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Abstract 

The urbanisation and population growth are resulting in a significant increase in energy 

consumption in buildings, leading to a substantial increase in greenhouse gas (GHG) emissions. 

During the operation of buildings, a massive amount of GHG emissions are released due to the 

process of building heating, cooling, and lighting, which accounts for the most significant 

proportion in building energy consumption. Therefore, energy-efficiency design and operation 

will play an essential role in reducing GHG emissions in buildings. 

Façade systems are one of the most critical aspects regarding the efficient management 

of heating, cooling, and lighting energy in buildings. A façade system is a barrier and exchanger 

(simultaneously) for temperature, light, and air between the building indoor environment and 

the outside environment. Therefore, the proper design and operation of the façade can 

effectively save substantial energy. For decades, engineers and researchers from all over the 

world have been in search for the intelligent design and operation of the façade systems to 

improve energy efficiency and sustainability in buildings, and to not compromise a pleasant 

indoor environment for building occupants. Subsequently, they have found that many natural 

systems have developed a highly efficient biological structure to adapt to dynamic and extreme 

environments over millions of years. These natural systems now have become great 

inspirations for the research community in the quest for building energy efficiency solutions, 

and the biomimetic adaptive façade (BAF) system is one of those remarkable examples of 

adopting bioinspiration in buildings. 

The BAF system is considered as a potential solution to improve the performance of 

conventional façade systems. The BAF system has an ability to adapt its functions, features, or 
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behaviour for dynamically varying climatic conditions, providing buildings with the 

operational flexibility to act in response to different climate scenarios. Nonetheless, the 

practical application of a BAF in buildings remains limited due to the absence of a 

comprehensive design platform that can facilitate the widespread adoption of BAF systems. 

Most studies on BAFs remain at a conceptual stage of development, and an effective platform 

that can effectively assist the design and operation of BAF is still lacking. 

This thesis proposes and develops a methodology for enhancing building energy 

efficiency using the design of BAF systems, and thereby supports the transition to next-

generation façades. Specifically, the objective of this thesis is to develop, test, and evaluate a 

computational data-driven optimisation approach in assisting the BAF design. The thesis 

presents a multidisciplinary approach that combines building energy modelling, metaheuristic 

optimisation, and data-driven methods. The goal of the proposed approach is to minimise the 

total energy consumption in buildings, including heating, cooling, and lighting energy, but still 

maintain the indoor environmental quality in terms of thermal and visual performance. A 

comprehensive analysis of the proposed computational data-driven optimisation approach is 

provided in the thesis. 

In summary, this study has proposed a computational data-driven approach based on 

building energy simulations, optimisation processes, and machine learning algorithms. The 

proposed approach is used to assist the design and operation of BAFs for building energy 

efficiency and analyse the interactions between energy-saving and indoor environmental 

quality. These significant findings demonstrate the potential of BAFs to enhance the energy 

efficiency of buildings, and the developed platform can be used as an effective tool to support 

BAFs in both design and product development. 
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Chapter 1  

Introduction 

 

1.1 Research Background 

World energy consumption is from three major economic sectors, namely 

transportation, industry, and building [1]. A substantial share of global energy consumption is 

from buildings, which is expected to increase to 32.4% of total energy consumption by 2040 

[2]. Moreover, by 2050, the population of all cities in the worlds will welcome more than 2.5 

billion additional people, which means around two-thirds of the world’s population will live in 

cities in the next three decades [3]. The growth of population in urban areas will result in higher 

energy consumption in buildings. The energy is derived from both electricity and fossil fuels 

(gas, coal, and oil). Electricity and fossil fuels account for 54% and 43% of total building 

energy, respectively [4]. As a result, buildings will release a massive amount of GHG emissions 

when consuming energy when operating. It is known that an increase in GHG emissions will 

escalate climate change, which has adversely affected many aspects of the natural environment. 

Therefore, it is urgently important to improve energy efficiency in buildings. 

Energy consumption in buildings occurs through building services, including heating, 

cooling, lighting, ventilation, cooking, transport, appliances, and equipment. Generally, 

heating, cooling, and lighting energy accounts for the most significant proportion of building 

energy consumption [5]. The efficiency of energy consumption for heating, cooling, and 

lighting is affected by the façade system of buildings. The façade system is responsible for 

visible light transmittance, heat transmission, solar heat gain coefficient, and air ventilation 

between a building and the environment. Hence the total energy consumption in a building can 
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significantly be reduced by improving the performance of the façade system [6]. Many efforts 

have been carried out to demonstrate the significant role of façade systems in building energy 

efficiency. For example, the effect of different façade types on the cooling energy of a 

multistorey building in Brisbane, Australia, was compared by Rafat [7]. The results show that 

the best overall energy consumption is achieved for a moderate performance glazing, but not 

the higher or smaller performance glazing, and the use of an effective façade can reduce energy 

consumption by 6% - 20% [7].  

Recently, a biomimetic adaptive façade (BAF) is considered as a potential solution to 

improve the energy performance of buildings. A BAF has an ability to adapt its functions, 

features, or behaviour to dynamically varied climatic conditions, which can provide buildings 

the flexibility to act in response to different climate scenarios. BAFs also allow for individual 

building components to adapt to climatic change rather than one single solution for all 

operational situations. They are increasingly becoming a promising solution for low-energy 

building operations while still maintaining high levels of indoor environmental quality.  

From a technical point of view, the design of BAF systems for building energy 

efficiency is an optimisation problem (i.e., minimising energy consumption) with dynamically 

varying constraints (i.e., climatic and outdoor conditions). As a result, traditional approaches 

for façade design with only a single design solution (i.e., static façade design), which is 

irresponsive to the changes of climatic conditions, fail to address the problem. Therefore, a 

BAF, which is responsive to the change of climatic conditions, is needed to improve energy 

efficiency in building. A BAF has an ability to change its properties to adapt to variable climatic 

conditions, thereby achieving the best optimal operational stage for reducing the total energy 

consumption. In this way, the BAF system is optimised to react to the changes of climatic 

conditions, and the BAF system enables the adaptation of individual building component such 

as a single-window rather than one single solution for all operational scenarios [8]. 
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1.2 Problem Statement 

Despite the many advantages of BAFs, the application of BAFs in existing and future 

buildings is still limited, and it is a lack of solutions facilitating the widespread adoption of 

BAF systems [9]. There are several reasons which hinder the wide adoption of BAF. First of 

all, the process of design and operation of BAFs require a multidisciplinary approach, which 

combines diverse expertise and skills such as building energy simulation, optimisation, and 

data analysis. The next reason is the ability of current building energy simulation software to 

model the adaptive response of BAFs accurately. Finally, the implementation of control 

strategies on BAFs during these simulations remains challenging [10]. These difficulties have 

limited the potential of adaptive façades. As a result, most of the current studies on BAFs 

remain at a conceptual stage of development and have not resolved the mentioned difficulties. 

This thesis aims to contribute to the development and application of BAF systems in 

terms of design and operation. Specifically, the goal is to propose a computational, data-driven 

platform to assist the design and operation of a BAF to reduce the energy consumption in 

buildings. To archive this goal, firstly, a computational approach is developed to support and 

improve the performance of BAF during the operation. A biomimetic approach, which mimics 

the strategies found in nature to solve human problems, is then incorporated to create a new 

concept of BAF design in this study. The goal is to find new insights into the evolution and 

operation of biological systems in nature and then apply these insights to BAF design. Finally, 

the data-driven approach is proposed in this study to enhance the capacity of building energy 

simulation. Overall, this thesis investigates the potential of BAF to improve the energy 

efficiency in buildings, thereby reducing GHG emissions. 
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1.3 Objective and scope of the thesis 

In order to provide an energy-efficient building, the main aim of this research is to 

develop, test, and evaluate a computational data-driven approach that can be used to support 

the design and operation of BAFs in buildings. Four objectives directly related to the research 

aim are as below: 

• To develop and test a computational approach, based on simulation and 

optimisation techniques, to explore the performance potential of BAFs in 

enhancing the energy efficiency of office buildings. 

• To investigate a biomimetic approach in the development of a BAF design for 

using in locations that have variable climates such as Melbourne and Texas. 

• To develop and evaluate a data-driven approach for prediction of energy 

consumption in office buildings. 

• To propose an integrated computational, data-driven platform to design the BAF 

system for improving energy efficiency in office buildings. 

The BAFs is a multi-disciplinary research area that covers many aspects of façade 

systems. This thesis focuses on a specific sub-area within the broader field of adaptive façades. 

A clarification of the specific scope of the thesis is given below: 

• Performance of buildings: this thesis focuses on saving energy of buildings by 

minimising the total lighting, heating, and cooling load while keeping the indoor 

environmental quality in terms of thermal and visual comfort. 

• Type of adaptability: the focus of this research is on façade adaption with the 

hourly time step. 
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• BAF: the term BAF used in this thesis refers to a façade that has an ability to 

change its functions (i.e., thermotical, structural) over time in response to weather 

fluctuations, daily cycles, or seasonal patterns. 

• BAF property type: the thesis concentrates on the thermophysical and optical 

properties of the exterior façade. 

• The role in the building design process: the proposed approach is developed with 

the target of assessing the viability of adaptive façades as a design strategy in 

general. The results of this research can be used as a guide for future research and 

development processes. Therefore, the work is not necessarily limited to currently 

available materials but intends to facilitate the exploration of next-generation 

BAF concepts. 

1.4 Outline of the thesis 

The thesis is divided into seven chapters, which are briefly highlighted as follows:  

• Chapter 1 presents an introduction to the research background, motivation, research 

methodology, objectives, and scope of the thesis. 

• Chapter 2 provides the background and characteristics of the BAF and the application 

of the data-driven and computational approach in energy-efficient buildings.  

• Chapter 3 is an article that was published in Applied Energy journal, with the title of 

“Enhancing building energy efficiency by adaptive façade: A computational 

optimisation approach”. This chapter develops and tests a computational approach 

based on simulation and optimisation techniques to explore the performance potential 

of the adaptive façade. 
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• Chapter 4 proposes the concept of an BAF for energy efficiency in buildings. This 

chapter presents the second research objective of this thesis by investigating and 

transferring the biological features found in chameleons into designing façade 

systems. The works in this chapter is ready to submit to Applied Energy journal, with 

the title of “Computational design of adaptive, biomimetic electrochromic windows 

for enhancing building energy efficiency”.  

• Chapter 5 is an article that was published in the Energy journal, with the title of “An 

artificial neural network (ANN) expert system enhanced with electromagnetism-based 

firefly algorithm (EFA) for predicting energy consumption in building”. This chapter 

develops a data-driven approach and shows its applications in predicting energy 

consumption in buildings. Two case studies were investigated in this work. 

• Chapter 6 proposes an integrated computational, data-driven platform to design the 

BAF system for improving building energy efficiency. This chapter demonstrates that 

the data-driven approach can predict the energy consumption in buildings, including 

heating, cooling and lighting energy with high accuracy. Therefore, it can complement 

the building energy simulation software in the computational optimisation approach 

and improve the effectiveness of the BAFs. 

• Chapter 7 presents the key conclusions of the thesis and provides recommendations 

for future research. 

The thesis structure and the connections between the chapters are illustrated by in Figure 1.1. 
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Chapter 2  

Literature review 

 

2.1 Introduction 

This chapter provides a range of literature reviews on the research background related 

to improving façade system performance in buildings. There are three approaches of improving 

façade system, including biomimetic adaptive façades (BAF) approach, computational 

approach and data-driven approach, are investigated in the Thesis. The comprehensive 

background of each approach is reviewed and discussed in a sub section and a summary of the 

literature review is presented at the end of this chapter. These approaches are then discussed in 

more details in Chapter 3, 4 and 5 when each chapter focuses on an approach, respectively.   

2.2 Overview of biomimetic adaptive façade 

2.2.1 Adaptive characteristic of façade 

In building, façade systems play an essential role owing to its multi-functionalities. In 

fact, the façade system provides safety, privacy for building occupants and also protects them 

against harsh weather such as wind, rain, and hot/cold temperature. The façade system is 

considered as a boundary between inside and outside environments; therefore, it affects the 

comfort of building occupants and the energy performance of buildings. Conventional façades 

are designed as static components. That means they cannot adapt to weather fluctuations, daily 

cycles, or seasonal patterns. On the other hand, BAF which recently emerge as an exciting 

development in building design can proactively change its functions (i.e., thermotical, 

structural) over time in response to dynamic weather conditions. Within the design concept of 
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BAF, many different definitions, including smart [1], intelligent [2], dynamic [3], responsive 

[4], advanced [5], and kinetic [6] façades, were used by the engineer, architect and researchers. 

Nonetheless, there are two main research directions for BAF that can be discerned.  

The first direction involves façade systems that have active components with the 

actuation of movable parts via a mechanical system [7, 8]. For example, Ahmed et al. [7] 

proposed a smart kinetic shading system, which can change its opening angle through a sensor-

based computer controlling system. Ahmed et al.  proved that the system could consume less 

energy than to the reference building by 18-20% [7]. In another study, Mahmoud and Elghazi 

validated and compared the rotational and translational motion for hexagonal façade patterns 

[8]. They proved that the rotational motion gained a better daylight level than translational 

motion, and the proposed façade improved daylight from 30% to 50% compared to the static 

façade system.  

The second direction focuses on the use of responsive materials, which can change its 

physical properties (e.g. U-value) in response to dynamic climatic conditions, for the BAF 

system. This direction can be categorized into two sub-directions, which are the passively 

adaptive control strategy (using photochromic and thermochromic windows) and the actively 

adaptive control strategy (using electrochromic windows). For the first group, the 

photochromic and thermochromic windows change their properties with the fluctuation of solar 

radiation and temperature, respectively, and the adaptation ais uncontrollable. In contrast, the 

active adaptation of electrochromic windows can be achieved by adjusting small voltage inputs, 

which enables a more active and controllable method.  

The effectiveness of photochromic and thermochromic windows has been proven in 

several studies. Wu et al. developed a cost-effective photochromic window that can reduce the 

visible light transmittance and solar transmittance by 25% - 65% and 12% - 25%, respectively, 

compared to double glazed low-E [9]. Zhang et al. proposed a perovskite thermochromic 
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window to obtain not only a high solar modulation ability but also a low transition temperature 

and high luminous transmittance [10]. Runqi et al. investigated the energy and visual 

performance of several types of thermochromic windows, and the results showed that the 

thermochromic windows can save building energy and improve the optical performance, 

compared to traditional clear double windows [11]. 

The electrochromic windows have been attracting more attention than the passive 

adaptive type because of their controllability. Lee et al. [12] provided a full-scale outdoor field 

test to validate the performance of an electrochromic window. In their study, the solar heat gain 

coefficient and visible transmittance (Tvis) of the adaptive window can vary in a range of [0.09-

0.41] and [0.01-0.6], respectively, by using a small voltage (3-5 Volts). The electrochromic 

window was subdivided into three zones, and the solar heat gain coefficient and the visible 

transmittance of each zone were controllable [12]. Lee et al. [12] found the room with the 

electrochromic window saved 50% energy consumption compared to a benchmark room with 

a conventional low-emittance window. Ajaji and Andre investigated a control strategy for the 

electrochromic windows of a building in Brussels [13]. They proved that the annual energy 

consumption of an office, equipped with electrochromic glazing, reduced by approximately 

70%.  

From the literature, it was found that BAF systems can improve the total energy 

consumption of buildings. Nevertheless, it should be noticed that the relationships between the 

operational stage of BAF systems, either changing the topology of façade systems by dynamic 

controlling shading devices or changing the material properties, and the building energy 

consumption are complex non-linear problems [14, 15]. The operation of the BAF must 

correctly represent a sequence of time-varying façade system stages corresponding to climatic 

conditions. It means that the status of BAF, such as the position of controlling components or 

material properties, needs to dynamically change to correctly adapt to various scenarios and 
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account for short-term heat transfer and energy storage effects in buildings [16]. Therefore, the 

performance of the BAF primarily depends on its adapted status during the operation, which 

requires a thorough design of the BAF to achieve the desired performance. For example, the 

selection of materials for electrochromic windows requires prior knowledge of the time-

varying sequence of material properties such as U-value and Tvis concerning climate data at 

building locations. However, this complicated task is still challenging because there is a lack 

of a reliable computational design approach to assist this process. Most of the previous studies 

mainly focused on the concept design phase of BAF, and there is no comprehensive study on 

the operation of BAF. It is essential to have a tool that can support BAF during the operation 

to improve the performance of BAF. 

2.2.2 Biomimetic approach 

Biological systems can adapt to harsh environments in nature because they have unique 

integration geometries, characteristics, and strategies. The term biomimetic, firstly introduced 

by Otto Schmidt, is related to the solutions obtained by mimicking functional analogies, 

processes, and mechanisms from nature [18]. Biomimetic can be called with other words, 

including bio-inspired and biomimicry, but they are all about the transfer strategies found in 

nature into engineering and technology. Biomimetic is not a new idea as people always are 

looking for solutions from nature for innovation. However, it is never too late to seek the 

solution from nature as the living organisms change in every moment. 

In the foretime, people have a connection with nature when they used to use animal 

skins, bamboo, or timber as envelopes of houses. The relationship with nature was gradually 

lost because modern buildings prefer to use concrete, glass, and steel as a building envelope. 

However, the connection has steadily come back with many new façade designs inspired by 

nature. There are many biomimetic approaches in the development of building envelope 

systems, and they can be classified into two groups: (1) form and (2) function [19].  
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The first group is to mimic the morphological appearance, visual shape of the organism 

or biological system in nature. For instance, Sheikh and Asghar, inspired by the shape of Oxalis 

oregana leaf, proposed a two-axes, foldable shading device which can be folded along both 

horizontal and vertical axes [20]. The device can enable shading under several angles of 

sunlight, thereby reducing the sun-glare and overheating in the building during the hot season. 

They validated the performance of the biomimicry shading device by applying to a 20-story 

commercial building in Lahore, Pakistan. The results showed that the proposed device can 

reduce the energy consumption in the building by 32% and  keep a haft of floor area with the 

naturally, satisfactory light level of 500 – 750 lux [20]. In another study, Han et al. studied the 

particular retro-reflecting property of the flower petals, then modelled a bio-inspired retro-

reflective building envelope [21]. In addition, many applications inspired by Strelitzia reginae 

flower, spruce cones are presented [22].  

The second group of biomimetic approaches is to mimic the underlying biological 

mechanism. This group focuses on what a natural system behaves rather than how it looks, and 

they inspire from nature by direct approach and indirect approach. The direct approach 

explicitly mimics the functional fundamentals of the organism or biological system into the 

same-role elements of the façade system. In contrast, the indirect method take the conceptual 

inspiration from natural systems into the mimicry transformation. This group is more popular 

than the other group because of the similarity between the building envelope and the skins of 

living organisms.  

Many ideas inspired by biological principles have been proposed and investigated [23-

27]. For example, Webb et al. investigated the heat transfer of animal fur and then transferred 

that distinctive performance characteristic to building façades [23]. The results from this study 

showed that the fur-lined façade could reduce the heat gains and heat losses by 50% during 

summer and winter, respectively, when comparing with a conventional lightweight façade. In 
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another study, Taghizade and Taraz focused on the effect of the pattern of bird feathers on the 

energy consumption of the bird. They then proposed a design of a mobile surface inspired by 

bird feathers to reduce energy consumption and increase the shade for buildings [24]. In 

addition, various biological principles have been reviewed in other studies, such as seeds and 

leaves of a plant [25], tree bark [26], polar bear hair [27]. Most of studies focus on developing 

a kinetic façade, which can move and change the position, but the study on adaptive thermal 

material is limited. Moreover, most of all published BAF remain at a conceptual stage of 

development, and there are under ten percentage of studies that having energy analysis [29]. 

Studies of BAF is still limited while the potential of BAF in improving the energy efficiency 

of buildings is undisputed. It needs to have a comprehensive study on BAF elicit other 

potentials of BAF, especially on the design and operation phases.  

2.3 Overview of the computational approach in enhancing energy efficiency in 

buildings 

Nowadays, building energy simulation programs have been widely used in building 

design. They help to evaluate the energy performance of the building in the design stage by 

analysing the energy consumption, system operation, and weather conditions of the building. 

The early energy assessment of energy usage can significantly help to reduce energy 

consumption and improve system efficiency [30]. Therefore, building energy simulation 

programs have enormous potential in building design. 

There are several effective building energy simulation programs, including EnergyPlus, 

DOE-2, Window, HAM, TRNSYS, and eQUEST. They have several different features, which 

make them distinctive, in terms of engine algorithms, ease of use, modelling resolution, and 

modelling options. They can help designers to simulate the building with their design and 

predict the energy consumption, thereby quickly validating the designs. Moreover, the software 
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is also useful for retrofitting buildings and improving the system. Hence, they are used by many 

engineering and designer during the past decade. 

For instance, Dahanayake and Chow used EnergyPlus to simulate the thermal effect of 

vertical greenery systems [31]. The energy management system feature of EnergyPlus was 

used to predict the vertical greenery system on indoor air temperature and surface temperature 

of façades. Guarino et al. investigated the importance of life cycle step of building on the 

energy consumption and global warming potential by TRNSYS [32]. Also, Song and Meng 

used eQUEST software to simulate the energy consumption of the actual university library 

[33]. Many variables, including summer air supply temperature, summer indoor temperature, 

indoor personnel density and lighting power density, were used in the simulation.  

There are many building energy simulation programs with various applications. 

Therefore, it is important to choose suitable software for each application. However, Crawley 

et al. provided a detailed comparison of many building performance simulation tools in terms 

of their features and capabilities [34]. This review showed that EnergyPlus is one of the most 

effective building energy simulation software with the capacity of calculating heating and 

cooling energy in a variable time step. In another study, Loonen compared the capabilities of 

several building energy simulation software in assisting six applications of adaptive façade, as 

shown in Table 2-1 [35]. The comparison indicated that EnergyPlus can support most of the 

applications related to BAF. 

Table 2-1. Comparison of the capability of several building energy simulation software. 

Applications 
Software 

EnergyPlus TRNSYS eQUEST ESP-r 

Thermochromic glazing Y E N Y 

Electrochromic glazing Y E Y Y 

Phase change materials Y Y N Y 

Insulating solar shading Y E N N 

Movable insulation Y E N N 
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Green walls and roofs Y Y N N 
Y: The capability is available to use by advanced users. 

E: The capability is available, but an expert experience is required. 

N: The capability is not available. 

Therefore, EnergyPlus was selected for this study because it provides the ability to 

assist the design and operation process of the BAF system, and it was successfully used in 

many previous studies. EnergyPlus is open-source software and is developed by the U.S. 

Department of Energy (DOE), Building Technologies Office (BTO) [36]. This program can be 

used for simulating energy consumption from lighting, HVAC, and plug and process loads in 

buildings. EnergyPlus is a console-based program and thereby users have to deal with text-

based inputs and outputs (e.g., .html, .txt, .cvs). Therefore, EnergyPlus has been considered as 

a rigorous program by many users. 

However, EnergyPlus has no graphical user interface, so it is hard to operate the 

software. Fortunately, there are some graphical user interface software that can be integrated 

into EnergyPlus for model creation, including DesignBuilder, OpenStudio, AECOsim Energy 

Simulator, Google SketchUp, gEnergy, and Simergy. The building models can be generated in 

these software, which is more accurate and efficient than the text-based approach. Similar to 

other building energy simulation softwares, EnergyPlus does not provide any built-in functions 

for advanced analyses such as automation, parametric analysis, and optimisation. In other 

words, all manipulation in EnergyPlus, including changes in material properties, running time, 

and thermostat setting, must be manually developed by a user. It will be difficult for many 

users to use EnergyPlus because it is too complicated. EnergyPlus requires many expert’s 

experiences to use, so it needs a methodology to support the use of EnergyPlus. 

2.4 Overview of data-driven in enhancing energy efficiency in buildings 

Data-driven approaches apply machine learning (ML) and statistical tools to solve 

problems, which are hard to handle by traditional computational techniques [37]. Three main 
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reasons support the development of ML in recent years [40]. First, the improvement of ML-

oriented techniques, including tensor processing units and graphic processor units, help people 

access easily to computational resources. Second, the speedy development of the internet of 

things technologies provides the opportunity to obtain a massive amount of data for everyone. 

Third, more and more state-of-the-art ML algorithms have been developed to enhance the 

capacity of ML in a wide range of fields. Notably, many ML techniques have been applied to 

improve energy performance in building [41-43]. 

In data-driven approaches, ML algorithms learn from the provided data and try to 

understand the relationship among all variables in the data. The self-learning process of ML 

can be categorised into three groups, including supervised, unsupervised, and reinforcement. 

In supervised learning, all the input and output variables are identified before training the ML 

model, or in other words, all variables in data are labelled. Then, the ML model learns and 

understands the relationship between the inputs and outputs. Regarding building energy, the 

inputs can be properties of windows or the outdoor air temperature, while the outputs are the 

heating and cooling energy in buildings. Most of ML applications in improving energy 

efficiency in buildings used supervised learning. For example, Kumar et al. used an ML 

algorithm to estimate the heating and cooling energy in buildings [44]. In this study, the input 

variables were used are structural attributes of buildings, such as surface area, relative 

compactness, glazing area of the building, while the heating and cooling load were used as the 

output variables. The results of this study showed that the ML approach could find the 

relationship between the structural attributes and the total energy consumption of buildings. In 

another study, Naji et al. validated the effects of the properties of the façade system on the total 

energy consumption by using the ML approach [45]. The inputs, in this case, were the 

properties of the façade system, including the thermal conductivity, thickness, and type of 

façade, and the only output was the total heating and cooling energy. 
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Unsupervised learning is used when there is no specified prediction output, and the 

main goal is to explore data analysis to categorise all the variables. This approach is useful 

when analyse data with a high number of variables (e.g., big data) because it can help to identify 

important variables, thereby reducing unnecessary variables and simplifying the data. The 

unsupervised learning tries to find the relationship among unlabelled variable in a dataset. 

