Freund’s Complete Adjuvant Induces Arthritis in Mice Lacking a Functional Interferon-γ Receptor by Triggering Tumor Necrosis Factor α–Driven Osteoclastogenesis

Lies Geboes,1 Bert De Klerck,1 Maarten Van Balen,1 Hilde Kelchtermans,1 Tania Mitera,1 Louis Boon,2 Chris De Wolf-Peeters,1 and Patrick Matthys1

Objective. To investigate the hypothesis that Freund’s complete adjuvant (CFA) plays an essential role in the induction of collagen-induced arthritis in mice, by testing whether CFA by itself is able to induce arthritis in interferon-γ receptor–knockout (IFNγR-KO) mice.

Methods. IFNγR-KO and wild-type mice were sensitized with a single intradermal injection of CFA containing heat-killed Mycobacterium butyricum. Flow cytometric analysis and in vitro osteoclastogenesis assays were performed on blood, spleen, and bone marrow cells. Tumor necrosis factor (TNF) levels were measured in the serum, and levels of RANKL, osteoprotegerin (OPG), and TNFα in the synovium were determined by quantitative reverse transcriptase–polymerase chain reaction. Effects of treatment with the TNFα antagonist etanercept were assessed.

Results. Symptoms of arthritis appeared in IFNγR-KO mice but not in wild-type mice, and reached an incidence of 55%. The onset coincided with an expansion of CD11b+ splenocytes that spontaneously produced TNFα and with increased osteoclastogenesis in spleen and blood cells. Expansion of CD11b+ splenocytes and osteoclast precursor cells was more pronounced in arthritic than in nonarthritic mice. There was a >100-fold increase in the RANKL:OPG ratio in the synovia of CFA-sensitized mice compared with those of naive animals. Treatment with etanercept prevented the development of arthritis and mitigated the increased expansion of myeloid cells as well as the increase in osteoclast precursor numbers in the spleen and blood.

Conclusion. These results indicate that sensitization of mice with CFA creates a condition in which dysregulation of a single cytokine leads to arthritis by triggering TNFα-driven osteoclastogenesis.

Several approaches have been developed to induce arthritis in animals by immunization with a joint-specific component emulsified in an adjuvant. Collagen-induced arthritis (CIA) is one such model, and is probably the most extensively studied animal model of human rheumatoid arthritis. CIA can be induced in genetically susceptible DBA/1 mice by immunization with heterologous type II collagen (CII) emulsified in Freund’s complete adjuvant (CFA), containing heat-killed mycobacteria (1–3). CFA is considered to increase the humoral anti-CII antibody response and to promote Th1-type cellular immunity to CII (4,5). However, it is intriguing that, in rats, arthritis can easily be induced by a single injection of CFA, without a joint-specific antigen (for review, see ref. 6). Attempts at induction of this so-called “adjuvant arthritis” in other species have met with little success in that only a few animals developed disease, or onset of the disease was very late (7–9). Successful induction of adjuvant arthritis in mice upon treatment with anti–interleukin-4 antibodies has been reported (10).

In this study we tested the hypothesis that adjuvant arthritis can be induced in interferon-γ receptor–knockout (IFNγR-KO) mice. The hypothesis derived from previously reported findings by our research group and by others that IFNγR-KO DBA/1 mice develop an...
accelerated and more severe form of autoimmune CIA (11–13). Moreover, knockout of the IFNγ gene makes genetically resistant strains of mice susceptible to CIA (14,15), indicating an important role of non–major histocompatibility complex (MHC) genes in the development of CIA. The increased susceptibility of IFNγR-KO mice to CIA is ascribed to the presence of heat-killed mycobacteria in CFA that is used for the induction of CIA. When mycobacteria are omitted from the arthritis induction protocol by using Freund’s incomplete adjuvant instead of CFA, IFNγR-KO mice are protected against disease instead of being more susceptible (16). Also, the resistance of C57BL/6 mice to CIA can be abrogated by increasing the amount of killed mycobacteria in CFA during the immunization procedure (17).

Further work in our laboratory revealed that the severe form of CIA, when CFA is used for induction, is associated with increased expansion of CD11b+ myeloid cells in the spleen, and a portion of these expanded CD11b+ splenocytes are osteoclast precursor cells (18). Osteoclasts are multinucleated cells formed by fusion of mononuclear precursors that are of monocyte/macrophage lineage (19,20). Mature osteoclasts can be generated in vitro either from bone marrow myeloid progenitors or from blood monocytes and in mice from spleen cells, upon stimulation with macrophage colony-stimulating factor (M-CSF) and RANKL (18,20,21).

