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Abstract 
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1 Introduction

This paper is intended as the missing paragraph in the seminal work of
Kohlberg and Mertens (1986) that introduced the concept of strategic sta-
bility without o�ering a de�nition of stable sets of equilibria satisfying all
the desiderata listed by the authors. The �nal formulation of stability sug-
gests that the properties of admissibility and backwards induction might be
mutually exclusive. However, a natural generalization of stable sets of equi-
libria, in our formulation F - stable sets, satis�es all the desirable properties
proposed in Kohlberg and Mertens (1986).

The backwards induction requirement is easily satis�ed by widening the
set of perturbed games allowing every pure strategy to be replaced with a set
of its perturbations. Admissibility is easily veri�ed, while the player splitting
property introduced in Mertens (1989) is violated. This is not surprising
since every agent of a splitted player will choose his perturbed strategy inde-
pendently just to maximize his individual payo�. Conversely a single player
would correlate his agents mistakes in order to maximize his overall payo�.
Then the tension between these two requirements seems the real knot to be
untied. This is con�rmed also by the discussion in Hillas (1990)1.

This con�ict is solved by the de�nition of G - stable sets where the collec-
tion of games exploited to identify the set of equilibria includes perturbations
both of the original game and of a class of new games each obtained from
the initial game by introducing additional strategies that have no impact on
the set of Nash equilibria.

Finally an innovative approach is proposed revealing a link between Nash
equilibrium re�nements and stochastic games. Even in this setting the re-
sulting sets of equilibria satisfy all the properties as proposed in Mertens
(1989).

2 F - stable equilibria

For the sake of convenience �rst recall the de�nition of hyperstable, fully
stable and stable sets of equilibria and highlight the reasons why they are
discarded.

De�nition 1. S is a hyperstable set of equilibria of a game Γ if it is minimal
with respect to the following property:
S is a closed set of Nash equilibria of Γ such that, for any equivalent game,

1For a complete discussion of both empirical and theoretical contributions see ? and ?.
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and for any perturbation of the normal form of that game, there is a Nash
equilibrium close to S.

De�nition 2. S is a fully stable set of equilibria of a game Γ if it is minimal
with respect to the following property:
S is a closed set of Nash equilibria of the game Γ satisfying: for any ε > 0
there exists some δ > 0 such that, whenever each player's strategy set is
restricted to some compact convex polyhedron in the interior of the simplex
at an (Hausdor�) distance less than δ from the simplex, then the resulting
game has an equilibrium point ε-close to S.

While both hyperstable and fully stable sets of equilibria of a normal
form game always contain a proper2 (hence perfect and sequential in every
extensive form game with that normal form) equilibrium, they might fail
to satisfy admissibility since each player's strategic choice is allowed to be
a�ected by perturbations of his own strategies. A natural way to avoid this is
to perturb each pure strategy si of each player i in the same amount towards
the same completely mixed strategy. This led to the de�nition of stable set
of equilibria:

De�nition 3. S is a stable set of equilibria of a game Γ if it is minimal with
respect to the following property:
S is a closed set of Nash equilibria of the game Γ satisfying: for any ε > 0
there exists some δ0 > 0 such that for any completely mixed strategy vector
σ1 . . . σn (n players) and for any δ1 . . . δn (0 < δi < δ0), the perturbed game
where every strategy si ∈ Si of player i is replaced by (1− δi) si + δiσi has an
equilibrium ε-close to S.

However stable sets might not satisfy the backwards induction require-
ment. Thus a slight variation of the de�nition of stable set of equilibria is
proposed in order to get a new set that, at least, always includes a sequential
equilibrium of the game and satis�es admissibility.

3 The model

Let Γ =
{
I, {Σi}i∈I , {ui}i∈I

}
be a �nite n player game, where I is the �-

nite set of players indexed by i, Σi is player i's compact, convex strategy-
polyhedron (in Euclidean space) being Si his pure strategy set and ui his

multi linear payo� function de�ned on Σ =
∏
i∈I

Σi.

