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• Feasibility of in vitro method of liver
homogenate-based EROD was demon-
strated.

• PAHs and PCBs inhibited EROD in a
dose-dependent manner.

• PAHs showed more inhibition effects as
the number of benzene rings increased.

• PhACs exhibited both induction and in-
hibition effects on EROD activity.

• EROD in vitro could be an effective sup-
plement way of toxicant evaluation
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In this paper, we demonstrated the potential of an in vitro method of liver homogenate-based ethoxyresorufin-
O-deethylase (EROD) to determine the toxicological effects of multiple kinds of contaminants. We evaluated the
in vitro impact of nine pharmaceutically active compounds (PhACs), 13 polycyclic aromatic hydrocarbons
(PAHs), and three polychlorinated biphenyls (PCBs). There were different responses of EROD to these contami-
nants. The response of EROD to PhACs was quite complex, exhibiting both induction and inhibition effects. PAHs
and PCBs elicited a strong inhibitory response on EROD activity at high concentrations in a dose-dependentman-
ner. PAHs showedmore inhibitory effects as the number of benzene rings increased. Our in vitro bioassay seems
to be a potential method for toxicological screening of multiple types of contaminants.

© 2018 Elsevier B.V. All rights reserved.
daxiong@xmu.edu.cn (D. Han).
1. Introduction

The environment is burdened by xenobiotic substances released by
domestic sewage and industrial effluents. During the past hundred
years, a large number of chemicals (e.g., pharmaceutically active
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compounds (PhACs), polycyclic aromatic hydrocarbons (PAHs),
polychlorinated biphenyls (PCBs), metals, etc.) have been introduced
into the environment, leading to adverse effects on ecosystems because
of their potential toxicity.

PhACs are emergent pollutants that have been recently in the
spotlight. PhACs are a group of biologically active chemical sub-
stances that include prescription, non-prescription, and over-the-
counter therapeutic drugs, and veterinary medicines (Mandaric
et al., 2018). PhACs are released into the environment through im-
proper disposal of expired and unused pharmaceutical products,
through excretions from humans and animals, through runoffs
from agricultural and livestock operations, through effluents and
waste from hospitals, through urban communities, and through
pharmaceutical manufacturing plants (Praveena et al., 2018). Some
PhACs have effects at low concentrations, and might accumulate in
organisms and in the environment. The occurrence of these contam-
inants may pose a serious threat to non-target organisms and to the
environment. For instance, there is evidence that some PhACs, such
as the anticancer drugs cisplatin, lead to changes in the antioxidant
capacity and oxidative stress of organisms, causing DNA damage
and neurotoxicity in mussels at a concentration of 100 ng/L; this di-
rectly affects health and indirectly affects the food chains and the
ecosystems (Trombini et al., 2016).

PAHs and PCBs are two kinds of persistent organic pollutants. PAHs
are hydrophobic hydrocarbons containing two or more benzene rings,
which come from the incomplete combustion of fossil fuels, garden res-
idues or tree pruning, waste, oil spills, and petroleum-based products;
they are carcinogenic and exist ubiquitously in the environment
(Kamal et al., 2015). Studies have demonstrated a link between PAHs
exposure and mutagenesis, carcinogenesis, immunosuppression, and
adverse developmental and reproductive effects (Rengarajan et al.,
2015). PCBs are anthropogenic organic chemicals composed of a biphe-
nyl ring connected to chlorine atoms (Zhao et al., 2019). Due to their
high stability, PCBs are recalcitrant and distributed globally; they are
widely used for industrial applications (e.g., as joint sealant, lubricants,
plasticizers, dielectric fluids, etc.) (Vitale et al., 2018). PCBs accumulate
in organisms causing teratogenesis, carcinogenesis, and endocrine dis-
ruption (Wimmerova et al., 2015).

Environmental pollution has become a serious issue due to themas-
sive release of various contaminants into the environment, and the po-
tential toxic effects of these pollutants should be studied.

