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a b s t r a c t

Methylene blue (MB) is a dye pollutant commonly present in textile wastewater. We investigate and
critically evaluate the applicability of BaTiO3/GO composite for photodegradation of MB in synthetic
wastewater under UVevis irradiation. To enhance its performance, the BaTiO3/GO composite is varied
based on the BaTiO3 weight. To compare and evaluate any changes in their morphologies and crystalline
structures before and after treatment, BET (BrunauereEmmetteTeller), XRD (X-ray diffraction), FTIR
(Fourier transform infrared spectroscopy), SEM (scanning electron microscopy) and TEM (transmission
electron microscopy) tests are conducted, while the effects of reaction time, pH, dose of photocatalyst
and initial MB concentration on its photodegradation by the composite are also investigated under
identical conditions. The degradation pathways and removal mechanisms of MB by the BaTiO3/GO are
elaborated. It is evident from this study that the BaTiO3/GO composite is promising for MB photo-
degradation through $OH. Under optimized conditions (0.5 g/L of dose, pH 9.0, and 5mg/L of MB con-
centration), the composite with 1:2 dose ratio of BaTiO3/GO has the highest MB degradation rate (95%)
after 3 h of UV vis irradiation. However, its treated effluents still could not comply with the discharge
standard limit of less than 0.2mg/L imposed by national environmental legislation. This suggests that
additional biological treatments are still required to deal with the remaining oxidation by-products of
MB, still present in the wastewater samples such as 3,7-bis (dimethyl-amino)-10H-phenothiazine 5-
oxide.

© 2019 Elsevier Ltd. All rights reserved.
1. Introduction

In recent years, China's rapid industrialization have led to an
increasing water consumption in dye-related industries such as
textile (Jiang, 2009). Such industries contribute to large amounts of
wastewater laden with dye pollutants including MB. It is estimated
e by Baoshan Xing.
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that textile printing and dyeing (TPD) industry has a major share up
to approximately 40% of the total industrial wastewater discharge
nationwide with its daily emission ranging between 3� 106m3/
d and 4� 106m3/d (Lin et al., 2018a). The TPD wastewater, char-
acterized by a high concentration of refractory pollutants such as
MB, is difficult to be treated (Wang et al., 2001), as its dark color
continually absorbs sunlight in tropical regions, causing hazardous
effects to aquatic organisms. Hence, it is quite complicated and
costly to remove both the pollutant and its color from such
wastewater in large-scale water treatment plants (Mohtora et al.,
2018).

AlthoughMB is not toxic, when it is ingested higher than 7.0mg/
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kg, this can cause health disorders such as high blood pressure,
nausea, and abdominal pain (Oz et al., 2011). Moreover, the MB can
be freely photosensitized by light to produce hazardous oxygen
(1O2) (Albadarin et al., 2017a), which can damage our DNA struc-
ture, especially when being present in high concentrations
(Carneiro et al., 2010). Unless treated, the discharge of the MB
pollutant into a water body would affect the surrounding aquatic
environment and public health. Therefore, it is necessary to treat
the wastewater laden with MB.

Various water technologies, including reverse osmosis (Chan
et al., 2007) and adsorption (Babel and Kurniawan, 2003, 2004;
Lin et al., 2018b), have been tested and developed in laboratory-
settings to address global water pollution problems. However,
those techniques have bottlenecks in their practical applications,
such as high energy consumption, costly operational cost, and low
removal efficiencies (Albadarin et al., 2017b; Fu et al., 2017). As a
result, we need to develop state-of-the-art of environmental
technologies with a unique capability of removing target pollutants
indiscriminately within a short time.

Recently, photocatalytic technology has gained popularity for its
novel applications in removing rhodamine B (RhB) (Sabarish and
Unnikrishnan, 2018), methyl orange (MO) (Zhai et al., 2018), and
MB (Banerjee et al., 2018) from wastewater. In this particular
technology, photocatalysts such as TiO2 play roles in the degrada-
tion processes through the formation of $OH (Vig et al., 2018). The
$OH rapidly attacks target pollutant and degrades it completely into
CO2 and H2O under UVevis irradiation (Fig. S1) (Jilani et al., 2018).