2See Myerson (1978).
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De�ne the set Pε of perturbations η as Pε =
{
ε · σ̄| 0 < ε < 1, σ̄ ∈ Σk\∂Σk, k

∈ Z} where Σk is the Cartesian power of Σ with k integer number.
Let ηi = ε · σ̄i be the k-dimensional vector that represents the restriction to
player i's strategies in Σk

i \∂Σk
i of the perturbation η = ε · σ̄. For η ∈ Pε

let τη (si) = (1̄− ε̄) si + ηi be the k-dimensional vector of strategies replac-
ing strategy si in player i's strategy set where 1̄ is the k-dimensional vector
with each entry equal to one and ε̄ the k-dimensional vector with each entry
equal to ε. Let Γ (η) be the game with compact convex strategic polyhedron
Σ ⊂ Σ obtained from Γ by replacing each pure strategy si of each player i by
the vector τη (si). The de�nition of stable set of equilibria is then modi�ed
accordingly to de�ne an F - stable set:

De�nition 4. S is an F - stable set of equilibria of a game Γ if it is a set of
equilibria, minimal with respect to the following property F:

Property (F). S is a closed, set of Nash equilibria of Γ satisfying: for any
δ > 0 there exists some ε0 > 0 such that any perturbed game Γ (η) with η ∈ Pε
and ε0 > ε > 0 has an equilibrium δ-close to S.

Note that the proposed de�nition is halfway the de�nitions of fully stable
and stable set of equilibria. In particular, the new collection of strategy
polyhedra includes all those allowed by the de�nition of stable equilibria as
special cases in which k = 1, and is a proper subset of the ones de�ning a
fully stable set.

Proposition 1 (Existence). Every normal form game Γ has an F - stable
equilibrium.

Existence comes easily from existence of a fully stable set of equilibria for
any normal form game Γ as proved in Kohlberg and Mertens (1986) since,
as already pointed out, the de�nition of F - stable equilibria is less restrictive
than the de�nition of fully stable equilibria.

Proposition 2 (Invariance). Every F - stable set is also an F - stable set of
any equivalent game (i.e. having the same reduced normal form).

From a geometrical point of view, the de�nition considers just polyhedra
within the strategic simplex of each player i that are the convex hull of any
collection of polyhedra allowed by the de�nition of stable set of equilibria.

This easily implies that an F - stable set of equilibria of any game Γ de-
pends only on its reduced normal form since if a new strategy ŝi, linear
combination of pure strategies in Si, was explicitly introduced as an addi-
tional pure strategy in Si it would be perturbed as any other pure strategy,
and each strategy in τη (ŝi) would be represented by a point on a side of some
polyhedron generating the convex hull.
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Proposition 3 (Admissibility). Given any equilibrium in an F - stable set,
every equilibrium strategy for every player i is undominated.

It is well known that a stable set of equilibria satis�es admissibility. De-
spite a larger set of perturbations is now allowed, any F - stable set still
satis�es this property since the set σ̄ is in the interior of Σk and identical for
all strategies in Si for each player i.

Given these last two properties, one can verify immediately the (i, α)-
ordinality of F - stable sets, using Theorem 2 in Mertens (2003).

Proposition 4 (Connectedness). Every F - stable set is contained in a single
connected component of the set of Nash equilibria.

Since every fully stable set includes an F - stable set, every normal form
game has an F - stable set which is contained in a single connected component
of the set of Nash equilibria.

Proposition 5 (Backwards induction). An F - stable set of any �nite game
Γ always includes a proper equilibrium of Γ.

Proof. Given Γ construct a perturbed game Γ̃ as follows: �rst for each
player i ∈ I de�ne the set Ei =

{
eij ∈ Sni with j = 1, . . . n

}
of all orderings

eij of his pure strategies, where Sni is the Cartesian power of Si and n = |Si|;
second, for every player i, construct, from each ordering eij, a totally mixed

strategy σ
(
eij
)
such that, when σ

(
eij
)
is chosen, the �rst strategy in the or-

dering eij is played with probability (1− ε) / (1− εn), the next one with proba-
bility ε (1− ε) / (1− εn), the next with probability ε2 (1− ε) / (1− εn) and so
on. Thus for each player i it has been de�ned a set Ẽi of n! totally mixed
strategies. Finally de�ne Γ̃ as the game in which each strategy si of each
player i is replaced by the following set of perturbed strategies:{

(1− ε) si + εσ
(
eij
)}

σ(eij)∈Ẽi
(1)

