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Abstract: N-methyl-D-aspartate (NMDA) receptor antagonists such as phencyclidine (PCP),
dizocilpine (MK-801) and ketamine have long been considered a model of schizophrenia, both in
animals and humans. However, ketamine has been recently approved for treatment-resistant
depression, although with severe restrictions. Interestingly, the dosage in both conditions is
similar, and positive symptoms of schizophrenia appear before antidepressant effects emerge. Here,
we describe the temporal mechanisms implicated in schizophrenia-like and antidepressant-like
effects of NMDA blockade in rats, and postulate that such effects may indicate that NMDA receptor
antagonists induce similar mechanistic effects, and only the basal pre-drug state of the organism
delimitates the overall outcome. Hence, blockade of NMDA receptors in depressive-like status can lead
to amelioration or remission of symptoms, whereas healthy individuals develop psychotic symptoms
and schizophrenia patients show an exacerbation of these symptoms after the administration of
NMDA receptor antagonists.
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1. Introduction

The N-Methyl-D-aspartate (NMDA) receptor (NMDAR) is an ionotropic glutamate receptor that
possesses unique characteristics. The flow of ions through the channel is blocked by Mg2+. Two different
processes are necessary for activating NMDARs. First, the previous membrane depolarization
removes Mg2+ ions, and second, the additional binding of co-agonists glycine and glutamate allows
voltage-dependent inflow of Na+ and Ca2+ ions and the outflow of K+ ions. This dual gating by ligand
binding and membrane depolarization makes the NMDAR receptor optimally fitted to function as a
coincidence detector [1]. NMDARs are involved in several physiologic functions, and their correct
operation is crucial for cellular homeostasis. Any disruption in their function is thus susceptible
of resulting in the manifestation of neuropsychiatric or neurological pathologies. NMDARs are
critical for neuroplasticity, i.e., the ability of the brain to adapt to novel conditions. The function of
NMDARs usually declines with age, which most likely contributes to the reduced plasticity that leads
to learning and memory impairment. For this reason, the impairment of learning and memory seen in a
variety of different pathologies, such as Alzheimer’s disease (AD), amyotrophic lateral sclerosis (ALS),
Huntington’s disease, Parkinson’s disease (PD), schizophrenia and major depressive disorder (MDD)
are associated with NMDAR malfunction. Due to the important implication of neuronal plasticity [2,3],
the present review is focused on the link between NMDARs and the pathophysiology and treatment
of schizophrenia and depression. Two of the most important mechanisms of synaptic plasticity that
are dependent on NMDAR stimulation are long-term potentiation (LTP) and long-term depression
(LTD). In LTP, a high-frequency stimulation of NMDARs produces a long-lasting increase in signal
transmission between two neurons [4]. On the other hand, repetitive, low-frequency stimulation
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induces LTD by weakening specific synapses, which would counterbalance synaptic strengthening
caused by LTP [5].

From a structural viewpoint, NMDARs are ionotropic glutamate receptors made up of four
subunits. There are three different families of NMDAR subunits, i.e., GluN1, GluN2 and GluN3
(Figure 1). In addition, GluN2 subunits are subdivided into GluN2A, GluN2B, GluN2C and GluN2D
subunits and GluN3 subunit into GluN3A and GluN3B subunits. The ion channel of the NMDAR
is formed by two necessary GluN1 subunits, and either two GluN2 subunits or a combination of
GluN2 and GluN3 subunits [6–8]. GluN1 subunits carry recognition sites for glycine, whereas GluN2
subunits possess recognition sites for glutamate, which determines the duration of channel opening
and desensitization processes.
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Figure 1. Schematic illustration of the N-Methyl-D-aspartate (NMDA) receptors (NMDARs) containing
GluN1 and different GluN2 subtypes (A). Lower traces (B) indicate whole-cell patch-clamp recordings
of responses from brief application of glutamate (1 ms of 1 mM glutamate) to recombinant diheteromeric
NMDA receptor subtypes expressed in HEK293 cells. Averaged offset decay constant values (τoff) are
listed below current traces. (B) “Reprinted from Neuron, Vol 12, number 3, H. Monyer, N Burnashev,
D.J. Laurie, B. Sakmann, P.H. Seeburg, Developmental and regional expression in the rat brain and
functional properties of four NMDA receptors, Pages No. 529-524, Copyright (1994), with permission
from Elsevier”.

