Suppose \(A \) is an \(N \) by \(N \) real symmetric positive-definite matrix, and \(q \in \mathbb{R}^N \). We seek numerical approximations to matrix functions, mainly for the computation of
\[y = f(A)q. \]

In the literature, attention has been given to functions like \(e^A \), \(e^Bx \), \(x^A \), \(\sin(A)x \), \(\cos(A)x \), and their combinations. These functions find applications in various fields of applied mathematics and statistics, like e.g. in the solution of various differential problems. It is well known (see e.g. [1]) that the standard Lanczos spectral decomposition, which seeks polynomial approximations to \(y \) belonging to the Krylov subspaces
\[K_m(A,q) = \text{span}\{q, Aq, A^2q, \ldots, A^{m-1}q\}, \quad m \in \mathbb{N}, \]

is, in general, not effective since the convergence of the polynomial approximations may be very slow. Therefore, we seek rational approximations to \(y \) belonging to rational Krylov subspaces.

Rational Krylov sequences

Suppose the sequence of numbers \(M = (\mu_0, \mu_1, \ldots, \mu_m) \subset \mathbb{R}_+^m \), with \(M(\cap \sigma(A)) = 0 \), is given, and define the factors
\[Z_k(A) = (I + \mu_k A)^{-1} = \frac{A^k}{\mu_k^{N-1}}, \quad k = 1, 2, \ldots, m, \]

and products
\[h_k(A) = I, \quad h_k(A) = Z_k(A)h_{k-1}(A) = h_{k-2}(A)Z_k(A), \quad k = 1, 2, \ldots, m. \]

Then the rational Krylov subspace \(K_{\infty}(A,q,M) \) with poles in \(-\mu_1^{-1}, \ldots, -\mu_m^{-1} \) is given by
\[K_{\infty}(A,q,M) = \text{span}\{h_1(A)q, h_2(A)q, \ldots, h_m(A)q\} \subseteq \text{span}\{q, Aq, A^2q, \ldots, A^{m-1}q\}, \]

where the sequence of vectors \(q^0, q^1, \ldots, q^{m-1} \) forms an orthonormal system of vectors. Under certain conditions on the poles in \(M \), these orthonormal vectors do satisfy the following three-term recurrence relation:
\[A q^k = \beta_{k-2}(I + \mu_k q^k)q^{k-2} + \alpha_{k-1}(I + \mu_k q^k)q^{k-1} + \beta_{k-1}(I + \mu_k q^k)q^k. \]

Let \(Q_{m-1}(\alpha) = [q^0, q^1, \ldots, q^{m-1}] \) and
\[J_m = \begin{bmatrix} \alpha_0 & 0 & 0 \cdots & 0 \\ \beta_1 & \alpha_0 & 0 \cdots & 0 \\ 0 & \beta_2 & \alpha_0 \cdots & 0 \\ \cdots & \cdots & \cdots & \cdots \\ 0 & 0 & \cdots & \beta_{m-2} \end{bmatrix} \quad \text{and} \quad D_m = \begin{bmatrix} \mu_0 & 0 & 0 \cdots & 0 \\ 0 & \mu_1 & 0 \cdots & 0 \\ 0 & 0 & \mu_2 \cdots & 0 \\ \cdots & \cdots & \cdots & \cdots \\ 0 & 0 & \cdots & \mu_{m-1} \end{bmatrix}. \]

Then it follows that
\[
Q_{m-1}(\alpha) J_m = \rho_0 T_m(A) Q_{m-1}(\alpha) D_m,
\]

where \(T_k(A) = \text{span}\{h_k(A), h_{k+1}(A), \ldots, h_m(A)\} \subseteq K_m(A,q) \).

Numerical example

Consider the second-order differential operator
\[L = -\frac{d^2}{dx^2} + \frac{g}{h}, \quad x > 0, \]

on the unit square \((0,1) \times (0,1) \), with Dirichlet boundary conditions. After discretizing \(L \) on a uniform meshgrid, with meshsize \(h = 1/(n+1) \) in each direction, we obtain a real symmetric positive-definite block-tridiagonal \(N \times N \) matrix \(A \), with \(N = n^2 \). We then seek approximations to the solution of the following time-periodic problem:
\[\frac{d}{dt} \begin{bmatrix} u(0) \\ y(0) \end{bmatrix} = \begin{bmatrix} f(u) \\ g(y) \end{bmatrix}, \quad t \in [0,T], \]

where \(u \in \mathbb{R}^N \) and \(g(t) \in \mathbb{R}^N \) are discretizations of the function \(g(x,y) \), respectively \(g(x,y,t) \). The exact solution to this problem is given by \(u(t) = f(A,t) \), where \(f(a,t) \) is defined as
\[f(a,t) = \begin{bmatrix} \exp(-aT) \\ 1 - \exp(-aT) \exp(-a(0.6)t) \end{bmatrix} \quad a > 0. \]

For \(t = 0 \) or \(t = T \) we get that
\[f(u,0) = f(u,T) = \begin{bmatrix} \exp(-0.4T) \\ 1 - \exp(-0.4T) \exp(-a(0.6)T) \end{bmatrix} \quad a > 0. \]

Note that \(f(a,0) \) has a singularity in \(a = -3/5 \), while \(f(a,T) \) is \(0 \). In the case of one multiple pole \(-p^{-1} \), however, it follows from [2] that the optimal value is \(p = T \).

Let \(n = 50, e = 0.1, T = 0.01 \) and \(g(x,y,t) = x(1-x)y(1-y) \). The following figures show then the relative error-norm
\[e = \|y^{m-1} - f(A)y^{m-1}/f(A)y^m\| \]
as a function of the number of iterations \(m \) for the case of one multiple pole (Fig. 1 and 2), and for the case of two different poles (Fig. 3).

References
