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model of strategic networks in order to analyze how government policies (e.g. subsi-

dies) will affect the stability and efficiency of networks of R&D collaboration among

three firms located in different countries. A conflict between stability and efficiency is

likely to occur. When governments cannot subsidize R&D, this conflict will occur if
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public spillovers are very small or quite large.
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1 Introduction

The number of agreements on international research and development (R&D) collabora-

tion has been increasing at an unprecedented rate. For instance, Chesnais (1988) has

reported that among inter-firm agreements in high technology industries in Italy, where

the product markets are characterized by imperfect competition, a large portion were for

R&D collaboration, and more than half were for international collaboration.1 Govern-

ment support for both domestic and international R&D collaboration, including public

investment, subsidy, and antitrust law modification, has also become more frequent.

Goyal andMoraga-González (2001) have analyzed the incentives for R&D collaboration

between horizontally related firms when governments cannot subsidize R&D. They have

basically shown that a conflict between the incentives of firms to collaborate and social

welfare is likely to occur, and will arise if public spillovers from research are not too small.

The purpose of this paper is to go beyond their analysis by allowing (i) governments to

subsidize R&D and (ii) for coalitional deviations in the formation of R&D collaboration

networks. In this paper we address the following questions:

(i) When governments can subsidize R&D, what are the incentives of firms located in

different countries to collaborate and what is the architecture of "stable" networks

of collaboration?

(ii) Do subsidies reconcile individual incentives to collaborate and social welfare?

To answer these questions we develop a four-stage game. In the first stage, three

firms located in different countries form pairwise collaboration links. The purpose of these

collaboration links is to share R&D knowledge about a cost-reducing technology. The

collection of pairwise links between the firms defines a network of international collab-

oration. In the second stage, each government (whose objective is to maximize social

welfare) simultaneously announces its R&D subsidy rates. In the third stage, each firm

chooses independently and simultaneously a level of effort in R&D. In the fourth stage,

firms compete in the product market of a fourth country by setting quantities.2 We will

consider Goyal and Moraga-González model, where government cannot subsidize, as our

benchmark.
1Hagedoorn (2002), who has provided a survey of empirical work on R&D collaboration among firms,

has also reported that during the 1980s, on average there were an additional 100 collaborative agreements

every year in biotechnology, and over 200 every year in information technologies.
2This assumption is standard in strategic trade policy models (see Brander, 1995) and represents situa-

tions where firms’ home market is small or negligible relative to the size of the relevant market. Examples

are Nokia in Finland, or Samsung in South-Korea.
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R&D effort of a firm decreases its marginal cost of production. It has also positive

knowledge spillovers on the costs of firms that are linked to the firm that undertakes

R&D effort. It is assumed that the research knowledge of a "direct" collaboration is fully

absorbed, while the research knowledge of a no direct collaboration (indirect collaboration

or no collaboration at all) is partially absorbed (public spillovers).

A simple way to analyze the networks that one might expect to emerge in the long

run is to examine a sort of equilibrium requirement that agents not benefit from altering

the structure of the network. A weak version of such condition is the pairwise stability

notion defined by Jackson and Wolinsky (1996). A network is pairwise stable if no agent

benefits from severing one of their links and no other two agents benefit from adding a link

between them, with one benefiting strictly and the other at least weakly. But, pairwise

stability considers only deviations by at most a pair of agents at a time. It might be that

some group of agents could all be made better off by some complicated reorganization of

their links, which is not accounted for under pairwise stability. The definition of strong

stable networks allows for larger coalitions than just pairs of agents to deviate, and is due

to Jackson and van den Nouweland (2005). A strongly stable network is a network which

is stable against changes in links by any coalition of agents.3 In a model with three firms

located in different countries, there are four possible network architectures: the complete

network, the star network, the partially connected network, and the empty network. In

the complete network every pair of firms is linked. The star network is a network in which

there is a "hub" firm directly linked to every other firm, while none of the other firms have

a direct link with each other. The partially connected network refers to a configuration

in which two firms are linked while the third firm is isolated. In the empty network there

are no collaboration links.