Applications of unsupervised learning in building energy include identification of occupant’s 

behaviour, data analytics, and anomaly detection [46, 47]. For instance, Tang et al. applied an 

unsupervised approach to choose the most critical inputs that affect the heating and cooling 

demand [48]. The results showed that the unsupervised approach improved the accuracy by 

11% compared to the model without an unsupervised approach. 

The last group of ML is reinforcement learning. In this group, the output is the intended 

target, and the main goal is to find the inputs using the try and error method. The ML model 

generates random inputs and grades these inputs based on their relationship with the output. 

The most popular application of reinforcement learning is the self-driving vehicle, which can 

drive without the control of humans. Within the scope of this thesis, reinforcement learning is 

not investigated much, but it still has some applications in this field. For example, Mocanu et 

al. proposed two reinforcement algorithms, which are the state-action-reward-state-action and 

Q-learning, and an unsupervised deep belief network to predict energy consumption using 

unlabelled historical data [49]. The study proved that the combining model between Q-learning 

and deep belief networks obtained the best accuracy when predicting the energy consumption 

problem in this study. 

Recently, among many ML techniques, artificial neural network (ANN) has been widely 

used in optimising the design for energy-efficient building [50-52]. ANN simulates the function 

of the biological neuron by imitating the working principles of the human brain in a simplified 

manner. ANN can be useful for many problems with linear or with non-linear patterns. Many 
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advantages of ANN were demonstrated in several studies. For instance, Jin et al. used an ANN-

based thermal control logic model to optimise initial conditions and heating system operations 

for energy-efficient [50]. Also, Chung et al. proposed an ANN model to design a comfortable 

indoor thermal environment in an energy-efficient manner [53]. However, there are not many 

studies on applying ANN to enhance the façade system's performance, especially BAF. It can 

be explained that both BAF and ML (i.e., ANN) are new research areas, so not many 

researchers are trying to incorporate them. 

2.5 Summary 

The literature review shows that BAF is a potential solution to enhance energy efficiency 

in buildings. The main advantage of BAF is the ability to change its functions (i.e., thermotical, 

structural) over time in response to weather fluctuations, daily cycles, or seasonal patterns. The 

capacity of BAF has been validated in many studies in the literature. Still, most of the studies 

focused on the active components with the actuation of movable parts and there is lack of 

research on responsive materials. It also was found that BAFs are required proper designs and 

operations to obtain the maximum performance and reach their full potential. Therefore, this 

thesis proposed a computational optimisation approach to support BAF design and validated 

the potential of the BAF design with several case studies in Chapter 3. In addition, a biomimetic 

approach is proposed and analysed in Chapter 4 to find new insights into the evolution and 

operation of biological systems in nature. Adaptation is one of the most crucial factors in the 

development of biological systems. Analysing and investigating these adaptation strategies are 

crucial for the success of transferring these strategies to BAF design. 

Many studies in the literature have proven the capabilities of ML algorithms in building 

energy simulations. Hence, this study proposes a data-driven approach to study energy 

efficiency in buildings. This data-driven approach is based on the ANN model, and an in-house 
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optimisation tool is used to enhance the performance of the ANN model. The development and 

validation of the data-driven approach is presented in Chapter 5. Finally, a computational data-

driven platform for the design of BAF is presented in chapter 6.  
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Chapter 3  

Enhancing building energy efficiency by adaptive 

façade: A computational optimisation approach  

[PUBLISHED JOURNAL1] 

3.1 Introduction to the paper 

This chapter is a published article in Applied Energy journal (Journal Impart Factor: 8.426, 

Rank 1/408 in Civil Engineering), titled “Enhancing building energy efficiency by adaptive 

façade: A computational optimisation approach”. The article presents the first research 

objective of this thesis, which are proposing a strategy for building energy simulation and 

exploring the performance potential of adaptive façade for improving building energy 

efficiency. The highlights of this study are: 

• A computational optimisation approach is proposed to support adaptive façade design. 

• Two case studies are used to validate the capacity of the proposed computational 

optimisation approach. 

• The effects of the adaptive façade on heating, cooling, and lighting energy are analysed 

and discussed. 

• The study facilitates the exploration of next-generation adaptive façade concepts. 

The key findings in this study are: 

• The computational optimisation approach, which uses a combination of building energy 

modelling software (EnergyPlus), the metaheuristic optimisation algorithm and Eppy 

 
1 Bui, D.-K., T.N. Nguyen, A. Ghazlan, N.-T. Ngo, and T.D. Ngo, Enhancing building energy efficiency by 

adaptive façade: A computational optimization approach. Applied Energy, 2020. 265: p. 114797. 
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toolkit, can effectively assist the design and operation of adaptive façades systems. 

• The adaptive façade, which is assisted by the computational optimisation approach can 

reduce from 14.2% - 29.0% of the total energy consumption in building compared to 

the non-adaptive façades. 

• The properties of adaptive façade (i.e., U-value and Tvis) are reasonably responsive to 

dynamic climatic conditions. 

3.2 Abstract 

The energy consumption in buildings, which accounts for approximately one-third of the 

total energy used in the world, can be reduced significantly by employing adaptive façades. In 

this study, a computational optimisation approach is proposed to enhance the energy efficiency 

of buildings based on the design of an adaptive façade system, which can adapt its thermal and 

visible transmittance for dynamically varying climatic conditions. The engine of the adaptive 

façade design approach is an automated optimisation process, which combines the building 

energy simulation program (EnergyPlus) with an optimisation technique through Eppy, a 

powerful Python toolkit. The modified firefly algorithm, an in-house optimisation tool, is 

employed to design the adaptive façade system in this study. However, our proposed method 

is not tied to any particular optimisation tool and does not impose any restrictions on a type of 

building. To this end, the capability of the proposed method for enhancing building energy 

efficiency is validated by two case studies, namely a typical single office room and a medium 

office building. We found that the proposed adaptive façade system can reduce the energy 

consumption by 14.9% - 29.0% and 14.2% - 22.3% for the first and second case study, 

respectively, compared to the static façades. These significant findings demonstrate the 

potential of adaptive façades to enhance the energy efficiency of buildings. 
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3.3 Introduction 

The International Energy Agency reported that transportation, industry (i.e., energy-

intensive manufacturing, nonenergy-intensive manufacturing, and nonmanufacturing), and 

building sectors account for the highest energy consumption in the global economy [1]. In fact, 

the building sector is expected to consume more than one-third of the global energy 

consumption by 2040 [2]. The energy used by the building sector is expected to grow by 1.5% 

and 2.1% per year from 2012 to 2040 in member countries of the Organization for Economic 

Cooperation and Development (OECD) and developing countries, respectively [3]. The energy 

consumed during the operational stage of a building (e.g., for lighting, heating, and cooling) 

accounts for a large proportion of the energy consumption in a building during its life cycle 

[4]. Therefore, it is crucial to reduce the energy used during the operational stage of buildings 

to achieve the Net Zero Energy Buildings (NZEB) target [5]. 

According to Sun et al. [6], the solutions to NZEB during the operational stage of a 

building can be categorized into active or passive solutions. Active solutions involve improving 

lighting systems, heating, ventilation, air conditioning (HVAC) systems, and other service 

energy-intensive systems. Passive solutions aim to improve the energy efficiency of building 

envelopes (e.g., façade systems) [6]. The potential energy saved through active solutions was 

widely recognized in many studies [7, 8]. In contrast, passive solutions have attracted the 

attention of researchers in recent years in the context of improving the energy efficient design 

of façade systems. For example, Andjelkovic et al. showed that the transmittance of a double-

skin façade can reduce both heat losses and gains in a building compared to a single-skin façade 

[9]. Passive solutions are more cost-effective, i.e., they incur lower investment costs compared 

to their energy-saving potential.   
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Various methods were proposed to improve the façade system for NZEB, which can be 

divided into two common strategies. The first strategy involves the instrumentation of shading 

devices to reduce the heat gained from sunlight through a façade system. For example, Gao et 

al. proposed a sun-tracking photovoltaic shading element that not only reduces annual energy 

generation but also provides better protection against glare [10]. The second strategy aims to 

investigate the effect of thermal transmittance (U-value) or thermal resistance (R-value) of 

façade systems on energy efficiency. For instance, Rodrigues et al. studied the impact of U-

value on the energy consumption of buildings with different thermal masses. They concluded 

that the thermal mass affects the energy usage and U-value scale differently [11]. The two 

strategies share the same objective in terms of reducing the energy for lighting, heating and 

cooling in buildings. 

Furthermore, reducing the heat gained from sunlight by using shading devices or low 

thermal transmittance materials may affect the visual comfort of building occupants, which is 

associated with the transparency and intensity of natural light [12]. In fact, the variations of 

climatic conditions (e.g., daylighting, natural ventilation, heat gain from sunlight) pose 

significant challenges to the design of an effective façade system for NZEB. The energy 

efficiency of façade systems is sensitive to climatic and outdoor conditions, which hinder their 

applications for NZEB [13].  

It can be stated that the design of façade systems for building energy efficiency is an 

optimisation problem (i.e., minimizing energy consumption) with dynamically varying 

constraints (i.e., climatic and outdoor conditions). As a result, traditional approaches for façade 

design with only a single design solution (i.e., static façade systems), which is irresponsive to 

the changes of climatic conditions, fail to address the problem completely. Therefore, an 

adaptive façade system, which is responsive to the change of climatic conditions, is needed to 

improve NZEB. The adaptive façade has the ability to change its properties to adapt to variable 
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climatic conditions, which can achieve the best optimal operational stage for reducing the total 

energy consumption. In this way, the adaptive façade system is optimized to react to the 

changes of climatic conditions. The adaptive façade system also allows for individual building 

components (e.g., a single-window ) to adapt to climatic change rather than one single solution 

for all operational scenarios [14].  

In this study, we aim to develop a computational optimisation approach, which is built 

upon building energy modeling (BEM) and optimisation techniques, to explore the potential 

performance of the adaptive façade system for reducing the energy consumption of buildings. 

EnergyPlus, a BEM software, is used to evaluate the energy consumption of buildings 

subjected to varying climatic conditions. There are several BEM software packages for 

evaluating the energy consumption and occupant comfort in buildings such as EnregyPlus [15], 

TRNSYS [16], ESP-r [17] and eQuest [18]. These software packages have been used by 

architects, engineers and researchers to evaluate the energy efficiency and occupant comfort in 

buildings during the operational stage. Crawley et al. [19] reported that  EnergyPlus has been 

employed in many studies as it can efficiently analyze the effect of façade systems on energy 

consumption as well as occupant comfort (e.g., visual comfort). For example, Chong et al. 

developed a continuous calibration framework, which uses EnergyPlus as an engine, to utilize 

different sources of information [20]. In another study, Kamal et al. used EnergyPlus to model 

thermal energy storage in a standard reference large office building and then developed a 

control strategy to reduce operating costs [21]. Therefore, we use EnergyPlus to evaluate the 

energy consumption of buildings in this study. We then propose a new computational 

optimisation approach using Eppy, a Python toolkit, to integrate EnergyPlus and optimisation 

algorithms to design the adaptive façade system, which accounts for the dynamic change of 

climatic conditions. We prove that the adaptive façade system can significantly reduce the total 

energy consumption of buildings. 
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3.4 Literature Review 

Adaptive façade (AF) is a building envelope that can frequently change its functions (i.e., 

thermotical, structural) over time in response to weather fluctuations, diurnal cycles or seasonal 

patterns to reduce the energy consumption of a building. Several variations of AF, including 

smart [22], intelligent [23], dynamic [24], responsive [25], advanced [26] and kinetic [27] 

façades, have been used by engineers, architects and researchers. There are two main research 

directions for AF that can be discerned, which are reviewed hereafter.  

The first direction involves façade systems that have active components, which operate 

via the actuation of movable parts in a mechanical system [28, 29]. For example, Ahmed et al. 

[28] proposed a smart kinetic shading system, which can change its opening angle through a 

sensor-based computer controlled system. Ahmed et al. showed that AF can reduce the energy 

consumption of a reference building by 18-20% [28]. Mahmoud and Elghazi validated and 

compared the rotational and translational motion of hexagonal façade patterns [29]. They 

reported that the proposed façade improved daylight from 30% to 50% compared to the static 

façade system through rotational motion.  

The second direction focuses on the use of responsive materials in AF, which can change 

their physical properties (e.g., U-value) in response to dynamic climatic conditions. This 

direction can be categorized into two sub-directions, which involve passive-adaptive 

(photochromic and thermochromic) and active-controllable adaptive (EC) windows. 

Photochromic and thermochromic glazing change their properties in response to fluctuations 

of solar radiation and temperature, respectively, and the property changes cannot be controlled. 

In contrast, EC glazing can change their properties by applying and adjusting a small voltage, 

which is a more active and controllable method.  
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The effectiveness of photochromic and thermochromic windows has been proven in 

several studies. Wu et al. developed a cost-effective photochromic window that can reduce the 

visible light transmittance and solar transmittance by 25% - 65% and 12% - 25%, respectively, 

compared to a normal glass [30]. Zhang et al. proposed a perovskite thermochromic window 

to obtain high solar modulation, a low transition temperature and high luminous transmittance 

[31]. Runqi et al. reported that several types of thermochromic windows reduced building 

energy consumption and improved visual performance, compared to traditional clear double 

glazed windows [32]. 

EC windows have been attracting more attention than their passive-adaptive counterpart 

due to their controllability. Lee et al. [33] conducted a full-scale outdoor field test to validate 

the performance of an EC window for which they varied the solar heat gain coefficient and 

visible transmittance (Tvis) between [0.09-0.41] and [0.01-0.6], respectively, by applying a 

small voltage (3-5 Volts). The EC window is subdivided into three zones, and the solar heat 

gain coefficient and the visible transmittance of each zone are controllable [33]. After one 

week, Lee et al. [33] found that the room with the EC window reduced energy consumption by 

50% compared to a benchmark room with a conventional low-emittance window. Ajaji and 

Andre investigated a control strategy for the EC windows of a building in Brussels [34]. They 

proved that the annual energy consumption of a floor equipped with EC glazing reduced energy 

consumption by approximately 70%. Lee et al. proposed an optimized EC glazing control to 

enhance the energy efficiency of a commercial building in different climates [35]. Four control 

parameters, including outdoor air temperature, room air temperature, solar radiation incident 

on window and global horizontal irradiance, were optimized to minimize the annual energy 

consumptions of the building. The results showed that EC glazing reduced the annual energy 

consumption by 17.4% compared to the typical static window case [35]. 
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From the literature, we found that AF systems have achieved a positive impact on the 

total energy consumption of buildings. Nevertheless, we also noticed that predicting the energy 

consumption of buildings in the operational stage of AF systems involves complex and 

nonlinear problems, which are obtained by either changing the topology of façade systems by 

dynamic controlling shading devices or changing the material properties of windows [36, 37]. 

The operation of the AF must correctly represent a sequence of time-varying stages 

corresponding to climatic conditions. This implies that the status of AF, such as the position of 

the controlling components or material properties, need to dynamically change to correctly 

adapt to various scenarios, and account for short-term heat transfer and energy storage effects 

in buildings [38]. Therefore, the performance of the AF primarily depends on its adapted status 

during the operation stage, which requires a thorough design to achieve the desired 

performance. For example, the selection of materials for EC windows requires prior knowledge 

of the time-varying sequence of material properties such as U-value and Tvis with respect to 

climate data. However, this complicated task is still challenging because a reliable 

computational design approach is lacking. 

For the AF in this study, we assume that adaptation is achieved by adjusting its U-value, 

which is the rate of heat transferred through a material, and Tvis, which is a ratio of visible 

light transmitted through a material in response to dynamic climatic conditions. The 

assumption is aligned with the EC windows of the adaptive façade system reported by Lee et 

al. [33]. We propose a computational optimisation approach for designing the AF, which will 

provide a time-varying sequence of desired material properties (U-value and Tvis) for 

enhancing the energy performance of buildings. We use the proposed approach, which is 

powered by the Eppy toolkit, to integrate optimisation techniques with EnergyPlus for 

obtaining the optimal time-varying sequence, which can inform the design of the AF system. 

The proposed computational optimisation approach is detailed in Section 3. Section 4 
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introduces two case studies in the paper. Section 5 presents the results and discussions of the 

two case studies. Section 6 provides concluding remarks and recommendations for future work. 

3.5 Methodology 

3.5.1 EnergyPlus 

EnergyPlus is an open-source, BEM software and has been considered as the first choice 

for modeling the energy performance of buildings by researchers, engineers and architects [15]. 

The development of EnergyPlus is funded by the U.S. Department of Energy (DOE), Building 

Technologies Office (BTO). This program can be used for simulating energy consumption 

from lighting, HVAC, and plug and process loads in buildings. EnergyPlus is a console-based 

program and thereby processes text-based inputs and returns the results in different text formats 

(e.g., .html, .txt, .cvs). Therefore, EnergyPlus has been considered as a difficult program by 

many users. Fortunately, there are several graphical user interfaces that EnergyPlus can be 

linked with, including Autodesk Revit, DesignBuilder, OpenStudio, AECOsim Energy 

Simulator, Google SketchUp, gEnergy, and Simergy. These software packages can be used to 

create the geometry of the building and extract the required EnergyPlus Input Data File (.idf) 

for simulation. 

In this study, Autodesk Revit [39] is used to generate the geometry of a building for the 

performance simulation in EnergyPlus, which is more accurate and efficient than the text-based 

approach. After creating the geometry of the building in Autodesk Revit, the model is 

transferred to another Autodesk program called Green Building Studio to convert the building 

geometry into an EnergyPlus Input Data File (.idf), which is ready to perform the energy 

simulation. However, EnergyPlus does not provide any built-in functions for advanced 

analyzes such as automation, parametric analysis and optimisation. In other words, all 

manipulation in EnergyPlus, including changes in material properties, running time and 
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thermostat setting, must be manually applied by a user. This arduous process thereby has many 

limitations of applications. This issue limits the efficiency of the program and causes 

difficulties for designing the adaptive façade system, which requires an automatic optimisation 

approach. 

3.5.2 Eppy 

Eppy, developed by Philip et al. [40], is an open-source package in the Python 

programming language, which provides a powerful toolkit for controlling and manipulating 

EnergyPlus in a systematic and programmatic way. Eppy is a scripting language for EnergyPlus 

input and output files, which is used as an interpreter between EnergyPlus and Python. As 

depicted in Figure 3-1, this package is a bridge to transfer data between two programs. Eppy 

can change the properties of any EnergyPlus objects for energy simulation, read the output files 

and transfer the results back to Python for further analysis (e.g., optimisation and design of the 

AF system in this study).  

Optimization algorithm for 
adaptive façade design

Building simulation model

Eppy Package

 

Figure 3-1. The role of the Eppy package as an interpreter between EnergyPlus and Python. 

Figure 3-2 shows a schematic of the design process, which includes three main steps for 

the adaptive façade. In step 1, a building is modelled in Revit, which generates the geometry 

profiles and the material properties of all objects (e.g., wall, roof, ground and window system). 
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The building model is then transferred to Green Building Studio to create an EnergyPlus input 

file in step 2. In step 3, other settings of the building, including a period of running time, time 

step, thermostat setting and climatic conditions, will be added to EnergyPlus by using the Eppy 

toolkit as shown in Figure 3.1 and Figure 3-2. The building energy simulation and optimisation 

process will be conducted on the Python using the Eppy toolkit to obtain the design of the 

adaptive façade. In this study, we use an in-house code for the optimisation process in Python, 

which is presented in the next section. 

Generate Building 
Geometry

Create EnergyPlus Input File

Eppy
Simulate Building Energy

Optimization Simulation

Step 1 Step 2 Step 3

Adaptive façade design
 

Figure 3-2. Schematic of the adaptive façade design process. 

3.5.3 Modified firefly algorithm 

This section briefly presents the development of the modified firefly algorithm (MFA) 

for the optimisation component in step 3 of the adaptive façade design (Figure 2). Interested 

readers are encouraged to refer to [41, 42] for the detailed development of MFA. MFA is an 

enhanced version of the Firefly algorithm (FA), which is inspired by the behavior of tropical 

fireflies and first proposed by Yang [43]. This stochastic, swarm-based metaheuristic algorithm 

follows three primary rules:  
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(1) Fireflies are attracted together. 

(2) Attractiveness decreases when distance increases, and vice versa. 

(3) An objective function is defined to control the attractiveness of the fireflies. 

When a firefly (
thi ) is attracted to a brighter firefly ( thj ), it will fly to another location 

calculated by Eq.3.1 as follows: 

1 ( )t t t t t
i i j ix x x x s  + = + − +    (3.1) 

where x  is the location of a firefly; t is the iteration;  is the attractiveness of a firefly 

(Eq. 3.2);  is a trade-off constant used to decide the random behavior of firefly (Eq. 4);  is 

a vector of random numbers (Eq. 5); s is a number generated by a Lévy distribution (Eq. 6).  

2

min
t re   −=  (3.2) 

where r is the distance between two fireflies (Eq.3.3), min is the attractiveness of a firefly 

at r = 0,  e  is a constant coefficient, and  is the absorption coefficient (0≤   ≤1). 

2( )ij i j i jr x x x x= − = −  
(3.3) 

t t
0  =  (3.4) 

where 0 is the initial trade-off coefficient;   is the adaptive parameter (0 <  < 1). 

1/ 2rand = −  (3.5) 

where rand is a random number in the range [0, 1], which is generated by a uniform 

distribution. 

2/3

u
s

v
=  (3.6) 
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where v  and u  are created by a normal distribution, as shown in Eq. 3.7 and Eq. 3.8, 

respectively, as follows: 

~ (0,1)v N  (3.7) 

2/

( 1)/2

(1 )sin( / 2)
~ (0, )

[(1 ) / 2] 2
u N





 

  −

  +
 

 + 

 
(3.8) 

where  is a constant value; ( )z  is the Gamma function determined by Eq. 3.9 as 

follows: 

1

0

( ) z tz t e dt


− − =   
(3.9) 

3.5.4 The computational optimisation approach for adaptive façade design 

In this section, we present the detailed structure of the computational optimisation 

approach for designing an adaptive façade based on EnergyPlus, MFA and Eppy. The 

framework of the approach is shown in Figure 3-3. In the proposed framework, the building 

geometry, thermal and visual properties of windows and weather conditions are used as input 

data, which are used by EnergyPlus and MFA to find the optimal design of the adaptive façade 

system. The optimal results, which are the best sequence of U-values and Tvis, can be used to 

select the best materials and operational stages for adaptive façade systems such as EC 

windows.  
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Figure 3-3. The framework of the computational optimisation approach for adaptive façade 

design. 

The engine of the approach is the optimisation process, which combines the energy 

performance prediction (EnergyPlus) with an MFA optimisation technique. The process is 

implemented in the Python environment, where the Eppy toolkit is used as a middleware tool 

to exchange data between EnergyPlus and MFA in this process. The target of the optimisation 

process is to find the best window properties sequence to minimize energy consumption and 

satisfy visual comfort requirements, thereby providing a preliminary design of an adaptive 

façade system. The design of the adaptive façade in this study can be formulated as an 

optimisation problem as follows: 

Input: Building geometry and dynamic climatic conditions 

Controlled variable: U-value and Tvis 

Objective: minimize total heating cooling lightingE E E E= + +  
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Constraint: Glare index ≤ 22 

The design of the adaptive façade is subjected to dynamic climatic conditions and the 

glare index constraint, which is associated with the visual comfort of building occupants. It is 

established that a glare index higher than 22 is too bright for building occupants [44]. 

Figure 3-4 shows the flowchart of the optimisation process for the adaptive façade 

design. At the beginning of this process, MFA generates an initial population of U-values and 

Tvis of the façade system. EnergyPlus will be used to simulate the energy consumption in the 

building. The outputs of the simulation (e.g., the total energy consumption totalE  and glare 

index) are sent back to MFA to find the optimal properties sequence that takes into account the 

multiple performance criteria of interest, which include minimizing the total energy 

consumption and satisfying the visual performance condition (Glare index  22). In this study, 

a maximum generation constant of 10 is chosen as the termination criterion in Figure 3-4. 
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Figure 3-4. Flowchart of the optimisation process for adaptive façade design. 

3.6 The energy performance of adaptive façades – case study 

This study develops two case studies to demonstrate the capability of the proposed 

computational optimisation approach to design the adaptive façade for enhancing building 

energy efficiency. The first case study is a typical single-zone office model, as shown in Figure 

3-5a. This case study was experimentally conducted by Lee et al. [33] through a full-scale 

outdoor field test to validate the effects of an adaptive EC façade. The dimensions of the model 

are 3.00m x 4.57m x 2.50m (LxWxH), and the window-to-wall ratio is 59% as shown in Figure 

3-5a. The U-value and Tvis of the windows of the adaptive façades can vary in a range of [0.1-

10 W/m2K] and [0.05-0.9], respectively. The material properties of other parts of the façade 

are given in Table 3-1. These material properties are assumed in accordance with the material 
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library in Revit [39] as they were missing in the study of Lee et al. [33]. The windows of this 

case study are subdivided into three zones in the same manner as reported by Lee et al. [33], 

and the adaptation of the adaptive façade (e.g., Tvis and U-value) can be controlled separately 

for each zone.  

