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Metalaxyl is an anilide pesticide that is widely used to control plant diseases caused by
Peronosporales species. In order to study the toxic effects, zebrafish embryos were exposed
to metalaxyl at nominal concentrations of 5, 50 and 500 ng/L for 72 hr, and the cardiac
development and functioning of larvae were observed. The results showed that metalaxyl
exposure resulted in increased rates of pericardial edema, heart hemorrhage and cardiac
malformation. The distance between the sinus venosus and bulbus arteriosus, stroke
volume, cardiac output and heart rate were significantly increased in larvae exposed to 50
and 500 ng/L metalaxyl compared to solvent control larvae. Significant upregulation in the
transcription of tbx5, gata4 and myh6 was observed in the 50 and 500 ng/L treatments, and
that of nkx2.5 and myl7 was observed in the 5, 50 and 500 ng/L groups. These disturbances
may be related to cardiac developmental and functional defects in the larvae. The activity of
Na+/K+-ATPase and Ca2+-ATPase was significantly increased in zebrafish embryos exposed
to 500 ng/L metalaxyl, and the mRNA levels of genes related to ATPase (atp2a11, atp1b2b,
and atp1a3b) (in the 50 and 500 ng/L groups) and calcium channels (cacna1ab) (in the 500 ng/
L group) were significantly downregulated; these changes might be associated with heart
arrhythmia and functional failure.
© 2019 The Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences.
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Introduction

Metalaxyl is an acylanilide fungicideusedworldwide to control
plant diseases caused by Peronosporales species in crops,
vegetables and fruits (Tomlin, 2006; Malhat, 2017). Due to its
low absorption in soil and high solubility in water (7100 mg/L),
metalaxyl easily flows into bodies of water via leaching caused
by rainfall (Meite et al., 2018). It was reported that metalaxyl
levels ranged from 0.007 to 0.67 μg/L in water samples from 29
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streams in the United States (Battaglin et al., 2011). In Rwanda,
metalaxyl was measured in the surface water collected from
Muhazi Lake, Mugesera Lake and Sebeya River at concentra-
tions of 0.06–4.8 μg/L (Houbraken et al., 2017). In surfacewaters
from southern Ontario during base flow conditions, the overall
mean concentration of metalaxyl was 18 ng/L over the course
of one study (2007–2010), and the highest concentration
reached 1330 ng/L (Struger et al., 2016). Metalaxyl was detected
at 0.001–0.191 μg/L inwater samples from24urbanwetlands in
ng).
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Melbourne, Australia (Allinson et al., 2015), at 383–807 ng/L in
ditch water in Sinaloa (Mexico) (Moeder et al., 2017), and at
0.25–0.29 μg/L in farmditches flowing to the Lower Fraser River
tributary fish streams of British Columbia, Canada (Wan et al.,
2006). The concentrations of metalaxyl ranged from ND to
128 ng/L inwater samples from the JiulongRiver andestuary in
southern China (Zheng et al., 2016).

Metalaxyl is often detected in fruits. This chemical was
found in 97% of mangosteen samples from Thailand at
concentrations ranging from 0.003 to 0.239 μg/L, which
exceeds its maximum residue limit (0.05 μg/L); 50% remained
in the fruit after washing (Phopin et al., 2017). After applica-
tion at the recommended dosage (262.5 g a.i./ha), the mean
initial concentration of metalaxyl detected in/on tomato was
2.39 mg/kg fresh weight (Malhat, 2017). Metalaxyl residues in
herbs with dual medicinal and food purposes collected from
China were 37–267 μg/kg dry weight (Du et al., 2012).

Widespread contamination by metalaxyl probably poses a
threat to both wildlife and human health. A few studies have
been conducted to evaluate the toxicity of metalaxyl to
animals. The 96-hr LC50 of metalaxyl is >100 mg/L for Cyprinus
carpio (USEPA, 1995). The 24-hr LC50 of its enantiomers, rac-
metalaxyl and R-metalaxyl, are 258.47 and 237.67 mg/L for
zebrafish (Danio rerio) embryos, respectively (Yao et al., 2009).
In amphibians, larval Rana pipiens treated with metalaxyl
exhibited 35% mortality before metamorphosis (Hayes et al.,
2006). Treatment with metalaxyl caused nephrotoxicity in
albino mice (Sakr et al., 2011). Exposure of human lympho-
cytes to metalaxyl in vitro resulted inmicronucleus formation
and sister-chromatid exchange (Demsia et al., 2007). However,
there have not yet been any studies on the toxic effects of
metalaxyl on cardiac development and function.

