However, it is unknown whether PKC-stimulated DAT internalization differs 

between DAergic terminal regions, such as DS and VS, or between males and 

females. Moreover, although Rit2 is required for PKC-stimulated DAT 

internalization in SK-N-DZ cells (Figure II.2), it is unknown whether Rit2 is required 

for PKC-stimulated DAT endocytosis in DAergic terminals. We recently leveraged 

the TET-OFF system to achieve conditional, inducible DAergic Rit2-KD in 

Pitx3IRES2-tTA mice, in which AAV9-shRit2 injection into mouse VTA significantly 

silenced RIT2 expression in both VTA and SNc (Sweeney et al., 2020). We found 

that DAergic Rit2 silencing decreased total striatal DAT protein in males, but not 

females. Further, although total DAT protein decreased within male total striatum, 

the DAT surface:intracellular ratio was unchanged in either DS or VS, resulting in 

less overall surface DAT in both male striatal subregions (Sweeney et al., 2020). 

In the current study, we extended our in vivo Rit2-KD studies and asked whether 
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Rit2 impacts DAT basal distribution in female DS and VS. We further asked 

whether PKC-mediated DAT internalization requires Rit2 in male and female DS 

and VS. Male and female Pitx3IRES2-tTA/+ mice VTA were bilaterally injected with 

either AAV9-TRE-eGFP or AAV9-TRE-shRit2, and DAT surface expression was 

measured by ex vivo slice biotinylation in the VS and DS, following treatment ±1µM 

PMA, 30 min, 37°C.  

 

We first examined the effect of Rit2 silencing on DAT surface expression in female 

DS and VS, under both basal and PKC-stimulated conditions. Surprisingly, in DS, 

PKC activation did not decrease DAT surface expression in control female mice 

(Figure II.3A). Moreover, DAergic Rit2-KD had no effect on DS DAT surface 

expression, under either basal or PKC-stimulated conditions (Figure II.3A). In 

contrast, in female VS, PKC activation significantly reduced DAT surface levels, 

and DAergic Rit2-KD completely blocked further surface loss in response to PKC 

activation (Figure II.3B). Moreover, DAergic Rit2-KD significantly reduced the 

basal DAT surface level in female VS, as compared with control mice (Figure 

II.3B).  
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Figure II.3 PKC-induced DAT internalization in females is limited to ventral 
striatum and requires Rit2. Conditional Rit2 silencing in DA neurons and ex vivo 
striatal slice biotinylation. Female Pitx3IRES2-tTA/+ mouse VTA were bilaterally 
injected with either AAV9-TRE-eGFP or -shRit2. Brains were harvested 4-5 weeks 
postinjection, and DAT surface expression was measured in ex vivo striatal slices 
by surface biotinylation as described under “Experimental procedures,” following 
treatment with or without 1 µM PMA for 30 min at 37 °C. Representative blots are 
shown in the top of each panel, and average data are presented at the bottom of 
each panel. DAT surface levels are expressed as percentage of total DAT ±S.E.M. 
(error bars), n=5-8 slices from n=3 independent mice/virus. A, Dorsal striatum. 
Neither PKC activation nor Rit2-KD had an effect on DAT surface expression (two-
way ANOVA: interaction: F(1, 22) = 0.051, p=0.82; drug: F(1, 22) = 0.58, p=0.46; virus: 
F(1, 22) = 0.18, p=0.68). B, Ventral striatum. PKC activation and Rit2-KD significantly 
decreased DAT surface expression, and Rit2-KD blocked PKC-stimulated DAT 
internalization (two-way ANOVA: interaction: F(1, 18) = 4.54, p=0.047; drug: F(1, 18) = 
4.25, p=0.054; virus: F(1, 18) = 7.28, p=0.015. Sidak’s multiple comparisons test: 
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eGFP(veh) versus eGFP(PMA): *p=0.04; eGFP(veh) versus shRit2(veh): *p=0.02; 
shRit2(veh) versus shRit2(PMA): p>0.99).  
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Our previous study probed the impact of DAergic Rit2 KD on basal DAT surface 

levels in males (Sweeney et al., 2020). Therefore, we next asked whether Rit2 was 

required for PKC-stimulated DAT internalization in male DS and VS. Similar to 

females, PKC activation had no effect on DAT surface expression in DS, but 

significantly decreased DAT surface expression in VS, measured in control (eGFP-

injected) male mice (Figure II.4A). Also similar to females, DAergic Rit2-KD 

completely abolished PKC-stimulated DAT internalization in male VS (Figure 

II.4B). Given that phorbol esters can stimulate a variety of signaling pathways in 

addition to PKC, we further tested whether PMA-induced DAT internalization in VS 

was PKC-mediated. Pre-treatment with the PKC-specific inhibitor 

bisindolylmaleimide I (BIM I; 1µM, 15 min, 37°C) significantly abolished PMA-

induced DAT internalization, and treatment with BIM I alone was not significantly 

different from BIM I/PMA (Figure II.4C), clearly demonstrating that PMA-mediated 

DAT internalization in DAergic terminals is PKC-dependent.  
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Figure II.4 PKC-induced DAT internalization in males is limited to ventral 
striatum and requires Rit2. Conditional Rit2 silencing in DA neurons and ex vivo 
striatal slice biotinylation. Male Pitx3IRES2-tTA/+ mouse VTA were bilaterally injected 
with either AAV9-TRE-eGFP or -shRit2. Brains were harvested 4–5 weeks 
postinjection, and DAT surface expression was measured in ex vivo striatal slices 
by surface biotinylation as described under “Experimental procedures,” following 
treatment with or without 1µM PMA for 30 min at 37 °C. Representative blots are 
shown in the top of each panel, and average data are presented at the bottom of 
each panel. A, effect of PKC activation on DAT surface levels in dorsal versus 
ventral striatum. DAT surface levels were measured in AAV9-TREeGFP–injected 
mice and are expressed as percentage of total DAT ±S.E.M. (error bars) PKC 
activation had no effect on DAT surface expression in dorsal striatum but 
significantly decreased DAT surface levels in ventral striatum (two-way ANOVA: 
interaction: F(1, 18) = 1.96, p=0.18; region: F(1, 18) = 7.76, p=0.01; drug: F(1, 18) = 5.30, 
p=0.03. Sidak’s multiple-comparison test (vehicle versus PMA): dorsal: p=0.76; 
ventral: p=0.043, n=5-6 slices from three independent mice. B, Rit2-KD 
significantly blocked PKC-stimulated DAT internalization in ventral striatum 
(shRit2: p=0.86, two-tailed Student’s t test, n=6 slices from three independent 
mice). C, PMA-induced DAT internalization is PKC-mediated. DAT surface 
expression was measured in ex vivo VS slices prepared from C57Bl/6J mice and 
pretreated with or without 1µM BIM I for 15 min at 37 °C prior to PMA treatment as 
described above. DAT surface levels are expressed as percentage of vehicle 
±S.E.M. BIM I pretreatment significantly abolished PMA-mediated DAT surface 
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loss (one-way ANOVA F(2, 6) = 8.08, p=0.02; Sidak’s multiple comparison test, PMA 
versus BIM/PMA: *p=0.01, BIM/PMA versus BIM: p=0.25, n=3 independent 
mice/condition). 
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Releasing the PKC-sensitive DAT endocytic brake drives DAT-Rit2 dissociation 

at the plasma membrane 

We next sought to decipher the molecular mechanisms by which Rit2 impacts DAT 

trafficking. We first asked whether driving DAT internalization, by disengaging the 

PKC-sensitive DAT endocytic brake, impacts the DAT-Rit2 interaction at the 

plasma membrane. To specifically interrogate the DAT surface population and its 

associated protein complex, we leveraged a bungarotoxin binding site (BBS)-

targeted surface labeling strategy (Sekine-Aizawa and Huganir, 2004; Wilkins et 

al., 2008; Yang et al., 2010) to label DAT in intact cells. We engineered a BBS into 

the DAT extracellular loop 2, a site we previously successfully targeted for bio-

orthogonal DAT labeling (Wu et al., 2017), and which also tolerates an HA epitope 

(Sorkina et al., 2006). BBS-DAT expressed and functioned comparably to WT 

DAT, and PKC activation acutely decreased BBS-DAT function to 67.97 ± 5.9% 

control levels (Figure II.5A), which is comparable with PKC-mediated DAT 

downregulation as previously reported by our group and others (Granas et al., 

2003; Gorentla and Vaughan, 2005; Navaroli et al., 2011; Bermingham and 

Blakely, 2016; Wu et al., 2017). We first tested whether BBS-DAT could 1) 

specifically isolate surface DAT via bungarotoxin labeling and pulldown, and 2) 

recover DAT-associated proteins. HEK293T cells expressing HA-Rit2 and either 

BBS-DAT or WT DAT were incubated with a-BTX-b, and DAT surface complexes 

were isolated from cell lysates by streptavidin pulldown. We specifically recovered 

BBS-DAT, but not WT DAT, following a-BTX-b incubation (Figure II.5B), 
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demonstrating the selectivity of the BBS pulldown approach to label and isolate 

surface BBS-DAT. Importantly, Rit2 was recovered from pulldowns with BBS-DAT, 

but not in control pulldowns from cells expressing WT DAT, demonstrating that 

Rit2 is recovered specifically following surface DAT pulldown. Additionally, BBS-

DAT pulldowns did not recover the Rit2 homolog, Rit1 (Figure II.5C), consistent 

with a specific association between DAT and Rit2. We further asked whether other 

proteins required for PKC-mediated brake release are also part of the DAT surface 

complex. We previously reported that the nonreceptor tyrosine kinase, Ack1 

(TNK2) imposes the PKC-sensitive endocytic brake, and that PKC-mediated Ack1 

inactivation is required for PKC-stimulated DAT internalization (Wu et al., 2015). 

However, it is not known whether Ack1 is associated with DAT at the plasma 

membrane. Following a-BTX-b labeling and pulldown, Ack1 was recovered from 

cells expressing BBS-DAT, but not from control cells expressing WT DAT (Figure 

II.5D), demonstrating that Ack1 is part of the DAT surface complex. Thus, BBS-

DAT has precise utility to interrogate surface DAT and its associated proteins, such 

as Rit2 and Ack1.  
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Figure II.5 Surface DAT associates with Rit2 and Ack1, but not Rit1. A, [3H]DA 
uptake assay. SK-N-MC cells expressing BBS-DAT were treated with or without 1 
µM PMA for 30 min at 37 °C, and [3H]DA uptake was measured as described under 
“Experimental procedures.” Average data are expressed as percentage of vehicle-
treated specific [3H]DA uptake ±S.E.M. (error bars). **p=0.009, two-tailed 
Student’s t test, n=3. B-D, BBS-DAT pulldowns. HEK293T cells were co-
transfected with DAT (with or without BBS tag) and either HA-Rit2 (B), GFP-Rit1 
(C), or Ack1-HA (D), and DAT surface complexes were labeled and isolated by 
streptavidin pulldown as described under “Experimental procedures.” 
Representative immunoblots for pull-downs (left panels) and their respective 
inputs (one-fourth of total input, right panels) are presented (n=3 independent 
experiments). 
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Given our previous cellular imaging results (Navaroli et al., 2011), we hypothesized 

that PKC activation causes DAT and Rit2 to dissociate. Since PKC-stimulated DAT 

internalization can only occur when the endocytic brake is disengaged, we first 

leveraged BBS-DAT pulldowns to ask whether PKC-mediated brake release alters 

the DAT-Rit2 surface association. PKC activation (1µM PMA, 30 min, 37°C) 

significantly decreased the DAT-Rit2 plasma membrane association (Figure II.6A). 

Additionally, DAT and Rit2 significantly dissociated when we directly released the 

DAT endocytic brake, by inactivating Ack1 with AIM-100 (20µM, 30 min, 37°C) 

(Figure II.6B). DAT and Rit2 may specifically dissociate at the cell surface in 

response to releasing the PKC-sensitive endocytic brake, or may do so following 

any stimulus that drives DAT internalization. To discern between these two 

possibilities, we measured the DAT-Rit2 surface association in response to AMPH 

treatment, which also accelerates DAT internalization, but is Rho-dependent 

(Wheeler et al., 2015). In contrast to PKC-stimulated DAT-Rit2 dissociation, AMPH 

treatment (10µM, 30 min, 37°C) significantly increased the DAT-Rit2 surface 

association (Figure II.6C). Thus, the DAT-Rit2 surface dissociation occurs 

specifically when the PKC-sensitive DAT endocytic brake is disengaged, either in 

response to PKC activation or direct Ack1 inactivation, but is not a general result 

of accelerated DAT endocytosis.  
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Figure II.6 PKC-mediated endocytic brake release drives DAT-Rit2 
dissociation at the plasma membrane. For BBS-DAT pull-downs, HEK293T 
cells were co-transfected with BBS-DAT and HA-Rit2, were treated with or without 
the indicated drugs for 30 min at 37 °C, and were labeled with a-BTX-b, and DAT 
surface complexes were isolated as described under “Experimental procedures.” 
Top, representative immunoblots. Bottom, average DAT-Rit2 association 
expressed as percentage of vehicle-treated control ±S.E.M. (error bars), assessed 
by two-tailed Student’s t test. A, PKC activation significantly decreased the DAT-
Rit2 surface association. *p=0.04, n=6. B, Ack1 inactivation with AIM-100 
decreased the DAT-Rit2 surface association. *p=0.03, n=4. C, AMPH treatment 
significantly increased DAT-Rit2 surface association. ***p=0.0002, n=3. 
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The DAT amino terminus is integral to the DAT-Rit2 interaction and PKC-

stimulated dissociation  

The DAT-Rit2 interaction was originally identified in a yeast two-hybrid screen, 

using DAT C-terminal residues 587-596 (FREKLAYAIA) as bait (Navaroli et al., 

2011). However, it is not known which DAT domains are required (or sufficient) for 

the DAT-Rit2 association in the context of intact DAT protein; nor is it known 

whether any DAT domains are specifically required for PKC-stimulated DAT-Rit2 

dissociation. Rit2 specifically binds DAT, but not SERT (Navaroli et al., 2011); thus, 

we hypothesized that replacing DAT N- or C-termini with those of SERT may define 

DAT domains required for Rit2 binding and/or PKC-stimulated DAT-Rit2 

dissociation. To test this possibility, we leveraged a series of DAT/SERT chimeras 

we previously characterized (Sweeney et al., 2017), in which either the DAT N-

terminus, C-terminus, or both termini were substituted with those of SERT. 

HEK293T cells were co-transfected with YFP-Rit2 and CFP-tagged versions of 

these chimeras, and we performed live FRET imaging to quantify the chimera-Rit2 

interactions. As we previously reported, control CFP-DAT and YFP-Rit2 elicited a 

significant FRET signal as compared with soluble YFP/CFP expression (Figure 

II.7A). Interestingly, replacing the DAT N-terminus with that of SERT (CFP-N-

S/DAT) significantly increased the DAT-Rit2 interaction compared with CFP-DAT, 

whereas replacing the DAT C-terminus (CFP-DAT/C-S) or both termini (CFP-

S/DAT/S) did not affect the DAT-Rit2 interaction (Figure II.7A). We also observed 

a significant increase in the interaction between YFP-Rit2 and CFP-N-S/DAT using 
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the donor recovery after photobleaching (DRAP) approach (Figure II.7B), 

demonstrating that the FRET signal is a bona fide interaction between the 

fluorophores. Using the BBS pulldown approach, Rit2 was likewise recovered with 

BBS-tagged versions of each DAT/SERT chimera (Figure II.7C). We next asked 

whether PKC-stimulated DAT-Rit2 dissociation requires either the DAT N- and/or 

C-termini. Substituting the DAT C-terminus with that of SERT (DAT/C-S) had no 

significant effect on PKC-stimulated DAT-Rit2 dissociation, as compared with WT 

DAT controls (Figure II.7D, one-way ANOVA with Dunnett’s multiple comparison 

test, p=0.69). However, substituting the DAT N- terminus with that of SERT (N-

S/DAT) completely abolished PKC-stimulated DAT/Rit2 dissociation, and there 

was a strong trend for attenuated DAT/Rit2 dissociation when both DAT N- and C- 

termini were replaced by SERT (S/DAT/S) (Figure II.7D, p=0.058). Taken together, 

these results indicate that the DAT N-terminus is required for the PKC-stimulated 

DAT-Rit2 dissociation, and that the SERT N-terminus does not suffice. However, 

SERT N- and C- termini suffice to maintain the DAT-Rit2 association.  
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Figure II.7 The SERT N-terminus promotes the DAT-Rit2 interaction and 
blocks PKC-stimulated DAT-Rit2 dissociation. A and B, FRET studies. 
HEK293 cells were transfected with the indicated plasmids, and surface FRET 
measurements were made 24 h post-transfection, as described under 
“Experimental procedures.” Average NFRET values (x100) for the indicated pairs 
are presented as violin plots, with median lines provided within each violin. n 
values are provided for each violin. A, NFRET values. Asterisks, significant 
differences between the indicated pairs (Kruskal–Wallis test, p=0.0001 with Dunn’s 
multiple comparisons test: DAT versus N-S/DAT: ****p=0.0001; versus DAT/C-S: 
p=0.13; versus S/DAT/S: p>0.99; versus CFP/YFP: ****p=0.0001. B, DRAP values 
(one-way ANOVA F(3, 46) = 3.31, p=0.028; Dunnett’s multiple-comparison test: DAT 
versus N-S/DAT: *p=0.02; DAT/C-S: p=0.81; versus S/DAT/S: p=0.99). C and D, 
BBS-DAT pull-downs. HEK293T cells were co-transfected with HA-Rit2 and the 
indicated BBS-tagged proteins. Cells were treated with or without 1µM PMA for 30 
min at 37 °C and surface-labeled with a-BTX-b, and DAT surface complexes were 
recovered by streptavidin pulldown as described under “Experimental procedures.” 
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C, representative immunoblots. D, average data presented as percentage of 
vehicle-treated DAT-Rit2 association for each indicated protein. N-S/DAT 
significantly blocked PKC-stimulated DAT-Rit2 dissociation (one-way ANOVA F(3, 

28) = 3.44, p=0.03; Dunnett’s multiple-comparison test: DAT versus N-S/DAT: 
*p=0.03; versus DAT/C-S: p=0.69; versus S/DAT/S: p=0.06, n=5-11). Error bars, 
S.E.M. 
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The DAT N-terminus is required for PKC-stimulated DAT internalization 