EROD activity has been recognized as a specific biomarker of expo-
sure to dioxin-like and other structurally relevant chemicals
(Kammann et al., 2005). In vivo EROD assays, as a traditional toxicology
approach, have been used to study many chemicals, including PAHs,
PCBs, metals, and so on (Whyte et al., 2000). In vivo assays could pro-
vide basic toxicological information about contaminants. However,
there are some limitations of in vivo approaches, as they are time-
consuming and require animals, limiting the number and speed of
chemicals being tested, and rise ethical and economic concerns
(Stefan et al., 2013). In vivo assays can be affected by many abiotic
and biotic elements, such as temperature, species, life stage, reproduc-
tive status, etc. (Au and Wu, 2001). Hence, in vitro techniques are pro-
posed as a complement of in vivo studies (Espinosa et al., 2018; Wang
et al., 2018).

In vitro approaches provide direct information on the primary path-
ways impacted by a specific substance, and conduce the priority of con-
taminants for risk monitoring (Pagé-Larivière et al., 2018). Moreover,
in vitro systems allow possible development of high-throughput
screening for potential environmental pollutants, and offer reproducible
consequences based on a standardized and well-characterized environ-
ment (Langan et al., 2018).

In recent decades, cell-based in vitro EROD has been used to predict
toxicity and measure a given response by quantifying the induction of
the CYP450 monooxygenase system (Behnisch et al., 2002; Billiard
et al., 2004; Eichbaum et al., 2014; Tavakoly Sany et al., 2016). In
addition, some researchers have used hepatic microsomes to determine
the effects of chemicals on EROD activity (Ribalta and Sole, 2014; Sakalli
et al., 2018). However, the study of the toxic effects of multiple kinds of
chemicals is limited when using enzyme-based EROD assays (Wang
et al., 2018).

In this work, our main aim was to demonstrate the feasibility of
in vitro EROD for screening the toxicological effects of multiple kinds
of contaminants. We used hepatic homogenates of Mossambica tilapia
as exposure model. The in vitro effects of nine PhACs, 13 PAHs, and
three PCBs (the chemical structures and other details are shown in
Tables S1–S3, Supplementarymaterial) on ERODactivitywere explored.
EROD activity was detected using a fluorescence plate-reader, which is
10–15 times faster compared to the traditional method of Burke
(Burke and Mayer, 1974) and can test numerous samples
simultaneously.
2. Materials and methods

2.1. Chemicals and reagents

Ofloxacin (OFX, CAS No. 82419-36-1), erythromycin (EM, CAS No.
114-07-8), trimethoprim (TMP, CAS No. 738-70-5), sulfamethoxazole
(SMZ, CAS No. 723-46-6), 4-acetaminophen (AMP, CAS No. 103-90-2),
diclofenac (DCF, CAS No. 15307-86-5), ibuprofen (IBF, CAS No. 15687-
27-1), carbamazepine (CBZ, CAS No. 298-46-4), propranolol hydrochlo-
ride (PR, CAS No. 318-98-9) were purchased from J&K Scientific (Bei-
jing, China). Naphthalene (Nap, CAS No. 91-20-3), acenaphthene (Ace,
CAS No. 83-32-9), fluorene (Flu, CAS No. 86-73-7), anthracene (Ant,
CAS No. 120-12-7), phenanthrene (Phe, CAS No. 85-01-8), pyrene
(Pyr, CAS No. 129-00-0), fluoranthene (FluA, CAS No. 206-44-0), chrys-
ene (Chr, CAS No. 218-01-9), benzo[k]fluoranthene (BkF, CAS No. 207-
08-9), benzo[a]pyrene (BaP, CAS No. 50-32-8), benzo[b]fluoranthene
(BbF, CAS No. 205-99-2), indeno[1,2,3-cd]pyrene (InP, CAS No. 193-
39-5), benzo[g,h,i]perylene (BghiP, CAS No. 191-24-2), 3,3′,4,4′-
tetrachlorobiphenyl (PCB-77, CAS No. 32598-13-3), 3,3′,4,4′,5-
pentachlorobiphenyl (PCB-126, CAS No. 57465-28-8), 2,2′,3,4,4′,5,5′-
heptachlorobiphenyl (PCB-180, CAS No. 35065-29-3), and 7-
ethoxyresorufin (ERF, CAS No. 5725-91-7) were purchased from
Sigma (St. Louis, MO, USA). NADPH and dimethyl sulfoxide (DMSO)
were obtained from Solarbio (Beijing, China).

