"Groundstates of nonlinear Choquard equations: Hardy–Littlewood–Sobolev critical exponent"

Moroz, Vitaly ; Van Schaftingen, Jean

Abstract
We consider nonlinear Choquard equation $-\Delta u + Vu = (I_\alpha * |u|^{(\alpha/N + 1)})|u|^{(\alpha/N - 1)} u$ where $N \geq 3$, $V \in L^\infty(\mathbb{R}^N)$ is an external potential and $I_\alpha(x)$ is the Riesz potential of order $\alpha \in (0, N)$. The power in the nonlocal part of the equation is critical with respect to the Hardy–Littlewood–Sobolev inequality. As a consequence, in the associated minimization problem a loss of compactness may occur. We prove that if $\liminf_{r \to \infty} (1-V(x))|x|^2 > N^2(N-2)/(4(N+1))$ then the equation has a nontrivial solution. We also discuss some necessary conditions for the existence of a solution. Our considerations are based on a concentration compactness argument and a nonlocal version of Brezis–Lieb lemma.

Document type: Article de périodique (Journal article)

Référence bibliographique

DOI : 10.1142/S0219199715500054
GROUNDSTATES OF NONLINEAR CHOQUARD EQUATIONS: HARDY-LITTLEWOOD-SOBOLEV CRITICAL EXPONENT

VITALY MOROZ AND JEAN VAN SCHAFTINGEN

Abstract. We consider nonlinear Choquard equation

$$-\Delta u + Vu = (I_\alpha * |u|^{p+1})|u|^{p-2}u \quad \text{in } \mathbb{R}^N,$$

where $N \geq 3$, $V \in L^\infty(\mathbb{R}^N)$ is an external potential and $I_\alpha(x)$ is the Riesz potential of order $\alpha \in (0, N)$. The power $\frac{N}{2} + 1$ in the nonlocal part of the equation is critical with respect to the Hardy-Littlewood-Sobolev inequality. As a consequence, in the associated minimization problem a loss of compactness may occur. We prove that if

$$\liminf_{|x| \to \infty} (1 - V(x))|x|^2 > \frac{N(N-2)}{4(N+1)},$$

then the equation has a nontrivial solution. We also discuss some necessary conditions for the existence of a solution. Our considerations are based on a concentration compactness argument and a nonlocal version of Brezis-Lieb lemma.

Contents

1. Introduction and results
2. Existence of minimizers under strict inequality: proof of theorem 3
3. Optimality of the strict inequality
4. Sufficient conditions for the strict inequality: proof of theorem 6
5. Pohožaev identity and necessary conditions for the existence

References

1. Introduction and results

We consider a nonlinear Choquard type equation

$$(P) \quad -\Delta u + Vu = (I_\alpha * |u|^p)|u|^{p-2}u \quad \text{in } \mathbb{R}^N,$$

where $N \in \mathbb{N}$, $\alpha \in (0, N)$, $p > 1$, $I_\alpha : \mathbb{R}^N \setminus \{0\} \to \mathbb{R}$ is the Riesz potential of order $\alpha \in (0, N)$ defined for every $x \in \mathbb{R}^N \setminus \{0\}$ by

$$I_\alpha(x) = \frac{\Gamma(\frac{N-\alpha}{2})}{2^{\alpha} \pi^{N/2} \Gamma(\frac{\alpha}{2})}|x|^{N-\alpha},$$

and $V \in L^\infty(\mathbb{R}^N)$ is an external potential.

2010 Mathematics Subject Classification. 35J20 (35B33, 35J91, 35J47, 35J50, 35Q55).

Key words and phrases. Choquard equation; Hartree equation; nonlinear Schrödinger equation; nonlocal problem; Riesz potential; Hardy-Littlewood-Sobolev inequality; lower critical exponent; strict inequality; concentration-compactness; concentration at infinity.
For $N = 3$, $\alpha = 2$ and $p = 2$ equation \mathcal{P} is the Choquard-Pekar equation which goes back to the 1954’s work by S. I. Pekar on quantum theory of a Polaron at rest [6] Section 2.1; [20] and to 1976’s model of P. Choquard of an electron trapped in its own hole, in an approximation to Hartree-Fock theory of one-component plasma [8]. In the 1990’s the same equation reemerged as a model of self-gravitating matter [7,19] and is known in that context as the Schrödinger-Newton equation.