Therefore each player when choosing a pure strategy in the new game Γ̃ ac-
tually chooses with probability (1− ε) a strategy in his strategy set Si in the
original game and, with probability ε a lottery over a given ordering of his
pure strategies in Si. Therefore the set of equilibria of this new game is
identical to the set of equilibria of a game in which players choose simulta-
neously an ordering on their pure strategies, then, for each player i, nature
picks his preferred choice with probability (1− ε) + ε (1− ε) / (1− εn), the
next one with probability ε2 (1− ε) / (1− εn), the next one with probability
ε3 (1− ε) / (1− εn) and so on. Pick an equilibrium point of the new game in
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the neighbourhood of our set of equilibria. It is an ε-proper equilibrium of the
initial game3.

Proposition 6 (Iterated dominance and forward induction). (A) An F -
stable set of a game Γ contains the F - stable set of any game obtained from
Γ by deleting a dominated strategy and (B) an F - stable set of a game Γ
contains the F - stable set of any game obtained from Γ by deleting a strategy
that is an inferior response in all the equilibria of the set (Forward induction).

Proof. Given a perturbation Γ̄ (η) with η ∈ Pε of the game Γ̄ without the
eliminated strategy si, construct a close-by perturbation in two steps: �rst
introduce the eliminated strategy in the strategy set Si of player i and perturb
it like any other strategy of the game. Then construct the perturbed game
Γ (η, z) by slightly perturbing any of player i's strategies towards si by z.
The game Γ (η, z) is a perturbation of the initial game. Obviously in no
equilibrium the eliminated strategy will be played and taking the limit for
z → 0 of these equilibria will give an equilibrium of Γ̄ (η) close to the F -
stable set.

Proposition 7 (Small worlds and Decomposition). An F - stable set of any
�nite game Γ satis�es small worlds and decomposition axioms.

This property is self evident4.

Proposition 8 (Player splitting). Given a partition of the information set
of some player, such that no play intersects two di�erent partition elements,
consider the new game obtained by letting a di�erent agent of this player man
each of these partition elements, and receive the same payo� as this player
for those play that intersect his own information sets-he receives an arbitrary
payo� on the other plays. This new game, where this player is replaced by
these agents, has the same stable sets as the old game.

This property is not satis�ed in our model since there are some pertur-
bations of the initial game that cannot be replicated once some player is
splitted. The game represented in Figure 1 clari�es the point.

3Note that the new game Γ̃ can be seen as a game in which each strategy of each player
i is a pair given by an ordering of his pure strategies and a lottery over this ordering.
Each ordering is replicated |Si| times and two identical orderings still di�er due to the
associated lottery i.e. the probabilities nature will use to pick each pure strategy in the
ordering. However, for any pair and any two pure strategies (si, s̄i) in Si with si ranked
before s̄i, nature will always pick si with probability σ (si) and s̄i with probability σ (s̄i)
such that εσ (si) ≥ σ (s̄i).

4For a complete discussion of this property see Mertens (1992).
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Figure 1: Game A - Extensive form

Source: "The analysis of con�ict" Roger B. Myerson

Consider only two perturbations (σ̂1, σ̃1) of player 1's strategies in Figure
2 and rede�ne his strategy set as:

Ṡ1 = {((1− ε) s+ ε σ̂1) ∪ ((1− ε) s+ ε σ̃1)}s∈S1

Figure 2: Game A - Normal form

Source: "The analysis of con�ict" Roger B. Myerson

Note that this set of perturbations cannot be replicated when player 1 is
replaced by his two agents since if agents' strategies in S11 = (x1 , y1) and
S12 = (z1 , w1) were perturbed in order to replicate the marginal probabilities
induced by σ̂1 and σ̃1 the combination of these perturbations would lead
to four distinct perturbations of each pure strategy of player 1. This is
because agents choose independently their perturbed strategies while player
1, in making his strategic choice, induces an obvious correlation between the
perturbations of his agents' strategies.
Therefore, while the set of perturbed games has to be enlarged to satisfy
the property of backward induction, when this happens in a natural way
by replacing every pure strategy with a set of its perturbations, the player
splitting property is violated.
This approach and results, while reached independently, are analogue to the
ones proposed in an unpublished paper by Reny5.