When governments cannot subsidize R&D, the complete network is always pairwise

stable, while the partially connected network is pairwise stable only for very small public

spillovers. Moreover, the partially connected network is the unique strongly stable network

when spillovers are very small; otherwise, no strongly stable network exists. Indeed, the

complete network is destabilized by coalitional deviations. We say that a network is

strongly efficient if it maximizes the societal welfare defined as the sum of producing

countries’ social welfare. The partially connected network is the strongly efficient network

for very small spillovers; otherwise, the star network is the strongly efficient network.

Thus, a conflict between stability and efficiency is likely to occur. This conflict will occur

if public spillovers are not very small.

However, we show that, once governments can subsidize R&D, the likelihood of a

3Jackson (2003, 2005) provides surveys of models of network formation.
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conflict is considerably reduced. The complete network is always pairwise stable, but it is

never strongly stable. The partially connected network is now pairwise stable when public

spillovers are neither too small nor too large. Notice that the partially connected network is

the strongly efficient network when public spillovers are not too large. Otherwise, the star

network is the strongly efficient network. Thus, a conflict between stability and efficiency

will "only" arise if public spillovers are very small or quite large.

In terms of societal welfare we find that, except if public spillovers are very small,

governments should be allowed for R&D subsidies. Indeed, the societal welfare levels of

stable networks when subsidies are forbidden are dominated by those of stable networks

when subsidies are allowed. Thus, allowing governments to subsidize R&D will not only

reduce the likelihood of a conflict between stability and efficiency, but it will also be

superior in terms of maximizing the societal welfare.

Before presenting the model, it is worth to mention some related literature. Export

subsidies can be used to shift rents strategically between rival firms. See e.g. Brander

(1995). However, such outright subsidies on exports are strictly forbidden by the World

Trade Organization (WTO). In contrast, subsidizing domestic R&D is allowed by the WTO

and, as shown by Spencer and Brander (1983), via such R&D policy a government can

achieve the same strategic outcomes otherwise obtained under direct export subsidies for

firms engaging in international R&D competition. Qiu and Tao (1998) have gone beyond

the analysis of Spencer and Brander (1983) by investigating the optimal government policy

(subsidy or tax) towards international R&D collaboration. They have shown that, with

linear demands, tax is never optimal. Moreover, the optimal policy is subsidy regardless

of the strategic nature (substitute or complement) of the strategy variables. Thus, our

analysis reinforces theories that have provided justification for such government policy

interventions. For general background on R&D cooperation in oligopoly the reader is

directed to Amir (2000), d’Aspremont and Jacquemin (1988), Kamien, Muller and Zang

(1992), Katz (1986) and Suzumura (1992).4

The paper is organized as follows. The model is presented in Section 2. In Section 3 we

analyze the stability of international R&D networks. In Section 4 we study the efficiency

of international R&D collaboration, and we comment on the conflict between stability and

4Yi and Shin (2000) have analyzed the endogenous formation of research coalitions where coalition

formation is modelled in terms of a coalition structure, which is a partition of the set of firms. But the

restriction to partitions is a strong one indeed if our interest is in research collaborations, since it rules out

situations in which, for example, firms 1 and 2 have a bilateral research agreement and firms 2 and 3 have

a similar agreement but there is no agreement between 1 and 3. When this occurs, it is not appropriate

to view firms 1, 2 and 3 as one coalition, and we cannot think of 1 and 2 and 2 and 3 being two distinct

coalitions, since this violates the mutual exclusiveness property of coalitions. The theory of networks

provides a natural way to think of such issues, since it allows for such intransitive relationships.
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efficiency of networks. In Section 5 we conclude.

2 The model

The model is similar to Goyal and Moraga-González (2001) except that we consider R&D

subsidies. There are three firms located in three different countries. The firms produce

homogeneous goods and, as is standard in strategic trade policy models, it is assumed that

all firms compete in a fourth country’s market by setting quantity (Cournot competition).