Overall, subunit composition of NMDARs changes along development and varies in different
brain regions, which might influence the direction of synaptic plasticity. As depicted in Figure 2,
the four glutamate-binding GluN2A-D subunits, in addition to the obligatory GluN1 subunit, are the
most prominent subunits in the central nervous system (CNS) [9]. Cortical, hippocampal and striatal
neurons in rodents are enriched in GluN2A and GluN2B subunits [8,10,11]. The GluN2D subunit is
also present in the hippocampus, but only in younger rats, being undetectable in the adulthood [8].
In contrast, GluN2C subunits are practically restricted to cerebellum with low levels of expression in
retrosplenial cortex and thalamus [8,12]. NMDARs are found mainly postsynaptically, although an
important subset of them is also found extrasynaptically. The activation of synaptic NMDARs
generally promotes synaptic and cell survival, whereas overactivation of extrasynaptic NMDARs
by an excess of glutamate can be neurotoxic and induce cell death [13]. It has been reported that
GluN2A subunits are predominant at the synapses, whereas GluN2B and GluN2D are localized,
though not exclusively, to extrasynaptic compartment [14–17]. Thus, GluN2A-containing receptors
have been reported to contribute to synaptic plasticity, whereas GluN2B-selective antagonists may
possess neuroprotective properties.
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Figure 2. Distribution of the GluN1, GluN2A, GluN2B, GluN2C and GluN2D receptor subunit mRNAs.
Postnatal developmental profiles of transcripts in horizontal rat brain sections from P0, P7, P12,
and adult rats. Abbreviations: cb, cerebellum; cx, cortex; hi, hippocampus; s, septum; st, striatum;
t, thalamus. Bar, 3.4 mm. “Reprinted from Neuron, Vol 12, number 3, H. Monyer, N Burnashev,
D.J. Laurie, B. Sakmann, P.H. Seeburg, Developmental and regional expression in the rat brain and
functional properties of four NMDA receptors, Pages No. 529-524, Copyright (1994), with permission
from Elsevier”.
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Over the last few decades, a plethora of articles have reported findings of the ability of targeting
NMDARs for treating different pathologies. However, most clinical trials have failed to show significant
efficacy, while exhibiting adverse effects [18,19].

2. NMDA Receptors in Schizophrenia

2.1. Clinical Evidence

The first clue of the implication of NMDARs in schizophrenia resulted from the observations
that NMDAR blockers, such as phencyclidine (PCP) and ketamine, induced in healthy individuals
psychotic and negative symptoms, as well as cognitive impairment, that resemble those present in
schizophrenia [20–23] and exacerbated these symptoms in schizophrenic patients [24,25]. In addition,
ketamine also induced a reduction of NMDA receptors in the human brain, which strongly correlated
with negative symptoms [26]. More recently, neuroimaging studies have shown, for the first time,
direct in vivo evidence of a reduction of NMDA receptors in the left hippocampus of medication-free
schizophrenic patients [27]. Schizophrenic patients also exhibit deficits in the attention and information
(cognitive and sensorial) processing measured through the prepulse inhibition (PPI) of the acoustic
startle response [28–30]. PPI is known to prevent the organism from receiving an overload of
information, a behavioral event altered in schizophrenia, which is reflective of abnormal functioning
of the corticostriato-thalamocortical circuitry. Therefore, thalamic gating deficits would result in
an excessive transfer of information to cortical structures and the subsequent cognitive deficiency.
However, reductions in PPI were not observed in healthy individuals after the administration of
ketamine [31], which is in sharp contrast to the effects consistently seen in rodents (see below).
Another electrophysiological operation impaired in schizophrenia is mismatch negativity (MMN).
MMN is an auditory event-related response in an electroencephalographic (EEG) signal, which occurs
when a sequence of repetitive sounds is interrupted by an occasional “oddball” sound that differs
in frequency (pitch) or duration. This sensory (auditory) information processing is also damaged,
not only in schizophrenic patients [32], but also in their relatives [33,34], and it is reported to represent
error in prediction. Interestingly, healthy individuals exhibit MMN after a single dose of ketamine [35].
Taking all these findings together, it is evident that not all components of the symptoms of schizophrenia
in human beings are caused by a direct hypofunction of NMDARs. Hence, it appears that MMN is
dependent on NMDAR blockade, whereas PPI is not. Further research is needed to understand why
these actions are species specific.

2.1.1. Neurophysiology

Brain oscillations have been also studied as possible in vivo biomarkers of the illness. Schizophrenic
patients frequently show EEG abnormalities [36,37] and a closer look of these changes can bring some
evidence about the pathogenesis of the illness. Oscillations in the γ band (30–100 Hz) have been
the object of interest, because of their involvement in cognitive functions known to be impaired in
schizophrenia [37–43]. Cortical γ oscillations result from the control that parvalbumin-containing
γ-aminobutyric acid (GABA)ergic interneurons exert over pyramidal neurons [44,45] and, in this regard,
abnormalities in these cortical interneurons have been consistently found in schizophrenia [42,46–48].
A preferential blockade of NMDA receptors on parvalbumin-expressing (PV) interneurons is postulated
as a central mechanism of classical actions of NMDA receptor antagonists, which results in increased
cortical activity andγ-band oscillations [49–53]. Further, schizophrenia is characterized by abnormalities
in γ oscillations measured in different cognitive tasks. Thus, schizophrenic patients exhibit increases
in spontaneous gamma band power [42,43], which have been related to positive symptoms [54–56].
However, marked deficits in the γ frequency band were observed when γ oscillations were examined
under different tasks (for instance, auditory-evoked responses) [39,42,57,58]. However, at variance
to what happen in rodents (see below), NMDAR antagonists, such as ketamine, usually elicit
increases in spontaneous γ band power, probably evoked by an excessive stimulation of glutamatergic
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transmission in cortical and subcortical areas [42,43,59–61]. Although no direct measure of brain
glutamate level can be determined from the brain of schizophrenics, some indirect estimates have
implicated increased activation of prefrontal cortex in first-episode schizophrenia [62–64] and after
ketamine administration [65,66], which can be taken as suggestive of increased glutamate release in
the human brain.