Among a variety of photocatalysts, BaTiO3, due to its excellent
dielectric, ferroelectric, and piezoelectric properties (Gromada
et al., 2017; Rezakazemi et al., 2018), has potentials for applica-
tions in optoelectronic devices. However, the photocatalyst with
3.25 eV of band gap has a weak light response range, which inhibits
its applications for water treatment. In addition, the wide band gap
of the BaTiO3 makes it unable to utilize the UVevis effectively due
to its fast recombination rate caused by the semiconductor's
electron-hole pairs (e-, hþ) (Azarang et al., 2014, 2018). Such
drawbacks would hinder it from having an efficient photo-
degradation. To address these bottlenecks, innovative technological
approaches such as surface sensitization (Li et al., 2015), morpho-
logical control (Sahu et al., 2019), ion doping (Hong et al., 2018),
noblemetal loading (Ramezanpour et al., 2018), and construction of
hetero-structure (Yan et al., 2010), have been developed recently to
mitigate the impacts attributed to them.

A number of previous studies reported that the use of BaTiO3 for
photodegradation could remove diclofo-p-methyl and dyes (Devi
and Krishnamurthy, 2009; Nageri and Kumar, 2018). Li et al.
(2013b) found that the electron-hole pairs (e-, hþ) of the BaTiO3
migrate to its conduction band during reaction, and then produce
$O�

2 to degrade the MB (Reactions (1)e(3)) (Yang et al., 2005).
However, only 64% of MB removal was achieved by the BaTiO3
alone with an initial MB concentration of 5mg/L.

BaTiO3/hvBaTiO3
�
e�cb þ hþ

vb

�
(1)

e�cb þO2ðadsorbedÞ/,O�
2 ðadsorbedÞ (2)

e�cb þ hþ
vb/heat (3)

To address the bottlenecks caused by its wide bandgap, in this
study, the BaTiO3 was integratedwith graphene oxide (GO), a single
monolayer of graphite with oxygenated functional groups like hy-
droxyl groups, carbonyl, epoxide and carboxyl, as a hybrid com-
posite. It is expected that the new composite that consisted of both
BaTiO3 and GO would have unique physical, chemical, optical and
mechanical properties (Han et al., 2014, 2016) with a shorter
bandgap than that of the BaTiO3, one of its starting compounds. The
GO is a useful loading material because it may have the ability to
play unique roles as a macromolecular photosensitizer that act as a
reservoir of electrons to shuttle the electrons generated from the
BaTiO3 (Zhang et al., 2012; Fu et al., 2019). The GO may form a
unique composite with the BaTiO3 for enhancing MB photo-
degradation under UVevis irradiation, as the composite may
possess ferroelectric properties coupled with large active sites with
a shorter bandgap.

In addition, the GO has a large specific surface area
(500e1200m2/g) (Dervin et al., 2017) that act as active sites for
photocatalytic degradation applications (Wang et al., 2014), while
the BaTiO3 can be uniformly anchored at the active sites of the GO
in the form of composite (Liu et al., 2016, 2017). The hydroxyl or
carboxyl groups of the GO may promote the formation of a steady
structure of the BaTiO3/GO composite for photodegradation. Both
BaTiO3 and GO are complement to each other, as in the form of
composite, their hybrid not only increases the transfer of electrons
between them, but also decreases the recombination rate of their
hole-electron pairs (Xu et al., 2013), improving photodegradation
efficiency.

A previous study carried out by Kurniawan et al. (2018) reported
the feasibility of the TiO2/BaTiO3 composite for acetaminophen
removal from aqueous solutions. Separately Ong et al. (2019)
revealed that a photoanode with 1:1 dose ratio of BaTiO3/ZnO
exhibited the highest photocatalytic activity for the degradation of
RR120 in aqueous solutions. In spite of unique physico-chemical
properties of the BaTiO3, to the best of authors' knowledge,
studies on the synthesis, characterization, and application of the
BaTiO3/GO composite for MB removal have so far been rarely re-
ported in the body of knowledge (Lin et al., 2017; Zhao et al., 2018).