The importance of osteoclasts in the induction of erosive arthritis has recently been demonstrated in studies of spontaneously developing arthritis in mice expressing a human tumor necrosis factor α (TNFα) transgene (22–25). The joint destruction in these transgenic mice could be counteracted either by targeting osteoclasts (22) or by crossing the mice with c-Fos–deficient animals lacking osteoclasts (23). Systemic TNFα was found to mediate an increase in peripheral CD11b+ osteoclast precursors (24) by up-regulating the expression of c-Fms, the receptor for M-CSF, an essential factor in the survival of osteoclast precursor cells (25). These results demonstrate that in the absence of a joint-specific antigen, systemic TNFα production induces arthritis mainly by stimulating osteoclastogenesis.

We report herein that in the absence of CIA, a single injection of CFA leads to full-blown arthritis in IFNγR-KO mice. The development of arthritis coincides with increased systemic production of TNFα, expansion of osteoclast formation in the periphery, and an increase in the RANKL:osteoprotegerin (OPG) ratio in the joint. Thus, under appropriate conditions, adjuvant arthritis can be induced in mice by dysregulation of a single cytokine, thereby triggering osteoclastogenesis.

MATERIALS AND METHODS

Mice. The generation and basic characteristics of the mutant mouse strain (129SvEv) with a disruption in the gene coding for the α-chain of IFNγR have been described (26). These IFNγR-KO mice were backcrossed with wild-type DBA/1 mice for 10 generations to obtain an IFNγR-KO DBA/1 mouse strain. The homozygous IFNγR-KO mice were identified by polymerase chain reaction (PCR) as described (18). Pure DBA/1-strain mice were used as wild-type controls. Both wild-type and IFNγR-KO DBA/1 mice were bred in the Experimental Animal Centre of the Katholieke Universiteit Leuven. The experiments were performed on male 8–12-week-old mice, with age-matched male control animals used in each experiment. All animal experiments were approved by the local ethics committee.

Induction of arthritis by injection of CFA, and assessment of arthritis. For the induction of arthritis, CFA (Difco, Detroit, MI) with added heat-killed Mycobacterium butyricum (0.5 mg/ml; Difco) was emulsified in an equal volume of phosphate buffered saline (PBS) or PBS containing CII (2 mg/ml) from chicken sternal cartilage (Sigma-Aldrich, St. Louis, MO). IFNγR-KO and wild-type mice were sensitized with a single intradermal injection, at the tail base, of 100 μl of CFA–PBS or CFA–CII on day 0. In some experiments wild-type mice were treated with neutralizing mouse antibodies (rat IgG2a) against murine IFNγ on days 0, 7, and 14 after sensitization with CFA, as described (12). Beginning on day 1, mice were evaluated daily for symptoms of arthritis. Disease severity in each limb was assessed on a 0–4 scale using a previously described scoring system (12), in which 0 = normal, 1 = redness and/or swelling in 1 joint, 2 = redness and/or swelling in >1 joint, 3 = redness and/or swelling in the entire paw, and 4 = deformity and/or ankylosis (maximum possible total score = 16).

For histologic assessment, fore limbs and hind limbs (ankles and interphalangeal joints) were fixed in 10% formalin, decalcified with formic acid, and embedded in paraffin. Paraffin sections were stained with hematoxylin and eosin. Severity of arthritis was evaluated and scored under blinded conditions, using 3 parameters: the extent of infiltration of mononuclear and polymorphonuclear cells, the extent of hyperplasia of the synovium, and pannus formation.

TNF bioassay. To measure TNF bioactivity levels in sera, the MIT tetrazolium cytotoxicity assay (M-2128; Sigma-Aldrich) for fibroblasts was used as previously described (27). TNFα concentration was determined by comparison with a standard curve. Recombinant mouse TNFs (National Institute for Biological Standards and Controls, London, UK) was used as a standard. One unit of TNFα activity was defined as the amount that caused 50% destruction (i.e., 50% absorbance change) of L929 cells.

Preparation of cell suspensions and flow cytometric analysis. Spleens and bone marrow were isolated and passed through cell strainers (Becton Dickinson, Franklin Lakes, NJ) to obtain single-cell suspensions. Blood was obtained by heart puncture. Red blood cells were lysed by 1 incubation (for bone marrow cells) (5 minutes at 37°C) or 2 incubations (for splenocytes and blood cells) (5 minutes and 3 minutes, at 37°C) with NH4Cl solution (0.83% in 0.01M Tris HCl [pH 7.2]).
Remaining cells were washed twice with ice-cold PBS and resuspended in the appropriate medium for further use.