Stock solutions of PAHs, PCBs, and PhACs were prepared in DMSO,
and then diluted to 1 ng/L to 100 mg/L. Chemicals and reagents were
kept at 4 °C until use.

The concentrations of the pollutants used in this study were based
on our preliminary results and on the previous literature. Organisms
were exposed to a wide concentration range of contaminants. For in-
stance, total PAH range from 20.09 ± 0.68 to 105.77 ± 42.58 μg/kg,
PCB range from 33.19 ± 6.25 to 126.28 ± 7.37 μg/kg, and metals
range from 107.83 ± 1.83 to 187.21 ± 2.00 mg/kg in muscle tissue of
grass goby fish specimens (Zosterisessor ophiocephalus), obtained from
the Bizerte lagoon on the north coast of Tunisia (Barhoumi et al.,
2014). Concentrations up to 1047.8 μg/kg of total PAHs were reported
in the surface sediments of Taihu Lake (Wang et al., 2011). Concentra-
tions of PCBs in fish range from μg/kg to mg/kg levels (Janz et al.,
1992). PhACs (analgesic and anti-inflammatory drugs like ibuprofen
and naproxen) have been frequently found at μg/L levels in environ-
mental samples (Metcalfe et al., 2003). Although the environmentally
relevant concentration of PhACs is low, long-term exposure to PhACs
may induce a high concentration of PhACs. For instance the presence
of roxithromycin in animals from Baiyangdian Lake has been reported
at concentrationsup to1076 μg/kg (dryweight) (Li et al., 2012). Accord-
ingly, scientists explored the toxic effect of contaminants at high con-
centrations (Germer et al., 2006; Cao et al., 2012). Considering these
factors, the concentrations of the tested chemicals was 1 ng/L to
100 mg/L.
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2.2. Hepatic homogenates preparation

Juvenile tilapia (Oreochromis mossambicus) 7–10 cm long, weighing
10–20 g, were supplied by a local fish farm, in Xiamen, China. Seven
days before experiments, fish were acclimatized in tanks containing
60 L of aerated, sand-filtered seawater, with a natural photoperiod.
Fish livers were collected, washed in pre-cooled KCl solution (0.15%),
weighed, and homogenized with five volumes of pre-cooled phosphate
buffer (PBS, pH 7.60) using an automatic homogenizer. These proce-
dureswere accomplished in b3min, tominimize changes in enzyme ac-
tivity. Homogenates were centrifuged at 12,000 ×g at 4 °C for 20 min.
The supernatant was collected, divided into aliquots, and maintained
at−80 °C until use.
2.3. Exposure to contaminants in vitro

Enzyme solution (10 μL) and PBS (189 μL) were mixed with the test
compounds PAHs, PCBs, and PhACs (1 μL at a final concentrations of
1 ng/L–100 mg/L) for 1 h at room temperature (20 °C). DMSO (0.5%)
was the solvent control for PAHs, PCBs, and PhACs. PBS (pH 7.60) was
the blank control. The changes in enzyme activity after DMSO and
blank control treatments were negligible; hence, data on the blank con-
trol is not presented. Controls were also pre-treated for 1 h under the
same conditions. Each treatment was conducted in triplicate.
Fig. 1. Effects of 9 PhACs on EROD activity in the liver ofMossambica tilapia in vitro. (a: effects of
TMP, SMZ on EROD activity). Symbols (*) and (**) represent statistical significance relative to s
2.4. EROD assay

In order to obtain the optimum conditions for determining EROD
activity in vitro, four parameters were tested: dose of enzyme super-
natant (5–50 μL), concentration of ERF (0.05–1.25 mmol/L) and
NADPH (0.05–1.0 mmol/L), and pH of the PBS solution (6.8–8.0). Re-
sults showed that EROD activity increased with the dose of enzyme
supernatant and the concentration of ERF and NADPH (Figs. S1–S4,
Supplementary materials), finally reaching an equilibrium. There
was no significant change in the EROD activity at different pH values.
The highest EROD activity was observed at 30 μL of enzyme superna-
tant, 0.5 mmol/L ERF, 0.4 mmol/L NADPH, and pH 7.4. However,
under these conditions the speed of the enzymatic reaction was so
fast that the experimental error would be high. Moreover, the high
concentration of ERF would cause fluorescence values to exceed the
detection range of fluorescence. In consideration of economic effi-
ciency, experimental stability, and accuracy, 10 μL enzyme superna-
tant, 0.4 mmol/L ERF, 0.25 mmol/L NADPH, and pH 7.6 were selected
as experimental parameters.

