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gique” through contract “Projet d’Actions de Recherche Concertées “12/17-045” and “13/17-055”, respec-
tively granted by the Académie universitaire Louvain. We thank seminar participants at the 13th Journée
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1 Introduction

Value-at-Risk (VaR) is a quantitative tool used to measure the maximum potential loss in value

of a portfolio of assets over a defined period for a given probability. Specifically, VaR construc-

tion requires a quantile estimate of the far-left tail of the unconditional returns distribution.

Though widely-used as a risk measure in the past, standard methods of VaR construction as-

suming iid-ness and normality have come under criticism due to their failure to incorporate

three stylized facts of financial returns (i) the presence of volatility clustering, indicated by

high autocorrelation of absolute and squared returns, (ii) excess kurtosis (fat tails) and (iii)

skewness in the density of the unconditional returns distribution.

The ability to account for volatility clustering is one of the key strengths of the ARCH

modelling approach developed in Engle (1982) and extended in Bollerslev (1986). Combining

this approach with a non-normal conditional distribution assumption for the returns, several

papers have shown that univariate GARCH models can produce reliable out-of-sample volatility

forecasts. For example, Angelidis et al. (2004) combine three GARCH specifications with the

univariate skew-Student and skew-GED (Generalized Error) distributions to show that these

are able to produce superior VaR forecasts compared to the normal. Specifically, they apply the

exponential GARCH (EGARCH) model of Nelson (1991) and the threshold ARCH (TARCH)

model to five univariate returns series and find that while the choice of a skewed, heavy-

tailed distribution significantly improves the forecasting performance, the choice of the volatility

model appears to be irrelevant. Within the univariate distribution framework, several other

papers have proposed combining VaR forecasts with non-normal distributions and GARCH-

type specifications. Notably, Giot & Laurent (2003) use the skew-Student-univariate APARCH

model developed in Lambert & Laurent (2001) to estimate daily VaR for stock indices, finding

that it performs better than the symmetric, student APARCH.

While this literature exemplifies the need to incorporate non-normal distributions into

volatility modelling, it is restricted to the univariate framework alone, thus ignoring the evidence

that financial volatilities move together over time across assets and markets (Bollerslev 1990).

This is a major focus of the multivariate GARCH (MGARCH) literature. Within this frame-

work, Bauwens & Laurent (2005) develop a transformation function which allows multivariate

skewed distributions to be constructed from their symmetric counterparts. By combining the

Dynamic Conditional Correlation model of Engle (2002) with the Student and skew-Student

distributions, they show that the skewed density outperforms the symmetric competitor in

forecasting out-of-sample VaR.
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Our work builds on their approach, differing along three main dimensions. First, we consider a

wider set of multivariate distributional assumptions which includes both symmetric and asym-

metric types of distributions. These are the normal, Student, Multivariate Exponential Power

(MEP) and their skewed counterparts. This allows us to perform a direct comparison between

the different candidates. Second, we estimate the multivariate BEKK model of Engle & Kro-

ner (1995) with the aforementioned assumptions and evaluate the model from both an in- and

out-of-sample perspective. Last, we construct out-of-sample portfolio VaR forecasts and assess

the predictive accuracy of the models by means of statistical backtesting procedures.

The set of employed tests includes the Unconditional Coverage (UC) test, Independence (IND)

test, Conditional Coverage (CC) test, Duration-Based Test of Independence (DBI), Time Until

First Failure (TUFF) test and the Dynamic Quantile (DQ) test. The results of the tests are

summarized using a grading scheme based on the number of acceptances of the null hypothesis

which determines the distributional assumption providing the most accurate VaR forecasts.

The main contribution of the paper comes from the combination of the multivariate GARCH

modeling technique with alternate assumptions on the distribution of the returns in order to

construct Value-at-Risk forecasts. From the literature, our paper is close in structure to Ange-

lidis et al. (2004) and Kuester et al. (2006) who both use VaR forecast performance as a means

of comparing different distributional assumptions and volatility specifications, albeit within a

univariate framework and using a smaller set of distributions. Herein, we are mainly concerned

with the effect of the multivariate density assumption on the model forecast accuracy, thus

leaving a closer inspection of the impact of different volatility models as an open issue for

further research.

The paper is organized as follows. Section 2 reviews the MGARCH modeling framework

and the theoretical procedure for constructing the skewed distributions. Section 2.3 reports the

Maximum Likelihood (ML) estimation procedure of the model with the multivariate distribu-

tional assumptions. Section 3 introduces the empirical methodology, comprising the portfolio

construction and the VaR estimation technique while section 3.2 describes the VaR backtesting

procedures. Section 4 provides estimation results and outcomes of the VaR tests and section 5

concludes with some final remarks.
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2 Theoretical Framework

2.1 MGARCH Modeling

Let yt be a N -dimensional discrete time vector of daily returns for t = 1, ..., T , whose stochastic

process depends on a finite dimensional parameter vector ψ. Conditioned on Ft−1, the sigma

field generated by past information until time t− 1, yt can be rewritten as

yt = µt(ψ) +H
1/2
t (ψ)zt, (1)

where µt(ψ) is the N×1 conditional mean vector and H
1/2
t (ψ) is a Cholesky factorization of the

N ×N positive definite conditional covariance matrix Ht(ψ). The N × 1 i.i.d. stochastic error

vector zt has first and second-order moments respectively equal to E(zt) = 0 and V ar(zt) = IN .

Since our focus is on the modeling of the covariance matrix of returns, we set µt(ψ) = 0. We

also drop ψ for notational convenience.

In the multivariate GARCH (MGARCH) literature, many possible specifications for Ht are

available. They differ in various aspects but all have to ensure the positive definiteness of the

conditional covariance matrix. In this respect, the BEKK model of Engle & Kroner (1995)

guarantees the positivity of Ht without imposing heavy parameter restrictions. Furthermore,

the basic model structure can be easily simplified by applying its scalar parametrization, which

makes the model tractable for practical applications.

Definition 1. The scalar BEKK(1,1,1) model is defined as:

Ht = Ω+ ayt−1y
′

t−1 + bHt−1 (2)

where Ω is an N ×N intercept matrix and a and b are scalar parameters.

The process in Eq.(2) is assured to be covariance stationary if and only if a+ b < 1.

Following Engle & Mezrich (1996) and Francq et al. (2011), covariance targeting under station-

arity conditions can also be applied in order to further reduce the number of parameters to be

estimated. This technique consists in expressing the conditional covariance matrix as a function

of the unconditional covariance and the other model parameters. A consistent estimator of the

unconditional covariance matrix (to be computed before maximizing the likelihood function) is

easily obtained as Σ̂ = 1
T

∑T
t=1 yty

′
t such that the model can be reparametrized as follows:

Ht = (1− a− b)Σ̂ + ayt−1y
′

t−1 + bHt−1. (3)

This leaves a final number of parameters to be estimated equal to two. This specification can

be applied even to large dimensional settings and, as we will see in the empirical application,

significantly simplifies the computational burden during the estimation procedure.
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2.2 Constructing skew densities

Bauwens & Laurent (2005) develop a procedure for constructing multivariate skewed densities

from their symmetric counterparts. We build on their findings in order to enlarge the set of

employed distributions.

The general notion of symmetry of a standardized density used herein is that of M -symmetry

(see Definition (1) in their paper), which encompasses the class of spherically symmetric den-

sities. These can be obtained as a special case of the general family of multivariate elliptical

distributions, denoted as

g(x;µ,Σ, η) ∝ h((x− µ)′Σ−1(x− µ), η), (4)

where x is a random vector with an integrable, positive function h(·) : R+ → R+, η cap-

tures the shape parameter of the distribution. The spherically symmetric set of distributions,

comprising the standard normal, Student and MEP, are obtained by setting µ and Σ equal to

zero and IN , respectively.