Roof

Floor

Wall

Adaptive 

window

 

(a) 

Roof

Floor

Wall

Adaptive 

window

 

(b) 

Figure 3-5. (a) Case study 1: a typical single-zone office space model; (b) Case study 2: 

a medium office model 
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Table 3-1. Material properties of the adaptive and static components in case study 1 

Type Components Material 
Thickness 

(mm) 

Specific 

Heat 

(J/g.°C) 

Density 

(kg/m3) 

U-value 

(W/(m2k)) 

T-vis 

(-) 

Static/Fixed  

Floor [39] 
Floor tiles 6 0.85 1700 133.3 N/A 

Concrete  200 0.657 2300 5.2 N/A 

Roof [39] Concrete  200 0.657 2300 5.2 N/A 

Wall [39] 

Lightweight 

concrete 
200 0.657 950 1.0 N/A 

Gypsum wall 

board 
12 0.84 1100 54.2 N/A 

Adaptive  
Window Glass 6 N/A N/A 0.1 - 10 

0.05-

0.9 

To demonstrate that the proposed computational optimisation approach can also be 

applied to an actual office building, we conducted a second case study of a medium office, 

which has three floors with a total floor area of 4982 m2. This model was used by the DOE as 

a building benchmark model [45]. All four sides of the building have windows with an equal 

window-to-wall ratio of 33% as shown in Figure 3-5b. The building has a rectangular shape 

with an aspect ratio of 1.5. The windows of this case study are also subdivided into three zones 

(i.e., each floor is one zone). The details of the material properties of the office building are 

listed in Table 3-2. 

Table 3-2. Material properties of the adaptive façade in case study 2 

Type Components Material 
Thickness 

(mm) 

Specific 

Heat 

(J/g.°C) 

Density 

(kg/m3) 

U-value 

(W/(m2k)) 

T-vis 

(-) 

Static/Fixed  

Floor [45] Concrete  100 0.837 2240 13.1 N/A 

Roof [45] 
Membrane 9.5 1.46 1121 16.8 N/A 

Insulation 125 0.837 265 0.4 N/A 
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Metal Decking 1.5 0.418 7680 300.0 N/A 

Wall [45] 

Concrete 200 0.837 2240 6.6 N/A 

Insulation 50 0.837 265 1.0 N/A 

Gypsum wall board 12 0.83 785 13.3 N/A 

Adaptive  Window Glass 6 N/A N/A 0.1 - 10 
0.05-

0.9 

 For the energy simulations in EnergyPlus, it is assumed that there are six occupants 

occupying the office for the two case studies, and they start working from 8:00 to 17:00 on 

weekdays. The heat gain per floor area from lighting and electric equipment are 4.7 (W/m2) 

and 14.4 (W/m2), respectively. The temperature setpoints of the HVAC system for heating and 

cooling are 18C and 25C, respectively, during the occupied hours. For non-working hours, 

these temperature setpoints are adjusted to 15C and 28C, respectively. Besides, a minimum 

workplace illuminance of 500 lux is maintained, and an illuminance sensor is placed at the 

center of the room at the work plan height (0.8 m). The location of the office is Melbourne, 

Australia, and a typical meteorological year of Melbourne is used for the energy simulation. 

The two case studies focus on two typical weeks in summer and winter, and the time step for 

the simulation is 15 minutes. Figure 6 shows an example of setting the U-value and Tvis in the 

EnergyPlus model. U-value is modified by changing the thermal conductivity (K-value) of 

materials, and the relationship between U-value and K-value is represented by Eq. 3.10: 

K
U

d
=  (3.10) 

where d is the thickness of the material. 
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Figure 3-6. The setting of U-value and Tvis in the EnergyPlus model. 

 Table 3-3 lists the input parameters for MFA to the optimisation process in this paper. 

In addition to the adaptive façade presented in Tables 1 and 2, we also analyze five reference 

benchmarks of static façades (i.e., fixed U-value and Tvis), which are listed in Table 3-4 for 

comparison. The five reference benchmarks have the same properties as the adaptive façade 

i.e., components, climatic conditions and other settings. 
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Table 3-3. The initial parameters of MFA in both case studies. 

Parameter Description Value 

min The minimum attractiveness  0.1 

 The absorption coefficient  1 

o The initial trade-off coefficient 0.2 

 The adaptive parameter  
2 1/(10 / 0.9) MaxGeneration−

 

 The constant value 1.5 

Number of populations    20 

Maximum of generations  10 

Table 3-4. Details value of U-value and Tvis in the reference cases. 

Case 1 2 3 4 5 

U-Value 

(W/m2K) 

0.1 0.1 2.5 5 10 

Tvis 0.05 0.9 0.25 0.75 0.05 

3.7 Numerical results and Discussion 

In this section, we present the outcomes of the adaptive façade design and compare its 

performance with the five reference benchmarks to demonstrate its potential to enhance the 

energy efficiency in buildings. A comparison of the energy and visual performance between 

several design options in a week in summer is shown in Table3- 5 for the two case studies. The 

visual performance is calculated as the percentage of time that the glare index is equal to or 

smaller than 22 during working hours. This implies that a visual performance of 100% meets 

the visual comfort requirements and vice versa. In Figure 3-7, the first five columns represent 

the performance of five reference benchmarks with a non-adaptive, static façade, while the last 

column shows the energy consumption of the adaptive case.  
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Table 3-5. Detailed energy and visual performance of the two case studies in the summer 

week for adaptive façade and reference benchmarks. 

 Unit Reference benchmark Adaptive 

façade 
  1 2 3 4 5 

Case study 1       

Lighting 105 kJ 0.13 0.08 0.08 0.08 0.13 0.08 

Heating 105 kJ 0.28 0.22 0.25 0.21 0.26 0.20 

Cooling 105 kJ 1.66 1.04 1.38 1.02 1.42 1.19 

Total 105 kJ 2.07 1.34 1.71 1.31 1.81 1.47 

Energy save* % 29.0 - - - 18.8 - 

Visual performance % 100 51 83 61 100 100 

Case study 2       

Lighting 107 kJ 0.36 0.19 0.21 0.19 0.36 0.21 

Heating 107 kJ 0.33 0.30 0.31 0.30 0.33 0.30 

Cooling 107 kJ 2.03 1.73 1.83 1.76 1.99 1.79 

Total 107 kJ 2.72 2.22 2.35 2.25 2.68 2.30 

Energy save* % 15.4 - - - 14.2 - 

Visual performance % 100 60 83 63 100 100 

*Energy save = (energy of the reference benchmark –energy of the adaptive façade)/ energy of the reference benchmark 
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(a) 

 

(b) 

Figure 3-7. Comparison of results in the summer week for (a) case study 1 and (b) case 

study 2. 
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For case study 1, the office with the adaptive façade system has consumed the smallest 

total energy (1.47E+5 kJ) for heating, cooling and lighting, and has a visual performance of 

100%. The reference benchmarks 2, 3, and 4 do not satisfy the visual comfort requirements as 

the visual performances are 51%, 83% and 61%, respectively, as shown in Table 5. The results 

also indicate that the benchmark façade 1, which has high insulated windows (U-value = 0.1 

W/m2K, Tvis = 0.05), has higher energy consumption for cooling than the benchmark façades 

5 (low insulated windows: U-value = 10 W/m2K, Tvis = 0.05) as shown in Table 5 (1.66 E+5 

kJ for benchmark 1 and 1.42 E+5 kJ for benchmark 5). This can be attributed to the fact that it 

is difficult for internal heat to be released to the environment for benchmark 1, which thereby 

requires a noticeable amount of cooling energy to maintain a comfortable interior condition.  

Besides, when comparing the two benchmark cases with the same U-value (the 

benchmark 1 and 2), it is clear that benchmark 2 with Tvis = 0.9 consumed less energy than 

benchmark 1 with Tvis=0.05, as the high Tvis of benchmark 2 allows more solar light to travel 

through the office, which reduces the lighting energy. Overall, the adaptive façade can save 

18.8-29.0% of the total energy consumption compared to other reference offices (benchmark 

1 and 5). Benchmarks 2, 3, and 4 are not comparable because they do not satisfy the visual 

comfort requirement. It can be observed from Figure 3-7 that most of the energy in this period 

is used for cooling due to summer weather conditions. 

The same tendency is noticed for case study 2 when the adaptive façade office and 

benchmark 1 and 5 satisfy the visual performance requirement, and the adaptive façade office 

has consumed a minimum amount of energy for heating, cooling and lighting among these 

models, with a total energy consumption of 2.30E+7 kJ. Compared to benchmarks 1 and 5, the 

adaptive façade system can help to save 14.2-15.4% of the total energy consumption. Although 

benchmarks 2 and 4 have a lower energy consumption than the adaptive façade system, they 
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do not satisfy the visual comfort, as they have visual performances of 60% and 63%, 

respectively, as shown in Table 3-5.  

The compared results between the adaptive façade system and reference benchmarks 

over a winter week are shown in Table 3-6 for the two case studies. In case study 1, the office 

with the adaptive façade also consumes the smallest total energy compared to the reference 

benchmarks. However, the office with a high insulated façade (the benchmark 1: U-value = 0.1 

W/m2K,) consumed less energy (1.48E+5 kJ) than the case with a low insulated façade (the 

benchmark 5: U-value = 10 W/m2K, 1.63E+5 kJ). It can be explained that the internal heat of 

the office benchmark 5 can easily escape to the external environment because of the low 

insulated façade, so it requires more heating energy to warm up the room on cold winter days. 

The same trend of visual performance was observed in summer when a higher Tvis results in 

lower energy consumption because of the reduction of lighting energy for benchmarks 1 and 

2. Benchmarks 2, 3, and 4 once again do not satisfy the visual comfort for which the visual 

performances are smaller than 100%, as shown in Figure 3-8. The office with the adaptive 

façade can save 14.9-22.7% (for the case study 1) and 18.1-22.3% (for the case study 2) of the 

total energy consumption, compared to the static, non-adaptive façade systems. As opposed to 

the summer week, the most significant amount of energy is used for heating during the winter 

week as depicted in Figure 3-8. 

Table 3-6. Detailed energy and visual performance of the two case studies in the winter week 

between the adaptive façade and reference benchmarks. 

  Unit 
Reference benchmark Adaptive 

façade 1 2 3 4 5 

Case study 1 

Lighting 105 kJ 0.14 0.10 0.11 0.10 0.14 0.10 
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Heating 105 kJ 0.88 0.94 0.98 1.02 1.09 0.82 

Cooling 105 kJ 0.46 0.34 0.39 0.32 0.40 0.34 

Total  105 kJ 1.48 1.38 1.48 1.44 1.63 1.26 

Energy save* % 14.9 - - - 22.7 - 

Visual performance % 100 67 91 79 100 100 

Case study 2 

Lighting 107 kJ 0.19 0.12 0.14 0.12 0.19 0.12 

Heating 107 kJ 0.90 0.83 0.92 0.88 0.99 0.79 

Cooling 107 kJ 0.40 0.36 0.37 0.37 0.39 0.31 

Total 107 kJ 1.49 1.31 1.43 1.37 1.57 1.22 

Energy save* % 18.1 - - - 22.3 - 

Visual performance % 100 70 95 73 100 100 

*Energy save = (energy of the reference benchmark – energy of the adaptive façade)/ energy of the reference benchmark 

 

 

(a) 



Chapter 3 

 

Page | 54  

 

 

(b) 

Figure 3-8. Comparison of results in the winter week for (a) case study 1 and (b) case 

study 2. 

In this study, we also analyze the optimal sequence of U-value and Tvis for the designed 

adaptive component, which can inform the design and operation of the adaptive façade system 

(EC windows, for example). For a better understanding of the design and performance of the 

adaptive façade system, we plot the climatic conditions in this study in Figure 3-9, which shows 

the average temperature and direct normal radiation for one week in summer and winter in 

Melbourne. Direct normal radiation (Wh/m2) is the amount of solar radiation that a surface 

received directly from the solar disk. It can be noticed that the temperature and direct normal 

radiation on most days in the summer week are significantly higher than those in the winter 

week.  
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(a) 

 

(b) 

Figure 3-9. Weather data profile of the summer week and winter week: (a) 

Temperature and (b) Direct Normal Radiation 
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Figure 3-10 illustrates the averaged optimal Tvis and U-value for each hour of the 

adaptive façade in case study 1 for the summer week. Figure 10a shows that the U-value of the 

adaptive façade system is optimized to a high value (i.e., low insulation) during the morning 

and night to allow for temperature exchange between the internal and external environment 

because the external temperature in this period is in the range of the temperature setpoints of a 

HVAC system. As shown in Figures 10a and 10b, the minimum U-value values (0.1 W/m2K) 

are recommended by the proposed approach during midday on Monday, Tuesday and 

Thursday. As depicted in Figure 3-9a, the temperature at midday on Monday, Tuesday and 

Thursday is very high. The low U-value (i.e., high insulation) is required to block the hot 

airflow from the outside environment, and thereby reduce the cooling demand. It is also 

observed that the low U-values are not recommended at midday on Wednesday and Friday 

(Figure 3-10a) because the temperature is low (Figure 3-9a). For analyzing the visual 

performance, the Tvis value is set to a high value in the early morning (before 8:00) and the 

late afternoon (after 16:00) as shown in Figure 3-10b to have more access to sunlight, thereby 

reducing lighting energy. The Tvis value is then reduced to a low value (around 0.2 for Tuesday 

in Figure 10b) between 8:00-16:00 to satisfy the visual comfort (i.e., glare index is smaller than 

22) when the direct normal radiation is high during daylight as shown in Figure 3-9b. In 

particular, for Wednesday afternoon and Thursday, when the direct normal radiation is low 

(Figure 3-9b), the Tvis values are clustered together in the range of [0.4-0.6] (Figure 3-10a), 

which is not observed for the other days when the direct normal radiation is high.   
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(a) 

 

(b) 

Figure 3-10. Optimized properties of the adaptive façade for case study 1:(a) summer 

week; (b) Tuesday in the summer week 
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In winter, the opposite trend of U-value is revealed when the thermal transmittance U-

value is kept at a minimum most of the time and is adjusted to the maximum value at midday, 

as shown in Figure 11a and 11b. This can be explained by the fact that the Melbourne climate 

in winter is colder than the temperature setpoints for heating, as depicted in Figure 9a, so the 

high insulation of the adaptive façade system should be maintained to avoid heat leaking to the 

external environment. The high U-values are only needed at midday during the winter week 

when the temperature increases. For the visual performance, it is noticed that the period with 

high values of Tvis in the winter week (Figure 3-11a) is longer than that of the summer week 

(Figure 3-10a). That can be attributed to the fact that the direct normal radiation during winter 

is lower than that during summer for most of the time (Figure 3-9b). Therefore, the high Tvis 

values are required to allow more sunlight penetration, and thereby maintain visual comfort. 

On Wednesday in the winter week, high Tvis values during the entire day are required as the 

direct normal radiation is low on this day, as shown in Figure 3-9b. 

 

(a) 
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    (b) 

Figure 3-11. Optimized properties of the adaptive façade for case study 1: (a) winter 

week; (b) Wednesday during the winter week. 

3.8 Conclusions 

The adaptive façade is considered as a potential solution to enhance the energy efficiency 

of buildings. We proposed a computational optimisation approach, which uses a combination 

of building energy modelling software (EnergyPlus), the metaheuristic optimisation algorithm 

(MFA) and Eppy toolkit to design and assess the viability of adaptive façades systems. Two 

case studies were conducted to validate the capability of the proposed approach, which was 

used to obtain the optimal property sequence of the adaptive façade system, including the 

thermal transmittance U-value and visual transmittance Tvis, to minimize the total energy 

consumption in each case study. 
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In case study 1, a typical single-zone office was tested, and we found that the adaptive 

façade system can save the total energy consumption by 18.8% - 29.0% in the summer week 

and 14.9% - 22.7% in the winter week, compared to the benchmark static façade systems. For 

case study 2, the proposed approach can help to save between 14.2% - 22.3% of the total energy 

consumption compared to the benchmark façade systems. We also analysed the optimal, time-

varying U-value and Tvis of the adaptive façade system, which are reasonably responsive to 

dynamic climatic conditions. These results confirm the capability and effectiveness of the 

proposed approach in supporting the design of adaptive façades and prove the capacity of the 

adaptive façade system in reducing the energy consumption of buildings. The proposed 

computational optimisation approach and the results of this research can be used to guide future 

research and development processes. This work can be easily extended to different material 

properties or dynamic shading devices to facilitate the exploration of next-generation adaptive 

façade systems. 
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Chapter 4  

The computational design of biomimetic adaptive 

façade for energy efficiency building 

[IN PROGRESS2] 

4.1 Abstract 

Chapter 3 has demonstrated the capacity of the adaptive façade (AF) system in reducing 

the energy consumption of buildings. This chapter further extends the study in chapter 3 by 

transferring the biological features found in chameleons into designing façade systems. By 

combining the bioinspiration and advanced electrochromic (EC) glazing systems, this chapter 

proposes the concept and design of biomimetic adaptive façade (BAF) to enhance the energy 

efficiency of buildings. A comprehensive analysis is conducted to identify the similarities 

between the mechanism of EC glazing and chameleon’s skin, thereby providing the 

bioinspiration features for the proposed BAF system. In addition, the computational 

optimisation approach, which was presented in the previous chapter, is extended with a 

decision-making assistance tool, to design and assess the viability of BAF systems. A medium 

office building is used as a case study to validate the capability of the proposed approach for 

two weather conditions in Melbourne, Australia and Texas, United State. The results show that 

the proposed façade system can reduce energy consumption by 9.2% - 27.3% and 14.6% - 

19.6% for Melbourne and Texas, respectively, compared to the benchmarking facade systems. 

The results confirm the potential of BAF in improving the energy efficiency of buildings. 

 
2Bui, D.-K., T.N. Nguyen, A. Ghazlan, and T.D. Ngo, Enhancing building energy efficiency by adaptive façade: 

A computational optimization approach. Ready to submit in Applied Energy (in-progress). 
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4.2 Introduction 

Buildings, in general, account for approximately 40% of the global energy consumption 

[1]. The energy used by the buildings keeps growing by around 2% per year from 2012 to 2040 

[2]. A large proportion of the energy consumption in a building is used for the operational stage 

during its life cycle [3, 4], which is mainly used to maintain the thermal and visual comfort of 

occupants in the building i.e. for lighting, heating, and cooling. The thermal comfort condition 

is defined as the condition that building occupants satisfy with the thermal environment (i.e. a 

person is not feeling too hot or too cold) [5], while the visual comfort includes a variety of 

aspects such as views of outside space, luminosity, light quality and absence of glare. Both 

thermal and visual comforts are affected by façade system (e.g. glazing systems) because it is 

a mediator between inside and outside environment. Hence, the façade system plays an 

essential role in the total energy consumption in buildings. As a result, the façade system is 

very important to achieve the efficient use of energy in a building, which strongly affects its 

ability to achieve the green building certificates in the Green Building Rating system [6] as 

well as the Near-Zero Energy Buildings (NZEB) target [7]. 

The development of new façade systems for enhancing building energy efficiency can 

be categorized into two main strategies. The first strategy focus on developing better shading 

devices, which can reduce heat gain from sunlight but still ensure the views connected to nature 

and light quality of occupant [8-10]. In cooling seasons, some shading devices are designed to 

function as reflectors, which can bounce natural light into building interiors [11]. The second 

approach target on designing new material with high thermal resistance for façade systems [8, 

12]. The high thermal resistance property of façade can help the building be more insular with 

the environment; however, in winter, the high thermal resistance also restricts a building to 

absorb solar energy from sunlight, thereby increasing heating energy [13]. It should be noticed 
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that the two strategies both aim to reduce energy for lighting, heating and cooling of buildings 

by controlling the thermal and visual exchange between building and environment. 

Notably, many approaches from both strategies for energy-efficient façade system are 

inspired by nature [14-16], which has evolved over many years to develop a unique strategy to 

adapt to living environments. These approaches, called biomimicry façade design, look at the 

material, dimension, operation of façade system from a biomimetic point of view. The 

terminology of ”biomimicry” was introduced in [17], where the concept of resembling 

ecosystems was proposed by balancing nature and mankind. Many living organisms look for 

the physiologically tolerable conditions, called homeostasis in biology, which is analogous to 

the attempt to maintain a comfortable environment for occupants in building with respect to 

the variation of the external environment conditions. Living organisms have many strategies, 

which have been developed through many years of evolution, to adapt to dynamically 

environmental conditions. The adaptation may take place throughout the second (e.g., Mimosa 

pudica quickly respond to touch), the day (e.g., sunflowers follow the solar), the seasons (e.g., 

the seals have different blubber distribution in each season), or the evolution (e.g., the skin 

colour of a human) [18]. Especially, adaptation, which is one of the most crucial features, helps 

living organisms able to survive in harsh environmental conditions. The adaptation feature of 

living organisms can provide engineers and architects great inspiration to improve the 

performance of façade. In fact, one of the most significant challenges to design an effective 

façade system is the variations of climatic conditions (e.g., daylighting, heat gain from sunlight, 

natural ventilation). Many studies concluded that the energy efficiency of façade systems is 

very sensitive to outside environment conditions [19, 20].  

This study aims to develop the design concept and solution for a BAF system, which is 

inspired by the adaptation mechanisms of chameleons. Enabling by the state-of-the-art 

electrochromic (EC) glass technology, the adaptation mechanisms of chameleons can be 
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applied to the design of a biomimetic, EC glazing system by changing its colour to control the 

solar heat and sunlight exchange between internal building space and external environments.  

4.3 Literature Review 

Biomimicry approaches in designing glazing systems can be classified into two groups: 

(1) form and (2) function [21]. The first group is to mimic the morphological appearance, visual 

shape of the organism or biological system in nature. For instance, Sheikh and Asghar, inspired 

from the shape of Oxalis oregana leaf, proposed a two-axes, foldable shading device which can 

be folded along both horizontal and vertical axes as shown on Figure 4-1 [14]. The device can 

enable shading under several angles of sunlight, thereby reducing the sun-glare and overheating 

in the building during the hot season. They also validated the performance of the biomimicry 

shading device by applying to a 20-story commercial building in Lahore, Pakistan. The results 

showed that the proposed device can reduce the energy load in the building by 32% and still 

keep a haft of floor plan under the natural light level of 500 – 750 lux [14]. In another study, 

Han et al. proposed a bio-inspired building envelope after investigating the particular retro-

reflective property of flower petals [22]. Many application inspired by Strelitzia reginae flower, 

spruce cones are presented [16]. 
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Figure 4-1. A two-axes, foldable shading device is inspired from the shape of Oxalis oregana 

leaf [14] 

On the other hand, the second group is to copy the underlying biological mechanism. 

This group focus on what the façade does rather than how its look and they can directly or 

indirectly inspire from nature [23-27]. The direct approach directly mimics the functional 

fundamentals of organism or biological system into same-role elements of façade system, while 

the indirect approach needs to add more steps into the transformation. For example, Webb et 

al. investigated the heat transfer of animal fur and then transferred that distinctive performance 

characteristic to building façades [23]. The results from this study showed that the fur-lined 

façade could reduce the heat gains and heat losses by 50% during summer and winter, 

respectively, when comparing with a conventional lightweight façade. In another study, 
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Taghizade and Taraz focused on the effect of the pattern of bird feathers on the energy 

consumption of the bird. They then proposed a design of a mobile surface inspired by bird 

feathers to reduce energy consumption and increase the shade for buildings [24].  These studies 

all focus on developing a kinetic façade, which can move and change the position, but the study 

on adaptive thermal material is limited. In addition, most of all published studies on BAF 

remain at a conceptual stage of development, and there are under ten percentage of studied that 

having energy analysis [15]. 

The electrochromic (EC) window technology is one of the most significant developments 

in glazing systems and can enable the adaptation of bioinspiration in façade design. An EC 

window can change its thermal and visual properties by adjusting the applied small voltage to 

reflect or absorb solar energy. However, the effective design and operation of EC system 

energy efficiency is still unresolved because of the complex nonlinear relationship between the 

status of EC windows and the energy consumption in a building [28-30]. Mäkitalo validated 

the performance of EC windows in an office building in Stockholm, Sweden [28]. He reported 

that EC windows could save more energy than regular windows with blinds do.  Nevertheless, 

this research only focuses on the thermal performance of the building, and there is a lack of 

visual comfort analysis. In another study, Dussault and Gosselin performed a sensitivity 

analysis of the design parameter of an office building, which has EC windows, on energy 

performance [29]. The study showed that the EC windows have a significant effect on the total 

energy consumption of the building. In addition to this,building location, window to wall ratio 

and façade orientation have more impacts on the energy performance of building compared to 

other design parameters such as internal gains, thermal mass, and airtightness rating [29]. 

Similarly, in the study conducted by Lee et al. [30], an optimisation process is proposed to find 

the control variable that has the biggest effect on the performance of the EC window. The study 

used a medium-sized commercial building as a case study and simulated with different weather 
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conditions of several cities in the United States. The results of this study demonstrated that 

outdoor air temperature is the most efficient parameter in improving the performance of the 

EC window. However, these studies did not go through details of the control strategy of EC 

windows yet, so optimising operation of EC windows is still challenging.  