Because the DAT N-terminus is required for PKC-stimulated DAT-Rit2 

dissociation, this raised the possibility that the N-terminus may also be required for 

stimulated DAT internalization, driven by release of the DAT endocytic brake. To 

test these possibilities, we measured DAT and DAT/SERT chimera internalization 

rates in response to either PKC activation or direct Ack1 inactivation (with AIM-

100) in stably-transfected SK-N-MC cells, in which we previously characterized 

both PKC- and AIM-100-stimulated DAT internalization (Gabriel et al., 2013; Wu 

et al., 2015). PKC activation (1µM PMA, 10 min, 37°C) significantly increased WT 

DAT internalization, and substituting the DAT C-terminus with the SERT C-

terminus (DAT/C-S) did not significantly affect PKC-stimulated internalization 

(Figure II.8A). However, PKC-stimulated DAT internalization was abolished when 

either the DAT N-terminus, or both N- and C-termini, were substituted with SERT 

termini (N-S/DAT and S/DAT/S, Figure II.8A). In contrast, direct Ack1 inactivation 

(20µM AIM-100, 10 min, 37°C) significantly stimulated WT DAT, N-S/DAT, and 

DAT/C-S internalization, but had no effect on S/DAT/S internalization (Figure 

II.8A). We further evaluated the basal endocytic rates of the chimeric DATs, as 

compared with WT DAT. As presented in Figure II.8B, none of the chimera basal 

internalization rates differed significantly from WT DAT. To assure that these 

effects were not due to the lack of Rit2 expression in SK-N-MC cells, we further 

assessed basal and PKC-stimulated N-S/DAT internalization in stably transfected 

SK-N-DZ cells, which endogenously express RIT2 (Table II.1). In SK-N-DZ cells, 
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N-S/DAT internalized significantly slower than WT DAT under basal conditions 

(Figure II.8C). Additionally, while PKC activation significantly increased the WT 

DAT internalization rate, it had no effect on N-S/DAT internalization as compared 

with its own vehicle control (p=0.17, one-way ANOVA with Bonferroni’s multiple 

comparison test, n=4-7). These results demonstrate that the DAT N-terminus is 

required, and that the SERT N-terminus does not suffice, for PKC-stimulated DAT 

internalization.  
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Figure II.8 The DAT N-terminus is required for PKC-stimulated DAT 
internalization. For DAT internalization assays, WT DAT and DAT/SERT chimera 
internalization rates were measured with or without 1 µM PMA or with or without 
20 µM AIM-100 for 10 min at 37 °C, as described under “Experimental procedures.” 
Top panels, representative immunoblots showing total surface expression at t=0 
(T), strip control (S), and internalized protein during either vehicle (V), PMA (P), or 
AIM-100 (A) treatments. Bottom panels, averaged data. A, stimulated 
internalization in stable SK-N-MC cell lines. Rates are expressed as percentage of 
vehicle-treated controls ±S.E.M. (error bars). Asterisks, significant difference from 
vehicle controls (one-way ANOVA with Dunnett’s multiple-comparison test, n=8 -
13; DAT: ANOVA F(2, 34) = 7.94, p=0.0015; vehicle versus PMA: **p=0.007; vehicle 
versus AIM-100: **p=0.002; N-S/DAT: ANOVA F(2, 21) = 4.38, p=0.03; vehicle 
versus PMA: p=0.82; vehicle versus AIM-100: *p=0.02; DAT/C-S: ANOVA F(2, 30) = 
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5.22, p=0.01; vehicle versus PMA: *p=0.01; vehicle versus AIM-100: **p=0.026. 
S/DAT/S: ANOVA F(2, 21) = 0.84, p=0.44). B, basal internalization in stable SK-N-
MC cell lines. Chimera basal internalization rates did not significantly differ from 
WT DAT (one-way ANOVA F(3, 39) = 4.046, p=0.013; Dunnett’s multiple comparison 
test: DAT versus N-S/DAT: p=0.54; versus DAT/C-S: p=0.06; versus S/DAT/S: 
p=0.72, n=9-12). C, DAT and N/S-DAT internalization in stable SK-N-DZ cell lines. 
Average internalization rates are expressed as percentage of surface protein 
internalized/10 min ±S.E.M. Asterisks, significant difference from the indicated 
protein or treatment (two-way ANOVA: interaction: F(1, 16) = 1.06, p=0.32; construct: 
F(1, 16) =15.6, p=0.001; drug: F(1, 16) = 25.6, p=0.0001; Tukey’s multiple-comparison 
test: DAT(veh) versus DAT(PMA): *p=0.01, DAT(veh) versus N-S/DAT(veh): 
*p=0.03; N-S/DAT(veh) versus N-S/DAT(PMA): p=0.21, n=4-7). 
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Rit2 and Ack1 independently converge on DAT in response to PKC  

We next asked whether there is a mechanistic relationship between Rit2, Ack1, 

and PKC-mediated DAT endocytic brake release. Rit2 may be either upstream or 

downstream from Ack1 in the signaling cascade that leads from PKC to DAT. 

Alternatively, Rit2 and Ack1 may respond independently to PKC activation to 

stimulate DAT internalization. We first used Rit2-KD in SK-N-DZ cells to ask 

whether Rit2 was required for PKC-mediated Ack1 inactivation, a requisite step for 

PKC-mediated release of the endocytic brake and for stimulated DAT 

internalization (Wu et al., 2015). As we previously reported, in vector-transduced 

cells, PKC activation significantly reduced pY284-Ack1, to levels comparable with 

that achieved with the Ack1 inhibitor, AIM-100 (Figure II.9A). In cells transduced 

with shRit2-107, pY284-pAck1 levels, were also significantly reduced in response 

to either PKC activation or AIM-100 treatment, and there was no difference in the 

magnitude change of pY284-pAck1 levels following PKC activation (Figure II.9A). 

These results indicate that Rit2 is not likely upstream of Ack1 in the signaling 

pathway that leads from PKC to Ack1 inactivation.  

 

We next asked whether PKC-mediated Ack1 inactivation is required for, and 

therefore upstream of, PKC-stimulated DAT-Rit2 dissociation. To test this 

possibility, we measured DAT-Rit2 dissociation in cells co-transfected with DAT, 

Rit2, and either vector or the PKC-insensitive, constitutively active Ack1 mutant 

(S445P) which we previously reported blocks PKC-stimulated DAT internalization 
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(Wu et al., 2015). In control cells, PKC activation drove a significant DAT-Rit2 

dissociation (Figure II.9B). In cells co-transfected with S445P-Ack1, PKC 

activation likewise drove DAT-Rit2 dissociation, at levels indistinguishable from 

vector controls (Figure II.9B). These results demonstrate that PKC-stimulated 

DAT-Rit2 dissociation does not require Ack1 inactivation. Moreover, they 

demonstrate that even in conditions where DAT cannot internalize in response to 

PKC activation (i.e. because Ack1 is constitutively active), PKC activation still 

drives DAT and Rit2 to dissociate. Thus, PKC-stimulated DAT-Rit2 dissociation is 

likely to occur prior to Ack1-mediated release of the DAT endocytic brake.  
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Figure II.9 Rit2 and Ack1 independently converge on DAT downstream of 
PKC activation. A, Effect of Rit2 silencing on PKC-mediated Ack1 inactivation. 
SK-N-DZ cells were transduced with lentiviral particles expressing either vector 
(pGIPZ) or shRit2-107 and were treated with or without 1 µM PMA or with or 
without 20 µM AIM-100 for 10 min at 37 °C. pY284-Ack1 and total Ack1 levels were 
measured from parallel lysate aliquots by immunoblot. Top, representative 
immunoblots. Bottom, average pY284-Ack1 levels expressed as percentage of 
vehicle-treated control cells ±S.E.M. (error bars). Asterisks, significant difference 
from vehicle-treated controls (one-way ANOVA with Dunnett’s multiple-
comparison test; vector: ANOVAF(2, 12) = 16.43, p=0.0004; vehicle versus PMA: 
**p=0.001; versus AIM-100: ***p=0.0004; shRit2-107: ANOVA F(2, 9) = 5.858, 
p=0.02; vehicle versus PMA: *p=0.03; versus AIM-100: *p=0.03, n=4-5). B, PKC-
stimulated DAT-Rit2 dissociation. HEK293T cells were triple-transfected with BBS-
DAT, HA-Rit2, and either empty vector or S445P-Ack1-HA. Cells were treated with 
or without 1 µM PMA for 30 min at 37 °C and labeled with a-BTX-b, and DAT 
complexes were recovered by streptavidin pulldown as described under 
“Experimental procedures.” Top, representative immunoblots. Bottom, average 
DAT-Rit2 association expressed as percentage of vehicle-treated control ±S.E.M. 
p=0.99, two-tailed Student’s t test, n=4. 
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II.D Discussion 

DAT is stabilized at the cell surface by a PKC-sensitive endocytic brake that 

requires 1) residues in both the DAT N- and C- termini to engage (Boudanova et 

al., 2008b; Sorkina et al., 2009), and 2) Ack1 inactivation to be released (Wu et al., 

2015). Here, we found that Rit2 is required to release the PKC-sensitive DAT 

endocytic brake in cell lines and tissues where Rit2 is endogenously expressed, 

such as SK-N-DZ cells (Figure II.2C) and in VS (Figures II.3 and II.4), respectively. 

Curiously, over two decades of evidence has demonstrated that PKC activation 

stimulates DAT internalization in a wide range of cultured cell lines (Pristupa et al., 

1998; Daniels and Amara, 1999; Melikian and Buckley, 1999; Sorkina et al., 2003; 

Sorkina et al., 2006), which our results demonstrate have negligible, if any, RIT2 

expression  (Table II.1). Given that Ack1 is ubiquitously expressed, and that Rit2 

and Ack1 converge independently on DAT in response to PKC activation (Figure 

II.9), we conclude that PKC-stimulated Ack1 inactivation can suffice to release the 

endocytic brake when DAT is heterologously expressed in a context that does not 

express Rit2. However, when DAT is expressed in its appropriate context (i.e. 

striatal terminals), Rit2 expression is absolutely required for PKC-stimulated DAT 

internalization, and PKC-mediated Ack1 inactivation alone does not suffice to 

release the endocytic brake (Figures II.3 and II.4). These results further suggest 

that although Rit2 and Ack1 independently converge on DAT in response to PKC 

activation in cell lines (Figure II.9), there may be an, as of yet, unidentified DAergic-
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specific mechanism(s) that facilitates a Rit2/Ack1 interdependence required for 

endocytic brake release.  

 

Our previous study using total (i.e. not subdissected) striatal slices found that PKC 

activation decreased DAT surface expression by ~20% (Gabriel et al., 2013). 

Interestingly, in the current study, PKC activation drove ~35% DAT surface loss in 

both male and female VS, but had no effect on DAT surface expression in DS from 

either sex (Figure II.3). These data suggest that the somewhat modest PKC-

stimulated DAT surface loss detected in total striatum reflects robust DAT surface 

loss in VS, diluted by the lack of a net effect in DS. Is DAT endocytosis completely 

resistant to PKC activation in DS? It is currently unknown which PKC isoform(s) 

stimulate DAT internalization. We activated PKC with the phorbol ester PMA, 

which activates all diacylglycerol-sensitive PKC isoforms, including PKCa, -b1, -

b2, -g, and -d. PKCb activity is required for DRD2 receptor-mediated DAT insertion 

into the plasma membrane, and selective PKCb activation rapidly delivers DAT to 

the cell surface in both cell lines and striatal synaptosomes (Chen et al., 2013). 

Thus, it is possible that in DS, Rit2-dependent, PKC-stimulated DAT internalization 

may be countered by PKCb-mediated DAT insertion, resulting in no detectable net 

change within the 30-min timeframe we tested. In contrast to DS, DAT surface 

levels in VS were significantly decreased in response to PMA treatment, 

suggesting that the balance between PKCb-mediated DAT insertion and Rit2-

dependent DAT internalization may differ between DS and VS. A recent study by 
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Blakely and colleagues (Gowrishankar et al., 2018) further supports this premise, 

in which they reported that DRD2 activation increased DAT surface expression in 

the DS, but not VS. Given that few studies, to date, have identified the receptor-

mediated signaling pathways that lead to PKC-stimulated DAT internalization, nor 

the temporal profile of DAT response to PKC activation in DAergic terminals, it 

remains unclear how DAT insertion and internalization balance may occur. Finally, 

although our current data indicate that Rit2-KD is required for PKC-stimulated DAT 

endocytosis in female and male VS, it is important to bear in mind that DAT basal 

surface expression in both male (Sweeney et al., 2020) and female (Figure II.3B) 

VS was reduced following DAergic Rit2-KD. Thus, there is a possibility that a 

general floor effect blocked PKC-mediated DAT internalization, rather than a 

requirement for Rit2. However, we do not believe that this is likely, as DAT is 

capable of undergoing additive degrees of internalization when cells are subjected 

to dual PKC activation and AMPH exposure (Hong and Amara, 2013). 

 

We used an extracellular BBS tag to interrogate surface DAT and its associated 

protein complex. This approach was previously used successfully by several 

groups (Sekine-Aizawa and Huganir, 2004; Bogdanov et al., 2006; Wilkins et al., 

2008), and has distinct advantages over co-IP approaches, since 1) the a-

BTX/BBS affinity is significantly higher than that of antibody/antigen interactions, 

and 2) a-BTX/BBS binding is maintained in detergent lysates. Moreover, using an 

extracellular labeling approach, in general, maintains intracellular protein 
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complexes that might be disrupted using an intracellularly targeted antibody in 

lysates/solution. Interestingly, although we observed significant DAT-Rit2 

dissociation in response to releasing the PKC-sensitive DAT endocytic brake 

(Figure II.6), AMPH-stimulated DAT internalization increased the surface DAT-Rit2 

population. Surface DAT is distributed among several membrane microdomains 

(Adkins et al., 2007; Cremona et al., 2011; Navaroli et al., 2011; Butler et al., 2015; 

Kovtun et al., 2015; Rahbek-Clemmensen et al., 2017; Lebowitz et al., 2019; Thal 

et al., 2019). Moreover, we previously reported that, 1) PKC activation 

preferentially depletes DAT from cholera toxin-positive (CTX+) microdomains 

(Gabriel et al., 2013), and 2) there is significantly more DAT-Rit2 co-localization in 

CTX+ microdomains (Navaroli et al., 2011). Conversely, AMPH treatment 

increases DAT localization to CTX+ domains (Butler et al., 2015). Taken together, 

these results suggest that DAT may dissociate from Rit2 and internalize 

preferentially from CTX+ microdomains, in response to PKC activation. In contrast, 

AMPH potentially drives DAT internalization from CTX- domains, in which there is 

less DAT-Rit2 interaction, thereby leaving an enriched DAT-Rit2 population at the 

cell surface.  

 

We originally identified the DAT-Rit2 interaction via a yeast two-hybrid screen 

using the C-terminal DAT domain “FREKLAYAIA” as bait, and FRET studies 

revealed that Rit2 directly interacts with DAT, but not SERT, at the plasma 

membrane (Navaroli et al., 2011). However, the domains required for the DAT-Rit2 
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interaction, and their requirement for either PKC-stimulated DAT internalization or 

DAT-Rit2 dissociation were not defined. To address these questions, we used a 

series of DAT/SERT chimeras previously reported by our lab (Sweeney et al., 

2017), and found that the DAT N-terminus was required for PKC-stimulated DAT-

Rit2 dissociation (Figure II.8). Indeed, under basal conditions, N-S/DAT and Rit2 

interacted to a significantly higher degree than DAT-Rit2 controls (Figure II. 6), 

consistent with a lack of DAT-Rit2 dissociation for the N-S/DAT chimera and higher 

steady-state interaction. N-S/DAT also basally internalized significantly slower 

than WT DAT selectively in SK-N-DZ cells, consistent with its inability to disengage 

the endocytic brake. Moreover, DAT/C-S retained both Rit2 interaction and ability 

release the endocytic brake in response to PKC activation. This was surprising, 

given that 1) the DAT C-terminal bait (FREKLAYAIA) used to identify the DAT/Rit2 

interaction is highly conserved across the SLC6 gene family (Holton et al., 2005; 

Boudanova et al., 2008b), and 2) full-length SERT does not interact with Rit2 

(Navaroli et al., 2011).  So, while the FREKLAYAIA domain is sufficient to interact 

with Rit2, its context within full-length DAT or SERT appears to dictate ultimate 

Rit2 binding potential. Interestingly, although N-S/DAT was resistant to PKC-

stimulated internalization, it retained AIM-100-dependent internalization, whereas 

S/DAT/S did not (Figure II.8), indicating that the DAT N-terminus is not required 

for direct Ack1-dependent endocytic brake release, and further supports the 

hypothesis that Rit2 and Ack1 converge on DAT independently in response to PKC 

activation. It should also be noted that we, and others, reported that AIM-100 also 
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binds noncompetitively to DAT (Wu et al., 2015; Sorkina et al., 2018), and recent 

reports suggest that AIM-100 can enhance DAT surface oligomerization (Sorkina 

et al., 2018; Cheng et al., 2019). Since both Ack1-dependent and AIM-100-

stimulated internalization are specific for DAT, and not SERT, it is possible that 

S/DAT/S endocytic resistance to AIM-100 may be because the substituted SERT 

domains perturb the DAT/AIM-100 interaction. Likewise, it is possible that the 

ability of N-S/DAT to internalize in response to AIM-100, but not PKC activation, 

may be due to a direct AIM-100 effect on DAT. 

 

In this study we present one of the first descriptions of region- and sex-dependent 

differences in DAT trafficking regulation. Furthermore, we greatly extend our 

knowledge of the mechanisms by which Rit2 governs DAT surface expression in 

bona fide DAergic terminals. Future studies that examine the cell autonomous 

endogenous signaling events that drive striatal DAT trafficking, and require Rit2, 

will shed further light on mechanisms that influence DA clearance and DA-

dependent behaviors. 

 

II.E Experimental Procedures 

Materials 

Phorbol 12-myristate 13-acetate (PMA) was from LC Laboratories (P-1680). GF 

109203X (Bisindolylmaleimide I, BIM I) and AIM-100 were from Tocris-Cookson. 
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All other reagents were from either Sigma-Aldrich or Fisher Scientific, and were of 

the highest possible grade.  

 

Animals 

All studies were conducted in accordance with UMASS Medical School IACUC 

Protocol A-1506 (H.E.M). Pitx3IRES2-tTA mice on the C57Bl/6 background were the 

generous gift of Dr. Huaibin Cai (National Institute on Aging), and were continually 

backcrossed to C57Bl/6 mice. Mice were maintained in 12hr light/dark cycle at 

constant temperature and humidity and food and water were available ad libitum. 