In addition to high frequency oscillations, low frequency oscillations (α, θ and δ bands) are
also related to cognitive processing. For instance, the α wave range (8–12 Hz) is related to working
memory processes [67], whereas the θ range (5–8 Hz) is involved in attention and signal detection [68],
which reflects cortico-hippocampal interactions [69–71]. On the other hand, oscillations in the δ band
are also involved in decision making procedures [68].

2.1.2. Post-Mortem Studies

Another important line of investigation aimed at examining the implication of NMDAR in
schizophrenia has been the study of post-mortem tissue. Thus, decreased cortical expression of
NMDAR subunits have been observed in subjects with schizophrenia, though not in a consistent
manner [72], depending on the brain region examined and methodology used. In this regard,
decreased transcripts coding for the GluN1 subunit have been found in the prefrontal cortex [73,74]
and hippocampal subregions [75,76]. However, as aforementioned, care must be taken, because some
of these changes are also observed in different psychiatric conditions and, by no means, are compelling,
as long as contradictory results have been found. As a matter of fact, this same meta-analysis found
no consistent statistically significant changes in cortical mRNA and protein expression of GluN2A,
GluN2B and GluN2D subunits in schizophrenia, with the exception of decreased expression of mRNA
coding for GluN2C [74,77,78]. Of note, in the postsynaptic density compartment of human post-mortem
prefrontal cortex, an important reduction in the density of the postsynaptic protein PSD-95 [74] and in
the activity of signaling cascades downstream of the NMDAR has been found in schizophrenia [79].

Since the finding that the therapeutic efficacy of antipsychotic drugs was directly correlated
to their affinity for dopamine D2 receptors [80,81], it was first postulated that altered dopamine
D2-like receptors was responsible for schizophrenia symptoms. However, this was not confirmed until
the study by Abi-Dargham [82], which reported increased occupancy of dopamine D2 receptors in
schizophrenia. Moreover, it was evidenced that the administration of ketamine to healthy subjects
enhanced the release of dopamine in ventral striatum, which was shown to correlate strongly with the
emergence of psychotic symptoms [83]. For these reasons, an association between D2-like receptors
and NMDA hypofunction was hypothesized [84,85]. In addition to these findings, the differential
expression of some splice variants might also evoke abnormal NMDAR trafficking and plasma
membrane insertion, which may lead to abnormalities seen in schizophrenia patients [86,87].

Another important issue is the role of astrocytes in schizophrenia. High levels of extracellular
glutamate are associated with excitotoxicity, and astrocytes are the principal cells that contribute
to glutamate homeostasis through its removal from the synapsis, by means of selective reuptake
mechanisms. The excitatory amino acid transporters 1 and 2 (EAAT1/2) are predominantly localized
on astrocytes and are mainly responsible for clearing synaptic glutamate and influencing postsynaptic
responses. Post-mortem studies have reported that EAAT1 expression is decreased in schizophrenia,
as compared to healthy subjects [88]. Additionally, the activation of EAAT2 and its transport to
plasma membrane was found to be reduced in schizophrenic brains [89]. A genetic variant of EAAT2
(SNP rs4354668) has been correlated with the severity of schizophrenia [90]. Altogether, these findings
are consistent with an impairment of astrocyte function in schizophrenia [91].

2.2. Preclinical Evidence

Mental disorders, such as schizophrenia and depression, are illnesses uniquely human, in that
they are diagnosed using different interview questionnaires. Therefore, no animal model can recreate the full
spectrum of their symptoms. However, some models exist that examine changes in behavioral and
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neurophysiological readouts that are compatible with changes that are also observed in patients.
For instance, the acute, systemic administration of NMDAR antagonists induces, in rodents,
hyperlocomotion and stereotypical behaviors [92], which are potentially compatible to positive
symptoms of schizophrenia [93,94], in that they are associated with increased dopaminergic and
serotonergic transmission in the brain [95,96]. NMDAR antagonists, such as PCP and dizocilpine
(MK-801), also produce severe disruptions in PPI, and deficits in different domains of cognition
in rats [97,98]. Acute NMDAR antagonism also evokes an increased firing rate of pyramidal
neurons and expression of c-fos mRNA of the prefrontal cortex [99–103], which suggests an
overall, excessive prefrontal activity, which results in elevated release of glutamate [104–106],
dopamine [107–109], 5-HT [110–112] and acetylcholine [113,114] in the medial prefrontal cortex
(mPFC) of rats. Altogether these findings indicate that an overstimulation of different transmitter
systems in the mPFC is a general response to NMDAR hypofunction, which can account for the
behavioral effects induced by NMDAR antagonists. The enhanced release of monoamines most likely
result from the stimulation of prefrontal excitatory glutamatergic inputs onto midbrain dopamine
and 5-HT cell groups, as suggested by recent investigations [115,116]. It is paradoxical that a
blockade of excitatory glutamatergic receptors, such as NMDARs, results in the stimulation of
glutamate release. The most accepted hypothesis to explain this phenomenon is the disinhibition
theory [49,104,117], which postulates that NMDA antagonists would block NMDA receptors located
on tonically active GABAergic neurons, which would control glutamatergic output. This would
diminish GABAergic inhibition, thus disinhibiting glutamatergic neurotransmission impinging upon
α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptors (Figure 3). The finding that
some GABAergic interneurons in hippocampus and neocortex are enriched in NMDAR and receive a
greater glutamatergic input in comparison with pyramidal neurons, gives further cellular support to
this view [118,119].
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Figure 3. Scheme of the mechanism of action of NMDAR antagonists. These drugs would block
NMDAR in a population of tonically active γ-aminobutyric acid (GABA)ergic neurons. This would
decrease the activity of these neurons, and the consequent decrease in GABA release would cause
the disinhibition of glutamatergic neurotransmission. The glutamate released would lead to the
stimulation of α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptors in pyramidal
cells, which would result in the described state of hyperactivity.