Mathematically, the existence and qualitative properties of solutions of Choquard equation \mathcal{P} have been studied for a few decades by variational methods, see [8; 11; 12 Chapter III: 14] for earlier and [2–5,13;16–18] for recent work on the problem and further references therein.

The following sharp characterisation of the existence and nonexistence of nontrivial solutions of \mathcal{P} in the case of constant potential V can be found in [16].

Theorem 1 (Ground states of \mathcal{P} with constant potential [16 theorems 1 and 2]). Assume that $V \equiv 1$. Then \mathcal{P} has a nontrivial solution $u \in H^1(\mathbb{R}^N) \cap L^{\frac{2N}{N-\alpha}}(\mathbb{R}^N)$ with $\nabla u \in H^1_{\text{loc}}(\mathbb{R}^N) \cap L^{\frac{2N}{N-\alpha}}_{\text{loc}}(\mathbb{R}^N)$ if and only if $p \in \left(\frac{\alpha}{N} + 1, \frac{N + \alpha}{N - 2 \alpha}\right]$.

If $p \in \left(\frac{\alpha}{N} + 1, \frac{N + \alpha}{N - 2 \alpha}\right]$ then $H^1(\mathbb{R}^N) \subset L^{\frac{2N}{N-\alpha}}(\mathbb{R}^N)$ by the Sobolev inequality, and moreover, every H^1-solution of \mathcal{P} belongs to $W^{2,p}_{\text{loc}}(\mathbb{R}^N)$ for any $p \geq 1$ by a regularity result in [17] proposition 3.1. This implies that the Choquard equation \mathcal{P} with a positive constant potential has no H^1-solutions at the end-points of the above existence interval.

In this note we are interested in the existence and nonexistence of solutions to \mathcal{P} with nonconstant potential V at the lower critical exponent $p = \frac{\alpha}{N} + 1$, that is, we consider the problem

$$(\mathcal{P}_*) \quad -\Delta u + Vu = (I_\alpha * |u|^{\frac{\alpha}{N}+1})|u|^\frac{\alpha}{N}-1 \quad \text{in } \mathbb{R}^N.$$

The exponent $\frac{\alpha}{N} + 1$ is critical with respect to the Hardy-Littlewood-Sobolev inequality, which we recall here in a form of minimization problem

$$c_\infty = \inf \left\{ \int_{\mathbb{R}^N} |u|^2 \mid u \in L^2(\mathbb{R}^N) \text{ and } \int_{\mathbb{R}^N} (I_\alpha * |u|^{\frac{\alpha}{N}+1})|u|^{\frac{\alpha}{N}+1} = 1 \right\} > 0.$$

Theorem 2 (Optimal Hardy-Littlewood-Sobolev inequality [9 theorem 3.1; 10 theorem 4.3]). The infimum c_∞ is achieved if and only if

$$u(x) = C \left(\frac{\lambda}{\lambda^2 + |x-a|^2} \right)^{N/2},$$

where $C > 0$ is a fixed constant, $a \in \mathbb{R}^N$ and $\lambda \in (0, \infty)$ are parameters.

The form of minimizers in theorem 2 suggests that a loss of compactness in \mathcal{P}_* may occur by translations and dilations.

In order to characterise the existence of nontrivial solutions for the lower critical Choquard equation \mathcal{P}_* we define the critical level

$$c_* = \inf \left\{ \int_{\mathbb{R}^N} |\nabla u|^2 + V|u|^2 \mid u \in H^1(\mathbb{R}^N) \text{ and } \int_{\mathbb{R}^N} (I_\alpha * |u|^{\frac{\alpha}{N}+1})|u|^{\frac{\alpha}{N}+1} = 1 \right\}.$$
It can be checked directly that if \(u \in H^1(\mathbb{R}^N) \) achieves the infimum \(c_* \), then a multiple of the minimizer \(u \) is a weak solution of Choquard equation \((P)\).

Using a Brezis-Lieb type lemma for Riesz potentials \([16, \text{lemma 2.4}]\) and a concentration compactness argument (lemma 10), we establish our main abstract result.

Theorem 3 (Existence of a minimizer). Assume that \(V \in L^\infty(\mathbb{R}^N) \) and
\[
\liminf_{|x| \to \infty} V(x) \geq 1.
\]
If \(c_* < c_\infty \) then the infimum \(c_* \) is achieved and every minimizing sequence for \(c_* \) up to a subsequence converges strongly in \(H^1(\mathbb{R}^N) \).

The inequality for the existence of minimizers is sharp, as shown by the following lemma for constant potentials.

