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Abstract 

The processing of numbers has been shown to induce shifts of spatial attention in 

simple probe detection tasks, with small numbers orienting attention to the left and 

large numbers to the right side of space. Recently, the investigation of this spatial-

numerical association has been extended to mental arithmetic with the hypothesis 

that solving addition or subtraction problems may induce attentional displacements 

(to the right and to the left respectively) along a mental number line (MNL) onto which 

the magnitude of the numbers would range from left to right, from small to large 

numbers. Here we investigated such attentional shifts using a target detection task 

primed by arithmetic problems in healthy participants. The constituents of the addition 

and subtraction problems (first operand; operator; second operand) were flashed 

sequentially in the centre of a screen, then followed by a target on the left or the right 

side of the screen which the participants had to detect. This paradigm was employed 

with arithmetic facts (Experiment 1) and with more complex arithmetic problems 

(Experiment 2) in order to assess the effects of the operation, the magnitude of the 

operands, the magnitude of the results, and the presence or absence of a 

requirement for the participants to carry or borrow numbers. The results showed that 

arithmetic operations induce some spatial shifts of attention, possibly through a 

semantic link between the operation and space. 
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2.1Introduction 

Numerous behavioural, neuroimaging and neuropsychological findings support 

the assumption that a functional link exists between numbers and space (for reviews, 

see Hubbard, Piazza, Pinel, & Dehaene, 2005; Walsh, 2003). This association has 

been conceptualized by the idea of the mental number line (MNL), a cognitive 

representation of the magnitude of numbers where small numbers are represented 

spatially on the left and large numbers on the right (Dehaene, 1992). This idea is a 

useful metaphor for interpreting the observation of shifts of visuospatial attention 

following the mere presentation of numerical information. Indeed, visual targets are 

detected faster in the left hemifield after the presentation of a small digit cue and in 

the right hemifield when they are preceded by larger digits (Fischer, Castel, Dodd, & 

Pratt, 2003). However, this effect was not always observed (Bonato, Priftis, Marenzi, 

& Zorzi, 2009), and when participants were asked to imagine a right to left number 

line, a reverse effect was found (Galfano, Rusconi, & Umiltà, 2006; Ristic, Wright, & 

Kingstone, 2006). Moreover, the position of numbers in memorized series of four 

digits could overcome the effect of numerical magnitude upon attention (van Dijck, 

Abrahamse, Majerus, & Fias, 2013). Interestingly, a recent study showed that, in 

cancellation tasks, the distribution of participants’ hits was shifted to the left for small 

and to the right for large numbers (Di Luca, Pesenti, Vallar, & Girelli, 2013). However, 

this effect was maximized when the numerical cues were irrelevant to the task i.e., 

when used as distractors rather than targets. Conversely, in a temporal order 

judgement paradigm, when targets appeared at the same time, the mere 

presentation of digits did not bias participants’ decisions unless they were asked to 

report the digit cue after performing the task (Casarotti, Michielin, Zorzi, & Umiltà, 
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2007). This suggests that the type and depth of numerical processing required by the 

tasks modulate the way spatial attention biases occur.  

Unsurprisingly given the salience of the numbers’ magnitude in this type of 

task, solving arithmetic problems was also shown to cause spatial attentional shifts. 

An overestimation bias was observed when participants were asked to solve addition 

problems and an underestimation bias was observed when participants were asked 

to solve subtraction problems. This effect was termed operational momentum (OM; 

McCrink, Dehaene, & Dehaene-Lambertz, 2007). It occurs with both symbolic and 

non-symbolic material (Knops, Viarouge, & Dehaene, 2009a; McCrink & Wynn, 

2009), and was observed with different response modalities such as multiple choice 

paradigms (Knops et al., 2009a; Knops, Zitzmann, & McCrink, 2013; McCrink & 

Wynn, 2009), and pointing to the estimated response on a line flanked line by 

numbers (Pinhas & Fisher, 2008). However, no OM effect was observed with 

problems involving carrying, perhaps because they would rely more on verbal 

mechanisms than on attentional processes (Lindemann & Tira, 2011). The most 

popular interpretation of this bias is that mental calculation is processed via "motion" 

or a "walk" along the MNL in the direction related to the operation (i.e., to the left for 

subtraction and to the right for addition) where the participant goes “too far”, which 

leads to underestimation or overestimation for subtraction or addition problems 

respectively (e.g., McCrink et al., 2007). Indeed, the OM effect could result from the 

combination of compressed number-space mapping (i.e., the MNL) and an 

uncompressed computation on this mapping. This hypothesis is supported by a 

recent computational model showing that performing arithmetic problems relies upon 

basic spatial functions such as shifting attention on a spatial continuum (Chen & 
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Verguts, 2012). Nevertheless, this model does not explain the absence of an OM 

effect for problems that involve carrying (Lindemann & Tira, 2011). 