Interestingly, it has been reported that an action of NMDAR antagonists on the mPFC of both brain
hemispheres is needed to model these changes in the mPFC [102]. In addition, transmitter changes
have been found in other brain areas. For instance, noncompetitive NMDAR antagonists also enhance
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the efflux of glutamate in the nucleus accumbens [120], acetylcholine in the retrosplenial cortex and
hippocampus [121,122], 5-HT in the nucleus accumbens [111], noradrenaline in nucleus accumbens and
hippocampus [123–125] and dopamine in limbic areas, such as the nucleus accumbens, hippocampus
and ventral pallidum [108,111,113,126–128], although these effects were less pronounced than in
the mPFC.

2.2.1. Neurophysiology

Abnormal oscillatory patterns have been also observed in rodent models. Hence, systemic administration,
and even the local administration of PCP, MK-801 or ketamine into some brain regions, increase γ

and high frequency oscillations (HFO) in a number of cortical and subcortical structures (see [129],
for a review). It has also been observed that ketamine and MK-801 reduced the frequency and power
of θ oscillations in the hippocampus [130,131]. Furthermore, acute PCP also alters thalamo-cortical
oscillations, particularly those below the 4 Hz band [132].

2.2.2. Animal Models

The modeling of schizophrenia has been achieved not only by acute, but also by long-term
administration of NMDAR antagonists [133]. Thus, although the nature of some changes is similar,
following acute or protracted treatment with NMDAR antagonists, it has been postulated that changes
after the acute regimen are more comparable with those occurring in early stages of schizophrenia,
whereas the duration of such changes after sustained administration appears to be more related to the
persistence of clinical symptoms of the illness [134–138]. Acute PCP treatment increased locomotor
activity in rodents, an effect potentiated after long-term treatment [139–141]. Subchronic PCP treatment
does not seem to affect basal and PCP-induced 5-HT efflux in the mPFC. However, in comparison to
acute administration, subchronic PCP attenuated basal prefrontal dopamine release, but potentiated
PCP-induced dopamine efflux. The reduced basal extracellular concentration of dopamine could
be accounted for by lowering its synthesis, as measured by a diminished expression of tyrosine
hydroxylase mRNA in the ventral tegmental area [141].

Preclinical evidence from animal models also reported impairment of astrocyte function in
the schizophrenia model of repeated MK-801 exposure [142]. In addition, abnormal EAAT1/2
function is associated with schizophrenia phenotypes. For instance, mice lacking EAAT1 showed
hyperlocomotion and increased sensitivity to the locomotor hyperactivity produced by NMDAR
antagonists [143]. In addition, the hyperlocomotion of these EAAT1 knockout mice was reversed by
the antipsychotic haloperidol.

3. NMDA Receptors as Target for Treatment in Schizophrenia

A plethora of antipsychotic drugs have been approved for the treatment of schizophrenia,
most of them targeting monoamine receptors. Nevertheless, although hypofunction of NMDA
neurotransmission has been shown to play an important role in the pathophysiology of schizophrenia,
the results of the clinical trials of the NMDA-enhancing agents have been inconsistent. Since direct
agonists of the NMDA receptor can produce severe excitotoxic effects, the therapeutic focus turned to
the obligatory glycine co-agonist site of the NMDAR (NMDA-glycine site). Thus, drugs stimulating
the NMDA-glycine site were postulated to be effective in treating the symptoms of schizophrenia [144].
These types of drugs include glycine itself [145–147], other agonists of the NMDA-glycine recognition
site such as D-serine [148–150] and the partial agonist D-cycloserine [151–155], as well as inhibitors of
glycine transporters, such as sarcosine (N-methyl-glycine), which increase the synaptic availability of
glycine [156,157]. However, although preclinical studies in rodents showed that partial glycine site
agonists and glycine reuptake inhibitors exhibit comparable pro-cognitive effects with the potential for
the treatment of schizophrenia [158], a double-blind, randomized clinical trial concluded that neither
glycine nor D-cycloserine is a generally effective therapeutic option for treating negative symptoms or
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cognitive impairments [147]. As a matter of fact, most clinical trials conducted to date have failed to
show efficacy of these agents for the treatment of schizophrenia [159].