For flow cytometric analysis, single-cell suspensions (5 × 10⁵ cells) were incubated for 15 minutes with the Fc receptor blocking antibodies anti-CD16/anti-CD32 (CD16/CD32; BD Biosciences PharMingen, San Diego, CA). Cells were washed with PBS–2% fetal calf serum (FCS) and with the indicated fluorescein isothiocyanate (FITC)–conjugated antibodies (0.5 μg) for 30 minutes, then washed twice with PBS–2% FCS, and stained with the indicated phycoerythrin (PE)–conjugated antibodies. Finally, cells were washed and fixed with 0.37% formaldehyde in PBS. FITC-conjugated CD11b (Mac-1), FITC-conjugated CD11c, FITC-conjugated CD18, PE-conjugated CD115, and PE-conjugated CD4 were purchased from BD Biosciences PharMingen.

For intracellular flow cytometry, 3 × 10⁵ cells in a total volume of 200 μl were cultured in chamber slides and incubated for 24 hours at 37°C. After 24 hours, appropriate stimuli (medium or M. butyricum [300 μg/ml]) were added. GolgiStop (2 μg/ml; BD Biosciences PharMingen) was added in all experiments. Cells and their appropriate stimuli were incubated for 5 hours at 37°C and then harvested. For intracellular staining with FITC-conjugated anti-TNFα (BD Biosciences PharMingen), 10⁵ cells were labeled with PE-conjugated anti-CD11b as described above. Cells were then fixed, permeabilized, and stained with FITC-conjugated anti-TNFα using a Cytotox/Cytoperm kit according to the recommendations of the manufacturer (BD Biosciences PharMingen). Flow cytometric analysis was performed on a FACScan flow cytometer with CellQuest software (Becton Dickinson, San Jose, CA).

In vitro induction of osteoclast formation, tartrate-resistant acid phosphatase (TRAP) staining, and pit-formation assay. Splenocytes, blood cells, and bone marrow suspensions, obtained as described above, were resuspended in α-minimum essential medium containing 10% FCS (Gibco Invitrogen, Paisley, UK). Cells (2.5 × 10⁵) in a total volume of 400 μl were seeded in chamber slides (Lab-Tek; Nalge Nunc International, Naperville, IL). Cells were incubated for 6 days with 20 ng/ml M-CSF plus 100 ng/ml RANKL or 20 ng/ml TNFα. All cytokines were obtained from R&D Systems (Abingdon, UK). On day 6, media were removed and cells were stained for the presence of TRAP, as described previously (18). All reagents were obtained from Sigma-Aldrich. Red-staining cells were considered to contain TRAP, and TRAP-⁺ multinucleated cells (>5 nuclei) were defined as osteoclasts.

For the pit-formation assay, cell suspensions were obtained as described above. Cells (10⁵) were cultured for 6 days with M-CSF (20 ng/ml) and RANKL (100 ng/ml) on transparent quartz slides coated with calcium phosphate film (BioCoat Osteologic Discs; BD Biosciences PharMingen). Cells were removed, and resorption of the film was assessed by light microscopy.

PCR. Synovial tissue from the ankle joints was isolated under a manual stereomicroscope. Total RNA was extracted using the Micro-to-Midi Total RNA Purification System in accordance with the instructions of the manufacturer (Invitrogen Life Technologies, Carlsbad, CA). Complementary DNA was obtained by reverse transcription (RT) using Superscript II reverse transcriptase and random primers as recommended by the manufacturer (Invitrogen Life Technologies). For real-time RT-PCR, we used a TaqMan Assay-on-Demand gene expression product (Applied Biosystems, Foster City, CA). Levels of expression of RANKL, OPG, and TNFα (assay ID Mm00441908_m1, Mm00435452_m1, and Mm00443258_m1, respectively; Applied Biosystems) were normalized to expression of 18S RNA (catalog no. 4319413E; Applied Biosystems). Analysis was performed with an ABI Prism 7000 apparatus (Applied Biosystems), under the following conditions: inactivation of possible contaminating amplicons with AmpErase UNG for 2 minutes at 50°C, initial denaturation for 10 minutes at 95°C, followed by 40 thermal cycles of 15 seconds at 95°C and 90 seconds at 60°C. Relative gene expression was assessed using the 2⁻ΔΔCT method (28).