At the neurofunctional level, it has been shown that the brain activations 

elicited by the resolution of large addition problems (e.g., 50 ± 26) resemble 

activations induced by rightward saccades (Knops, Thirion, Hubbard, Michel, & 

Dehaene, 2009b). Indeed, a classifier was built to predict whether participants were 

solving addition problems or subtractions based upon the activation of the superior 

parietal cortex when their eyes shifted to the right or to the left. The classifier could 

accurately distinguish addition trials but no such precision could be obtained for 

subtractions. It has also been shown that participants who calculate the approximate 

outcomes of addition or subtraction problems and are afterwards required to select 

the number closest to their estimation from seven proposed results presented to 

them in the form of a circle, prefer to select the proposals located on the upper right 

of the circle in the case of addition problems and on the upper left of the circle in the 

case of subtraction problems (Knops et al., 2009a). Altogether, these observations 

suggest that spatial-attentional processing is employed in solving arithmetic 

problems. 

Nevertheless, the idea that solving arithmetic problems leads to spatial shifts 

of attention due to movements along a spatial-numerical continuum related to adding 

or subtracting operands is still a matter of debate. Indeed, problems where zero is the 

second operand (hereinafter "zero problems") have been shown to induce spatial 

biases to the right or to the left in the case of addition or subtraction problems, 

respectively (Pinhas & Fischer, 2008), although no “movement” on the MNL is 

required in this case. The spatial biases in arithmetic could therefore simply result 

from a competition between localized activation of the operands, the result, and a 
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semantic link between the type of operation and space (i.e., right-addition; left-

subtraction; Pinhas & Fischer, 2008). Moreover, no previous studies examining 

spatial bias in arithmetic have used basic and complex arithmetic problems that 

simultaneously controlled some variables such as the magnitude of the operands and 

the outcomes or the type of problems (i.e., carry vs. non-carry problems) with 

symbolic material. Indeed, in Lindemann and Tira 's study (2011), the answers 

required a production in a non-symbolic notation (i.e., with dot collections). For 

problems involving carrying, the second operands of addition problems were 

significantly larger than for subtraction problems (addition: 38±12, subtraction: 21±9; 

t(11)=3.575, p<.005), and the problems not involving carrying had both the smallest 

and the largest outcomes among the set of problems presented. Finally, the results of 

the addition problems used by Knops et al. (2009b) in their neuroimaging study were 

also significantly larger than the results of the subtraction problems. Given that larger 

magnitudes can induce attentional shifts to the right and smaller magnitudes to the 

left per se (e.g., Fischer et al., 2003), it is critical to control for the magnitude of the 

results of addition and subtraction problems. Indeed, using larger results for addition 

than for subtraction problems makes it difficult to isolate the effect of the type of 

operation and the effect of the magnitude of the numbers that are being manipulated. 

To assess whether solving addition and subtraction problems in symbolic 

notation induces shifts of spatial attention, we adapted the target detection task 

initially used by Fischer and his colleagues (2003), replacing the digit shown before 

the target with an arithmetic problem. Participants thus completed a target-detection 

task after solving arithmetic problems. If solving addition and subtraction problems 

gives rise to shifts of visuospatial attention, it is expected that addition problems 

would facilitate the detection of right-sided targets and/or impair the detection of 
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targets in the left hemifield and that subtraction problems would facilitate the 

detection of targets located on the left visual field and/or impair detection in the right 

hemifield. Moreover, if solving arithmetic problems is akin to a progression along the 

MNL, the larger the second operand, the larger the attentional bias should be for both 

operations. Finally, as the OM effect has so far only been observed in problems that 

do not involve carrying (Lindemann & Tira, 2011), an interaction between the side of 

the target and the operation solved would appear only in these problems if the OM 

effect is related to spatial attention shifts. Two experiments were performed; the first 

used arithmetic facts (Experiment 1), and the second used more complex arithmetic 

problems (Experiment 2), in order to assess the effect of the magnitude of the 

operands and of the results, and of the presence or absence of carrying or borrowing 

in the problem. 

Experiment 1: Arithmetic Facts 

Method 

Participants 

Twenty-four French-speaking university students (mean age = 20.7 ± 1.9 

years; 19 females; 22 right-handed) participated in this experiment to receive course 

credits. They were not aware of the hypotheses tested. The experiment was non-

invasive and was performed in accordance with the ethical standards established by 

the Declaration of Helsinki. 

Task and stimuli 

Participants were asked to perform two tasks successively in each trial: (i) to 

answer aloud to visual arithmetic problems presented at the centre of the screen, 



8 

 

then (ii) as quickly as possible to detect a target appearing on the left or right side of 

the screen by pressing with their left or right hand the left or right response key 

separated by 17 cm (i.e., keys “q” and “m” on the AZERTY keyboard). 