Zebrafish have been well accepted as excellent model
vertebrates for ecotoxicological investigation (He et al., 2014),
since they have many advantages for developmental studies.
Their advantages, such as high fecundity, small size and ease
of culture, make it probable to synchronously obtain a large
number of embryos and larvae for experiments. The transpar-
ency of the embryos and their rapid development provide a
convenient way to comprehensively observe and assess
their developmental status. In particular, their transparency is
favorable for assessing heart morphology, rhythm and physical
action (Bakkers, 2011; Liu and Stainier, 2012). Additionally, the
zebrafish genome, including the genetic basis of its develop-
ment, is well characterized, which is beneficial to the rapid
assessment of the mechanisms of action leading to abnormal
phenotypes (Fernández et al., 2018).

The expression of some specific genes affects cardiac
morphogenesis and conduction system development. As
master cardiac transcription factors, Nkx2.5, Tbx5 and Gata4
play a crucial role in cardiac development (Välimäki et al.,
2017). In zebrafish, the expression of nkx2.5 requires activation
of the bone morphogenetic proteins such as Bmp2b (Reiter et
al., 2001); both cardiac troponin T2 (Tnnt2) and myosin light
polypeptide 7 (Myl7) play an essential role in heart muscle
differentiation and functioning (Maves et al., 2009); cadherin2
(coded by cdh2), a cell-adhesion molecule, is necessary for
cardiovascular development (Bagatto et al., 2006). Heart
rhythm and contractility depend on the processes of cardio-
myocyte excitation and excitation–contraction (EC) coupling.
At the cellular level, the action potential and EC coupling are
controlled by the electrochemical gradients of Na+, K+ and Ca2+

ions (Incardona, 2017). In cardiac myocytes, Na+, K+ and Ca2+

homeostasis across the plasma membrane is stringently
controlled by their corresponding carriers, channels or
pumps, such as Na+/K+-ATPase (encoded by atp1) (Richards et
al., 2003), sarcoplasmic reticulum Ca2+-ATPase (encoded by
atp2a) and theNa+, Ca2+-exchanger (Ebert et al., 2005; Barth and
Tomaselli, 2009). Therefore, the transcript of these genes and
ATPase activity were investigated in this study.

The objective of this study was to investigate the toxic
effects of metalaxyl on cardiac development in zebrafish
embryos at environmentally relevant concentrations, and to
examine the mechanisms involved.
1. Materials and methods

1.1. Zebrafish husbandry and embryo collection

Adult zebrafish (wild-type, strain TU) were housed in an
aquaculture system with a stable photoperiod of 14 hr:10 hr
light:dark, a water temperature of (28 ± 1)°C, a pH of 7.2–7.3,
and a dissolved oxygen concentration of 7–8 mg/L. The fish
were fed live brine shrimp twice daily. All fish experiments
were conducted in accordance with the ethical guidelines of
Xiamen University. Sexually mature fish without any signs of
disease were selected as breeders.

Adult fish were mated at a ratio of 1:2 (male/female). The
spawned eggs were collected within 1 hr. Fertilized eggs were
washed with zebrafish culture liquid and placed in petri
dishes for the exposure experiments.

1.2. Embryonic exposure and sampling

Metalaxyl (>98% purity) was purchased from the Agro-
Environmental Protection Institute, Ministry of Agriculture,
China. It was dissolved in analytical-grade hexane to obtain
stock concentrations of 1, 10 and 100 μg/mL. The metalaxyl
exposure solutions were obtained by adding the appropriate
volume of the stock concentration to zebrafish culture
medium (3.5 g/L NaCl, 0.05 g/L NaHCO3, 0.05 g/L KCl, 0.05 g/L
CaCl2) (AR, Taicang Hushi Reagent Co., LTD, Shanghai, China).
Embryos within 1 hr post fertilization (hpf) were collected,
randomly distributed into multiple petri dishes, and exposed
to metalaxyl at concentrations of 0, 5, 50 and 500 ng/L. One
hundred embryoswere cultured in 30 mLof exposure solution,
and there were five replicates for each treatment. Similar
criteria were applied to the solvent control group, which
received an equal volume of hexane (5 μL/L) (AR, Taicang
Hushi Reagent Co., LTD, Shanghai, China). The exposure
solutions were changed twice daily. The development of the
embryos was observed every 12 hr using an Olympus SZ51
stereomicroscope (Nikon, Tokyo, Japan). The larvae exposed to
metalaxyl for 72 hr were collected for analysis.