Treatment with etanercept. For administration of etanercept, Alzet osmotic minipumps (model 2004; Duract, Cupertino, CA) were implanted subcutaneously in the dorso-lateral area of the body. During the procedure, the mice were anesthetized with a solution of PPS containing 0.2% Rompun (Bayer, Brussels, Belgium) and 1% Ketalar (Parke-Davis, Zaventem, Belgium). The minipumps were filled according to the instructions of the manufacturer and delivered etanercept at a constant rate of 125 μg/day for 28 days. The efficacy of etanercept in inhibiting mouse TNFα was verified: 2.5 mg/ml etanercept was able to prevent 10⁵ units/ml mouse TNFα bioactivity in the TNFα bioassay.

Administration of anti-CD4 antibodies. Rat anti-mouse depleting antibodies (rat IgG2b) against murine CD4 were purified from culture supernatants of hybridoma GK1.5 (TIB-207; American Type Culture Collection, Manassas, VA) as previously described (29). Anti-CD4 antibodies (0.5 ml) were injected intraperitoneally twice per week, starting 1 day before sensitization with CFA.

RESULTS

Induction of arthritis in IFNγR-KO mice by CFA. In an initial experiment, only IFNγR-KO DBA/1 mice were used. The mice received a single intradermal injection of CFA containing heat-killed M. butyricum on day 0 and were examined daily for symptoms of arthritis. For comparison with CIA, a group of IFNγR-KO mice immunized with CII in CFA was included. Redness and swelling of the joints started to appear 2 days earlier in mice with CIA compared with mice injected with CFA alone (day 14 versus day 16). During the time course of the experiment, 42% of the mice injected with CFA alone developed arthritis, whereas 100% of the mice with CIA did (Figure 1A). Figure 1B shows the mean arthritis scores in diseased animals. In contrast to CIA, the clinical symptoms of arthritis in CFA-injected mice were transient, peaking on day 17–18 and then gradually decreasing in severity (Figure 1B). The maximal mean arthritis score in diseased mice immunized with CII in CFA was higher than that in mice treated with CFA alone (mean ± SEM 8.7 ± 0.6 versus 4.0 ± 1.2).
Figure 1C shows representative images of the inflamed joints of CFA-sensitized mice. Both fore limbs and hind limbs were affected. In additional experiments, in which a similar course of arthritis was observed after CFA sensitization, mice were killed on day 26 for histologic evaluation of the joints. Hematoxylin and eosin staining revealed mononuclear and polymorphonuclear cell infiltration into the synovium, together with hyperplasia of synovial tissue, pannus formation, and destruction of bone by multinucleated osteoclasts. Hyperplasia and bone destruction by osteoclasts were observed in the early phase of disease (day 26) (Figure 1D) and remained present in the late phase (results not shown). In contrast, infiltration of the synovium with inflammatory cells was especially pronounced during the early phase and diminished thereafter.

The development of CFA-induced arthritis in IFNγR-KO DBA/1 mice was confirmed in 4 additional experiments. In total, 23 of the 42 IFNγR-KO mice that were injected with CFA (55%) developed arthritis, compared with 11 of the 13 IFNγR-KO mice immunized with CII in CFA (85%). Moreover, wild-type mice pretreated with anti-IFNγ antibody also developed CFA-induced arthritis, whereas this was not the case without antibody treatment (data not shown). In fact, wild-type mice were quite resistant to CFA-induced
arthritis: only 1 of 20 (5%) developed symptoms (redness and swelling in 1 hind limb on day 38). Of note, a spontaneous form of arthritis has been described to occur in older DBA/1 mice housed in groups derived from different litters (30). In our experiments, the occurrence of spontaneous arthritis was limited by using mice that were <4 months old and by not mixing mice from different litters.

Importantly, arthritis was also successfully induced by CFA treatment in BALB/c mice in which the IFNγ gene had been deleted. IFNγ-KO BALB/c mice (31) developed CFA-induced arthritis within 3 weeks, with a rather high incidence (50% and 77.8% in 2 experiments, with 10 mice and 16 mice, respectively), whereas arthritis did not develop in wild-type BALB/c mice after CFA injection.

Development of CFA-induced arthritis coincides with expansion of the CD11b+ cell population in the spleen. The development of adjuvant arthritis in rats has been described to be associated with the occurrence of inflammatory lesions in several organs, lupus-like symptoms, and granuloma formation (32). Therefore, in a series of experiments, mice challenged with CFA were killed for histologic examination. Thyroid, kidney, pancreas, lung, liver, heart, intestine, and lymph nodes were found to be free of histologic abnormalities. Of note, anti-DNA antibodies were not detectable in the sera of CFA-injected IFNγR-KO mice (data not shown).

Spleens of CFA-injected mice were significantly enlarged (Figure 2A): the mean ± SEM spleen weights of CFA-injected and nonsensitized mice were 159 ± 9 mg (n = 4) and 85 ± 5 mg (n = 5), respectively. Morphologic analysis revealed that red pulp was extensively expanded due to extreme extramedullary hematopoiesis (results not shown).