First generation (typical) antipsychotics like haloperidol and chlorpromazine potently block
dopamine D2/D3/D4. The blockade of dopamine D2 receptors in the mPFC is postulated to alleviate
psychotic symptoms (delusions, hallucinations). However, the same action in other areas of the brain
can cause severe extrapyramidal side-effects (EPS) and hyperprolactinemia [160]. Second generation
(atypical) antipsychotic drugs, like clozapine and olanzapine, retain some degree of dopamine D2/D3/D4

antagonism, but they possess a superior antagonism at 5-HT2A/2C receptors. These features seem to
be more effective for negative symptoms and cognitive deficits, although some side-effects (weight
gain, impairment of glucose and lipid metabolism) may emerge [161]. Microdialysis studies carried
out in our lab showed that the NMDAR antagonist, MK-801, elevated the release of glutamate and
5-HT in the mPFC [162,163]. Our results showed that typical antipsychotics, such as haloperidol and
chlorpromazine, and atypical antipsychotics, such as clozapine and olanzapine, were able to attenuate
the excess of prefrontal glutamate, but only atypical drugs were able to further reduce the excess of
prefrontal 5-HT [163]. Thus, our results further suggest that the blockade of an exacerbated 5-HT release
in the mPFC induced by NMDAR antagonists can be a good indicator of “atypicality” of antipsychotic
drugs. Although this has been established for clozapine and olanzapine (drugs that display a similar
pharmacological profile), further research is needed to determine whether this is a distinct feature
of other antipsychotic drugs. Interestingly, these effects of haloperidol and chlorpromazine could
be mimicked by dopamine D2/D3/D4 receptor antagonists, and those of clozapine and olanzapine
were reproduced by 5-HT2A receptor antagonists and 5-HT1A receptor agonists [162,163]. Therefore,
it seems that dopamine D2/D3/D4 receptor antagonism is relevant to treat positive symptoms of
schizophrenia, but it is conceivable that 5-HT2A receptor antagonism and 5-HT1A receptor agonism,
may contribute to a better profile of antipsychotic treatment. In fact, preclinical studies have shown
that 5-HT2A antagonists and 5-HT1A agonists can alleviate the cognitive deficits induced by NMDA
receptor antagonists [164]. Each of these receptor components do not confer antipsychotic properties
individually, so it is likely that a combined effect is needed.

4. NMDA Receptors in Depression

4.1. Clinical Evidence

Four different findings suggest a relationship between dysfunction of NMDAR and depression.
First, an anomalous gene expression of NMDAR has been found in depressed people [165–167]; second,
stressors induce excessive NMDAR activity that could result in the pathology of depression [168]; third,
NMDAR blockers, such as ketamine (see below), have antidepressant properties [169–171]; and fourth,
conventional antidepressant drugs usually impact on NMDAR function [172–174]. Altogether,
these investigations suggest an overstimulation of NMDAR in major depression [175–178].

Post-Mortem Studies

However, the results obtained from these investigations exhibit great variability, and are far from
consistent, likely due to differences in the brain structure examined or the methodological procedures
used. For instance, post-mortem studies have revealed reduced levels of GluN2A and GluN2B subunits
in the prefrontal [179] and perirhinal [180] cortices, but increased levels of GluN2A subunits in the
lateral amygdala [181] in major depression. Previous post-mortem work did not find changes in the
total content of GluN1 protein in the prefrontal cortex in depression [179,182]. Yet, when splice isoforms
were considered, NMDAR activity and the GluN1 subunit carrying the C1 cytosolic segment were
found to be increased in depressives [182]. Another report also described that the GluN2C subunit
is elevated in the locus coeruleus of patients with major depression [183]. Further, early life adverse
effects reduce NMDAR binding in dorsolateral prefrontal and anterior cingulate cortices, which could
result from excessive NMDAR stimulation [184]. This would be consistent with the hypothesis of



Biomolecules 2020, 10, 947 9 of 27

glutamate excitotoxicity produced by stress-induced excessive NMDAR activity, which could induce
depressive states [168,185].

Further work has reported higher expression levels of the NMDAR subunit genes, GRIN2B and
GRIN2C, in the locus coeruleus of depressed patients [186]. Another study reported a higher expression
of GRIN1, GRIN2A, GRIN2B, GRIN2C and GRIN2D subunit mRNAs, but only in female MDD patients.
Nevertheless, when male and female patients were grouped, the expression of GRIN2B mRNA was
higher in those who committed suicide, in comparison with those that suffered depression but did
not die by suicide [187]. For this reason, GRIN2B mRNA level is rather considered as biomarker of
suicide and, in fact, polymorphisms of GRIN2B have been postulated to predict treatment-resistant
depression [165,188]. Further epigenetic work showed that methylation in GRIN1 was a significant
predictor of depression in a sample of maltreated children [189].