1.3. Cardiac malformation and function assessment

The larvae exposed to metalaxyl for 72 hr were randomly
selected and immobilized in 3% methylcellulose (CP, Shantou
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Xilong Chemical Co., LTD, Guangdong, China) to allow the capture
of lateral-view images. The morphology and configuration of the
larval heart were observed and photographed using a Nikon
TE300 microscope (Nikon, Tokyo, Japan). Pericardial edema is
identified as swelling due to an increased volume of fluid in the
pericardium, which is a portion of the coelomic cavity separating
the heart from the body wall (Westerfield, 2000). The SV-BA
distance was defined as the length of a straight line connecting
the sinus venosus (SV) and bulbus arteriosus (BA) (Appendix A
Fig. S1); it was measured in pixels from digital images of the
lateral view of whole-mount embryos as previously described
(Antkiewicz et al., 2005). In addition, heart hemorrhage was
observed, and the rates of occurrence were recorded.

The heart rate (HR) and quantitative assessment of cardiac
arrhythmiawere obtained from 20-sec video segments collected
from the exposed larvae based on themethod of Incardona et al.
(2009). The end-diastolic volume (EDV), end-systolic volume
(ESV), stroke volume (SV) and cardiac output (CO) of the larvae
were measured and assessed following the method of Chen
et al. (2008). SV was calculated using the equations SV =
EDV − ESV, and CO was calculated as CO = SV × HR.

Measurements of cardiac arrhythmia were obtained by
determining the interbeat variability (Incardona et al., 2009).
The number of frames between cardiac contraction initiations
was calculated using NIS-Elements Imaging Software (Nikon,
Tokyo, Japan). The means and standard deviations (SDs) were
analyzed for each larva. The SD is a measure of heart rate
irregularity, since a regular rhythm would have essentially the
same number of frames between beats and therefore a low SD.

The aforementioned indices were assessed in three larvae
from each replicate to obtain a mean for this replicate. The
values from five replicates in each treatment were used for
statistical analysis.

1.4. Real-time quantitative PCR (qPCR)

Fifty larvae from each replicate were pooled into a subsample.
RNA extraction and reverse transcription were performed
following the methods described by Huang et al. (2012). Total
RNA was extracted from the whole embryos using TRIzol
(Invitrogen, Carlsbad, CA, USA) according to themanufacturer's
protocol. First-strand cDNA was synthesized from 1 μg of total
RNA using a Revert Aid Mu-MLV cDNA synthesis kit (TransGen
Biotech, Beijing, China) based on the manufacturer's protocol.

QPCR analysis was performed on an Mx3000P Real-Time
PCR system (Stratagene, La Jolla, CA, USA) using a Brilliant
SYBR Green QPCR reagent kit (TransGen Biotech, Beijing,
China) following the manufacturer's protocol. Standard
curves and primer efficiencies were determined for all the
genes analyzed by qPCR.

The cycling parameters were 94°C for 10 min followed by
45 cycles of 94°C for 20 sec, 55°C for 20 sec and 72°C for 20 sec.
The threshold cycles and dissociation curves were deter-
mined with Rotor-Gene 6000 software to confirm that only
one PCR product was amplified and detected, and the gene
expression levels were normalized to those of zebrafish gapdh.

The real-time quantitative PCR primers (Appendix A Table
S1) were designed using Primer Premier 5.0 (Primer company,
Canada). The Relative Expression Software Tool (REST-MCS-
version 2) was employed to calculate the relative expression
of the target gene mRNA (Pfaffl et al., 2002).

1.5. ATPase activity analysis

Approximately 40 larvae from each replicate were pooled and
homogenized to obtain a supernatant, which was used as the
source of enzyme. The ATPase activity was measured using an
ultramicro Ca2+-ATPase kit and Na+/K+-ATPase kit from Nanjing
Jiancheng Bioengineering Institute (Nanjing, China) according to
the manufacturer's instructions. Protein content was measured
with a Coomassie blue protein assay kit (Nanjing Jiancheng
Bioengineering Institute, China); ATPase activity was expressed
asmol Pi liberated per mg protein per hour (mol Pi/(mg prot·hr)).