The arithmetic problems were presented in Courier New 40 point font. We 

used the 18 addition problems and 18 subtraction problems from Pinhas and Fischer 

(2008) with operands from 0 to 8 and responses ranging from 1 to 9 (see 

Supplemental Material Table 1). This list excluded problems starting with 0, 1, or 9 

because the solution was predictable from the magnitude of the first operand, and 

contained a total of 12 problems with zero as second operand (i.e., 6 for each 

operation). All the problems were presented in 4 successive blocks of 72 

pseudorandomly ordered trials, each problem being presented twice in each block, 

once before a target on the right and once before a target on the left, for a total of 

288 trials. The target for detection was the shape of a star (size:  3.5° of visual angle) 

appearing at about 14° of visual angle on the left or right side from the centre of the 

screen. We also added a control task wherein the participants had to detect the same 

targets but without first solving a problem, so as to establish a baseline for each 

participant for the detection of targets in both hemifields in a non-calculation situation. 

There were 40 trials comprising 3 symbols (i.e., a triangle, a square and a clover) 

flashed successively in the centre of the screen at the same pace as the operands of 

the problems in the arithmetic condition before the target appeared on one side or 

the other.  

Procedure 

The participants were seated at 50 cm from a 15-inch computer screen such 

that the midline of their face was aligned with the centre of the screen, with their head 

positioned in a chin-rest to limit inopportune movements as much as possible. 
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Stimulus presentation and data collection were programmed using E-Prime 1 

(Schneider, Eschman, & Zuccolotto, 2002). The latencies of the verbal responses to 

problems were recorded with an interfaced microphone while accuracy was assessed 

on-line by the experimenter. 

For the calculation task, the sequence of events was as follows. A fixation dot 

was presented for 1000 ms and was replaced sequentially by the first operand (O1), 

the operator (+ or -), and then the second operand (O2). Each of these elements was 

presented for 400 ms (Figure 1). A sequential mode was used to prevent participants 

from performing a visual scan from left to right while reading the problem, and to 

ensure that they were fixing the centre of the screen during calculation. The verbal 

answer prompted a target to appear to the left or the right of the screen with equal 

probability after a 450 ms delay. This delay was used as it falls within the time 

interval in which attentional cues produce their maximal gain in classical phasic 

alertness paradigms, and it was one of the delays which produced the most marked 

attentional bias in the Fischer et al. study (2003). The participants were asked to 

respond with their left hand if the target appeared at the left side of the screen and 

with their right hand if the target was appeared at the right side. For the baseline task, 

the participants had to say aloud the French word “Top” when the clover appeared on 

the screen to prompt the appearance of the target. Then they had to detect a target 

by pressing the right response-key if the target was on the right and on the left 

response-key if the target was on the left. 

The session always started with the baseline condition; the whole experiment 

lasted about 35 minutes. 

--------------------------------------- 

Insert Figure 1 about here 

---------------------------------------- 
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Results 

Arithmetic problem solving: Response latencies (RLs) and accuracy 

Trials where the answer to the arithmetic problem was incorrect (1.3%) were 

excluded from the analyses on RLs; trials where the microphone failed to trigger 

(3.7%) were excluded from all analyses. 

The participants performed equally well in both operations (Addition: 98.6±1.8 

%; Subtraction: 98.8±2.2 %; t(23)=.21, ns). Moreover, they answered addition and 

subtraction problems equally quickly (Addition: 938±213 ms; Subtraction: 933±199 

ms; t(23)=.51, ns). 

Target detection 

Trials where the answer to the arithmetic problem was incorrect, where the 

microphone failed to trigger, and where participants failed to detect the targets 

(0.74%) were excluded from the following analyses. 

First, a repeated-measures analysis of variance (ANOVA) was carried out on 

the median RLs using CONDITION (Control; Addition; Subtraction) and SIDE (Left; 

Right) as factors. CONDITION had a significant main effect (F(2,46)= 21.255, p<.001, 

η²=.48) indicating that participants were slower to detect a target after solving an 

addition problem (320±32ms; t(23)=4.944, p<.001) or a subtraction (315±28ms; 

t(23)=4.338, p<.001) problem than in the control condition (293±22 ms). They also 

took longer to detect the target after solving an addition than a subtraction problem 

(t(23)=3.024, p<.01). Crucially, there was no main effect of SIDE showing that the 

participants were not generally faster at detecting a target on one side or the other 

(Left: 310±27 ms; Right: 309±24 ms; F<1). Moreover, there was a significant 

interaction between CONDITION and SIDE (F(2,46)=4.902, p<.02, η²=.176; Figure 2A). 
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Paired-sample t-tests revealed a significant difference between the two operations for 

left-sided targets (t(23)=4.179, p<.001, one-tailed t-test) indicating that the 

participants were faster at detecting targets in the left hemifield after solving a 

subtraction (312±29 ms) than after solving an addition (322±35 ms). No such 

difference between the two arithmetic conditions was observed for targets on the 

right side (Right Addition: 318±30 ms; Right Subtraction: 318±28 ms; t(23)=.036, ns). 

