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Abstract

Land use changes are complex processes affected by both natural and human-induced driving factors. This research is focused on
simulating land use changes in southern Shenyang in northern China using an integration of logistic regression, cellular automata,
and a Markov model and the use of fine resolution land use data to assess potential environmental impacts and provide a scientific
basis for environmental management. A set of environmental and socio-economic driving factors was used to generate transition
potential maps for land use change simulations in 2010 and 2020 using logistic regression. An average relative operating
characteristic value of 0.824 was obtained, indicating the validity of the logistic regression model. The logistic—cellular automata
(CA)»-Markov model was calibrated by comparing the actual and simulated land use maps of 2010. A match of 83.7% was
achieved between the predicted and actual maps of 2010, which represented a satisfactory calibration. This indicated that the
integration of the logistic regression, CA, and Markov model has a high potential for simulating land use change in northern
China. The calibrated hybrid model was implemented to obtain a land use map for 2020. The results showed a new wave of
suburban development in the southwestern, west, and northwestern parts of the study area during 2010-2020. In addition, urban
expansion has been accelerating, which is very likely to exacerbate the extensive environmental pollution currently existing in
this area. Moreover, rapid urban expansion has resulted in significant decreases in forest areas and agricultural lands.
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Introduction

Land use change is a complex process that is affected by
human activities and natural environmental changes
(Arsanjani et al. 2011; Etemadi et al. 2018; Liu et al. 2017b;
Memarian et al. 2012; Meyer and Turner 1994; Wang et al.
2019a; Watson 2000; Yang et al. 2014). After China’s reform
and opening policies were implemented in 1978, this country
has experienced rapid land use change. Rapid industrialization
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and urbanization have resulted in significant environmental
impacts, such as water and air pollution (Lin and Zhu 2018,
Peng et al. 2016; Shao et al. 2006; Wang et al. 2019b). This is
especially true in many cities, such as Shenyang city in north-
ern China, which is a key internal trading center and has a
reputation as an industry leader in China (Geng et al. 2013).
Therefore, a study of land use change in this area is urgently
needed to facilitate environmental management.

Modeling is an important technique for studying land use
dynamics (Lambin 1997; Mustafa et al. 2018; Omrani et al.
2017; Zheng et al. 2015). Rapid advances in geospatial
models have made it increasingly possible to simulate land
use change. Different geospatial models, such as CLUE,
GEOMOD, cellular automata (CA), Markov chain model,
and SLEUTH, have been used to assess land use change
(Arsanjani et al. 2013; Dickinson and Henderson-Sellers
1988; Dietzel and Clarke 2006; Hagenauer and Helbich
2018; Veldkamp and Fresco 1996; Verburg et al. 2002). CA
and Markov chain models are the most common approaches
used for simulating land use dynamics. It is difficult to simu-
late the spatial pattern of land use change using Markov chain
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models (Ye and Bai 2008). However, CA models with pow-
erful spatial computing can be used to predict spatial varia-
tions in land use (Sang et al. 2011). Therefore, it is expected
that the integration of CA and Markov chain models may have
potential for projecting land use change.