The idea of introducing skewness into an M -symmetric standardized distribution revolves

around scaling it differently for negative and positive values by multiplying (dividing) by a

positive constant. The value of this scaling parameter (hereafter referred to as ξ) determines

whether the resulting distribution is skewed to the left (0 < ξ < 1) or to the right (ξ > 1). As

a result, the multivariate, skewed density function is obtained from:

Definition 2. Given a random vector z = (z1, . . . , zN)
′ with multivariate symmetric standard-

ized distribution, g(z; η) following Eq. (4), the standardized skewed density f(z|ξ; η) with vector

of asymmetry parameters ξ = (ξ1, . . . ξN)
′, can be expressed as:

f(z|ξ, η) = 2N

(
N∏
i=1

ξi
1 + ξ2i

)
g(z⋆; η) (5)

with

z⋆ = (z⋆1 , ..., z
⋆
N)

′ (6)

z⋆i = ziξ
Ii
i (7)

and

Ii =

 −1 if zi ≥ 0

1 if zi < 0
(8)

The marginal rth-order moment of the obtained skewed distribution can be computed di-

rectly from the standardized rth moment of the symmetric density g(·). This is accomplished
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by applying the following transformation function:

E(z⋆ri |ξ) =Mi,r

ξr+1
i + (−1)r

ξr+1
i

ξi +
1
ξi

(9)

where the rth-order moment of the marginal gi(·), truncated to the positive real values, is given

by

Mi,r =

∫ ∞

0

2urgi(u)du. (10)

Since only the first two moments are required in the transformation process, their analytical

expression for r = 1, 2 in Eq.(9) is reported below:

mi = E(z⋆i |ξi) =Mi,1

(
ξi −

1

ξi

)
(11)

s2i = Var(z⋆i |ξi) =
(
Mi,2 −M2

i,1

)(
ξ2i +

1

ξ2i

)
+ 2M2

i,1 −Mi,2. (12)

Note that the resulting skewed distribution, f(z|ξ, η) from Definition (2) is not centered at 0

and the variance is a function of ξ (and, where is the case, of the shape parameter η). Given

that the elements of z⋆ are uncorrelated (since those of x are uncorrelated by assumption),

standardization of z⋆ is achieved by the following transformation:

z = (z⋆ −m)./s (13)

where m = (m1, ...,mN) and s = (s1, ..., sN) are the vectors of unconditional means and stan-

dard deviations of z⋆ computed in Equations (11) and (12) respectively and “./” denotes

element-by-element division. Consequently, the standardized form of Definition (2) requires

replacing Equations (7) and (8) with

z⋆i = (sizi +mi)ξ
Ii
i (14)

and

Ii =

 −1 if zi ≥ −mi

si

1 if zi < −mi

si

(15)

2.3 Distributions

This section introduces the different distribution assumptions to be incorporated into the likeli-

hood function. Estimation of the parameters is performed in one step by Maximum Likelihood

(ML). Namely, the log-likelihood function for T observations is expressed as

ℓT (ψ) =
T∑
t=1

log f(yt|ψ,Ft−1) (16)
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where ψ is the finite-dimensional vector of model parameters and f(yt|ψ,Ft−1) denotes the

assumed conditional distribution of returns. Herein, three symmetric and three asymmetric

multivariate distributions will be considered. They are briefly recalled in the following. For

sake of brevity, we only report the log-likelihood functions and the formulas for the moments,

when needed. A detailed description of their algebraic derivations can be found in Appendix

A.2.

Multivariate normal distribution This is the most commonly employed distribution in

the literature as it is uniquely identified by its conditional first and second moments, which

renders ML estimation much simpler from a computational point of view. Also, given that

the score of the normal log-likelihood function has the martingale difference property when the

first two conditional moments are correctly specified, the Quasi Maximum Likelihood (QML)

estimates are still consistent and asymptotically normal even if the true DGP is not normally-

distributed (Bollerslev & Wooldridge 1992). The log-likelihood function, up to a constant, is

expressed as follows

ℓT (ψ) = −1

2

T∑
t=1

[
log |Ht|+ y′tH

−1
t yt

]
. (17)

Multivariate Student distribution The Student distribution is a symmetric and bell-

shaped distribution, with heavier tails than the normal. Under the multivariate Student as-

sumption, the log-likelihood function is obtained as

ℓT (ψ) = −1

2

T∑
t=1

[
log |Ht|+ (N + ν) log

(
1 +

y′tH
−1
t yt

ν − 2

)]
(18)

+ T

[
log Γ

(
ν +N

2

)
− log Γ

(ν
2

)
− N

2
log(ν − 2)

]
where Γ(ν) =

∫∞
0
e−zzν−1dz denotes the Gamma function and ν > 2 is the degree of freedom

parameter representing the thickness of the distribution tails. As ν increases, the distribution

converges to the multivariate normal.

Multivariate Exponential Power (MEP) distribution This distribution belongs to the

Kotz family of distributions (a particular class of symmetric and elliptical distributions dis-

cussed extensively in Fang et al. (1990)) and is known to have several equivalent definitions

in the literature. It can also include both the normal and the Laplace as special cases, as

a function of the value of the non-normality parameter β dictating the tail-behaviour of the

distribution. Given its simple implementation, in this paper we consider the pdf given in Solaro
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(2004), which gives rise to the following log-likelihood function:

ℓT (ψ) = −1

2

T∑
t=1

[
log |Ht|+

(
y′tH

−1
t yt

)β
2

]
(19)

− T

[
log Γ

(
1 +

N

β

)
+

(
1 +

N

β

)
log(2)

]
(20)

where β > 0. When β = 2, the distribution reduces to the multivariate normal, while for β = 1

it corresponds to the multivariate Laplace. Whenever β < 2 (> 2), the distribution exhibits

thicker (thinner) tails than the normal.

Multivariate skew-normal distribution Is the first non-symmetric distribution we con-

sider herein; it accounts for the skewness of the return distribution without taking into account

its kurtosis (as it does not involve a tail parameter). By means of Equations (9)–(12) and

considering the univariate normal density function (i.e. assuming N = 1), its first and second

order moments are respectively obtained as:

mi =

√
2

π

(
ξi −

1

ξi

)
(21)

s2i =

(
ξ2i +

1

ξ2i
− 1

)
−m2

i (22)

Applying Definition 2 we derive the skew-normal density function, with corresponding log-

likelihood function equal to

ℓT (ψ) = −1

2

T∑
t=1

log |Ht|+
N∑
i=1

(
si

N∑
j=1

pijtyjt +mi

)2

ξ2Iii

 (23)

+ T

[
N∑
i=1

(log ξi + log si)− log(1 + ξ2i )

]

where pijt corresponds to the jth element of the ith row of H
−1/2
t (The full derivation is provided

in Appendix A.1), ξi represents the asymmetry of each marginal and Ii is defined as in Eq.

(15).

Multivariate skew-Student distribution With the same procedure as for the skew-normal,

the following equations describe the first and second order moments of the multivariate skew-

Student distribution:

mi =
Γ
(
ν−1
2

)√
ν − 1

√
πΓ
(
ν
2

) (
ξi −

1

ξi

)
(24)

s2i =

(
ξ2i +

1

ξ2i
− 1

)
−m2

i (25)
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The log-likelihood function for T observations is given by the following expression

ℓT (ψ) = −
T∑
t=1


1

2
log |Ht|+

ν +N

2
log

1 +

N∑
i=1

(
si

N∑
j=1

pijtyjt +mi

)2

ξ2Iii

ν − 2



 (26)

+ T

[
N∑
i=1

(log ξi + log si)− log(1 + ξ2i )

]

+ T

[
log Γ

(
ν +N

2

)
− log Γ

(ν
2

)
− log(ν − 2)

]
where the parameter ν dictates the thickness of the tails and ξi is again the asymmetry param-

eter of each marginal. Notice that the univariate means and standard deviations are functions

of ξi and ν and need not be estimated. Thus the skew-Student parametrization requires N +1

parameters to be estimated in addition to those stemming from the BEKK specification.