 

Antibodies 

Primary antibodies used: mouse anti-Rit2 18G4 (27G2; Sigma), mouse anti-Rit2 

4B5 (GTX83711, GeneTex), rat anti-DAT (MAB369), mouse anti-SERT (ST51-2; 

Mab Technologies), rabbit anti-HA (C29F4; Cell Signaling Technology), mouse 

anti-GFP (Roche), mouse anti-Ack1 (A-11; sc-28336), and rabbit anti-pY284-Ack1 

(Millipore). Horseradish peroxidase-conjugated secondary antibodies: goat anti-

rat, goat anti-mouse and goat anti-rabbit were from Jackson ImmunoResearch. 

 

Plasmids and cloning 

N-S/DAT (SERT1-78/DAT60-620), DAT/C-S (DAT1-583/SERT601-630), and 

S/DAT/S (SERT1-78/DAT60-583/SERT601-630) plasmids, in which either the 

DAT N-terminus (N-S/DAT), C-terminus (DAT/C-S), or both termini (S/DAT/S) 
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were substituted with those of SERT, were generated as previously described 

(Sweeney et al., 2017) using PCR-ligation-PCR approach to clone the DAT or 

SERT terminal domains onto the hSERT or hDAT-pCDNA3.1(+) backbone. CFP-

tagged chimeras were generated by cloning their cDNAs into the pECFP-C1 vector 

using HindIII/XbaI (N-S/DAT), HindIII (DAT/C-S), and HindIII/SalI (S/DAT/S). 

Bungarotoxin binding site (BBS)-tagged hDAT and DAT chimera constructs were 

generated using the extracellular tagging strategy as previously described (Wu et 

al., 2017) with the following amino acid sequence inserted into extracellular loop 2 

of hDAT and DAT chimera constructs: GSSGSSGWRYYESSLEPYPDGSSGSSG. 

The underlined BBS is flanked by linker sequences. All plasmids were verified by 

Sanger sequencing (Genewiz). Human constitutively active Ack1 mutant (S445P-

Ack1-HA) was generated as previously described (Wu et al., 2015).  

 

AAV production and stereotaxic viral delivery 

pscAAV-TRE-eGFP and pscAAV-TREmiR33-shRit2-eGFP plasmids were 

generated as previously described (Sweeney et al., 2020), and AAV particles 

(AAV9 serotype) were produced, purified, and titers determined by the University 

of Massachusetts Medical School Viral Vector Core, as previously described 

(Mueller et al., 2012). For intracranial stereotaxic AAV injections, male and female 

mice (minimum 3 weeks age) were anesthetized with 100mg/kg ketamine/10mg/kg 

xylazine (I.P.), and 20% mannitol was administered (I.P.) 15 minutes prior to viral 

delivery, to increase viral spread (Burger et al., 2005). Mouse heads were shaved, 
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placed in the stereotaxic frame, and bilateral 0.8mm holes were drilled into the 

skull at the indicated stereotaxic coordinates. 1µl of the indicated viruses were 

infused bilaterally into the VTA (Bregma: anterior/posterior: -3.08mm, 

medial/lateral: ±0.5mm, dorsal/ventral: -4.5mm) at a rate of 0.2µL/min. Syringes 

were left in place for a minimum of 5 minutes post-infusion prior to removal. Mice 

were housed for a minimum of four weeks before experiments were performed. 

Viral expression in each animal was confirmed by visualizing GFP expression in 

0.3mm coronal ventral midbrain slices.  

 

Ex vivo slice biotinylation 

Ex vivo striatal slices were prepared 4-5 weeks following viral injection in Pitx3IRES2-

tTA/+ mice (for Rit2 KD studies), or from 5-7 week old C57Bl/6J (for PKC specificity 

studies). Mice were sacrificed by cervical dislocation and rapid decapitation and 

heads were immediately submerged in ice cold, oxygenated cutting solution, pH 

7.4 (in mM: 20 HEPES, 2.5 KCl, 1.25, NaH2PO4, 30 NaHCO3, 25 glucose, 0.5 

CaCl2·4H2O, 10 MgSO4·7H2O, 92 N-methyl-D-glucamine (NMDG), 2.0 thiourea, 

5.0 Na+-ascorbate, 3.0 Na+-pyruvate) for 1 min. Brains were removed and 300µm 

coronal slices were prepared with a VT1200 Vibroslicer (Leica) in ice-cold, 

oxygenated cutting solution. Slices were hemisected along the midline, and were 

recovered in ACSF, pH 7.4 (in mM: 125 NaCl, 2.5 KCl, 1.24, NaH2PO4, 26 

NaHCO3, 11 glucose, 2.4 CaCl2·4H2O, and 1.2 MgCl2·6H2O) 40 min, 31°C. Hemi-

slices were treated ±1µM PMA in ACSF, 30min, 37°C with constant oxygenation, 
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using their contralateral hemi-slice as a vehicle-treated control. Following drug 

treatment, slices were moved to ice and surface DAT was labeled by biotinylation 

as previously described (Gabriel et al., 2013; Wu et al., 2015; Sweeney et al., 

2020). Briefly, slices were biotinylated with membrane-impermeant sulfo-NHS-SS-

biotin (1mg/ml), 45min, 4°C. Residual biotin was quenched 2x 20 min washes of 

ice-cold ACSF supplemented with 100mM glycine, and were washed with ice-cold 

ACSF. Hemi-slices were enriched for dorsal and ventral striatum, by sub-

dissecting in a line from the anterior commissure to the lateral olfactory tract.  

 

Sub-dissected slices were lysed in RIPA buffer containing protease inhibitors, and 

tissue was disrupted by triturating sequentially through a 200µL pipet tip, 22G and 

26G tech-tips. Samples rotated 30min at 4°C to complete lysis, insoluble material 

was removed by centrifugation, and protein concentrations were determined using 

the BCA protein assay. Biotinylated proteins were isolated by batch streptavidin 

chromatography, overnight with rotation, 4°C, at a ratio of 20µg striatal lysate to 

30µL streptavidin agarose beads, which was empirically determined to recover all 

biotinylated DAT. Recovered proteins were washed with RIPA buffer and eluted 

from beads in 2X SDS-PAGE sample buffer, 30min, room temperature with 

rotation. Eluted (surface) proteins and their respective lysate inputs were resolved 

by SDS-PAGE, and DAT was detected by immunoblotting as described above. 

%DAT at the cell surface was calculated by normalizing surface signals to the 

corresponding total DAT input signal in a given hemi-slice, detected in parallel. 
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Note that all slice data for Rit2-KD experiments in the current study were acquired 

during the course of our previous study, in which we first achieved AAV-mediated 

Rit2 KD (Sweeney et al., 2020). Basal DAT surface levels in vehicle-treated male 

slices were compared and reported in that study, and thus were not re-analyzed 

for the current study. However, the DAT surface levels from vehicle-treated male 

hemislices were reused in the current study as controls to determine whether PMA 

treatment affected DAT surface levels in contralateral hemi-slices. Rit2 knockdown 

in females was confirmed by RT-qPCR (Figure S1c of previous study (Sweeney et 

al., 2020)). For males, successful viral expression (AAV9-eGFP and AAV9-eGFP-

shRit2) was confirmed by visual detection of GFP reporter immunofluorescence in 

midbrain slices from each experimental animal. For PKC specificity studies, data 

were reported as %change in DAT surface levels in drug-treated hemislices, 

normalized to their vehicle-treated, contralateral hemi-slices.  

 

Cell Culture and transfection 

Cells were maintained at 37°C, 5% CO2. SK-N-MC cells were grown in MEM 

(Sigma), and HEK293T, HEK293 (FRET studies) and N2a cells were grown in 

DMEM (CellGro/Corning), each supplemented with 10% fetal bovine serum, 2mM 

glutamine, and 100 units/mL penicillin-streptomycin. SK-N-DZ cells were grown in 

DMEM (ATCC #30-2002) supplemented with 10%FBS, 1X non-essential amino 

acids (Gibco) and 100u/mL penicillin-streptomycin. HEK293T cells were 

transfected using Lipofectamine 2000 (Invitrogen) according to manufacturer’s 
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instructions with the following modifications: For biochemical and RT-qPCR 

studies, cells were seeded into 6-well plates at a density of 1x106 (SK-N-MC), 

5x105 (HEK293T), or 2.5x105 (N2a) cells/well one day prior to transfection, and 

were transfected with 3μg (SK-N-MC) or 2μg (HEK293T and N2a) plasmid 

DNA/well using a lipid:DNA ratio of 2:1 (SK-N-MC and HEK293T) or 4:1 (N2a). 

Stable cell lines were generated by selecting cells starting 48 hrs following 

transfection, with 0.5 mg/mL (SK-N-MC) or 0.8 mg/L (SK-N-DZ) G418 (Geneticin, 

Invitrogen/Life Technologies). Stably transfected cells were pooled and cell lines 

were maintained under selective pressure using 0.2 mg/mL or 0.32 mg/mL G418 

for SK-N-MC and SK-N-DZ cells, respectively. For FRET imaging studies, HEK293 

cells were seeded into an 8-well chambered coverslip (ibidi) at a density of 2x104 

cells/well one day prior to transfection, and were transfected with the indicated 

plasmids using JetPRIME (Polyplus-transfection) according to the manufacturer’s 

protocol. FRET studies were performed 24 hrs post-transfection. 

 

shRNA, Lentiviral production and cell transduction 

GIPZ lentiviral shRNA constructs targeted to Rit2, and empty pGIPZ vector control, 

were obtained from Dharmacon. Tested shRNA clone ID’s and mature antisense 

sequences were as follows: 

shRit2-104: V3LHS_380104; CTTCTTCTTCAAAGAACCT 

shRit2-105: V3LHS_380105; TTGTTACCCACCAGCACCA 

shRit2-107: V3LHS_380107; CTTCTTCTTCAAAGAACCT 
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Lentiviral particles were produced in HEK293T cells as previously described (Wu 

et al., 2015). For cell transduction, 1x106 cells DAT-SK-N-DZ cells were seeded 

onto 6-well plates and were transduced with 3.0mL of lentiviral supernatant, 

supplemented with 0.8µg/mL polybrene, 16-24 hours post-seeding. Cells were 

selected for transduction beginning 24 hours post-infection (72 hrs total) with SK-

N-DZ media supplemented with 1.25µg/mL puromycin. Assays were conducted 96 

hrs post-transduction.  

 

FRET 

FRET was measured using an iMIC inverted microscope (TILL Photonics GmbH). 

Samples were focused using a 60X (N.A. 1.49) oil objective (Olympus). 

Fluorescence was excited using a 100 W Xenon Lamp (Polychrome, Till Photonics 

GmbH). Excitation light was filtered through either a 436/20 nm (CFP) or 514/10 

nm (YFP) excitation filter (Semrock) and directed to the sample via a 442/514 dual 

line dichroic mirror (Semrock). Emitted fluorescence light was filtered through a 

480/40 nm - 570/80 nm dual emission filter (Semrock) and directed to a 

beamsplitter unit (Dichrotom, Till Photonics). Briefly the emission light was 

separated spatially according to the fluorescence wavelength using a 515 nm 

dichroic mirror (Semrock). The resultant two channels (<515 nm & >515 nm) were 

projected next to each other onto an EMCCD chip (iXon Ultra 897Andor) and 

recorded using Live Acquisition software (version 2.5.0.21; TILL Photonics 

GmbH). To guarantee the best signal to noise ratio and dynamic range, the camera 
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was operated in 16-bit mode with a readout speed of 1 MHz. According to 

manufactories recommendation; an EM-Gain of 16 was applied to overcome the 

noise floor. To analyze FRET (see below) two images were taken per set (Donor 

excitation -> Donor Emission / Acceptor Emission and Acceptor Excitation -> 

Acceptor Emission respectively). Per condition ten sets were recorded each 

experimental day; the images were then analyzed using Offline Analysis software 

(version 2.5.0.2; TILL Photonics GmbH). One region of interest (part of the plasma 

membrane) per cell was selected in the CFP channel. Background fluorescence 

was subtracted from each image and the average intensity of each region of 

interest was used for calculations. Spectral bleed through (BT) for donor (0.57) and 

acceptor (0.04) was determined using HEK293 cells expressing a CFP or YFP 

signal only. Normalized FRET (NFRET) was calculated as follows:  

NFRET =
𝐼!"#$ − (𝐵𝑇%&'&( ×	𝐼%&'&() −	(𝐵𝑇)**+,-&( ×	𝐼)**+,-&(	)

/𝐼%&'&( ×	𝐼)**+,-&(
	𝑥	100 

A fused CFP-YFP construct (CYFP) was included as positive control, resulting in 

maximum FRET. Non-fused donor and acceptor fluorophores were included as a 

negative control. To confirm that the calculated NFRET values reflect bona fide 

FRET, donor (CFP) recovery after acceptor (YFP) photobleaching (DRAP) 

experiments were included to support the conclusion that the fluorophore-tagged 

proteins directly interact at the site of the photobleaching. Average acceptor 

photobleaching was 85±4% (mean ±SD). 
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RNA extraction & RT-qPCR 

RNA was isolated from cell lines and rodent midbrain using RNAqueous®-Micro 

Kit RNA Isolation (Thermo Fisher Scientific). For ventral midbrain samples, 1.0 mm 

bilateral tissue punches, encompassing both the ventral tegmental area and 

substantia nigra par compacta, were taken from 300µm acute mouse and rat 

midbrain slices. Reverse transcription was performed using RETROscript® 

Reverse Transcription Kit (Thermo Fisher Scientific). Quantitative PCR was 

performed and analyzed using the Applied Biosystems® 7500 Real-Time PCR 

System Machine and Software, using Taqman® Gene Expression Assays for 

human Rit2 (Hs01046673_m1), Rit1 (Hs00608424_m1), and GAPDH 

(Hs99999905_m1), mouse Rit2 (Mm01702749_mH), and GAPDH 

(Mm99999915_g1), and rat Rit2 (Rn01760884_m1) and GAPDH 

(Rn01775763_g1).  

 

[3H]DA uptake assay 

SK-N-MC cells stably expressing BBS-DAT were seeded onto 96-well plates at a 

density of 7.5x104/well 24 hrs prior to assay. Cells were washed twice with Krebs-

Ringer-HEPES buffer (120mM NaCl, 4.7mM KCl, 2.2mM CaCl2, 1.2mM MgSO4, 

1.2mM KH2PO4, and 10mM HEPES, pH 7.4) and pre-incubated in KRH 

supplemented with 0.18% glucose ±1µM PMA, 30 min, 37°C. 100nM desipramine 

was included in all samples to eliminate uptake contribution of endogenous 

norepinephrine transporter. DA uptake was initiated by addition of 1µM [3H]DA 
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(Perkin Elmer: Dihydroxyphenylethylamine (Dopamine), 3,4-[Ring-2,5,6-3H]) in 

KRH supplemented with 0.18% glucose, 10µM pargyline, and 10µM ascorbic acid. 

Assays proceeded for 10min, 37°C, and were terminated by three rapid washes 

with ice-cold KRH buffer. Cells were solubilized in scintillation fluid, and 

accumulated radioactivity was determined by liquid scintillation counting in a 

Wallac MicroBeta scintillation plate counter. Non-specific DA uptake was defined 

in the presence of 10μM GBR12909.  

 

Internalization Assays and Immunoblotting 

Relative internalization rates over 10 minutes were measured by reversible 

biotinylation as previously described (Loder and Melikian, 2003; Holton et al., 

2005; Wu et al., 2015). Briefly, the indicated stably transfected cells were seeded 

into 6-well plates at 1.5x106 cells/well one day prior to analysis. Cells incubated 

twice with 2.5 mg/mL sulfo-NHS-SS-biotin (15 min, 4°C) and quenched twice with 

PBS2+ (PBS, pH 7.4, 1.0mM MgCl2, 0.1mM CaCl2) supplemented with 100mM 

glycine (15 min, 4°C). Internalization was initiated by rapidly warming cells in 

prewarmed PBS2+ supplemented with 0.18% glucose, 0.2% protease-/IgG-free 

bovine serum albumin, and proceeded for 10min, 37°C in the presence of the 

indicated drugs. Parallel surface-labeled controls remained at 4°C. Cells were 

rapidly cooled by washing thrice with ice-cold NT buffer (150mM NaCl, 20mM Tris, 

pH 8.6, 1.0mM EDTA, pH 8.0, 0.2% protease-/IgG-free bovine serum albumin) and 

remaining surface biotin was stripped by reducing in 100mM TCEP in NT buffer 
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twice (25 min, 4°C). Cells were rinsed rapidly in PBS2+, and were lysed in RIPA 

buffer (10mM Tris, pH 7.4, 150mM NaCl, 1.0mM EDTA, 0.1% SDS, 1% Triton-X-

100, 1% sodium deoxycholate) containing protease inhibitors (1.0mM PMSF and 

1.0g/mL each leupeptin, aprotinin, and pepstatin). Lysates were cleared by 

centrifugation and protein concentrations were determined with the BCA protein 

assay (Thermo Fisher) using BSA as a standard. Biotinylated proteins were 

recovered by streptavidin batch chromatography from equivalent amounts of cell 

lysate, and were eluted in 2X Laemmli sample buffer, 30 min, room temperature 

with rotation. Eluted proteins were resolved by SDS-PAGE and proteins were 

detected and quantified by immunoblotting: hDAT and DAT/C-S were detected 

with amino-directed rat anti-DAT (MAB369, Millipore, 1:2000), and N-S/DAT and 

S/DAT/S were detected with amino-directed mouse anti-hSERT (MAb 

Technologies,1:2000). Immunoreactive bands were detected using a VersaDoc 

imaging station (Bio-Rad), and were in the linear range of detection. Internalization 

rates were calculated as %surface protein internalized/10 min, as compared to 

their respective surface signal at t=0 min (controls that were biotinylated and kept 

at 4°C). Note that for all representative immunoblots shown throughout the study, 

all brightness/contrast manipulations were made uniformly across any given blot. 

For presentation purposes, immunoreactive bands were cropped from the same 

exposure of the same immunoblot.  

 

BBS-DAT/chimera pulldowns 
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HEK293T cells were transiently co-transfected with HA-Rit2, and either BBS-DAT 

or BBS-DAT chimeras, at a DAT:Rit2 plasmid ratio of 1:4, as described above. 