Worldwide use of CA—Markov models for predicting
land use change has significantly increased in recent years
(Al-sharif and Pradhan 2014; Arsanjani et al. 2011; Chen
etal. 2013; Fu et al. 2018; Kamusoko et al. 2009; Luo et al.
2015; Mishra and Rai 2016; Mitsova et al. 2011; Naboureh
et al. 2017; Vaz et al. 2012; Wang et al. 2019c¢; Yang et al.
2014). With the rapid development of urbanization, we
believe that the use of a CA—Markov model for predicting
land use change will be expected to increase in the future.
According to the methods used to generate probability sur-
faces of the driving factors, studies on land use change
modeling can be divided into two categories, namely,
multicriteria evaluation (MCE) and logistic regression
methods. MCE is a common approach to generate proba-
bility surfaces of driving factors (Fu et al. 2018; Kamusoko
et al. 2009; Ku 2016; Vaz et al. 2012; Zhou et al. 2012).
For example, Kamusoko et al. (2009) simulated future land
cover changes (up to 2030) based on an MCE-CA—Markov
model to assess rural sustainability in Zimbabwe. The re-
sults indicated that if the current land cover trends contin-
ued without holistic sustainable development measures,
severe land degradation would occur. Zhou et al. (2012)
successfully assessed regional land salinization resulting
from biophysical and human-induced influences using an
MCE-CA-Markov model in the Yinchuan Plain in north-
west China in 2009. Logistic regression methods are fre-
quently utilized approaches to generate probability sur-
faces of driving variables (Arsanjani et al. 2013; Hamdy
etal. 2016; Islam et al. 2018; Liu et al. 2015; Siddiqui et al.
2017; Sun et al. 2018; Wang et al. 2019¢). For example,
Arsanjani et al. (2013) analyzed suburban expansion in the
metropolitan area of Tehran in Iran using a logistic regres-
sion—CA—Markov model. Siddiqui et al. (2017) simulated
urban growth dynamics of an Indian metropolitan area
using a logistic regression—-CA—Markov model.
Compared with the MCE method, logistic regression is
an easier and more efficient method for generating suitabil-
ity maps (Arsanjani et al. 2013; Fu et al. 2018; Islam et al.
2018; Liu et al. 2015; Siddiqui et al. 2017; Sun et al. 2018;
Wang et al. 2019c¢); therefore, this method has become
increasingly popular for land use change simulations
worldwide.

In this research, we used a model that combines logistic
regression, CA, and Markov chain analysis to evaluate the
changes in eight land use types in southern Shenyang in north-
ern China under various driving forces including environmen-
tal and socio-economic factors. This area is experiencing rapid
urbanization and environmental problems are increasing, such
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as haze events. The goal of this study was to evaluate the
potential of using a logistic regression—-CA—Markov model
for estimating land use changes in a cool temperate region
and simulate future land use changes in order to provide ref-
erence data for environmental management.

Materials and methods
Study area

The study area is located in central Liaoning province
(122°41'~123°80'E, 41°20'~42°29'N) in northern China
(Fig. 1) and covers an area of approximately 8.42 x 10° ha.
There are four distinct seasons, and it is mild in the spring and
autumn with a hot summer (25~31 °C) and cold winter (— 25~

—30 °C). The average annual precipitation is about 646 mm.
There are 12 districts and the population is nearly 6.9 million.
Cultivated land is the predominant land use and accounted for
69.1% of the study area in 2010. This area has experienced
rapid urbanization and land use change. The built-up land has
increased from 12.6% (2000) to 17.4% (2010). The economy
of this area is based on heavy industry and the area is one of
China’s largest industrial centers. It is home to an extensive
industrial system including electronics, textiles, chemicals,
metallurgy, and food industries (Geng et al. 2013).

Data and data processing

The main data sources were digital land use maps from 2000,
2005, and 2010. The digital map data for the study area were
classified into eight classes: residential land, urban traffic,
mining lease, industrial land, cultivated land, forest land, un-
disturbed (desert and bare land), and water. The focus areas of
this study are not only the assessment of urban expansion but
also the detection of changes in industrial land, urban traffic,
and residential land. In addition, two categories of driving
forces are expected to explain land use change, namely, (i)
environmental factors including elevation, slope, aspect, and
precipitation and (ii) socio-economic factors including popu-
lation density, distance to roads, water, tourist attractions,
town, as well as gross domestic product (GDP). Elevation,
slope, and aspect were derived from a 30-m digital elevation
model (DEM) obtained from the U.S. NASA website (http://
reverb.echo.nasa.gov/reverb/). The other data used in this
study, such as the road, water, and town layers were all
obtained from the statistical yearbook and the local land
department.