Multivariate skew-MEP distribution Finally, we consider a skew generalization of the

multivariate MEP distribution which accounts for both heavy tails and skewness. Its first and

second moments are obtained as

mi =
2−1+ 1

βΓ
(

2+β
β

)
Γ
(
1 + 1

β

) (
ξi −

1

ξi

)
(27)

s2i =
4

1
βΓ
(

3
β

)
βΓ
(
1 + 1

β

) (ξ2i + 1

ξ2i
− 1

)
−m2

i (28)

while the log-likelihood function to be maximized is equal to

ℓT (ψ) = −1

2

T∑
t=1

log |Ht|+

 N∑
i=1

(
si

N∑
j=1

pijtyjt +mi

)2

ξ2Iii


β
2

 (29)

+ T

[
N∑
i=1

(log ξi + log si)− log(1 + ξ2i )

]

− T

[
log

(
1 +

N

β

)
+

(
1 +

N

β

)
log(2)

]
.

where β is a parameter determining tail-thickness of the density function, as in the symmetric

case.
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3 Empirical Application

3.1 Data and forecasting scheme

Our dataset (cleaned and used in the paper of Noureldin et al. (2012))1 comprises daily open-

to-close returns of 10 stocks from the Dow Jones Industrial Average: Bank of America (BAC),

JP Morgan (JPM), International Business Machines (IBM), Microsoft (MSFT), Exxon Mobil

(XOM), Alcoa (AA), American Express (AXP), Du Pont (DD), General Electric (GE) and

Coca Cola (KO). Each univariate vector of returns is calculated as yt = 100× (log pt− log pt−1)

and covers a period of 2200 days, from February 2001 to November 2009. Some useful univariate

descriptive statistics over the period of interest can be found in Table 1.

A preliminary inspection of the normality assumption of each series is conducted by means of

two nonparametric tests, the Kolmogorov-Smirnov (KS) and the Jacques-Bera (JB) test. Their

p-values are reported in the last two columns of Table 1. The KS test rejects the normality

hypothesis in the vast majority of cases, with the only exceptions represented by the XOM and

DD stock over the estimation sample and the KO stock during the forecasting period. The JB

test builds directly on the values of skewness and kurtosis of each asset and thus rejects the

normality hypothesis in all cases. Indeed, the striking feature emerging from the table is that

the univariate series exhibit thick tails vis-à-vis the normal (since the kurtosis is much greater

than three) and a mainly positive level of skewness over the full-sample period.

This evidence already supports the need to use distributional assumptions that are able to

account for these features. More precisely, we are interested in assessing if the inclusion of

more flexible distributions than the normal can lead to significant improvements in the model

forecasting ability.

To this extent, one-step ahead forecasts of the conditional covariance matrix of returns need to

be computed. They are recursively obtained as

Ĥt+1|t = E(Ht+1|It),

where It denotes the information set at time t and Ht is defined as in Eq. (3).

Using a rolling-fixed-window scheme, parameters are estimated over a window length of 1500

observations and used to predict the conditional covariance matrix process for the following

20 days. Each time the window is shifted forward by 20 observations and the parameters are

re-estimated over the new period in order to compute the next set of forecasts. We iterate this

process till the end of the dataset for a total of 35 parameter estimates and 700 one-step ahead

1Downloaded from http://realized.oxford-man.ox.ac.uk/data/download.
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Table 1: Univariate descriptive statistics

Stock Mean Std.dev. Skewness Kurtosis KS test JB test

Estimation sample: February 1, 2001 to January 23, 2007 (1500 observations)

BAC 0.09 1.09 -0.18 7.45 0.00 0.00

JPM 0.00 1.68 0.90 31.02 0.00 0.00

IBM -0.04 1.24 0.01 5.96 0.01 0.00

MSFT -0.01 1.37 0.37 6.01 0.00 0.00

XOM -0.01 1.13 0.05 8.27 0.82 0.00

AA 0.01 1.59 0.14 4.74 0.00 0.00

AXP -0.02 1.44 0.33 7.73 0.00 0.00

DD 0.02 1.21 0.37 6.76 0.21 0.00

GE -0.01 1.34 0.13 7.90 0.02 0.00

KO 0.01 0.99 0.16 5.53 0.00 0.00

Forecasting sample: January 24, 2007 to October 30, 2009 (700 observations)

BAC -0.18 3.95 0.37 9.36 0.00 0.00

JPM 0.01 3.06 0.36 8.53 0.00 0.00

IBM 0.08 1.45 -0.02 6.31 0.00 0.00

MSFT 0.02 1.60 0.08 5.90 0.00 0.00

XOM 0.03 1.61 -0.39 11.31 0.00 0.00

AA -0.04 2.93 -0.83 7.50 0.00 0.00

AXP 0.04 3.06 0.22 6.96 0.00 0.00

DD -0.04 1.89 -0.12 5.70 0.00 0.00

GE 0.02 2.17 0.21 8.96 0.00 0.00

KO -0.03 1.22 0.07 7.68 0.06 0.00

Full sample: February 1, 2001 to October 30, 2009 (2200 observations)

BAC 0.01 2.40 0.33 21.72 0.00 0.00

JPM 0.00 2.21 0.57 16.90 0.00 0.00

IBM 0.00 1.31 0.02 6.24 0.02 0.00

MSFT 0.00 1.45 0.25 6.08 0.00 0.00

XOM 0.00 1.30 -0.20 11.56 0.04 0.00

AA 0.00 2.11 -0.69 9.95 0.00 0.00

AXP 0.00 2.09 0.32 11.23 0.00 0.00

DD 0.00 1.46 0.03 7.25 0.00 0.00

GE 0.00 1.65 0.22 10.85 0.00 0.00

KO 0.00 1.07 0.11 6.89 0.00 0.00

Descriptive statistics of the stock return time series used in the empirical application. The three panels report

the statistics for the in-sample period, the out-of-sample period and the full sample period, respectively. ’KS

test’ and ’JB test’ denotes the Kolmogorov-Smirnov test and Jarque Bera test, with corresponding p-values in

column.

forecasts. Table B1 in Appendix B reports the complete list of windows and forecast horizons

along with their corresponding calendar dates.

The canonical approach to portfolio construction involving the minimization of the portfolio

variance for a given expected return relies on the assumption of normally-distributed returns

(Michaud 1989). However, as the assumption of non-normality in our paper precludes the use
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of the mean-variance minimization framework, we consider the equal-weighting scheme as the

most appropriate choice. This has the advantage of not being affected by the specified target

return as in the Markowitz framework, being only driven by the number of assets.

Thus, given the N -dimensional vector of weights w = (w1 . . . wN), where wi = 1/N and∑N
i=1wi = 1, portfolio returns and standard deviations can be respectively computed as:

rpt+1 = w′yt+1 (30)

σ̂p
t+1 =

√
w′Ĥt+1|tw,

where yt+1 denotes the N -dimensional vector of daily returns and Ĥt+1|t is the predicted co-

variance matrix of returns conditional on past information.

For each model, the portfolio VaR at confidence levels α = 5% and 1% is equal to

V aRt+1,α = σ̂p
t+1qα, (31)

where qα is the left quantile of the assumed distribution at α%. This implies that the predictive

power of the model is linked to its ability in modeling large negative returns.

Note that the analytical formula applied for the computation of the VaR is simplified to only

account for the portfolio conditional variance. Alternative approaches, as done in Bauwens

et al. (2006), also assume an ARMA-type structure for the portfolio conditional mean. Ulti-

mately we deal with de-meaned returns and thus specifying a more complex VaR model goes

beyond the scope of this paper.

For the symmetric distributions in our analysis (normal, Student and MEP), one can easily

pass from the conditional covariance matrix to the long VaR of the portfolio by applying Eq.

(31) and the inverse of each CDF at α%.

However, for the non-symmetric distributions this is not straightforward. In order to bypass

this complication, for each non-symmetric distribution we apply a simple Monte-Carlo simula-

tion approach. Namely, we draw j = 10.000 random vectors from each symmetric multivariate

standardized distribution zt and then we use the estimated skewness parameters to construct

the corresponding skewed distribution z⋆t . By assuming rj = Ĥ
1/2
t|t−1z

⋆
j as the true DGP, we ob-

tain a set of 10,000 simulated returns over the period of interest. Finall, the simulated return

distribution is used to derive the 5 and 1% quantiles for computing the VaR.
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3.2 Testing the accuracy of VaR forecasts

The models accuracy in predicting VaR is assessed using multiple statistical backtesting meth-

ods. A common starting point for this procedure is the so-called hit function, or indicator

function, which is equal to

It(α) =

 1 if rt ≤ V aR(α)

0 if rt > V aR(α)
(32)

i.e. it takes the value one if the ex-post portfolio loss exceeds the VaR predicted at time t− 1

and the value zero otherwise. According to Christoffersen (1998), in order to be accurate, the

hit sequence has to satisfy two properties, namely the correct failure rate and the independence

of exceptions. The former implies that the probability of realizing a VaR violation should be

equal to α ∗ 100%, while the latter further requires these violations to be independent of each

other. These properties can be combined together into one single statement assessing that the

hit function has to be an i.i.d. Bernoulli random variable with probability p, i.e. It(p)
i.i.d∼ B(p).