1.6. Determination of metalaxyl in exposure solutions

The exposure solutions, freshly made up with the stock
solutions, were collected three times at random for metalaxyl
determination. The metalaxyl concentrations were measured
based on the method of Zhang et al. (2017), with slight
modification. Briefly, 1 L of exposure solution was mixed
with simeconazole (purity > 97%) (Witega Laboratories Berlin-
Adlershof GmbH, Berlin, Germany) as a surrogate and
extracted using a liquid–liquid extraction method with
50 mL of CH2Cl2 (purity ≥ 99.99%, Tedia, USA) in a separatory
funnel. The organic phase was collected and dried with
anhydrous sodium sulfate (AR, WuSi Chemical Reagent Co.
LTD, Shanghai, China), and the extracts were concentrated to
dryness by a rotary evaporator (1N-1001, Alon Instruments Co.
LTD, Shanghai, China) and then diluted with an acetone/n-
hexane (1:1, V/V) solution. The metalaxyl concentration was
detected using a GC/MS/MS system (Agilent Technology, USA)
following the description of Zhang et al. (2017).

The recovery of metalaxyl was 94% ± 2.5% (n = 3), and the
limit of detectionwas 1.0 ng/L. The detected concentrations of
metalaxyl in the exposure medium were 0, 4.62 ± 0.13,
47.41 ± 0.59 and 457.03 ± 15.77 ng/L in the nominal 0, 5, 50
and 500 ng/L groups, respectively.

1.7. Data processing

The results are reported as the means ± SE (standard error).
The data were first checked for normality and homogeneity,
and significant differences between the treatments were
subsequently statistically analyzed with one-way analysis of
variance (ANOVA) followed by the Duncan test via SPSS 16.0
software (SPSS Inc., Chicago, IL, USA). A value of p < 0.05 was
taken to indicate a significant difference.
2. Results

2.1. Solvent effects

No significant changes were observed for any of the tested
indices between the solvent treatment group and the blank
control group; thus, the changes in the indices were compared
to those of the solvent group.



Fig. 1 – Effects of metalaxyl on larval heart morphology. Fertilized embryos were exposed to metalaxyl for 72 hr. Heart
malformation was enhanced with increasing concentrations of metalaxyl. A: Atrium; V: Ventricle.
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2.2. Effects of metalaxyl on cardiac development and function

Exposure to metalaxyl resulted in abnormal development of
the heart in zebrafish embryos, including pericardial edema,
heart hemorrhage and morphological malformation (Fig. 1).
The pericardial edema rates were significantly increased (by
1.33- and 2.67-fold, respectively) in the 50 and 500 ng/L groups,
and the heart hemorrhage rates were significantly increased
(by 1.58-, 3.12-, 3.00-fold, respectively) in all the metalaxyl-
treated groups (Table 1). In the control larvae, the ventricle and
atrium overlapped each other in the lateral view, showing a
normal looping shape. In the metalaxyl-treated larvae, the
hearts were stretched, and the atria and ventricles were
elongated and separated without overlapping (Fig. 1). The SV-
BA distance increased with increasing metalaxyl doses and
reached a significant difference (1.31- and 1.63-fold higher,
respectively) in the 50 and 500 ng/L groups (Table 1).

Compared to the solvent control larvae, metalaxyl-treated
larvae showed no significant changes in EDV and ESV (Fig. 2A).
A significant increase in SV (by 1.29- and 1.28-fold, respec-
tively) and CO (by 1.41- and 1.38-fold, respectively) was
observed in the 50 and 500 ng/L groups (Fig. 2B and C). The
heart rate was significantly increased (both by 1.10-fold) in the
50 and 500 ng/L groups (Fig. 2D), and the 500 ng/L metalaxyl-
treated larvae displayed significantly increased rhythm irreg-
ularity with interbeat variability (±10.9 msec) (Fig. 2E).

2.3. Quantitative analysis of the transcript levels of selected genes

QPCR analysis showed that the mRNA expression levels of 11
genes were altered in the metalaxyl-treated larvae (Fig. 3). No
significant changes in tnnt2 or cdh2 transcription were
observed in the larvae treated with metalaxyl, but the mRNA
levels of tbx5 (by 1.45- and 1.80-fold), gata4 (by 1.59- and 2.30-
Table 1 – Cardiac developmental effects of zebrafish embryos e