5Prof. P. Reny private communication.
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3.1 G - stable equilibria

A second way to widen stable sets to include at least one proper equilibrium,
is implicitly o�ered by Proposition 6 (Iterated dominance and Forward in-
duction). Note �rst that the proof of Proposition 6 proposed in Kohlberg and
Mertens (1986) can be easily extended to strategies that are either weakly
dominated or never part of a Nash equilibrium. Thus, given the initial game
Γ, create for each player i a new strategy set S̄i by adding to Si a �nite
non-negative number of new strategies that are either (weakly) dominated
or never played with strictly positive probability in any Nash equilibrium
of the resulting game. Given

{
S̄i
}
i∈I with Si ⊆ S̄i for every i ∈ I set, for

each player j ∈ I and each new strategy pro�le s̄−j ∈ S̄−j\S−j, a strategy
σ̄−j ∈ Σ−j such that:

uj (s̄i, sj, s̄−ij) = uj (σ̄i, sj, σ̄−ij) for ∀sj ∈ Sj and ∀j ∈ I (2)

If Sj ⊂ S̄j de�ne for every new strategy s̄j ∈ S̄j\Sj the corresponding payo�s:

uj (si, s̄j, s−ij) = αuj (σj, s−j) + k with α, k ∈ R and σj ∈ ∆Sj (3)

Condition (2) excludes that a (weakly) dominated strategy sj ∈ Sj for
player j could become undominated given the introduction of a new strategy
for any of his opponents. The generalization of Proposition 6 in Kohlberg and
Mertens (1986) ensures that a stable set of any new game Γ̄ always includes a
stable set of the original game Γ. Equipped with this enlarged set of games,
a new de�nition of stable sets is proposed:

De�nition 5. S is a G - stable set of equilibria of a game Γ if it is minimal
with respect to the following property G:

Property (G). S is a closed set of Nash equilibria of the game Γ satisfying:
for any game Γ̄ obtained from Γ by adding to each Si a �nite non-negative
number of new strategies that are either (weakly) dominated or never played
with strictly positive probability in any Nash equilibrium of Γ̄, and for any
ε > 0 there exists some δ0 > 0 such that for any completely mixed strategy
vector σ1 . . . σn (n players) and for any δ1 . . . δn (0 < δi < δ0), the perturbed
game where every strategy si ∈ S̄i of player i is replaced by (1− δi) si + δiσi
has an equilibrium ε-close to S.

Proposition 9 (Existence). Every normal form game Γ has a G - stable set
of equilibria.

Existence of G - stable sets comes easily from existence of stable sets of
equilibria for any normal form game as proved in Kohlberg and Mertens
(1986) since, by construction, the set of Nash equilibria is identical for any
considered game.
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Proposition 10 (Invariance). Every G - stable set is also a G - stable set of
any equivalent game (i.e. having the same reduced normal form).

The proof of invariance for G - stable sets is almost identical to the one
proposed for stable sets and F - stable sets. Note that a randomly redundant
strategy ṡi for player i would not change the set of new games since any
new strategy pro�le s̄−j ∈ S̄−j\S−j, is payo� equivalent for player j to any
(mixed) strategy σ̄−j within Σ−j that is una�ected by the introduction of ṡi.

Proposition 11 (Admissibility). Given any equilibrium in a G - stable set,
every equilibrium strategy for every player i is undominated.

For this property to be veri�ed, condition (2) is crucial since, as already
pointed out, it ensures that a (weakly) dominated strategy for player j could
not be made undominated by the introduction of a new strategy for some
player i. Once excluded this possibility the property comes easily following
the proof outlined for stable and F - stable equilibria.

Proposition 12 (Backwards induction). A G - stable set of any �nite game
Γ always includes an equilibrium payo� equivalent to a sequential equilibrium
of Γ.