In this study, we investigate the applicability and performance
of the BaTiO3/GO composite for photodegradation of MB in syn-
thetic wastewater under UVevis irradiation. To enhance its
removal performance, the BaTiO3/GO composite is varied based on
the BaTiO3 weight. To compare and evaluate changes in their
morphologies and crystalline structures before and after treatment,
BET, XRD, FTIR, SEM and TEM tests are conducted, while the effects
of reaction time, pH, dose of photocatalyst and initial MB concen-
tration on its photodegradation by the same composite are inves-
tigated. The degradation pathways and the mechanisms of the MB
removal by the BaTiO3/GO are also elaborated in this study.

2. Materials and methods

2.1. Materials

BaTiO3 with 99.9% purity was obtained from Aladdin Reagent
Co. (Shanghai, China). Natural graphite, supplied by the same
supplier, was used to prepare the GO through the modified Hum-
mer's method, as reported by Li et al. (2013a). Methylene blue, used
in its as-received form, was provided by Acros (New Jersey, US)
(Table S1). The stock solution of MB was prepared by dissolving 1 g
of the chemical in 1 L of deionized water. Working solutions were
freshly prepared by diluting the same stock solution to pre-
determined concentrations from 2.5 to 20mg/L. The pH-meter (FE
20, Switzerland) was used to adjust the pH of the synthetic dye
wastewater by 1.0M HCl and/or NaOH.

2.2. Methods

2.2.1. Synthesis of single layer GO
In this study, the GO sheet was synthesized based on the

modified Hummers' method (Li et al., 2013a). Initially, 2.50 g of



Fig. 1. ХRD patterns for various types of BaTiO3/GO composites.
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graphite and 1.25 g of NaNO3, respectively, were added into 70mL
of 1MH2SO4. Themixturewas stirred at 278 K. Subsequently, about
7.50 g KMnO4 were added into this mixture, while maintaining the
same temperature for 6 h. The temperature of the suspension was
then increased to 393 K and stirred for 30min. The solution was
cooled down at ambient temperature and then 25mL of H2O2 was
added into the suspension to terminate the reactions. The sus-
pension was centrifuged and washed with 5% HCl and deionized
water until the pH was 7. The resulting GO was obtained by
applying ultrasonic dispersion of the suspension and dried in an
oven at 378 K for 24 h.

2.2.2. Synthesis of BaTiO3/GO composite
A predetermined amount of BaTiO3 and GO, respectively, were

added into 0.1 L of ethanol solution, and stirred for 1 h at ambient
temperature. The weight ratio between the BaTiO3 and the GO was
varied based on the weight of BaTiO3 (Table S2).

The mixture was then transferred to a polytetrafluoroethylene
reactor and put in an oven at 473 K for 3 h. After the reaction was
complete, the mixture was cooled down to ambient temperature
and filtered. Subsequently, the composite was repeatedly washed
using 70% (v/v) ethanol. The obtained composites were washed and
filtered using distilled water and ethanol until the pH of the solu-
tion was 7.0. Finally, the composites were dried in an oven at 333 K
for 48 h to obtain the BaTiO3/GO composites with varying dose
ratios. The overall synthesis process of the composite is presented
in Fig. S2.

2.2.3. Characterization of BaTiO3/GO composite
To detect any changes in their crystalline forms after treatment,

XRD (model Rigaku Ultima IV, Tokyo) tests were employed to
analyze their phase composition. The equipment was operated at
40 kV and 30mA from a range of 5�e60� at 10�/min of scanning
speed. To identify the presence of functional groups in the com-
posites, FTIR studies were conducted. To determine their degree of
dispersion between the particles, agglomeration, grain size and
shape, the morphology and microscopic structures of the com-
posites were studied by using a SEM (model ZEISS SIGMA, Ger-
many), which operated at 15 kV, while their microstructures were
analyzed using a TEM (model Tecnai F30, the Netherlands). A
UVevis spectrophotometer (model UV-1800PC, Mapada,
Shanghai), was used to determine the remaining MB concentra-
tions after treatment.

2.2.4. Photocatalytic degradation
A cylindrical reactor with a height of 220mm and a diameter of

10mmwas used in this study. The volume of the photoreactor was
0.5 L, which contained both target contaminant and the photo-
catalyst. The experiments were conducted at ambient temperature
(Fig. S3).