Although there is a great number of genome wide association studies (GWAS) that have examined
genetic changes in depression, much less attention so far has been devoted to the study of gene
methylation. In this regard, only one study has found a hypermethylation of the GRIN2A gene body
in the hippocampus and prefrontal cortex of post-mortem human tissue in depression [167], which has
been attributed to overexpression of the GluN2A subunit [190].

Other post-mortem studies have revealed the influence of astrocytes in MDD (see [191,192] for
review). Thus, there is mounting evidence that the number and morphology of astrocytes are altered in
depression, particularly in the frontal cortex [193–195] and the dentate gyrus of the hippocampus [196].
A significant reduction of the packing density of glial fibrillary acidic protein (GFAP)-containing
astrocytes was also found, but only in younger (30–45 years old) patients [197].

4.2. Preclinical Evidence

There is substantial evidence from rodent models relevant to depression that stress induces
glutamatergic hyperactivity, as well as the overexpression of NMDARs [198–200]. Given that NMDAR
antagonists exert a preferential blockade of NMDAR on PV interneurons, enhanced PV interneuron
activity has been observed after stress and might underlie depression-like behavior [201–203]. However,
this is not a universal picture inasmuch as decreased PV cell activity has been observed after different
stressful conditions (see [204], for review).

Maternal separation induces increased expression of GluN2A (but not GluN2B) subunit of
NMDARs in the hippocampus of adult rats [205]. Chronic restraint stress significantly elevated
GRIN2a (GluN2A) and GRIN2b (GluN2B) subunit genes in BALB/c mice, but not in C57BL/6 mice [206].
Chronic restraint stress also increased the levels of GRIN1 mRNA, along with a reduction in protein
levels in dorsal hippocampus [207]. Chronic corticosterone administration, which emulates the
endocrine response to stress, increased GRIN2A and GRIN2B mRNAs, which mediated the deleterious
effects on the hippocampus [208]. Further, the olfactory bulbectomy model of depression reduces
NMDA receptor binding in the prefrontal cortex and amygdala [209,210]. On the other hand, in the
frontal cortex, BDNF deficiency, which occurs under chronic stress and is one of the leading causes
of depression, also increased the density of GRIN1, GRIN2A and GRIN2B genes in the early stages
of development [211]. Therefore, with all these findings taken together, a logical reasoning would
hypothesize that the deletion or inhibition of NMDAR subunits would have antidepressant-like effects.
Indeed, inactivation of the GluN2A subunit has been shown to evoke antidepressant-like activity in
mice [212]. Yet, the deletion of the GluN2D subunit in the bed nucleus of the stria terminalis (BNST)
increases depressive-like behaviors [213]. However, mice with constitutive, global deletion of the
GluN1 or GluN2B subunits die neonatally. Homozygous GRIN1 knockout mice only survive 8–15 h
after birth [214], and homozygous GRIN2b knockout mice die at early postnatal stages, because of an
impaired suckling response [215].

However, the same as occurs with human studies, work with experimental animals has also
yielded contradictory results. Thus, increased GRIN1 mRNA expression in the mPFC appears to have
antidepressant-like effects in the forced swim test. [216]. GRIN1 was also found to be downregulated
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in chronic unpredictable mild stress (CUMS) [217]. The type and duration of the stressor, as well as the
brain region examined, may underlie these differences.

Alterations in the number and/or function of astrocytes have also been found in animal models of
depression (see [218] for review). Indeed, a reduced number and volume of astrocytes was found in
the prefrontal cortex [219] and the hippocampus [220], in the chronic unpredictable stress procedure
and chronic social defeat stress paradigm. Interestingly, neurotoxic lesioning of astrocytes in the
prefrontal cortex is sufficient to induce depressive-like behaviors in rodents [221], an effect also found
after knocking-down the expression of astrocytic glutamate transporter GLAST/GLT-1 in the prefrontal
cortex of the mouse, using small interfering RNA (siRNA) strategies [222].