This allows us to examine only firm profits when analyzing welfare. We denote by N =

{1, 2, 3} the set of firms which are connected in a network of R&D collaboration. Let

qi denote the quantities of the good produced by firm i ∈ N . Let P(Q) = a − Q be

the market-clearing price when aggregate quantity on the market is Q ≡∑i∈N qi. More

precisely, P (Q) = a − Q for Q < a, and P(Q) = 0 otherwise, with a > 0. The firms can

undertake R&D to look for cost reducing innovations. Moreover, the firms may engage

in bilateral R&D collaboration. Finally, the government in each country, whose objective

is to maximize welfare, has an R&D policy toward its firm’s R&D activity. We consider

R&D tax or subsidy proportional to the firm’s R&D expenditure. Let si be country i’s

R&D subsidy (tax if negative) rate.

In a network, firms are the nodes and each link indicates a pairwise R&D collaboration.

Thus, a network g is simply a list of which pair of firms are linked to each other. If we are

considering a pair of firms i and j, then {i, j} ∈ g indicates that i and j are linked under

the network g and that a R&D collaboration is established between firms i and j. For

simplicity, write ij to represent the link {i, j}, so ij ∈ g indicates that i and j are linked

under the network g. The network obtained by adding link ij to an existing network g

is denoted g + ij and the network obtained by deleting link ij from an existing network

g is denoted g − ij. For any network g, let N(g) = {i ∈ N | ∃ j such that ij ∈ g} be

the set of firms which have at least one link in the network g. Two firms i and j are

connected if and only if there exists a sequence of firms i1, ..., iK such that ikik+1 ∈ g for

each k ∈ {1, ...,K − 1} with i1 = i and iK = j. Let Ni(g) be the set of firms with which

firm i has a collaboration link. Let G be the set of all possible networks. In this three-firm

market, there are four possible network architectures: (i) the complete network, gc, in

which every pair of firms is linked, (ii) the star network, gs, in which there is one firm that

is linked to the other two firms, (iii) the partially connected network, gp, in which two

firms have a link and the third firm is isolated, and (iv) the empty network, ge, in which

there are no collaboration links. In the star network, the firm which is linked to the other

two firms is called the "hub" firm, while the other two firms are called the "spoke" firms.

Given a network g, every firm i chooses an R&D effort level xi unilaterally. This effort
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Figure 1: Four possible network architectures.

helps lower its own marginal cost of production. Given a network g and the collection of

research outputs {xi}i∈N , the marginal cost of production for each firm i ∈ N becomes

ci(g) = c− xi −
∑

k∈Ni(g)

xk − φ
∑

l /∈Ni(g)

xl. (1)

Let

Xi ≡ xi +
∑

k∈Ni(g)

xk + φ
∑

l /∈Ni(g)

xl (2)

be the total cost reduction for firm i obtained from its own research, xi, from the research

knowledge of firms that have a collaborative link with i which is fully absorbed, and from

the research knowledge of firms that do not have a collaborative link with i which is

partially absorbed depending on the spillover parameter φ ∈ [0, 1). We refer to this total

cost reduction, Xi, as effective R&D output of firm i. Then, ci(g) = c−Xi. We assume

that R&D effort is costly. Given a level xi ∈ [0, c] of effort, the cost of effort is y(xi) = γx2i ,

γ > 0. We assume γ = 1 which suffices to ensure nonnegativity of all variables.

Thus, the profits of firm i ∈ N in a collaboration network g are given by

Πi(g) =


a− qi(g)−

∑
j �=i

qj(g)− ci(g)


 qi(g)− (1− si) [xi(g)]

2 . (3)

For any network g, social welfare in each country i is defined as the profits of firm i

minus the R&D subsidies. The objective function of each government is its social welfare.

Let Wi(g) denote social welfare of country i in network g.