This represents the key foundation to many of the backtesting procedures developed in recent

years and particularly to the accuracy tests being used in this paper. We focus on tests included

in the following three categories:

• Evaluation of the Frequency of Violations

• Evaluation of the Independence of Violations

• Evaluation of the Duration between Violations.

Their properties are briefly described in the following paragraphs.

Frequency of Violations The first way of testing the VaR accuracy is to test the number

or the frequency of margin exceedances. A test designed to this aim is the Kupiec test (Kupiec

1995), also known as the Unconditional Coverage (UC) test. Its null hypothesis is simply that

the percentage of violated VaR forecasts or failure rate p is consistent with the given confidence

level α, i.e. H0 : p = α.

Denoting with F the length of the forecasting period and with v the number of violations

occurred throughout this period, the log-likelihood ratio test statistic is defined as

UC = −2

(
ln

(
pv(1− p)F−v

p̂v(1− p̂)F−v

))
, (33)

where p̂ = v/F is the maximum likelihood estimator under the alternative hypothesis. This

ratio test statistic is asymptotically χ2(1) distributed and the null hypothesis is rejected if the
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critical value at the α% confidence level is exceeded.

A similar useful test is the TUFF (Time Until First Failure) test. Under the null, the probability

of an exception is equal to the inverse probability of the VaR confidence level, namely H0 : p =

p̂ = 1/v. Its basic assumptions are similar to those of the Kupiec test and the t-statistic under

the null is obtained as

TUFF = −2

(
ln

(
p(1− p)v−1

1
v

(
1− 1

v

)(v−1)

))
. (34)

The TUFF statistic is also asymptotically χ2(1) distributed.

Independence of Violations A limitation of the Kupiec test is that it is only concerned

with the coverage of the VaR estimates without accounting for any clustering of the violations.

This aspect is crucial for VaR practitioners, as large losses occurring in rapid succession are

more likely to lead to disastrous events than individual exceptions.

The Independence test (IND) of Christoffersen (1998) uses the same likelihood ratio framework

as the previous tests but is designed to explicitly detect clustering in the VaR violations. Under

the null hypothesis of independence, the IND test assumes that the probability of an exeedance

on a given day t is not influenced by what happened the day before. Formally, H0 : p10 = p11,

where pij denotes the probability of an i event on day t− 1 being followed by a j event on day

t. The relevant IND test statistic can be derived as

IND = −2

(
ln

(
p̂v(1− p̂)F−v

p̂v1111 (1− p̂11)v01 p̂
v10
10 (1− p̂10)v00

))
(35)

where vij is the number of violations with value i at time t − 1 followed by j at time t.

Under the null, the IND statistic is also asymptotically distributed as a χ2(1) random variable.

Although the aforementioned test has received support in the literature, Christoffersen (1998)

noted that it was not complete on its own. For this reason, he proposed a joint test, the

Conditional Coverage (CC) test, which combines the properties of both UC and IND tests.

Formally, the CC ratio statistic can be proven to be the sum of the UC and the IND statistics:

CC = −2(ln(L
UC)
0 − ln(LIND

1 ))

= −2(ln(LUC
0 )− ln(LUC

1 ) + ln(LUC
1 )− ln(LIND

1 ))

= −2(ln(LUC
0 )− ln(LUC

1 ) + ln(LIND
0 )− ln(LIND

1 ))

= −2 (ln(LUC
0 )− ln(LUC

1 ))︸ ︷︷ ︸
UC

−2 (ln(LIND
0 )− ln(LIND

1 ))︸ ︷︷ ︸
IND

where we added and subtracted the quantity ln(L1)
UC and substituted ln(L1)

UC with

ln(L0)
IND. CC is also χ2 distributed, but with two degrees of freedom since there are two
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separate statistics in the test. According to Campbell (2005), in some cases it is possible that

a VaR model passes the joint test while still failing either the independence test or the uncon-

ditional coverage test. Thus it is advisable to run them separately even when the joint test

yields a positive result.

A second test belonging to this class is the Regression-based test of Engle & Manganelli (2004),

also known as Dynamic Quantile (DQ) test. Instead of directly considering the hit sequence, the

test is based on its associated quantile process Ht(α) = It(α)− α which assumes the following

values:

Ht(α) =

 1− α if It = 1

−α if It = 0

The idea of this approach is to regress current violations on past violations in order to test for

different restrictions on the parameters of the model.

Namely, we estimate the linear regression model Ht(α) = δ +
K∑
k=1

βkHt−k(α) + ϵt and then

we test the joint hypothesis H0(DQcc) : δ = β1 = ... = βK = 0. This assumption coincides

with the null of Christoffersen’s CC test. It is also possible to split the test and separately

test the independence hypothesis and the unconditional coverage hypothesis, respectively as

H0(DQind) : β1 = ... = βK = 0 and H0(DQuc) : δ = 0. (DQcc), (DQind) and (DQuc) are

asymptotically χ2 distributed with respectively {K + 1}, K and one degrees of freedom.

Duration between Violations One of the drawbacks of Christoffersen’s CC test is that it

is not capable of capturing dependence in all forms, since it only considers the dependence of

observations between two successive days. To a further extent, Christofferson & Pelletier (2004)

introduced the Duration-Based test of independence (DBI), which is an improved test for both

independence and coverage. Its basic intuition is that if exceptions are completely independent

of each other, then the upcoming VaR violations should be independent of the time that has

elapsed since the occurrence of the last exceedance (Campbell 2005). The duration (in days)

between two exceptions is defined via the no-hit-duration Di = ti − ti−1, where ti is the day of

i-th violation.

A correctly specified model should have an expected conditional duration of 1/p days and the

no-hit duration should have no memory. The authors construct the ratio statistic considering

different distributions for the null and the alternative hypotheses, namely the exponential, since

it is the only memory-free (continuous) random distribution, and the Weibull, which allows for
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duration dependence. The likelihood ratio statistic is derived as

DBI = −2

(
ln

(
L0

L1

))
= −2

(
ln

(
p exp {−pD}

abbDb−1 exp {−(aD)b}

))
and has a χ2 distribution with one degree of freedom.

Under the null hypothesis of independent violations, b = 1 and a is estimated via numerical

maximization of ln(L1). Whenever b < 1, the Weibull function has a decreasing path which

corresponds to an excessive number of very long durations (very calm period) while b > 1

corresponds to an excessive number of very short durations, namely very volatile periods.

4 Results

4.1 Parameter estimates

The in-sample window covers the period 2001/01 – 2007/01 for a total of 1500 daily observa-

tions. Results from the in-sample estimation are reported in Table 2.

Table 2: In-sample parameters estimates

Normal Student MEP Skew-normal Skew-Student Skew-MEP

a 0.016
(0.00)

0.012
(0.00)

0.017
(0.00)

0.016
(0.00)

0.013
(0.00)

0.014
(0.00)

b 0.981
(0.04)

0.985
(0.03)

0.981
(0.04)

0.982
(0.05)

0.985
(0.03)

0.985
(0.05)

ν – 9.71
(0.61)

– – 9.68
(0.60)

–

ξ̄ – – – 1.021
(0.04)

1.026
(0.04)

0.998
(0.03)

β – – 1.96
(0.32)

– – 1.13
(0.25)

LogLik 16423 19624 19611 16580 20511 20352

BIC -14.92 -17.82 -17.81 -15.03 -18.60 -18.45

The table reports test statistics and robust standard errors obtained from the sBEKK model with the different

distribution assumptions over the in-sample period 2001/01 – 2007/01, for T=1500. Note that the ξ̄ parameters

are averaged across univariate series and Mean Asymptotic Square Errors (MASE) are reported in brackets.

The BIC is rescaled by T.

A common feature of the estimated models is that sums of a and b are never smaller than

0.997, thus showing a high level of persistence typical of GARCH-type models. More interest-

ingly, the use of skewed distribution assumptions seem to be justified, as all asymmetric coeffi-

cients are significant at standard levels. Moreover, the Bayesian information criteria (BIC) and

the log-likelihood values highlight the fact that the model incorporating the skew-Student and

the skew-MEP distributions better fits the data than the model with the traditional normality

assumption.
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The estimated parameters over the out-of-sample period, τ = {1, . . . , 35}, are summarized

by means of figures. A first interesting comparison is provided in Figure 1 between the es-

timated parameters of the BEKK model incorporating symmetric distribution assumptions.