The total number of splenocytes was higher in CFA-injected mice than in naive mice. Flow cytometric analysis revealed larger numbers of CD11b+ myeloid cells in the spleens of CFA-sensitized mice, while the numbers of CD4+ and CD8+ T cells and B220+ cells were comparable with those in the spleens of nonsensitized mice (Figures 2B and C). Much like the clinical symptoms of arthritis, the expansion of the CD11b+ cell population was transient and peaked between days 17 and 25 (data not shown). In IFNγR-KO mice, the increase in the number of CD11b+ splenocytes was significantly more pronounced compared with the increase in wild-type mice; for example, on day 25, the mean ± SEM number of CD11b+ splenocytes in CFA-injected IFNγR-KO and wild-type mice, respectively,
was 21 ± 3 x 10^6 and 4 ± 1 x 10^6 (n = 3 mice per group) (P < 0.05).

Since only 55% of CFA-sensitized IFNγR-KO mice developed symptoms of arthritis, we examined whether the CD11b expansion might be different in mice that developed arthritis versus those that remained free of symptoms. Ten IFNγR-KO mice were injected with CFA, and symptoms of arthritis were recorded. On day 21 post–CFA injection, 5 mice had developed arthritis whereas 5 remained free of symptoms, and all animals were killed for analysis. The weight of the spleen was significantly higher in arthritic versus nonarthritic mice (mean ± SEM 182.7 ± 3.5 mg versus 142.3 ± 3.2 mg; n = 5 per group) (P < 0.05), as was the number of CD11b+ splenocytes (42 ± 5 x 10^6 versus 23 ± 1 x 10^6) (P < 0.05). The difference in the expansion of CD11b+ splenocytes between arthritic and nonarthritic IFNγR-KO mice was confirmed in an additional experiment, and the results of the 2 experiments are depicted in Figure 2D. The results showed that CFA induced expansion of CD11b+ splenocytes only in IFNγR-KO mice, and the expression was more pronounced in animals that developed symptoms of arthritis.

Spontaneous production of TNFα by CD11b+ cells and increased osteoclastogenesis from splenocytes and blood leukocytes of CFA-challenged IFNγR-KO mice. An expansion of peripheral CD11b+ cells in TNFα-transgenic mice with spontaneously developing arthritis has recently been described (24). The expanding cells consisted of osteoclast precursor cells, and the joint destruction could be counteracted by targeting osteoclasts (33). In the present study we investigated TNFα production and the osteoclastogenic potential of spleen and blood cells from mice with CFA-induced arthritis. We detected bioactive TNFα in the serum of CFA-sensitized IFNγR-KO mice, whereas it was undetectable in serum from CFA-injected wild-type mice or from naive mice (Figure 3A).

Since TNFα is a natural product of activated macrophages, we investigated whether the expanding population of CD11b+ splenocytes could be a source of TNFα in our model. For this purpose, flow cytometric

Figure 3. Elevated serum levels of tumor necrosis factor α (TNFα) in Freund’s complete adjuvant (CFA)–challenged interferon-γ receptor–knockout (IFNγR-KO) mice. A, TNFα levels in serum samples from naive, CFA-treated wild-type, and CFA-treated IFNγR-KO mice. On day 21 after injection of CFA, blood was collected and TNFα levels were measured as described in Materials and Methods. One of the 5 IFNγR-KO mice exhibited symptoms of arthritis. Values in individual mice, and the mean ± SEM in CFA-treated IFNγR-KO mice (square and bars), are shown. * = P < 0.01 versus naive mice and CFA-injected wild-type mice, by Mann-Whitney U test. B, TNFα production by CD11b+ cells from CFA-injected mice, and increase upon stimulation with Mycobacterium butyricum (MB). Intracellular staining with fluorescein isothiocyanate (FITC)–conjugated anti-TNFα was performed as described in Materials and Methods. Results shown are from 1 representative experiment of 3 experiments performed. Upper plots show the staining patterns of unstimulated splenocytes from naive and CFA-injected mice. Lower left plot shows the pattern after splenocytes from CFA-injected mice had been stimulated for 5 hours with M butyricum. Lower right plot shows the pattern obtained using an isotype control antibody (FITC-conjugated IgG), verifying the specificity of TNFα staining. Numbers are the percent of cells in each quadrant. PE = phycoerythrin.
analysis was performed using extracellular staining with PE-conjugated CD11b antibodies in combination with intracellular staining with FITC-conjugated TNFα antibodies. To increase the sensitivity of this cytokine detection procedure, cells were cultured for 5 hours in the presence of GolgiStop. Splenocytes from CFA-sensitized and nonsensitized IFNγR-KO mice were cultured either without stimulation or with *M butyricum* stimulation.