Cells were washed thrice with ice cold PBS2+ and surface BBS-DAT chimeras were 

labeled with 120μM biotinylated α-bungarotoxin (a-BTX-b, Thermo Fisher) in 

PBS2+, 2 hrs, 4ºC. For drug treatments, cells were treated with the indicated drugs 

30 min, 37°C, prior to labeling with a-BTX-b. Following labeling, a-BTX-b solution 

was removed, cells were washed thrice with ice cold PBS2+, and were lysed in ice-

cold co-immunoprecipitation (co-IP) lysis buffer (50mM Tris, pH 7.4, 100mM NaCl, 

1% Triton X-100, 10% glycerol, and 1.0mM EDTA) containing protease inhibitors 

(1.0mM PMSF and 1.0g/mL each leupeptin, aprotinin, and pepstatin) and 

Phosphatase Inhibitor Cocktail V (EMD Millipore), 30 min, 4°C. Labeled proteins 

were recovered from equivalent amounts of protein by batch affinity 

chromatography with streptavidin-coupled M280 Dynabeads (Thermo Fisher), 

4°C, overnight with rotation. Lysate/bead ratios were empirically determined to 

assure quantitative recovery of all labeled proteins in lysates. Beads were gently 

washed thrice with ice-cold co-IP buffer, with magnetic recovery between washes, 

and isolated proteins were eluted from beads in an equal volume of co-IP lysis 

buffer and 2X SDS-PAGE sample buffer (100mM Tris, pH 6.8, 4.4% SDS, glycerol, 

100mM DTT, and 0.04% bromophenol-blue). Isolated proteins were resolved by 

SDS-PAGE, and specific protein bands were detected by immunoblotting with 

antibodies for rat anti-DAT (1:2000), mouse anti-hSERT (1:2000), and rabbit anti-

HA (1:2000) as indicated above. Immunoreactive HA-Rit2 band densities were 
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normalized to their respective recovered DAT, or chimera, bands in each 

independent experiment.  

 

Statistical Analysis 

All data were analyzed using GraphPad Prism software. Prior to analyses, 

statistical outliers within data sets were identified using either Grubb’s or Rout’s 

outlier test, and were removed from further analysis. Specific statistical tests used 

are detailed within each figure legend. For comparisons between two groups, a 

Student’s t test was used. For comparison among more than two experimental 

groups, one-way ANOVA with appropriate post-hoc multiple comparison test was 

performed, as indicated within each figure legend. 
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CHAPTER III 

 

Ric GTPase activity regulates dopaminergic function and sleep quality in a 

dopamine transporter-dependent manner in Drosophila melanogaster 

 

Rita R. Fagan, Dino Leuthi, Harald Sitte, Patrick Emery, Haley E. Melikian 

 

III.A Summary 

DA is a critical regulator of movement, sleep, reward, and cognition. The 

presynaptic dopamine transporter (DAT) clears released DA with spatial and 

temporal precision essential for maintaining DA signaling and homeostasis. 

Addictive and therapeutic psychostimulants, including MPH (Ritalin), cocaine, and 

AMPH, are competitive DAT inhibitors (MPH, cocaine) and substrates (AMPH) that 

enhance extracellular DA. DAT genetic ablation in mice and invertebrates leads to 

hyperactivity, reduced sleep, and blunted psychostimulant responses, highlighting 

DAT’s essential role in maintaining DA homeostasis. DAT plasma membrane is 

tightly regulated by intrinsic mechanisms, including PKC activation. However, the 

physiological impact of disrupted DAT trafficking remains unknown. Our group 

found that Rit2, a neuronal GTPase that binds to DAT, is required in mice for PKC-

stimulated DAT downregulation in ex vivo striatal slices. DAergic Rit2 expression 

is also required for the acute locomotor response to cocaine injection in male mice. 

Here, we leveraged the model organism, Drosophila melanogaster, to genetically 
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test whether Rit2 impacts DAT function. We found that, similar to mammalian DAT 

and Rit2, dDAT and Ric (the Drosophila Rit2 homolog) directly interact. Moreover, 

constitutively active Ric increased dDAT function in cell culture and ex vivo 

Drosophila brain preparations. Importantly, constitutively active Ric expressed in 

DA neurons impacted sleep consolidation in a DAT-dependent manner, but had 

no effect on overall locomotion or sleep. These studies are among the first to 

provide evidence that manipulating proteins required for regulated DAT 

endocytosis alter a DA-dependent behavior via its actions at DAT.  

 

III.B Introduction 

The catecholamine neurotransmitter DA mediates a variety of behaviors such as 

motor function, sleep, learning, and reward (Wise, 2004; Schultz, 2007a). 

Addiction is also fundamentally linked to plastic changes in DA transmission 

(Hyman et al., 2006). Moreover, neuropsychiatric diseases including PD, ADHD, 

ASD, and schizophrenia are associated with aberrant DA signaling (Iversen and 

Iversen, 2007; Sharma and Couture, 2014; Howes et al., 2017; Eissa et al., 2018; 

Geibl et al., 2019). The DAT is expressed on presynaptic DA neurons and spatially 

and temporally controls DA transmission by clearing extracellular DA following 

release, thereby terminating the DA signal. DAT not only regulates extracellular 

DA levels, but also critically replenishes vesicular DA stores for future release 

(Gainetdinov et al., 1998). Psychostimulants such as cocaine, AMPH, and MPH 
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competitively inhibit DA reuptake through DAT, further emphasizing DAT’s role in 

regulating DA transmission and addiction. 

 

Genetic DAT ablation in vertebrate and invertebrate animal models blocks 

psychostimulant-induced hyperactivity and reward, and causes hyperactivity and 

sleep loss (Giros et al., 1996; Wisor et al., 2001; Kume et al., 2005; Pizzo et al., 

2013). DAT knock-out (DAT-/-) mice display alterations in their sleep and waking 

patterns in which their waking episodes (or bouts) are three times longer than 

wildtype controls (Wisor et al., 2001). Drosophila melanogaster DAT (dDAT)-null 

fruit flies (“fumin”, fmn) also sleep significantly less than wildtype flies, with shorter 

and fewer resting bouts (Kume et al., 2005). Given DAT’s fundamental role in 

regulating DA homeostasis and signaling, mechanisms that modify DAT function 

or expression at the plasma membrane will likely alter DAergic neurotransmission 

and behavior. 

 

Decades of research support that acute PKC activation increases the DAT 

internalization rate and decreases the surface delivery rate, resulting in a net loss 

of DAT plasma membrane expression, demonstrated in vitro and in ex vivo striatal 

slice preparations (Daniels and Amara, 1999; Melikian and Buckley, 1999; 

Kristensen et al., 2011; Gabriel et al., 2013; Bermingham and Blakely, 2016). 

However, it remains unknown whether PKC-stimulated DAT trafficking impacts 

DA-dependent behavior. Our group first discovered that PKC-stimulated DAT 
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endocytosis requires activity of the GTPase, Rit2, and that DAT also interacts with 

Rit2 (Navaroli et al., 2011). In a follow-up study, we demonstrated that PKC 

activation caused DAT and Rit2 to dissociate at the cell surface, and the DAT N-

terminus was required (Fagan et al., 2020). Using a conditional and inducible 

knockdown approach (Rit2-KD), we found that DAergic Rit2 is required for anxiety 

behavior and acute cocaine locomotor response in vivo (Sweeney et al., 2020). 

Notably, we recently reported that Rit2-KD blocked PKC-stimulated DAT surface 

loss in DA terminals (Fagan et al., 2020). These data indicate that the Rit2-

dependent behavior phenotypes may occur due to the loss of PKC-stimulated DAT 

internalization, however they do not rule out the possibility that Rit2 acts 

independently of DAT to regulate DA transmission and behavior.  

  

Apart from regulating DAT surface expression, the neuronal GTPase Rit2 is also 

required for nerve growth factor-stimulated neurite outgrowth and p38 MAP kinase 

activation in cultured neuroendocrine cells (Shi et al., 2005). Rit2 can also promote 

cellular viability of neuronal SH-SY5Y cells by maintaining phosphorylated ERK 

levels (Uenaka et al., 2018). Of note, SNPs and copy number variations in Rit2 

have been identified in multiple GWAS studies investigating neuropsychiatric 

diseases and disorders, including PD (Daneshmandpour et al., 2018), 

schizophrenia (Glessner et al., 2010; Emamalizadeh et al., 2017), and ASD  (Liu 

et al., 2016; Hamedani et al., 2017). Additionally, Rit2 expression is restricted to 

neurons and is suggested to be enriched in DA neurons (Zhou et al., 2011). Thus, 
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whether the behavioral phenotypes caused by Rit2-KD are a result of Rit2’s actions 

at DAT, or are DAT-independent, remains unknown. Drosophila may be a powerful 

model system to address this question, however it is completely unknown whether 

dDAT interacts with Ric, the invertebrate Rit2 homolog, or if dDAT is subject to 

similar surface or functional regulation as its mammalian counterparts.  

 

In this study we used cell type-specific RNAi and mutant overexpression to test 

whether dDAT and Ric interact, and may serve as invertebrate model for the DAT-

Rit2 interaction. We further target Ric to examine the in vivo consequence of 

disrupted DAT function (Wes et al., 1996; Shi et al., 2013). The DA system is highly 

conserved between flies and mammals, providing a highly tractable and simplified 

model for studying DA neurotransmission (Martin and Krantz, 2014). Our results 

indicate that Ric activity modulates dDAT function and surface expression, and 

expressing constitutively active Ric specifically in DA neurons significantly altered 

Drosophila sleep architecture in a dDAT-dependent manner.   

 

III.C Results 

Ric interacts with dDAT 

Our lab discovered that Rit2 is required to stabilize DAT surface expression 

through its dynamic interaction with DAT at the plasma membrane, and is required 

for PKC-dependent DAT surface regulation (Navaroli et al., 2011; Fagan et al., 

2020). However, it is not known whether Rit2-dependent behavior phenotypes are 
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due to DAT’s reliance on Rit2 for PKC-stimulated internalization, or, alternatively, 

are DAT-independent. In order to address this question, we utilized the model 

organism, Drosophila melanogaster, which expresses a single Rit2 homolog, Ric. 

Ric shares ~71% homology with Rit2, however it is expressed ubiquitously in the 

fruit fly, in contrast to neuron-specific Rit2 (Lee et al., 1996; Wes et al., 1996; 

Spencer et al., 2002b). The known cellular functions of Ric are limited thus far, 

though Ric does bind to calmodulin (Wes et al., 1996) and was demonstrated to 

be important for neurite outgrowth and wing vein formation (Harrison et al., 2005). 

 

We recently discovered that PKC activation causes DAT and Rit2 to dissociate at 

the plasma membrane, and PKC-mediated DAT-Rit2 dissociation is likely a 

required step for releasing the DAT endocytic brake (Fagan et al., 2020). 

Therefore, we first tested whether dDAT and Ric directly interact by live cell 

fluorescent resonance energy transfer (FRET). HEK293 cells were co-transfected 

with YFP-tagged DAT (either human or Drosophila) and either CFP-Ric or CFP-

Rit2, and FRET signals were measured. A significant FRET signal was detected 

by all FRET pairs compared with CFP+YFP controls (Figure III.1A). As previously 

reported, hDAT+Rit2 elicited a significant FRET signal. Similarly, dDAT and Ric 

produced a significant FRET signal as compared with CFP+YFP, and which did 

not differ from the hDAT+Rit2 signal (p=0.92). Interestingly, pairing either hDAT 

and Ric or dDAT and Rit2 also yielded significant FRET signals, as compared with 

CFP+YFP controls, suggesting that DAT and Rit2 interacting domains may be 
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conserved across species. This result was intriguing, and prompted us to examine 

whether hDAT and Ric associate at the plasma membrane when measured using 

a labeling and pulldown approach previously described by our lab. Specifically, we 

engineered a bungarotoxin (BTX) binding site (BBS) into the second extracellular 

loop of human DAT (hDAT), which allowed specific examination of the surface 

hDAT protein complex, and confirmed the DAT-Rit2 surface interaction (Fagan et 

al., 2020). To evaluate whether a surface association could occur between Ric and 

dDAT, we co-transfected HEK293T cells with HA-tagged Ric and BBS-hDAT, 

labeled with a-BTX-b, and protein complexes were isolated by streptavidin 

pulldown. BBS-hDAT recovered HA-Ric (Figure III.1B), indicating that hDAT and 

Ric can form a complex in heterologous cells, and lending further support to the 

hypothesis that the DAT and Rit2 interacting domains are conserved. 
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Figure III.1: Ric interacts with dDAT. A. FRET microscopy. HEK293 cells were 
transfected with YFP-tagged hDAT or dDAT and CFP-tagged Rit2 or Ric 
constructs. FRET microscopy was performed in live cells as described in 
Experimental Procedures. A significant FRET signal was detected by Kruskal-
Wallis test (p<0.0001, n=19-76 cells) compared to CFP+YFP controls in all FRET 
pairs (Dunn’s multiple comparisons test): hDAT+Rit2 (****p<0.0001), hDAT+Ric 
(***p=0.0002), dDAT+Rit2 (****p<0.0001), and dDAT+Ric (****p<0.0001). 
hDAT+Rit2 FRET signal did not differ from dDAT+Ric (p=0.9128). B. BBS-DAT 
pulldown. HEK293T cells were transfected with BBS-hDAT and HA-Ric. Cells were 
labeled with biotinylated bungarotoxin and BBS-hDAT was pulled down as 
described in Experimental Procedures. BBS-hDAT associated with HA-Ric 
(representative blots of three individual experiments shown.  
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Constitutively active Ric increases dDAT function and surface levels 

Next, we asked whether Ric activity is required for dDAT function. DA transport 

kinetics were measured in HEK293T cells transfected with dDAT and either vector, 

wildtype (Ric-WT) constitutively active (CA) Ric (RicQ117L), or dominant negative 

(DN) Ric (RicS73N). dDAT took up DA with a Km of 5.49 ± 1.79µM, consistent with 

previously reported values (Porzgen et al., 2001) (Figure III.2A), and co-expression 

of WT or mutant Ric did not significantly affect dDAT DA affinity (Figure III.2B). 

DN-RicS73N had no effect on the Vmax of dDAT compared with Ric-WT, however, 

RicQ117L expression significantly increased DA uptake velocity (Figure III.2B). An 

increase in Vmax could be a result of either increased dDAT surface expression 

or enhanced substrate turnover rates. To distinguish between these two 

possibilities, we used surface biotinylation to directly test whether RicQ117L 

increased dDAT surface levels.  Compared with cells transfected with Ric-WT, 

RicQ117L overexpression significantly increased dDAT surface expression 

(Figure III.2C), indicating that RicQ117L-dependent increased dDAT function likely 

resulted from enhanced dDAT surface levels.  

 

DAergic RicQ117L expression increases DA uptake ex vivo  

Given that Ric activity regulates dDAT function and expression in mammalian 

heterologous cell models, we tested whether this regulation occurs in DA terminals 

where these proteins are endogenously expressed. To ask this question, we 

employed an ex vivo Drosophila whole brain uptake assay (Cartier et al., 2015) 
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and asked whether RicQ117L similarly increases DA uptake in situ. TH-GAL4 flies 

were crossed to wildtype or UAS-HA-RicQ117L flies to drive RicQ117L expression 

selectively in DA neurons (Friggi-Grelin et al., 2003), and DA uptake was 

measured in male progeny (TH-GAL/UAS-RicQ117L). Control TH-GAL4/+ flies 

took up 2.36 ± 0.63µM fmol/min/brain, and RicQ117L overexpression significantly 

increased uptake to 3.94 ± 0.03µM fmol/min/brain (Figure III.2D). Together, these 

data demonstrate that Ric GTPase activity regulates dDAT function in intact fly 

brains, and suggest that dDAT is subject to similar mechanistic control as its 

mammalian homolog.  
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Figure III.2 Ric activity increases dDAT function and surface expression. DA 
uptake kinetics. HEK-293T cells were transfected with HA-dDAT and pcDNA3.1(+) 
(vector), HA-Ric-WT, HA-RicQ117L, or HA-RicS73N and [3H]DA uptake kinetics 
were measured as described in Experimental Procedures. A. Representative 
kinetic curves. B. Average Km (left) and average Vmax are presented as a 
percentage of Ric-WT overexpression. HA-RicQ117L significantly increased dDAT 
Vmax (one-way ANOVA: F(3, 37) = 4.52, p=0.008; Dunnett’s multiple comparisons 
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test *p=0.01,  n=7-13). Ric activity had no effect on DA affinity (one-way ANOVA: 
F(3, 38) = 2.141, p=0.11). C. Surface biotinylation. HEK293T cells were transfected 
with HA-dDAT and vector or HA-RicQ117L constructs and dDAT surface 
expression was measured as described in Experimental Procedures. 
Representative blots (left). RicQ117L significantly increased dDAT surface levels 
compared to vector-transfected controls (one-tailed student’s t test: *p=0.038, 
n=5). D. Ex vivo whole brain [3H]DA uptake. TH-Gal4 flies were crossed to +/+ 
(TH-Gal4/+) or UAS-RicQ117L (TH-Gal4/UAS-RicQ117L) flies. Crosses were 
maintained and dissected from male progeny as described in Experimental 
Procedures. DA uptake was measured in 4 brains per condition, and nonspecific 
uptake was defined with 10µM nisoxetine. TH-Gal4/UAS-RicQ117L flies had 
significantly more DA uptake than TH-Gal4/+ controls (one-tailed student’s t test: 
*p=0.034, n=4-5).  
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DAergic Ric activity does not impact locomotor activity or total sleep 

DA controls locomotion and regulates sleep in Drosophila (Riemensperger et al., 

2011; Ueno et al., 2012). Moreover, flies lacking dDAT are hyperactive and sleep 

significantly less than wildtype and do not recover following sleep deprivation, 

indicating that dDAT is also required for total sleep and homeostatic sleep 

regulation (Kume et al., 2005; Ueno and Kume, 2014). Given that RicQ117L 

increases dDAT transport velocity in whole brain preparations, we tested whether 

DAergic Ric activity is required for sleep or locomotion. We hypothesized that if 

dDAT function increases, there will be less extracellular DA, which could reduce 

locomotor activity. Using the TH-GAL4 driver, we overexpressed Ric-WT (TH-

GAL4/UAS-Ric-WT), DN RicS73N (TH-GAL4/UAS-RicS73N), or CA RicQ117L 

(TH-GAL4/UAS-RicQ117L) in DA neurons. Male progeny 0-3dpe were placed in 

the Drosophila Activity Monitor (DAM) system, and sleep and locomotor behavior 

were assessed at 12hr light/dark cycle following entrainment. Data were analyzed 

using the sleep and circadian analysis MATLAB program (SCAMP), and sleep was 

defined as 5 consecutive minutes of inactivity (Donelson et al., 2012). DAergic 

expression of Ric-WT, RicS73N, and RicQ117L had no effect on total locomotor 

activity as measured by beam breaks at any time (24h bin, day (12h), or night (12h) 

(Figure III.3). Total time spent asleep was likewise unaffected, with the exception 

of Ric-WT overexpression during the day, which resulted in. small, but significant, 

decrease in sleep (Figure III.3D).  
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Figures III.3 Ric activity in DA neurons is not required for baseline locomotor 
or sleep behavior. Locomotor and sleep behavior. TH-Gal4 and UAS-Ric-WT, 
UAS-RicS73N, or UAS-RicQ117L flies were crossed and locomotor activity and 
sleep were measured in progeny as the total number of beam breaks and minutes 
spent sleeping during 24h, day (12h lights-on), and night (12h lights-off) bins. Data 
were analyzed by two-tailed student’s t test or Welch’s correction between TH-
Gal4/+ control and experimental animals. A, C, E. Locomotor activity. Left: Total 
locomotor activity counts per 30min averaged over three days at LD. Right: Ric-
WT (A), RicS73N (C), and RicQ117L (E) overexpression had no effect on total 
activity counts during the 24h, day, or night bins (3-6 independent experiments, 
n=24-47 flies/GT). B, D, F. Sleep. Left: Minutes spent asleep per 30min averaged 
over three days at LD. Right: Ric-WT (B) significantly decreased total sleep during 
the day (*p=0.028, n=24-38), but not in the 24h bin or at night. RicS73N (D) and 
RicQ117L (F) had no effect on total sleep in the during the 24h, day, or night bins. 
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DAergic Ric expression is not required for locomotor activity or sleep 

We next tested whether DAergic Ric expression is required for sleep or locomotor 

activity. Four distinct UAS-RicRNAi lines (Figure III.4A) were crossed to Elav-GAL4 

in order to measure their efficacy for RNAi-mediated Ric knockdown. The pan-

neuronal driver was used because Ric is ubiquitously expressed, and therefore DA 

neuron-specific knockdown would be undetectable. RT-qPCR was performed on 

dissected fly brains of male progeny, and, indeed, all four RNAi lines significantly 

reduced Ric mRNA expression as compared to Elav-Gal4/+ control (Figure III.4B). 