Parameter estimates from the normal and the MEP distributions show a similar pattern over

time, suggesting that the conditional covariance matrices constructed from these models will

exhibit similar temporal dynamics as well. As already mentioned, the MEP distribution col-

lapses to a normal whenever β = 2. Figure 4 shows that this is indeed the case. By contrast,

the a and b estimated parameters from the Student assumption have different values and a

smoother temporal pattern, indicating that the use of a heavy-tailed distribution can affect the

dynamics of the model.

Figure 1: BEKK parameter estimates: symmetric distributions
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The introduction of skewness into the symmetric distributions significantly affects parameter

estimates. As Figure 2 shows, the skew-normal and skew-MEP no longer display congruent

dynamics, as the skew-MEP a and b estimates are now much closer in value to the skew-

Student estimates. Indeed, analysis of the tail parameter in Figure 5 shows that the skew-MEP

distribution is now closer to a Laplace distribution (β ≃ 1). We also report in Figure 3 the

evolution of the skewness parameter ξ for the three skewed distributions. The averages are

computed across the 10 univariate series with corresponding ranges. Clearly, all distributions

exhibit a positive level of skewness on average.
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Figure 2: BEKK parameters: skewed distributions
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Figure 3: Skew parameter averages
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Figure 4: Tail parameter β: MEP distribution
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Figure 5: Tail parameter β: skew-MEP distribution
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As a general finding, BEKK parameter estimates exhibit similar movements across time.

Specifically, a increases until τ = 18, followed by a drop in value that occurs over re-estimations

18-22 after which it increases at a faster rate than before. Obviously the opposite effect is

incurred for b under all distribution assumptions. Consulting Table B1 in the appendix, we

see that those windows include the periosd corresponding to the onset of the US subprime

mortgage crisis. A similar effect is observed for the tail parameter of Student and skew-Student

distributions (Figure 6); prior to the crisis, there was a gradual reduction in the tail-thickness

of the returns distribution, followed by a sharp spike in νSt and νsk−St as the rolling window

begins to include the crisis period (during which there was a marked increase in the downside

risk of assets, as shown in our results).

Figure 6: Tail parameter: Student and skew-Student distribution
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4.2 Out-of-sample evidence

Given the set of estimated model parameters, a series of 700 conditional covariance forecasts

are obtained. Each model one-step ahead covariance prediction, denoted as Ĥt+1 = E(Ht+1|It),

can be compared with the ex-post realization of the true conditional covariance matrix, denoted

as Σt. Given that the latter is a latent object, we use an unbiased proxy represented by the 5-

minutes realized covariance estimator, Σ̂t, which is proven to be a more efficient estimator than

the one based on the outer product of returns under the assumption of absence of microstructure

noise and other biases; see Barndorff-Nielsen & Shephard (2002) and Aı̈t-Sahalia et al. (2005)

among others.

We follow Ledoit et al. (2003) and assess the predictive accuracy of the models using the root-

mean-square error (RMSE) based on the Frobenius norm of the forecast error.

This is computed by

FTh
=

1

Th

Th∑
t

||Σ̂t − Ĥt|| (36)

where Th denotes the out-of-sample length.

Table 3 contains the results on the forecasting accuracy of the model incorporating the different

distributions measured by the Frobenius norm. It appears that the sBEKK model with the

Student distribution outperforms all the others, even if the improvement over the skew-Student

is rather negligible. However, symmetric heavy-tailed distributions achieve smaller values of

the average Frobenius norm than the normal and the inclusion of skewness leads to further im-

provements, as the skew-normal and the skew-MEP unequivocally outperform their symmetric

counterparts.

Table 3: Evaluation of Forecasting Accuracy in Terms of RMSE

Frobenius norm of forecast error

Normal Student MEP Skew-normal Skew-Student Skew-MEP

44.58 44.09 44.56 44.57 44.1 44.47

Table reports the average Frobenius norm of the forecast error as given by Eq. (36).

Finally, the out-of-sample covariance matrix predictions are used to construct equally-

weighted portfolios for the computation of the daily VaR. Table 4 compares portfolios standard

deviation for both the in- and out-of-sample periods.
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Table 4: Portfolios descriptive statistics

Normal Student MEP Skew-normal Skew-Student Skew-MEP

Estimation sample: February 1, 2001 to January 23, 2007 (1500 observations)

σ̄p 0.900 0.909 0.897 0.900 0.909 0.907

min{σp} 0.537 0.558 0.519 0.537 0.558 0.558

max{σp} 1.897 1.759 1.932 1.897 1.760 1.792

Forecasting sample: January 24, 2007 to October 30, 2009 (700 observations)

σ̄p 1.473 1.454 1.487 1.472 1.454 1.463

min{σp} 0.537 0.558 0.519 0.537 0.558 0.558

max{σp} 3.221 3.052 3.272 3.219 3.053 3.120

Table reports average, minimum and maximum value of portfolio standard deviation over the in- and the

out-of-sample period.

As already noted, the financial crisis features heavily in the summary statistics. Since this

period is included in the forecasting sample (corresponding to observations 1921-1940 according

to Table B1), we notice a sharp increase in the portfolio standard deviation of all the models

(see Figure 7). Apparently, the heavy-tailed and skewed distributions (skew-Student, skew-

MEP) have a slightly higher average portfolio variance than the thin-tailed distributions in the

in-sample period. This pattern is reversed in the forecasting period, as the skew-Student and

skew-MEP exhibit a lower portfolio standard deviation than their symmetric counterparts.
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Figure 7: Portfolio standard deviation for the sBEKK model with symmetric distributions (left figure) and

skewed distributions (right figure).

4.3 VaR backtesting results

Table 5 reports the results from the UC, TUFF, IND, CC and DBI tests while Table 6 contains

results from the DQ test. All statistical tests are computed for the 5 and 1% VaR confidence

level. We report test statistics along with their corresponding p-values in brackets. Since the

applied tests measure the models accuracy in forecasting VaR along several dimensions (as
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detailed in Section 3.2), the overall results are summarized using a performance measure which

considers the percentage of acceptances of the null hypothesis across the different tests.

Table 5: VaR backtesting results

Normal Student MEP Skew-normal Skew-Student Skew-MEP

5% VaR

# violation/frequency 53
0.075

40
0.057

52
0.074

50
0.071

38
0.054

35
0.050

UC 8.475
(0.003)

0.720
(0.396)

7.611
(0.005)

6.008
(0.014)

0.263
(0.607)

1.000
(0.000)

TUFF 5.991
(0.014)

0.021
(0.883)

5.991
(0.014)

5.991
(0.014)

0.021
(0.883)

0.021
(0.883)

IND 9.861
(0.001)

0.763
(0.380)

8.828
(0.000)

6.921
(0.008)

0.273
(0.601)

0.054
(0.814)

CC 18.336
(0.000)

1, 483
(0.476)

16.440
(0.000)

12.929
(0.0016)

0.536
(.764)

0.054
(0.972)

DBI 0.857
(0.354)

1.499
(0.221)

0.796
(0.372)

1.776
(0.182)

2.624
(0.105)

2.535
(0.111)

Grade 20% 100% 20% 20% 100% 100%

1% VaR

# violation/frequency 19
0.027

9
0.012

17
0.024

19
0.027

7
0.010

8
0.011

UC 14.15
(0.002)

0.529
(0.466)

10.31
(0.001)

14.15
(0.000)

0.000
(1.000)

0.137
(0.710)

TUFF 1.425
(0.232)

1.425
(0.232)

1.425
(0.232)

1.425
(0.232)

1.425
(0.232)

1.425
(0.232)

IND 0.054
(0.000)

0.770
(0.382)

10.978
(0.003)

14.626
(0.000)

0.141
(0.706)

0.326
(0.568)

CC 28.72
(0.000)

1.299
(0.522)

21.291
(0.000)

28.779
(0.000)

0.141
(0.931)

0.464
(0.793)

DBI 3.108
(0.077)

0.636
(0.424)

1.573
(0.209)

2.164
(0.141)

0.331
(0.564)

0.282
(0.595)

Grade 40% 100% 40% 40% 100% 100%

The table reports statistics and corresponding p-values obtained from the statistical backtesting tests described

in Section 4.3. VaR computed at 5% and 1% confidence levels. Rejections of the null highlighted in bold.