In this study, the biological and adaptive mechanisms of chameleon skin are analysed to 

identify the transferrable features of bioinspiration. Then, the design concept of BAF system 

based on the chameleon’s skin is proposed.  An in-house computational optimisation approach, 

which is built upon building energy modelling (BEM), optimisation techniques and a decision-

making tool is used to explore the potential performance of the BAF system design for reducing 

the energy consumption of buildings. EnergyPlus, a BEM software, is used to evaluate the 

energy consumption of buildings with the variation of climatic conditions, and a computational 

approach is proposed to optimise the operation of the biomimicry adaptive façade. The data 

exchange between EnergyPlus and the computational approach is handled by Eppy, a Python 

toolkit. This study demonstrates that the BAF system can significantly improve the building 

energy efficiency.  

4.4 Methodology  

This section provides a background of biomimicry approach to façade design. The design 

of BAF then is presented along with the control mechanism of the proposed BAF.  

4.4.1 Biomimicry inspiration and mechanisms  

The natural inspiration and mechanisms of chameleons are presented in this section. 

Chameleons have 202 species described as of 2015, and these species come in a variety of 

colours [31]. The ability of chameleon to change its skin colour has been recognized as the 

most famous and intriguing feature in natural systems. However, it is a common 

misunderstanding that chameleons only change their skin colour for camouflaging purposes. 
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In fact, Walton and Bennett [32] found that chameleons primarily change their colour to 

regulate their body temperature [32]. Changing skin colour helps chameleons maintain pleasant 

body temperature as they cannot generate their own body heat. Therefore, chameleons must 

use solar radiation as a source for heat gain, and their skin colour affects the absorptance and 

reflectance to the visible wavelengths of solar radiation. Chameleons change their skin to a 

dark (bright) colour to absorb more (less) radiation, respectively. Rapid heating is notably 

important for chameleons which begin morning activity at low temperature. On the contrary, 

increasing reflectance can help chameleons reduce body temperature during midday when the 

level of solar radiation is high. 

The intriguing feature of chameleons is attributed to the microstructure of their skin, 

which is a multilayer structure, as shown in Figure 4-2. The first layer of the skin is the 

transparent layer which enables the penetration of sunlight. Underneath this layer, there are 

four layers, namely xanthophores, erythrophores, iridophores and melanophores [33]. These 

layers contain specialized cells, called chromatophores, which are filled with sacs of different 

pigments. Xanthophores, erythrophores and iridophores layer contain yellow, red and blue 

pigments, respectively. The melanophores layer fills brown melanin, which also exists in 

human skin. In the normal condition, chameleons keep these pigments locking inside the tiny 

sacs in the cells. When chameleon needs to change body temperate, its nervous system will 

control the specific chromatophores in the xanthophores, erythrophores and iridophores layers 

to expand or narrow, thereby changing the colour of the cells. For example, in Figure 4-2a, the 

chameleon has a yellow colour when chromatophores in the xanthophores layer expand and 

chromatophores in other layers narrow. Then, the chameleon changes colour to blue by 

simultaneously expanding chromatophores in iridophores layers and narrowing 

chromatophores in the xanthophores layer, as shown in Figure 4-2b. Chameleons can create a 

variety of colour patterns by choosing the combination of different chromatophores in all the 
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skin layers [33]. This process enables the adaptation of chameleon by actively control the 

absorption and reflection of solar radiation.  

 

Figure 4-2. Chameleon has several skin layers which contain chromatophores 

4.4.2 The biomimetic, electrochromic glazing system 

The ability of chameleons to change their skin colour is an inspiration for many 

engineering fields such as material science and chemistry. In this study, it is found that the 
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mechanism of chameleons’ skin is closely analogous to the essential requirement of façade 

system design for building energy efficiency. In the same manner with chameleon’s skin, the 

façade system of buildings can be designed to proactively response to climatic conditions to 

regulate indoor thermal and visual conditions with minimal energy consumption. Inspired by 

the adaptive mechanisms of chameleon’s skin, this study proposes the BAF system based on 

EC glazing material, as shown in Figure 4-3.  The EC behaviour of materials, which was first 

introduced by Platt [34], is the phenomenon that a material can change its optical properties by 

applying a small external voltage or electrical current. Many technologies and materials based 

on this phenomenon are currently under speedy development. In particular, the application of 

EC glass in the building industry has emerged as a promising solution for both the efficient use 

of energy and indoor comfort in a building.  
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Figure 4-3. Mechanism of chameleons’ skin is closely analogous to the EC glazing system. 

Inspired by the extraordinary feature of chameleons and the advanced development of 

EC glass, the biomimetic adaptive glazing system is proposed and designed in this study. The 

system contains an EC coating layer, two glass layers and an argon-filled layer as shown in 

Figure 4-4. The EC coating layer, which is located on the inside surface of the exterior glass 

panel, represents the role of the pigment layer in chameleons’ skin to provide the adaptive 
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ability of the proposed biomimetic, EC glazing system. The EC coating layer can change its 

colour from tint to dark to control the solar heat gain and transparent properties of the system. 

 

Figure 4-4. EC window in clear and tinted states. 

The EC coating layer is a multilayer structure, which is similar to the skin of chameleons, 

as shown in Figure 4-5. Two sides of the coating layer are the anode and cathode, transparent 

conductor. Next to the anode layer, there is an ion storage film, which is used to store ionic 

species such as hydrogen ions (H+) or lithium ions (Li+) [35]. These ions are usually used 

because they are small and therefore, can easily move under the electric field. At the middle of 
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the coating layer, there is an ion conductor layer made by a solid-state electrolyte. The solid-

state electrolyte is used to separate ion storage film and EC film because it is good for ion 

conductor and electron insulator. The last layer is an EC film which can conduct both electrons 

and ions. This layer is made by Tungsten oxide in most of the recent EC materials [36].  

 

Figure 4-5. EC coating has five layers, including two transparent conductors, one ion storage 

film, one ion conductor and one EC film. 

When applying a small voltage between the two transparent conductors, the EC coating 

darkens because the ions in the ion storage film move to the EC film. Electrons from the 

transparent conductor then insert into the EC film to balance the charge of these ions. Reversing 

the voltage polarity will help the coating return to a clear state as the ions return to their original 

layer.  For an EC film made by Tungsten trioxide (WO3), the insertion of ions (H+) and electron 

(e-) will alter the colour of the film. the simplified electrochemical reaction as below can be 

used to explain the change of colour: 
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 3 3 coloredbleached
WO H e HWO+ − + + 

   
(4.1) 

Similarly, ion storage film contains Nickel (Ni) oxide, and its colour will change when 

removing ions (H+) and electron (e-) as follows: 

 2 bleached colored
Ni(OH) NiOOH H e+ −  + +

   
(4.2) 

Generally, transferring ions and electron from ion storage film to EC film causes both 

films to turn dark and to return the charge makes both films get back their transparency. 

Moreover, the optical absorption of Tungsten oxide and Nickel oxide are complementary, so 

they can help EC glass obtain too many shades of colour. This process enables the variation of 

optical properties (e.g. solar heat gain coefficient and visual transmittance) of EC glass. The 

operation of the proposed glazing system is energy efficiency because it only requires a small 

voltage, which uses less than 5V, for changing the optical properties of EC glass [37].  

4.4.3 Design methodology for the biomimetic, electrochromic glazing system 

4.4.3.1 WINDOW software 

WINDOW software, which was developed by Lawrence Berkeley National Laboratory 

[38], is used to calculate window thermal performance indices (i.e., solar heat gain coefficients 

(SHGC), visual transmittance (Tvis), thermal transmittance (U-value)) of the EC window in 

this study. WINDOW is a popular software that can assist engineers in designing and 

developing new window products. This software can simulate for single or multi-layer glazing 

and calculate U-value, Tvis and SHGC of the glazing system. 

4.4.3.2 Computational approach 

This section provides the detailed structure of the computational approach for designing 

the adaptive façade. Figure 4-6 shows the framework of the approach. In the proposed 
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framework, WINDOW is used to calculate SHGC, Tvis and U-value of EC windows. These 

values, along with occupants’ behaviour and geometry of the building, and weather condition, 

are used as input data for the optimisation process. The optimisation process simulates all 

scenarios based on the input data to find the optimal design of the BAF system. Then, the 

optimal results, which are the best sequence of EC glazing state, are transferred to a decision-

making assistance tool to decide if it is worth to keep EC glazing in the current state or switch 

to another state by comparing the saving energy and energy consumption for the operation of 

EC glazing. In the last step, the final outputs are sent back to building operation system to 

control the EC glazing accordingly. 
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Figure 4-6. The framework of the computational optimisation approach for BAF design. 

In this process, many EnergyPlus simulations are automatically performed in a Python 

environment with the assistance of Eppy package. Eppy, developed by Philip et al. [39] in 

Python, is an open-source package to control and manipulate EnergyPlus software in a 

systematic and programmatic way. The optimisation process finds the best EC state sequence 

to minimize energy consumption (i.e., lighting, heating and cooling) and satisfy visual comfort 

requirement. The design of BAF in this study can be formulated as an optimisation problem as 

follow: 

Input: Building geometry, dynamic climatic conditions and EC glazing properties 

Controlled variable: EC glazing state 

Objective: minimize total heating cooling lightingE E E E= + +  
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Constraint: Glare index ≤ 22 

The design of the EC glazing is subjected to building geometry, dynamic climatic 

conditions and EC glazing properties. Besides, the glare index is used as a constraint to keep 

the visual comfort for all building occupants. For an office, it will be too bright for working 

condition if the glare index is higher than 22 [40]. It is worth mentioning that the EC window 

requires energy to change its optical properties and maintain tint stages. This study takes into 

account this energy consumption for the operation of EC glazing by developing a decision-

making assistance tool. This tool calculates the energy to maintain EC glazing at any tint state 

or switch to another state and the energy saved by this decision. The saving energy then is 

compared with the energy for the operation to have a final decision, as shown in Figure 4-7. 

 

Figure 4-7. The flowchart of the decision-making assistance tool. 

4.5 The energy performance of adaptive façades – case study 

A case study of a medium office, which has three floors, and the total floor area is 4982 

m2, is developed in this study to demonstrate the capability of the proposed computational 

approach in improving the performance of EC glazing. This building, was used by the 
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Department of Energy as a building benchmark model [41], has a window on all four sides and 

the window-to-wall ratio is 60%, as shown in Figure 8. The windows of this building are 

assumed to use SageGlass EC glazing, and the windows on each side of the building are 

controlled separately. SageGlass EC glazing has a clear state, and three tint states, the thermal 

and visual properties of each state are calculated by WINDOW and shown in Table 4-1. In 

addition, this study also compares the adaptive EC glazing with a reference building with a 

conventional low-emittance window (U-value = 3.211 W/m2K, SGHC = 0.522, Tvis = 0.728), 

which is static window and does not change its properties. The energy required  to switch EC 

glazing from a clear state to tint state is 2.7 W/m2 while the energy required to maintain the 

glazing to a given tint level is 1.5 W/m2 [42]. The tinting of EC coating lags the command by 

around 10 min [42]. 

 

Figure 4-8. Case study: a medium office model 

Table 4-1. Details thermal and visual properties of each state SageGlass EC glazing. 

Window 

SageGlass EC glazing 

Low-E glass 

Clear Intermediate 

state 1 

Intermediate 

state 2 

Fully 

tinted 



Chapter 4 

 

Page | 85  

 

U-Value (W/m2K) 3.534 3.534 3.534 3.534 3.228 

SGHC 0.522 0.249 0.220 0.187 0.229 

Tvis 0.728 0.203 0.119 0.014 0.189 

In EnergyPlus simulations, it is assumed that people work from 8:00 to 17:00 on working 

days. The heat gain per floor area for lights is 12.9 (W/m2), and the lighting is scheduled to be 

on between working hours. The temperature setpoints of the HAVC system for heating and 

cooling are 18C and 25C, respectively, during the occupied hours. For non-working hours, 

these temperature setpoints are adjusted to 15C and 28C, respectively. Besides, a minimum 

workplace illuminance of 500 lux is maintained, and an illuminance sensor is placed at the 

centre of the room at the work plan level. Two locations, which are Melbourne, Australia and 

Texas, United State, of the office building, are investigated in this study and a typical 

meteorological year of each city is used for energy simulation. The study calculates annual 

energy consumption, including heating, cooling, and lighting of the office building, and the 

time step for the simulation is 1-hour. 

4.6 Numerical results and Discussion 

The performances of the BAF design are analysed and compared with the five reference 

benchmarks to show its potential to improve building energy efficiency. A comparison of the 

energy and visual performance for a whole year is shown in Table 4-2 for the two locations. 

The energy performance is the energy using for lighting, heating, and cooling while the visual 

performance is the percentage of time that the glare index does not exceed 22 during working 

hours. In other words, the visual performance of 100% meets the visual comfort requirements 

and vice versa. In Figure 4-9, the first four columns represent the performance of four static 

states of Sageglass glazing, while the last two column shows the energy consumption of the 

Low-E glazing and the adaptive case, respectively. 



Chapter 4 

 

Page | 86  

 

Table 4-2. Detailed energy and visual performance of the case study for BAF and reference 

benchmarks. 

 Unit Sageglass EC glazing Low-e 

glazing 
Adaptive EC glazing 

  Clear Tint 1 Tint 2 Tint 3 

Case 1 - Melbourne        

Lighting 108 kJ 1.58 2.51 2.84 3.26 2.57 2.22 

Heating 108 kJ 2.66 2.83 2.85 2.86 2.80 2.47 

Cooling 108 kJ 5.06 4.75 4.73 4.72 4.70 4.26 

Operation 108 kJ 0.00 0.57 0.57 0.57 0.00 0.28 

Energy consumption  108 kJ 9.30 10.66 10.99 11.41 10.07 9.22 

Save % - - 19.1 23.7 9.2 - 

Visual performance % 65 97 100 100 100 100 

Case 2 - Texas        

Lighting 108 kJ 1.28 2.20 2.64 3.24 2.28 2.06 

Heating 108 kJ 2.67 2.89 2.92 2.96 2.86 2.54 

Cooling 108 kJ 10.04 9.02 8.99 9.00 8.91 8.25 

Operation 108 kJ 0.00 0.57 0.57 0.57 0.00 0.34 

Energy consumption  108 kJ 13.99 14.68 15.12 15.77 14.05 13.19 

Save % - - 14.6 19.6 - - 

Visual performance % 56 86 99 100 89 100 

*Energy save = (energy of the reference benchmark – energy of the adaptive façade)/ energy of the adaptive façade 
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(a) 

 
(b) 

Figure 4-9. Comparison of results for (a) Melbourne and (b) Texas. 
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For the case study in Melbourne, the building with the adaptive EC glazing has consumed 

the smallest total energy (9.22E+8 kJ) for lighting, heating, cooling, and operation and satisfies 

the visual comfort with a visual performance of 100%. The buildings with static clear and Tint 

1 Sageglass window do not satisfy the visual comfort requirements as the visual performances 

are 65% and 97%, respectively, as shown in Table 4-2. This means that the lighting condition 

of these cases is too bright and does not satisfy the comfortable working environment of 

building occupants. The results also indicate that the lighting and heating energy increase but 

the cooling load decrease when changing the state of Sageglass window from clear to fully 

tinted. This can be attributed to the fact that the clear state, which has the largest SHGC and T-

vis, allows more light and heat from the sun go through the window, thereby reducing a 

noticeable amount of lighting and heating energy to maintain a comfortable interior condition 

for visual and thermal condition, respectively. On the other hand, the building with a clear state 

consumes more energy for cooling than other cases, especially in summer, because of receiving 

more light and heat from the outside environment. 

It also should be noticed that the buildings, which have static Sageglass window at 

intermediate state 1, intermediate state 2 and fully tinted, have spent an amount of energy for 

keeping the window at that state. It is called operation energy and is calculated based on the 

area of EC glazing. On the contrary, the buildings with Sageglass clear state and Low-E glazing 

do not consume energy for operation. The computational optimisation approach found the 

optimal state for adaptive EC glazing at each side of the building to minimize the total of energy 

consumption but still satisfy the visual performance requirement.  

The same tendency is noticed for the building in Texas when the building, which has 

adaptive EC glazing, consumed a minimum amount of energy for lighting, heating, cooling 

and operation among these models, with a total energy consumption of 13.19E+8 kJ. Three 

buildings with the adaptive EC glazing, the static intermediate state 2 Sageglass and the static 
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Orientation

` Location 

fully tinted Sageglass satisfy the visual comfort with visual performance is 100%. While the 

buildings with the static clear Sageglass, the static intermediate state 1 Sageglass and Low-E 

glazing do not pass the visual condition, as they have visual performances of 56%, 86% and 

89%, respectively, as shown in Table 4-2. Compared to the static intermediate state 2 Sageglass 

and the static fully tinted Sageglass, the adaptive EC glazing can help to save 14.6% - 19.6% 

of the total energy consumption.  

The durability of EC glazing is also investigated in this study. It is reported that the 

Sageglass EC glazing products can have a maximum of 100000 cycles over 30 years or 3333 

cycles per year [43]. Table 4-3 shows the number of times that the glazing switches to another 

state in both case studies. The south-facing window in Texas case has the highest cycles with 

2127 cycles over a year, which is smaller than the recommendations from the manufacturer. 

Therefore, the results from this study satisfy the durability condition of the Sageglass EC 

glazing products. 

Table 4-3. Switching time of each side of the building 

  
South  East North West 

Melbourne 1603 1165 523 1125 

Texas 2127 1215 1436 1136 

 

4.7 Conclusions 

In this study, the design concept and solution of BAF, which is inspired by the 

chameleon, is proposed and analysed to demonstrate its potential for improving the energy 

efficiency of buildings. This study provides a comprehensive analysis of the similarities 

between the mechanism of chameleon’s skin and EC glazing. In addition, a computational 
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optimisation approach, which combines building energy modelling software (EnergyPlus), 

Eppy toolkit, and the decision-making assistance tool, is used to design and assess the viability 

of BAF systems.  

Two locations, which are Melbourne, Australia and Texas, United States, were used for 

simulation to validate the capability of the proposed approach in optimising the total energy 

consumption. For each location, a computational optimisation approach obtains the optimal 

property sequence of the BAF that achieves the minimal energy consumption while satisfying 

the visual and thermal comfort for building occupants. For the office building in Melbourne, 

the BAF system can save the total energy consumption by 9.2% - 27.3% compared to the static 

Sageglass windows and Low-E window. For the case in Texas, the BAF can save between 

14.6% - 19.6% of the total energy consumption compared to the reference windows. These 

results confirm both the potential of BAF in improving the energy efficiency and the capability 

of the proposed computational optimisation approach in supporting the design of BAF. The 

results of this research can be used as a guide to discover future research and development 

processes of BAF. 
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Chapter 5  

A data-driven approach for predicting energy 

consumption in building 

[PUBLISHED JOURNAL3] 

5.1 Introduction to the paper 

Chapter 3 and chapter 4 have showed that the proposed computational optimisation approach 

can support the design and operation process of biomimetic adaptive façade (BAF). However, 

the building energy simulation software in the proposed approach has some limitations such as 

time consuming and requiring expertise experience. Therefore, this chapter proposes a data-

driven approach to complement the building energy simulation software in the computational 

optimisation approach. The data-driven approach can learn from the provided energy data and 

try to understand the relationship among all variables in the data. Therefore, it can improve 

existing limitations on modelling building energy consumption. This chapter is a published 

article in Energy journal (Journal Impart Factor: 5.537, Rank 8/408 in Civil Engineering), 

titled “An artificial neural network (ANN) expert system enhanced with the electromagnetism-

based firefly algorithm (EFA) for predicting the energy consumption in buildings”. This 

chapter presents the third research objective of this thesis, which is the development and 

 

3 Bui, D.-K., T.N. Nguyen, T.D. Ngo, and H. Nguyen-Xuan, An artificial neural network 

(ANN) expert system enhanced with the electromagnetism-based firefly algorithm (EFA) for 

predicting the energy consumption in buildings. Energy, 2020. 190: p. 116370. 
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evaluation of a data-driven approach for prediction of energy consumption in building. The 

highlights of this study are: 

• A new hybrid machine learning model is proposed to predict the energy consumption 

in the building.  

• The hybrid model is based on artificial neural network and Electromagnetism-based 

Firefly Algorithm. 

• Two datasets are used to validate the capability of the proposed model. 

• The proposed approach can provide an effective alternative tool for making fast and 

accurate predictions of energy consumption in the building. 

The key findings of this study are: 

• This chapter has successfully integrated an in-house optimisation algorithm, namely 

Electromagnetism-based Firefly Algorithm, with a machine learning algorithm, called 

artificial neural network, into a hybrid model. 

• The proposed model can improve the accuracy in predicting the energy consumption of 

buildings by 16.18% - 98.50% compared to other machine learning models. 

• The proposed model can provide a sensitivity analysis to identify the inputs, which have 

a critical impact on the output of each dataset. This result can help designers to quickly 

validate their design of a façade system and improve its energy performance by focusing 

on these essential inputs. 

• The proposed approach can be used as a useful tool for quickly and accurately solving 

many problems in engineering, including energy-efficient buildings, construction 

material strength, and structural strength. 

During the course of this PhD research, another application of the proposed data-driven 

approach is also conducted for predicting the properties of concrete material. This work was 
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published in Construction and Building Material journal, titled “A modified firefly algorithm-

artificial neural network expert system for predicting compressive and tensile strength of high-

performance concrete” and is presented in Appendix A. 

5.2 Abstract 

 In this study, a new hybrid model, namely the Electromagnetism-based Firefly 

Algorithm - Artificial Neural Network (EFA-ANN), is proposed to forecast the energy 

consumption in buildings. The model is applied to evaluate the heating load (HL) and cooling 

load (CL) using two given datasets. Each dataset was obtained by monitoring the effect of the 

façade system and dimensions of the building, respectively, on energy consumption. The 

performance of EFA-ANN is validated by comparing the obtained results with other methods. 

It is shown that EFA-ANN provides a faster and more accurate prediction of HL and CL. A 

sensitivity analysis is conducted to identify the impact of each input on the energy performance 

of the building. From the results of this study, it is evident that EFA-ANN can assist civil 

engineers and construction managers in the early designs of energy-efficient buildings. 

5.3 Introduction 

There are three major economic sectors in the world, including transportation, industry, 

and building [1]. A substantial share of global energy is consumed by buildings, which is 

expected to increase to 32.4% by 2040 [2]. In participating nations of the Organization for 

Economic Cooperation and Development (OECD), including Australia, New Zealand, United 

Kingdom and the United States, energy consumption in buildings has grown by 1.5% per year 

from 2012 to 2040. In non-OECD nations, being mostly developing countries, the growth rate 

is 2.1% per year in the same period [3]. Therefore, the development of energy efficient building 

systems is essential and consequently, many efforts have been devoted to this area [4, 5]. 
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In the majority of cases, heating and cooling energy demands mostly account for building 

energy consumption [6]. Therefore, the early prediction and reduction of heating and cooling 

loads plays a vital role in designing an energy-efficient building. This provides designers with 

access to various building designs or Heating Ventilation and Air Conditioning (HAVC) 

system control options to find the optimal solution for reducing energy consumption in 

buildings. For instance, Zemella et al. optimized the design of façades of energy-efficient 

buildings by making early predictions of energy consumption due to heating, cooling, and 

lighting [7]. Also, Magnier and Haghighat applied a method to predict the energy consumption 

due to heating, cooling, and fan systems, and optimized the building design based on these 

predictions [8]. In another study, Ferreira et al. proposed a model-based predictive control 

methodology to control the HAVC system in a building and reported savings of around 50% 

in energy consumption [9]. Ghahramani et al. provided a systematic approach to optimize the 

setpoint and deadband parameter of the HVAC system by pre-calculating the energy 

consumption of HVAC [10]. Therefore, the early prediction of heating and cooling loads is 

critical to reducing the total energy consumption of a building. 

However, many aspects, including temperature, sunlight equipment, occupant behavior, 

wall materials, glazing area, surface, height and volume of the building, have interactions 

between the overall energy requirements of the building [11-13]. For instance, Ihara et al. 

concluded that all façade properties including solar reflectance, U-value, solar heat gain 

coefficient (SHGC) have different effects on the energy efficiency of buildings. They suggested 

that the reduction of SHGC is the most effective method for reducing energy consumption [14]. 

In contrast, Liu et al. showed that reducing SHGC does not improve the energy efficiency of a 

building without an appropriate U-value [15]. Many other factors affect the total energy 

consumption in a building, including weather conditions, building dimensions, and the 
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behaviour of occupants. Therefore, it is quite challenging to calculate energy consumption 

given that all the above parameters and their interactions should be considered. 

There are three main categories in building energy assessment, including engineering 

calculations, numerical simulations, and machine learning. The first approach focuses on using 

physical laws to calculate the energy consumption of an entire building. This approach is only 

suitable for preliminary analysis as it is mathematically intensive. In this research, the 

numerical simulation approach was used to simulate the energy performance of a building and 

overcome the limitations of engineering calculations. Several building energy simulation 

programs, including EnergyPlus, DOE-2, Window, Autodesk Ecotect, TRNSYS, and 

eQUEST, were used to simulate and predict energy consumption of a building. However, this 

method employs physics-based simulations, which are often time-consuming and resource-

intensive, and the complexity and demand increase with the size and complexity of the project 

[16]. Also, the optimisation process must be manual based on user experience [17]. In many 

cases, energy models cannot reflect the actual performance of a building in reality as they lack 

the required details and need to make simplifications [18]. Thus, the conventional procedures 

are often unsatisfactory for designing a façade because they are mainly based on a particular 

design condition and the experience of experts. Accordingly, a significant development of an 

advanced approach is required. 