Lemma 4. If \(V \equiv 1 \), then \(c_* = c_\infty \).

Since problem \((P)\) with \(V \equiv 1 \) has no \(H^1 \)-solutions, this shows that the strict inequality \(c_* < c_\infty \) is indeed essential for the existence of a minimizer for \(c_* \).

In fact, the strict inequality \(c_* < c_\infty \) is necessary at least for the strong convergence of all minimizing sequences.

Proposition 5. Let \(V \in L^\infty(\mathbb{R}^N) \). If
\[
\limsup_{|x| \to \infty} V(x) \leq 1,
\]
then
\[
c_* \leq c_\infty.
\]
In addition, if
\[
c_* = c_\infty,
\]
then there exists a minimizing sequence for \(c_* \) which converges weakly to \(0 \) in \(H^1(\mathbb{R}^N) \).

Using Hardy-Littlewood-Sobolev minimizers \((1.1)\) as a family of test functions for \(c_* \), we establish a sufficient condition for the strict inequality \(c_* < c_\infty \).

Theorem 6. Let \(V \in L^\infty(\mathbb{R}^N) \). If
\[
\liminf_{|x| \to \infty} (1 - V(x)) |x|^2 > \frac{N^2(N-2)+4(N+1)}{4(N+1)},
\]
then \(c_* < c_\infty \) and hence the infimum \(c_* \) is achieved.

In particular, if \(N = 1, 2 \) then condition \((1.3)\) reduces to
\[
\limsup_{|x| \to \infty} (1 - V(x)) |x|^2 > 0,
\]
that is, the potential \(1 - V \) should not decay to zero at infinity faster then the inverse square of \(|x| \).

Employing a version of Pohožaev identity for Choquard equation \((P)\) (see proposition \((11)\) below), we show that a certain control on the potential \(V \) is indeed necessary for the strict inequality \(c_* < c_\infty \).
Proposition 7. Let $V \in C^1(\mathbb{R}^N) \cap L^\infty(\mathbb{R}^N)$. If
\[
\sup_{x \in \mathbb{R}^N} \left\{ \int_{\mathbb{R}^N} \frac{1}{2} (\nabla V(x) | x) \varphi(x)^2 \, dx \mid \varphi \in C^1(\mathbb{R}^N) \text{ and } \int_{\mathbb{R}^N} |\nabla \varphi|^2 \leq 1 \right\} < 1,
\]
then Choquard equation (P*) does not have a nonzero solution $u \in H^1(\mathbb{R}^N) \cap W^{2,2}_\text{loc}(\mathbb{R}^N)$.

In particular, combining (1.4) with Hardy’s inequality on \mathbb{R}^N, we obtain a simple nonexistence criterion.

Proposition 8. Let $N \geq 3$ and $V \in C^1(\mathbb{R}^N) \cap L^\infty(\mathbb{R}^N)$. If for every $x \in \mathbb{R}^N$,
\[
\sup_{x \in \mathbb{R}^N} |x|^2 (\nabla V(x) | x) < \frac{(N - 2)^2}{2},
\]
then Choquard equation (P*) does not have a nonzero solution $u \in H^1(\mathbb{R}^N) \cap W^{2,2}_\text{loc}(\mathbb{R}^N)$.

For example, for $N \geq 3$ and $\mu > 0$, we consider a model equation
\[
- \Delta u + \left(1 - \frac{\mu}{1 + |x|^2} \right) u = (I_\alpha * |u|^\frac{N+1}{N-1} |u|^\frac{N-1}{N-1} u \quad \text{in } \mathbb{R}^N.
\]
Then proposition 8 implies that (1.6) has no nontrivial solutions for $\mu < \frac{(N-2)^2}{4}$, while for $\mu > \frac{N^2(N-2)}{4(N+1)}$, assumption (1.3) is satisfied and hence (P*) admits a ground state. We note that
\[
\frac{(N-2)^2}{4} = 1 - \frac{N - 2}{N^2},
\]
so that the two bounds are asymptotically sharp when $N \to \infty$. We leave as an open question whether (1.6) admits a ground state for $\mu \in \left[\frac{(N-2)^2}{4}, \frac{N^2(N-2)}{4(N+1)} \right]$.