There was also a significant difference in the detection of targets on the right side 

compared to targets on the left side when solving a subtraction problem (t(23)=1.877, 

p<.04, one-tailed t-test) but no difference between the two sides of the screen after 

an addition problem (t(23)=1.142, ns). Finally, participants detected targets on the left 

side and on the right side equally quickly in the control task (Left: 296 ± 26 ms; Right: 

291±24 ms; t(23)=1.103, ns). 

--------------------------------------- 

Insert Figure 2 about here 

---------------------------------------- 

Zero problems 

As it was demonstrated that zero problems could induce spatial bias (Pinhas & 

Fischer, 2008), we conducted an ANOVA focusing on zero problems from our list 

with OPERATION and SIDE. This analysis did not show a main effect of OPERATION (F<1) 

or of SIDE (F<1), but it revealed a significant interaction between OPERATION and SIDE 

(F(1,23)=6.001, p<.03, η²=.207). Paired sample t-tests showed that the detection of 

targets was faster on the left (318±31 ms) than on the right (325±33 ms) side after 

solving a subtraction problem (t(23)=1.766, p<.05, one-tailed t-test), while the reverse 

difference was not observed after solving an addition problem (Left: 325±30 ms; 

Right: 320±30 ms; t(23)=1.249, ns). Moreover, detecting targets on the right side was 

faster after addition than after subtraction problems (t(23)=2.447, p<.02, one-tailed t-



12 

 

test); on the left side, participants were slower after an addition problem than after a 

subtraction problem (t(23)=1.721, p<.05, one-tailed t-test). 

Experiment 2: Complex Arithmetic Problems with or 

without Carrying or Borrowing 

Experiment 1 showed an interaction between the operation and the time taken 

to detect targets. In the context of a global slowing down in the detection of the target 

in the arithmetic conditions, solving subtraction problems decreases the detection 

time for targets in the left hemifield  more than addition problems; the reverse effect is 

not observed in the right hemifield. The fact that the effect is restricted to the left 

hemifield following subtraction problems may be the result of only using small 

numbers. As all the operands in this experiment ranged from 1 to 9, a more general 

association between small magnitudes and left space could overwhelm any potential 

bias induced by solving addition problems. Moreover, the processes involved in the 

resolution of these simple addition problems may vary among participants. Some 

may indeed rely more on direct retrieval of the answer from long-term memory 

(Campbell & Xue, 2001; Dehaene & Cohen, 1995, but see Fayol & Thevenot, 2012), 

which may have elicited fewer strategies recruiting visuo-spatial processes. 

Experiment 2 was conducted to test whether an attentional bias would occur while 

solving problems of a larger range that require participants to rely more heavily on 

actual calculation. Given that OM occurred only for problems which did not involve 

carrying (Lindemann & Tira, 2011), we created a set of problems that controlled the 

presence of carrying and borrowing operations. 

Method 

Participants 



13 

 

Twenty-eight French-speaking students (mean age=20.6±2.1 years; 20 

females; 25 right-handed) participated in this experiment to receive course credits. 

They had not participated in Experiment 1 and were not aware of the objectives of 

the study. The experiment was non-invasive and was performed in accordance with 

the ethical standards established by the Declaration of Helsinki. 

Tasks, stimuli and procedure 

Experiment 2 was identical to Experiment 1 except for the arithmetic problems 

used as primes. A list of multi-digit problems was generated on the basis of the 

following considerations (see Supplemental Material Table 2). The magnitude of the 

first operand ranged from 22 to 89. The amount of carry and non-carry problems for 

additions and subtractions was equalized (i.e., 50 %) as the OM effect has been 

shown to arise only in non-carry problems (Lindemann & Tira, 2011). We also 

selected 3 ranges for the second operand (O2): small (i.e., 2 or 3), medium (i.e., 4, 5 

or 6) and large (i.e., 7 or 8), which resulted in a total of 144 different problems, with 

12 problems per condition (e.g., Addition/Carry/Small O2). A mean of the results for 

each combination of the 3 factors was taken and equilibrated (range: 23-89; mean for 

addition problems 58±16; subtraction problems: 57±18) such that, when conducting 

an ANOVA on the magnitude of the results with OPERATION (Addition; Subtraction), 

O2 RANGE (Large; Medium; Small), and TYPE (Carry; Non-Carry), no main effect nor 

interaction reached significance (all p-values>.1), thus excluding any shifts of spatial 

attention that would be due to bias of the magnitude of the results. The whole set of 

problems was repeated only twice (i.e., once associated with a left and once 

associated with a right target) to ensure that participants would not memorize the 

results. The experiment lasted about 45 minutes. 
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Results 

Trials where the answer to the arithmetic problem was incorrect (15.3 %) were 

excluded from the analyses on RLs and those where the microphone failed to trigger 

(1.7%) from all the analyses on problem solving. Moreover, trials where the 

participants failed to detect the target correctly (0.68%) were also removed from the 

analyses on target detection.  