Typical examples of CD11b and TNFα staining are shown in Figure 3B. Splenocytes from naive mice included virtually no TNFα-containing cells. However, among splenocytes derived from CFA-sensitized mice, TNFα-positive cells were detectable, mainly in the expanding CD11b+ subpopulation. The specificity of the TNFα staining was verified using an isotype control antibody. Stimulation of these splenocytes with *M butyricum* did not increase the numbers of TNFα-producing CD11b+ cells but did increase the amount of TNFα produced per cell, as evident from the increase in mean fluorescence intensity (25 in unstimulated cells versus 149 after stimulation with *M butyricum*).

To ascertain whether TNFα production differs between CFA-injected arthritic and CFA-injected non-arthritic IFNγR-KO mice, we measured serum TNFα levels and analyzed TNFα expression in CD11b+ spleen cells. The results revealed no significant difference between the 2 groups of CFA-injected IFNγR-KO mice in terms of TNFα production or TNFα expression in CD11b+ cells (data not shown).

We determined, by flow cytometry, the number of CD11b+,CD115+ double-positive cells since this population of cells has recently been identified as a population of osteoclast precursors (24,34), and we
studied RANKL/M-CSF–induced osteoclast formation in cultures of bone marrow, splenocytes, and blood cells derived from CFA-injected arthritic and nonarthritic IFNγR-KO mice as well as from naive animals. A representative CD11b/CD115 staining pattern in spleen and blood cells is shown in Figure 4A. A mild expansion of CD11b+,CD115+ cells could be seen in spleen cells from CFA-injected mice, without any difference between arthritic and nonarthritic animals. In contrast, the percentage of CD11b+,CD115+ cells in blood was higher in arthritic versus nonarthritic animals, and the difference was found to be significant (mean ± SEM 26 ± 0.5% versus 13 ± 0.5%; n = 5 per group) (P < 0.01).

To further confirm that the spleen and blood of sensitized IFNγR-KO mice indeed contained a higher proportion of osteoclast precursors, spleen and blood cells were cultured for 6 days in medium containing M-CSF plus RANKL, followed by TRAP staining. Significantly higher numbers of TRAP+ multinucleated osteoclasts were generated in cultures of splenocytes and blood cells derived from CFA-treated IFNγR-KO mice than in those from naive mice (Figure 4B). Moreover, TRAP+ osteoclasts that were generated from CFA-
induced animals were larger in size and contained more nuclei than osteoclasts generated from naive mice (Figure 4C). The effect of CFA sensitization on increased osteoclast formation was not observed in bone marrow cultures (Figure 4B).

To verify the activity of the generated osteoclasts, splenocytes from sensitized and nonsensitized IFNγR-KO mice were cultured on quartz substrate and coated with calcium phosphate film in the presence of RANKL plus M-CSF, and pit formation was quantified. The total number of pits appeared to be higher in splenocyte cultures derived from the sensitized mice. Moreover, pits with a large surface area (>5,000 μm²) were more frequent in such cultures (Figure 4C).

Production of RANKL, TNFα, and OPG in arthritic joints, and synergistic activity of RANKL and TNFα. To test whether stimuli for osteoclast differentiation were present at the site of inflammation, quantitative RT-PCR for RANKL and TNFα was performed on isolated synovia of sensitized and nonsensitized IFNγR-KO mice. Quantification of OPG, a decoy receptor for RANKL (35), was included in the RT-PCR. From the data shown in Figure 5, it can be seen that the number of RANKL messenger RNA (mRNA) copies was increased upon challenge with CFA (Figure 5A). More importantly, the number of OPG mRNA copies was found to be 25 times lower in the synovia of CFA-challenged mice than in those of naive mice (Figure 5B). The total number of mRNA copies was not different from those in naive mice (Figure 5A).

Because both RANKL and TNFα are present in the synovium, we investigated whether they act synergistically on osteoclastogenesis in our model. Splenocytes from naive and CFA-injected IFNγR-KO mice were cultured for 6 days in medium containing M-CSF plus RANKL and/or TNFα, followed by staining for TRAP. Figure 5D shows a strong synergistic effect of TNFα and RANKL in splenocyte cultures from CFA-challenged IFNγR-KO mice compared with naive mice, in which only a weak synergistic effect was detected.