We emphasise that unlike the asymptotic sufficient existence condition (1.3), nonexistence condition (1.5) is a global condition on the whole of \mathbb{R}^N. For example, a direct computation shows that for $a = 0$ and every $\lambda > 0$, a multiple of the Hardy-Littlewood-Sobolev minimizer (1.1) solves the equation
\[
- \Delta u + \left(1 + \frac{N(2|x|^2 - N\lambda^2)}{(|x|^2 + \lambda^2)^2} \right) u = (I_\alpha * |u|^\frac{N+1}{N-1} |u|^\frac{N-1}{N-1} u \quad \text{in } \mathbb{R}^N.
\]
Here (1.3) fails on an annulus centered at the origin, while $V(x) > 1$ and $(\nabla V(x) | x) < 0$ for all $|x|$ sufficiently large. Moreover,
\[
\lim_{|x| \to \infty} (1 - V(x)) |x|^2 = -2N < 0 \leq \frac{N^2(N-2)}{4(N+1)}.
\]
Note that the constructed solution u_λ satisfies
\[
\int_{\mathbb{R}^N} |\nabla u_\lambda|^2 + V |u_\lambda|^2 = 0.
\]
In particular, we are unable to conclude that $c_\star < c_\infty$. We do not know whether u_λ is a ground state of (1.17). However, if u_λ was not a ground state, then we would have $c_\star < c_\infty$ and (1.17) would then have a ground state by theorem 2.
2. Existence of minimizers under strict inequality: proof of theorem \(\Box \)

In order to prove theorem \(\Box \) we will use a special case of the classical Brezis-Lieb lemma \([1]\) for Riesz potentials.

Lemma 9 (Brezis-Lieb lemma for the Riesz potential \([16, \text{lemma 2.4}]\)). Let \(N \in \mathbb{N} \), \(\alpha \in (0, N) \), and \((u_n)_{n \in \mathbb{N}}\) be a bounded sequence in \(L^2(\mathbb{R}^N) \). If \(u_n \to u \) almost everywhere on \(\mathbb{R}^N \) as \(n \to \infty \), then

\[
\int_{\mathbb{R}^N} (I_\alpha * |u|^\frac{\alpha}{\alpha + 1}) |u|^\frac{\alpha}{\alpha + 1} = \lim_{n \to \infty} \int_{\mathbb{R}^N} (I_\alpha * |u_n|^\frac{\alpha}{\alpha + 1}) |u_n|^\frac{\alpha}{\alpha + 1}
- \int_{\mathbb{R}^N} (I_\alpha * |u_n - u|^\frac{\alpha}{\alpha + 1}) |u_n - u|^\frac{\alpha}{\alpha + 1}.
\]

Our second result is a concentration type lemma.

Lemma 10. Assume that \(V \in L^\infty(\mathbb{R}^N) \) and \(\liminf_{|x| \to \infty} V(x) \geq 1 \). If the sequence \((u_n)_{n \in \mathbb{N}}\) is bounded in \(L^2(\mathbb{R}^N) \) and converges in \(L^2_{\text{loc}}(\mathbb{R}^N) \) to \(u \) as \(n \to \infty \), then

\[
\int_{\mathbb{R}^N} V|u|^2 \leq \liminf_{n \to \infty} \int_{\mathbb{R}^N} V|u_n|^2 - \int_{\mathbb{R}^N} |u_n - u|^2.
\]

Proof. Since the sequence \((u_n)_{n \in \mathbb{N}}\) is bounded in \(L^2(\mathbb{R}^N) \) and converges in measure to \(u \), we deduce by the Brezis-Lieb lemma \([1]\) (see also \([10, \text{theorem 1.9}]\)) that

\[
\int_{\mathbb{R}^N} V|u|^2 = \lim_{n \to \infty} \int_{\mathbb{R}^N} V|u_n|^2 - \int_{\mathbb{R}^N} V|u_n - u|^2.
\]

Now, we observe that for every \(R > 0 \) and every \(n \in \mathbb{N} \),

\[
\int_{B_R} (1 - V)|u_n - u|^2 \leq \int_{B_R} (1 - V)|u_n - u|^2 + (1 - \inf_{\mathbb{R}^N \setminus B_R} V) \int_{\mathbb{R}^N} |u_n - u|^2.
\]

By the local \(L^2_{\text{loc}}(\mathbb{R}^N) \) convergence, we note that

\[
\lim_{n \to \infty} \int_{B_R} (1 - V)|u_n - u|^2 = 0.
\]