To this effect, machine learning (ML), was proposed to design energy-efficient building 

services. This method applies a learning process to infer a relationship between the building 

data and energy consumption of buildings. In recent years, several advantages of ML have been 

demonstrated over conventional approaches [19, 20]. Consequently, many ML techniques have 

been applied to solve energy problems [21-23]. Robinson et al. successfully applied various 

ML techniques to predict the energy consumption of a commercial building based on various 

building features [21]. Ahmad et al. proposed four ML approaches to forecast short, medium 
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and long-term energy consumption in a building [22]. In another study, Chou and Tran used a 

hybrid ML model to estimate the energy consumption of residential householders with high 

accuracy [23]. ML can also be used to support several adaptive systems in a building [24, 25]. 

For example, Ghahramani et al. developed a novel adaptive hybrid metaheuristic algorithm 

based on ML and other smart components to optimize the energy of an HVAC system [24]. 

Moon et al. proposed an ML model for controlling the temperature of an adaptive double skin 

envelope [25]. 

Recently, among many ML techniques, an artificial neural network (ANN) has been 

widely used in optimizing the design of an energy-efficient building. Jin et al. used an ANN-

based thermal control logic model to optimize the initial conditions and heating system 

operations in a building [26]. In another study, Wang et al. forecasted the dynamic building 

cooling load by combining ANN and an ensemble model [27]. Chung et al. proposed an ANN 

model to design a comfortable indoor thermal environment in an energy-efficient manner [28].  

Notwithstanding many advantages, the ANN model depends on several initial 

parameters, including weights and biases [29]. Therefore, many studies were carried out to 

improve the performance of ANN by combining it with optimisation algorithms. For example, 

Yam and Chow optimized the initial weights of ANN by using linear algebraic methods [30]. 

Liu et al. enhanced the generalizations and accuracies of ANN by using an ensemble method 

[31]. Also, Chang et al. [32] and Lee et al. [33] proposed a genetic algorithm and a harmony 

search algorithm, respectively, to optimize the initial weights of the ANN model. 

Among many optimisation algorithms, our approach is to propose an Electromagnetism-

based Firefly Algorithm (EFA), which is found to be an efficient optimisation tool that can 

solve complicated problems. For instance, Shammari et al. combined the firefly algorithm (FA) 

and support vector machine model to predict the heating load of a heating system [34]. Coelho 
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and Mariani proposed FA and a Gaussian distribution function to optimize the loading of a 

chiller for energy conservation [35]. Chu and Chang used the Electromagnetism Algorithm 

(EA) to solve the resource allocation problem in stochastic networks [36]. However, both FA 

and EA still show several disadvantages, including premature convergence and divergence [37-

39], which will be discussed in the following section. Therefore, in this study, we propose a 

new approach based on a hybrid model of FA and EA, called EFA, which aims to enhance the 

capability of ANN for predicting the energy consumption of a building. 

Section 2 and 3 describe the theory behind of EFA and ANN, respectively. Details of the 

proposed EFA-ANN are provided in Section 4. Section 5 introduces the two datasets used to 

train EFA-ANN. The proposed method is validated in Section 6. Concluding remarks and 

recommendations for future research are provided in Section 7. 

5.4 Electromagnetism-based Firefly Algorithm – Artificial Neural Network Model 

5.4.1 An electromagnetism-based firefly algorithm 

The Electromagnetism-based Firefly Algorithm (EFA) is a new hybrid optimisation 

algorithm that incorporates the advantages of the firefly algorithm (FA) and Electromagnetism 

Algorithm (EA). Firstly, FA, which was proposed by Yang [37], is a swarm intelligence 

method and is based on the flashing patterns and behavior of tropical fireflies. In FA, the 

brightness of a firefly is determined by an objective function. A firefly will tend to move closer 

to the brighter firefly and is not affected by a darker one. On the other hand, the EA was 

introduced by Birbil and Fang [39]. It imitates the attraction-repulsion mechanism to solve 

global optimisation problems. In EA, all points converge to the highly attractive valleys and 

move further away from steeper hills. This idea is the same as the attraction-repulsion 

mechanism described by the theory of electromagnetism. However, better points are easily 
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distracted if there are many worse points in the population. Also, EA is not effective in a local 

search because it randomly moves all points without any advanced technique. 

In EFA, all fireflies are assumed to be magnetized, and the charge of a firefly depends 

on its objective value. Therefore, fireflies will move close to attractive fireflies and move away 

from the repulsive ones. Thus, all fireflies can contribute to the search process and improve the 

performance of EFA. Based on their charges, all fireflies are ranked in each iteration, and a 

firefly only has attraction and repulsion by an attractive or repulsive neighboring firefly, 

respectively. In this way, fireflies are not distracted by many forces as in EA. Consequently, 

EFA can quickly find promising areas in the exploration phase and then perform local searches 

in these areas to find the optimal solution in the exploitation phase. Local searches in EFA are 

performed using Lévy flight inspired by FA. 

5.4.1.1 Initialization 

Firstly, EFA is initialized in the same manner as FA, when the coordinates of the initial 

population of fireflies are uniformly distributed between the corresponding lower and upper 

bounds as follows 

( ) ( )0,1o

k k kx lb rand ub lb= + −  (5.1) 

where klb , kub  are the lower and upper boundaries of the kth coordinate, respectively; 

( )0,1rand  is a random number following a normal distribution within [0,1]. This study uses a 

logistic map to improve the performance of EFA. The logistic map generates the initial 

coordinates of fireflies using Eq. (5.2). It can provide an initial diverse population and also 

reduce the probability of premature occurrence [40]: 

( )1 1t t t

o o ox ax x+ = −  (5.2) 

where t

ox is a chaotic number at t iteration of the initialization process; a is fixed at 4 [41]. 
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5.4.1.2 Local search 

EFA inherits the exploitation capacity of FA and EA for searching conducting a local 

search in the vicinity of each coordinate. In other words, the local search of EFA follows Eq. 

(5.3) and the improvement of each firefly is sought by coordinate. In this way, the probability 

of finding a better point is increased. 

( )1t t t
i ix x L s + = +  (5.3) 

where  is a vector of random numbers and is defined by Eq. (5.4) as follows: 

1/ 2rand = −  (5.4) 

where rand is a random number generated by a uniform distribution in [0, 1]. 

In addition, αt is a trade-off constant at t iteration [37] and is calculated as follows: 

t t
0  =  (5.5) 

where α0 and αt are the initial trade-off coefficient and the trade-off coefficient at the tth 

iteration, respectively; and   is the adaptive parameter (0 <  < 1) [37]. 

Finally, ( )L s  is the Lévy distribution, which can be defined as follows: 

( )
1/

~
u

L s s
v


=  

(5.6) 

where s is a power-law distribution, τ is an index, and v and u are calculated to follow a normal 

distribution as follows:  

( )2~ 0, vv N   (5.7) 

( )2~ 0, uu N 
 

(5.8) 

where: 
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1v =  (5.9) 

( ) ( )

( ) ( )

1/

1 /2

1 sin / 2

1 / 2 2
u





 


 
−

  + 
=  

 +    

 (5.10) 

where ( )z  is the Gamma function, which is determined by: 

( ) 1

0

z tz t e dt


− − =   (5.11) 

5.4.1.3 Movement 

EFA benefits from the advantages of both EA and FA. Firstly, EFA has inspired the 

concept of attraction and repulsion forces from EA. However, EFA ranks all fireflies based on 

their objective function values and a firefly i is only affected by the attraction ( )gF  and repulsion 

force ( )rF  from the next better ( )1i − and worse firefly ( )1i + . In contrast, all fireflies in the 

population are considered in EA. In this way, EFA can mitigate the interference from many 

fireflies and quickly find the optimal solution. The movement of a magnetic firefly is written 

as: 

( ) ( ) ( ) ( )1
1 11

gt t t t t t r
i i i i i i

rg

F F
x x x x x x L s

FF
  +

− += + − − + − +  (5.12) 

where Fg and Fr are attraction and repulsion forces, which are defined by Eq. (13) and Eq. (14), 

respectively: 

1
1 2

1

| - |
-

i i
g i i

i i

q q
F x x

x x

−
−

−

=  
(5.13) 
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1
1 2

1

| - |
-

i i
r i i

i i

q q
F x x

x x

+
+

+

=  
(5.14) 

where qi is the charge of the point i, which is defined as follows: 

( ) ( )

( ) ( )( )
1

exp

i best

i n
i best

k

f x f x
q

f x f x
=

 
 −
 = −
 − 
 


 (5.15) 

where ( )f x  is the objective function. A firefly with better objective values has a higher charge. 

The objective function used in EFA-ANN model will be discussed in more detail in Section 

2.3. 

EFA uses the weights 1- and  to modify the effects of the attraction ( )gF  and repulsion 

( )rF  forces during the optimisation process. As alpha decreases from 1 to 0 during the 

optimisation process in the early stages, the fireflies are significantly influenced by rF  to 

explore the promising area. In the final stages, the effect of gF  and rF  is increased and 

decreased, respectively, to help the fireflies exploit the optimal solution in the best promising 

area. Therefore, these improvements help EFA find a better solution as opposed to the separate 

applications of EA and FA. The efficiency of EFA will be validated in the following sections. 

In each iteration, EFA chooses the best firefly based on the value of the objective 

function. The best firefly then performs a local search around its place by Levy flight while the 

rest of the population searches for other areas. At the end of the iteration, the best firefly is 

chosen, and the process continues until the termination criteria are reached. The termination 

criteria helps to reduce the computing time without affecting the solution quality. The objective 

function and termination criteria in this study will be discussed in Section 5.1.3.3. Figure 5-1 
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summarizes the pseudo-code of EFA, while Figure 5-2 illustrates a flowchart of the search 

process of EFA. 

\\Start EFA 

 Eq. (5.1)  \\ Generate initial population of fireflies by logistic map 

 Define objective function f(x) for all fireflies 

 Rank the fireflies based on objective function and find the current best  

while (t <MaxGeneration) 

 for i = 1: n  \\ n is number of fireflies 

  if i   1  \\ the current best firefly is not attracted by others  

   Eq. (5.12)  \\Move firefly i in d-dimension (Exploration phase) 

  end if 

  Eq. (5.3) \\Local search (Exploitation phase) 

  Evaluate new solutions and update the coordinate and the objective function 

 end for i 

 t = t +1 

end while 

Post process results and visualization 

\\End EFA 

Figure 5-1. Pseudocode for EFA. 
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Figure 5-2. The flowchart of EFA 
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5.4.2 Artificial Neural Network 

Technical details of ANN can be found in a previous study by [42, 43]. This study 

outlines the main concepts of the ANN model. Figure 5-3 illustrates the layout of an ANN 

model with a set of artificial neurons. Each neuron in a layer sends a signal to another neuron 

in the next layer by a connection, which is assigned a weight, and the weight represents the 

strength of the signal [44, 45]. 

X1

X2

X3

X4

XP

Output

Input Layer Hidden Layer Output Layer

 

Figure 5-3. The layout of an ANN model. 

In the hidden layer, the signals from the input layer are calculated by a linear function 

(see Eq. 5.16) and a transfer function (see Eq. 5.17) to generate the output signal of a hidden 

node [46] as depicted in Figure 5-4. 
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P
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net w I b
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= +   (5.16) 

where neti is the value of the ith net; wip and bi are the weight of the pth input to the ith hidden 

node and the bias parameter of the ith hidden node, respectively; Ip is the value of the pth input 

node.  

The transfer function is defined as: 

( )
( )
1

1
i i

i

y f net
exp net

= =
+ −

  (5.17) 

where the transfer function in this study is a sigmoid function and yi is the output signal of the 

ith hidden node. 
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Figure 5-4. The structure of a neuron in an ANN model. 

During the learning process, ANN uses the Mean Square Error (MSE), to evaluate the 

performance of the model as follows: 

( )
2

,

1 1

1 outNN

n o

n oout

MSE e
NN = =

=    (5.18) 
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(5.20) 

where N and outN are the number of instances and the number of outputs, respectively; 

, , ,n o n o n oe y y= −   is the training error at the oth output with nth instance; y is the actual output 

and  is the predicted output by ANN. 

The Levenberg–Marquardt algorithm [47, 48] is used to update the weights and biases to 

minimize the MSE. The calculation of the Levenberg–Marquardt algorithm is presented as: 

( )
1

1 T Tk k k k k kw w J J I J e
−

+ = − +   (5.19) 

where wk is the weight and bias matrix at the kth iteration; I  is the identity matrix;  is the 

combination coefficient (; and J is the Jacobian matrix [49]:  

 

where the error vector e at each neuron is written as [46]: 
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5.4.3 EFA-ANN implementation 

A flowchart of EFA-ANN is shown in Figure 3-5. Firstly, historical data is divided into 

learning and test data following k-fold cross-validation. The learning data is then divided into 

training and validation data with a ratio of 90% and 10%, respectively. The training data are 

trained by the Levenberg–Marquardt algorithm, while the validation data are used to validate 

the trained ANN. After finding an optimal ANN model, the test data is used to evaluate its 

performance. The EFA-ANN will be validated in Section 5.6. 

This study also applied initial weights and biases in the range of [-0.5,0.5] at the 

beginning of the training process. Chang et al.[32] showed that this is the optimal range for 

finding initial weights and biases of ANN. Figure 5-5 shows that the weights and biases are 

first updated inside the ANN. EFA automatically memorizes and optimizes these parameters 

to minimize prediction errors. As a result, the computing time can be significantly reduced. 

The Root Mean Square Error (RMSE) is used to calculate the objective function of EFA-ANN 

as follows: 

Validation dataf RMSE −=  (5.22) 

It is essential to clarify that RMSE is the objective function of EFA-ANN while the Mean 

Square Error (MSE) mentioned in Section 5.1.3.2 is the error function inside the ANN model. 

Also, the maximum generation is used as the termination criterion in this study. 
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Figure 5-5. A flowchart of the EFA-ANN model. 

5.5 Model performance evaluation methods 

Five performance measures were used to evaluate the performance of the proposed 

model. These include the linear correlation coefficient (R), determination coefficient (R2), root 

mean square error (RMSE), mean absolute error (MAE) and mean absolute percentage error 

(MAPE). Details of these performance measures can be found in the literature [42, 50, 51] and 

are calculated as follows: 
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2R RR=   (5.24) 
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−
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5.6 Data collection 

5.6.1 Dataset 1 

Dataset 1 was generated by modeling a typical single-family house with a lightweight 

wood-frame structure in Istanbul, Turkey [52]. In this case study, the effect of the façade system 

on the total heating and cooling energy were investigated by changing its properties. Fig. 5-6 
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shows the details of the façade system including glass wool insulation (layer iii), two layers of 

oriented strand board (OSB) applied as sheathing (layer ii and v), two layers of gypsum board 

(layer i and iv) and a layer of cement-bonded particleboard used as the exterior finishing of the 

wall.  

 

Figure 5-6. The details of the façade system in dataset 1. 

 The façade system was modeled using different properties for the insulation layer, 

namely thickness and thermal conductivity (K-value), which are listed in Table 1. Five types 

of façades with different layer thicknesses were also investigated. The thickness of layer i, ii, 

iv, v and vi of type 1 are 1.5 cm, 2.5 cm, 2 cm, 2.5 cm and 1.5 cm, respectively. The details of 

all five types are listed in Table 5-1. A total of 180 simulations were carried out to evaluate 

how the thermal conductivity and thickness of the façade affect the total heating and cooling 

energy in the building. 
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Table 5-1. Statistical parameters for dataset 1. 

Parameter Unit Values Variable 

Insulation K-

value (iii) 

W/m-

K 
0.03, 0.04, 0.05, 0.08 

Input 

Insulation thickness 

(iii) 
cm 4, 6, 8, 10, 12, 14, 16, 18, 20 

Façade type N/A 

1 [i, ii, iv, v, vi: 1.5, 2.5, 2, 2.5, 

1.5 (cm)] 

2 [i, ii, iv, v, vi: 2, 2, 2.5, 2, 1.5 

(cm)] 

3 [i, ii, iv, v, vi: 1, 3, 1.5, 3, 1.5 

(cm)] 

4 [i, ii, iv, v, vi: 2.5, 1.5, 3, 1.5, 

1.5 (cm)] 

5 [i, ii, iv, v, vi: 1, 3.5, 1.9, 1, 1.5 

(cm)] 

Total heating 

and cooling 

energy 

kWh Min: 6094.24; Max: 11095.06 Output 

After determining the simulated cases, the building models were drawn in Sketchup, and 

the thermal properties of the wall components, including window location, direction and 

orientation, were then inputted into EnergyPlus to simulate the energy consumption of the 

building. As the primary purpose of the simulation is to validate the effect of the façade system 

on the total heating and cooling energy in the building, the variables of these simulations are 

restricted to the type of façade material. Other factors of the building were maintained constant, 

and the properties used in the simulation are listed in Table 5-2. 
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Table 5-2. Design information in EnergyPlus simulation. 

  Unit Value 

Building type - Residential building 

Building location - Istanbul, Turkey 

Floor area 
  

     First story m2 81.7 

     Second story m2 48.4 

Run period year 1 

Electric equipment W/m2 10 

Lighting W/m2 12 

Thermostat 
  

    Heating setpoint (constant)  °C 21 

    Cooling setpoint (constant)  °C 26 

5.6.2 Dataset 2 

Dataset 2 consisted of 768 entries that were generated from twelve building types using 

Ecotect simulation software [53]. These twelve building types were represented by 18 simple 

cubes (3.5m x 3.5m x 3.5m) and the shape of each type is shown in Fig.7. Therefore, the 

buildings have the same volume but different surface areas and dimensions. These buildings 

were each simulated as a residential building in Athens, Greece. This dataset is used to 

investigate the effect of dimension on the cooling load (CL) in a building. Hence, the same 

material properties of the façade system were used for all twelve buildings, including U-value 

of the wall (1.78 W/m²K), window (2.26 W/m²K) floors (0.86 W/m²K) and roofs (0.50 

W/m²K). The lighting level and latent heat were set to 300 lux and 2 W/m2, respectively. The 

cooling load of the residential building was simulated by using eight features including the 

relative compactness (RC), surface area, wall area, roof area, overall height, orientation, 

glazing area and glazing distribution.  
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Each input parameter represents a property of the building. For instance, the RC indicator 

[54] represents the type of building, and the RC-value of each building is shown in Fig. 5-7. 

The RC is calculated by Eq. (5.27) as follows: 

2/3 16RC V A−=         (5.28) 

where V and A are the volume and surface area of the building, respectively. 

 

Figure 5-7. Shapes of the buildings in dataset 2. 

The experiments simulated the building using two configurations, namely with and 

without glazing. In a glazing system, three glazing-to-floor area ratios were used, including 

10%, 25%, and 40%. Five glazing distributions are considered including: (1) 25% glazing for 

each faces; (2) 55% for the north side and 15% for the other faces; (3) 55% for the east face 

and 15% for the remaining faces; (4) 55% for the south face and 15% for the other faces; and 

(5) 55% for the west face and 15% for the other  faces [53]. Finally, all building shapes were 

rotated to four orientations, namely north, south, east and west. Overall, 768 building 

configurations were simulated, and the details of the input and output parameters are provided 
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in Table 4. By applying this process, all input values are discretized and calculated from the 

twelve building types. The number of possible values of each input are also listed in Table 5-

3.  

Table 5-3. Descriptions of dataset 2. 

Parameter Unit No. of possible 

values 

Min. Max. Variable 

Relative compactness N/A 12 0.62 0.98 

Input 

Surface area m2 12 514.50 808.50 

Wall area m2 7 245.00 416.50 

Roof area m2 4 110.25 220.50 

Overall height m 2 3.50 7.00 

Orientation N/A 4 - - 

Glazing area % 4 0.00 40.00 

Glazing distribution N/A 6 0.00 5.00 

Cooling load (CL) kW 768 10.90 48.03 Output 

5.7 Performance Evaluation and Discussion 

5.7.1 Data Pre-processing and Model Application 

This study used the K-fold cross-validation method to alleviate problems with over-

fitting data [55]. The historical data was divided into 10 folds, which is the optimal number 

determined by other researchers [56]. Also, the K-fold cross-validation method can help to 

provide equal weightings to the results to obtain a fair comparison. The models that were used 

to assess the performance of our proposed model also utilized the K-fold cross-validation 

method [50, 53, 57].  

In this method, each dataset is randomly divided into 10 separate folds. There are 10 

rounds in the entire process. In each round, nine folds are used for training the EFA-ANN and 

the remaining fold is used for testing in each round. Therefore, all data is guaranteed to be used 
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(5.29) 

 

(4.2)) 

 

(4.2)) 

 

in both the learning and testing phases. Finally, the average results in ten rounds are obtained 

to assess the performance of the model. The flowchart for each round is shown in Figure 5-5. 

In addition, all parameters of EFA-ANN used in this study are listed in Table 5-4. 

Table 5-4. The parameter setting in EFA-ANN. 

 Parameters Setting 

EFA 

Number of fireflies 15 

Number of Maximum 

generations 

15 

 0.9 

Adaptive inertial weight () 
2 1/(10 / 0.9) MaxGeneration−   

Percentage of training data 90% 

Percentage of validation data 10% 

Number of folds 10 

Objective function RMSE 

ANN 

Transfer function Sigmoid 

Learning algorithm Levenberg–Marquardt 

Number of hidden layers 1 

Number of nodes 20 

At the beginning of the training process, the data is normalized to avoid numerical 

difficulties, i.e. inputs in higher numeric ranges may dominate those in smaller numeric ranges 

[58]. Therefore, this study normalizes the data to the range of [-1, 1]. The normalized value 

(x’) is calculated from the original value (x) as follows: 

( )( )
( ) ( )

2 min
' 1

max min

x x
x

x x

−
= −

−
 

5.7.2 Results and discussion 

Table 5-6 lists the predictive performance measures of the proposed model for dataset 1. 

Several models are used for comparing the predictive accuracy of the proposed model for the 



Chapter 5 

 

Page | 121  

 

same dataset. For example, Naji et al. proposed an extreme learning machine (ELM) method 

to forecast the energy consumption in a building [52]. Their model performs quite well (RMSE 

= 74.02 (kWh), R = 0.999 and R2 = 0.997). Their comparison showed that ELM was superior 

to genetic programming (GP) and ANN’ models, which were run in their study, in terms of 

accuracy and computing time. 

Table 5-5. Performance measures and improvement rates of the EFA-ANN model for dataset 

1. 

Method 

Performance measure 

CT  

 Improvement rates by EFA-ANN  

R R2 RMSE MAE 
MAP

E 
R R2 RMSE MAE MAPE 

(-) (-) (kWh) (kWh) (%) (s)  (%) (%) (%) (%) (%) 

Dataset 1 
 

 
     

 
   

ELM [52] 0.999 
0.997 

74.02 - - 330 
0.15*

* 
0.30** 93.28* - - 

ANN’ [52] 0.971 
0.943 331.5

7 
- - 424 2.97* 6.02* 98.50* - - 

GP [52] 0.977 
0.954 314.3

5 
- - 436 2.38* 4.81* 98.42* - - 

ANN 0.999 0.998 39.69 28.29 0.05 66 0.15** 0.20** 87.47* 88.76* 18.84* 

EFA-ANN 1.000 1.000 4.97 3.18 0.04 66 -  - - - 

Note: CT is computing time which is calculated based on 1 running time. 

*, ** indicates significance levels higher than (1%, 5%), respectively. 

 

However, Table 5-5 indicates that the performance of EFA-ANN is superior to ELM and 

other methods. Moreover, EFA-ANN produces the smallest error rate (RMSE), and it is 

93.28% - 98.50% better than those reported by other studies. Notably, in terms of 

computational cost, EFA-ANN is 5 times faster than ELM and 7 times faster than ANN’ and 

GP. Moreover, this research also compares the performance of EFA-ANN with the ANN model 

to confirm that there is a prominent improvement over the combined EFA-ANN model. The 
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ANN model, in this case, is configured with the same setting as the ANN in the EFA-ANN 

model. The computing time of ANN is modified to be consistent with that of EFA-ANN for a 

fair comparison. The comparative results show that the error rates of EFA-ANN are 18.84% - 

87.47% better than those of ANN. The results indicate that EFA-ANN can provide an 

alternative approach for predicting the energy consumption in a building. 

The predicted results from EFA-ANN and other methods for dataset 2 are listed in Table 

7. The proposed approach is shown to be superior to other methods available in the literature. 

For example, EFA-ANN obtains the lowest RMSE (0.51 kW) compared to other models: 

iteratively reweighted least squares (IRLS) (3.39 kW) [53], random forests (RF) (2.57 kW) 

[53], ensemble model (1.57 kW), smart artificial firefly colony algorithm-based support vector 

regression (SAFCA-SVR) (0.68 kWh) [57] and ANN model. Similarly, Table 7 shows that 

EFA-ANN has the lowest MAE and MAPE, which is equal to 0.38 (kW) and 1.71 (%), 

respectively. Also, the R and R2 of EFA-ANN are equal to SAFCA-SVR, which is better than 

the ensemble model. With these results, EFA-ANN has improved the error rate from 16.18% 

to 84.84% when compared with other models. Additionally, the proposed model is around 5 

times faster than the SAFCA-SVR model in predicting CL of this dataset (47 minutes compared 

to 240 minutes). Table 5-6 shows that the error rates of EFA-ANN are 31.87% - 53.27% better 

than ANN. Details of the comparison between ANN and EFA-ANN will be discussed hereafter. 