Arithmetic problem solving: 

* RLs: 

We conducted a repeated-measures ANOVA on the median RLs of correctly 

solved problems with OPERATION (Addition; Subtraction), O2 RANGE (Large; Medium; 

Small) and TYPE (Carry; Non-Carry). There was a main effect of OPERATION (F(1, 

27)=33.484, p<.001, η²=.554) showing that the participants were slower at 

subtraction problems (1421±251 ms) than at addition problems (1311±259 ms). A 

main effect of TYPE (F(1, 27)=171.602, p<.001, η²=.864) showed that participants 

took longer to respond to carry problems (1699±367 ms) than to non-carry problems 

(1034±163 ms). The main effect of O2 RANGE was also significant (F(2, 54)=76.834, 

p<.001, η²=.74): participants responded more quickly to problems with small O2 

(1187±204 ms) than to problems with a medium O2 (1353±255 ms; t(27)=8.942, 

p<.001). In turn, participants responded more quickly to problems with a medium O2 

than those with a large O2 (1559±326 ms; t(27)=7.446, p<.001). There was also a 

significant OPERATION by TYPE interaction (F(1, 27)=12.389, p<.001, η²=.315). Paired-

sample t-tests revealed a difference between the two operations for carry (Addition: 

1612±388 ms; Subtraction: 1785±370 ms; t(27)=4.821, p<.001) and non-carry 

(Addition: 1010±167 ms; Subtraction: 1057±161 ms; t(27)=5.529, p<.001) problems, 

and a difference between the TYPE of problems within the addition (t(27)=10.749, 
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p<.001) and subtraction (t(27)=14.144 , p<.001) problems; there was a larger 

difference between operations for carry problems than for non-carry problems 

(t(27)=3.52, p<.005). A significant interaction between TYPE and O2 RANGE (F(2, 

54)=75.113, p<.001, η²=.736) revealed that carry problems with a large O2 

(2092±543 ms) were solved more slowly than medium O2 problems (1652±365 ms; 

t(27)=7.422, p<.001), and that medium O2 problems were solved more slowly than 

small O2 problems (1353±271 ms; t(27)=10.137, p<.001). For non-carry problems, 

participants responded more slowly to medium O2 problems (1053±171 ms) than 

both large (1027±166 ms; t(27)=2.132, p<.05) and small (1021±164 ms; t(27)=2.255, 

p<.05) O2 problems. 

* Accuracy: 

A similar ANOVA on the mean error rates revealed a main effect for each 

variable. The main effect of OPERATION revealed that addition problems (13.52±8.82 

%) were solved more accurately than subtraction problems (17.06±9.95 %; F(1, 

27)=13.335, p<.005, η²=.331). The main effect of TYPE showed that error rates were 

higher for carry (22.37±13.72 %) than for non-carry (8.28±5.7 %; F(1, 27)=49.089, 

p<.001, η²=.645) problems. As regards O2 RANGE (F(2, 54)=46.356, p<.001, 

η²=.632), paired-sample t-tests showed that the error rates were higher for problems 

with a large O2 (20.35±11.73 %) than for problems with a medium-sized O2 

(15.81±9.03 %; t(27)=4.606, p<.001), which, in turn, showed higher error rates than 

problems with a small O2 (9.71±7.8 %; t(27)=6.578, p<.001). There was also a 

significant interaction between OPERATION and TYPE (F(1, 27)=16.179, p<.001, 

η²=.375): addition problems (18.9±13.4 %) were solved more accurately than 

subtraction problems (25.84±15.17 %) where carrying was involved (t(27)=4.451, 

p<0.001) but not problems where carrying was not involved (Addition: 8.13±5.96 %; 
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Subtraction: 8.28±6.77 %; t(27)=.159, ns). There were significant interactions 

between TYPE and RANGE (F(1, 27)=36.052, p<.001, η²=.572), and between 

OPERATION and O2 RANGE (F(2, 54)=6.569, p<.005, η²=.196), that were qualified by 

the triple interaction between OPERATION, TYPE and O2 RANGE (F(2, 54)=5.787, 

p<.005, η²=.177). In order to decompose the latter, we conducted separate ANOVAs 

for each OPERATION, with TYPE and O2 RANGE. Both ANOVAs revealed the main 

effects of TYPE and O2 RANGE, and a significant interaction. Paired-sample t-tests 

showed that subtraction problems involving carrying were solved less accurately than 

problems which did not involve carrying, whatever the RANGE of the O2 (all p-

values<.05) whereas for addition, problems involving carrying were solved less 

accurately than problems which did not involve carrying where there were large O2 

(t(27)=5.912, p<.001) and medium O2 (t(27)=6.055, p<.001) but not where there was 

a small O2 (t(27)=1.805, p>.05). 