Since \(\lim_{R \to \infty} (1 - \inf_{\mathbb{R}^N \setminus B_R} V)_+ = 0 \) and \((u_n - u)_{n \in \mathbb{N}}\) is bounded in \(L^2(\mathbb{R}^N) \), we conclude that

\[
\limsup_{n \to \infty} \int_{\mathbb{R}^N} (1 - V)|u_n - u|^2 \leq 0;
\]

the conclusion follows. \(\square \)

Proof of theorem \(\Box \) Let \((u_n)_{n \in \mathbb{N}} \subset H^1(\mathbb{R}^N)\) be a minimizing sequence for \(c_* \), that is

\[
\int_{\mathbb{R}^N} (I_\alpha * |u_n|^\frac{\alpha}{\alpha + 1}) |u_n|^\frac{\alpha}{\alpha + 1} = 1
\]

and

\[
\lim_{n \to \infty} \int_{\mathbb{R}^N} |
abla u_n|^2 + V|u_n|^2 \to c_*.
\]

In view of our assumption \([12]\) we observe that the sequence \((u_n)_{n \in \mathbb{N}}\) is bounded in \(H^1(\mathbb{R}^N) \). So, there exists \(u \in H^1(\mathbb{R}^N) \) such that, up to a subsequence, the sequence \((u_n)_{n \in \mathbb{N}}\) converges to \(u \) weakly in \(H^1(\mathbb{R}^N) \) and, by the classical Rellich-Kondrachov
compactness theorem, strongly in $L^2_{loc}(\mathbb{R}^N)$. By the lower semi-continuity of the norm under weak convergence,

$$\int_{\mathbb{R}^N} |\nabla u|^2 + V|u|^2 \leq \lim_{n \to \infty} \int_{\mathbb{R}^N} |\nabla u_n|^2 + V|u_n|^2 = c_*.$$

and by Fatou’s lemma

$$\int_{\mathbb{R}^N} (I_\alpha * |u_n|^{\frac{N+1}{N}})|u_n|^{\frac{N}{N+1}} \leq 1.$$

In order to conclude, it suffices to prove that equality is achieved in the latter inequality.

We observe that by lemma 9,

$$\lim_{n \to \infty} \int_{\mathbb{R}^N} (I_\alpha * |u_n - u|^{\frac{N+1}{N}})|u_n - u|^{\frac{N}{N+1}} = 1 - \int_{\mathbb{R}^N} (I_\alpha * |u|^{\frac{N+1}{N}})|u|^{\frac{N}{N+1}}$$

while by lemma 10 and by the lower-semicontinuity of the norm under weak convergence,

$$\int_{\mathbb{R}^N} |\nabla u|^2 + V|u|^2 \leq \liminf_{n \to \infty} \int_{\mathbb{R}^N} |\nabla u_n|^2 + \liminf_{n \to \infty} \int_{\mathbb{R}^N} V|u_n|^2 - |u_n - u|^2$$

$$= c_* - \limsup_{n \to \infty} \int_{\mathbb{R}^N} |u_n - u|^2.$$

(2.1)

By definition of c_∞, we have

$$\int_{\mathbb{R}^N} |u_n - u|^2 \geq c_\infty \left(\int_{\mathbb{R}^N} (I_\alpha * |u_n - u|^{\frac{N+1}{N}})|u_n - u|^{\frac{N}{N+1}} \right)^{\frac{N}{N+1}}.$$

Therefore, we conclude that

$$\int_{\mathbb{R}^N} |\nabla u|^2 + V|u|^2 \leq c_* - c_\infty \left(1 - \int_{\mathbb{R}^N} (I_\alpha * |u|^{\frac{N+1}{N}})|u|^{\frac{N}{N+1}} \right)^{\frac{N}{N+1}}.$$

In view of the definition of c_* this implies that

$$c_* \geq c_\infty \left(1 - \int_{\mathbb{R}^N} (I_\alpha * |u|^{\frac{N+1}{N}})|u|^{\frac{N}{N+1}} \right)^{\frac{N}{N+1}} + c_* \left(\int_{\mathbb{R}^N} (I_\alpha * |u|^{\frac{N+1}{N}})|u|^{\frac{N}{N+1}} \right)^{\frac{N}{N+1}}.$$