Table 5-6. Performance measures and improvement rates of the EFA-ANN model for dataset 

2. 

Method 

 Performance measure 

CT 

 Improvement rates by EFA-ANN 

R R2 RMSE MAE 
MAP

E 
R R2 RMSE MAE MAPE 

(-) (-) (kW) (kW) (%) (s) (%)  (%) (%)  (%)   (%) 

Dataset 2 
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IRLS [53] N/A N/A 3.39 2.21 9.41 N/A - - 84.84* 83.02* 81.83* 

RF [53] N/A N/A 2.57 1.42 4.62 N/A - - 80.00* 73.58* 62.99* 

Ensemble 

model 

[50] 

0.99 0.97 1.57 0.97 3.46 N/A 1.27** 2.55** 67.18* 61.44* 50.51* 

SAFCA-

SVR [57] 
1.00 0.99 0.68 0.47 2.04 1440 - 0.30 24.41** 20.17** 16.18*** 

ANN 1.00 0.99 1.10 0.56 2.51 280 - 0.59 53.27** 33.00** 31.87** 

EFA-

ANN 
1.00 1.00 0.51 0.38 1.71 280 - - - - - 

Note: CT is computing time which is calculated based on 1 running time.; 

*, ** indicates significance levels higher than (1%, 5%), respectively; 

This study compares the EFA-ANN model with the single ANN model to investigate the 

effects of EFA on the RMSE value and computing time. In order to make a fair comparison, 

the parameters in the single ANN model were set to be identical with the ANN model in EFA-

ANN. Only the number of iterations of the single ANN model, in this case, was increased to 

extend the computing time (to be consistent with EFA-ANN). Both single ANN and EFA-ANN 

were run on the same computer. Figure 5-8 shows that the single ANN is stuck at the local 

optima after around 20 and 50 seconds for Dataset 1 (a) and Dataset 2 (b), respectively. In 

contrast, EFA-ANN approaches a better result because EFA helps ANN find better weights 

and bias values. This comparison confirms that EFA is effective in optimizing the weights and 

biases of ANN. 
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Figure 5-8. Convergence results of ANN and EFA-ANN for (a) Dataset 1 and (b) Dataset 2 
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The statistical relationship between the predicted outputs obtained by EFA-ANN and the 

actual outputs of the two datasets is shown in Figure 5-9. The R-values for the two datasets are 

almost equal to 1, which indicates that the predicted values from EFA-ANN have a strong 

correlation with the actual values. Notably, the MAPE in dataset 1 is equal to 0.04%, which 

indicates that the predicted values are approximately equal to the actual values. In other words, 

the proposed model can forecast the exact energy consumption for dataset 1. Meanwhile, the 

MAPE for dataset 2 is higher than that for dataset 1 but remains negligible (1.71%). The results 

of EFA-ANN are slightly different from the actual values, but these results are predicted with 

better accuracy than the aforementioned methods. Therefore, the proposed EFA-ANN is an 

efficient model for predicting the energy consumption (including HL and CL) of a building. 

 

Figure 5-9. The correlation between the actual and the predicted outputs for dataset 1 (a) and 

dataset 2 (b). 

  

(a) (b) 
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5.7.3 Sensitivity Analysis 

A sensitivity analysis is performed to quantify the effects of different inputs on the 

predicted energy consumption. Among the different approaches, this study used the method 

proposed by Garson [59] because it is suitable for discrete input data such as wall type, relative 

compactness, orientation, and glazing distribution. This method is also suitable for the ANN 

model as the sensitivity analysis deconstructs the weights of the connections between neurons 

to quantify the influence of the various inputs. The influence of a specified input on the output 

can be determined by assessing all the connecting weights between the nodes of interest. 

Therefore, all connecting weights between a specific input and output are identified, and the 

importance of all the inputs is calculated (as a percentage) by the following equation: 

1

1 1

ip oi
p

i
ip oi

p i

w w
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w w=

= =

 
 
 = 
 
 
 


 

  (5.30) 

Where Qp is the impact of the input pth on the output in percentage; wip is the weight of 

the pth input to the ith hidden node; woi is the weight of the ith hidden node to the output. 

The results from the sensitivity analysis on datasets 1 and 2 are shown in Figure 5-10. 

For dataset 1, the insulation thickness has the highest impact on the total heating and cooling 

load (43.8%), followed by the façade type and K-value of the insulation (34.1% and 22.1%, 

respectively). This result is reasonable because the insulation thickness has a prominent effect 

on the energy consumption in a building, which was shown in previous studies [60, 61]. 

Meanwhile, the glazing area (29.4%) and the relative compactness (27.5%) are the most critical 

parameters that affect the total cooling load in dataset 2. This result is expected because the 

solar heat gain will increase with a larger glazing area, which thereby affects the cooling load 

in the building. Also, several studies confirmed that an increasing window-to-wall ratio causes 
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an increase in the cooling load [62, 63].In contrast, the orientation of the façade and the roof 

area have the least impact with just under 5%. The results of the sensitivity analysis can help a 

designer to quickly identify which input should be modified to improve the energy performance 

of the building. For example, the insulation thickness in dataset 1 or the glazing area and 

relative compactness in dataset 2 should be modified before the other variables to effectively 

improve the energy performance of the building. 
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Figure 5-10. The effect of several design parameters on the energy consumption of the 

building. 

5.8 Conclusions 

A novel method was developed for predicting the energy consumption in a building. The 

model, namely EFA-ANN, integrates EFA into ANN to improve its performance by optimizing 

the set of initial parameters. The proposed approach was compared with several published 

models in terms of its speed and accuracy in forecasting heating and cooling energy. Two 

datasets with various material and isolation properties (dataset 1), and building characteristics 

(dataset 2) were used to validate EFA-ANN. Additionally, a 10-fold cross-validation method 

was applied to mitigate the over-fitting problem when comparing the performance of these 

models.  

In dataset 1, EFA-ANN showed a 93.28% - 98.50% improvement of other methods 

reported in the literature. Notably, EFA-ANN is 5 times faster than the ELM method and 7 



Chapter 5 

 

Page | 129  

 

times faster than GP in terms of computing time. Similarly, EFA-ANN not only obtained the 

lowest RMSE, MAE and MAPE, but also the highest R-value compared to the other techniques 

for dataset 2. Also, the computing time of EFA-ANN is less 5 times than that of SAFCA-SVR. 

The obtained results demonstrated the strong capabilities of machine learning in predicting the 

energy consumption of buildings. 

A sensitivity analysis was also performed to identify the input with the most critical 

impact on the output of each dataset. The results of the sensitivity analysis indicate that the 

insulation thickness and the glazing area have the most significant impact for datasets 1 and 2, 

respectively. This result can help designers to quickly validate their design of a building and 

improve its energy performance by focusing on these essential inputs. 

This study showed that the proposed EFA-ANN model achieved both good results and a 

short computational time relative to other methods. Therefore, EFA-ANN can help energy 

engineers to design energy-efficient buildings whilst reducing experimental requirements and 

it could assist civil engineers and construction managers in the early design phase of energy-

efficient buildings. Besides, the proposed approach can be used as a useful tool for quickly and 

accurately solving many problems in engineering, including energy-efficient buildings, 

construction material strength, and structure strength.  
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Chapter 6  

A computational, data-driven platform for 

designing biomimetic adaptive façade 

 

6.1 Introduction 

The results in chapter 5 demonstrate that the proposed data-driven approach can 

effectively estimate the building energy consumption. The data-driven approach can learn from 

the provided energy data to identify the relationship among all variables in the data. Therefore, 

it can be used to complement the building energy simulation software, which requires high 

computational time and expertise experience, in the computational optimisation approach 

presented in chapter 3 and 4. This chapter illustrates the capacity of proposed data-driven 

approach in predicting energy consumption generated by building energy simulation software 

(i.e., EnergyPlus) and proposes a computational, data-driven platform for designing 

biomimetic adaptive façade (BAF). 

Designing a façades system for energy efficiency is very challenging since many 

aspects of the building govern the overall energy requirements of the building, including 

heating, cooling, and lighting [1]. For example, it was found that solar reflectance, Solar heat 

gain coefficient (SHGC) and U-value have different effects on the building energy efficiency 

in a study by Ihara et al. [2]. This study found that a decrease in SHGC was the most efficient 

way to decreasing energy consumption in buildings [2]. However, in another study, reducing 

SHGC only provides an improvement in building energy efficiency when it is combined with 

an appropriate U-value [3]. In addition, weather condition, building dimension and occupant’s 

behaviour can strongly affect the total energy consumption in the building. Therefore, the 
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calculation of energy consumption needs to consider all the above parameters and their 

interaction. 

There are several methods that can evaluate building energy consumption, and they can 

be classified into three main groups, including engineering calculation, computational 

simulation and data-driven approaches. The first approach focuses on using physical laws to 

calculate energy consumption in the whole building, and this approach is only suitable for 

preliminary analysis because the complex physical laws constraint the applications. The second 

approach, the computational simulation approach, is then proposed to overcome the limitations 

of engineering calculation. There are several building energy simulation software, including 

EnergyPlus, Autodesk Ecotect, TRNSYS, DOE-2, Window, and eQUEST, were used to 

simulate the building with façade system design and predict energy consumption. The building 

energy simulation software (EnergyPlus in the thesis) has been used in Chapter 3 and 4 as the 

backbone of the computational design platform. However, building energy simulation software 

still has several disadvantages such as resource-intensive exercises and time-consuming [4]. In 

addition, the optimisation process must be manual and uses iterative calibration until the 

criteria are met based on trial-and-error through the users’ experience [5]. Consequently, the 

common procedures, which are mainly based on specific design condition and expert 

experience, are often unsatisfactory for designing façade. 

Therefore, the data-driven approach was proposed to design energy-efficient building 

services. Data-driven strategies apply machine learning (ML) and statistical tools to solve 

problems, which are hard to handle by traditional computational techniques. The fundamental 

of the methods is a learning process to discover the relationship between collected building 

data, including structural characteristics and climate data, and energy consumption of 

buildings. Then, the established relationship can be used to predict the energy performance of 

new samples accurately and effectively. In recent years, ML is applied to enhance the 



Chapter 6 

 

Page | 140  

 

performance of façade systems. For instance, Giovanni et al. proposed an evolutionary neural 

network to design a façade module for an building [1]. In additions, Alvaro et al. successfully 

used a ML model to control active thermal energy storage and demonstrated that can the ML 

model could provide the energy savings, CO2 mitigation and cost reduction [6]. 

Abediniangerabi et al. proposed the association rule mining technique to study the thermal 

behaviour of façade systems in several scenarios [7]. The proposed data-driven technique then 

can be used to give recommendations in selecting energy-efficient façade systems. Martinez 

and Choi used several data-driven methods, including classification tree, regression and 2-

sample t-test, to investigate several façade features [8]. 

Therefore, this chapter proposed a data-driven approach to complement the energy 

simulation task in the computational optimisation approach developed in chapter 3 and chapter 

4. Artificial neural network (ANN), one of the most popular and effective ML model, is used 

in this chapter to validate the effectiveness of the proposed computational, data-driven 

platform. The detailed discussion on ANN was presented in chapter 5. The machine learning 

approach is used to predict the energy consumption in building with the training data generated 

by EnergyPlus software. The main difference between the platform presented in this chapter 

(computational, data-driven, optimisation platform) and the one used in chapter 3 and 4 

(computational optimisation platform) is the data-driven engine (i.e. ANN-based prediction 

model). It is worth noting that the building energy simulation (EnergyPlus) need to be 

performed thousands of times for designing the BAF system in chapters 3 and 4, which is a 

significant computational bottleneck of the process. On the other hand, the process becomes 

less computational demand for the proposed platform in this chapter owing to the data-driven 

engine. After training data, the ANN model can make a prediction of energy consumption and 

transfer the results to the optimisation algorithm inside the optimisation process.  
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In this chapter, the performance of ANN model is improved by using an in-house 

optimisation tool, namely Electromagnetism-based Firefly Algorithm (EFA). This chapter also 

employs the k-fold cross-validation method to validate the proposed model. The detailed 

discussion on EFA-ANN and the k-fold cross-validation method was presented in chapter 5. 

EnergyPlus is used to generated training data for EFA-ANN, and the simulation model has 

considered various properties of façade along with occupants’ behaviour in building and 

weather condition in Melbourne. 

6.2 A computational, data-driven platform 

This section presents the detailed structure of the computational data-driven platform for 

assisting the design and operation of BAF. Figure 6-1 shows a schematic of the design process, 

which includes four main steps for the BAF design. The first two steps have been discussed in 

detail in chapter 3. In this chapter, step 3 is the energy simulation by EnergyPlus to generate 

training data for the data-driven engine. In the last step, the EFA-ANN model is trained by the 

energy data from EnergyPlus. The trained EFA-ANN model is then integrated with the 

optimisation algorithm in the computational data-driven optimisation platform as showed in 

Figure 6-1. 

Generate Building 
Geometry

Create EnergyPlus Input File

Energy Simulation

Step 1 Step 2 Step 3

Biomimetic adaptive 
façade design

EFA-ANN 

model
Optimisation

Computational data-driven 

platform

Step 4

 

Figure 6-1. The schematic of the proposed computational data-driven platform. 
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The framework of the platform is shown in Figure 6-2. In the proposed platform, the 

building geometry, thermal and visual properties of windows and weather conditions are used 

as input data for the EnergyPlus model. The EnergyPlus model then will be run and provide 

the energy data for the EFA-ANN model. After training data, the EFA-ANN model can predict 

energy consumption of the given building and can be integrated with the optimisation algorithm 

in the optimisation process to find the optimal design and operation of BAF system. The 

optimal results can be used to select the best materials and operational stages for BAF systems 

such as electrochromic windows.  
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Figure 6-2. The framework of the computational, data-driven platform for designing BAF  

The engine of the approach is the data-driven optimisation process, which combines the 

EFA-ANN model with an optimisation algorithm. The target of the optimisation process is to 

find the best window properties sequence to minimize energy consumption and satisfy visual 

comfort requirements, thereby providing a preliminary design of an BAF system. The design 
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of the BAF in this study can be formulated as an optimisation problem, and the details of this 

problem have been discussed in chapter 3. 

Figure 6-3 shows the data exchanging process of EFA-ANN model and optimisation 

algorithm in BAF design. It is essential to notice that the training process of EFA-ANN only 

requires a small amount of building energy simulations, compared to the large number of 

simulations required in chapter 3 and 4. At the beginning of this process, the optimisation 

algorithm generates an initial population of properties of the façade system. EFA-ANN model 

then predicts the energy consumption in the building, which is sent back to the optimisation 

algorithm. The aim of this process is to find the optimal properties sequence that takes into 

account the multiple performance criteria of interest, which include minimizing the total energy 

consumption and satisfying the visual performance condition. 
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Figure 6-3. The framework of the optimisation process of the computational data-driven 

platform 

6.3 Case study 

The same office building, a building benchmark model using by the Department of 

Energy [9], is used in this chapter. The building has three floors, and the area of each floor is 

1660 m2. The window-to-wall ratio of the building is 60%, as shown in Figure 6-4, and the 

windows are simulated with a different type of glazing including four states of SageGlass 

electrochromic glazing and a conventional low-emittance window. Data of the energy 

consumption for heating, cooling, and lighting are collected in hourly during five working-day 

in Energyplus with five different properties of the window, so the total of data points is 600. 

The data has seven inputs, including three properties of window (i.e., U-value, T-vis, SHGC), 
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two properties of the thermostat (i.e., heating setpoint and cooling setpoint of HAVC system) 

that are controlled by time (i.e., working hours and non-working hours), and two variables of 

weather condition(i.e., temperature and direct normal radiation (DNR)). Three outputs, which 

are heating, cooling and lighting energy, are used for the total energy consumption. Details of 

all inputs and outputs are shown in Table 6-1. The temperature and direct normal radiation data 

in this table are from Melbourne. 

Table 6-1. Details of all inputs and outputs. 

Description Unit Parameters Min Max Variable 

U-value W/(m2k) X1 3.23 3.53 

Input 

SHGC - X2 0.19 0.52 

Tvis - X3 0.01 0.73 

Heating setpoint °C X4 15.00 18.00 

Cooling setpoint °C X5 25.00 28.00 

Temperature °C X6 11.00 32.00 

Direct Normal Radiation (DNR) Wh/m2 X7 0.00 594.00 

Heating energy kJ Y1 1.53E+04 1.81E+04 

Output Cooling energy kJ Y2 7.75E+03 2.14E+05 

Lighting energy kJ Y3 9.26E+03 3.09E+04 
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Figure 6-4. Case study: a medium office model 

The working-hour is assumed from 8:00 to 17:00 on working days in EnergyPlus 

simulation. The heating setpoints of the HAVC system are 18 C during the working hours and 

15C for the non-working hours. For cooling setpoints, the temperature is set to 25C and 28C 

for working hour and non-working hour, respectively. The lighting is scheduled to be on 

between working hours and the heat gain per floor area for lights is 12.9 (W/m2). There is an 

illuminance sensor placed at the centre of the room to measure the light intensity. A minimum 

workplace illuminance of 500 lux is maintained to help people have enough lighting condition 

for working. A typical meteorological year of Melbourne is used as weather condition for the 

energy simulation.  

Four performance measures are used in this study to validate the performance of the 

proposed EFA-ANN model in predicting energy consumption in a building. These performance 

measures are linear correlation coefficient (R), mean absolute error (MAE), root mean square 

error (RMSE), and mean absolute percentage error (MAPE). Details of these performance 

measures are discussed in previous studies [10-12] and calculated as below: 
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6.4 Performance evaluation and discussion 

The study aims to propose the computational data-driven platform for assisting BAF 

design and operation. The fundamental difference of the platform, compared to the results 

presented in chapter 3 and 4, is the integration of data-driven engine, which is backed by the 

EFA-ANN prediction model. In fact, the EFA-ANN model is the backbone of the proposed 

platform. Therefore, in order to demonstrate the ability of the proposed platform, this section 

presents the validation and comparison of EFA-ANN model against direct, computationally 

expensive simulations using EnergyPlus. 

The correlations between all variables of the dataset are calculated by Eq. (6.1) to show 

the effect of inputs on each target output. These correlation coefficient values are presented by 

a heatmap, as shown in Figure 6-5. The values range of the correlation coefficient is [-1,1]. 

Two variables have a high correlation when the absolute value of the correlation coefficient is 

near to 1. SHGC and Tvis are two inputs with high correlations with the heating energy (i.e., 

0.87 for SHGC and 0.86 for Tvis). On the other hand, the temperature has the most impact on 
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cooling energy with a high correlation coefficient (i.e., 0.96). A high negative correlation (i.e., 

-0.53) is expected between DNR and lighting energy because increasing amount of DNR will 

lead to decrease the lighting energy. The correlation heatmap shows that it is reasonable to 

choose these variables as inputs because they all have correlations with the target outputs. 

 

Figure 6-5. A heatmap shows correlations between inputs and target outputs 

Table 6-2 shows the performance measures during the training and test phases by EFA-

ANN model for heating energy data. The EFA-ANN model has an average R, RMSE, MAE, 
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and MAPE value of 1.000, 3.27 (kJ), 1.34 (kJ) and 0.01%, respectively, for training data. These 

measurement values for test data are 0.999 (R), 14.54 kJ (RMSE), 4.09 (MAE) and 0.02% 

(MAPE) which show the effectiveness of the proposed model. Notably, the best MAPE value 

obtained by EFA-ANN is 0.01% at fold 3 and fold 8 in the cross-fold validation procedure. 

Table 6-2. Performance measures of heating energy obtained by EFA-ANN model. 

Fold No. 

Training data   Test data 

R 

(-) 

RMSE 

(kJ) 

MAE 

(kJ) 

MAPE 

(%) 

R 

(-) 

RMSE 

(kJ) 

MAE 

(kJ) 

MAPE 

(%) 

Heating energy 

1 1.000 3.10 1.41 0.01 
 

1.000 8.21 2.99 0.02 

2 1.000 1.53 0.75 0.00 
 

0.998 33.99 10.12 0.06 

3 1.000 4.17 1.36 0.01 
 

1.000 4.71 1.82 0.01 

4 1.000 3.15 1.49 0.01 
 

0.999 34.98 6.34 0.04 

5 1.000 1.70 0.82 0.01 
 

1.000 15.20 3.06 0.02 

6 1.000 6.66 2.93 0.02 
 

1.000 7.10 3.26 0.02 

7 1.000 3.87 1.28 0.01 
 

1.000 13.90 3.99 0.02 

8 1.000 4.17 1.52 0.01 
 

1.000 1.82 0.98 0.01 

9 1.000 0.79 0.40 0.00 
 

1.000 14.93 3.88 0.02 

10 1.000 3.54 1.47 0.01 
 

1.000 10.59 4.44 0.03 

Min 1.000 0.79 0.40 0.00 
 

0.998 1.822 0.980 0.01 

Average 1.000 3.27 1.34 0.01 
 

0.999 14.54 4.09 0.02 

Max 1.000 6.66 2.93 0.02 
 

1.000 34.98 10.12 0.06 

Standard Deviation 0.00 1.67 0.68 0.00 
 

0.00 11.39 2.57 0.02 

*Bold is better          

 

The performance measures for cooling energy and lighting energy are shown in Table 6-

3 and 6-4, respectively. The results demonstrate that EFA-ANN can make a reasonable 

prediction on cooling energy and lighting energy with the small average MAPE on the test 

phase (i.e., 2.43% for cooling energy and 3.40% for lighting energy). In the cross-fold 
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validation procedure, all folds show the excellent relationship between the actual outputs and 

the predicted outputs with the linear correlation coefficient (R) values are higher 0.93 in all 

cases.  

Table 6-3. Performance measures of cooling energy obtained by EFA-ANN model. 

Fold No. 

Training data   Test data 

R 

(-) 

RMSE 

(kJ) 

MAE 

(kJ) 

MAPE 

(%) 

R 

(-) 

RMSE 

(kJ) 

MAE 

(kJ) 

MAPE 

(%) 

Cooling energy 

1 0.997 1385.20 781.47 1.87 
 

0.957 1514.70 913.94 2.05 

2 0.991 1897.20 1009.50 2.24 
 

0.972 4263.30 2092.10 3.53 

3 0.995 2053.90 1017.20 2.22 
 

0.966 2140.00 1173.50 2.51 

4 0.990 1413.50 778.98 1.92 
 

0.975 2065.40 1100.00 2.47 

5 0.994 1431.50 763.00 1.92 
 

0.981 1411.10 826.03 1.67 

6 0.988 1300.20 754.69 1.80 
 

0.983 2008.60 1184.60 2.92 

7 0.990 1249.00 693.83 1.67 
 

0.938 2027.50 1015.40 2.04 

8 0.994 1230.10 752.78 1.84 
 

0.965 2272.00 1419.80 2.68 

9 0.994 1386.00 801.97 2.00 
 

0.967 1945.20 1057.00 2.40 

10 0.993 1430.60 882.92 2.12 
 

0.976 1729.20 957.27 2.04 

Min 0.988 1230.10 693.83 1.67 
 

0.938 1411.100 826.030 1.67 

Average 0.993 1477.72 823.63 1.96 
 

0.968 2137.70 1173.96 2.43 

Max 0.997 2053.90 1017.20 2.24 
 

0.983 4263.30 2092.10 3.53 

Standard Deviation 0.00 274.58 110.59 0.19 
 

0.01 795.14 362.62 0.53 

*Bold is better          

 

Table 6-4. Performance measures of lighting energy obtained by EFA-ANN model 

Fold No. 

Training data   Test data 

R 

(-) 

RMSE 

(kJ) 

MAE 

(kJ) 

MAPE 

(%) 

R 

(-) 

RMSE 

(kJ) 

MAE 

(kJ) 

MAPE 

(%) 

Lighting energy 

1 0.991 816.20 419.39 1.92 
 

0.959 811.20 529.59 2.75 
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2 0.995 796.94 322.02 1.41 
 

0.957 2334.90 867.68 4.77 

3 0.990 816.09 372.17 1.72 
 

0.979 1192.10 672.62 3.04 

4 0.988 519.50 319.53 1.39 
 

0.940 1985.30 711.47 3.37 

5 0.988 814.40 357.82 1.68 
 

0.958 1137.70 635.73 3.70 

6 0.984 522.63 266.34 1.19 
 

0.991 1032.70 519.71 2.36 

7 0.990 781.00 362.41 1.59 
 

0.977 1452.60 757.90 3.10 

8 0.982 831.62 395.89 1.79 
 

0.953 829.42 509.96 2.34 

9 0.980 577.72 311.47 1.53 
 

0.981 5936.60 1256.60 5.02 

10 0.990 778.81 345.10 1.59 
 

0.982 1123.80 641.24 3.58 

Min 0.980 519.50 266.34 1.19 
 

0.940 811.200 509.960 2.34 

Average 0.988 725.49 347.21 1.58 
 

0.968 1783.63 710.25 3.40 

Max 0.995 831.62 419.39 1.92 
 

0.991 5936.60 1256.60 5.02 

Standard Deviation 0.00 129.98 44.43 0.21 
 

0.02 1539.26 222.70 0.91 

*Bold is better          

Figure 6-6 shows the correlation between the actual output and predicted output for one 

case in ten-cross folds of heating, cooling, and lighting energy. The values of R heating energy 

are almost equal to 1, which indicates that the predicted values from EFA-ANN have a strong 

correlation with the actual values. Notably, the average MAPE of heating energy is equal to 

0.02%, which means that the predicted heating energy is approximately equal to the actual 

heating energy. In other words, the proposed model can forecast the exact heating energy of 

the office building. Meanwhile, the average correlation coefficient of cooling energy and 

lighting energy are smaller than that of heating energy but remains impressive (0.968 for both 

cooling energy and lighting energy). Therefore, the proposed EFA-ANN is an efficient model 

for predicting the energy consumption including heating, cooling and lighting energy of a 

building. 
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(a) 

 

(b) 
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(c) 

Figure 6-6. The correlation between the actual and the predicted outputs in the test phase for (a) heating 

energy, (b) cooling energy, (c) lighting energy. 