Index

blank Solvent

Pericardial edema rate (%) 2.0 ± 0.4a 2.4 ± 0.4a

Heart hemorrhage rate (%) 6.0 ± 1.8a 5.2 ± 1.8a

SV-BA distance (μm) 71.80 ± 4.48a 70.38 ± 5.98a

Data are presented as mean ± SE (n = 5). Means of exposures not sharing
one-way ANOVA followed by the Duncan test.
SV-BA distance: distance between the sinus venosus (SV) and bulbus arte
fold) and myh6 (by 1.71- and 1.81-fold) were significantly
upregulated in the 50 and 500 ng/L groups, respectively,
compared to the control group. The mRNA levels of nkx2.5
(by 2.20-, 2.90- and 2.70-fold) andmyl7 (by 1.48-, 1.44- and 1.70-
fold) were significantly upregulated in the 5, 50 and 500 ng/L
groups, respectively, while the mRNA levels of atp2a11 (by
1.15- and 1.21-fold), atp1b2b (by 1.16- and 1.28-fold), and
atp1a3b (by 1.41- and 1.49-fold) were significantly downregu-
lated in the 50 and 500 ng/L groups, respectively. The mRNA
levels of cacna1dawere significantly decreased (by 1.54-fold) in
the 500 ng/L group compared to the control group.

2.4. ATPase activity

The activity of Na+/K+-ATPase and Ca2+-ATPase was signifi-
cantly increased (by 1.65-fold and 1.87-fold, respectively) in
the 500 ng/L group compared to the control group (Fig. 4).
3. Discussion

Because of the prohibition of organochlorine and organo-
phosphorus pesticide application, the use of replacement
“low-toxic” pesticides has rapidly increased. However, the
safety of these current pesticides has not been adequately
evaluated. Previous studies have shown that some replace-
ment pesticides result in abnormal development, especially
regarding cardiac morphology and function, in zebrafish. For
example, exposure to 1.66 mg/L pyriproxyfen caused heart
elongation, yolk sac edema and hyperemia, and increased
heart beat rate in zebrafish embryos (Maharajan et al., 2018);
and zebrafish embryos exposed to 25 and 50 mg/L 2,4-
dichlorophenoxyacetic acid displayed pericardial edema, in-
creased heart rate, and upregulation of the transcripts ofmarker
xposed to metalaxyl.

Group

5 ng/L 50 ng/L 500 ng/L

3.5 ± 0.4ab 4.2. ± 0.8b 8.4 ± 0.6c

8.2 ± 2.1b 16.2 ± 3.8c 15.6 ± 2.3c

81.88 ± 4.44a 92.00 ± 8.97b 114.44 ± 10.54b

a common letter are significantly different at p < .05 as assessed by

riosus (BA).



Fig. 2 – Cardiac function in zebrafish larvae after exposure to
metalaxyl for 72 hr. (A) Volume of the ventricle at end-
diastole (EDV) and end-systole (ESV); (B) Stroke volume; (C)
Cardiac output; (D) Heart rate; (E) Cardiac arrhythmia. Each
bar indicates themean ± SE (n = 5). Themeans for exposures
not sharing a common letter are significantly different at
p < 0.05 as assessed by one-way ANOVA followed by the
Duncan test.
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genes of cardiac development (vmhc, amhc, hand2, vegf and gata1)
(Li et al., 2017). The pesticides fenitrothion (2.5 and 3.5 mg/L),
cymoxanil (5–20 mg/L) and tebuconazole (7–21 mg/L) signifi-
cantly reduced heart rate, but pyriproxyfen (0.16–0.66 mg/L) did
not (Horie et al., 2017). Exposure to 20 and 40 mg/L carbaryl
caused defects in heart formation and decreased heart rate
(Schock et al., 2012), and 10 mg/L exposure resulted in pericar-
dial edema, red blood cell accumulation and bradycardia (Lin
et al., 2007). Heart rates were significantly decreased in zebrafish
embryos treated with 30, 100 and 300 μg/L chlorpyrifos for 48 hr
(Jin et al., 2015) or with 25–200 mg/L propoxur (Pandey and Guo,
2014), and exposure to procymidone at environmental levels
resulted in elongated atria and elevated heart rate (Wu et al.,
2018a). The 96-hr LC50 of rac-metalaxyl and R-metalaxyl are
416.41 and 320.65 mg/L for zebrafish (Danio rerio) embryos
respectively, and both enantiomers at concentrations of
200–500 mg/L significantly increased the pericardial edema
rate in zebrafish embryos (Zhang et al., 2016). The results of
this study indicated that metalaxyl at environmentally relevant
concentrations impacted cardiac development and function in
zebrafish embryos, suggesting that the developing heart could
be a sensitive target of metalaxyl.