Locomotor and sleep behavior were measured in male progeny as described 

above. RicRNAi3 (Figure III.4G-H) and RicRNAi4 (Figure III.4I-J) had no effect on 

total activity or sleep. RicRNAi1 had the most pronounced effects: significantly 

increased locomotor activity and decreased sleep during the lights-on period 

(Figure III.4C-D). Finally, RicRNAi2 showed a subtle decrease in locomotion at 

night (Figure III.4E), with significantly increased sleep at night and decreased sleep 

during the day (Figure III.4F). Due to the fact that, 1) none of these phenotypes 

are consistent across multiple efficacious RNAi lines, and 2) RicRNAi1 is predicted 

to target two other genes apart from Ric, it is not likely that any of the observed 

changes in behavior were specifically due to DAergic Ric knockdown.  
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Figure III.4 Ric expression in DA neurons is not required for locomotor or 
sleep behavior. A. Schematic of Ric RNAi target locations. B. RNAi-mediated Ric 
mRNA knockdown. Elav-Gal4 flies were crossed to UAS-RicRNAi lines 1-4, RNA 
was extracted from dissected fly brains from male progeny, and RT-qPCR was 
performed as described in Experimental Procedures. Ric expression was 
significantly decreased by the Elav-Gal4 driver in all four RicRNAi lines (one-way 
ANOVA: F(4, 11) = 11.20, p=0.0007; Dunnett’s multiple comparisons test versus 
Elav-Gal4/+ results: RNAi1: **p=0.006, RNAi2: *p=0.022, RNAi3: **p=0.001, 
RNAi4: ***p=0.003; n=3-4). C-J. Locomotor and sleep behavior. TH-Gal4 and 
UAS-RicRNAi flies were crossed and locomotor activity and sleep were measured 
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and analyzed in progeny as described above. C, E, G, I. Locomotor activity. Left: 
Total locomotor activity counts per 30min averaged over three days at LD. Right: 
RicRNAi1 (C) significantly increased activity counts during the 24h bin (Welch’s t 
test **p=0.005, n=38-43) and daytime bin (Welch’s t test **p=0.001). RicRNAi2 (E) 
significantly decreased activity at night (*p=0.014; n=44-48). RNAi3 (G) and RNAi4 
(I) had no significant effect on total activity. D, F, H, J. Sleep. Left: Minutes spent 
asleep per 30min averaged over three days at LD. Right: RicRNAi1 (D) 
significantly decreased total sleep during the 24h bin (***p=0.0008, n=38-43) and 
daytime bin (Welch’s t test, ***p=0.0007). RicRNAi2 (F) had no effect during the 
24h bin, but significantly decreased sleep during the day (**p=0.004, n=44-48), 
and significantly increased sleep at night (*p=0.012). RNAi3 (H) and RNAi4 (J) had 
no significant effect on total sleep. 
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DAergic Ric activity decreases sleep bout consolidation  

Sleep and activity bout fragmentation is indicative of reduced sleep consolidation 

and quality, and can negatively impact health and cognitive function (Koh et al., 

2006; Medic et al., 2017), hence we also asked whether DAergic Ric expression 

or activity is required for typical number of sleep episodes in the same animals 

used to test total activity and sleep. Again, RicRNAi lines gave inconsistent results. 

RicRNAi1 (Figure III.5A) and RicRNAi3 (Figure III.5C) had no effect during any 

time frame. RicRNAi2 significantly increased sleep bout numbers, but only during 

the day (Figure III.5B), whereas RicRNAi4 decreased sleep bout numbers at all 

times of the day (Figure III.5D). DAergic Ric-WT overexpression significantly 

reduced sleep bout numbers during the day (Figure III.5E), and DN RicS73N 

reduced sleep bouts, but only at night (Figure III.5F). However, CA RicQ117L 

significantly increased sleep bout numbers during the 24h and daytime bins 

(Figure III.5G), indicating a specific phenotype for CA Ric overexpression.  
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Figure III.5 DAergic Ric activity modulates sleep bout frequency. TH-Gal4 and 
UAS-RicRNAi, Ric-WT, UAS-RicS73N, or UAS-RicQ117L flies were crossed and 
the number of sleep episodes in male progeny were counted for bins of 24h, 
daytime (12h lights-on), and nighttime (12h lights-off), and data were analyzed as 
described above. A-D. RicRNAi sleep bout frequency. RNAi1 (A) and RNAi3 (C) 
had no effect on sleep bout frequency at any time. RNAi2 (B) did not alter sleep 
bout frequency in the 24h nighttime bins, but significantly increased episode 
frequency during the day (**p=0.001, n=44-48). RNAi4 (D) significantly decreased 
sleep bouts at all three bins (24h: ****p<0.0001, n=43-45; day: Welch’s t test: 
****p<0.0001; night: Welch’s t test: **p=0.002). E-G. Ric activity sleep bout 
frequency. Ric-WT (E) had no effect on sleep bout number over 24h or at night, 
but significantly decreased sleep frequency during the daytime (Welch’s t test: 
*p=0.015, n=24-38). RicS73N (F) had no effect on sleep bout number over 24h or 
during the day, but significantly decreased sleep frequency during at night (Welch’s 
t test, *p=0.022, n=41-47). RicQ117L significantly increased sleep bouts during the 
24h bin (**p=0.003, n=36-44) and during the day (**p = 0.001), but did affect sleep 
bout numbers at night. 
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dDAT is required for the RicQ117L sleep fragmentation phenotype 

The data thus far suggest that the RicQ117L-dependent decreased consolidation 

of sleep may be a result of the increased rate of DA reuptake caused by 

overexpression of RicQ117L. However, Ric has other cellular functions, including 

neurite outgrowth and environmental stress survival (Harrison et al., 2005; Cai et 

al., 2011). Moreover, although we demonstrated that Rit2 is required for DA-

dependent behavior and regulated DAT trafficking (Fagan et al., 2020; Sweeney 

et al., 2020), we still do not know if the phenotypes are a result of disrupted DAT 

trafficking or function. Thus, in order to determine whether the RicQ117L-induced 

phenotype is DAT-dependent, we performed epistasis studies in which both driver 

(TH-GAL4) and responder (UAS-HA-RicQ117L) fly strains were crossed onto the 

dDAT null background (fmn;TH-GAL4 and fmn;UAS-RicQ117L). We predicted that 

if any of the locomotor phenotypes were mediated by Ric’s impact on DAT function, 

these phenotypes would be lost on the DAT null background (fmn;TH-GAL4/UAS-

RicQ117L). In fact, we observed that DAergic RicQ117L overexpression in the 

absence of dDAT had no effect on sleep bout number as compared to control flies 

(Figure III.6), indicating that the Ric activity-dependent increase in dDAT function 

and/or surface expression likely drives the increased sleep fragmentation 

phenotype.  
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Figure III.6 RicQ117L-dependent wake and sleep bout fragmentation is 
dDAT-dependent. TH-Gal4 and UAS-RicQ117L flies were crossed onto the 
dDAT-null background (fmn). Locomotor activity and sleep were measured in male 
progeny (fmn; TH-Gal4/UAS-RicQ117L) and analyzed as previously described. A. 
Sleep fragmentation. RicQ117L expression on the dDAT-null background did not 
affect the number of sleep episodes (24h: p=0.1935; day: p=0.608; night: p=0.087, 
n=31-47) compared to fmn; TH-Gal4/+ controls.  
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III.D Discussion 

In the present study, we set out to examine the in vivo impact of the DAT-Rit2 

interaction using Drosophila as a model system. We found that the Drosophila 

homologs, dDAT and Ric, do interact (Figure III.1), indicating that the fruit fly is a 

good model for studying DAT and Rit2. Moreover, DAergic overexpression of the 

CA Ric mutant, RicQ117L, increased dDAT Vmax and surface expression (Figure 

III.2), and decreased sleep quality in adult Drosophila (Figure III.5). Of note, we 

demonstrate that dDAT is absolutely required for this phenotype, providing the first 

indication that indirectly manipulating DAT surface regulation impacts DAergic 

behaviors DAT-dependently. This is an important distinction because proteins that 

regulate DAT surface expression or function likely play other critical roles in the 

cell. Specifically, Ric activity was also demonstrated to stimulate neurite outgrowth 

in PC6 cells (Harrison et al., 2005). Ric binds to calmodulin (Wes et al., 1996), and 

in vivo overexpression of RicQ117L induced ectopic wing vein growth, which was 

exacerbated by concurrent null mutations in calmodulin (Harrison et al., 2005). 

Furthermore, genetic ablation of Ric reduced fly viability in response to 

environmental stress (Cai et al., 2011). Of yet, the only indication that Ric plays a 

role within the central nervous system originates from a large genetic screen that 

utilized pan-neuronal RNAi expression, and identified Ric as a suppressor of 

olfactory memory formation (Walkinshaw et al., 2015). Thus, the results from the 

epistasis experiment (Figure III.6) allow us to more confidently interpret that 

DAergic Ric regulates behavior through its function at DAT. Given that RicRNAi4 
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has the opposite effect on sleep episode number, and is the most efficacious for 

silencing Ric expression, it would be interesting to know whether the RicRNAi4 

phenotype is also DAT-dependent.  

 

What is the mechanism by which RicQ117L increases dDAT function and surface 

expression? In the first report characterizing the Rit2 and DAT interaction, our 

group found that DAT and Rit2 dissociate when DAT internalizes following PKC 

activation, but that this was blocked by the CA Rit2 mutant (Navaroli et al., 2011). 

Moreover, we recently demonstrated that the lack of PKC-stimulated DAT and Rit2 

dissociation correlates with a loss of PKC-stimulated DAT internalization (Fagan 

et al., 2020). Together these data suggest that RicQ117L may not dissociate from 

dDAT, thereby anchoring dDAT to the plasma membrane which, in the presence 

of ongoing cellular signaling, increases dDAT surface levels over time. However, 

it remains to be tested whether RicQ117L blocks PKC-stimulated dDAT 

endocytosis, or, importantly, whether PKC stimulates dDAT trafficking. Due to the 

lack of dDAT-targeted antibodies, PKC-dependent dDAT surface regulation has 

not yet been studied. Further, we did not examine whether PKC stimulates Ric 

dissociation from dDAT, or if Ric mutations block this process. Generating a BBS-

DAT construct would aid in addressing these questions.  Of note, qualitative 

microscopy studies suggested that DN Rit2 did not dissociate from DAT in our 

earlier report (Navaroli et al., 2011), however these experiments were not 

quantitative, and did not specifically examine the surface DAT population. 
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Additional experiments will be required to test whether Rit2 or Ric activity is 

required for PKC-stimulated surface DAT dissociation. 

 

How might an increase in DAT surface expression decrease sleep consolidation? 

It is tempting to speculate that increased DAT surface expression would lead to 

decreased extracellular DA concentrations, leading to increased numbers of 

waking and sleeping episodes. In fact, extracellular DA concentrations are reduced 

by nearly half in the DAT overexpression mouse model, which expresses ~2.5 

times more DAT protein (Salahpour et al., 2008). This hypothesis is also consistent 

with the fact that DAT-/- animals display 1) increased extracellular DA (Gainetdinov 

et al., 1998; Makos et al., 2009), and 2) decreased sleep bout number (or 

increased wake episode length) (Wisor et al., 2001; Kume et al., 2005). However, 

whether DA release or overall DA concentrations in the brain are altered by 

RicQ117L expression remain to be tested. dDAT is also required for sleep rebound 

characterized by increased sleep after mechanical sleep deprivation, indicating a 

role for dDAT in homeostatic sleep regulation (Kume et al., 2005). Given that our 

genetic Ric manipulations did not appear to affect overall waking or sleeping 

behavior, but had more subtle effects on specific sleep quality parameters, it is 

intriguing whether Ric, through dDAT, is required for sleep rebound. Further, 

DAergic RicQ117L expression increased sleep bout frequency during the light 

phase of activity, but not at night (Figure III.5), suggesting a possible influence of 

circadian regulation. Extracellular DA concentrations and rates of DA uptake vary 
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over the light/dark cycle, and DAT is required for circadian oscillations in DA 

release (Ferris et al., 2014). However, whether DAT is differentially sensitive to 

Ric-mediated regulation throughout the day remains unknown. 

 

Our results describe a role for Ric in regulating DAT that impacts behavior and is 

driven by the majority of DA neurons due to our use of the TH-GAL4 driver. TH-

GAL4 expressing cells can be subclassified into different groups based on 

localization (Mao and Davis, 2009). Several labs have isolated individual DA 

neurons and circuits that drive specific behaviors, such as aggression, memory, 

and reward, using genetic approaches (Aso et al., 2012; Alekseyenko et al., 2013; 

Rohwedder et al., 2016). For example, Rohwedder and colleagues demonstrated 

that four DA neurons in the larval Drosophila (i.e. the primary protocerebral anterior 

medial cluster) are required and sufficient for sucrose reward (Rohwedder et al., 

2016). In general, these approaches rely on activating, inactivating, or ablating 

whole neurons in order to define the Drosophila circuits required for distinct DA-

driven behaviors. Investigators recently published a genetic toolkit that leveraged 

GAL4, GAL80, and Split GAL4 lines to delicately control DA neuron activity and 

gene expression (Xie et al., 2018). Thus, future experiments can test whether DAT 

regulation is required for different DA-dependent behaviors with very high circuit 

resolution, and may reveal novel roles for Ric missed by this study given the 

limitations of our driver line.  
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We previously reported that the mammalian homolog of Ric, Rit2, is required in DA 

neurons for baseline anxiety behavior, however Rit2-KD had no effect on overall 

locomotion in mice, consistent with our results testing the role of DAergic Ric 

silence in Drosophila (Figure III.4). Notably, Rit2-KD changed the response to an 

acute cocaine injection; Rit2-KD increased cocaine sensitivity in male mice, and 

decreased cocaine sensitivity in females (Sweeney et al., 2020). Although cocaine 

binding to DAT is required for cocaine-induced reward (Chen et al., 2006), it is 

unclear whether Rit2-KD alters the cocaine response though DAT. Drosophila also 

exhibit psychostimulant-mediated hyperactivity and preference (Bainton et al., 

2000; Andretic et al., 2005; Belovich et al., 2019), and dDAT is required for AMPH-

dependent hyperlocomotion (Pizzo et al., 2013). Thus, future experiments should 

capitalize on the genetic tractability of Drosophila to examine whether Ric activity 

or expression in DA neurons is required for psychostimulant-based behaviors 

DAT-dependently. Of note, cocaine and AMPH also target the Drosophila SERT 

(dSERT) with similar affinities to dDAT (Porzgen et al., 2001). With the goal of 

specifically targeting dDAT, we preliminarily investigated dDAT’s and dSERT’s 

MPH affinity, with the hypothesis that MPH would preferentially compete for 

reuptake at dDAT, similar to the mammalian homologs (Han and Gu, 2006). 

Inhibitor dose-response curves performed in transfected HEK293T cells revealed, 

surprisingly, that the IC50 of MPH for dDAT and dSERT does not significantly differ 

(dDAT: 43.0 ± 12.6µM vs. dSERT: 38.4 ± 10.6µM, two-tailed student’s t test, 

p=0.79, n=5), whereas IC50 values for hDAT and hSERT differed, as previously 
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reported (hDAT: 0.23 ± 0.12µM vs. hSERT: 158 ± 82.2µM, two-tailed student’s t 

test, p=0.02, n=3-6). These results indicate that MPH is not selective for dDAT vs 

dSERT, and thus cannot be used to pharmacologically dissect DAT- vs SERT-

selective behaviors. However, these results may help elucidate the specific 

residues required for MPH binding through conservation analyses. 

