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ABSTRACT 
Machine Learning (ML) has already proven its benefits for network operation, being a sub-domain of artificial 
intelligence, it is highly suitable for complex system representation. In this paper, basic ML concepts are 
reviewed, as well as its integration into existing network control and management planes. Then, a use case 
focused on soft-failure detection is presented in detail covering optical spectrum analysis and ML algorithms; the 
technique relies on the widespread deployment of cost-effective optical spectrum analyzer (OSA). Finally, the 
retrieved optical parameters are analyzed using ML algorithms giving rise to illustrative results. 
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1. INTRODUCTION 
Transport networks are complex interacting systems, involving cloud operations and core and metro transport. 
With localized and highly engineered operational tools, it is typical of these networks to take several weeks to 
months for any changes, upgrades or service deployments to take effect. Machine Learning (ML) is highly 
suitable for complex system representation as it enables this learning paradigm [1]. ML may be used to achieve 
network-domain goals including root-cause analysis and failure localization [2]-[4], as well as other related 
capital operational expenditure savings. ML algorithms comprise of a unique ability to learn system behavior 
from past data, and estimate future response based on the learned system model. 

Supported by the recent improvements in computational hardware and parallel computing, the 
commercialization of big data storage, and processing frameworks, and the introduction of Software-defined 
networking (SDN) / Network Function Virtualization (NFV) platforms, several networking challenges may be 
partially or fully addressed using ML paradigms. We review several ML concepts and its integration into the 
control, orchestration and management (COM) system. Finally, we focus on fault management and cover 
degradation detection and localization, as early detection of equipment failure states and consequent remedial 
actions can prevent network downtime and enable scheduled preventive maintenance. 

2. OVERVIEW OF MACHINE LEARNING 
ML is typically thought of as a universal toolbox, ready to be used for classification, i.e., identifying to which of 
a set of categories a new observation belongs to, and regression, i.e., estimating the relationships among 
variables. In fact, it is a diverse field comprising of various constituents and includes data collection and 
transformation, model selection and optimization, performance evaluation, visualization, integration, etc. ML 
approaches may be categorized based on objectives of the learning task, where these objectives may target 
pattern identification for classification and prediction, learning for action, or inductive learning methods. The 
algorithms may be classified into three distinct learning families: i) supervised learning, ii) unsupervised 
learning and iii) reinforcement learning. Let us now introduce the ML families, as depicted in Fig. 1, together 
with some typical ML algorithms, and their respective applications in optical networking. 
• Supervised Learning: Supervised learning makes use of known output feature(s), named labels, to derive a 

computational relationship between input and output data. An algorithm iteratively constructs a ML model 
by updating its weights, based on the mapping of a set of inputs to their corresponding output features. 
Examples of algorithms are Artificial Neural Networks (ANN), K-nearest Neighbors, and Support Vector 
Machine (SVM). Optical networking applications include resource optimization by estimation, and eventual 
prediction, of network state parameters for a given set of configurations (e.g., optimum launch power, etc.) 
Another application is ML-driven fault identification, based on historical traffic or network function patterns. 

• Unsupervised Learning: While supervised learning provides a clean-slate approach to ML model 
construction, in practice, labeled data is neither easily accessible nor abundantly available. Unsupervised 
learning aims to build representation of a given data-set without any label-driven feedback mechanism. 
Examples of unsupervised learning algorithms are K-mean Clustering, Principal Component Analysis 
(PCA), and Self Organizing Maps (SOM). Unsupervised learning models may be naturally used for 
clustering of transport channels, nodes or devices, based on their temporal and spatial similarities. 
Applications include traffic migration, spectral slot identification, etc. 

• Reinforcement Learning: Reinforcement learning refers to ML mechanisms without an explicit training 
phase. Reinforcement learning aims to build and update a ML model based on an agent’s interaction with its 
own environment. The key difference with respect to supervised learning techniques is that labeled input-



output features are not provided, but the relationship is rather learned via application of initial model to test 
data. Examples of algorithms include Q-learning, Random Forest, and Bayesian Network. One of their core 
applications in optical networks is network self-configuration, including resource allocation and service 
(re)configurations both for physical and virtual infrastructure. 
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Fig. 1. ML families. 