In this treatment, the photocatalyst was dispersed in 500mL of
MB solution with continuous stirring throughout the experiments.
The reaction was kept in the dark for 30min to establish
adsorptionedesorption equilibrium in the reactor. To maximize the
removal of MB in aqueous solutions, parameters such as reaction
time, pH, dose of photocatalyst, and initial MB concentration, were
varied under optimized conditions. After being exposed to the
UVevis irradiation, about 5mL of samples were collected from the
reactor every 30min and filtered using Millipore filter papers (with
their pore size of 0.45 mm) before undertaking chemical analyses
subsequently.

2.2.5. Chemical analyses of MB
After treatment, the remaining concentration of MB was

determined at the maximum wavelength (l) of 664 nm. The
removal efficiency (he(%)) of MB was calculated based on:

heð%Þ¼ ½1�ðCe=C0Þ� � 100% (4)

where Co and Ce are the initial and the equilibrium MB concen-
tration after treatment, respectively.

2.2.6. Statistical analysis
All the average values were obtained by undertaking the ex-

periments in duplicate under identical conditions. The maximum
coefficient of data variation was less than 5%. The statistical tests
were carried out using SPSS 19.0 Windows Version with a confi-
dence interval of 95%.

3. Results and discussions

3.1. Characterization of BaTiO3/GO composites

3.1.1. BET analyses
Table S3 presents the surface areas of as-received BaTiO3 and

BaTiO3/GO composites. It is obvious that GO doping substantially
increase the SBET of BaTiO3/GO composites. As the GO loading into
the BaTiO3 increases, the pore size of the BaTiO3/GO composites
decrease.

The SBETof the as-received GOwas 500e1200m2/g (Dervin et al.,
2017), while that of the BaTiO3/GO-33% is the largest (62m2/g). It
was anticipated that the GO doping on the BaTiO3might enlarge the
surface area of the composites formed. Hence, the increasing sur-
face areas of the composites not only would promote photocatalytic
activities, but also provide additional active sites for reacting with
the target pollutant (Benjwal and Kamal, 2015).

3.1.2. XRD analyses
Fig. 1 shows the crystal structures of pure BaTiO3, GO as well as

the BaTiO3/GO-20%, 33%, 66%, 80% composites.
The characteristic peak of the GO, which appears at around

10.5�, indicates the presence of its ordered layered structure (Yao
et al., 2013), while the peaks of all the composites at the same
degree suggested that the GO was successfully doped into the
BaTiO3. As reflected by all the composites, the higher the ratio of the
doped GO into the composites is, the sharper their peaks are. The
peaks of all the composites, which appear at 21.9�, 31.4�, 38.8�,
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45.1�, 51.1�, 56.1�, and 65.7�, suggest their good crystallinity. The
characteristic peaks' position of the BaTiO3 remained unchanged in
other composites, reflecting that its crystal structure also remained
present in the composites.

It is important to note that the presence of the GO in the crys-
talline structure of the composite might have changed the elec-
tronic structure of the composite's C orbitals with its energy lower
than that of the Ti orbitals in its conduction band (cb). Conse-
quently, this not only shortened its bandgap, but also slowed down
its recombination rate and exposed the photocatalyst to the UVevis
effectively for an efficient photodegradation. These findings were in
agreement with those of Lacerda and de-Lazaro (2016), who re-
ported that a Zn-doping process into BaTiO3 had significantly
reduced the bandgap in its conduction band (cb).

Fig. 1 also shows that in the XRD patterns of the BaTiO3/GO-66%
and the BaTiO3/GO-80% composites, we observed several peaks
other than the pure BaTiO3. Those peaks are impurity due to the
addition of GO into the BaTiO3. The higher the content of the GO
doped with BaTiO3 was, the lower the crystallinity of the com-
posites was, resulting in additional peaks during the XRD analyses.

Due to their higher peaks, it is obvious that both the BaTiO3/GO-
20% composite and the BaTiO3/GO-33% composites had better
crystallinity properties and larger crystal grains than did the
BaTiO3/GO-66% composite and the BaTiO3/GO-80% composite. As
the ratio of GO in the composites increased, the intensity of the GO
was enhanced, while the intensity of the BaTiO3 decreased. These
results confirmed those of Yao et al. (2013), who reported the
BaTiO3/GO composites displayed mixed BaTiO3 and GO diffractions
due to varying intensities.
3.1.3. FTIR analyses
The FTIR spectra of GO, pure BaTiO3 and the BaTiO3/GO-20%,

33%, 66%, 80% samples are presented in Fig. 2. The FTIR spectra of
the GO revealed unique absorptions due to the presence of CeO
group in 500e1000 cm�1, while the stretching vibration at
1300 cm�1 was attributed to the CeOeC group and the one in
1600 cm�1 was related to the CeOeH group. Furthermore, the OeH
stretching vibration, which existed at 3400 cm�1, revealed a strong
and broad absorption peak of the GO. These results indicated
various types of oxygen functionalities present on its surface (Szabo
et al., 2006).