Modeling approach

In this study, we integrated a logistic regression model, CA,
and Markov chain analysis to predict the expected land cover
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Fig. 1 The geographic location of the study area (red area)

(2010 and 2020); IDRISI software was used. The CA—
Markov model requires a land cover dataset to represent the
initial states, a Markov transition matrix, a group of land use
suitability images, a number of iterations, and a contiguity
filter. Specifically, two land use maps at different time points
were used to calculate the probabilities of transition in land
use using a Markov chain model; (1) a matrix of transition
probabilities between the 2000 and 2005 maps was used to
predict the land use in 2010 using the year 2005 as a starting
point. (2) Similarly, the 2000 and 2010 land use maps were
used to calculate the probabilities of transition to predict the
land use in 2020. We used the year 2010 as a starting point.
The maps of driving variables were created using logistic re-
gression. Subsequently, the resulting probability surfaces of
the dependent variables (different land types) were used to
estimate the degree of change based on the CA—Markov mod-
el. A standard 5 x 5 contiguity filter was used as the neighbor-
hood definition in the simulations; 10 CA iterations were used
to predict the spatial pattern in the study area. During each
iteration, the pixels with the highest transition probability and
highest suitability for a particular land type were changed to a
new land type whereas the pixels with lower probabilities and
lower suitability remained unchanged; 30-m resolution spatial
data were used as the input to the model.

The overall prediction accuracies (OPA) and kappa index
(Rosenfield and Fitzpatricklins 1986) were used to assess the
model performance. The OPA is defined as follows:

Simulated land use N Actual land use
OPA (%) = 1
(%) Actual land use m

The OPA provides a measure of the similarity between the
simulated land use and the actual land use and ranges from 0

Liaoning province

to 100%. The closer the OPA is to 100%, the more accurate
the model is.

Logistic regression

Logistic regression is used when the dependent variable
is a binary variable (0 and 1) and the independent var-
iables are continuous and categorical variables (Long
1997; MacCullagh and Nelder 1989). The dependent
variable in a logistic regression model represents the
probability that a particular theme will be in one of
the categories (Arsanjani et al. 2013). The basic as-
sumption is that the probability of the dependent vari-
able takes the value of 1 (positive response) and follows
the logistic curve and its value can be estimated with
the following formula:

exp(LBX)
1 + exp(3.BX)

where P is the probability of the dependent variable; X
represents the independent variables, X = (xg, Xy, X3...X%),
Xxo=1; B represents the estimated parameters, B = (b,
b1, by..by).

In order to linearize the model and remove the 0/1 bound-
aries of the original dependent variable (probability), the fol-
lowing transformation is commonly applied:

Py = 11X) = 2)

P’ = In(P/(1-P) 3)

This transformation is referred to as the logit or lo-
gistic transformation. Note that after the transformation
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P’ can theoretically assume any value between minus
and plus infinity (Lewicki and Hill 2006). By
performing the logit transformation on both sides of
the above logit regression model, we obtain the standard
linear regression model:

ln(P/(l—P)) = by + b1*x1 + by¥xp + ... + b

+ error_term (4)

The main driving forces determining land use change
were investigated in this study and logistic regression
was used to create probability surfaces to determine the
most probable sites that were developed. The dependent
variable is the area of change (e.g., change from non- res-
idential land to residential land); it has a binary form where
a value of 1 indicates a change to residential land a value of
and zero indicates areas of no change within a time period
(Fig. 2). The independent variables have been described in
“Data and data processing”. Figure 3 shows the spatial
representation of the independent variables. The relative
operating characteristic (ROC) method was used to vali-
date the performance of the approach (Alsharif and
Pradhan 2013; Pontius and Schneider 2001). ROC =1 in-
dicates a perfect fit and ROC = 0.5 indicates a random fit.
In this study, stratified random sampling was chosen to
eliminate spatial autocorrelation.

CA-Markov model

The Markov chain model is a random process model
that describes how likely it is that one state (t;) changes

I Residential change

[1 Non-residential persistence

into another state (t;) (Houet and Hubert-Moy 2006).
Based on the Bayes’ theorem of conditional probability,
the land use change is calculated using the following
formula (Sang et al. 2011):

S(t+1) =Py x S(1) (5)

where S(¢#) and S(¢+ 1) are the system statuses at the
time of ¢ and 7+ 1. P; is the transition probability ma-
trix in a state and is calculated as follows:

Py Py o0 Py
P — Py Py o0 Py
Pai Pno 0 P

0<P; < land 3"\ Py =1,(i,j = 1,2,3...n)