3. CONTROL, ORCHESTRATION AND MANAGEMENT 
To make use of advanced ML models, they need to be integrated into existing network software stack. However, 
multi-layer and multi-vendor network control and management is a complex task in itself, involving core and 
metro transport, as well as cloud operations. Although SDN has brought agility, flexibility, and scalability, into 
the network control as compared to traditional control and management platforms, enabling centralized, 
programmable, and automated services across multiple domains, to attain true network automation, centralized 
SDN control needs to be augmented with instantaneous data-driven decision-making using advanced monitoring 
and ML tools, feeding management and control plane alike. The discussions around SDN have mostly focused 
on separation of data and control planes, with little attention on operational feedback loop, including 
monitoring, intelligence and management functionalities. Fig. 2 captures this theme and presents a high-level 
network architecture, where central offices (CO) consist of intra- and inter- data center (DC) infrastructure. The 
intra-DC resources comprise storage, compute and network, whereas inter-DC connectivity is provided by a 
transport network. Resources are continuously monitored, exposing real-time network states to the analytics  
 

stage, which in turn feeds the COM system [5]. 
This holistic platform not only caters for 

centralized and programmable control, but also 
makes ML-driven decisions to trigger actions, 
essentially connecting data-driven automation 
with policy-based orchestration and management. 
To this end, the COM architecture includes the 
NFV Orchestrator providing network services, the 
virtual infrastructure manager (VIM) coordinating 
and automating DC workflows, the network 
orchestrator adopting hierarchical control 
architectures with a parent SDN controller 
abstracting the underlying complexity, and a 
monitoring and data analytics (MDA) controller 
that collates monitoring data from network, cloud 
and applications and contains ML algorithms. 

Regarding MDA, a hybrid architecture may be  
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Fig. 2. Autonomic networking architecture. 

envisioned, where every CO includes a distributed MDA agent that collates monitoring data from the network, 
cloud and applications; and a centralized MDA controller [6]. The MDA agent exposes two interfaces toward 
the MDA controller for collecting monitoring and telemetry data. In addition, specific interfaces for monitoring 
control allow the MDA agent to connect with the network nodes. The MDA agent includes a local module 
containing data analytics applications for handling and processing data records. The data analytics capabilities 
deployed close to the network nodes enable local control loops, i.e. localized data analysis, and consequent 
updated configurations. 

The centralized MDA controller abstracts monitored data via suitable interfaces and implements a ML-based 
learning engine, where ML algorithms analyze monitoring data to discover patterns. Such knowledge can be 
used to make predictions, detect anomalies before they negatively impact the network. Such events can be 



notified in advance to the corresponding COM module (SDN controller or orchestrator), together with a 
recommended action. Note that a recommended action is a suggestion that the COM module can follow or just 
ignore and apply its own policies. The notification might trigger a network re-configuration, hence closing the 
loop and adapting the network to the new conditions. It is worth highlighting the importance of the control loops 
for network automation, as it fundamentally changes the way networks are operated today -empowering truly 
dynamic and autonomous operation. As examples of control loops, let analyze that of soft-failure detection. 

4. SOFT-FAILURE DETECTION 
Let us now introduce an application of ML related to fault management in optical networks. Many commercial 
equipment tolerates some errors until automatically tearing down the connection when some system thresholds 
are exceeded. While a restoration procedure could be initiated to recover the affected traffic, it would be 
desirable to anticipate such degradations and localize the root-cause of the (soft) failure so the lightpath can be 
re-routed before it is disrupted; note that failure localization is required to exclude the failed resources from path 
computation, as well as to schedule maintenance tasks. In addition, proactive failure detection would also allow 
time to plan the re-routing procedure, e.g., during off-peak hours. 

Soft-failures can degrade lightpaths’ quality of transmission and introduce errors in the optical layer that 
might impact on the quality of the services deployed on top of such networks. Some soft-failures affect the 
shape of optical signals and they can be detected by the MDA agents at intermediated nodes analyzing the 
optical spectrum acquired by local Optical Spectrum Analyzers (OSA). Note that the acquired optical spectra 
entails large amount of data (e.g., 6,400 frequency-power (<f, p>) pairs for the C-band for OSAs with 625 MHz 
resolution), so local analysis carried out at the MDA agents greatly reduces the amount of data to be conveyed 
to the MDA controller. Upon detection of a soft-failure, the MDA agent notifies the MDA controller, which is 
able to correlate notifications received from several MDA agents and for several lightpaths to localize the 
element that is causing the failure. 
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Fig. 3. Example of optical spectrum and signal features. 

Fig. 3 shows an example of the optical spectrum of 
a 100Gb/s DP-QPSK modulated signal. By inspection, 
we can observe that a signal is properly configured 
when: i) its central frequency (fc) is around the center 
of the allocated slot; ii) its spectrum is symmetrical 
with respect to fc; and iii) the effect of filter cascading 
is limited to a value given by the number of filters that 
the signal has traversed. However, when a filter failure 
occurs, the spectrum is distorted, and the distortion 
can fall into two categories: i) the optical spectrum is 
asymmetrical as a result of one or more filters are 
misaligned with respect to the fc of the slot allocated 
for the signal (filter shift, FS), and ii) the edges of the 
optical spectrum look excessively rounded for the 
number of filters, because of the bandwidth of a filter  
 

is narrower than the frequency slot width allocated for the signal (filter tightening, FT). Classifiers, based on 
e.g., SVMs can be used to detect such filter failures in intermediate nodes, so the optical node responsible for 
the failure can be determined. Once localized, the SDN controller can re-route the affected lightpath excluding 
the failed resource. 