According to Table 5, at both confidence levels the BEKK model with the Student as-

sumption outperforms the other symmetric distributions which appear to be rejected in a vast

majority of cases. Even if we turn to the skewed distributions, the heavy-tailed skew-Student

and skew-MEP (recall that the skew-MEP approximates the Laplace, which is a heavy-tailed

distribution) perform better than the model under the skew-normal assumption.

This suggests that the inclusion of heavy-tails in the distribution specification already allows

for a significant improvement in the VaR forecasts accuracy.

By contrast, moving from symmetric to skewed distributions yields ambiguous results.

Clearly, a more pronounced effect is observed in the MEP case, while the transition from
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normal to skew-normal does not result in an increase of the grade. This might suggest that

incorporating skewness alone without allowing for heavy-tails is not sufficient for increasing the

model accuracy. However, though moving from the Student to the skew-Student distribution

does not increase the overall grade, closer inspection of the p-values shows that, in 3/5 cases,

the results for the Student distribution are closer to the critical value at the 5% level (this

increases to 4/5 cases at the 1% level). This suggests that when computing VaR for extreme

events, i.e. much further in the tail than 5 and 1%, including skewness would improve the

accuracy of VaR forecasts.

These findings are further confirmed by looking at the results of the DQ test for 1 and 2

VaR lagged values reported in Table 6.

Table 6: Dynamic Quantile test results

Normal Student MEP Skew-normal Skew-Student Skew-MEP

K=1

5% VaR

DQUC 10.48
(0.001)

0.775
(0.378)

9.319
(0.002)

7.204
(0.007)

0.280
(0.596)

0.001
(0.991)

DQIND 1.65
(0.198)

0.030
(0.861)

1.433
(0.231)

0.306
(1.046)

0.001
(0.992)

0.057
(0.810)

DQCC 11.463
(0.003)

0.798
(0.670)

10.188
(0.006)

7.868
(0.019)

0.280
(0.869)

0.057
(0.971)

1% VaR

DQUC 13.358
(0.000)

0.598
(0.439)

13.358
(0.000)

19.552
(0.000)

0.001
(0.996)

0.150
(0.697)

DQIND 1.278
(0.258)

0.152
(0.696)

2.095
(0.147)

1.502
(0.220)

0.071
(0.789)

0.107
(0.743)

DQCC 22.121
(0.000)

0.736
(0.691)

16.57
(0.003)

22.34
(0.000)

0.071
(0.964)

0.254
(0.880)

K=2

5% VaR

DQUC 8.568
(0.003)

0.731
(0.392)

7.508
(0.006)

5.623
(0.017)

0.268
(0.604)

0.001
(0.976)

DQIND 0.014
(0.904)

0.672
(0.412)

0.069
(0.792)

0.299
(0.584)

1.166
(0.280)

2.160
(0.141)

DQCC 12.202
(0.006)

2.595
(0.458)

11.324
(0.010)

9.879
(0.019)

2.659
(0.447)

3.476
(0.323)

1% VaR

DQUC 16.440
(0.000)

0.490
(0.483)

12.406
(0.000)

16.524
(0.000)

0.000
(0.995)

0.121
(0.728)

DQIND 10.288
(0.001)

3.396
(0.065)

4.039
(0.044)

11.402
(0.000)

5.440
(0.021)

4.308
(0.0378)

DQCC 34.002
(0.000)

9.598
(0.022)

18.568
(0.000)

35.283
(0.000)

12.655
(0.005)

10.772
(0.013)

The table reports statistics and corresponding p-values obtained from the Dinamic Quantile (DQ) tests with

number of lags K = 1, 2 as described in Section 4.3. VaR computed at 5% and 1% confidence levels. Rejections

of the null highlighted in bold.
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As opposed to other backtesting methods, the DQ test takes into account a more general

temporal dependence between the series of violations and is considered the most reliable in

assessing the VaR accuracy. For both regression specifications, the normal, skew-normal and

MEP distributions again underperform compared to the other distributions, mostly due to fail-

ures of the Unconditional (UC) and Conditional Coverage (CC) hypothesis. Despite the fact

that the DQCC nests the DQUC and DQIND tests, the latter is passed in all cases for K = 1,

indicating that VaR violations are not dependent over time. By augmenting the number of lags

to K = 2 and moving to the most extreme quantile, the Student distribution is the only one to

pass the test at the 5% level (skew-Student and the skew-MEP not rejected at the 1% level).

However, in this setting the overall performance of the models is found to be considerably in-

ferior as they all fail the DQCC test at the 5% level.

As already outlined by the previous tests, transforming from a normal to a skew-normal

distribution does not affect the grade. By contrast, moving from a normal-approximating

MEP (B ≃ 2) to a Laplace-approximating skew-MEP (B ≃ 1) results in a remarkably better

performance of the model. This may lend further support to the notion that inclusion of a

heavy-tailed distribution assumption is crucial in constructing accurate VaR forecasts.

To conclude, while the empirical application provide a clear evidence that the thin-tailed dis-

tributions deliver poor VaR forecasts compared to the corresponding heavy-tailed and skewed

counterparts, it is not possible to fully assess weather the inclusion of skewness on top of heavy-

tails is strictly necessary to improve the models forecasting accuracy.

5 Concluding remarks

As empirical evidence suggests, financial asset returns are conditionally heteroskedastic and

generally non-normally distributed, fat-tailed and often skewed. It is also widely known that

financial volatility tends to move together across assets and markets, exhibiting strong comove-

ments over time. This requires an accurate modeling of the time-varying covariances of asset

returns, which is at least as challenging as modeling univariate volatility alone. On the contrary,

usual practice is to relying on multivariate GARCH specifications coupled with the normality

assumption of the return distribution, which does not accommodate the stylized facts listed

above and can have serious implications for portfolio diversification and risk management.

In this article we examined the economic and statistical impact of using a more flexible distribu-
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tion model for asset allocation decisions in an out-of-sample setting. Specifically, we estimated

a multivariate BEKK model coupled with three symmetric and three skewed distributional

assumptions (i.e. normal, Student, MEP and their skewed counterparts) and evaluated the

models accuracy in predicting equally-weighted portfolio Value-at-Risk (VaR).

We employed a series of standard backtesting methods to compare the distribution-based model

performance and they unanimously showed that the inclusion of a heavy-tailed distribution is

crucial for constructing accurate VaR forecasts, while the further addition of skewness fails to

make a significant difference. This is shown in the large improvement in all test results when

moving from a MEP to a skew-MEP distributional assumption compared to the marginal dif-

ference when moving from the Student to skew-Student distribution. However, we also found

evidence that introducing skewness could lead to improvements in VaR forecast accuracy for

extreme events located further than standard 5 and 1% confidence level in the left-tail of the

returns distribution. This may warrant further investigations.

There are several possible avenues of research extending from this work. First, we only dealt

with the BEKK parametrization. In spite of the multiple advantages of this model, an extension

to multivariate GARCH specifications that also consider asymmetric past return-to-volatility

feedbacks could lead to interesting results. Another possibility would be to consider higher

forecast horizons for the VaR in order to check if the inclusion of skewness and asymmetric

forms of dependence can lead to significant improvements in the long run. Finally, in a VaR

perspective, despite the fact that the quantile regression method represents a marked improve-

ment over the existing backtesting alternatives, other methods could also be investigated. For

example, extreme value theory-based approaches which focus only on the tails of the returns

distribution, represent already a valid starting point in this direction.
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Appendix A Derivations

Appendix A.1 Transformation

The transformation zt = H
−1/2
t yt is incorporated into the symmetric, standardised pdfs as

follows:

κ⋆′κ⋆ = (κ⋆1, ..., κ
⋆
N)

′(κ⋆1, ..., κ
⋆
N)

=
(
. . . (sizi +mi)ξ

Ii
i . . .

)′ (
. . . (sizi +mi)ξ

Ii
i . . .

)
=

(
. . . (si

N∑
j=1

pijyj +mi)ξ
Ii
i . . .