However, in a Markov chain model, the spatial distri-
bution of the land cover categories are unknown (Ye and
Bai 2008). To address this problem, the CA—Markov
model was developed to add a spatial dimension to the
model using CA. CA has been widely used to simulate
urban sprawl (Arsanjani et al. 2013; Dietzel and Clarke
2004; Guan et al. 2011; Torrens 2006; White and Engelen
1993). A CA model is an agent or object that has the
ability to change its state based on the application of a
rule that relates the new state to its previous state and
those of its neighbors (Eastman 2009; Surabuddin
Mondal et al. 2013). The CA model combined with pow-
erful spatial computing can be used to predict the spatial
variation. It has been demonstrated that the integration of
a Markov chain model and CA was effective for
predicting land use changes (Behera et al. 2012).

N

0510 20
e Kilometers

Fig. 2 Dependent variable Y; change to residential land during 2000-2005 (left) and 2000-2010 (right) (no change: green cells; change to residential

land: red cells)
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Fig. 3 Spatial representation of
the independent variables
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Results
Description of land use change during 2000-2010

The land use change from 2000 to 2010 is determined to
quantify the extent and location of change. The changes are
shown in Table 1 and Fig. 4.

As shown in Table 1, the main land use types in the area
are cultivated land and residential land, which accounted
for 85.5% of the total area in 2010. Residential land (in-
cluding urban residential, and rural settlements) increased
37.4% from 2000 to 2010, whereas cultivated land showed

Precipitation Population density

ll-l’gh:734 lnigh:2.7

Low: 484 Low: 0.021

X5: Precipitation X6: Population density
(mm/year) (ten thousand/km?)

I High : 14616

-Low:o

- High: 13211.6

.. Low:0
X8: Euclidean distance to X9: Euclidean distance
road in meters to water in mete{:s

+

a decreasing trend (— 6.7%), reflecting the rapid quick de-
cline in cultivated land resources. In the period 2000-2010,
approximately 41,576.9 ha of cultivated land changed into
other land types. Mining lease, industrial land, urban traf-
fic, and undisturbed land also increased in this period
whereas forest land and water exhibited fewer changes.
The most apparent trend is the expansion of built-up land
including residential land (37.4%), urban traffic (29.3%),
and industrial land (10.1%); most changes were located in
the northeastern, eastern, and southeastern parts of the
study area. Additionally, changes were observed in the
main core of the metropolis (Fig. 4).
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Table 1 Area ofland use changes

during 2000-2010 ML FL IL CL WT uT RL UD
2000 (ha) 201.7 859740 675.1 622,931.1 253745 5318.6 100,651.6 935.0
2010 (ha) 2448 86,781.0 743.1 581,3542 26,6173 6879.6 1383334  1108.3
Changed area (ha) 43.1 806.9 68.0 —41,576.9 1242.8  1561.0 37,681.8 173.3
Change ratio (%) 21.4 0.9 10.1 -6.7 49 29.3 374 18.5

ML mining lease, FL forest land, /L industrial land, CL cultivated land, WT'water, UT urban traffic, RL residential
land, UD undisturbed (desert and bare land)

Quantification of land change and transition
potential maps

The Markov chain model was used to analyze the land cover
images in two time periods and output a transition probability
matrix, a transition area matrix, and a set of conditional prob-
ability images. The probability matrix shows the probability
of change of the land cover categories into other land cover
categories (Table 2). For example, during 2000-2010, there
was a22.76% chance that cultivated land would transition into
residential land and only a 1.98% chance that cultivated land
would turn into forest land. During the same period, there was
a 15.65% chance that forest land would transition into culti-
vated land. The transition area matrix lists the number of
pixels that are expected to change from each land cover type
to each other land cover type over the specified number of
time units (Table 3). Figure 5 shows the Markov transition
areas and suitability maps of the major four land cover classes
in an area of central Liaoning province in northern China. An
average ROC value of 0.824 was obtained, which verifies the
validity of the logistic regression model to predict the most

Land type

I FL
mmL [UT

ML EECL [JRL
B WT gy UD

probable areas of development. These results were used for
the subsequent land use change predictions.