6.5 Conclusions 

This chapter proposed the computational data-driven platform for assisting the design 

and operation of BAF. In this platform, the data-driven engine is integrated with the 

computational optimisation approach presented in Chapters 3 and 4. The data-driven engine is 

based on the machine learning model, namely EFA-ANN. The backbone of the platform is 

EFA-ANN model, so this chapter validated and compared the EFA-ANN model with the 

computationally expensive simulations using EnergyPlus to demonstrate the ability of the 

proposed platform. 
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A dataset generated by EnergyPlus software with various thermal properties of window, 

occupants’ behaviours, and weather conditions were used to validate EFA-ANN. Additionally, 

a 10-fold cross-validation method was applied to mitigate the over-fitting problem when 

evaluating the performance of the proposed model. The prediction results show that EFA-ANN 

can archive a high accuracy for predicting heating, cooling, and lighting energy. Therefore, 

EFA-ANN can help to complement building energy simulation in the proposed computational 

data-driven optimisation approach for assisting the design and operation of BAF for energy-

efficient buildings.  
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Chapter 7  

Conclusions and recommendations for future 

research 

 

This thesis presents the development and evaluation of the computational data-driven 

platform for the design and application of biomimetic adaptive façade (BAF) systems. The 

developed platform will help to accelerate the use of BAF for improving building energy 

efficiency, thereby reducing the environmental impact of the building sector (e.g., reducing 

greenhouse gas emission). To develop the computational data-driven platform, the thesis 

presents, improves, and implements different advanced research techniques such as building 

energy simulation, optimisation algorithms, and data-driven methods.  

For the first time, this work addresses the existing limitations on the research area of 

BAFs, e.g., most studies on BAFs remain at the conceptual stage of development and there is 

a lack of an effective platform for the design and operation of BAFs. To this end, the thesis 

employs multi-disciplinary approaches, namely engineered building simulation, mathematical 

optimisation, and data-driven analytics, to effectively analyse, understand, and design the BAF 

system. The developed platform was used to assist the design and operation of BAF systems 

to improve energy efficiency in building. The following sections present a summary of the 

research activities and findings in this thesis, which is followed by recommendations for future 

works. 

7.1 Biomimetic adaptive façade 

Due to the need to reduce the negative environmental impact of energy consumption in 

buildings, there are many efforts to improve the energy efficiency of the façade system. Among 



Chapter 7 

 

Page | 158  

 

these developments, BAFs have been recognised as a potential design solution to enhance the 

energy efficiency of buildings. Through the literature review, it was found that the properties 

of BAFs should be incorporated with dynamic weather conditions in the energy simulation 

process. Furthermore, the interaction between thermal and visual performance also needs to be 

considered in the design and operation of BAFs.  

In response to these requirements, a computational optimisation approach, which is built 

upon building energy modelling and optimisation techniques, is developed in Chapter 3 to 

explore the potential performance of BAFs for reducing the energy consumption of buildings. 

To streamline the design of BAFs, the building energy modelling (using EnergyPlus software) 

is linked with the optimisation process via a Python toolkit. This thesis formulates the operation 

of BAFs as an optimisation problem. It is different from conventional façade optimisation 

problems because the optimisation process needs to take into account whole sequences of time-

varying BAF properties rather than find only one façade configuration. The proposed approach 

can find an optimal properties sequence of a BAF with various weather conditions, but still 

satisfy visual comfort requirements for building occupants. 

Chapter 4 presented the design concept and solution of a BAF, which is inspired by the 

chameleon, for improving the energy efficiency of buildings. A comprehensive analysis of the 

similarities between the mechanism of a chameleon’s skin and a BAF, namely electrochromic 

glazing, also was provided in this chapter. The computational optimisation approach, which is 

presented in Chapter 3, was extended with a decision-making assistance tool to design and 

assess the viability of BAF systems. The results showed that the BAF system could 

significantly reduce the total energy consumption (by 9.2% - 29.0%), compared to conventional 

façade systems. The case studies indicated that the BAF has great potential to improve energy 

efficiency in buildings, thereby reducing the GHG emission of the building sector. The results 

of this research can be used as a guide to discover future research and development processes 
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of BAFs. The computational optimisation approach can support the operation of current BAF 

products in the market (e.g., electrochromic window). This approach can be applied to both 

new and existing buildings. The proposed approach can be used for residential and non-

residential buildings after modifying the model in EnergyPlus (e.g., thermostat setting, material 

properties of the components, and other characterises of the building). Future works can be 

conducted with a focus on the following aspects: 

• The analysis of BAF systems can be expanded to other performance factors, including 

the cost of installation and operation or life cycle. Future works can also extend to 

different aspects of occupant behaviours. This thesis only considers the thermal and 

visual comfort of occupant behaviour.  

• The application of the proposed approach can be expanded to various directions of 

BAFs such as kinetic components with actuation of movable parts via mechanical 

systems.  

7.2 Data-driven approach 

The advantages of data-driven approaches in predicting energy consumption in buildings 

are well-known. Data-driven approaches can improve existing limitations on modelling 

building energy consumption such as high time consumption and the requirement of expert 

experience. In this thesis, Chapter 5 was dedicated to the development of a data-driven 

approach to complement with the building energy simulation software in the proposed 

approach. For the first time, this study has developed and investigated a machine learning 

approach based on the electromagnetism-based firefly algorithm - artificial neural network 

(EFA-ANN) for predicting the energy consumption in buildings. Then, a sensitivity analysis 

was performed to identify the input with the most critical impact on the output of each dataset.  
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This study showed that the proposed model achieved both good results and a short 

computational time relative to other methods. Therefore, the EFA-ANN can help energy 

engineers to design energy-efficient buildings while reducing experimental requirements, and 

it could assist civil engineers and construction managers in the early design phase of energy-

efficient buildings. The proposed data-driven approach can also be a useful tool for quickly 

and accurately solving many problems in engineering, including energy-efficient buildings, 

construction material strength, and structural strength. In this respect, future work can be 

conducted with a focus on the following aspects: 

• More applications of data-driven methods can be discovered. One promising direction 

is to use data-driven methods to predict real-time weather conditions or occupant 

behaviours. It is expected that data-driven methods can handle this problem well as 

the capacity of machine learning was confirmed in several case studies. This work 

requires installing sensors inside and outside a building to collect weather conditions 

and occupant behaviours data. A data-driven model will then be used to analyse these 

data and provide a prediction for future events. Based on these future events, the 

proposed approach in the thesis can provide an approximate schedule for the BAF 

system in the building to minimise the energy consumption. 

• It would be beneficial to implement the proposed data-driven approach to discover 

underlying relationships between thermal behaviour of the façade system and its 

energy consumption and translate them into useful and applicable rules. These rules 

then can be used to improve the energy efficiency of other buildings. 

7.3 The computational data-driven platform for assisting biomimetic adaptive façade 

A computational data-driven platform is proposed in this thesis to improve the 

effectiveness of the BAF system. The data-driven model is integrated into the design platform 
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of a BAF to overcome the drawbacks of building energy simulation software related to high 

time-consumption and the requirement of expert experience. After training energy data, the 

data-driven model can quickly predict the actual heating energy of the building. With the 

capacity of the data-driven approach, the computational data-driven platform can assist the 

design and operation of BAFs for energy-efficient buildings. The computational data-driven 

platform in this thesis can be a useful tool to solve other complex problems related to the façade 

system in buildings. In this respect, future work can be conducted with a focus on the following 

aspects: 

• The data-driven approach can be used to understand occupants’ behaviours. 

Therefore, it would be interesting to extend the computational data-driven platform to 

study the mutual interaction between the building residents and the BAF. In doing so, 

it is possible to operate BAFs in a direction that can lead to increased satisfaction from 

the building occupants. 

• Future research can focus on the development and trial of actual BAF systems based 

on the outcome of the proposed computational, data-driven design platform. It is 

valuable to evaluate the performance of BAF systems to experimentally demonstrate 

its potential for improving building energy efficiency.   

 

.
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Appendix A 

A modified firefly algorithm-artificial neural 

network expert system 

[PUBLISHED JOURNAL4] 

Abstract 

The compressive and tensile strength of high-performance concrete (HPC) is a highly 

nonlinear function of its constituents. The significance of expert frameworks for 

predicting the compressive and tensile strength of HPC is greatly distinguished in 

material technology. This study aims to develop an expert system based on the artificial 

neural network (ANN) model in association with a modified firefly algorithm (MFA). 

The ANN model is constructed from experimental data while MFA is used to optimize a 

set of initial weights and biases of ANN to improve the accuracy of this artificial 

intelligence technique. The accuracy of the proposed expert system is validated by 

comparing obtained results with those from the literature. The result indicates that the 

MFA-ANN hybrid system can obtain a better prediction of the high-performance 

concrete properties. The MFA-ANN is also much faster at solving problems. Therefore, 

the proposed approach can provide an efficient and accurate tool to predict and design 

HPC. 

1. Introduction 

 
4 Bui, D.-K., T. Nguyen, J.-S. Chou, H. Nguyen-Xuan, and T.D. Ngo, A modified firefly algorithm-

artificial neural network expert system for predicting compressive and tensile strength of high-

performance concrete. Construction and Building Materials, 2018. 180: p. 320-333. 
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Nowadays, high-performance concrete (HPC) has many applications in civil 

engineering, including high-rise buildings, high-speed railways, bridges and extreme 

loading (e.g., fire, blast, impact) resistance systems [1-11]. HPC has not only high 

compressive strength but also low permeability, and a high modulus of elasticity. 

Compared with ordinary concrete, which is composed of three main components 

including water, fine and coarse aggregates, and cement, HPC is supplemented by an 

additional cementitious material, for instance, silica fume, nano-silica, blast furnace slag 

and fly ash to enhance its compressive strength [12-14]. However, the properties of HPC 

depend on many elements such as mix proportions, material quality and the age of 

concrete [15]. 

Therefore, predicting the compressive and tensile strength of HPC is an important 

task because it can help to schedule operations in the early stages of structural design, 

thereby reducing experimental requirements. Thus, an accurate method for forecasting 

the compressive strength of HPC can significantly reduce time and cost. Many 

researchers have used mechanics-based simulation methods to quantify the strength of 

concrete [16-21]. Rabczuk et al. modeled the fracture of several reinforced concrete 

structures by using a three-dimensional mesh-free method [17]. Rabczuk and Belytschko 

applied particle methods to solve several fracture problems involving reinforced concrete 

structures and the computational results showed good agreement with experimental data 

[19]. Rabczuk et al. proposed a two-dimensional approach to model the fracture of 

reinforced concrete structures and took into account the interaction between the concrete 

and the reinforcement [21]. Drzymałaa used a testing method to investigate the effects 

of high temperatures on the properties of HPC [22]. Zhao et al. performed an 

experimental study on the shrinkage of HPC containing fly ash and ground granulated 
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blast-furnace slag [23]. In addition, several linear and nonlinear methods were carried 

out to find the relationship between the key factors, that may influence the compressive 

strength of HPC such as cement, fly ash, water, superplasticizer and age of testing [15, 

24]. 

However, these methods make it difficult to obtain an accurate regression function 

because the compressive strength of HPC is affected by many factors. Also, the 

properties of concrete have a highly nonlinear relationship with its constituents, which 

poses difficulties in calculating the compressive strength of HPC from available data 

[25]. As a result, the common methods used for conventional concrete are often 

unsatisfactory for forecasting the compressive strength of HPC. 

Many Artificial intelligence (AI) techniques have been proposed to solve the 

aforementioned problem. Chou and Pham introduced ensemble models to forecast the 

compressive strength of HPC [26]. This ensemble model was created by combining many 

individual AI techniques. Prasad et al. used an artificial neural network (ANN) model 

for predicting the compressive strength of self-compacting concrete and HPC [27]. 

Naderpour  et al. predicted the compressive strength of  recycled aggregate concrete by 

using ANN [28]. Ali et al. predicted the compressive strength of ordinary concrete and 

HPC by using the M5P model tree algorithm [29]. These AI techniques disregard any 

physical interaction between the input and output variables. In addition, the input 

parameters of the predictive data should be within the range of input parameters of the 

trained data, which is a shortcoming of these AI models [30]. These are all promising 

approaches but they are highly dependent on the initial parameters, which is a strong 

constraint that inhibits their performance. 
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 Therefore, these AI techniques need to be combined with optimization algorithms 

and hybrid models [31]. Some authors have proposed these models to solve issues in 

many fields or areas. Nazari and Sanjayan optimized the parameters of a support vector 

machine to estimate the geopolymer, mortar and concrete compressive strengths [32]. In 

their research, five meta heuristic algorithms including the ant colony optimization 

algorithm, genetic algorithm, imperialist competitive algorithm, artificial bee colony 

optimization algorithm and particle swarm optimization algorithm, were used to optimize 

the parameters of the support vector machine (SVM).  In another study, Marek 

applied Bayesian inference to a neural network for forecasting the compressive strength 

of HPC [33]. 

Among many optimization algorithms, the firefly algorithm is an efficient 

optimization tool, which was used to optimize machine learning models in many areas 

of research. Chou et al. used firefly algorithm-based least square support vector 

regression to solve many civil engineering prediction problems [34]. Ibrahim and Khatib 

optimized the random forests technique using the firefly algorithm and applied this model 

to forecast hourly global solar radiation [35]. However, using the firefly algorithm for 

enhancing the capability of artificial neural networks (ANN) has not received much 

attention, especially in civil engineering.  

Therefore, this research seeks to apply the modified firefly algorithm (MFA) to 

optimize the weights and biases of ANN for effectively predicting the compressive 

strength of HPC. Specifically, the firefly algorithm has been modified for high 

dimensional optimization and combined with two smart components such as chaotic map 

and Lévy flights. Moreover, the parameters of ANN are updated, memorized and 

optimized by MFA during the training process, so the computing time is remarkably 
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reduced. This study also aims to validate the expert system by employing the k-fold 

cross-validation algorithm. Meanwhile, the performance of MFA-ANN will be compared 

with that of other techniques employed in similar work by hypothesis testing. 

The remaining structure of the paper is divided into five sections. The next section 

presents a literature review on the current research related to prediction of the 

compressive and tensile strength of HPC by using machine learning technique. Section 

3 describes the research methodology and performance evaluation methods. Section 4 

outlines the properties that affected the compressive and tensile strength of high-

performance concrete and two experimental datasets used in this study. Section 5 

subsequently presents data preprocessing, model application, prediction of results of the 

MFA-ANN, and compares performance of the model with other methods based on the 

analytical results. The final section will summarize the research and provide concluding 

remarks. 

2. Literature review 

Forecasting the mechanical properties of concrete such as compressive strength is 

an important task in civil engineering because it requires many input parameters from 

various design practices [36, 37]. An efficient and reliable model for estimating the 

compressive strength in the early stages of a project can certainly shorten project duration 

[36]. In recent years, many studies using various approaches for estimating the 

compressive strength of concrete have been reported [38-41].  

Erdal [42] used two-level and hybrid ensembles of decision trees for predicting the 

compressive strength of HPC. In this study, the author proposed three different ensemble 

approaches including single ensembles of decision trees, a two-level ensemble approach 
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and a hybrid ensemble approach. The obtained results demonstrate that the proposed 

ensemble models could significantly improve the prediction accuracy of the compressive 

strength of HPC. Another study was conducted by Yuvaraj et al. [43], who examined the 

applicability of support vector regression (SVR) to forecast the fracture characteristics 

of high strength and ultra-high strength concrete beams. The authors confirmed that SVR 

could obtain similar results with those from experiments.  

Back in 1998, Yeh demonstrated the possibilities of using artificial neural networks 

(ANN) for predicting the compressive strength of HPC [25]. The author concluded that 

ANN obtained more accurate results than a model based on regression analysis, and ANN 

could be used as numerical experiments to review the effects of each ingredient in the 

concrete mix. In addition, Sobhani et al. compared adaptive network-based fuzzy 

inference systems and ANN models in terms of predicting the compressive strength of 

no-slump concrete [41]. This study indicated that ANN was more feasible in predicting 

the 28-day compressive strength of no-slump concrete than the traditional regression 

models. 

However, the performance of ANN depends on the choice of initial weights and 

biases [44]. To this effect, many optimization algorithms were used to enhance the 

capability of ANN. Lee et al. proposed the harmony search algorithm to determine the 

near-global optimal initial weights in the training phase of ANN model [44]. Alavi and 

Gandomi proposed simulated annealing methods for determining the optimal initial 

weights of ANN [45]. Chang et al. used genetic algorithms to find the optimal set of 

initial weights to enhance the accuracy of ANN [46]. Liu et al. implemented the ensemble 

method to improve the accuracy of the ANN model [47]. 
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The aforementioned studies agree that hybrid models achieve high-performance in 

solving prediction issues of many areas. Nevertheless, there are several studies on using 

hybrid models, or specifically, firefly algorithm (FA) based ANN to predict the 

compressive strength of HPC. FA was successfully used as an optimization algorithm in 

many studies and obtained high-performance [34, 35, 48, 49]. Moghaddam et al. used 

the support vector machine with FA to predict the fatigue life of polyethylene 

terephthalate modified asphalt mixtures [48]. Kazemivash and Moghaddam proposed FA 

based on the regression tree model for digital image watermarking [49]. Therefore, the 

objective of this study is to fill this gap by using MFA-ANN to predict the compressive 

and tensile strength of HPC via cross-fold validation and multiple performance measures. 

This hybrid expert system not only produces better accuracy but can also minimize 

computational costs compared to other methods reported in the literature. 

3. Methodology 

3.1 MFA-ANN expert system 

3.1.1 Artificial Neuron Network 

ANN simulates the function of the biological neuron by imitating the working 

principles of the human brain. ANN is based on a set of connected units called artificial 

neurons as illustrated in Figure 1. Each neuron transmits a signal to another neuron by a 

connection or synapse. Each connection is assigned a weight, which can modify the 

strength of the signal sent downstream [50, 51]. The construction of ANN can be divided 

into three main steps: (1) defining inputs and outputs of the problem; (2) training the 

network by modifying the weights and bias of the input, hidden and output layers; and 

(3) testing the network performance by comparing predicted values and actual values. 
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Figure 1. Schematic layout of an artificial neural network for forecasting the 

compressive strength of concrete. 

The signals from the inputs are sent to the hidden nodes and calculated by a linear 

function (Eq. 1), which depends on the input weights and bias, before they are passed 

through a transfer function to produce the output of this hidden node [52] as depicted in 

Figure 2. 
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where neti is the value of ith net; Ij is the value of jth input node; wi,j is the weight of the 

jth input to the ith hidden node; bi is the bias parameter of the ith hidden node. In this study, 

the sigmoid function is used as the transfer function (Eq. 2). 
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where yi is the output signal of the ith hidden node; exp(-neti) is Euler's number to the 

power of –neti. 
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Figure 2. The simple structure of an artificial neuron. 

The output from the hidden node is sent to the output layer and calculated by a 

linear function to output values. Mean square error (MSE) is used to evaluate the training 

process (objective function). The error E is calculated by: 

2

,

1 1
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n oout

E e
N N = =

=


   (3) 

where , , ,n o n o n oe y y= −   is the training error at output o when applying instance n; n is 

the index of the training instance; N is number of instances; o is the index of the output, 

outN  is the number of outputs;  is the predicted output by ANN and y is the actual output. 

In the next step, the weights and bias parameter are modified to minimize the error 

E by the learning algorithm. The Levenberg–Marquardt algorithm, which was 
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(5) 

independently developed by Kenneth Levenberg and Donald Marquardt [53, 54], is used 

as the learning algorithm in this study. This algorithm provides a numerical solution to a 

nonlinear function and is suitable for small and medium size training problems. The 

updated Levenberg–Marquardt algorithm can be presented as: 

1 1( )
T Tk k k k k kw w J J I J e+ −= − +   (4) 

where  is the combination coefficient; I  is the identity matrix; wk is the weight matrix at 

kth iteration and w is a vector of dimension W × 1, with a total number of weights W; wk+1 

is the weight matrix at (k+1)th iteration and J is Jacobian matrix [55]: 
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(6) 

where, the number of columns is equal to W and each row corresponds to a specified 

training instance n and output o; and the error vector e has the following form[52]: 

1,1

1,2
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,1
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out

out

N

N
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N N

e

e

e

e

e

e

e
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3.1.2 Modified Firefly Algorithm 

One recently developed nature-inspired metaheuristics method is the firefly 

algorithm (FA), which is inspired by the flashing characteristics and behavior of tropical 

fireflies [56]. This nature-inspired meta heuristic method accurately finds both global 

and local optima. FA follows three main idealized rules:  

(i) Due to the gender of fireflies being unisex, one firefly can be attracted by other 

fireflies regardless of their gender;  

(ii) Attractiveness and brightness are correlative to each other, so the less bright 

fireflies will be drawn to more brilliant ones. As distance increases, the 

attractiveness decreases and provided that there is no brighter one than a particular 

firefly, it will move randomly. 

(iii) The brightness of a firefly is measured by the landscape of the objective function.  
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To solve minimization problems, the brightness can be determined by the objective 

function. The attractiveness of a firefly can be defined by Eq. (7) and is equivalent to the 

light intensity of neighboring fireflies 

2
min )t exp( r  = −  (7) 

where 
t  is the firefly attractiveness at tth iterations; βmin is the firefly attractiveness at r 

= 0; r is the distance between any two fireflies p and q, which is calculated by Eq. (8), 

and  is the absorption coefficient (0≤  ≤1). 

2
, ,

1

( )
d

pq p q p l q h
h

r x x x x
=

= − = −   (8) 

herein, xp,l  (xq,h ) is the lth (hth) component of coordinate xp (xq) of the pth (qth) firefly; and 

d is the search space dimension.  

To enhance the capability of the conventional FA, this study uses the Gauss/Mouse 

map (Eq. (9)) as the chaotic map for tuning the attractive parameters (β). Gandomi et al. 

indicated that the best technique for tuning attractive parameters (β) is the Gauss/Mouse 

map [57].  

The Gauss/Mouse map: 1 0                        0

1 / mod(1)   

t

t chaotic

chaotic t

chaotic otherwise






+
 =

= 


  (9) 

where
t

chaostic is the chaotic number at tth and t denotes the number of iterations, and 

o

chaostic is randomly generated by a uniform distribution in [0, 1].  Eq. (7) is then updated 

to:  

2
min min( ) ( )t t

chaostic exp r    = − − +  (10) 
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where γ is the absorption coefficient, with γ=1 being the best result [34];  

The movement of a firefly p that is attracted to another brighter firefly q is 

determined by: 

1 ( ) ( )t t t t t t
p p q px x x x L s  + = + − +   (11) 

where xp (xq) is the coordinate of the pth (qth) firefly; α is a trade-off coefficient to 

determine the random behavior;  is a vector of random numbers determined from a 

Gaussian distribution or uniform distribution, and the simplest form of  is:  

1/ 2rand = −   (12) 

where rand is a random number generated by a uniform distribution in [0, 1]. 

To improve the capacity of FA in finding global optima, this study tunes parameter 

α with an adaptive inertia weight. This effort can keep α within a reasonable range:  

 t t
0  =  (13) 

where α0 is the initial trade-off coefficient, αt is the trade-off coefficient at tth iteration, 

and   is the adaptive parameter (0 <  < 1).   

The last component in Eq. 11 is the Lévy distribution, which can be calculated as 

follows: 

1/
( ) ~

u
L s s

v


=  (14) 

where L(s) refers to the Lévy distribution at index τ, s is a power-law distribution, and u 

and v follow normal distribution and are determined by Eq. (15): 

2~ (0, ),uu N  2~ (0, )vv N   (15) 



 

Page | 175  

 

where 

1/

( 1)/2

(1 )sin( / 2)
,

[(1 ) / 2] 2
u





 


  −

  +
=  

 + 
1v =  (16) 

where ( )z  is the Gamma function, which is determined as follows: 

1

0

( ) z tz t e dt


− − =   (17) 

3.1.3 Implementing MFA on ANN 

During the first stage, historical data are classified as learning and test data. A set 

of models are subsequently built from the learning data, and their performances are 

evaluated by the test data. The trained model in this research is ANN with a Levenberg–

Marquardt learning function. The training process of ANN is  optimization processing of 

the connection between neurons in different layers [47]. These connections are weights 

and biases, and different initial weight and bias values will result in different outputs. 

Therefore, this study develops an expert system that combines MFA and ANN. MFA is 

used to optimize the weight and bias vector of ANN and enhance its efficiency.  

Before the model is trained, a logistic map is used to generate the initial weights 

and bias values. The logistic map can not only decrease the probability of a premature 

occurrence but also provide more diversity compared to randomly selected initial 

populations [58]. In the following Eq. (18), the logistic map is used instead of random 

parameters.  