5. NMDA Receptors as Target for Treatment in Depression

Conventional antidepressant drugs inhibit monoamine transporters, based upon the assumption
that a deficit in the synaptic concentration of monoamines are the underlying cause of depression.
However, monoamine-based antidepressants have important limitations, such as lower efficacy,
therapeutic delay and, above all, the existence of a population of patients (estimated as one third
of depressed people) that do not respond to the treatment [223–225]. Thus, alternative therapeutic
goals have focused on the neurotransmitter glutamate and its receptors, particularly in the ionotropic
NMDAR. The first indication that NMDAR blockers had antidepressant-like effects dates back to
1990, when Trullas and Skolnick [226] reported that both competitive and non-competitive NMDAR
antagonists reduced immobility in the forced swim (FST) and tail suspension (TST) tests. Three decades
later, and after intensive research, esketamine (Spravato®) was approved by the US Food and
Drug Administration (FDA) and the European Medicines Agency (EMA) for adults with major
depression who are resistant to treatment, although with rigorous restrictions. In the past decade,
clinical investigations have shown that a single intravenous bolus administration of the non-competitive
NMDAR antagonist, ketamine, evoked a rapid (in only 2 h) and sustained (lasting up to 7 days)
antidepressant action [169,170,227,228]. Interestingly, the dosage of ketamine used for antidepressant
action (a total dose of 0.5 mg/kg infused over 40 min) is comparable to the one used to evoke
psychotic symptoms in healthy volunteers [21]. Thus, it seems that ketamine can exert a similar
enhancing modulatory function in mental status, i.e., increasing the emotional condition and mood in
depressives, and increasing extremely disordered thinking and behavior in healthy controls, and both
conditions can be triggered by stress (Figure 4). Although the mechanism of action of ketamine is not
completely understood, the involvement of several cellular and molecular processes has been unveiled.
Hence, its antidepressant-like action requires the activation of another class of ionotropic glutamate
receptors, the α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptors [229–231],
and the stimulation of mammalian (or mechanistic) target of rapamycin (mTOR), an intracellular
pathway associated with synaptic plasticity [232,233]. Further, it has been observed that ketamine also
facilitates the expression of the GluA1 subunit of the AMPA receptor [232,234–236]. mTOR seems to
be specific to rapid-acting antidepressants, because other conventional antidepressant drugs, such as
imipramine and fluoxetine, do not require mTOR signaling. mTOR is a serine/threonine protein kinase
that regulates the initiation of protein translation, thus inducing the protein synthesis required for
synaptogenesis [237,238], a process needed for antidepressant action. As a matter of fact, recent studies
have found reduced mTOR function in the prefrontal cortex of depressives [239], and in the frontal
cortex, amygdala and hippocampus of rats exposed to chronic stress [240–242].
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Figure 4. Schematic representation of mental state that appears as a continuum that can be modulated
by ketamine. Ketamine can alleviate depressive symptoms in patients, but also induce psychotic
symptoms when administered to healthy subjects. The terms deficiency and excess are abstract concepts
herein, but can refer, for instance, to cortical monoamine levels.

The antidepressant-like actions of systemic ketamine were reproduced by the microinfusion
of the drug into the infralimbic cortex [243,244], thus underscoring the importance of this brain
region in the antidepressant effects of ketamine. Furthermore, the optogenetic stimulation of the
pyramidal cells in the mPFC that project to the dorsal raphe nucleus (DRN, the nucleus where
most serotonergic neurons that innervate forebrain structures originate) produces antidepressant
effects [243,245–247], which reproduced the response elicited by the intracortical administration of
ketamine [243]. Therefore, it is postulated that the rapid antidepressant-like effects of ketamine are
accounted for by the glutamate-induced AMPA receptors localized to layer 5 pyramidal neurons
that project to the DRN [243], thus releasing 5-HT in the mPFC, which would contribute to the
antidepressant response. Given that ketamine also elevated the release of dopamine and noradrenaline
in the mPFC, it is conceivable that ketamine would also activate the projections from the mPFC to the
dopaminergic ventral tegmental area and the noradrenergic locus coeruleus. Altogether, the rapid
enhancement of the release of 5-HT, dopamine and noradrenaline in the mPFC would contribute to the
rapid antidepressant response of ketamine [116] (Figure 5).
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Figure 5. Prefrontal pyramidal neurons (dashed line square) project to the dopaminergic neurons of the
ventral tegmental area, serotonergic neurons of the dorsal raphe nucleus and noradrenergic neurons of
the locus coeruleus. Neurons from these monoaminergic nuclei send projections back that modulate
the neuronal activity of prefrontal cortex.
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Indeed, the mPFC has been traditionally implicated in alertness and attentional processes, working memory
and behavioral flexibility, behaviors known to be associated with noradrenaline, dopamine and 5-HT,
respectively, and impaired in mood disorders. However, despite the widespread recognition of
the involvement of monoamines in depression [248], there is a lack of compelling evidence linking
depression to low serotonergic and/or noradrenergic and/or dopaminergic transmissions. A possible
explanation could be that a greater than 90% depletion of one of more monoamines would be
required for the emergence of depressive states. For instance, serotonin depletion does not usually
alter immobility in the FST [249], but we recently demonstrated that, when this depletion was
90%, immobility was significantly increased [115]. Severity of depression is positively associated
with the frequency and severity of somatic symptoms [250–253], which depends on the monoamine
levels [254,255]. Old clinical work, which would be hardly reproducible in present days for obvious
bioethical reasons, showed that, in hospitalized, depressed patients who had responded to treatment
with tranylcypromine (a monoamine oxidase inhibitor) or imipramine (a tricyclic antidepressant),
depressive symptomatology returned after small doses of parachlorophenylalanine (an irreversible
inhibitor of the synthesis of 5-HT) [256,257]. Perhaps this has been the only work so far that evidenced
the appearance of depression symptoms after the depletion of body 5-HT.