Inhibition of CFA-induced arthritis and systemic osteoclastogenesis by etanercept treatment. The strong synergistic effect of TNFα and RANKL on in vitro osteoclastogenesis (Figure 5D) and the presence of bioactive TNFα in the circulation of CFA-treated mice (Figure 3A) prompted us to investigate the effect of etanercept, a TNFα antagonist, on the pathogenesis of CFA-induced arthritis. CFA-sensitized IFNγR-KO mice were implanted (day 0) with osmotic minipumps releasing etanercept at a constant rate of 125 μg/day, or with minipumps delivering vehicle. Figure 6A shows the mean arthritis scores in diseased mice in both groups during the time course of the experiment. Clinical symptoms started to appear on day 19 in the control group, but remained absent in the etanercept-treated group. Even beyond day 28, all etanercept-treated mice remained free of symptoms. The mean weight of the spleens of treated mice was significantly lower than that of controls (mean ± SEM...
114 ± 7 mg versus 169 ± 14 mg [n = 4 per group]) (Figure 6B). Flow cytometric analysis of blood leukocytes showed that treated mice had fewer CD11b+ cells (Figure 6C).

In view of the prophylactic therapeutic effect of etanercept on arthritis symptoms, we then tested whether this effect was due to decreased osteoclastogenesis. In vitro osteoclastogenesis assays were performed on blood cells and splenocytes from etanercept-treated and control CFA-sensitized IFNγR-KO mice. Complete blood leukocytes and whole splenocyte suspensions were cultured for 6 days in medium containing M-CSF plus RANKL. On day 7, osteoclast differentiation was evaluated by TRAP staining. As evidenced in Figure 6D, significantly lower numbers of osteoclasts appeared in the total blood leukocyte cultures from etanercept-treated CFA-sensitized mice than in those from control CFA-sensitized mice. In addition, significantly lower numbers of osteoclasts appeared in splenocyte cultures derived from etanercept-treated mice than in cultures from non–etanercept-treated CFA-sensitized controls (data not shown).

DISCUSSION

Arthritis can be induced in rats by administration of Freund’s complete adjuvant, without intentional immunization with an exogenous organ-specific autoantigen. Attempts to induce pure adjuvant arthritis in mice or other species have mostly been unsuccessful (7–9). The resistance of mice to adjuvant arthritis was confirmed in our study, in which <5% of the wild-type DBA/1 mice developed signs of arthritis. In contrast, IFNγR-KO DBA/1 mice were found to be quite susceptible to arthritis induction with CFA. Induction of arthritis in mice following a single injection of CFA was also observed in BALB/c mice lacking the IFNγ receptor, suggesting that CFA-induced arthritis is not IFNγ class II restricted. Apparently, nonfunctionality of the IFNγ system creates favorable conditions for CFA to induce arthritis.

Clinical symptoms in IFNγR-KO DBA/1 mice were transient, with a peak around day 17–18 post-injection of CFA. On pathologic examination, tissue changes in affected joints were indistinguishable from those in classic CIA: infiltration of the synovium with mononuclear and polymorphonuclear cells, together with hyperplasia of tissue, pannus formation, and bone destruction by multinucleated osteoclasts. Hyperplasia and bone destruction by osteoclasts occurred in both the early (day 26) and the late phases of the disease. In contrast, infiltration of the synovium with immune cells was present in the early phase and diminished subsequently. This may explain the waning of clinical symptoms at later time points.

In rats with adjuvant arthritis, not only are the joints affected, but other organs also exhibit inflammatory infiltration and granuloma formation (6,32). In CFA-treated IFNγR-KO mice, in contrast, the histologic appearance of the thyroid, kidneys, pancreas, intestine, lungs, liver, heart, and lymph nodes remained normal. Furthermore, anti-DNA antibodies were undetectable in the serum, a finding that corresponds to the tissue specificity of disease. Only the spleen showed enlargement and structural disruption. The red pulp was extensively expanded and contained a large proportion of myeloid cells. Thus, arthritis induced in IFNγR-KO mice by a single injection of CFA is qualitatively iden-
tional to CIA, differing only by its shorter duration and by a generally lower incidence and severity.

Similar to findings in CIA, we demonstrated in this study that the symptoms of adjuvant arthritis coincide with extramedullary myelopoiesis and expansion of CD11b+ cells in the spleen. The expansion was observed only in mice deficient in the IFNγ receptor, indicating that endogenous IFNγ somehow counteracts extramedullary myelopoiesis.