EROD activity was measured according to the plate-reader ap-
proach of Eggens (Eggens and Galgani, 1992). Test wells were
filled with 200 μL of the pre-incubation solution (en-
zyme + PBS + tested pollutants, pH 7.60) and 10 μL ERF solution
(0.4 mmol/L). Finally, the reaction started by the addition of 40 μL
NADPH (0.25 mmol/L). EROD activity was determined by the
OFX, EM on EROD activity, b: effects of DCF, IBF on EROD activity, c: effects of PR, CBZ, AMP,
olvent control (DMSO): *P b 0.05 and **P b 0.01.
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production of fluorescent resorufin; fluorescence was recorded
every 20 s for 20 min using a SpectraMax M2/M2e plate-reader
(Molecular Devices, San Francisco, CA, USA) at λex = 532 nm
and λem = 580 nm. EROD activity was expressed as relative
values (experiment groups/control groups), for the purposes of
correcting differences in basal activity.
Fig. 2. Effects of 13 PAHs on EROD activity in the liver ofMossambica tilapia in vitro. (a: effects
rings PAHs onERODactivity, d: effects of 5 rings PAHs onEROD, e: activity effects of 6 rings PAHs
control (DMSO): *P b 0.05 and **P b 0.01.
2.5. Statistical analysis

Data were expressed as the mean ± standard deviation. Statistical
analysis was conducted by Prism 6 (GraphPad software Inc., La Jolla,
CA, USA), and Excel 2016 (Microsoft Inc., Redmond, WA, USA). A one-
wayANOVA followed by Dunnett's test was used to evaluate differences
of 2 rings PAHs on EROD activity, b: effects of 3 rings PAHs on EROD activity, c: effects of 4
on EROD activity). Symbols (*) and (**) represent statistical significance relative to solvent



Table 1
The lowest observed effect concentration (LOEC) and inhibition rates of EROD activity fol-
lowing PAHs exposure.

Number of benzene
rings

LOEC
(mg/L)

Inhibition rates (for
LOEC)

Inhibition rates (for
10 mg/L)

2 (NaP) 100 17.69% (Nap) 2.31% (Nap)
3 (Ace, Flu, Ant, Phe) 10 16.44% (Phe) 16.44% (Phe)
4 (Pyr, FluA, Chr) 1 37.50% (Chr) 54.17% (Chr)
5 (BkF, BaP, BbF) 0.1 43.51% (BbF) 90.07% (BaP)
6 (InP, BghiP) 0.01 16.98% (InP) 86.16% (InP)
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between the control and treatments. All differences were considered
significant at P b 0.05, and markedly significant at P b 0.01.

3. Results

3.1. EROD response to PhACs in vitro

Changes in EROD exposed to 9 PhACs, including OFX, EM, TMP, SMZ,
AMP, DCF, IBF, CBZ, and PR are shown in Fig. 1. For DCF and IBF, EROD
activity increased and then decreased rapidly. After treatment with
DCF or IBF (1–10 mg/L), EROD activity increased markedly. Induction
of EROD activity was highest at 10 mg/L (171% for DCF and 127% for
IBF, respectively). Following DCF and IBF exposure at 100 mg/L, EROD
activity decreased, with maximal inhibition rates of 46% and 43%, re-
spectively. PR, CBZ, AMP, TMP, and SMZ inhibited EROD activity at
1–100 mg/L. The lowest observed effect concentrations (LOEC) of PR,
TMP, CBZ, AMP, SMZwas 1, 1, 100, 100,100 mg/L, respectively; with in-
hibition rates of 17%, 5%, 59%, 27%, and 39%. Therewere slight changes in
EROD activity after OFX and EM treatment, but the changes were not
significant (P N 0.05).