The bands located at 3480, 2900, 2800 and 1628 cm�1 were
attributed to the OeH group's vibration stretching because of the
Fig. 2. FTIR spectra of GO, pure BaTiO3 and various BaTiO3/GO composites.
water molecules present on the surfaces of the BaTiO3 (Jung et al.,
2005; Utara and Hunpratub, 2018; Zheng et al., 2013). As re-
flected by their FTIR spectra, the peaks of the OeH, C]O, and CeO
groups of the four composites still exist in the same range of the
bands belong to the composites, as reported by Ran et al. (2019).
This suggests that the physico-chemical characteristics of the GO
might not change after being integrated with BaTiO3 as a
composite.

3.1.4. SEM and TEM analyses
The surface morphologies of GO, pure BaTiO3 and BaTiO3/GO

composites are presented in Fig. 3. Fig. 3a presents a spherical
BaTiO3 with its core-shell structure that has a homogeneous grain
size, while Fig. 3bee depicts that the GO sheets were wrinkled,
where the BaTiO3 particles were attached to its surface. However,
the GO-doped BaTiO3 did not have any effects on the spherical
morphology of the BaTiO3. Fig. 3bee indicate that the BaTiO3/GO
composites were synthesized successfully. This finding affirmed
earlier findings reported by Vasilaki et al. (2015), who found that
the nanoparticles tended to accumulate along the wrinkles of the
GO sheets.

Although all of the composites have GO content, the BaTiO3/GO-
66% composite might have had the highest photocatalytic activity,
as compared to the others. The obvious difference between this
BaTiO3/GO-66% composite and others was that the BaTiO3 particles
were distributed more uniformly in the BaTiO3/GO-66% than those
in the other composites (Fig. 3d). This enabled the BaTiO3/GO-66%
to have enhanced photocatalytic activities under UVevis
irradiation.

As presented in Fig. 4a, the TEM images of the GO sample depicts
obvious wrinkles on its surface, typical features of monolayer gra-
phene (Meyer et al., 2007), while Fig. 4b shows that the surface of
the GO sheet was uniformly covered with the BaTiO3. The BaTiO3
had homogeneous particle dispersions on the GO surface, an
essential factor for enhanced photocatalytic performance.

3.2. Photodegradation studies

3.2.1. Control study without photocatalysts
For control study, an aqueous systemwithout any photocatalyst

was irradiated under UVevis light. After 4 h of irradiation, the MB
removal was negligible (1.1% of MB removal with its initial con-
centration of 5mg/L). On the other hand, under 4 h of UVevis
irradiation, only 3.2% of the MB could be removed by the BaTiO3
alone under the same concentration of 5mg/L at pH 9.0 (Fig. 5). To
enhance its removal performance for water treatment applications,
therefore, it is necessary to integrate both the BaTiO3 and the GO as
a composite.

3.2.2. Effects of reaction time on MB removal
Fig. 5 presents the MB removal by various composites under

UVevis irradiation for 4 h. The MB removal improved gradually
with an increasing time and eventually reached an equilibrium
state at a certain time. The four composites have higherMB removal
efficiencies than the BaTiO3 alone as follows: BaTiO3/GO-66%
composite (94.57%)> BaTiO3/GO-80% composite (94.09%)> BaTiO3/
GO-20% composite (88.61%)> BaTiO3/GO-33% composite (88.52%),
respectively. Due to its highest removal efficiency, the BaTiO3/GO-
66% composite was used for subsequent experiments.