 

The experiments presented here took an indirect approach to test whether 

endocytic DAT regulation impacts behavior. A more direct way of asking this 

pressing question would be to express trafficking-dysregulated mutants in place of 

WT DAT. Previous studies have demonstrated the feasibility of this method in 

Drosophila. Importantly, hDAT suffices to rescue hyperactivity and 

psychostimulant response in fmn flies (Hamilton et al., 2013; Pizzo et al., 2013; 

Hamilton et al., 2014; Pizzo et al., 2014). Using this approach, researchers 

overexpressed WT or mutant hDAT on the fmn background and found that hDAT 

coding variants identified in ASD patients (R51W and T356M) significantly 

increase locomotion and block/reduce the psychostimulant-mediated locomotor 

response (Hamilton et al., 2013; Cartier et al., 2015). These mutations do not affect 

regulated DAT endocytosis, but instead alter baseline DAT function and AMPH-

mediated efflux. On the other hand, the ADHD-associated mutation, R615C-DAT, 

internalizes and recycles significantly faster than WT-DAT at basal states and 

these rates are no longer sensitive to PKC or AMPH stimulation (Sakrikar et al., 

2012; Wu et al., 2015). Hence, this mutation causes a “gain-of-endocytic-function” 
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phenotype. Our group recently characterized a DAT/SERT chimera, in which the 

DAT N-terminus was replaced with the N-terminus (N-S/DAT). N-S/DAT 

constitutively internalizes significantly slower than WT-DAT and also does not 

undergo PKC-stimulated endocytosis, representing a “loss-of-endocytic-function” 

DAT mutant (Fagan et al., 2020). Together, these transporters provide important 

and novel tools for future experiments testing whether perturbing DAT trafficking 

directly impacts DA-dependent behaviors. 

 

This study investigates a conserved role for DAT regulation in invertebrates that 

was previously undescribed. We demonstrate that dDAT is subject to regulation in 

a similar fashion as its mammalian counterparts in heterologous and intact DA 

neuron models. Furthermore, we found that disrupting this regulation through 

genetic tools perturbs DA-mediated behavior DAT-dependently. Future 

experiments that capitalize on DAT trafficking-dysfunctional mutants will further 

our understanding of how regulated DAT endocytosis influences DA transmission 

and behavior.  

 

III.E Experimental Procedures 

Fly stocks 

All fly stocks were maintained on low yeast medium (g/L: 6.5 agar, 23.5 brewer’s 

yeast, 60 cornmeal; 60ml/L molasses, 4mL/L acid mix, 0.13% tegosept) at 25°C, 

60% humidity, and on a 12-hour light/dark cycle. Isogenic w1118 fly strain 
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(VDRC60000) was a gift from Dr. Patrick Emery (UMass Medical School), and was 

used as the wildtype (WT) control. Transgenic strains TH-GAL4 and fmn were gifts 

from Dr. Heinrich Matthies (University of Alabama, Birmingham). Upstream 

activation sequence (UAS) stocks UAS-HA-Ric, UAS-HA-RicQ117L, and UAS-

HA-RicS73N were generated using phiC31-mediated insertion at BestGene Inc. 

UAS-Ric RNAi stocks were from BDSC or VDRC (as indicated below, exact 

location within Ric gene indicated in Figure III.4). All fly strains were backcrossed 

to the w1118 wildtype (+/+) strain for at least six generations and balanced prior to 

behavioral analysis. Transgenes were verified by eye color, or PCR, as necessary.  

 

RicRNAi target sequences 

RNAi1 (VDRC 104782):  

CGAAACAACATGGACACGACACATTGCTTTGAACATCTAGTTCCCAAGCCTT

TTCTCTTAAAACGTACTTTTTAATCGCTTAACTTTCGCGGCGAAAGCAATTCT

ATTATATTTCTACCCGCATTTGATTCGTTTTCGTGTTGGAGCTGTTGTTTTTC

TTTTTTTCGTCAGTCGATCTGTTTGGTTCGAACGGTTGCAGGATTCGCAATA

ACAATTAATTATTAGTAATTATGGGTAGTCCATTCAACTGTTTTTTGGGATCA

TGTAACAAACAGAGTAATTAAAGCCGTGTTAGTATTTTGTTTCCGGTGATGC

AGTTAACATTGATGAGAGGAACTCATGGTGATTGCTTAGAGAACGTGATGTG

TGGTTTCTTGTGGTAAAAGTAATCAACAGATTTCGTTAAACTAATAATAAATA

AACTTAGGCGTAACACGTGTGTCCTTAACAATATAAACAATAGACTTTTCTCA
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AACTTAAACAACAAATGCATCGGCTGTCGTGGACTTAAATTATCAATTTGGG

CTTGGATCTGAAATGAA 

 

RNAi2 (BDSC 27520): 

AGGGCAGAGAATTGGAGGATTTTTAAACTTATGTATGTACGTATTTACCCAG

AATACACGCACATGACATACGTTACACGAGCCACACATTTAACTAATCGAAT

AAATGTTGAATTTAATGTATACTAATATTATAAATCGATCGATCGACCTAAGA

AGTATGTAAAACGCGGGAACATTGCAAATTATGAAATATGAATGAGAATGTG

CGTTCATTTCAGATCCAAGCCCAAATTGATAATTTAAGTCCACGACAGCCGA

TGCATTTGTTGTTTAAGTTTGAGAAAAGTCTATTGTTTATATTGTTAAGGACA

CACGTGTTACGCCTAAGTTTATTTATTATTAGTTTAACGAAATCTGTTGATTA

CTTTTACCACAAGAAACCACACATCACGTTCTCTAAGCAATCACCATGAGTT

CCTCTCATCAATGTTAACTGCATCACCGGAAACA 

 

RNAi3 (VDRC 32929/CyO): 

GGCCATGCGGGACCAATACATGCGTTGCGGCGAAGGTTTCATCATATGCTA

CTCGGTCACCGACCGCCACAGCTTCCAGGAGGCCTCCGAGTACAGGAAAC

TAATAACCCGTGTCCGCCTGTCCGAGGACATTCCGCTGGTTCTGATTGCCA

ACAAGGTGGACCTGGAGTCGCAGCGACGCGTGACCACCGAGGAGGGCCG

GAATCTCGCCAACCAGTTCGGCTGCCCGTTTTTTGAGACATCGGCTGCACT

GCGTCATTACATCGACGAGGCATTCTACACGTTGGTCCGCGAGATTCGACG 
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RNAi4 (BDSC 41819): 

TAGACGAGAGCGATTAAGCAA 

 

cDNA Constructs 

dDAT construct was purchased from Addgene Vector Database, cloned into 

pcDNA3.1(+), and HA-tagged on the N-terminus. Wildtype Ric construct was a gift 

from Dr. Douglas Harrison (University of Kentucky). Ric was cloned into 

pcDNA3.1(+) and tagged on the N-terminus with HA. Site-directed mutagenesis 

was performed using the QuikChange II kit in order to generate Ric activity mutants 

S73N and Q117L. dDAT and Ric were tagged by cutting with HindIII/XbaI and 

subcloned into pEYFP-C1 and cECFP-C1 vectors, respectively, for FRET 

microscopy experiments. HA-Ric constructs were cloned into 5XUAS-pUASTattB 

vector (gift from Dr. Marc Freeman (Vollum Institute – Oregon Health and Science 

University) for phiC31-mediated insertion by BestGene Inc. All sequences 

(including genomic DNA isolated from generated fly stocks) were verified by 

sanger sequencing (GeneWiz).  

 

Locomotor/sleep behavior 

Male progeny 0-3dpe were placed in the Drosophila Activity Monitor (DAM) 

system, and sleep and locomotor behavior were assessed at 25°C, 60% humidity, 

and 12hr light/dark (LD) cycle for 3 days, following 3 days of entrainment under the 

same conditions. At least 3 independent experiments with multiple flies were 
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performed for each genetic manipulation, and data from 3 days of LD were 

averaged from each experiment. Data were analyzed using the sleep and circadian 

analysis MATLAB program (SCAMP) (Donelson et al., 2012). Sleep was defined 

as 5 consecutive minutes of inactivity. 

 

Materials 

Nisoxetine was purchased from Tocris-Cookson and rabbit anti-HA antibody used 

was clone C29F4 from Cell Signaling Technology. All other reagents were from 

either Sigma-Aldrich or Fisher Scientific, and were of the highest possible grade.  

 

Cell culture and transfections 

HEK293T cell culture maintenance and transfections were done as described in 

Chapter II: Experimental Procedures. 

 

FRET 

FRET experiments were performed as described in Chapter II: Experimental 

Procedures.  

 

RNA extraction and RT-qPCR 

Male flies 0-5dpe were dissected in 1X PBS and RNA extraction, reverse 

transcription, and qPCR were done as described in Chapter II: Experimental 
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Procedures. TaqMan® Gene Expression Assays used are as follows: Ric 

(Dm01842764_g1), dGAPDH (Dm0184188_g1).  

 

[3H]DA uptake assay  

Kinetics  

HEK293T cells were transfected with indicated constructs and [3H]DA uptake was 

measured as described previously (Sweeney et al., 2017). Nonspecific uptake was 

defined using 10µM nisoxetine, a highly potent dDAT competitive inhibitor. HA-Ric 

construct expression was confirmed for each experiment via immunoblot, probing 

for HA tag. 

 

Ex vivo uptake 

Whole brain uptake assays were performed as described previously, with slight 

alterations (Cartier et al., 2015). Brains from male progeny 0-3dpe were dissected 

in hemolymph-like solution (70mM NaCl, 5mM KCl, 1.5mM Ca2+ acetate, 10mM 

MgSO4, 5mM HEPES, supplemented daily with fresh 115mM sucrose, 5mM 

trehalose, 10mM NaHCO3, 10µM sodium ascorbate, 10µM pargyline) and 

incubated in HL3 ±10µM nisoxetine (nonspecific) for 30min at 25°C (4 

brains/condition) in cell culture inserts. Uptake was measured using 1µM [3H]DA, 

applied for 7min at RT (linear phase of uptake). Brains were washed 3x1mL ice 

cold KRH, transferred to 96-well plate, and solubilized in scintillation fluid. 

Radioactivity was measured using a Wallac MicroBeta scintillation plate counter. 
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Immunoblotting 

Immunoblotting was performed as described in Chapter II: Experimental 

Procedures.  

 

BBS pulldown 

BBS-DAT pulldowns were performed as described in Chapter II: Experimental 

Procedures. 

 

Statistical analysis 

All data were analyzed using GraphPad Prism software. Statistical outliers were 

identified and removed prior to analysis using Grubb’s or Rout’s outlier tests. 

Specific statistical tests are described within Figure legends. Student’s t test was 

used to compare between two groups, unless the standard deviations were 

significantly different from each other (significant Bartlett’s test). In these cases, a 

Welch’s correction test was used. To compare among more than two experimental 

groups, a one-way ANOVA was used, with appropriate post-hoc multiple 

comparisons test(s), as described within each figure legend.  
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CHAPTER IV 

Discussion and Future Directions 

 

DA neurotransmission is a critical regulator of several behaviors and cognitive 

functions, including movement, sleep, reward, and cognition (Wise, 2004; Schultz, 

2007a; Sulzer, 2011). Extracellular DA is cleared via reuptake through the 

presynaptic DAT; thus, DAT temporally and spatially controls DA signaling events. 

In the absence of DAT, or when DAT is competitively inhibited by either therapeutic 

or addictive psychostimulants, drastic disruptions occur in DA homeostasis and 

DA-dependent behaviors, such as locomotion (Giros et al., 1996; Kume et al., 

2005; Ueno and Kume, 2014). DAT surface expression is therefore crucial to its 

primary function in maintaining DA homeostasis. Further, mutations in DAT found 

in patients with neuropsychiatric diseases and disorders, namely ADHD, ASD, 

BPD, and DTDS, disrupt DAT function and surface expression (Table I.1), further 

highlighting DAT’s importance regulating typical DA neurotransmission. The 

molecular mechanisms underlying DAT surface expression regulation have been 

well-characterized over the past few decades (Kristensen et al., 2011; 

Bermingham and Blakely, 2016), however, the impact of regulated DAT 

endocytosis on behavior remains unexplored. In this thesis, I describe the specific 

mechanism by which Rit2 controls DAT internalization, and demonstrate a 

requirement for Rit2 in regulated DAT trafficking in vivo, with surprising region-

specific differences (Chapter II). Additionally, I leveraged the Drosophila model 
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system to examine the physiological impact of regulated DAT endocytosis on DA-

dependent behavior (Chapter III). 

 

IV.A Rit2 is required for PKC-stimulated DAT endocytosis 

Acute PKC activation decreases DAT surface expression by increasing DAT 

internalization and reducing DAT recycling rates. Our lab previously reported that 

the neuronal GTPase Rit2 binds to DAT and is required for PKC-stimulated DAT 

internalization (Navaroli et al., 2011). However, there were several contradictions 

in this study that only truly came to light a few years after publishing this 

manuscript. First, Rit2 mRNA is limited to neuronal tissues, as demonstrated by 

multiple groups (Lee et al., 1996; Wes et al., 1996), yet we detected equivalent 

Rit2 immunoreactivity with the seemingly specific anti-Rit2 antibody across all cell 

lines examined (including non-neuronal HEK293T, HeLa, COS-1, CHO, and 

IMCD3 cells), suggesting Rit2 may be more ubiquitous than previously thought. 

Second, colocalization experiments performed in PC12 cells with overexpressed 

DAT and Rit2 constructs demonstrated that PKC activation by phorbol ester PMA 

induces DAT-Rit2 dissociation, but in co-IP experiments that relied on endogenous 

Rit2 expression, PKC activation increased the DAT-Rit2 association (Navaroli et 

al., 2011).  

 

A study published two years later examined Rit2 mRNA in SK-N-MC and HEK293 

cells, along with other human neuronal cell lines. Using human brain RNA as a 
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positive control, they found that SK-N-DZ cells express Rit2 mRNA, but SK-N-MC, 

HEK293T, and SK-N-AS cells express little to no Rit2 (Zhang et al., 2013). These 

new findings prompted me to re-evaluate Rit2 expression and potentially 

reinterpret our previous findings, especially since we presumably used shRNA to 

knockdown Rit2 in SK-N-MC cells to determine whether Rit2 is required for PKC-

stimulated DAT functional downregulation (Navaroli et al., 2011). Indeed, using 

RT-qPCR probes specifically targeting Rit2, I did not detect substantial Rit2 mRNA 

in HEK293T, SK-N-MC, or PC12 cells, despite ample expression in mouse and rat 

midbrain lysates (Table II.1). These results were confirmed using a newly-available 

antibody (anti-Rit2 clone 4B5), which does not detect an artifactual ~20kDa 

immunoreactive band in HEK293T cells, whereas the original Rit2 antibody, clone 

27G2, does (Figure II.1). Given this new insight into Rit2 expression patterns, I set 

out to ask, 1) whether Rit2 is, in fact, required for PKC-stimulated DAT 

internalization in heterologous cells and intact DA terminals, 2) how, or if, PKC 

activation alters the DAT-Rit2 interaction and what are the DAT domains involved 

in this process, and 3) whether Ack1 and Rit2 coordinate to facilitate PKC-

stimulated DAT trafficking.  

 

Using a reversible biotinylation assay to measure DAT endocytosis, I found that 

Rit2-KD in DAT-SK-N-DZ cells significantly reduced PKC-stimulated DAT 

internalization rates (Figure II.2), indicating that in cells with measurable Rit2 

mRNA, Rit2 is required for PKC-dependent DAT endocytosis. One caveat to this 
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result is that I was never able to detect Rit2 protein in SK-N-DZ cells by either 

immunohistochemistry or immunoblotting. However, the anti-Rit2 4B5 antibody 

detects an immunoreactive band in mouse striatal and ventral midbrain tissues 

(albeit with low avidity), and conditional Rit2 silencing by viral delivery of Rit2 

shRNA to mouse DA neurons also significantly blocked PKC-stimulated DAT 

surface loss in VS (Figure II.3). Taken together, these results indicate that, indeed, 

Rit2 is required for PKC-stimulated DAT internalization. Notably, we found that 

PKC does not stimulate DAT surface loss in DS in male or female mice (Figure 

II.3-4), providing the first evidence for 1) PKC-stimulated DAT trafficking in female 

mice and 2) region-specific PKC-dependent DAT surface loss. Previous 

experiments measuring DAT surface expression in acute striatal slices following 

PKC activation were done in coronal slices containing the whole striatum from 

male mice (Gabriel et al., 2013). Other groups have also identified dissimilarities 

between VS and DS in DAT function and trafficking; however, the underlying 

mechanisms remain unknown (Zhu et al., 2015; Gowrishankar et al., 2018). 

Possibly, DAT’s intrinsic ability to undergo endocytosis differs in VS compared to 

DS. Alternatively, the proteins required for, or driving, trafficking events (PKC, Rit2, 

DRD2, etc.) are differentially expressed, or couple to different downstream 

signaling cascades. These data highlight that DAT surface regulation is context-

dependent, and future experiments investigating the regional specificity of DAT 

trafficking will further elucidate the mechanisms controlling DAT surface dynamics. 
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Endogenous PKC activation 

We demonstrated that PMA-mediated DAT endocytosis in VS requires PKC 

(Figure II.4). However, the specific isoform required is still not known, although 

conventional isoforms PKCa, bI, d, or e are likely candidates (discussed in further 

detail in “Chapter I: PKC-stimulated DAT trafficking”). PKC activation occurs 

downstream of Gq-coupled GPCR activation, nevertheless the endogenous Gq-

coupled receptors that putatively lead to PKC activation and DAT trafficking within 

DA terminals are largely unknown. Moreover, PMA treatment activates PKC in all 

cells within the striatum, and thus DAT surface changes could be due to PKC 

activation in nearby cells that feeds back onto DA terminals. One possible 

candidate Gq-coupled GPCR is the metabotropic glutamate receptor, mGluR5, 

which was demonstrated by Page and colleagues to stimulate DAT functional loss 

in a PKC-dependent manner (Page et al., 2001). Indeed, unpublished data from 

our lab indicate that mGluR5 activation by agonist (RS)-3,5-

Dihydroxyphenylglycine (DHPG) initiates a biphasic DAT trafficking event in which 

DAT is initially delivered to the cell surface (within 5 minutes of DHPG application), 

followed by a subsequent DAT internalization event that re-establishes baseline 

DAT surface levels by 10 or 30 minutes in the VS and DS, respectively (Kearney 

and Melikian, unpublished data). Of note, mGluR5-mediated insertion requires DA 

release, DRD2 activation, and Vps35 expression, whereas the DAT endocytosis 

requires PKC activation and DAergic Rit2 expression. Future experiments will 

continue to explore this mechanism, specifically testing, via a conditional gene 
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knockout strategy, whether mGluR5 expression in DA terminals is required for 

biphasic DAT trafficking. Further, activating a chemogenetic Gq-GPCR (hM3Dq 

DREADD) expressed exclusively on DA terminals elicits the same biphasic DAT 

trafficking response, confirming that cell-autonomous PKC activation drives DAT 

internalization (Kearney and Melikian, unpublished data). Taken together, DAT 

undergoes phorbol ester- and receptor-mediated endocytosis in intact DA 

terminals, and Rit2 is a required component for both modes of stimulated DAT 

endocytosis. 