Land use change prediction results

We compared the simulated land use map of 2010 derived
from the CA—Markov model with the actual land use map of
2010. A match of 83.7% was achieved between the simulated
and actual maps of 2010, which represents a satisfactory cal-
ibration. The Kappa index was 0.86, indicating a very good
agreement between the simulated and observed land cover.
Thus, the approach used to predict the land cover in the future
(i.e., 2020). Figure 6 b illustrates the spatial pattern of land
cover in 2020.

Table 4 shows the areas of land use change occurring in the
time period 2010-2020. The forest land and cultivated land
exhibited significant reductions, for example, the cultivated
land decreased by 18.0%. Much of the cultivated land
transitioned into other land types (Table 3). Approximately
104,673.7 ha of cultivated land changed into other land types
in 2010-2020. There is an increasing trend in the built-up area

0 510 20
e Kilometers

Fig. 4 Land use map of a 2000 and b 2010. Note: ML—mining lease, FL—forest land, IL—industrial land, CL—cultivated land, WT—water, UT—
urban traffic, RL—residential land, and UD—undisturbed (desert and bare land)
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Table 2 Markov transition

probability matrix ML FL IL cL WT UT RL uD
Probability value ML~ 0.8500  0.0214 00214 0.0214 0.0214 00214 0.0214 00214
of2010based  FL, 00035 0.8395 0.0000 0.1480 0.0037 0.0001 0.0052  0.0000
f&;ﬁ??po“ IL 00000 0.1299 08484 00217 0.0000 0.0000 0.0000 0.0000
2000-2005 CL  0.0000 00246 00017 08470 00128 00529 0.0609 0.0000
WT 00000 00190 00000 0.1294 0.8433 0.0000 0.0083  0.0000

UT  0.0000 0.0000 00000 0.1501 0.0000 0.8499 0.0000  0.0000

RL  0.0000 00085 00000 0.1217 00170 0.0028 0.8500  0.0000

UD  0.0000 0.0000 00000 0.1652 0.0000 00000 00016 08331

ML FL IL CL WT UT RL UD

Probability value ML~ 0.8500  0.0214  0.0214 0.0214 0.0214 00214 00214 00214
of2020based  Fr, 00014 08201 0.0002 0.1570 0.0108 0.0013  0.090 0.0003
I‘g;gf;f:?on IL 00000 00139 08037 0.0835 0.0000 0.0000 0.0989 0.0000
2000-2010 CL 00001 00168 0.0005 0.7889 0.0073 0.0072 0.1783 0.0010
WT 00000 00507 0.0003 0.1015 0.8197 0.0008 00138 0.0133

UT 00000 0.0313 0.0000 00251 00000 0.8497 0.0940 0.0000

RL  0.0000 0.0033 00009 00103 0.1351 0.0033 0.8459 0.0011

UD  0.0000 0.0079 0.0000 0.0536 0.0013 00000 0.1842 0.7530

ML mining lease, FL forest land, /L industrial land, CL cultivated land, WT'water, UT urban traffic, RL residential
land, UD undisturbed (desert and bare land)

including residential land (63.6%), urban traffic (54.4%), and
industrial land (29.4%). The urban expansion is more exten-
sive during 2010-2020 than during 2000-2010. There is a
new wave of suburban development in the southwestern,
western, and northwestern parts of the study area.
Significant changes were observed in the main core of the
metropolis (Fig. 6).

Discussion

In this study, logistic regression, a Markov chain model, and a
CA model were integrated to simulate urban expansion.
Logistic regression is one of the most frequently used ap-
proaches to determine the suitability of a particular land use

type in land use change modeling (Verhagen 2007). Our re-
sults indicate that logistic-CA—Markov model shows good
predictive performance for land use changes in a cool temper-
ate region, such as our study site located in northern China.
The results are similar to those of other previous studies using
the logistic regression—CA—Markov models to predict land
use changes (Arsanjani et al. 2013; Memarian et al. 2012;
Siddiqui et al. 2017; Sun et al. 2018; Wang et al. 2019c¢).
Moreover, we should point out that different thematic resolu-
tions (2-, 4-, 5-, 6-, 8- and 10-class land use maps) were used
to simulate land use changes in the aforementioned studies.
For example, Arsanjani et al. (2013) integrated logistic regres-
sion, Markov chain, and CA models to simulate urban expan-
sion (5-classes). An agreement of 89.0% was observed be-
tween the simulated and actual maps. In our study, the logistic