Fig. 5 indicated that an increasing GO doping ratio promoted a
higher photocatalytic activity. The optimum condition of the
BaTiO3/GO (w/w) ratio was 1:2. This result could be explained due
to the fact that the larger specific surface area of the BaTiO3/GO
composite has, the more active sites it possesses, decreasing the
possibility of its electron-pairs recombination. This finding is in



Fig. 3. SEM images of (a) pure BaTiO3 (b) BaTiO3/GO-20% composite (c) BaTiO3/GO-33% composite (d) BaTiO3/GO-66% composite and (e) BaTiO3/GO-80% composite.

Fig. 4. TEM images of GO alone and/or BaTiO3/GO-66% composite.
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agreement with that of Sharma et al. (2018), who found that the
GO-doped photocatalyst enhanced the charge separation and
extended the increment in its surface area for promoting a higher
dye adsorption.
3.2.3. Effects of pH on MB removal by BaTiO3/GO composite
pH affects not only the charge properties of the photocatalyst

and charge distribution on its surface, but also electrostatic in-
teractions between adsorbate and the photocatalyst in aqueous



Fig. 5. Photodegradation efficiencies of MB with varying ratios of BaTiO3/GO com-
posite (concentration of MB: 5mg/L, dose of photocatalyst: 0.5 g/L, pH 9, reaction time:
4 h, 25 �C).
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solutions (Kurniawan et al., 2006a; Kurniawan and Lo, 2009).
Therefore, it is necessary to determine an optimum pH. For this
reason, the pHwas varied from 3 to 11 during the photodegradation
reaction using the BaTiO3/GO-66% composite under UVevis irra-
diation (Fig. 6). The results show that a maximum removal of MB
was attained at pH 9 after 4 h of reaction with its initial concen-
tration of 5mg/L.

We also tested it with 10mg/L of MB concentration to confirm
pH dependence of MB photodegradation by the composite at a
higher MB concentration. Similar results of pH dependence on MB
concentration are presented in Fig. 6b.

Under the same conditions, MB removal gradually increased
when the pH was increased from 3 to 9. At pH 9 (alkaline envi-
ronment), the isoelectric point of the BaTiO3/GO-66% composite
increased because at the equipotential point, the surface charge of
the photocatalyst trapped electron-hole pairs on the BaTiO3/GO's
surface and reduced the recombination probability of electron-hole
pairs, thus enhancing its photocatalytic activity for an efficient MB
photodegradation. This result confirmed earlier findings reported
Fig. 6. Effects of pH on MB degradation (dose of ph
by Zhu et al. (2005) and Eskelinen et al. (2010), who reported that
an alkaline environment was suitable for the photocatalytic
oxidation of target pollutants under UVevis irradiation.

For this reason, the MB removal by the composite was higher in
alkaline conditions (pH 9) than that in acidic conditions because its
active surface exhibited a net negative change. This facilitated
attractive columbic forces between the negative surface charge of
the composite and the positive charge of the MBmolecules, leading
to a higher dye removal (Fig. S4) (Kosmulski, 2009; Singh and Dutta,
2019). On the other hand, in acidic conditions, the net positive
surface charge of the composite repelled the cations of the MB,
typically a basic dye of thiazine, resulting in a lower MB removal by
the composite.

Another reason that could explain this is the formation of $OH in
alkaline environment, as OH� in basic conditions are freely react
with the photogenerated holes of the BaTiO3 (Reactions (5)e(6)),
resulting in a higherMB degradation promoted by the $OH (Fig. S5).

hþ þOH� / $OH (5)

$OH þ MB / oxidation by-products / CO2 þH2O (6)

3.2.4. Effects of dose on MB removal
An optimum dose of photocatalyst may enhance a photo-

degradation process by maximizing the absorption of radiation
photons by its surface area. Fig. 7 illustrates the effects of dose on
MB removal by BaTiO3/GO-66% composite with varying dose from
0.05 to 0.50 g/L.

The results showed that the amount of the photocatalyst
affected the decolorization of the MB in aqueous solutions. With
the increasing dose of the BaTiO3/GO-66% composite from 0.05 to
0.50 g/L, the MB removal was enhanced from 29% to 95%. This is
significantly higher than that by the BaTiO3 alone (3.1%) under the
same optimum conditions (0.5 g/L of BaTiO3; pH 9.0; 5 h of reaction
time; MB concentration of 5mg/L) (p� 0.05; t-test). This suggests
the BaTiO3/GO composite has a higher MB photodegradation than
the BaTiO3 alone due to its lower recombination rate (e-/hþ pairs).
Wang et al. (2015) reported that there was an obvious red shift in
the absorption edge of the composite in the visible region. Due to
the presence of theeOH, C]O andeCOO- groups (Section 3.1.3) on
the surface of GO, the BaTiO3/GO composite might have new
otocatalyst: 0.50 g/L, reaction time: 4 h, 25 �C).