Since by assumption $c_* < c_\infty$, we conclude that

$$\int_{\mathbb{R}^N} (I_\alpha * |u|^{\frac{N+1}{N}})|u|^{\frac{N}{N+1}} = 1,$$

and hence, by definition of c_*,

$$\int_{\mathbb{R}^N} |\nabla u|^2 + V|u|^2 = c_*,$$

that is the infimum c_* is achieved at u. Moreover, from (2.1) we conclude that $u_n \to u$ in $L^2(\mathbb{R}^N)$. Since $V \in L^\infty(\mathbb{R}^N)$, this implies that $Vu_n \to Vu$ in $L^2(\mathbb{R}^N)$. Using (2.1) again, we conclude that

$$\int_{\mathbb{R}^N} |\nabla u|^2 = \lim_{n \to \infty} \int_{\mathbb{R}^N} |\nabla u_n|^2.$$

Since $(u_n)_{n \in \mathbb{N}}$ converges to u weakly in $H^1(\mathbb{R}^N)$, this implies that $(u_n)_{n \in \mathbb{N}}$ also converges to u strongly in $H^1(\mathbb{R}^N)$. □
3. Optimality of the strict inequality

In this section we prove lemma 4 and proposition 5.

Proof of lemma 4. Let us denote by \tilde{c}_∞ the infimum on the right-hand side. By density of the space $H^1(\mathbb{R}^N)$ in $L^2(\mathbb{R}^N)$ and by continuity in L^2 of the integral functionals involved in the definition of c_∞, it is clear that $\tilde{c}_\infty \geq c_\infty$. We choose now $u \in H^1(\mathbb{R}^N)$ and define for every $\lambda > 0$ the function $u_\lambda \in H^1(\mathbb{R}^N)$ for every $x \in \mathbb{R}^N$ by

$$u_\lambda(x) = \lambda^{N/2} u(\lambda x).$$

We compute for every $\lambda > 0$ that

$$\int_{\mathbb{R}^N} (I_\alpha * |u_\lambda|^{\frac{N+1}{\alpha}})|u_\lambda|^{\frac{N+1}{\alpha}} = \int_{\mathbb{R}^N} (I_\alpha * |u|^{\frac{N+1}{\alpha}})|u|^{\frac{N+1}{\alpha}}$$

and

$$\int_{\mathbb{R}^N} |\nabla u_\lambda|^2 + |u_\lambda|^2 = \frac{1}{\lambda^2} \int_{\mathbb{R}^N} |\nabla u|^2 + \int_{\mathbb{R}^N} |u|^2.$$

Hence,

$$\inf_{\lambda > 0} \int_{\mathbb{R}^N} |\nabla u_\lambda|^2 + |u_\lambda|^2 = \int_{\mathbb{R}^N} |u|^2,$$

and we conclude that $\tilde{c}_\infty \leq c_\infty$. □

Proof of proposition 5. For $\lambda > 0$, let

$$u_\lambda(x) = C \left(\frac{\lambda}{\lambda^2 + |x|^2} \right)^{\frac{N}{2}} = \lambda^{-\frac{N}{2}} u_1 \left(\frac{x}{\lambda} \right)$$

be a family of minimizers for c_∞ given in (1.1). We observe that

$$\int_{\mathbb{R}^N} (I_\alpha * |u_\lambda|^{\frac{N+1}{\alpha}})|u_\lambda|^{\frac{N+1}{\alpha}} = 1,$$

whereas by a change of variables,

$$\int_{\mathbb{R}^N} |\nabla u_\lambda|^2 + V |u_\lambda|^2 = \frac{1}{\lambda^2} \int_{\mathbb{R}^N} |\nabla u_1|^2 + \int_{\mathbb{R}^N} V \left(\frac{y}{\lambda} \right) \frac{C^2}{1 + |y|^2} \, dy.$$

By Lebesgue’s dominated convergence theorem

$$\limsup_{\lambda \to 0} \int_{\mathbb{R}^N} V \left(\frac{y}{\lambda} \right) \frac{C^2}{1 + |y|^2} \, dy \leq \int_{\mathbb{R}^N} \frac{C^2}{1 + |y|^2} \, dy = c_\infty,$$

so we conclude that $c_* \leq c_\infty$. If, in addition, $c_* = c_\infty$ then for any $\lambda_0 \to 0$, $(u_{\lambda_0})_{n \in \mathbb{N}}$ is a minimizing sequence for c_*, and the conclusion follows. □