Effects of IFNγ on hematopoietic progenitor cells and myelopoiesis have been shown in studies using different stimuli of hemopoietic cytokines (for review, see ref. 36). Of special relevance is a study demonstrating a dramatic effect of the IFNγ knockout mutation on hemopoietic remodeling during infection with Mycobacterium tuberculosis bacillus Calmette-Guérin, in which the normal splenic architecture in the IFNγ-KO mice was found to be effaced by expanding myeloid cells (37). Our observations indicate that a similar process takes place in IFNγR-KO mice that undergo immunization protocols in which killed mycobacteria are a component of CFA. Macrophages of IFNγ-deficient mice may be defective in their ability to destroy the mycobacterial cell bodies. This may result in a long-term activated status of the macrophage, and hence also in persistent stimulation of cytokines such as TNFα.

In our model of CFA-induced arthritis, TNFα was detectable in the serum of CFA-sensitized IFNγR-KO mice, whereas it was undetectable in wild-type counterparts or in naive mice. Moreover, a portion of the CD11b+ cells in splenocyte cultures derived from CFA-sensitized IFNγR-KO mice, but not in those derived from naive mice, did contain TNFα. Stimulation with mycobacteria further increased the amount of TNFα produced per cell. Clearly, in our model the expanding CD11b+ cell population plays a role as a source of TNFα, although other cell sources cannot be excluded.

Our results, in particular the fact that a large proportion of the CD11b+ cells consisted of osteoclast precursors, provide evidence of a possible link between the myelopoietic events and joint involvement, as has been described in experimental arthritis in TNFα-transgenic mice (23,24). Moreover, osteoclasts were inducible in cultured splenocytes, and in much larger numbers in cultures from CFA-sensitized mice than in those from naive mice. In the blood of sensitized mice, the number of osteoclast precursors was likewise increased, as was evident both from the increased proportion of CD11b+CD115+ cells, known to correspond to osteoclast precursors (24,34), and from osteoclast induc-
cultures from control CFA-sensitized IFNγR-KO mice. Similarly, the total blood leukocyte population in the etanercept-treated mice contained fewer osteoclast precursors than that in non-etanercept-treated mice. From these findings we conclude that, in our model, TNFα also has a role in promoting myelopoiesis of the CD11b+ cell population.

Another point of interest is the observation that treatment with CD4-depleting antibodies prevented CFA-induced arthritis and, in parallel, inhibited the expansion of CD11b+ splenocytes as well as osteoclastogenesis. These results indicate an important role of T cells in driving myelopoiesis. Interestingly, in CIA, anti-CD4 antibodies have been described to significantly inhibit the induction of arthritis only when treatment was initiated around the time of immunization with CII in CFA (39,40). Thus, also in CIA, CD4+ T cells may be important in promoting myelopoiesis and osteoclast formation. In fact, from our results it becomes clear that extramedullary myelopoiesis and osteoclastogenesis may be important determinants of arthritis development.

Expansion of CD11b+ splenocytes and osteoclast precursor cells in blood was significantly more pronounced in mice that developed arthritis than in animals that remained free of symptoms. Therefore, it is tempting to speculate that the expansion of CD11b+ cells in spleen and blood may lead to arthritis as soon as its magnitude exceeds a critical value. In this scenario, administration of compounds that keep the expansion below the threshold (in this study, etanercept and anti-CD4) would inhibit the development of arthritis.

In summary, our findings reveal previously undescribed roles of CFA in the pathogenesis of CIA. Aside from stimulating the specific autoimmune response, CFA elicits an antigen-independent pathway involving osteoclastogenesis. This innate pathway is cytokine controlled: dysregulation of a single cytokine creates favorable conditions for CFA to stimulate osteoclastogenesis and arthritis. Determining the frequency of peripheral osteoclasts may be important in clarifying the mechanism of action of cytokines in the pathogenesis of CIA and may explain discrepancies in results obtained in different animal models of arthritis.

ACKNOWLEDGMENTS

We thank A. Billiau, G. Opdenakker, and R. J. Lories for critical reading of the manuscript.

AUTHOR CONTRIBUTIONS

Ms Geboes had full access to all of the data in the study and takes responsibility for the integrity of the data and the accuracy of the data analysis.

Study design. Geboes, Matthys.

Acquisition of data. Geboes, De Klerck, Van Balen, Kelchtermans, Mitera, Boon, De Wolf-Peeters.

Analysis and interpretation of data. Geboes, De Klerck, De Wolf-Peeters, Matthys.

Statistical analysis. Geboes.

REFERENCES

38. Fuller K, Murphy C, Kirstein B, Fox SW, Chambers TJ. TNFα potently activates osteoclasts, through a direct action independent of and strongly synergistic with RANKL. Endocrinology 2002;143:1108–18.