 

Is Rit2 required for AMPH’s actions at DAT? 

Data from Chapter II support that Rit2 is required for PKC-stimulated DAT 

endocytosis, but whether Rit2 is required for other types of stimulated endocytosis, 

including AMPH-mediated DAT internalization, is unknown. In argument against a 

role for Rit2 in the mechanism underlying AMPH-stimulated trafficking, AMPH 

treatment increased the DAT-Rit2 surface association (Figure II.6), whereas I 

observed DAT and Rit2 dissociation following PKC-stimulated DAT endocytic 

brake release. This is consistent with previous studies indicating that AMPH- and 

PKC-stimulated DAT trafficking require distinct cellular mechanisms (Boudanova 

et al., 2008a; Hong and Amara, 2013; Wheeler et al., 2015), and differentially alter 

DAT microdomain localization (Navaroli et al., 2011; Butler et al., 2015). However, 

this interpretation must be considered more carefully, as Wheeler and colleagues 

did not examine whether RhoA GTPase (required for AMPH-stimulated 
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internalization) was similarly required for PKC-stimulated trafficking. Likewise, I did 

not examine whether AMPH-stimulated internalization requires Rit2. Interestingly, 

Hoshino and colleagues found that Rit2 associates with other Rho GTPase family 

members, Rac and Cdc42, and, in PC12 cells, Rit2 can activate RhoA (Hoshino 

and Nakamura, 2003; Hoshino et al., 2005). Thus, it is possible that AMPH-

dependent DAT endocytosis also requires Rit2.  

 

Is Rit2 required for AMPH-stimulated DA efflux via its potential role in DAT 

membrane localization? Our lab previously demonstrated that DAT and Rit2 

colocalize significantly more in CTX+ microdomains (Navaroli et al., 2011). AMPH 

drives DAT into CTX+ domains (Butler et al., 2015) and increases DAT’s 

association with Rit2 (Chapter II). Importantly, AMPH-stimulated efflux depends on 

DAT membrane localization in so far as depleting cholesterol redistributes DAT out 

of microdomains and reduces AMPH-dependent efflux (Cremona et al., 2011; 

Jones et al., 2012). Together these data suggest two possibilities: 1) AMPH-

dependent increase in DAT-Rit2 association is simply a consequence of a change 

in DAT membrane localization, or 2) Rit2 is required for proper DAT lateral mobility 

and sublocalization. If the latter is true, I predict that Rit2-KD would block AMPH’s 

ability to increase the DAT-CTX+ colocalization and, therefore, DA efflux. 

Moreover, Rit2 interacts significantly more with the N-S/DAT chimera, indicating 

that N-S/DAT may be mis-localized into primarily CTX+ domains. If this is the case, 

then N-S/DAT would not increase its association with Rit2 by AMPH treatment, or 
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exhibit AMPH-stimulated efflux. In further support of this prediction, previous 

studies have expertly demonstrated that AMPH-stimulated efflux requires 

phosphorylation of the DAT amino terminus, mediated by CaMKIIa, which binds to 

DAT’s carboxyl terminus (Khoshbouei et al., 2004; Fog et al., 2006; Pizzo et al., 

2014; Steinkellner et al., 2014). Thus, it is not necessarily unusual that Rit2 

binding, also at the DAT C-terminus (Navaroli et al., 2011), could be influenced by 

the DAT N-terminus, or that Rit2 is one of the multiple DAT interacting proteins, 

(e.g. Flotillin-1 and a-synuclein), that facilitates DAT membrane localization and 

psychostimulant response (Cremona et al., 2011; Lebowitz et al., 2019). 

 

IV.B Rit2-dependent DAT endocytic mechanism 

In our previous study, we identified Rit2 as a novel protein bound to the DAT C-

terminal endocytic domain, FREKLAYAIA, which negatively regulates basal DAT 

endocytosis and is required for PKC-stimulated internalization (Holton et al., 2005; 

Boudanova et al., 2008b; Navaroli et al., 2011). We further characterized the DAT-

Rit2 interaction using live cell FRET microscopy with overexpressed constructs 

and discovered that Rit2 interacts with DAT, but not highly-related SERT or GAT1 

(Navaroli et al., 2011), despite high sequence similarity within this domain among 

these transporters (Holton et al., 2005). Thus, other domains likely contribute to 

the DAT-Rit2 interaction. Given that SERT does not interact with Rit2, we used 

DAT/SERT chimeric transporters to examine whether the DAT N- and/or C-

terminus is required for the interaction. These chimeras were described previously 
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by our lab to efficiently transport DA and express on the plasma membrane, 

although DAT/C-S and S/DAT/S express significantly less than WT-DAT or N-

S/DAT (Sweeney et al., 2017). Again, we used live-cell FRET microscopy to test if 

the amino or carboxyl DAT terminus is required for the interaction with Rit2. To our 

surprise, Rit2 interacted with all four transporters, and N-S/DAT significantly 

increased the Rit2 interaction compared with WT-DAT (Figure II.7). Additionally, I 

found that PKC activation significantly reduced the DAT-Rit2 association at the cell 

surface (Figure II.6) and this effect was lost in the N-S/DAT chimera, and trended 

towards a loss in S/DAT/S (Figure II.7). These results correlated with data 

indicating that the N-S/DAT does not undergo PKC-stimulated internalization 

(Figure II.8). Altogether, these experiments indicate that Rit2 functions to stabilize 

DAT surface expression, must dissociate from DAT in order for PKC to stimulate 

DAT surface loss, and requires the DAT N-terminus for dissociation.  

 

One limitation to this interpretation is that the loss of PKC-stimulated DAT-Rit2 

dissociation only correlates with the loss of PKC-stimulated DAT internalization, 

exemplified by the N-S/DAT chimera. An approach to strengthen this conclusion 

could be to identify a Rit2 mutant that does not dissociate from DAT (e.g. Rit2-

Q78L and Rit2-S34N constitutively active and dominant negative mutants, 

respectively). These mutants do not dissociate from DAT, as measured by 

colocalization analysis, and Rit2-S34N also blocks PKC-stimulated DAT 

internalization (Navaroli et al., 2011). I would therefore predict that, using the BBS-
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DAT pulldown approach, PKC activation would no longer cause dissociation 

between mutant Rit2 and DAT. Nevertheless, even if the results of this experiment 

support the hypothesis, they still only provide correlative evidence that the 

dissociation is required for internalization. A more direct way to test this could be 

to use highly sensitive microscopy approaches used to visualize and measure 

membrane dynamics and protein-protein interactions at the cell surface in real 

time. Live TIRF microscopy, for example, permits simultaneous measurement of 

the DAT endocytic rate and the association between two tagged proteins, as was 

demonstrated by Lebowitz and colleagues (Lebowitz et al., 2019). This could also 

enable distinction between two possibilities: 1) PKC reduces the DAT-Rit2 

association because only DATs bound to Rit2 can undergo stimulated 

internalization, and therefore the DATs remaining are less-likely to be associated 

with Rit2, or 2) PKC redistributes DAT away from Rit2-containing membrane 

microdomains, thereby indirectly reducing the DAT-Rit2 association, and 

subsequently causes DAT endocytosis from all microdomains indiscriminately. 

Given that DAT and Rit2 colocalize significantly more in CTX+ microdomains 

(Navaroli et al., 2011), and PKC preferentially targets DATs colocalized with CTX 

for internalization (Gabriel et al., 2013), I predict that PKC stimulates both DAT-

Rit2 dissociation and DAT internalization from CTX+ domains, in support of the 

first hypothesis. 
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Rit2 and Ack1 independently facilitate PKC-stimulated DAT internalization 

Multiple lines of evidence support the interpretation that Rit2 and Ack1 act 

independently to mediate DAT internalization following PKC activation. First, Rit2-

KD in SK-N-DZ cells had no effect on PKC-dependent Ack1 inactivation (Figure 

II.9), indicating that Rit2 is not upstream of Ack1. Second, while Ack1 inactivation 

is required for PKC-stimulated internalization (Wu et al., 2015), it is not required 

for the PKC-dependent Rit2 dissociation from DAT, as evidenced by the result that 

CA Ack1 (S445P-Ack1) did not block PKC-stimulated Rit2 dissociation (Figure 

II.9). Third, while N-S/DAT did not undergo PKC-stimulated internalization, direct 

Ack1 inactivation by AIM100 significantly increased N-S/DAT endocytosis rates 

(Figure II.8). Given that Rit2 is not required for Ack1 inactivation, this result 

indicates that the DAT N-terminus is not required for Ack1-dependent endocytic 

brake release. Although I did not examine whether DAT N- and C-termini 

contribute to Rit2 dissociation by AIM100 treatment, I predict that if Rit2 

dissociation is indeed requisite for endocytic brake release, then AIM100 would 

cause dissociation of Rit2 from DAT, N-S/DAT, and DAT/C-S, but not S/DAT/S as 

S/DAT/S does not exhibit AIM100-stimulated internalization. However, we must 

also consider that AIM100 binds noncompetitively to DAT and contributes to its 

oligomerization, and thus could bypass Rit2-dependent mechanisms to induce 

DAT endocytosis (Wu et al., 2015; Sorkina et al., 2018; Cheng et al., 2019). 

Together, my data support the conclusion that Rit2 and Ack1 independently 

converge on DAT for PKC-mediated internalization.  
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Ack1 inactivation 

As discussed above, I initially hypothesized that Rit2 is required downstream of 

PKC for Ack1 inactivation, however Rit2-KD in SK-N-DZ cells did not block PKC-

stimulated Ack1 inactivation (Figure II.9). This could reflect a possible role for Rit2 

in regulating baseline Ack1 activity through Cdc42 activity, supported by 

experiments from one group that demonstrated Rit2-mediated Cdc42 activation 

(Hoshino and Nakamura, 2003). However, Rit2-KD in SK-N-DZ cells had no effect 

on steady-state Ack1 phosphorylation (data not shown), indicating that Rit2 is not 

required for Ack1 activation, and further supports that Rit2 functions independently 

from Ack1 to regulate DAT endocytosis. Therefore, the question still remains: what 

inactivates Ack1 downstream of PKC? A potential candidate is the E3 ubiquitin 

ligase, Nedd4-2. Nedd4-2 interacts with and downregulates Ack1 expression via 

ubiquitination (Chan et al., 2009), and was also identified in an RNAi-mediated 

screen for proteins required for PKC-stimulated DAT trafficking and DAT 

ubiquitination (Sorkina et al., 2006). Nedd4-2 associates with DAT and negatively 

regulates DAT endocytosis, supporting the hypothesis that these proteins are in 

close proximity to one another and could potentially work together to regulate DAT 

trafficking. Future experiments could take fairly straight-forward knockdown 

approaches to ask whether Nedd4-2 is required for PKC-stimulated Ack1 

inactivation. Moreover, Nedd4-2 negatively regulates DAT endocytosis supporting 

the prediction that imposing the Ack1 endocytic brake (S445P-Ack1) would block 
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enhanced DAT trafficking caused by Nedd4-2 knockdown, further designating 

Nedd4-2 upstream of Ack1 as part of the DAT endocytic braking mechanism.  

 

IV.C Applications for the BBS-DAT pulldown approach 

I describe a specific labeling approach for measuring DAT protein associations at 

the plasma membrane using a tagged DAT in Chapter II. Using our BBS-DAT 

construct I demonstrated a specific association with Rit2 and Ack1, but not Rit2’s 

highly-related protein, Rit1 (Figure II.5). Further, I successfully measured drug-

induced associations and dissociations between DAT and Rit2 using the BBS-DAT 

approach in heterologous cells (Figure II.6). The experimental advantages to 

utilizing the BBS-DAT labeling method include that it is specific to the surface DAT 

population, due to the extracellular location of the BBS tag, and circumvents the 

necessity of using antibodies to isolate DAT. This last factor is crucial, as the 

highest-affinity DAT antibody targets the DAT intracellular N-terminus and 

therefore, a) cells and tissue must be lysed prior to pulldown, and b) the antibody 

undoubtably disrupts associations occurring at the terminal domains, of which 

there are many (Table I.2). Indeed, I detected a specific DAT-Ack1 association 

using BBS-DAT, whereas co-IP approaches proved unsuccessful (Sweeney and 

Melikian, unpublished data). Accordingly, it is exciting to consider adapting BBS-

DAT for use in vivo to interrogate the nature of the DAT protein complex within the 

endogenous DA terminal.  
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Similar methods for tagging DAT were described previously, nevertheless they 

have not yet been utilized for assessing protein complexes, nor can effectively 

label DAT in intact DA neurons (Sorkina et al., 2006; Rao et al., 2012; Hong and 

Amara, 2013; Wu et al., 2017). One group engineered a DAT construct containing 

an HA-tag inserted into EL2 in order to measure DAT internalization via an 

antibody feeding approach and DAT cellular localization in DA terminals (Sorkina 

et al., 2006; Rao et al., 2012; Block et al., 2015). This transporter takes up DA 

similar to WT-DAT and is localized to the cell surface in cultured DA neurons of 

HA-DAT knock-in mice (Rao et al., 2012). However, when researchers attempted 

high-resolution microscopy approaches to further probe DAT trafficking in intact 

DA neurons, they detected very little DAT signal on the membranes or in 

intracellular compartments (Block et al., 2015). This is likely due to the techniques 

employed (see “Chapter I: Constitutive DAT trafficking”), and HA-DAT may yet be 

of use to visualize endogenous DAT expression in DA terminals. In addition, Hong 

and Amara reported use of another BBS-tagged DAT to track internalized DAT 

(Hong and Amara, 2013). This tag is inserted at the same location in DAT EL2 as 

our construct, though it does not contain flanked linker sequences. Whether this 

BBS-tagged DAT could be employed to measure protein-protein associations 

biochemically remains untested. Finally, our group engineered a ligase acceptor 

protein (LAP) into DAT EL2 (LAP-DAT) in order to covalently couple a fluorophore 

to DAT and investigate DAT’s post-endocytic itinerary without using large 

antibodies or tags that could potentially mistarget DAT (Wu et al., 2017). This 
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approach was very effective for examining DAT recycling and endocytic 

compartment localization, but did not allow for ex vivo labeling in acute striatal 

slices, likely due to the inability of the large LpIA enzyme to infiltrate the slice and 

facilitate the fluorophore coupling reaction.  

 

These examples highlight the challenges in the field surrounding tracking and 

isolating DAT in striatal slice preparations, uncovering a need for a different 

approach to characterize the DAT interactome with limited disruption. Future 

experiments can employ viral-mediated delivery of BBS-DAT specifically to mouse 

midbrain DA neurons where the endogenous DAT is concurrently removed by Cre-

mediated excision. Thus, we can identify novel DAT interactors, test what domains 

are necessary and sufficient for specific interactions, measure drug- and 

stimulation-dependent changes, and examine whether the DAT complex is distinct 

between DS and VS. Despite that there are already greater than twenty unique 

DAT interacting proteins (Table I.2), many of these (including Rit2 and Ack1) have 

not been investigated in endogenous contexts where the proteins are not 

overexpressed. Furthermore, DAT mutants identified in patients, such as A559V- 

and R615C-DAT, may display defects in their protein-protein interactions, and 

tagging these mutants with BBS and expressing them in DA terminals provides a 

physiologically relevant way to address this question. Specifically, R615C-DAT 

interacts significantly more with CaMKIIa and Flot1 in cells (Sakrikar et al., 2012), 

and A559V-DAT is differentially affected by DRD2-dependent signaling in the DS 
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but not VS (Gowrishankar et al., 2018). Nonetheless, whether these changes in 

interactions occur in the context of intact DA neurons, or if the disruptions in DAT 

function or expression results from altered interactions, remains unexplored. 

Altogether, BBS-DAT opens the door for studying the DAT interactome in its 

endogenous context in a minimally-disruptive manner. 

 

IV.D In vivo impact of regulated DAT endocytosis 

Despite decades of research defining the numerous mechanisms underlying DAT 

surface regulation, across multiple models and systems (Eriksen et al., 2010a; 

Kristensen et al., 2011; Bermingham and Blakely, 2016), the physiological 

relevance of DAT trafficking is still not known. In Chapter III, I aimed to ask whether 

regulated DAT endocytosis is required for DA-dependent behavior using 

Drosophila melanogaster as the model organism. The fruit fly has been employed 

successfully to study neurotransmitter systems and the effects of psychostimulants 

on neurotransmission and behavior (Martin and Krantz, 2014). Further, DAT is 

conserved in Drosophila, and is required for typical locomotion, sleep, and 

psychostimulant response, as it is in mammals (Kume et al., 2005; Ueno and 

Kume, 2014). By targeting the Drosophila homolog of Rit2, Ric, I tested whether 

Drosophila provides a model system for investigating the DAT-Rit2 interaction and 

its impact on behavior. Through genetic manipulation of Ric, specifically in DA 

neurons, I tested whether Ric activity alters sleep and locomotor behavior in a 

DAT-dependent manner. I further examined whether Ric activity influences dDAT 
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function and surface expression in heterologous expression systems and intact 

Drosophila whole brain preparations. We found that dDAT and Ric interact to a 

similar degree as the mammalian homologs (Figure III.1). My results further 

indicate that constitutive Ric activity increases dDAT function (Figure III.2), but 

does not influence overall sleep or activity (Figure III.3). In addition, Ric knockdown 

by RNAi did not consistently alter locomotor or sleep (Figure III.4). However, 

DAergic expression of constitutively active Ric significantly increased the number 

of sleep episodes and, through an epistasis experiment, I discovered that this 

phenotype was dDAT-dependent (Figure III.5-6). These data are the first 

demonstrating that a protein that regulates DAT surface expression and function 

requires DAT in order to enact behavioral changes.  