Table 3 Transition area matrix

based on the Markov model for ML FL IL CL WwT uT RL UD
2020 (ha)
2020 ML 208.1 5.2 52 5.2 52 52 52 52
FL 1188  71,166.4 16.7 13,627.7 938.2 108.6 780.3 24.1
IL 0.0 104 5972 62.1 0.0 0.0 73.5 0.0
CL 55.0 9762.4 2670  458,613.3 42254 41864  103,682.6  562.0
WT 0.0 1349.1 72 2701.0  21,818.6 20.1 367.8 3535
uT 0.0 215.5 0.0 172.4 00 58453 646.5 0.0
RL 0.0 4622 1236 14227 18,694.1 4543 117,021.2 1554
UD 0.0 8.8 0.0 59.4 1.4 0.0 2042 834.6

ML mining lease, FL forest land, /L industrial land, CL cultivated land, WT'water, UT urban traffic, RL residential
land, UD undisturbed (desert and bare land)
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Transition probability areas for 2010 land use change
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Fig. 5 An illustrative example of the Markov transition probability areas and suitability maps of major four land covers for 2010

regression—-CA—Markov model was used to predict land use
change for 8-classes. The overall accuracy was 83.7%.
Memarian et al. (2012) simulated land-use/cover changes
(10-classes) using a logistic regression—CA—Markov model
and a match of 89.9% was achieved between the predicted
and actual maps. These results demonstrate that a higher the-
matic resolution does not result in lower OPA. This further
emphasizes the potential of the logistic regression—-CA—
Markov model for land use change prediction.

The model outputs indicate that our study area is facing
unprecedented challenges due to rapid urbanization. Based
on the latest city plans of the Shenyang government, the

@ Springer

urbanization rate will reach 90% in 2030. This situation will
further exacerbate the extensive environmental pollution cur-
rently existing in this area (Fu et al. 2011; Liu et al. 2017a;
Wang et al. 2013b; Yue and Du 2010). For example, the built-
up land (consisting of industrial land, urban traffic areas and
residential land) accounted for 12.67% of the total area in
2000 (Table 1) and increased significantly and reached
28.25% in 2020 (Table 4). As urbanization progresses, the
area of impervious surfaces, such as pavement, rooftops, and
compacted soil increases (Choe et al. 2002; Ferreira et al.
2013); as a result, runoff volumes from terrestrial catchments
increase (Arnold Jr. and Gibbons 1996; Coker et al. 2018;
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Land type

B FL
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EEWT mmUuD
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Fig. 6 Land use map of a 2010 and b simulated land use map of 2020. Note: ML—mining lease, FL—forest land, IL—industrial land, CL—cultivated
land, WT—water, UT—urban traffic areas, RL—residential land, and UD—undisturbed (desert and bare land)

Desta et al. 2019; Shuster et al. 2005) and pollutants (heavy
metals, nutrients, and organic compounds) increase in the wa-
ter after precipitation events (Arnold Jr. and Gibbons 1996;
Carey et al. 2013; Coker et al. 2018; Islam et al. 2015; Wu
et al. 2016). In addition, there is also a significant increase in
industrial land areas (Tables 1 and 4). An increasing number
of factories discharge sewage into waterbodies, resulting in
large challenges for water quality management in the future.
Moreover, as shown in Tables 1 and 4, the large increase in
urban traffic areas and residential land will cause extensive
and dangerous air pollution (Liu et al. 2017a; Xue et al.
2016), such as smog/haze because many pollutants (e.g.,
PM2.5, PM10, SO,, and NO,) that affect human health are
discharged from industry, car exhaust fumes (Moldovan et al.
1999), and coal-fired stoves in winter (Buhre et al. 2005; Xiao
et al. 2015). For example, Liu et al. (2017a) found that SO,
emissions in core urban areas were significantly higher than
those in the surrounding urban areas during the heating season
in Shenyang.