Fig. 7. Effects of photocatalyst's dose on MB degradation by BaTiO3/GO-66% composite
(concentration of MB: 5mg/L; pH 9; reaction time: 5 h; 25 �C).
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physico-chemical characteristics, as reflected by its shorter
bandgap (Eg¼ 2.56 V) than that of the BaTiO3 alone (Eg¼ 3.25 V), as
indicated by earlier XRD results (Section 3.1.2).

When the dose of the composite was low, it could not provide
enough active sites for reacting with target pollutants, leading to a
slow reaction rate and a lowMB removal by the photocatalyst. This
result is in agreement with those of previous studies, which re-
ported the importance of an optimum dose of the photocatalyst for
maximizing the photodegradation reactions (Cassano and Alfano,
2000; Favier et al., 2015; Babu et al., 2019).

3.2.5. Effects of initial MB concentration on its removal by BaTiO3/
GO composite

A high concentration of adsorbate in aqueous solutions may
saturate the photocatalyst's surface, lowering its catalytic activity
(Saquib and Muneer, 2003). The effects of initial MB concentration
during photodegradation were investigated using 0.5 g/L of the
BaTiO3/GO-66% composite with varying MB initial concentrations
from 2.5 to 20mg/L.
Fig. 8. Effects of initial MB concentration on its degradation rate (dose of photo-
catalyst: 0.50 g/L, pH 9, reaction time: 3 h, 25 �C).
Fig. 8 shows that the MB removal by the photocatalyst improved
with an increasing reaction time. As the MB concentration
increased, the rate of MB photodegradation gradually decreased
(Bahnemann, 2004; Chong et al., 2009; Yang et al., 2019). This could
be due to the fact that at a higher concentration of MB, the
adsorption layer of the BaTiO3/GO-66% composite became thicker,
preventing the UVevis from reaching the surface of the photo-
catalyst. A high concentration of the pollutant may retard the
excitation of the hole-electron pair of the photocatalyst, lowering
its photocatalytic activities. This result is consistent with other
works undertaken byWang et al. (2008), who found that when the
target contaminant was effectively adhered to the photocatalyst's
surface, the reaction would be fast and effective. The optimum MB
concentration was 5mg/L, which attained the highest MB removal
(95%) under the same operating conditions.

3.3. Photocatalytic mechanisms and degradation pathways of MB
removal

The photodegradation steps of MB by the composite are pre-
sented in Fig. S6. Under UVevis irradiation, the BaTiO3/GO com-
posite excites and generates holes (hþ) and electrons (e-). The
electrons (e-) react with the dissolved O2 to produce $O2

�

(Anjaneyulu et al., 2019). Subsequently, $O2
� dissociates into HOO$.

Overall, the holes (hþ) react with OH� and H2O and generate $OH,
which rapidly attacks the pollutant's molecule, breaking down the
target pollutant into CO2 and H2O (Zhao et al., 2005; Kurniawan
et al., 2006b; Sillanpaa et al., 2011) (Reactions (7)e(9)).

$O2
� þ Hþ / HO2$ (7)

hþ þ OH� / $OH (8)

hþ þ H2O / $OH þ Hþ (9)

We also elaborate the MB degradation pathways by the BaTiO3/
GO (Fig. S7). Initially, the Cl� is ionized and MB exists as MBþ. Af-
terward, there are two different paths for MBþ to degrade. Initially,
the MBþ is attacked by $OH to form 3,7-bis (dimethylamino)-10H-
phenothiazine-5-oxide, as reported by Ray et al. (2017). Subse-
quently, hydroxylation represent a further step for MB photo-
degradation to generate multiple single ring structures as
intermediate products, as reported by Su et al. (2019). Eventually,
the low molecular weight organic matter is mineralized into rela-
tively harmless CO2, H2O, SO4

2�, and NH4
þ (Kurniawan et al., 2011).