 

These findings are consistent with our previously published results in mice: DA 

neuron-specific Rit2-KD did not alter baseline locomotor activity (Sweeney et al., 

2020). Instead, we only observed Rit2-dependent changes during behavioral 

challenges, such as anxiety paradigms and acute cocaine injection, although we 

do not know if this is due to Rit2’s actions at DAT. This is a fairly straight-forward 

question to answer using the Drosophila model and epistasis approaches, as 

psychostimulants alter fruit fly behavior and DA transmission DAT-dependently 

(Makos et al., 2009; Pizzo et al., 2013). In preliminary studies, however, I found 

the behavioral response to oral cocaine administration in flies to be highly 

inconsistent (data not shown). In fact, previous studies exposed flies to volatilized 
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cocaine in order to elicit acute behavioral responses (McClung and Hirsh, 1998; 

Bainton et al., 2000). In one of the only available reports of cocaine feeding in adult 

fruit flies, researchers fed a low dose of cocaine mixed into food for 5-7 days, 

modeling chronic cocaine exposure (Chang et al., 2006). However, chronic 

cocaine feeding in flies causes morphological defects and reduces lifespan 

(Willard et al., 2006), further limiting the ability of cocaine to model acute 

psychostimulant exposure. Notably, cocaine also acts as a local anesthetic and 

causes arrhythmia via blockade of voltage-gated sodium and potassium channels 

(Schwartz et al., 2010). Given that I exposed flies to cocaine-containing food for 

24 hours (longer exposures at higher doses ≥10mM were lethal, data not shown), 

and only sometimes saw hyperactivity, indicates that cocaine’s actions at ion 

channels likely confounded my ability to detect hyperactivity. This is likely not the 

case for other psychostimulants, such as AMPH, which can be administered orally 

to adult and larval Drosophila to significantly increase locomotion (Andretic et al., 

2005; Hamilton et al., 2013; Pizzo et al., 2013; Hamilton et al., 2014; Pizzo et al., 

2014; Cartier et al., 2015; Belovich et al., 2019). Thus, future experiments using 

AMPH as the psychostimulant challenge, or volatilized cocaine, will ostensibly 

produce more interpretable results and allow us to ask whether DAergic Ric is 

required for psychostimulant behavior through its actions at DAT. 
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Trafficking-dysregulated DAT mutants 

A limitation to our studies targeting Rit2 or Ric to perturb regulated DAT 

endocytosis is that this method indirectly affects DAT trafficking and likely has 

multiple off-target affects. One alternative approach to asking whether DAT 

trafficking influences in vivo behavior is to replace endogenous DAT with a 

trafficking-dysregulated DAT mutant, thereby eliminating any non-specific effects 

of knocking down a gene involved in multiple cellular processes. In order to test 

whether PKC-mediated trafficking is required for DA-dependent behavior, I 

propose using the N-S/DAT chimera. As described in Chapter II, N-S/DAT does 

not undergo PKC-mediated trafficking, and is more stable in the plasma membrane 

than WT-DAT, as evidenced by its decreased constitutive internalization rate 

(Figure II.8). Thus, N-S/DAT can be classified as a “loss-of-endocytic-function” 

transporter, and I predict N-S/DAT will replicate Rit2- and Ric-dependent 

phenotypes when expressed in place of WT-DAT, if Rit2 and Ric regulate behavior 

solely through DAT. Oppositely, the disease-associated DAT mutant, R615C-DAT, 

can be used to ask whether the DAT endocytic brake is required for DA-dependent 

behavior. R615C-DAT internalizes and recycles more rapidly than WT-DAT, and 

is insensitive to enhanced endocytosis by PKC or AMPH (Sakrikar et al., 2012), 

classifying it is a “gain-of-endocytic-function” transporter. R615C-DAT was 

identified in an ADHD patient proband; hence, I predict that it will increase 

locomotor activity when expressed in vivo. Additionally, R615C-DAT animals may 

be insensitive to AMPH-stimulated locomotion, given that R615C-DAT lacks 
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AMPH-mediated internalization. Whether AMPH stimulates N-S/DAT remains to 

be tested, however I predict that it does not, and therefore N-S/DAT-expressing 

animals would also lose AMPH-dependent behavior in vivo. Finally, our group 

demonstrated that imposing the Ack1 endocytic brake (S445P-Ack1) on R615C-

DAT restored WT-DAT levels of constitutive internalization (Wu et al., 2015), thus 

it would be fascinating to test if S445P-Ack1 would likewise rescue behaviors 

specific to R615C-DAT expression.  

 

Expressing mammalian DATs in Drosophila to examine the behavioral 

consequences of dysfunctional DAT mutants has been successfully demonstrated 

by multiple groups (Hamilton et al., 2013; Pizzo et al., 2013; Hamilton et al., 2014; 

Pizzo et al., 2014; Cartier et al., 2015; Asjad et al., 2017). In these studies, 

researchers used the dDAT null (fmn) genetic background and drove wildtype and 

mutant hDAT specifically in DA neurons using the DAergic TH-GAL4 driver, 

thereby generating solely hDAT-expressing flies. Importantly, this strategy further 

demonstrated that hDAT is sufficient to significantly reduce the inherent 

hyperactivity of fmn flies (Hamilton et al., 2013). Over the course of my studies, I 

used the FlyC31 system through BestGene Inc. to insert human constructs 

expressing WT-DAT, R615C-DAT, and N-S/DAT into the fly genome, backcrossed 

the stocks, and recombined the flies onto the fmn background. However, I was 

unable to reduce hyperactivity of these flies compared to fmn;TH-GAL4/+ controls 

(data not shown). I also did not detect hDAT protein expressed in the WT-DAT or 
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R615C-DAT flies with the highly specific DAT antibody (MAB369). However, I 

tagged N-S/DAT with HA given that MAB369 targets the DAT N-terminus, and I 

did detect specific HA signal in TH(+) cells in whole-mounted fly brains (data not 

shown), indicating that, for this transgene at least, DAT was expressed. The 

discrepancy between my results and those previously published is likely a result 

of the upstream activation sequence (UAS) vector I used to generate my 

constructs. We chose a UAS vector with only five repeats of the UAS cassette with 

the rationale that too much DAT expression may impede its ability to undergo 

regulated trafficking (Wu and Melikian, unpublished data). However, previous 

reports likely used the standard 10-repeat UAS vector (Hamilton et al., 2013; Pizzo 

et al., 2013), indicating that five UAS repeats is not sufficient to rescue fmn-

mediated hyperactivity. Current experiments in our laboratory are underway using 

a molecular replacement strategy in mice to substitute mouse DAT with HA-tagged 

WT-DAT, R615C-DAT, and N-S/DAT specifically in DA neurons, in conjunction 

with Cre-mediated excision of the endogenous DAT gene. Using these mice, we 

can directly examine the behavioral and DA signaling consequences of 

dysregulated DAT endocytosis. This approach also avoids potential confounds 

due to expressing mutant DAT throughout development, since the replacement 

can be performed in juvenile and adult animals, after DA neurons and synapses 

have developed normally, allowing us to specifically investigate the impact of DAT 

trafficking defects.  

 



 185 

Drosophila DAT and SERT MPH affinity 

I proposed that another way to increase the specificity of my experiments would 

be to treat flies with a drug that specifically targets the DAergic system without the 

confound of 5-HT signaling. Cocaine is equipotent at DAT, SERT and NET in 

mammals, and in Drosophila, cocaine actually inhibits dSERT with an entire order 

of magnitude greater potency than dDAT (Porzgen et al., 2001). On the other hand, 

mammalian DAT and NET transporters are much higher affinity for MPH than 

SERT, allowing better specificity for dissecting the catecholamine system 

underlying psychostimulant-based behavior (Han and Gu, 2006; Hasenhuetl et al., 

2015). This rationale, along with the fact that 1) Drosophila larvae exhibit 

hyperactivity following MPH exposure in a DAT-dependent manner (Pizzo et al., 

2013), and 2) fruit flies do not express NET, prompted me to hypothesize that 

feeding flies MPH would allow us to better decipher whether Ric-dependent 

behaviors occur through changes specific to DAT. Moreover, oral MPH 

administration may be more efficacious than cocaine. First, however, I wanted to 

test whether MPH is similarly less efficacious at dSERT than dDAT. Surprisingly, I 

found that dDAT and dSERT exhibit comparable, yet fairly low, affinities for MPH 

(Chapter III, IC50: ~40µM), indicating that, although MPH is selective for 

mammalian DATs over SERTs, it is not selective for dDAT over dSERT. This 

serendipitous finding may aid in uncovering the residues required for MPH binding. 

Previous reports describe the importance of residues L104, F105, and A109 in 

MPH and cocaine affinity for mouse DAT (Wu and Gu, 2003; Chen et al., 2005). 
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These residues are identical in hDAT, however dDAT contains a methionine at 

position 105, potentially contributing to its decreased MPH affinity. In fact, Wu and 

colleagues compared cocaine-dependent transport inhibition between dDAT, 

mDAT, and mDAT-F105M. They determined that mutating phenylalanine to 

methionine decreased mDAT cocaine inhibition compared to wildtype mDAT, 

although cocaine remained still more potent at mDAT-F105M than dDAT (Wu and 

Gu, 2003). Taken together, these data support the hypothesis that methionine 105 

in dDAT contributes to MPH affinity as well, and I predict that mutating dDAT M105 

to phenylalanine would increase MPH potency at dDAT. In conclusion, MPH likely 

does not distinguish between DA- and 5-HT-mediated phenotypes in Drosophila.  

 

IV.E Rit2 GTPase function and expression 

The data presented in this thesis add to our growing knowledge of Rit2’s intrinsic 

function in DA neurons. However, very little is known about Rit2 as a Ras-like 

GTPase “molecular switch”, nor its activators (GAPs), exchange factors (GEFs), 

or effectors. Rit2 binds to GTP in its active form and requires a GAP to undergo 

GTP hydrolysis in order to switch to the inactive, GDP-bound form. The inactive 

state is reversed by a GEF, which activates GTPases by exchanging GDP for GTP 

(Wennerberg et al., 2005). Previous reports demonstrated that Rit2 can bind to 

certain Ras GEFs and effectors, however these experiments relied on truncated 

Rit2 constructs and in vitro binding assays (Shao et al., 1999; Hoshino and 

Nakamura, 2002; Hoshino et al., 2005), hence the endogenous mechanisms 
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underlying Rit2 activation and its downstream effectors in neurons remain 

completely unknown. Further, whether Rit2 binds to DAT in its active or inactive 

form, or both, is not known. In fact, Rit2 GTP-GDP exchange may be an important 

step in its dissociation from DAT at the plasma membrane. In our previous study, 

neither DN- nor CA-Rit2 dissociated from DAT when DAT internalized from the 

membrane, as measured by immunocytochemistry in transfected PC12 cells 

(Navaroli et al., 2011). Though qualitative, this result suggests that Rit2 GTPase 

switching may be a necessary component of PKC-mediated dissociation, and 

supports the prediction that Rit2 activity is likewise required for PKC-stimulated 

DAT internalization, as was already demonstrated for DN-Rit2 by our lab. 

Interestingly, the Klip group determined that PKC activates a GAP required for 

glutamate transporter 4 trafficking (Thong et al., 2007), indicating that PKC itself 

may activate a GAP upstream of Rit2, thereby facilitating Rit2 GTPase activity and 

DAT dissociation. Finally, an intriguing possibility is that undiscovered Rit2 

effectors specifically facilitate PKC-dependent Rit2 dissociation and/or DAT 

internalization.  

 

DA neuron-independent Rit2 function 

Apart from regulating DAT surface expression, Rit2 is required for ERK and p38 

MAP kinase activation, NGF-dependent neurite outgrowth, and cell viability in 

heterologous cell models (Hoshino and Nakamura, 2003; Shi et al., 2005; Uenaka 

et al., 2018). Cai and colleagues demonstrated a requirement for Ric in 
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survivability in vivo using null (Ric-/-) fruit flies. They found that these flies are more 

susceptible to environmental stressors and display reduced p38 activation in 

response to in vivo heat-shock treatment compared to wildtype controls (Cai et al., 

2011). Another indication of DA neuron-independent Rit2 function is that while Rit2 

mRNA is enriched in DA neurons, it is also expressed in other neuronal tissues, 

including the hippocampus, amygdala, and retina (Lee et al., 1996; Wes et al., 

1996; Zhou et al., 2011; Zhang et al., 2013). Nevertheless, Rit2’s role in these 

brain regions remains uninvestigated. Finally, a role for neuronal Ric expression in 

cognitive function was unearthed in a screen for modulators of olfactory memory 

wherein pan-neuronal Ric knockdown with the driver, Nsyb-GAL4, significantly 

increased performance in a 3-hour memory task (Walkinshaw et al., 2015). 

However, the specific cell types or populations driving this phenotype were not 

examined. Thus, Rit2 in non-DAergic neurons remains unexplored, and future 

studies that follow this line of investigation will aid in our overall understanding of 

the mechanisms underlying Rit2’s intrinsic cellular functions.  

 

DAT-independent Rit2 function 

Data from our laboratory indicate that Rit2 contributes to DAT expression, function, 

and trafficking. However, we cannot yet rule-out other potential Rit2 functions 

within the DA neuron that could influence DAergic signaling. In our previous study, 

we found that Rit2-KD in DA neurons significantly reduced TH and DAT mRNA in 

the ventral midbrain of male mice, however TH protein the striatum was unaffected 
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(Sweeney et al., 2020). This result could reflect the stability of TH protein in DA 

terminals, or indicate possible early stages of cell loss that had not yet impacted 

TH protein in the DA terminals. The consequences of long-term (>4 weeks) Rit2-

KD on gene or protein expression have not yet been examined. Moreover, whether 

Rit2 modulates TH activity is completely unknown. To determine the impact of 

DAergic Rit2-KD on striatal signaling, we measured spontaneous excitatory 

postsynaptic potentials (sEPSPs) in DRD1(+) and DRD2(+) MSNs. Overall, Rit2-

KD decreased baseline sEPSP frequency in DRD1(+) MSNs, but not DRD2(+), in 

male mice (Sweeney et al., 2020). This change in MSN physiology is indicative of 

changes in glutamatergic input onto MSNs occurring indirectly via alterations in 

DAergic signaling. Nevertheless, it remains unknown whether changes in DAT 

expression or function are solely responsible for these changes in DA 

transmission, if Rit2-KD increases or decreases DA release, or if Rit2 influences 

DA neuron firing rates. Future experiments will investigate Rit2’s specific role 

across multiple DA neuron physiological properties.  

 

Rit2 sexual dimorphisms in DA signaling and behavior 

Rit2-KD differentially impacted male and female mice. As described above, Rit2-

KD decreased TH and DAT mRNA in the ventral midbrain in male mice, but had 

no effect on either gene in females. Additionally, whereas Rit2-KD decreased 

overall DAT protein levels in the striatum of males, it had no effect on total DAT 

protein in female mice (Sweeney et al., 2020). Instead, we demonstrated in 
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Chapter II that Rit2-KD in females significantly decreased the surface:intracellular 

DAT ratio in VS. Rit2-KD-dependent MSN physiology changes also diverged in 

females: female DRD1(+) MSNs were unaffected by Rit2-KD, however Rit2-KD 

significantly decreased baseline sEPSP frequency in DRD2(+) MSNs. 

Furthermore, Rit2-KD affected the acute locomotor response in male and female 

mice differently: male mice responded to a sub-threshold cocaine dose following 

Rit2-KD, whereas females became less sensitive to cocaine, and displayed 

significantly reduced cocaine-dependent locomotion compared to controls 

(Sweeney et al., 2020). The mechanisms underlying these differences in Rit2-

dependent DA neuron properties remain unexplored. Interestingly, a recent study 

from Calipari and colleagues identified a specific role for estradiol in driving 

enhanced DA neuron firing rates, DA release, and cocaine preference in oestrous 

females compared to males and dioestrous females (Calipari et al., 2017). 

Whether Rit2 contributes to the cellular processes underlying estrogen-dependent 

DA signaling and regulation is not known. Therefore, future experiments exploring 

this possibility will help us to better understand the sexual dimorphic mechanisms 

of DA neurotransmission, and will shed light on how Rit2 impacts DA neuron 

function and behavior.  

 

Rit2 in PD and neuronal viability 

Rit2 genetic variations have been identified in patients with various neurological 

diseases and disorders that are DAergic in nature (Table I.3). In particular, SNPs 
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in Rit2 have been identified in PD patients across multiple populations 

(Daneshmandpour et al., 2018), however whether Rit2 genetic anomalies 

contribute to disease progression remains unknown. Bossers and colleagues 

demonstrated a ~65% decrease in Rit2 expression in the SNc of PD patients, even 

after controlling for overall DA neuron death (Bossers et al., 2009). Nevertheless, 

it is unclear whether this reduction was caused by polymorphisms within the Rit2 

gene, or if Rit2 loss-of-expression is responsible for reduced DA neuron viability. 

Since Rit2 activity likely contributes to neurite outgrowth (Shi et al., 2013; Uenaka 

et al., 2018), it stands to reason that introducing patient SNPs (Table I.3) into the 

Rit2 gene could trigger DA cell death, or reduce neuronal viability throughout 

aging. Moreover, it will be fascinating to examine whether this effect is specific to 

DA neurons, or if Rit2 contributes to neuron survival generally. DAergic Rit2-KD 

experiments performed in our laboratory thus far have not extended past 4 weeks 

of shRNA-mediated gene silencing. Hence, future experiments employing long-

term Rit2-KD using our conditional and inducible model will bolster the field’s 

understanding of how Rit2 impacts DA neuron viability, and may substantiate Rit2 

as a PD risk factor.  

 

IV.F Concluding remarks 

Throughout the course of this thesis research, our understanding of the 

mechanisms underlying DAT trafficking increased substantially. With the 

development of novel tools, we can now examine DAT-protein interactions and 
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surface regulation in endogenous contexts with minimal disruption and mis-

targeting. Our lab and others have further characterized a multitude of 

mechanisms regulating DAT surface stability and trafficking, and have begun 

investigating the in vivo impact of disrupted DAT function. My studies shed light on 

the PKC-stimulated DAT internalization mechanism, and leveraged a new 

conditional and inducible DAergic knockdown approach to examine this 

mechanism for the first time in intact DA terminals. I also demonstrate that 

indirectly perturbing this process in Drosophila alters certain DA-driven behaviors 

in a DAT-dependent manner, providing some of the first evidence that DAT surface 

regulation influences behavior. Many salient questions still remain, including 

whether DAT trafficking directly impacts behavior, and defining the molecular 

mechanisms of Rit2 GTPase-dependent signaling. I expect that by continuing to 

study the mechanisms fundamental to regulated DAT trafficking we will greatly 

increase our understanding of typical DA neurotransmission and homeostasis, as 

well as the aberrant signaling states present in patients with neuropsychiatric 

diseases and disorders.  
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