3.2. EROD response to PAHs in vitro

Changes in EROD activity caused by PAHs containing 2–6 rings are
shown in Fig. 2. All the selected PAHs showed inhibitory effects on
ERODactivity at high concentrations. PAHs containing the samenumber
of rings exerted similar effects on EROD activity, with similar values of
LOECs and inhibition rates. LOECs and inhibition rates of PAHs are sum-
marized in Table 1. The LOECs of PAHs with 2–6 rings were 100, 10, 1,
0.1, 0.01 mg/L, respectively. Accordingly, the LOEC of PAHs decreased
as the number of rings increased. Besides, the higher the number of
rings, the higher the inhibitory effects on EROD activity. For example,
the inhibitory effects of PAHs containing 2–6 rings at 10 mg/L were 2%
(Nap, 2 ring), 16% (Phe, 3 ring), 54% (Chr, 4 ring), 90% (BaP, 5 ring),
and 86% (InP, 6 ring). In addition, for PAHs with 4, 5, and six rings,
EROD activity decreased in a dose-dependent manner at 10 μg/L–
100 mg/L.

3.3. EROD response to PCBs in vitro

The effects of PCB-77, PCB-126, and PCB-180 on EROD activity are
shown in Fig. 3. The response of EROD activity after exposure to PCB-
77 or PCB-126 was similar. There was a remarkable inhibition of EROD
activity at high concentrations (≧1000 μg/L). A dose-response effect on
EROD activity was found from 10 μg/L to 100 mg/L for PCB-77 and
PCB-126. And, the lowest concentrations of PCB-77, PCB-126, and PCB-
180 that markedly decreased EROD activities were 1, 1, and 100 mg/L,
respectively.

4. Discussion

With the increasing number of contaminants released into the envi-
ronment, more and more compounds require toxicity testing and their
environmental risk evaluated. Unfortunately, the in vivo and cell-
based in vitro approaches cannot meet the increasing demand as they
are time-consuming and/or animal-consuming. In light of the demand
for quick and simple toxicity assessment, the hepatic homogenates-
based in vitro EROD assaywas evaluated in this study to identify the ad-
verse impacts of a wide range of substances.

In this investigation, the in vitro effects of nine PhACs, 13 PAHs, and
three PCBs on EROD activity inMossambica tilapiawere explored using a
liver homogenate model. EROD activity was influenced by nearly all the
tested contaminants. As far as we know, there are a few studies about
the in vitro effects of toxic substances on fish hepatic EROD activity
(Sakalli et al., 2018). Sakalli et al. used rainbow trout hepatic micro-
somes as in vitro model. Hepatic microsomes were exposed to 4
phytochemicals (including diosmin, naringenin, quercetin and idole-
3-carbinol) and two pharmaceutical drugs (clotrimazole and dexa-
methasone). Naringenin, diosmin and clotrimazole inhibited the EROD
activity while quercetin, idole-3-carbinol and dexamethasone did not
inhibit the ERODactivity (Sakalli et al., 2018). In our lab, hepatic homog-
enates were also used as an in vitro model to determine the effects of
different kinds of pollutants including four metals and four brominated
flame retardants (in our published paper, Wang et al., 2018), nine
PhACs, 13 PAHs, and three PCBs (in this study) on EROD activity. The re-
sults demonstrated that some chemicals inhibited EROD activity while
others induced EROD activity. To the best of our knowledge, our current
research is the first report summarizing the in vitro responses of EROD
activity to multiple classes of pollutants. Our results together with
other studies (Sakalli et al., 2018) provide evidence that this enzyme-
based in vitro EROD bioassay is a promising tool for toxicology screen-
ing, and is a convenient way to evaluate the toxicological potential of
contaminants.

In general, in vivo EROD is a common phase I biomarker that reflects
CYP1A (cytochrome P450 gene subfamily) induction, often by dioxin-
like compounds and other planar aromatic hydrocarbons such as PCBs
and PAHs (Santana et al., 2018). Similarly, in vitro EROD responses in
cell culture bioassays (such as a rainbow trout liver cell line (RTL-W1)
and rat hepatoma cell line H4IIE) showed EROD induction by PCBs
and PAHs (Willett et al., 1997; Billiard et al., 2004).