)′(
. . . (si

N∑
j=1

pijyj +mi)ξ
Ii
i . . .

)

=
N∑
i=1

(
si

N∑
j=1

pijyj +mi

)
ξ2Iii

where pij corresponds to the jth element of the ith row of H
−1/2
t . Note that the t subscript is

dropped for simplicity. The matrix square root operation is carried out by applying the Cholesky

decomposition of Ht such that BB′ = Ht. As a result, each zi is obtained by multiplying the

row vector of H
−1/2
t corresponding to asset i with the demeaned return vector (giving us the

inner summation above) which is then multiplied by the univariate standard deviation and

added to the univariate mean. The presence of skewness is factored in by the term ξIii , where

the factor Ii is defined as in Eq. (15).
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Appendix A.2 Distributions moments

We report the first two moments of the univariate symmetric normal, Student and MEP dis-

tributions along with the formulas for the derivation of the univariate moments of their skewed

counterparts. These are used to compute the log-likelihood function as given in Section 2.3.

Skew-Normal Symmetric normal first and second moments:

Mi,1 =

∫ ∞

0

2√
2π
u exp

{
−1

2
u2
}
du

=

√
2

π

∫ ∞

0

u exp

{
−1

2
u2
}
du

=

√
2

π

Mi,2 =

∫ ∞

0

2√
2π
u2 exp

{
−1

2
u2
}
du

=

√
2

π

∫ ∞

0

u2 exp

{
−1

2
u2
}
du

= 1

The skewed moments are computed using Equations (11) and (12) as follows:

mi = Mi,1

(
ξi −

1

ξ1

)
=

√
2

π

(
ξi −

1

ξ1

)
s2i =

(
Mi,2 −M2

i,1

)(
ξ2i +

1

ξ2i

)
+ 2M2

i,1 −Mi,2

=

(
1− 2

π

)(
ξ2i +

1

ξ2i

)
+

4

π
− 1

=
π − 2

π

(
ξ2i +

1

ξ2i

)
+

4− π

π
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Skew-Student Symmetric Student distribution first and second moments:

Mi,1 =
2Γ
(
ν+1
2

)
Γ
(
ν
2

)√
π(ν − 2)

∫ ∞

0

u

(
1 +

u2

ν − 2

)− 1+ν
2

du

=
2
√
ν − 2

(
ν−1
2

)
Γ
(
ν−1
2

)
√
π(ν − 1)Γ

(
ν
2

)
=

2
√
ν − 2Γ

(
ν+1
2

)
√
π(ν − 1)Γ

(
ν
2

)
=

Γ
(
ν−1
2

)√
ν − 1

√
πΓ
(
ν
2

)
Mi,2 =

2Γ
(
ν+1
2

)
Γ
(
ν
2

)√
π(ν − 2)

∫ ∞

0

u2
(
1 +

u2

ν − 2

)− 1+ν
2

du

=
(ν − 2)Γ

(
ν
2
− 1
)

2Γ
(
ν
2

)
=

(ν − 2)Γ
(
ν
2
− 1
)

2
(
ν−2
2

)
Γ
(
ν
2
− 1
)

= 1

First and second order moments of the skewd distribution are expressed as follows; specifically

the second skewed moment is obtained as a function of the first:

mi =Mi,1

(
ξi −

1

ξi

)
⇒M2

i,1 = m2
i

(
ξ2i

(ξ2i − 1)2

)
Substituting into Eq.(12) gives:

s2i = M2
i,1

(
−ξ2i −

1

ξ2i
+ 2

)
+Mi,2

(
ξ2i +

1

ξ2i
− 1

)
=

ξ2i
(ξ2i − 1)2

(
−ξ4i + 2ξ2i + 2

ξ2i

)
m2

i +Mi,2

(
ξ4i − ξ2i + 1

ξ2i

)

=
ξ2i

(ξ2i − 1)2
−(ξ2i − 1)2

ξ2i
m2

i +Mi,2

ξ2i

(
ξ2i − 1 + 1

ξ2i

)
ξ2i

= Mi,2

(
ξ2i +

1

ξ2i
− 1

)
−m2

i

Eq.(25) is obtained by substituting Mi,2 = 1 into the above result.
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Skew-MEP Symmetric MEP first and second moments:

Mi,1 =
2

Γ
(
1 + 1

β

)21+ 1
β

∫ ∞

0

u exp

{
−1

2
uβ
}
du

=
2−1+ 1

βΓ
(

2+β
β

)
Γ
(
1 + 1

β

)
Mi,2 =

2

Γ
(
1 + 1

β

)21+ 1
β

∫ ∞

0

u2 exp

{
−1

2
uβ
}
du

=
4

1
βΓ
(

3
β

)
βΓ
(
1 + 1

β

)
Skewed moments obtained as:

mi =
2−1+ 1

βΓ
(

2+β
β

)
βΓ
(
1 + 1

β

) (
ξi −

1

ξ1

)

s2i =
4

1
βΓ
(

3
β

)
βΓ
(
1 + 1

β

) (ξ2i + 1

ξ2i
− 1

)
−m2

i .
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Appendix B Tables

Table B1: Windows length and corresponding calendar time

Rolling fixed-window Forecast horizon

It. Observations Days Observations Days

1 1-1500 2/1/01 - 1/23/07 1501-1520 1/24/07 - 2/21/07

2 21-1520 3/2/01 - 2/21/07 1521-1540 2/22/07 - 3/21/07

3 41-1540 3/30/01 - 3/21/07 1541-1560 3/22/07 - 4/19/07

4 61-1560 4/30/01 - 4/19/07 1561-1580 4/20/07 - 5/17/07

5 81-1580 5/29/01 - 5/17/07 1581-1600 5/18/07 - 6/15/07

6 101-1600 6/26/01 - 6/15/07 1601-1620 6/18/07 - 7/16/07

7 121-1620 7/25/01 - 7/16/07 1621-1640 7/17/07 - 8/13/07

8 141-1640 8/22/01 - 8/13/07 1641-1660 8/14/07 - 9/11/07

9 161-1660 9/26/01 - 9/11/07 1661-1680 9/12/07 - 10/9/07

10 181-1680 10/24/01 - 10/9/07 1681-1700 10/10/07 - 11/6/07

11 201-1700 11/21/01 - 11/6/07 1701-1720 11/7/07 - 12/5/07

12 221-1720 12/20/01 - 12/5/07 1721-1740 12/6/07 - 1/4/08

13 241-1740 1/22/02 - 1/4/08 1741-1760 1/7/08 - 2/4/08

14 261-1760 2/20/02 - 2/4/08 1761-1780 2/5/08 - 3/4/08

15 281-1780 3/20/02 - 3/4/08 1781-1800 3/5/08 - 4/2/08

16 301-1800 4/18/02 - 4/2/08 1801-1820 4/3/08 - 4/30/08

17 321-1820 5/16/02 - 4/30/08 1821-1840 5/1/08 - 5/29/08

18 341-1840 6/14/02 - 5/29/08 1841-1860 5/30/08 - 6/26/08

19 361-1860 7/15/02 - 6/26/08 1861-1880 6/27/08 - 4/2/08

20 381-1880 8/12/02 - 7/25/08 1881-1900 7/28/08 - 8/22/08

21 401-1900 9/10/02 - 8/22/08 1901-1920 8/25/08 - 9/22/08

22 421-1920 10/8/02 - 9/22/08 1921-1940 9/23/08 - 10/20/08

23 441-1940 11/5/02 - 10/20/08 1941-1960 10/21/08 - 11/17/08

24 461-1960 12/4/02 - 11/17/08 1961-1980 11/18/08 - 12/16/08

25 481-1980 1/3/03 - 12/16/08 1981-2000 12/17/08 - 1/15/09

26 501-2000 2/3/03 - 1/15/09 2001-2020 1/16/09 - 2/13/09

27 521-2020 3/4/03 - 2/13/09 2021-2040 2/17/09 - 3/16/09

28 541-2040 4/1/03 - 3/16/09 2041-2060 3/17/09 - 4/22/05

29 561-2060 4/30/03 - 4/14/09 2061-2080 4/15/09 - 5/12/09

30 581-2080 5/29/03 - 5/12/09 2081-2100 5/13/09 - 6/10/09

31 601-2100 6/26/03 - 6/10/09 2101-2120 6/11/09 - 7/9/09

32 621-2120 7/25/03 - 7/9/09 2121-2140 7/10/09 - 8/6/09

33 641-2140 8/22/03 - 8/6/09 2141-2160 8/7/09 - 9/3/09

34 661-2160 9/22/03 - 9/3/09 2161-2180 9/4/09 - 10/2/09

35 681-2180 10/20/03 - 10/2/09 2181-2200 10/5/09 - 10/30/09
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Appendix C Figures