As aforementioned, the approval of the (S)-isomer of ketamine has come with serious restrictions,
because of the drug can cause dissociation and delirium at the low doses used for depression.
These adverse effects appear shortly after infusion onset but vanish just before the antidepressant
response begins [169]. In attempts to overcome such problems, other ketamine-based alternatives
have been pursued. The approved (S)-ketamine has ~4-fold greater affinity for NMDARs than the
(R)-ketamine. On the other hand, (S)-ketamine displays a greater anesthetic potency and greater
undesirable psychotomimetic side effects than (R)-ketamine [258,259]. Furthermore, a recent study
by Hashimoto and co-workers established that (R)-ketamine had greater potency and longer-lasting
antidepressant effects than (S)-ketamine in a rodent model of depression [260]. For this reason, this group
of investigators proposed the R-stereoisomer of ketamine as an alternative for treatment-resistant
major depression [261], because (R)-ketamine does not seem to cause psychotomimetic behaviors,
neurotoxicity and abuse potential in animal models [260,262,263]. To the best of my knowledge,
at present, there is only one open-label pilot study published that examined the antidepressant effects
of (R)-ketamine [264] and one phase I clinical trial that evaluates the safety and pharmacokinetics of
(R)-ketamine in healthy subjects (ClinicalTrials.gov Identifier: NCT04108234).

Another strategy has been to examine the antidepressant effects of subunit-selective NMDARs.
Ketamine is a non-subunit-selective NMDAR antagonist, and it was hypothesized that perhaps other
NMDAR antagonists selective for GluN2A or GluN2B would possess antidepressant activity in the
absence of psychotomimetic effects. In this regard, preclinical studies have shown that the GluN2B
subunit NMDAR receptor antagonist, Ro 25-6981, possesses antidepressant-like effects [229,232].
Furthermore, in the clinic, several investigational drugs have exhibited some efficacy in the treatment
of depressive states, such as the GluN2B receptor antagonists CP-101,606 [265]) and MK 0657 [266],
the NMDAR glycine site partial agonist rapastinel (GLYX-13) [267], and the low-trapping nonselective
NMDA channel blocker lanicemine (AZD6765) [268,269]. However, the rapid and robust effects
of ketamine are clear, whereas the effects of MK 0657 and lanicemine are comparatively modest
and short-lived. Although these compounds showed an initial promise for treating depression,
further clinical studies failed to exhibit efficacy and the research and development of these compounds
were eventually discontinued. In contrast, less attention has been paid to GluN2A antagonists. To this
end, we assessed the biochemical and behavioral changes elicited by NVP-AAM077 [270], a competitive
antagonist showing ~10-fold greater selectivity for the rat GluN2A than for the GluN2B subunit [271],
and compared with the effects of Ro 25-6981, which is ~5000-fold selective for GluN2B over GluN2A
subunit [272]. Our results showed that NVP-AAM077 and Ro 25-6981 possess antidepressant-like
activity, and that neither of these compounds alone exhibit psychotomimetic-like activity [273].
However, the combination of NVP-AAM077 and Ro 25-6981 was sufficient to produce stereotypical
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behavior, which is associated to psychotic symptoms [273]. This would suggest that the blockade of
either one of these subunits is sufficient to elicit an antidepressant-like action, but only when both
subunits are blocked, psychotic-like effects would appear.

The GluN2D subunit has also been implicated in in some of the effects of the treatment with
ketamine. Thus, it has been reported that the GluN2D subunit is crucial for the sustained antidepressant
effects of (R)-ketamine. [274]. Further work from the same group of investigators has suggested that
the GluN2D subunit plays also a role in cases of cognitive impairment induced by (R)-ketamine,
whereas this subunit does not appear to be involved in cognitive impairment that is induced by
(R,S)-ketamine or (S)-ketamine. [249,275].

Contrary to ketamine, the therapeutic mechanisms of conventional antidepressant drugs do not
influence glutamatergic transmission in the brain neither under acute nor chronic regimen [276,277].
This lack of impact on glutamate, together with the fact that these drugs do not use mTOR as intracellular
signal (see above), indicate that the antidepressant action of rapid-acting and conventional drugs
follows different pathways.

6. Conclusions

In summary, ketamine has been used to model schizophrenia and to treat refractory depression.
In both cases, the mechanism of action appears to be the same one, i.e., ketamine evokes cortical
disinhibition by preferentially blocking NMDARs localized to PV interneurons [278,279]. Further work
has suggested that blockade of GluN2B-containing NMDARs is responsible of the antidepressant-like
effects of ketamine [279,280]. In fact, the excessive inhibition of hippocampal pyramidal neurons
mediated by PV interneurons might contribute to depression-like behavior in an animal model [203]
and GABA interneurons are the cellular trigger for ketamine’s rapid antidepressant actions. It is
possible that psychosis is an immediate consequence of NMDA receptor blockade and reflects, in part,
the ability of ketamine to induce glutamate release [104,281]. However, the antidepressant response
emerges later, when glutamate released by ketamine would stimulate AMPA receptors [229,231,282].
Thus, both actions are mechanistically associated but temporally dissociated. It has been recently
postulated that the mechanisms of rapid-acting antidepressant drugs converge on GluA1 receptors [236].
Thus, ketamine blocks the NMDAR channel, which leads to increases in extracellular glutamate and
synapse number in the prefrontal cortex. This glutamate stimulates AMPA receptors which, through an
activation of mTOR signaling pathway, induces a rapid synthesis of new proteins—in particular,
BDNF and the GluA1 subunit—that are responsible for the rapid antidepressant effects.
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