Suppose not, then consider any extensive form representation Γe of the
initial game Γ and let σε be an ε-approximation of an equilibrium σ in the G -
stable set, xε the (n-tuple of) behavioural strategies equivalent to σε and µε

the vector of conditional probabilities that they imply on the information sets.
Extract a subsequence along which all these objects converge. Since σ is not a
sequential equilibrium, there exists a subgame Γ̃e out of the equilibrium path
and a player i not entering the subgame and whose strategy xεi is not optimal

within Γ̃e. Let Γ̃ =
{
Ĩ ,
{
S̃i

}
i∈Ĩ

, {ui}i∈Ĩ
}
be the normal form subgame, as

de�ned in Mailath and Swinkels (1993), corresponding to Γ̃e and W̃i the set
of all possible orderings ωi of player i's strategies in S̃i; each strategy in

a selected ordering is played with probability (1−ε)εk−1

1−εK being k its position

in the ordering and K = |S̃i|. Given an ordering wi, each strategy s̄i is
played with strictly positive probability in σi, introduce a new (behavioural)
strategy sωi,s̄i for player i in Γ̃e such that:

ui (sωi,s̄i , s−i) = ui (s̄i, s−i) + ε (1 + ε ui (ωi, s−i)) (4)

For any other player j 6= i, each new strategy sωi,s̄i is payo� equivalent to
the mixed strategy obtained from s̄i by allowing the corresponding ordering
ωi to be played in the subgame Γ̃ with strictly positive probability ε. In the
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new game, given σ−i, player i will enter the subgame Γ̃ and will always play
a best reply given his opponents' strategies.
Since, by assumption, in every sequential equilibrium strategy σi is not
played, for an appropriate choice of ε > 0 all the new strategies will be
never be part of any equilibrium of the new game.
Note that, given the proposed setting, it cannot be proved that a G - stable
set always contains a proper equilibrium.

To clarify the point consider the two player game represented in Figure
3: The unique sequential and proper equilibrium

(
[T ] ; 1

2
[L] + 1

2
[R]
)
cannot

Figure 3: Game B

be included in a G - stable set by introducing strategies that are not played
with strictly positive probability in equilibrium.

Figure 4: Game C1

Figure 5: Game C1.1 and Game C1.2

The drawback of G - stable sets is their dimension since they might be
not even included in a connected component of equilibria: given game C1

in Figure 4, consider the games C1.1 and C1.2 in Figure 5 each obtained by
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including in S2 a new strategy s3
2 that is never part of an equilibrium and

is not an inferior response in one stable set of the initial game. Then both
equilibria [s1

1, s
1
2] and [s2

1, s
2
2] should be included in a G - stable set of C1.

Therefore the de�nition of G - stable equilibria has to be reformulated in
order to include just games with strategy sets

{
S̄i
}
i∈I where Si ⊆ S̄i and

each strategy s̄i in S̄i\Si is either dominated or an a�ne combination of pure
strategies in Si with s̄i = (1± ε) si ± ε σi where si ∈ Si, σi ∈ Σi\∂Σi and
ε ∈ R arbitrarily small not necessarily di�erent from zero.

Finally, rede�ne condition (2) and (3) for every player j ∈ I as:

uj (s̄i, sj, s̄−ij) = uj (σ̄i, sj, σ̄−ij) for ∀sj ∈ S̄j and ∀s̄−j ∈ S̄−j\S−j
(5)

where σ̄−j belongs to ∆S−j and lim
ε→0

σ̄i = lim
ε→0

s̄i for every player i 6= j.

Given this setting both the de�nition of G - stable equilibria and all the
outlined poofs can be easily replicated. Note however that the introduction
of strategies that can be part of a Nash equilibrium is now allowed. This
allows the proof of backwards induction property to be extended to ensure
that a G - stable set always includes a sequential equilibrium.

Finally, reconsider the player splitting property: it is easily veri�ed in the
setting of stable sets of equilibria as de�ned in Kohlberg and Mertens (1986)
as proved in Mertens (1989). Therefore it has to be evaluated just the e�ect of
the introduction of additional strategies. If player i had a unique agent k the
proof would be immediate. Thus consider k ≥ 2: in the agent normal form,
add a new strategy s̃i,k = (1± ε) si,k± ε σi,k for each agent k of player i with
k = 1, 2, . . . . . . n. Assume that any strategy pro�le {s̄i,k}nk=1 6= {s̃i,k}

n
k=1

including at least one new strategy is payo� equivalent to lim
ε→0

{s̄i,k}nk=1

for any player j 6= i while each strategy pro�le
(
s−ij, {s̃i,k}nk=1

)
is payo�

equivalent to some behavioural strategy σ̃−j ∈ Σ−j depending on s−ij with

lim
ε→0

(
σ̃−ij, {σ̃i,k}nk=1

)
=
{
s−ij, lim

ε→0
{s̃i,k}nk=1

}
. Note that when some agent k

of player i chooses a new strategy s̃i,k the payo� to any other agent k
′
is

irrelevant given that his strategic choices depend only on the strategies of
players j 6= i.