4. Sufficient conditions for the strict inequality: proof of theorem 6

For $a \in \mathbb{R}^N$ and $\lambda > 0$, let

$$u_\lambda(x) = C \left(\frac{\lambda}{\lambda^2 + |x - a|^2} \right)^{N/2}$$

be a family of minimizers for c_∞ as in (1.1). Then

$$\int_{\mathbb{R}^N} |\nabla u_\lambda|^2 + V |u_\lambda|^2 = c_\infty + \int_{\mathbb{R}^N} |\nabla u_\lambda|^2 + \int_{\mathbb{R}^N} (V - 1) |u_\lambda|^2.$$
Denote
\[I_V(a, \lambda) := \lambda^2 \int_{\mathbb{R}^N} |\nabla u_\lambda|^2 + \lambda^2 \int_{\mathbb{R}^N} (V - 1)|u_\lambda|^2 < 0. \]

To obtain a sufficient conditions for \(c_* < c_\infty \) it is enough to show that for some \(a \in \mathbb{R}^N \),
\[(4.1) \inf_{\lambda > 0} I_V(a, \lambda) < 0, \]

Proof of theorem 6. If \(N \leq 2 \), then by (1.3) there exists \(\mu > 0 \) such that
\[\liminf_{|x| \to \infty} (1 - V(x))|x|^2 \geq \mu. \]

Therefore
\[\lim_{\lambda \to \infty} \lambda^2 \int_{\mathbb{R}^N} (1 - V)|u_\lambda|^2 = \lim_{\lambda \to \infty} \int_{\mathbb{R}^N} \frac{\lambda^2(1 - V(\lambda x))}{(1 + |x|^2)N} \, dx \geq \int_{\mathbb{R}^N} \frac{\mu}{|x|^2(1 + |x|^2)^N} \, dx = \infty. \]

Since for every \(\lambda > 0 \),
\[\lambda^2 \int_{\mathbb{R}^N} |\nabla u_\lambda|^2 = \int_{\mathbb{R}^N} |\nabla u_1|^2 < \infty, \]
the condition (4.1) is satisfied.

If \(N \geq 3 \), we observe that for every \(\lambda > 0 \),
\[\int_{\mathbb{R}^N} |\nabla u_\lambda|^2 = \frac{N^2(N - 2)}{4(N + 1)} \int_{\mathbb{R}^N} \frac{|u_\lambda(x)|^2}{|x|^2} \, dx. \]

This follows from the fact that
\[\int_{\mathbb{R}^N} \frac{|x|^2}{(1 + |x|^2)^{N+2}} \, dx = \frac{N - 2}{4(N + 1)} \int_{\mathbb{R}^N} \frac{1}{|x|^2(1 + |x|^2)^N} \, dx, \]
which can be proved by two successive integrations by parts. Then, after a transformation \(x = \lambda y + a \),
\[I_V(a, \lambda) = \int_{\mathbb{R}^N} \left(\frac{N^2(N - 2)}{4(N + 1)} \frac{1}{|y|^2} - \lambda^2(1 - V(a + \lambda y)) \right) \frac{C^2}{(1 + |y|^2)^N} \, dy, \]
and in view of (1.3), sufficient condition is (4.1) is satisfied for \(a = 0 \), so we conclude that \(c_* < c_\infty \). \(\square \)

Note that if the function \(\lambda \mapsto \lambda^2(1 - V(a + \lambda y)) \) is nondecreasing for every \(y \in \mathbb{R}^N \),
then \(\lambda \mapsto I_V(a, \lambda) \) is nonincreasing. Therefore \(I_V(a, \lambda) \) admits negative values if and only if it has a negative limit as \(\lambda \to \infty \). The latter is ensured in theorem 6 via asymptotic condition (1.3). This explains that if the function \(\lambda \mapsto \lambda^2(1 - V(a + \lambda y)) \) is nondecreasing, like for instance, in the special case
\[V(x) = 1 - \frac{\mu}{1 + |x|^2}, \]
then integral sufficient condition (4.1) is in fact equivalent to the asymptotic sufficient condition (1.3).
5. Pohožaev Identity and Necessary Conditions for the Existence

We establish a Pohožaev type identity, which extends the identities (5.1) obtained previously for constant potentials V [4, lemma 2.1; 15, proposition 3.1; 17, theorem 3].