Target detection: RLs 

As the structural variables of arithmetic problems could not be used to classify 

items in the control task, we first globally compared the control condition to the 

arithmetic condition. To do so, the RLs of target detection after additions and 

subtractions were averaged and entered into an ANOVA with TASK (Control; 

Arithmetic) and SIDE (Left; Right) as factors. This revealed that TASK had the following 

significant main effect: participants were generally slower at detecting a target after 

solving an arithmetic problem (332±37 ms) than they were in the neutral condition 

(289±25 ms; F(1, 27)=58.731, p<.001, η²=.686). There was no significant main effect 

of SIDE (Left: 312±27 ms; Right: 308±31 ms; F(1, 27)=2.156, p=.154) and no 

interaction between TASK and SIDE (F<1). We also compared the RLs to detect 

targets on the right and left in the control task; this comparison showed that 
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participants detected targets equally quickly on both sides (Left: 291±26 ms; Right: 

287±27 ms; t(27)=1.093, ns). 

A repeated-measures ANOVA was then conducted on the median RLs in the 

arithmetic task with OPERATION (Addition; Subtraction), SIDE (Left; Right), O2 RANGE 

(Large; Medium; Small) and TYPE (Carry; Non-Carry) as factors. None of the main 

effects was significant (all p-values at least >.1). The interaction between OPERATION 

and TYPE was significant (F(1, 27)=8.038, p<.01, η²=.229), and paired-sample t-tests 

revealed that the participants took longer to detect a target after performing a 

subtraction problem with carrying than after performing an addition with carrying 

(respectively: 336±42ms and 330±39ms; t(27)=2.091, p<.05), and after a subtraction 

problem that did not involve carrying (328±34ms; t(27)=2.274, p<.05). Moreover, the 

RLs were smaller after non-carry subtraction problems than after non-carry addition 

problems (333±39ms; t(27)=2.213, p<.05). There was also a significant interaction 

between TYPE and O2 RANGE (F(2, 54)=10.813, p<.001, η²=.286). For carry problems, 

the participants were slower at performing the problems after a large (342±43 ms) 

than a medium (331±41ms; t(27)=2.406, p<.05) or a small O2 (326±41 ms; 

t(27)=3.364, p<.005). For non-carry problems, the RLs were longer following small 

O2 problems (336±44 ms) than following medium O2 (327±33ms; t(27)=2.827, 

p<.01) or after large O2 (326±36ms; t(27)=2.029, p<.05) problems. The interaction 

between TYPE and SIDE (F(1, 27)=4.615, p<.05, η²=.146) indicated that the 

participants were slower to detect targets in the left hemifield after performing 

problems involving carrying (337±38ms) than after performing problems which did not 

involve carrying (331±37ms; t(27)=2.095, p<.05). No such difference was observed 

regarding targets in the right hemifield (Carry: 329±44 ms; Non-carry: 330±38 ms; 

t(27)=.324, ns). Most importantly, a significant interaction between OPERATION and 



18 

 

SIDE (F(1, 27)=5.25, p<.03, η²=.163; see Figure 2B) indicated that after performing 

addition problems, participants detected targets faster in the right hemifield (328 ± 39 

ms) than in the left hemifield (335 ± 39 ms; t(27)=1.991, p<.03, one-tailed t-test). No 

such effect was observed in the case of subtraction problems (Left: 333±35 ms; 

Right: 332±41 ms; t(27)=.315, ns). Moreover, participants detected targets on the 

right side of the screen faster after solving addition problems than after solving 

subtraction problems (332 ± 41 ms; t(27)=1.959, p<.03, one-tailed t-tests) whereas 

the speed of detecting targets on the left of the screen was not accelerated by 

subtraction problems (333 ± 35 ms) when compared to addition problems 

(t(27)1.179, ns). No other interactions were significant (all p-values >.1). 

Comparison between Experiment 1 and 2 

In order to compare Experiments 1 and 2, we calculated, for both the right and 

left hemifield targets, the difference between the median RLs for detecting a target 

after solving an arithmetic problem and the median RLs for detecting a target in the 

non-arithmetic context (i.e., dRLs = arithmetic RLs – control RLs). Positive dRLs 

mean that participants were slowed by the arithmetic task in comparison to the 

control task. A mixed repeated-measures ANOVA was then conducted on the dRLs 

with EXPERIMENT as a between-subject variable (1; 2) and OPERATION (Addition; 

Subtraction) and SIDE (Left; Right) as within-subject variables. A significant main 

effect of EXPERIMENT (F(1, 50)=6.219, p<.02, η²=.111) was observed: the participants’ 

detection of targets was affected more by the arithmetic problems in Experiment 2 

(43±30 ms) than in Experiment 1 (24±25 ms). There was also a significant interaction 

between EXPERIMENT and OPERATION (F(1, 50)=5.645, p<.03, η²=.101) indicating that 

in Experiment 1 participants were slowed slightly more by addition (26±26 ms) than 

subtraction problems (23±24 ms; t(23)=3.024, p<.01) while there was no such 
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difference between operations in Experiment 2 (Addition: 43±30 ms; Subtraction: 

44±30 ms; t(27)=.321, ns). Finally, there was a significant interaction between 

OPERATION and SIDE (F(1, 50)=17.546, p<.001, η²=.26). This interaction showed that 

the participants’ detection of targets in the left hemifield was slowed significantly less 

by subtraction problems (30±32 ms) than by addition problems (36±34 ms) 

(t(51)=3.495, p<.001). The reverse pattern was not significant for targets in the right 

hemifield (Addition: 35±30 ms; Subtraction: 37±31 ms; t(51)=1.546, p=.06). 

