Developmental studies on yttrium phospho vanadate for lamp applications

R L Narayanan, R Jagannathan and R P Rao

Central Electrochemical Research Institute, Karaikudi - 623 006, INDIA

Yttrium orthovanadate is an important phosphor material owing to its application in TV screens and high pressure mercury vapour (hpmv) lamps. The effect of partial replacement by (PO₄) in YVO₄ on the emission characteristics and particle size distribution etc. are discussed.

Key words: Yttrium phosphor vanadate, lamps, luminescence

INTRODUCTION

ttrium orthovanadate (YVO₄) activated with trivalent europium is an important phosphor material owing to its applications in hpmv lamps and in CTV screens as red primary [1,2]. It is a potential host for a number of impurities like Eu³⁺ and Tb³⁺. This increases the scope of this being used as colour correcting phosphor in hpmv lamps. However, the presence of orange emission due to ${}^5D_0 \rightarrow {}^7F_1$ transition of Eu³⁺ makes it unsuitable for fluorescent lamp applications. Also it is interesting to note that non-rare earth impurities such as Bi³⁺ [3] when used in this system enehance the Eu³⁺ emission intensity.

RESULTS AND DISCUSSION

Preparation procedures and the luminescent measurements are the same as described earlier [4]. orthovanadate (YVO4) belongs to host sensitized group of phosphors, which when activated with Eu³⁺ gives intense orange-red emission characterising ${}^5D_0 \rightarrow {}^7F_2$ transitions of Eu³⁺. Energy absorbed by the vanadate group is transferred to Eu³⁺. YVO₄, without any impurities emits in the blue region (~ 430 nm), corresponding to $^{1}A_{1} \rightarrow$ ¹T₂ charge transfer transition in the vanadate network. The host emission is found to increase considerably when diluted by PO₄ to the extent of 75%. The effect of dilution of $(VO_4)^{3-}$ by $(PO_4)^{3-}$ has been described in detail [5]. Also it should be noted that this partial substitution leads only to isomorphous structure i.e. Xenotime structure. The increase in the host emission observed in terms of concentration quenching has been explained in detail [6]. In the case of YVO₄, VO₄(100%) are the luminescent centres. On dilution with (PO₄), concentration quenching effects are minimized.

Addition of Bi³⁺ in YVO₄ enhances considerably, Eu³⁺ emission under long-wave UV (365 nm) excitation. This is attributed to sensitization effects of Bi³⁺. YVO₄:Bi³⁺

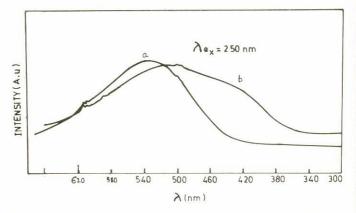


Fig. 1: Emission spectra at room temperature (300K) of (a) $VVO_4:Bi^{3+}$ (4m/o), (b) $Y(VO_4)_{0.5}$ (PO_4)_{0.5}: Bi^{3+} (4m/o)

emits in green region (~ 540 nm), but when a part of (VO₄) is replaced by (PO₄) an additional band in blue region (~ 430 nm) is observed. This may be attributed to the dominance of (VO₄) emission, rather than Bi³⁺ related centres which emit in the green region (Fig. 1). This partial replacement causes much difference in the emission intensities of Eu³⁺ lines, as given in Fig. 2. On dilution with (PO₄), the orange emission due to $^5D_0 \rightarrow$ ⁷F₁ transition of Eu³⁺ gains in intensity compared to red emission, corresponding to ${}^5D_0 \rightarrow {}^7F_2$ transition of Eu³⁺. This is not desirable for a phosphor to yield saturated emission. Also it has been found that this partial replacement has striking influence on the particle size distribution of the product. Phosphor obtained from the yttrium phosphate-vanadate system leads to phosphor product with microcrystalline particles as compared to larger particles in the yttrium vanadate system.

REFERENCES

1. Keith H Butler, Fluorescent Lamp Phosphors, The Pennsylvania State University Press, University Park (1980)

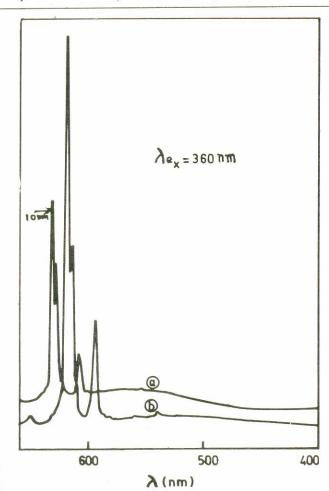


Fig. 2: Emission spectra at room temperature (300K) of (a) $WO_4:Bi^{3+}$ (4m/o), Eu^{3+} (4m/o), (b) $Y(VO_4)_{0.5}$ (PO_4)_{0.5}: Bi^{3+} (4m/o) Eu^{3+} (4m/o)

- F C Pallila, A K Levine and M Rikevics, J Electrochem Soc, 113 (1965) 776
- 3. R K Datta, Trans Metal Soc, AIME, 239 (1967) 355
- 4. R Jagannathan, R P Rao, R L Narayanan and K I Vasu, Bull Electrochem, 5 (1989) 462
- 5. M Aia, J Electrochem Soc, 114 (1967) 367
- 6. G Blasse, Philip Res Repts, 23 (1968) 344