In contrast, our results clearly demonstrate that in vitro EROD activ-
ity was inhibited by PAHs and PCBs. Similarly, Previous studies indicate
that PAHs, such as benzo[a]pyrene, benz[a]anthracene, benzo[b]fluo-
ranthene, 5-methylchrysene, dibenz[a,c]anthracene, dibenz[a,h]anthra-
cene, dibenz[a,j]acridine, 3-methylcholanthrene (Goddard et al., 1987;
Shimada and Guengerich, 2006), and polychlorinated biphenyl com-
pounds (Hahn et al., 1993) could also inhibit EROD activity either
in vivo or in vitro.

Binding to the arylhydrocarbon-receptor (AhR) followed by gene
expression of EROD-mediating enzymes (CYP) represents the classical
mechanism of EROD activity response, especially EROD induction ob-
served either in vivo or cell-based in vitro assays. However, in our
study the liver homogenates model was different from the whole fish
model or the intact cell model. Therefore, the AhR-related mechanism
might not be suitable here.We speculate that the change of EROD activ-
ity was possibly due to a direct chemical reaction between the CYP en-
zyme in liver homogenates and the tested chemicals, not by the
biological process of AhR. Similarly, some studies have also indicated
that the EROD response may not be mediated by AhR. For instance,
themechanismof EROD inhibition by organotins is probably not related
to the AhR or CYP1A specifically, but rather through interference with
the reductase components of the microsomal monooxygenase system
(Fent and Bucheli, 1994). In addition, the fungicide clotrimazole was
found to inhibit EROD activity in gizzard shad (Dorosoma cepedianum)
by binding to the heme group of CYP1A (Levine et al., 1997). In our
study, chemicals may directly interact with EROD enzymes and then
change CYP enzyme structure, finally causing EROD activity induction
(e.g., DCF and IBF) or inhibition (e.g., PAHs and PCBs). Further studies
are necessary to elucidate the corresponding mechanism.

In addition, it isworth to note that the LOEC of PAHsdecreased as the
number of rings increased in the present study. Accordingly, the in vitro



Fig. 3. Effects of 3 PCBs (PCB-77, PCB-126 and PCB-180) on EROD activity in the liver ofMossambica tilapia in vitro. Symbols (*) and (**) represent statistical significance relative to solvent
control (DMSO): *P b 0.05 and **P b 0.01.
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methods distinguished the impact of PAHs with different numbers of
rings on EROD responses, showing that in vitro EROD-based bioassay
seems to be a prospective method for toxicity screening of multiple
contaminants.

In this study, the response of EROD activity to different PhACs was
dissimilar. Similarly, previous studies indicated that clotrimazole and
dexamethasone showed different potency to EROD activity. Clotrima-
zole identified as a potent inhibitor while dexamethasone did not affect
EROD activity (Burkina et al., 2013). Burkina et al. (2015) reported that
pharmaceuticals can cause decreases in CYP450 activity via either re-
versible ormechanism-based inhibition (non-receptormediatedmech-
anisms). Overall, the mechanism affecting EROD activity after exposure
to PhACs remains unclear, and requires to be further studied.

5. Conclusions

An in vitro EROD assay based on hepatic homogenates was used to
evaluate the toxicological effect of nine PhACs, 13 PAHs, and three
PCBs. PAHs and PCBs decreased EROD activity in a dose-dependent
manner. The inhibitory effect of PAHs increased with the number of
benzene rings. PhACs had induction and inhibitory effects on EROD ac-
tivity. Our hepatic homogenates-based in vitro EROD assay may be an
effective supplement to in vivo or cell-based in vitro assays for the eval-
uation of toxicants, and risk assessment of chemicals.

Statement of novelty

In the present study, we demonstrated the utility of the heptatic
homogenates-based in vitro approach for screening toxic effects ofmul-
tiple kinds of pollutants, including nine PhACs, 13 PAHs, and three PCBs.
The dose-response relationship between testedpollutants andERODac-
tivity was summarized, providing data support that the liver
homogenates-based in vitro bioassay could be an effective complemen-
tary method for toxicological screening of different contaminants.
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