Moreover, after solving subtraction problems, participants’ detection of targets in the 

left hemifield was slowed less than their detection of targets in the right hemifield 

(t(51)=2.170, p<.02). However, no such difference was observed after participants 

solved addition problems (t(51)=.41, ns). No other main effects or interactions were 

significant (all p-values >.1). 

General Discussion 

The involvement of spatial attention in numerical processing has been 

intensively studied, but the degree to which it extends to arithmetical processing has 

received little attention so far. The observation of an OM effect was the first clue 

suggesting that attentional resources are employed in solving addition or subtraction 

problems (McCrink et al., 2007) although the attentional nature of this effect was still 

a matter of debate (e.g., Knops et al., 2013). Shifts of attention produced by 

perceiving numbers had already been demonstrated (e.g., Fischer et al., 2003; 

Casarotti et al., 2007) but whether arithmetic induces such bias was still an open 

question, as no direct observation of attentional shifts during arithmetic problem 

solving had been reported. In this study, the relationship between arithmetic problem 

solving and visuospatial attention orientation was examined in two experiments using 

a lateralized target detection following different lists of arithmetic problems as primes 
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in order to assess the effect of the magnitude of the operands, the magnitude of the 

results, and the presence or absence of the need to perform carrying or borrowing. 

Our results show for the first time that solving basic subtractions and complex 

additions induces shifts of visuospatial attention that impact upon the speed at which 

targets located on the left and right side of the screen are detected respectively. 

 Experiment 1 was intended to determine whether a shift of spatial attention 

would occur with basic arithmetic problem solving presented in Arabic notation and 

requiring a verbal answer. We first showed that the participants detected targets 

faster without first having to solve a problem, irrespective of where they appeared. It 

is not possible to determine whether this general increased latency in the arithmetical 

task is due to a non-specific tiredness effect or the cost of task switching; the key 

point is that there is no difference between detection of the targets in the left and right 

hemifields in the control condition. We then showed that even for these very simple 

problems within a range inferior to 10, there was an interaction between the 

arithmetical operation and side of space on the time taken to detect the targets. 

Indeed, participants detected targets on the left side of the screen faster after solving 

a subtraction problem than after solving an addition problem, and also faster than on 

the right side. This interaction between the arithmetic operation and space is 

consistent with a previous study that showed a pointing bias to the left part of a ruler 

when solving the very same subtractions and to the right when solving additions 

(Pinhas & Fischer, 2008). However, no such acceleration was found here for the right 

side as regards addition problems, as participants’ detection of targets in the left and 

right hemifields was performed at the same speed. This absence of effect for addition 

problems in the present study may be explained by retrieval strategies that are more 

likely to be recruited for simple addition problems in symbolic notations and with 
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verbal answers, and which would rely less on attentional process than when the 

answer must be produced analogically by pointing on a ruler (as in Pinhas & Fischer, 

2008). Another possibility is that manipulating small magnitudes per se induces 

spatial shifts to the left (Fischer et al., 2003). Therefore, in this set of problems of 

small magnitude, it is possible that no shift to the right occurred when addition 

problems were solved because all the numbers involved in the problems small. 

Interestingly, the interaction between OPERATION and SIDE was also significant when 

the second operand was equal to zero, which suggests that the shifts of spatial 

attention cannot be fully explained by mental movements along the MNL. 

Uncontrolled magnitude differences across problem sets can also be excluded as the 

magnitudes of the operands and results were strictly equivalent in this subset of 

problems. Together, this suggests that the interaction might reflect some semantic 

association between operations and space. It has already been reported that 

problems with zero as second operand could produce a spatial bias in a pointing task 

(Pinhas & Fischer, 2008). These authors suggested that spatial biases related to 

arithmetic may be the consequence of different spatially localized activations of 

operands and of the operator that are competing, which results in a bias towards the 

left or right sides of space. Our results seem to support this suggestion that needs to 

be investigated further in order to identify the source of spatial-numerical association 

in arithmetic. 

The aim of Experiment 2 was to assess whether solving arithmetic problems of 

a higher range would also induce spatial shifts of attention. As regards the 

arithmetical task itself, the results are in line with the literature: the more difficult the 

problems, the longer the participants take to solve them and the higher the error rate. 