The degradation pathways of MB and their oxidation by-products
during photodegradation have been well documented in the liter-
atures recently (Kuan et al., 2013; Luan and Hu, 2012; Luan et al.,
2015; Wolski and Ziolek, 2018).

3.4. Comparison of treatment performance by a variety of
photocatalysts

To evaluate the photocatalytic activities of the BaTiO3/GO
composite for MB removal, it is important to compare the results of
this current study to those of earlier findings reported in the body
of knowledge. Operational conditions such as initial concentration,
type and dose of photocatalyst, light source, reaction time as well as
pH are presented in Table 1.

Table 1 summarizes the removal of organic compounds by
miscellaneous photocatalysts. For example, about 64% of MB
removal was attained by the BaTiO3 alone with its initial concen-
tration of 5mg/L (Kappadan et al., 2016). The formation of the
BaTiO3/GO-66% composite has improved its photocatalytic activity,
as the composite attained a significantly higher MB removal (95%)



Table 1
Comparison of organics removal by miscellaneous photocatalysts.

Target
pollutant

Initial concentration
(mg/L)

Type of
photocatalyst

Dose of photocatalyst
(g/L)

Light
source

Light intensity (W/
cm2)

Time
(min)

pH Removal efficiency
(%)

References

MB 5 BaTiO3/GO-66% 0.5 Xenon 0.17 300 9 95 Present study
MB 5 BaTiO3 0.5 Xenon 0.17 240 9 3 Present study
MB 5 BaTiO3 0.28 Hg NA 50 NA 64 Kappadan et al.

(2016)
MB 20 BaTiO3/graphene 0.67 Xenon 0.13 180 NA 93 Wang et al. (2015)
MB 10 BaTiO3/TiO2 NA Xenon 0.10 180 NA 72 Li et al. (2013b)
MB 10 TiO2/GO 0.2 Sunlight NA 60 NA 95 Nguyen-Phan et al.

(2011)
MB 20 TiO2/GO 1.5 Halogen NA 420 NA 90 Cong et al. (2013)
Acea 5 BaTiO3/TiO2 1 Xenon 0.17 240 7 95 Kurniawan et al.

(2018)
Acea 5 TiO2/graphene 0.1 UV NA 180 9 96 Tao et al. (2015)
MOb 12 TiO2/GO 1 Xenon 0.33 180 NA 65 Chen et al. (2010)
RhBc 5 BaTiO3 0.33 Hg NA 180 NA 100 Chen et al. (2016)

Remarks: NA: unavailable.
a Ace: Acetaminophen.
b MO: Methyl orange.
c RhB: Rhodamine.
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with its initial concentration of 5mg/L, as compared to that by the
BaTiO3 alone (3%) under the same optimum conditions (dose: 0.5 g/
L; pH 9.0; reaction time: 5 h).

Although the use of the BaTiO3/GO-66% composite as a photo-
catalyst was suitable to treat TPD wastewater laden with MB, their
treated effluents still could not meet the increasingly strict
discharge standard limit of less than 0.2mg/L set by national
legislation for dyeing wastewater. This suggests that additional
biological processes are still required to deal with the remaining
oxidation by-products of MB in the wastewater samples
(Kurniawan et al., 2010) such as 3,7-bis (dimethyl-amino)-10H-
phenothiazine 5-oxide.

4. Conclusions

This study has demonstrated that the BaTiO3/GO composite is a
promising photocatalyst for MB degradation from aqueous solu-
tion. Under optimized condition (0.5 g/L of dose, pH 9.0, and 5mg/L
of initial MB concentration), the composite with a 1:2wt ratio of
BaTiO3/GO has the highest degradation rate for the MB. Under
identical conditions, about 95% of MB degradation was attained by
the same composite within 3 h of reaction time. It is important to
note that the treated effluents still could not meet the increasingly
strict discharge standard limit of less than 0.2mg/L set by national
legislation for this type of wastewater. This suggests that subse-
quent biological treatments are still required to deal with the
remaining oxidation by-products of MB in the wastewater samples.
The oxidation by-products of MB include 3,7-bis-(dimethylamino)-
10H-phenothiazine-5-oxide and other multiple single ring
structures.
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