Our results also suggest that forest land and cultivated
land have been shrinking owing to the urban expansion

Table 4  Area of land use change during 2010-2020

and the current trend will continue (Tables 3 and 4).
Therefore, it is urgent to strengthen the protection of for-
est land and cultivated land, prevent the indiscriminate
use of these areas, and promote sustainable use.
Protection of these lands will facilitate socially sustain-
able development in this region, where short-term eco-
nomic benefits should be balanced with long-term envi-
ronmental and economic sustainability.

Although the logistic regression—CA—Markov is an ef-
fective technique for investigating land use change, there
are several factors that significantly affect the prediction
uncertainties in land use modeling. First, previous studies
have shown that the main factors affecting model predic-
tion accuracy are the driving forces (Arsanjani et al. 2013;
Memarian et al. 2012; Park et al. 2011). Thus, the choice
of an optimal set of driving forces can improve model
prediction accuracy. In our study, several environmental
and socio-economic factors were considered. However, a
limited number of driving factors may have resulted in
errors in the estimation of land use changes. Hence, addi-
tional socio-economic factors should be considered in

ML FL IL CL WT UuT RL UD
2010 (ha) 244.8 86,781.0 743.1 581,354.2 26,617.3 6879.6 138,333.4 1108.3
2020 (ha) 3914 82,980.3 961.8 476,680.5 42,192.1 10,620.9 226,305.5 1929.2
Changed area (ha) 146.6 —3800.7 218.7 —104,673.7 15,574.8 37413 87,972.1 820.9
Change ratio (%) 59.9 —44 29.4 —18.0 58.5 54.4 63.6 74.1

ML mining lease, FL forest land, /L industrial land, CL cultivated land, W7 water, UT urban traffic, RL residential land, UD undisturbed (desert and bare

land)
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land change modeling, such as the distance to hospitals
and the distance to markets to improve model prediction
accuracy. Second, land development policy has been in-
consistent in recent years for the revitalization of the old
industrial base in Northeast China (Wang et al. 2013a),
which may also have caused uncertainty in the logistic
regression—CA—Markov model predictions. For example,
if a plot of land has been allocated for the purpose of
developing a garden, the developer may instead choose
to turn the garden into a factory. Finally, logistic regres-
sion techniques suffer from certain limitations, such as
spatial autocorrelation of the independent variables
(Arsanjani et al. 2013; Fotheringham et al. 2000; Hu
and Lo 2007; Smith 1994), which may lead to errors in
the suitability images (e.g., suitability images for
predicting the land use map of 2020) and subsequently
cause uncertainty in land use modeling. In summary, land
use modeling is a complex process that is affected by
natural factors, human-induced driving factors, and model
limitations and may result in prediction errors of land use
changes; therefore, model outputs of interest should be
used with caution.

Conclusion

We used land use maps from different time periods (2000,
2005, and 2010) and integrated the logistic regression, CA,
and a Markov model to successfully simulate land use chang-
es in Shenyang city in northern China. The results indicate that
the hybrid model has good potential to simulate land use
changes. However, there are many significant uncertainty fac-
tors that affect the prediction accuracy of land use change,
such as socio-economic driving forces, model limitations,
and land development policy and result in simulation errors
of the land use dynamics. Consequently, in order to improve
the prediction accuracy, the uncertainty factors should be thor-
oughly considered and addressed when predicting land use
dynamics.

The model outputs showed that our study area is
facing unprecedented challenges due to rapid urbaniza-
tion, which is likely to exacerbate the significant envi-
ronmental pollution currently existing in this area. This
poses a great challenge for environmental management
in the future, and adaptation measures (e.g., low impact
development and use of clean energy) should be imple-
mented. In addition, forest land and cultivated land have
been shrinking due to urban expansion. Therefore, it is
urgent to prevent the indiscriminate use of forest land
and cultivated land and promote the sustainable use of
land. The results of this study are expected to provide
input for land use management and environmental pro-
tection in this area.
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