In zebrafish, cardiac developmental processes, including
conduction system development and cardiac morphogenesis,
are controlled by several key genes, including tbx5, nkx2.5, tnnt2,
gata4, bmp2b, myh6, myl7 and cdh2 (Välimäki et al., 2017). Nkx2.5
is a key factor triggering initial cardiomyocyte differentiation
(Balci and Akdemir, 2011), which can determine qualitative and
quantitative ventricular characteristics (Targoff et al., 2013).
Tbx5 is an essential regulator of heart development (Hiroi et al.,
2001; Kathiriya et al., 2003) and plays a crucial role in the
differentiation of contracting cardiomyocytes (Takeuchi and
Bruneau, 2009) as well as in cardiac conduction system function
(Moskowitz et al., 2004). Gata4 plays an important role in cardiac
morphogenesis (Holtzinger and Evans, 2005) and cooperates
with nkx2.5 to play a synergistic role in programming cells
toward a cardiomyocyte fate (Välimäki et al., 2017). In zebrafish,
both myosin light polypeptide 7 (encoded by myl7) and atrial
myosin heavy chain polypeptide 6 (encoded by myh6) are
essential for heart muscle differentiation and functioning
(Maves et al., 2009). Previous studies have reported that some
currently used pesticides impact the cardiac development of
zebrafish embryos and cause disturbances in the expression of
genes related to cardiacmorphogenesis (Wu et al., 2018a, 2018b).
In the present study, the transcription of the aforementioned
genes (including tbx5, nkx2.5, gata4, myh6 and myl7) was
significantly increased in treated zebrafish embryos, indicating
that metalaxyl exposure obstructed the developmental expres-
sion of these genes and led to disturbed cardiac morphogenesis.

As in humans, the balance between ions such as potassium
and calcium plays a critical role in maintaining normal heart
rhythm and function in zebrafish (Pott et al., 2014). The
transport and coordination of K+ and Ca2+ is essential for the
stable action potential of cardiac myocytes (Xu et al., 2005). ATP
enzymes play an important role in the maintenance of ion
balance (Yadwad et al., 1990; Richards et al., 2003). In cardiac
myocytes, Ca2+-ATPase is responsible for the regulation of Ca2+

uptake into the sarcoplasmic reticulum (Xu et al., 2009). Changes
in Ca2+-ATPase activity will affect cardiac function (Kodde et al.,
2007). Na+/K+-ATPase (encoded by atp1) is also involved in ionic
balance in fish (Richards et al., 2003). Genes such as cacna1ab
and cacna1da are controllers of voltage-dependent calcium
channels. A previous study showed that triadimefon (18.7–
47.2 μg/mL) exposure significantly decreased the transcription
of genes related to ATPase (atp2a11, atp1b2b, atp1a3b) and



Fig. 3 – Transcription levels of genes in zebrafish larvae after embryonic exposure to metalaxyl for 72 hr. The values were
normalized against those of gapdh. The results are reported as the mean ± SE (n = 5). The means for exposures not sharing a
common letter are significantly different at p < 0.05 as assessed by one-way ANOVA followed by the Duncan test.

Fig. 4 – Na+/K+-ATPase and Ca2+-ATPase activity in zebrafish larvae after embryonic exposure to metalaxyl for 72 hr. The data
are presented as the mean ± SE (n = 5). The means for exposures not sharing a common letter are significantly different at
p < 0.05 as assessed by one-way ANOVA followed by the Duncan test.
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calcium channels (cacna1ab, cacna1da); these changes could be
associated with the impairment of cardiac function (Liu et al.,
2017). In adult zebrafish, on exposure to 10 mg/L R-metalaxyl for
48–96 hr, Na+/K+-ATPase activity was increased, while 70 mg/L
R-metalaxyl treatment elevated enzyme activity after 24 hr and
reduced the activity after 96 hr. On the contrary, the enzyme
activity was not increased until 96 hr in the fish exposed to 10
and 70 mg/L rac-metalaxyl (Yao et al., 2009). In the present
study, Ca2+-ATPase andNa+/K+-ATPase activity was increased in
zebrafish embryos exposed to metalaxyl, which would be
associated with heart arrhythmia and functional failure.

In summary, our results showed that exposure to metalaxyl
at environmental concentrations can cause adverse effects on
cardiac development in zebrafish embryos, including pericar-
dial edema, heart hemorrhage and cardiac malformation and
dysfunction. QPCR analysis showed that the transcription of
genes related to cardiac development and function were
disturbed by metalaxyl exposure. These results can provide a
reference concentration for metalaxyl risk assessment.
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