Therefore even if in the agent normal form game the introduction of a
new strategy for each agent k of player i leads to more than a unique new
strategy for player i,the resulting game is strategically equivalent to a game
obtained from Γ by including just one new strategy for player i.

Conversely if any new strategy were added to the strategy set of an agent
the resulting new strategy pro�les could be easily added to the strategy set
of player i.
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4 Stability and stochastic games

Given the initial game Γ =
{
I, {Si}i∈I , {ui}i∈I

}
, consider a collection Pε of

perturbed games Γε derived from Γ by replacing each strategy si ∈ Si of
each player i by (1− εi) si + εi σi with εi > 0 for every i and σi ∈ Σi\∂Σi

completely mixed strategy. Let Γ̃ be an in�nite stochastic6 game such that,
at every stage, the game stops with probability (1− δ) with δ > 0 arbitrarily
small. At the �rst stage Γ is played and, at every following stage k > 1,
a perturbed game Γkε in Pε occurs. The completely mixed strategy pro�le{
σ̂ki
}
i∈I characterizing the perturbed game in Pε played at stage k represents

the state of nature. At every stage the completely mixed strategy σki for every

player i depends just on the history hki de�ned as h
k
i =

{
vσ1
−i
, vσ2

−i
· · · , vσk−1

−i

}
where σh−i represents the strategy pro�le played at stage h by player i's
opponents and vσh

−i
= BRi

(
σh−i
)
7.

Thus, any equilibrium of the stochastic game Γ̃ is characterized, at every
stage k, by a Nash equilibrium σ̃k of the corresponding game Γkε since each
player always chooses a best response to his opponents' strategies: even if
a not best response strategy might induce more favourable future states of
nature, every future game has a vanishing probability not higher than δ.

Within the outlined class, consider just stochastic games with at least
one quasi-absorbing state of nature and whose states of nature

{
σ̂ki
}
i∈I for

every player i at each stage k depend uniquely on
{
vσk−1
−i

}
i∈I

according to a

set of bijective functions Fi : ∆Si → Σi\∂Σi. At stage k a state of nature{
σ̂ki
}
i∈I is quasi-absorbing if it could characterize every following stage in an

equilibrium of the stochastic game.
Given the in�nite sequence of pairs

{
Γkε , σ̃

k
}∞
k=1

for each stochastic game,
rede�ne the stable sets of equilibria as follows:

De�nition 6. S is an S-stable set of equilibria of a game Γ if it is a set of
equilibria, minimal with respect to the following property S:

Property (S). S is a closed set of Nash equilibria of Γ satisfying: for every
λ > 0 there exists some collection {εi}i∈I such that for any stochastic game
there is a convergent sequence

{
Γkε , σ̃

k
}∞
k=1

with limit point λ-close to {Γ, S}.

Proposition 13 (Existence). Every normal form game Γ has an S-stable
equilibrium.

6See Neyman and Sorin (2003).
7Every perturbed game allowed by the de�nition of stable sets in Kohlberg and Mertens

(1986) is just a special case of the stochastic game Γ̃ in which the state of nature is unique
and independent of the history.

11



Existence of an S-stable set of equilibria for any normal form game Γ
is implied by the existence of a hyperstable set of equilibria as proved by
Kohlberg and Mertens (1986): the limit of every convergent sequence of
equilibria

{
σ̃k
}∞
k=1

is just an equilibrium of a perturbed game. Besides, by
construction every stochastic game has a quasi absorbing state hence admits
a convergent sequence.

The properties of admissibility, invariance, iterated dominance and for-
ward induction come immediately.

First, the limit of every convergent sequence is an equilibrium and a com-
pletely mixed strategy pro�le; hence admissibility is easily satis�ed. Second
the introduction of a randomly redundant strategy is immaterial since at
every stage k > 1 all strategies are identically perturbed. Moreover this vari-
ation does not modify the sets of best replies that determine the history hki
up to any stage.