Logistic map: 
1 (1 )t t tx ax x+ = −  (18) 
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where 
tx is a chaotic number at t  and t  denotes the number of iterations of this process; 

a is the biotic potential; a is fixed at 4 [59]; and (0,1)x  , 0 {0.0;0.25;0.50;0.75;1.0}.x   

The range of the initial weights and bias also affects the search efficiency. The 

range of populations used in this study is [-0.5, 0.5] because Chang et al.[46] showed 

that this range can obtain better results compared to others employed in the literature. 

The optimization procedure is automated by using MFA-ANN for simultaneous 

optimization of ANN parameters and described in Figure 3. In MFA-ANN, the weights 

and biases of ANN are updated, memorized and optimized to minimize prediction errors. 

Therefore, MFA-ANN can significantly reduce the computing time in finding global 

optima. The fitness function of MFA-ANN is the root mean squared error (RMSE), 

which can be expressed as: 

Validation dataf RMSE −=  (19) 

In this study, the validation data are randomly chosen from 10% of the learning 

data.  

3.2 Optimization Algorithm Evaluation 

The optimization algorithm used in the proposed expert system should be evaluated 

for performance to confirm its capacity. In applied mathematics, a benchmark function 

is mostly used for the evaluation process. This method uses functions with known 

optimal solutions to test optimization algorithms. In other words, optimization 

algorithms try to find optimal solutions of the benchmark function and then compare 

these solutions with known solutions or those obtained from other algorithms.  
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Figure 3. MFA-ANN hybrid expert system flowchart. 

This study chooses four well-known functions to evaluate the performance of MFA 

among many widely recognized benchmark functions (Table 1). The performance of 

MFA is also compared with that of original FA and a notable optimization algorithm, 

namely the Artificial Bee Colony (ABC) algorithm. ABC is inspired from the intelligent 

foraging behavior of a honey bee swarm and proposed by Karaboga [60]. In other 

research, Karaboga and Basturk proved that the performances of ABC are better than 

those of particle swarm optimization, differential evolution and evaluation algorithms 

when solving high-dimensional problems [61]. Therefore, we can compare the 

performance of MFA with that of ABC. 

Table 1. Optimized results of numerical benchmark functions. 

Benchmark Function 

Present MFA 
 

FA [56] 
 

ABC [60] 

Mean 
Standard 

deviation 

 
Mean 

Standard 

deviation 

 
Mean 

Standard 

deviation 

Case 1: Population = 100, Iterations = 1000 

Rastrigin 

2
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f x x
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=

= − +
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Griewank 
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i i
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−
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6.18E-02 8.80E-03 
 

3.30E-04 4.41E-04 

Schwefel’s 2.22 7.62E-03 1.06E-03 
 

4.69E-01 1.72E-01 
 

1.37E-03 1.97E-04 
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Case 2: Population = 15, Iterations = 15 
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2

1

1
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6.70E+01 9.01E+00 
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*Bold is better         

 

The results of MFA, FA, and ABC, which were used to optimize four benchmark 

functions under the same conditions, are compared in Table 1. Four functions were run 

10 times with 50 dimensions because the study attempts to evaluate the performance of 

three algorithms for solving high-dimensional problems. In addition, the comparisons are 

based on two cases including: case #1, which has a population size and a number of 

iterations of 100 and 1000, respectively; and case #2, which has a population size and a 

number of iterations of 15 and 15, respectively. In case #1, ABC obtains the best result 

with the f1, f2, and f4 function while MFA obtains the best result with the f3 function. In 

contrast, MFA is the best algorithm for all four functions in case #2. The difference can 



 

Page | 180  

 

be explained by the rapid convergence of MFA to an optimal value, which is faster than 

ABC.  

Fig.4 illustrates the convergence curve of MFA, FA, and ABC in a run of four 

benchmark functions in case #1. From the convergence curve, it is obvious that MFA can 

converge in very few iterations while ABC starts to converge after many iterations. 

Therefore, it can be concluded that MFA is suitable for solving complex problems such 

as optimizing ANN parameters, which cannot be run with a high population and 

iterations as case #1 is time-consuming. Besides, the results also demonstrate significant 

improvements of MFA compared with the original FA because the performance of MFA 

is much better than the original FA in all cases.  
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Figure 4. Convergence results of MFA, FA and ABC for four benchmark functions. 

3.3 System performance evaluation methods 

The performance of the proposed expert system is evaluated by the following 

performance measures: 

• Linear Correlation Coefficient (R) 

R is the common measure of correlation between the actual data and predicted data. 

When the actual and predicted data have the same propensity, R will equal to 1, which is 
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the maximum value. The mathematical formula of the linear correlation coefficient R 

can be represented as follows: 

, , , ,

1 1 1 1 1 1

2 2 2 2

, , , ,

1 1 1 1 1 1 1 1

. ( )( )

( ) ( ) ( ) ( )

out out out

out out out out

N N NN N N

out n o n o n o n o

n o n o n o

N N N NN N N N

out n o n o out n o n o

n o n o n o n o

N N y y y y

R

N N y y N N y y

= = = = = =

= = = = = = = =

 −

=

 −  −

  

   
  (20) 

where y is the actual value; y  is the predicted value; N is the number of instances; and 

Nout is the number of outputs 

• Root Mean Square Error (RMSE): 

2

, ,

1 1

1
( )

outNN

n o n o

n oout

RMSE y y
N N = =

= −


   (21) 

• Mean Absolute Error (MAE): 

, ,

1 1

1 outNN

n o n o

n oout

MAE y y
N N = =

= −


  (22) 

• Mean Absolute Percentage Error (MAPE): 

, ,

1 1 ,

1 outNN
n o n o

n oout n o

y y
MAPE

N N y= =

−
=


   (23) 

3.4 Hypothesis Testing 

A hypothesis test is a statistical test that is used to determine whether there is 

sufficient evidence to conclude an assumption. In this study, the assumption is that the 

results of the proposed method are better or identical to those obtained from other 

methods. The performance of MFA-ANN is evaluated by using four performance 

measures including R, RMSE, MAE and MAPE by hypothesis testing. In this study, the 
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null hypothesis H0 correlated with the results of MFA-ANN (  ) is not statistically more 

accurate than the results from other studies ( 0 ). Thus, the rejection region must be in 

the form 0{ }   or 0{ }   so that 0 0( )P H = =  doesn’t reach the significance level in 

the test.  

To compare RMSE, MAE and MAPE, this study assumes that the null hypothesis 

H0 correlated with mean error rates of the proposed model (  ) is larger than those in 

other studies ( 0 ). The rejection region must be in the form 0{ }   and 0 0( )P H = =  

reaches the desired significance level in the test. In the correlation R comparison, the null 

hypothesis demonstrates that the mean correlation R (  ) in the proposed expert system 

is smaller than that in other works ( 0 ), and the alternative hypothesis is the denial of 

H0. 

4. Data collection 

4.1 Dataset 1: Compressive strength of high-performance concrete 

The efficiency of the proposed expert system is evaluated using published datasets 

[25, 62-66]. Database 1 includes a total of 1133 samples of high-performance concrete 

with one output variable and eight quantitative input variables. Eight inputs are 

investigated including the amount of cement, water, blast furnace slag, coarse aggregate, 

fine aggregate, super plasticizers, fly ash and the age of testing, while the compressive 

strength (in MPa) is the output.  

Each input parameter has an effect on the compressive strength of concrete. For 

example, Johnson and Bawa showed that the compressive strength increases with the age 

of testing at a fixed water to cement ratio [67]. In addition, an increasing aggregate-
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cement ratio will increase the density of concrete, which in turn affects the dynamic 

modulus and the compressive strength [67]. Furthermore, the effect of each input 

parameter on the output should also be investigated. For instance, Vu-Bac et al. proposed 

a software framework for quantifying the influence of input parameters on uncertain 

outputs [68]. Hamdia et al. evaluated the sensitivity of input parameters by using a 

polynomial chaos expansions surrogate model [69]. It is important to note that there are 

many other parameters that affect the compressive strength of concrete such as slump, 

forming conditions and curing conditions [15]. However, the main purpose of this 

research is to evaluate the performance of the proposed MFA-ANN in predicting the 

compressive strength of high-performance concrete. Hence, the study uses the same eight 

inputs, one output, and datasets from the literature to obtain appropriate comparisons. 

Table 2 shows statistical information of all attributes of dataset 1. The relationship 

between these components and the compressive strength of HPC is highly nonlinear. 

Therefore, it is challenging to find the compressive strength of HPC based on these 

experimental datasets. 

Table 2. Statistical parameters for the HPC datasets. 

Parameter Unit Min. Max. Variable 

Dataset 1: Compressive strength of high-performance concrete 

Cement kg/m3 102.00 540.00 

Input 

Blast-furnace slag kg/m3 0.00 359.40 

Fly ash kg/m3 0.00 260.00 

Water kg/m3 121.80 247.00 
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Super-plasticizer kg/m3 0.00 32.20 

Coarse aggregate kg/m3 708.00 1145.00 

Fine aggregate kg/m3 594.00 992.60 

Age of testing Day 1.00 365.00 

Concrete compressive 

strength 

MPa 2.30 82.60 Output 

Dataset 2: Splitting tensile strength of concrete with 

manufactured sand 

Curing age Day 1.00 388.00 

Input 

Cubic compressive strength MPa 4.23 100.50 

splitting tensile strength  MPa 0.35 6.90 Output 

 

The experimental dataset has been used and confirmed in part or in whole in many 

studies of predictive models (i.e., Gene Expression Programming (GEP), Multi-gene 

genetic programming (M-GGP), ensemble model between SVR and ANN, and the smart 

firefly algorithm based on least squares support vector regression). For example, Chou 

et al. used a nature-inspired metaheuristic regression system to estimate the compressive 

strength of HPC mixtures [34]. Their model obtained a reasonable similarity between 

predicted values and actual values of the compressive strength of HPC with R= 0.94 and 

RMSE = 5.62 MPa. They also indicated that their proposed model was better than other 

conventional methods. Alternatively, our work employs the MFA-ANN hybrid expert 

system to analyze this experimental dataset.  
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4.2 Dataset 2: Splitting tensile strength of concrete with manufactured sand 

Dataset 2, which is shown in Table 2, consists of 714 data points of the splitting 

tensile strength of concrete with manufactured sand (MSC) at different curing days, 

which was collected from previous experimental studies [70]. The ingredients of MSC 

are ordinary silicate cement, an admixture consisting of fly ash, slag and silica fume, 

crushed stone and manufactured sand. Zhao et al. [71] proposed an empirical equation 

(Eq. 24) to predict the splitting tensile strength of MSC from the cubic compressive 

strength. Their model is suitable for predicting the tensile strength of MSC at different 

curing times. 

, ,

b

st k cu k
f af=   (24) 

where stf is the splitting tensile strength; fcu is the cubic compressive strength; k is the 

curing time; and the values of a  and b  are listed in Table 3: 

Table 3. Fitting values of a  and b . 

Variable Unit Value 

Curing time 

k   

Days 3 7 28 90 180 1-338 

Fit curves a   - 0.102 0.076 0.166 0.202 0.695 0.217 

Fit curves b   - 0.886 0.982 0.778 0.734 0.450 0.716 

Correlation R - 0.897 0.970 0.924 0.945 0.954 0.926 

Two inputs including the curing age and the cubic compressive strength are used 

to forecast the splitting tensile strength. The curing age ranges from 1 day to 388 days 
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while the compressive and tensile strength ranges are 4.23-100.5 MPa and 0.35-6.90 

MPa, respectively. This study finds the relationship between the splitting tensile strength 

and the cubic compressive strength of MSC at different curing times including 3-day, 7-

day, 28-day, 90-day, 180-day periods, and entire dataset. 

5. Performance Evaluation and Discussion 

5.1 Data Preprocessing and model application 

The results of the performance tests used to predict the compressive and tensile 

strength of high strength concrete, which were obtained from the MFA-ANN expert 

system, will be discussed in this section. The K-fold cross-validation method is used in 

this research to reduce the over-fitting problem in model selection [72]. Kohavi 

demonstrated that 10-fold is the optimal number of folds that can obtain a good result 

within an acceptable timeframe [73]. There are several cross-validation methods such as 

leave-one-out cross-validation and scanning-test-set cross-validation, which could give 

similar results. For example, Badawy et al. used the scanning test set to elect the most 

representative training and test sample sets in their study [74]. However, several recent 

publications, which are compared with the results of this study, used the 10-fold cross-

validation method in their research [26, 34]. Therefore, the 10-fold cross-validation 

method is also used in this research to evaluate the performance of the proposed model. 

To develop the system for predicting the compressive and tensile strength of HPC, 

1133 samples in dataset 1 are randomly selected and split into 10 distinct folds. In the 

first validation round, the first fold is used for testing while the nine remaining folds are 

used for training the model. The second fold is then used for testing in the following 

validation, and this is repeated until all ten validation rounds are completed to guarantee 

that all data samples are utilized in both the testing and training phases (Figure 5). The 
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performance of the model is then calculated by taking the average performance of the ten 

models in ten validation rounds. In order to make a reasonable comparison with the 

previous study, all data in dataset 2 are used for training and finding a relationship 

between the tensile and compressive strength of MSC. This study investigates six cases 

with a curing age of 3-days, 7-days, 28-days, 90-days and 180-days, as well as an entire 

dataset. The results will be compared with those in the previous study. 

Training FoldsTest Fold

Testing fold 1

Testing fold 2

Testing fold 3

Testing fold 4

Testing fold 5

Testing fold 6

Testing fold 7

Testing fold 8

Testing fold 9

Testing fold 10

P1 

P2

P3 

P4 

P5 

P6 

P7 

P8 

P9 

P10 

10

1

1

10
i

i

P P
=

= 

Figure 5. Ten-fold cross-validation. 

In training ANN, scaling input and output data in the preprocessing step is 

essential. The major benefit of this work is to avoid attributes in larger numeric ranges 

that dominate those in smaller numeric ranges [75]. Another advantage is to prevent 

numerical difficulties during the calculation. In this study, the data is normalized to the 

range of [0, 1] using the min-max normalization algorithm, which is represented as 

follows: 
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(24) 

min( )
'

max( ) min( )

x x
x

x x

−
=

−    

where x is the original value and x’ is the normalized value. 

Table 4 lists the parameters for MFA-ANN hybrid expert system. The parameters 

used in this study are as follows:  

• The number of fireflies is 15.  

• The maximum generation is 15.  

• The objective function is RMSE 

• The size of training partition is 90%.  

• The validation partition size is 10%.  

• The number of hidden layers in ANN is 1.  

• The number of nodes in the hidden layer is 20.  

• The learning algorithm is Levenberg–Marquardt. 

• The transfer function is sigmoid function.  

• The parameters of ANN are the default parameters of ANN toolbox in Matlab 

R2016b software. 

Table 4. The MFA-ANN hybrid expert system parameters. 

Component Parameter Setting 

MFA 

No. of fireflies 15 
Max generation 15 

min 0.1 

 1 
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 0.2 

Adaptive inertial weight  2 1/(10 / 0.9) MaxGeneration−
  

 1.5 

Objective function RMSE 

Training partition  90% 

Validation partition 10% 

Cross validation 10 folds 

ANN 

No. of hidden layer 1 

No. of node in hidden layer 20 

Learning algorithm Levenberg–Marquardt 

Transfer function Sigmoid 

The parameter  in Table 4 is validated to find the optimal value for this system. 

In the original FA, Yang [56] proposed a value of ( )
1/

510 / 0.9
MaxGeneration

 −= . 

However, Chou et al. proved that =0.9 can obtain the best result [34]. Therefore, the 

parametric test was carried out with several values of  and Table 5 shows the 

experimental results obtained for seven case studies using the same dataset. Dataset 1 

was used in this test, with 90% of data for learning and 10% of data for testing. From the 

result in Table 5, the best value of  for the system is ( )
1/

210 / 0.9
MaxGeneration

−  for which 

the maximum generation in this study is 15. The reason that this value of   was different 

to that of the original FA can be attributed to the difference between a number of 

generations. In the original FA, Yang used FA to solve simple problems so that the 

number of generations is high. However, this proposed expert system only used 15 

generations thereby requiring a different value of , in this case

( )
1/

210 / 0.9
MaxGeneration

 −= . 
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Table 5. Comparison of analytical results using different values of . 

 
Performance measure 

RMSE MAE MAPE R 

5 1/(10 / 0.9) 0.47MaxGeneration−   4.74 3.35 12.89% 0.958 

4 1/(10 / 0.9) 0.54MaxGeneration−   5.24 3.70 13.11% 0.947 

3 1/(10 / 0.9) 0.64MaxGeneration−   4.89 3.38 12.19% 0.954 

2 1/(10 / 0.9) 0.74MaxGeneration−   4.34 3.32 12.10% 0.963 

1 1/(10 / 0.9) 0.86MaxGeneration−   4.38 3.40 12.55% 0.962 

0.9 4.47 3.41 12.10% 0.961 

1 4.69 3.63 12.43% 0.956 

5.2 Analytical discussion 

Table 6 and Table 7 show the performance of the proposed expert system in the 

prediction of the compressive and tensile strength of HPC. This study also compares the 

results with other methods reported in previous works. The improvement of MFA-ANN, 

when compared with other methods, is validated by a hypothesis test.  

Table 6. Prediction of performance and improvement rates of the MFA-ANN hybrid 

expert system for dataset 1. 

Method 

Performance measure CT 

(minutes) 

Improved by MFA-ANN system (%) 

R RMSE MAE MAPE R RMSE MAE MAPE 

(-) (MPa) (MPa) (%)   (-) (MPa) (MPa) (%) 

Dataset 1          

Gene Expression Programming (GEP) 

[76] 

0.91 N/A 5.20 N/A N/A 4.33* - 34.30* - 
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Multi-gene Genetic Programming (M-

GGP) [77] 

0.90 7.31 5.48 N/A N/A 6.31* 33.70* 37.69* - 

Ensemble model (ANN + SVR) [26] 0.94 6.17 4.24 15.20 N/A 1.55** 21.50* 19.39* 23.01* 

SFA-LSSVR [34] 0.94 5.62 3.86 12.28 15.90 1.34** 13.76* 11.54* 4.71** 

MFA-ANN 0.95 4.85 3.41 11.70 4.60 - - - - 

Note: The MFA-ANN hybrid system was run 10 times, and the average result was taken to compare its efficacy with other 

methods; 

CT stands for computing time (minutes). 

*, ** indicates significance levels higher than (1%, 5%), respectively; 

In dataset 1, Figure 6c shows that the proposed system obtains a lower MAE (3.41 

MPa) compared to Gene Expression Programming (GEP) [76], Multi-gene genetic 

programming (M-GGP) [77], ensemble model (ANN+ SVR) [78] and the smart firefly 

algorithm-based Least Square Support Vector Regression (SFA-LSSVR) [34] (5.20 

MPa, 5.48 MPa, 4.24 MPa and 3.86 MPa, respectively). MFA-ANN also achieves the 

lowest RMSE (4.85 MPa) and the lowest MAPE (11.70%) compared to other methods 

(Figure 6b and 6d).  
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Figure 6. Performance comparison between MFA-ANN and other studies using dataset 1 

Overall, the error rates of the proposed expert system are 4.71% - 37.69% better 

than those of other reported methods. The hypothesis tests also demonstrate that the 

results of MFA-ANN are significantly (1% - 5%) better than other methods. Also, MFA-

ANN has a higher value of R (0.95) than other methods (Figure 6a). This means that the 

strength of association between the actual output and predicted output of the proposed 

methods is higher than those in previous studies. Figure 7 shows the correlation between 

the actual output and predicted output for one case in ten-cross folds. 
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Figure 7. The correlation between actual output and predicted output in the learning data (a) and test data 

(b). 

Moreover, the computing time in running one iteration of cross-fold validation is 

considerably reduced from 15.90 minutes (by using SFA-LSSVR) to 4.60 minutes (by 

using MFA-ANN). This time improvement can be attributed to the updating of weight 

and bias parameters of ANN in the training process. In SFA-LSSVR, the firefly 

algorithm was used to optimize the regularization and the sigma parameter of the RBF 

kernel. However, these two parameters are constant during the training process. 

Meanwhile, in MFA-ANN, the layer weight and bias parameters are updated during the 

training process of ANN. Moreover, MFA memorizes the updated layer weight and bias 

parameters, and optimizes them base on the updated value (Figure 3), such that the 

optimal value can be quickly obtained. Therefore, MFA-ANN is able to significantly 

reduce computing time when compared with SFA-LSSVR. 
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Table 7. Prediction performance and improvement rates of the MFA-ANN hybrid expert 

system for dataset 2. 

Method 

Performance measure CT 

(minutes) 

  

Improved by MFA-ANN system (%) 

R RMSE MAE MAPE R RMSE MAE MAPE 

(-) (MPa) (MPa) (%) (-) (MPa) (MPa) (%) 

Dataset 2 
         

3-day curing age (27 data)          

Fitting curve [71] 0.90 0.34 0.24 13.80 N/A 10.83* 74.74* 90.30* 94.80* 

MFA-ANN 0.99 0.09 0.02 0.72 3.38 - - - - 

7-day curing age (130 data)          

Fitting curve [71] 0.97 0.32 0.22 12.98 N/A 2.44** 53.88* 59.44* 42.32* 

MFA-ANN 0.99 0.15 0.09 7.49 3.75 - - - - 

28-days curing age (333 data)                   

Fitting curve [71] 0.92 0.46 0.34 12.27 N/A 2.94* 19.18* 20.74* 16.96* 

MFA-ANN 0.95 0.37 0.27 10.19  4.05 - - - - 

90-days curing age (83 data)          

Fitting curve [71] 0.94 0.35 0.28 10.37 N/A 5.21* 68.67* 77.90* 76.62* 

MFA-ANN 0.99 0.11 0.06 2.43 3.50 - - - - 

180-day curing age (11 data)                   

Fitting curve [71] 0.95 0.14 0.11 2.38 N/A 4.74* 92.51* 95.67* 95.21* 

MFA-ANN 1.00 0.01 0.00 0.11  3.01 - - - - 

1-388-day curing age (714 data)          

Fitting curve [71] 0.93 0.45 0.35 15.99 N/A 3.62* 16.22* 21.46* 33.81* 

MFA-ANN 0.96 0.38 0.28 10.59 4.40 - - - - 

Note: MFA-ANN hybrid system was run 10 times, and the average result was taken to compare its efficacy with other methods; 
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CT stands for computing time (minutes). 

*, ** indicates significance levels higher than (1%, 5%), respectively; 

In terms of dataset 2, Table 7 shows that the prediction results of MFA-ANN are 

superior to those of the fitting curve method in all six cases of curing age. The correlation 

coefficient R markedly improves by 2.44 – 10.83% when compared with the previous 

approach, especially for the 180-day curing period case, where the correlation coefficient 

R of MFA-ANN is almost 1 (the maximum value of R) (Figure 8). RMSE, MAE and 

MAPE are also better than the previous method by 16.22%-74.74%, 20.74% – 95.67%, 

and 16.96% - 95.21%, respectively. Figure 8 shows that MFA-ANN does not only have 

a higher correlation coefficient R but also has a smaller error rate than the fitting curve 

method. Therefore, MFA-ANN can be efficiently used for finding the relationship 

between the splitting tensile strength and the compressive strength of MSC. The 

computing time of MFA- ANN depends on a number of data and ranges from 3.01 – 4.40 

minutes. 
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Figure 8. Performance comparison between MFA-ANN and another study in dataset 2. 

6. Conclusions 

We have for the first time investigated an efficient approach based on MFA-ANN 

for predicting the compressive and tensile strength of high-performance concrete. Two 

datasets of high-performance concrete samples from various laboratories are used to 

investigate the efficiency of the proposed expert system. The number of instances of the 

two datasets are 1133 and 714 samples, respectively. A 10-fold cross-validation method 

is used to reduce the overfitting problem of system performance. The accuracy of MFA-
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ANN in forecasting the compressive and tensile strength of HPC is analyzed and 

compared with other methods from previous studies. 

Compared to other methods in dataset 1, MFA-ANN has the lowest error rates in 

terms of RMSE, MAE and MAPE. Moreover, the strength of the relationship between 

actual outputs and predicted outputs for MFA-ANN is higher than that of other methods 

because MFA-ANN has the highest correlation R value (0.95). In dataset 2, MFA-ANN 

is better than the previous method for all six cases of curing age. The error rates improve 

by 16.96% - 95.67% compared to the fitting curve method while the correlation value R 

is higher than 0.95 in all cases. Therefore, this work confirms that the proposed system 

could adequately predict the compressive and tensile strength of HPC, and could 

substantially lessen the required facility work in the future. 

The MFA-ANN hybrid expert system also markedly reduces computing time. This 

proposed approach can not only improve the accuracy but also run about 3.5 times faster 

than SFA-LSSVR [34]. The information of fireflies, weight and bias parameters in MFA-

ANN are continuously updated, memorized and optimized, which helps the system to 

quickly converge to an optimal value. Therefore, the proposed expert system can be used 

as an efficient tool for providing speedy and truthful forecasting.  

In addition, this research used one hidden layer with twenty nodes. A higher 

number of hidden layers or nodes results in more effective training of ANN, but the 

optimization of weight and bias parameters will take more time. In this study, the 

proposed expert system achieved not only good results but also short running times. 

Hence, the number of hidden layer and nodes is acceptable. The proposed approach 

provides an effective alternative tool for making fast and accurate predictions and thereby 

suitable for a wide range of problems in engineering.  
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