This explains the effects of OPERATION (subtraction problems being more difficult than 
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addition problems), of CARRY (problems with carrying or borrowing processes being 

more difficult), and of O2 range (the larger the O2, the more difficult the problem), as 

well as the OPERATION by TYPE and TYPE by O2 RANGE interactions that all reflect this 

difficulty gradient. These findings are important as they show that the participants did 

actually perform the arithmetic task as expected. In the control detection task, the 

participants generally detected targets more quickly than after solving an arithmetic 

problem, and they detected targets in the right and left hemifields equally quickly. 

Following the solving of an arithmetic problem, there was a significant interaction 

between OPERATION and SIDE, irrespective of the size of the O2: in the context of a 

global slowing down to detect the target in the arithmetic condition, solving addition 

problems accelerated the detection of targets in the right hemifield while solving 

subtraction problems did not produce such a facilitation effect in the left hemifield. 

Since the spatial shifts occurred on the right side of space with this set of problems of 

higher magnitude and since there was no modulation of the effect by the magnitude 

of the second operand, our data suggest that the crucial element that induces the 

spatial shift is the operation itself and the magnitude of the set of numbers that are 

manipulated rather than the second operand alone. This would fit with the reverse 

effect observed in Experiment 1 for subtractions. This suggestion must however be 

viewed with caution as the direct statistical comparison of Experiments 1 and 2 

showed that the interaction between OPERATION and SIDE was not modulated by the 

experiment, hence the global magnitude of problem sets. This may be due to the fact 

that the effect was greater in Experiment 1 than Experiment 2, which has left little 

room for a crossover effect to appear.  

In Experiment 2, we also wanted to assess whether the carrying process 

modulated attentional shifts observed in the solving of arithmetic problems. Indeed, it 
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has been shown that the OM effect, in non-symbolic arithmetic, only arises in 

problems which do not involve carrying (Lindemann, & Tira, 2011). Problems 

involving carrying are supposed to rely more on working memory resources in order 

to process decomposition of the place-value system (Dehaene, 1992; Imbo, 

Vandierendonck, & De Rammelaere, 2007) and less on magnitude processing. As 

there was no main effect of TYPE and as the interaction between OPERATION and SIDE 

was not moderated by TYPE, our analyses confirmed the presence of a similar 

attentional bias both in problems involving carrying and problems that do not involve 

carrying. Thus, even problems that are supposed to rely more on working memory 

induce spatial shifts. Surprisingly, the size of the effect appeared smaller with the 

complex problems used in Experiment 2 than with the arithmetical facts used in 

Experiment 1. This suggests that the need to apply several computation steps might 

in fact weaken rather than strengthen the impact which the operation has on 

attention. 

Along with the effect observed for zero problems in Experiment 1, the absence 

of an enhancing effect for large O2s does not support the idea that the solving of 

arithmetic problems is akin to mentally moving along a spatial-numerical continuum. 

Indeed, the larger the O2, the larger the movement should be, hence the attentional 

shift, which was not observed here. However, because we assessed the attentional 

bias after the answer to the problem was made, we cannot exclude the possibility 

that our paradigm is not sensitive enough to detect early influence of the magnitude 

of the operands on spatial shifts. Indeed, operands might induce spatial shifts when 

they are processed and before any computation is launched. Moreover, it is possible 

that some attentional effects occur before or after the 450-ms delay we used. 

Therefore, further research is necessary to investigate the temporal course of the 
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spatial shifts while the participants are calculating or even while they are processing 

the operands. 

It is worth noting that, even if they are small, the size of the effects observed in 

our experiments is in line with previous investigations of the spatial-numerical 

association in detection of targets tasks, where effects of an average size of 10 ms 

(e.g., Fischer et al., 2003; Galfano et al., 2006; Ristic et al., 2006) or of very few 

pixels in a pointing task (Pinhas & Fischer, 2008) are reported. It is not surprising to 

find such limited effects given the simplicity and speed of the target detection task 

which lead to a performance close to ceiling. 

Finally, it is still unclear if attentional shifts are necessary, or even useful, in 

arithmetic processes. Indeed, attentional shifting might be an epiphenomenon that is 

not crucial for solving problems. Evaluating the impact on calculation abilities of 

orienting attention to the left or to the right should help in determining the contribution 

of the attentional process to mental arithmetic. Also, using two effectors to answer to 

the target detection task leaves open the question whether the observed interaction 

between space and operation type is a direct consequence of a spatial shift of 

attention, or an indirect consequence of spatial attention somehow moderating hand 

motor preparation. Future research will show whether this may constitute an 

interesting alternative.  
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Figure captions 

Figure 1: Sequence of events and temporal attributes for one trial. The operands of 

the arithmetic problems were presented sequentially in the centre of the 

screen, followed by a blank screen. After the participant gave the answer 

verbally, a delay of 450 ms preceded the appearance of a lateralized 

target. 

Figure 2: Mean response latencies (± S.E.) as a function of Condition (Addition vs. 

Subtraction vs. Control) and Side (Left vs. Right) for Experiment 1 (A) and 

for Experiment 2 (B). 

 