Proposition 14 (Backwards induction). A S-stable set of any �nite game
Γ always includes a proper, hence sequential, equilibrium of Γ.

Consider the initial game Γ and de�ne for every player i the set Ŝi of all
possible orderings over his pure strategies in Si. Given an ordering each strat-

egy is played with probability (1−ε)εn−1

1−εN being n its position in the ordering
and N = |Si|. Therefore each ordering corresponds to a unique completely
mixed strategy. Finally assume that, at every stage k > 1, the perturbed
strategy σ̂ki for every player i is a (mixed) ordering of his strategies that
corresponds to a best response to his opponents' strategies at stage k − 1.
Then any convergent sequence of equilibria

{
σ̃k
}∞
k=1

of the resulting stochas-

tic game Γ̃ has an ε - proper equilibrium as its limit point. Conversely any
sequence

{
σ̃k
}∞
k=1

with σ̃k identically equal, for every k > 1, to a given ε -

proper equilibrium σ̇ε of the initial game Γ converges and
{
BRi

(
σ̇ε−i
)}

i∈I
characterize a quasi absorbing state of nature.

Proposition 15 (Player splitting). Given a partition of the information set
of some player, such that no play intersects two di�erent partition elements,
consider the new game obtained by letting a di�erent agent of this player man
each of these partition elements, and receive the same payo� as this player
for those play that intersect his own information sets-he receives an arbitrary
payo� on the other plays. This new game, where this player is replaced by
these agents, has the same stable sets as the old game.

Given the initial game Γ consider the new game aΓ where player i is
replaced by the set of his agents indexed by k with k = 1, 2, . . . . . . n. At every
stage k > 1 the state of nature characterizing Γkε can be easily replicated
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in aΓkε : the main di�erence between the two games is that a single player
will tremble in a completely correlated way while, once splitted, his agents
tremble independently. However since only one partition of the game is
going to occur, only the marginal probabilities matter. This implies that
the histories themselves of both games can be overlapped: since every agent
manage just one element of the realized partition of the information set of
player i, his best response will depend just on σk−i not on the other agents'
strategies.

Finally, the small worlds and decomposition axioms come easily provided
that the history is de�ned as a sequence of best replies. If the strategies of a
set of players do not a�ect a player's payo�s a fortiori they won't a�ect his
best replies.

5 Conclusions

The paper introduces two major contributions: �rst the class of perturbed
games is widen by extending the concept of perturbations to a�ne combi-
nations of pure strategies. Loosely speaking an equivalence relation is in-
troduced so that two perturbed games are equivalent if and only if their
limit game is identical. Second a link with stochastic games seem to emerge
quite naturally. This approach can be regarded as a dynamic version of the
de�nition of stable sets as proposed in Kohlberg and Mertens (1986). It re-
mains unclear if the introduction of new properties might lead to prefer this
second approach with respect to G - stable equilibria or M - stable equilibria
proposed by Mertens (1989). A �rst insight could be o�ered by determining
the geometric relation between the di�erent sets following the contribution
by Govindan (1995).

Appendix A: Gul example

The three player game proposed by Gul where Player 1 starts by either
taking an outside option [s1

1] which yields payo�s (2, 0, 0) or moving into a
simultaneous move subgame represented by Figure 6 where each of the three
players has two choices.
It is well known that this game admits a unique sequential equilibrium σ∗ ={

1
2

[s2
1] + 1

2
[s3

1] ; 1
2

[s1
2] + 1

2
[s2

2] ; 1
2

[s1
3] + 1

2
[s2

3]
}
; however, there exists a stable

set of equilibria {[s1
1] ; [s1

2] ; [s1
3]} ∪ {[s1

1] ; [s2
2] ; [s2

3]} that doesn't contain it.
The sequential equilibrium is preferred by player 1 to any scenario within

the stable set. Despite player 1 moves �rst there is no chance for him to

13



Figure 6: Simultaneous move sub-game

induce σ∗: even if the equilibrium strategy
{

1
2

[s2
1] + 1

2
[s3

1]
}

were played
within the subgame reached with vanishing probability ε, both player 2
and player 3 would prefer to play, respectively, strategy s1

2 and strategy
s1

3. Since, given the de�nition of stable sets, player 1 has no chance to
change the perturbation of his pure strategies, he will con�rm the choice of
(1− ε) [s1

1] + ε
(

1
2

[s2
1] + 1

2
[s3

1]
)
.