Figure C1: VaR: normal and skew-normal
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Figure C2: VaR: Student and skew-Student
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Figure C3: VaR: MEP and skew-MEP

0 100 200 300 400 500 600 700
−15

−10

−5

0

5

10

 

 

Portfolio returns
var1%−mep

var5%−mep

0 100 200 300 400 500 600 700
−15

−10

−5

0

5

10

 

 

Portfolio returns
var1%−skmep

var5%−skmep

32



Recent titles 
CORE Discussion Papers 

 
2014/18 Koen DECANCQ, Marc FLEURBAEY and Erik SCHOKKAERT. Inequality, income, and 

well-being. 
2014/19 Paul BELLEFLAMME and Martin PEITZ. Digital piracy: an update. 
2014/20 Eva-Maria SCHOLZ. Licensing to vertically related markets. 
2014/21 N. Baris VARDAR. Optimal energy transition and taxation of non-renewable resources. 
2014/22 Benoît DECERF. Income poverty measures with relative poverty lines. 
2014/23 Antoine DEDRY, Harun ONDER and Pierre PESTIEAU. Aging, social security design and 

capital accumulation. 
2014/24 Biung-Ghi JU and Juan D. MORENO-TERNERO. Fair allocation of disputed properties. 
2014/25 Nguyen Thang DAO. From agriculture to manufacture: How does geography matter ? 
2014/26 Xavier Y. WAUTHY. From Bertrand to Cournot via Kreps and Scheinkman: a hazardous 

journey. 
2014/27 Gustavo BERGANTIÑOS and Juan MORENO-TERNERO. The axiomatic approach to the 

problem of sharing the revenue from bundled pricing. 
2014/28 Jean HINDRIKS and Yukihiro NISHIMURA. International tax leadership among asymmetric 

countries. 
2014/29 Jean HINDRIKS and Yukihiro NISHIMURA. A note on equilibrium leadership in tax 

competition models. 
2014/30 Olivier BOS and Tom TRUYTS. Auctions with prestige motives. 
2014/31 Juan D. MORENO-TERNERO and Lars P. ØSTERDAL . Normative foundations for equity-

sensitive population health evaluation functions. 
2014/32 P. Jean-Jacques HERINGS, Ana MAULEON and Vincent VANNETELBOSCH. Stability of 

networks under Level-K farsightedness. 
2014/33 Lionel ARTIGE, Laurent CAVENAILE and Pierre PESTIEAU. The macroeconomics of PAYG 

pension schemes in an aging society. 
2014/34 Tanguy KEGELART and Mathieu VAN VYVE. A conic optimization approach for SKU 

rationalization. 
2014/35 Ulrike KORNEK, Kei LESSMANN and Henry TULKENS. Transferable and non transferable 

utility implementations of coalitional stability in integrated assessment models. 
2014/36 Ibrahim ABADA, Andreas EHRENMANN and Yves SMEERS. Endogenizing long-term 

contracts in gas market models. 
2014/37 Julio DAVILA. Output externalities on total factor productivity. 
2014/38 Diane PIERRET. Systemic risk and the solvency-liquidity nexus of banks. 
2014/39 Paul BELLEFLAMME and Julien JACQMIN. An economic appraisal of MOOC platforms: 

business models and impacts on higher education. 
2014/40 Marie-Louise LEROUX, Pierre PESTIEAU and Grégory PONTHIERE. Longévité 

différentielle et redistribution: enjeux théoriques et empiriques. 
2014/41 Chiara CANTA, Pierre PESTIEAU and Emmanuel THIBAULT. Long term care and capital 

accumulation: the impact of the State, the market and the family. 
2014/42 Gilles GRANDJEAN, Marco MANTOVANI, Ana MAULEON and Vincent 

VANNETELBOSCH. Whom are you talking with ? An experiment on credibility and 
communication structure. 

2014/43 Julio DAVILA. The rationality of expectations formation. 
2014/44 Florian MAYNERIS, Sandra PONCET and Tao ZHANG. The cleaning effect of minimum 

wages. Minimum wages, firm dynamics and aggregate productivity in China. 
2014/45 Thierry BRECHET, Natali HRITONENKOVA and Yuri YATSENKO. Domestic 

environmental policy and international cooperation for global commons. 
2014/46 Mathieu PARENTI, Philip USHCHEV and Jacques-François THISSE. Toward a theory of 

monopolistic competition. 
 



Recent titles 
CORE Discussion Papers - continued 

 
2014/47 Takatoshi TABUCHI, Jacques-François THISSE and Xiwei ZHU. Does technological progress 

affect the location of economic activity? 
2014/48 Paul CASTANEDA DOWER, Victor GINSBURGH and Shlomo WEBER. Colonial legacy, 

linguistic disenfranchisement and the civil conflict in Sri Lanka. 
2014/49 Victor GINSBURGH, Jacques MELITZ and Farid TOUBAL. Foreign language learnings: An 

econometric analysis. 
2014/50 Koen DECANCQ and Dirk NEUMANN. Does the choice of well-being measure matter 

empirically? An illustration with German data. 
2014/51 François MANIQUET. Social ordering functions. 
2014/52 Ivar EKELAND and Maurice QUEYRANNE. Optimal pits and optimal transportation. 
2014/53 Luc BAUWENS, Manuela BRAIONE and Giuseppe STORTI. Forecasting comparison of long 

term component dynamic models for realized covariance matrices. 
2014/54 François MANIQUET and Philippe MONGIN. Judgment aggregation theory can entail new 

social choice results. 
2014/55 Pasquale AVELLA, Maurizio BOCCIA and Laurence A. WOLSEY. Single-period cutting 

planes for inventory routing problems. 
2014/56 Jean-Pierre FLORENS and Sébastien VAN BELLEGEM. Instrumental variable estimation in 

functional linear models. 
2014/57 Abdelrahaman ALY and Mathieu VAN VYVE. Securely solving classical networks flow 

problems.  
2014/58 Henry TULKENS. Internal vs. core coalitional stability in the environmental externality game: 

A reconciliation. 
2014/59 Manuela BRAIONE and Nicolas K. SCHOLTES. Construction of Value-at-Risk forecasts 

under different distributional assumptions within a BEKK framework. 
 

Books 
 
V. GINSBURGH and S. WEBER (2011), How many languages make sense? The economics of linguistic 

diversity. Princeton University Press. 
I. THOMAS, D. VANNESTE and X. QUERRIAU (2011), Atlas de Belgique – Tome 4 Habitat. Academia 

Press. 
W. GAERTNER and E. SCHOKKAERT (2012), Empirical social choice. Cambridge University Press. 
L. BAUWENS, Ch. HAFNER and S. LAURENT (2012), Handbook of volatility models and their 

applications. Wiley. 
J-C. PRAGER and J. THISSE (2012), Economic geography and the unequal development of regions. 

Routledge. 
M. FLEURBAEY and F. MANIQUET (2012), Equality of opportunity: the economics of responsibility. 

World Scientific. 
J. HINDRIKS (2012), Gestion publique. De Boeck. 
M. FUJITA and J.F. THISSE (2013), Economics of agglomeration: cities, industrial location, and 

globalization. (2nd edition). Cambridge University Press. 
J. HINDRIKS and G.D. MYLES (2013). Intermediate public economics. (2nd edition). MIT Press. 
J. HINDRIKS, G.D. MYLES and N. HASHIMZADE (2013). Solutions manual to accompany intermediate 

public economics. (2nd edition). MIT Press. 
 

CORE Lecture Series 
 
R. AMIR (2002), Supermodularity and complementarity in economics. 
R. WEISMANTEL (2006), Lectures on mixed nonlinear programming. 
A. SHAPIRO (2010), Stochastic programming: modeling and theory. 


	Cover2014_59
	premiere_address
	Abstract2014_59
	main_REVISED
	Dern.pageDP2014_59