Proposition 11. Let $N \geq 3$ and $V \in C^1(\mathbb{R}^N) \cap L^\infty(\mathbb{R}^N)$ and $u \in W^{1,2}(\mathbb{R}^N)$. If

$$\sup_{x \in \mathbb{R}^N} |(\nabla V(x))x| < \infty,$$

and $u \in W^{2,2}_{\text{loc}}(\mathbb{R}^N) \cap L^\infty(\mathbb{R}^N)$ satisfies Choquard equation \mathcal{P}_u then

$$\int_{\mathbb{R}^N} |\nabla u|^2 = \frac{1}{2} \int_{\mathbb{R}^N} (\nabla V(x)|x|)u(x)^2 \, dx.$$

Proof. We fix a cut-off function $\phi \in C^1_c(\mathbb{R}^N)$ such that $\phi = 1$ on B_1 and we test for $\lambda \in (0, \infty)$ the equation against the function $v_\lambda \in W^{1,2}(\mathbb{R}^N)$ defined for every $x \in \mathbb{R}^N$ by

$$v_\lambda(x) = \phi(\lambda x)(\eta u(x)|x|)$$

to obtain the identity

$$\int_{\mathbb{R}^N} (\nabla u|\nabla v_\lambda) + \int_{\mathbb{R}^N} Vuv_\lambda = \int_{\mathbb{R}^N} (I_\alpha * |u|^{\frac{2N}{N-2}})|u|^{\frac{2N}{N-2} - 2} v_\lambda.$$

We compute for every $\lambda > 0$, by definition of v_λ, the chain rule and by the Gauss integral formula,

$$\int_{\mathbb{R}^N} Vuv_\lambda = \int_{\mathbb{R}^N} V(x)u(x)\phi(\lambda x)(|x|\nabla u(x)) \, dx$$

$$= \int_{\mathbb{R}^N} V(x)\phi(\lambda x)(|x|\nabla (\frac{|u|^2}{2})) \, dx$$

$$= -\int_{\mathbb{R}^N} ((NV(x) + (\nabla V(x)|x|)\phi(\lambda x) + V(x)\lambda x|\nabla \phi(\lambda x))|\frac{|u|^2}{2} \, dx.$$}

Since $\sup_{x \in \mathbb{R}^N}(\nabla V(x)|x| < \infty$, by Lebesgue’s dominated convergence theorem it holds

$$\lim_{\lambda \to 0} \int_{\mathbb{R}^N} Vuv_\lambda = -\frac{N}{2} \int_{\mathbb{R}^N} |u|^2 - \frac{1}{2} \int_{\mathbb{R}^N} (\nabla V(x)|x|)|u|^2.$$}

By Lebesgue’s dominated convergence again, since $u \in W^{1,2}(\mathbb{R}^N)$, we have (see [16] proof of proposition 3.1) for the details)

$$\lim_{\lambda \to 0} \int_{\mathbb{R}^N} (\nabla u|\nabla v_\lambda) = -\frac{N - 2}{2} \int_{\mathbb{R}^N} |\nabla u|^2.$$}

and

$$\lim_{\lambda \to 0} \int_{\mathbb{R}^N} (I_\alpha * |u|^{\frac{2N}{N-2}})|u|^{\frac{2N}{N-2} - 2} v_\lambda = -\frac{N}{2} \int_{\mathbb{R}^N} (I_\alpha * |u|^{\frac{2N}{N-2}})|u|^{\frac{2N}{N-2} - 2}.$$}

We have thus proved the Pohožaev type identity

\begin{equation}
\frac{N - 2}{2} \int_{\mathbb{R}^N} |\nabla u|^2 + \frac{N}{2} \int_{\mathbb{R}^N} |u|^2 + \frac{1}{2} \int_{\mathbb{R}^N} (\nabla V(x)|x|)|u(x)|^2 \, dx
= \frac{N}{2} \int_{\mathbb{R}^N} (I_\alpha * |u|^{\frac{2N}{N-2}})|u|^{\frac{2N}{N-2} - 2}.
\end{equation}
If we test the equation against \(u \), we obtain the identity
\[
\int_{\mathbb{R}^N} |\nabla u|^2 + \int_{\mathbb{R}^N} V|u|^2 = \int_{\mathbb{R}^N} (I_\alpha * |u|^\alpha + 1)|u|^\alpha + 1;
\]
the combination of those two identities yields the conclusion. \(\square \)

Proof of propositions 7 and 8. Proposition 7 is a direct consequence of proposition 11, while proposition 8 follows from proposition 11 and the classical optimal Hardy inequality on \(\mathbb{R}^N \),
\[
\frac{(N-2)^2}{4} \int_{\mathbb{R}^N} \frac{|u(x)|^2}{|x|^2} \, dx \leq \int_{\mathbb{R}^N} |\nabla u|^2
\]
which is valid for all \(u \in H^1(\mathbb{R}^N) \) (see for example [21, theorem 6.4.10 and exercise 6.8]). \(\square \)

References