Consider the introduction of a dominated strategy s4
1 for player 1. Equation

(6) implies that strategy s4
1 is strictly dominated by the outside option. Sec-

ond, equations from (7) to (10) de�ne the new payo�s given the dominated
strategy s4

1. As an example, equation (7) implies that the strategy pro�le
(s4

1, s
1
3) corresponds for player 2 to the strategy pro�le (s2

1, s
1
3) in the original

game.

Figure 7: Dominated strategy for Player 1

u1

(
s4

1, s−1

)
= ui

(
s1

1, s−1

)
− ε for ∀s−1 ∈ S−1 ε > 0 (6)(

s4
1, s

1
3

)
=
(
s2

1, s
1
3

)
(7)(

s4
1, s

2
3

)
=
(
s3

1, s
2
3

)
(8)(

s4
1, s

1
2

)
=
(
s2

1, s
1
2

)
(9)(

s4
1, s

2
2

)
=
(
s3

1, s
2
2

)
(10)

Therefore given s4
1, if player 3 played s1

3 then player 2 would play s1
2 =

BR2 (s2
1, s

1
3) with associated payo� 3; however, if player 2 played s1

2 then
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player 3 would play s3
2 with associated payo� 1 that is what he would get in

the original subgame if, once given the strategy pro�le (s1
3, s

1
2) player 1 could

freely choose between s2
1 and s3

1. In other terms the dominated strategy
mimics what would happen in the original game if player 1's outside strategy
s1

1 where replaced by an n-tuple of di�erently perturbed strategies as in the
approach characterizing F - stable equilibria.

Appendix B

The proof of the property of backwards induction of F - stable equilibria is
here graphically illustrated for a speci�c class of games.
Let Γ =

{
I, {Σi}i∈I , {ui}i∈I

}
be a �nite n player game, where I is the set of

players indexed by i, Σi player i's compact, convex strategy-polyhedron (in
Euclidean space) being Si his pure strategy set where Si = {s1i, s2i, s3i} for
every player i.

Figure 8: Proper equilibria perturbation

Consider the perturbed game Γ̃ where the strategy simplex Σi of each
player i is replaced by the polyhedron Σ̃i within Σi represented in Figure 8
and de�ned as follows: given a player i's pure strategy, e.g. s1i, replace it
with two new strategies each represented by a distinct lottery. Each lottery
picks that strategy s1i with probability 1−ε

1−εn . Strategy s2i is chosen with

probability ε 1−ε
1−εn in the �rst lottery (resp. ε2 1−ε

1−εn in the second lottery) and

strategy s3i with probability ε2 1−ε
1−εn (resp. ε 1−ε

1−εn in the second lottery). It is

well known that any equilibrium of Γ̃ is an ε-proper equilibria.

On the other hand, in the proof of the property of backwards induction,
each strategy is assumed to be replaced by the six lotteries represented by the
scheme in �gure 9 again for strategy s1i. Each player chooses a strategy and
an ordering over his pure strategies. Nature picks player's favourite strategy
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Figure 9: New strategy set
Lottery probabilities Strategy orderings

1− δ s1i s1i s1i s1i s1i s1i

δ
(

1−δ
1−δ3

)
s1i s1i s2i s2i s3i s3i

δ2
(

1−δ
1−δ3

)
s2i s3i s1i s3i s1i s2i

δ3
(

1−δ
1−δ3

)
s3i s2i s3i s1i s2i s1i

s1i with probability 1 − δ, and, with probability δ, a nested lottery de�ned
as follows: given the chosen ordering the �rst ranked strategy is chosen with
probability 1−δ

1−δ3 the second ranked strategy with probability δ 1−δ
1−δ3 and the

last strategy with probability δ2 1−δ
1−δ3 .

Figure 10: F-stable perturbation

Player i's new strategy polyhedron within Σi is represented in Figure 8
and, for an appropriate choice of δ, is identical to the one represented in
Figure 10. Hence the result.
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