To detect the above distortions, an optical spectrum (represented by an ordered list of <f, p> pairs) can be 
processed to compute relevant signal points that facilitate its diagnosis. Before processing an optical spectrum, it 
is normalized to 0 dBm. Next, signal features are computed as follows [2]: i) equalized noise level, denoted as 
sig (e.g., -60dB + equalization level); ii) edges of the signal, computed using the derivative of the power with 
respect to the frequency, denoted as ∂; iii) statistics μ and σ of the central part of the signal, computed using the 
edges from the derivative (fc_∂ ± ∆f); iv) family of power levels computed with respect to μ - kσ, denoted as kσ; 
and v) a family of power levels computed with respect to μ minus k dB, denoted as dB. Using these levels, two 
cut-off points can be generated and denoted as f1(·) and f2(·) (e.g., f1sig, f1∂, f1dB, f1kσ). Besides, the assigned slot is 
denoted as f1slot, f2slot. Other features are also computed as linear combinations of the above ones. 
These features are used as input for the subsequent failure detection and identification modules. Although 
relevant metrics are computed from an equalized signal, signal distortions due to filter cascading effect has not 
been corrected yet. As mentioned above, this effect might result in an incorrect diagnosis of a potential filter 
problem. To overcome this, we apply a correction mask to the measured signal. Such correction masks can be 
easily obtained by means of theoretical signal filtering effects or experimental measurements. 

The two considered filter failures scenarios are illustrated in Fig. 4, where the solid line represents the optical 
spectrum of the normal signal expected at the measurement point and the solid area represents the optical  
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Fig. 4. Example of filter failures: FS (a) and FT (b). 

spectrum of the signal with failure. In case of filter 
shift, a 10 GHz shift to the right was applied (Fig. 
4a), whereas the signal is affected by a 20GHz FT in 
Fig. 4b. 

We make use of classification and regression 
algorithms. In the case of classification, the objective 
is to classify unknown received data, e.g., an optical 
signal, and decide whether the signal belongs to the 
normal class, the FS class, or the FT class, whereas 
regression is used to estimate the magnitude of a 
failure. Once the optical spectrum of a signal has 
been acquired, and processed as described above, 
failure analysis is carried out. Fig. 5 summarizes the 
workflow that returns the detected class of the failure 
(if any) and its magnitude. While ML algorithms are 
suitable for this task, we selected SVM for 
classification, and linear regression for prediction. 

Let us know numerically study the proposed 
workflow using a testbed modeled in VPI Photonics, 
where the optical spectrum database was generated 
for training and testing the proposed algorithms. In 
this study, we focus on the cases where failure 
happens just at the 1st node. A large database of 
failure scenarios with different magnitude (1 to 15 
GHz for FT and 1 to 8 GHz for FS, both with 0.25 
GHz step-size) was collected. Fig. 6a-b show the 
accuracy of identifying FS and FT, respectively, in 
terms of the failure magnitude. Every point in Fig. 
6a-b is obtained by considering all the observations 
belonging to that particular failure magnitude, and  
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Fig. 5. Workflow for failure detection and identification 
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Fig. 6. Accuracy for failure identification 

above. This representation reveals the true accuracy of the classifier while considering failures with magnitude 
above certain thresholds. For instance, the accuracy of detecting FS in a dataset comprising observations larger 
than 1 GHz (in our case it comprises of failures up to 8 GHz in which there are equal number of observations 
per each magnitude) is around 96%. On the other hand, the accuracy of the classifier becomes 100% for failures 
larger than 5 GHz.  

Once the failures are detected, FS estimator (FSE) and FT estimator (FTE) can be launched to return the 
magnitude of the failures. In our case, the estimators predicted the magnitude of failures with very high 
accuracy, with mean square error (MSE) equal to 0.091 and 0.006 for FSE and FTE, respectively. 

5. CONCLUSIONS 
Traditional networks suffer from largely static operational and optimization practices that limit their scalability 
and efficiency. ML provides a collection of techniques to fundamentally adapt to the dynamic network behavior. 
While the application of ML for optical networks is still in its infancy; these learning-based techniques provide a 
promising platform for end-to-end network automation, including fault management. 
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