Wi(g) = Πi(g)− si [xi(g)]
2 . (4)
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LetW (g) =
∑

i∈N Wi(g). We also define a concept of global social welfare, which is defined

by the sum of producing country’s welfare and importing country’s consumer surplus:

V (g) =
∑
i

Wi(g) +
Q2

2
.

We describe the interaction between the firms and governments using a four-stage

game. In the first stage, firms form pairwise collaboration links. In the second stage

each government simultaneously announces its R&D subsidy (tax if negative) rates. In

the third stage, each firm chooses independently a level of effort in R&D. In the fourth

stage, firms compete in the product market of a fourth country by setting quantities. This

multi-stage game is solved by backward induction.

Once we allow the government to subsidize R&D and to choose the subsidy rate (so

adding a fourth stage to Goyal and Moraga-González’ model), the solution of the whole

game becomes much more complex, especially when we are solving for the asymmetric

networks (partially connected and star networks). As a consequence, we cannot obtain

closed-form solutions for the asymmetric networks when subsidies are allowed and endoge-

nous. However, for each possible given value of public spillovers we are able to compute

the equilibrium solution. Thus, we propose to focus on four different cases with respect

to public spillovers φ: (i) no spillovers, φ = 0, (ii) weak spillovers, φ = 1
4 , (iii) medium

spillovers φ = 1
2 , (iv) strong spillovers, φ = 3

4 ; and we will analyze numerically the general

case where φ ∈ [0, 12 ] and we will show that the results obtained for the four different cases

do not hide any irregularities.

3 Stability of international R&D networks

3.1 Pairwise and strong stability

A simple way to analyze the networks that one might expect to emerge in the long run

is to examine a sort of equilibrium requirement that agents do not benefit from altering

the structure of the network. A weak version of such condition is the pairwise stability

notion defined by Jackson and Wolinsky (1996). A network is pairwise stable if no agent

benefits from severing one of their links and no other two agents benefit from adding a

link between them, with one benefiting strictly and the other at least weakly.

Definition 1 A network g is pairwise stable if

• for all ij ∈ g, Πi(g) ≥ Πi(g − ij) and Πj(g) ≥ Πj(g − ij), and

• for all ij /∈ g, if Πi(g) < Πi(g + ij) then Πj(g) > Πj(g + ij).
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Let us say that g′ is adjacent to g if g′ = g + ij or g′ = g − ij for some ij. A network

g′ defeats g if either g′ = g − ij and Πi(g′) ≥ Πi(g), or if g′ = g + ij with Πi(g′) ≥ Πi(g)

and Πj(g′) ≥ Πj(g) with at least one inequality holding strictly. Pairwise stability is

equivalent to saying that a network is pairwise stable if it is not defeated by another

(necessarily adjacent) network. This definition of stability is quite weak and should be

seen as a necessary condition for strategic stability.

While pairwise stability is natural and quite easy to work with, there are some limi-

tations of the concept. First, it is a weak notion in that it only considers deviations on

a single link at a time. For instance, it could be that an agent would not benefit from

severing any single link but would benefit from severing several links simultaneously, and

yet the network would still be pairwise stable. Second, pairwise stability considers only

deviations by at most a pair of agents at a time. It might be that some group of agents

could all be made better off by some complicated reorganization of their links, which is not

accounted for under pairwise stability. The definition of strong stable networks is in that

spirit, and is due to Jackson and van den Nouweland (2004). A strongly stable network is

a network which is stable against changes in links by any coalition of agents.

A network g′ ∈ G is obtainable from g ∈ G via deviations by S if

(i) ij ∈ g′ and ij /∈ g implies ij ⊂ S, and

(ii) ij ∈ g and ij /∈ g′ implies ij ∩ S �= ∅.

The above definition identifies changes in a network that can be made by a coalition

S, without the need of consent of any agents outside of S. Part (i) requires that any new

links that are added can only be between agents in S. This reflects the fact that consent

of both agents is needed to add a link. Part (ii) requires that at least one agent of any

deleted link be in S. This reflects the fact that either agent in a link can unilaterally sever

the relationship.

Definition 2 A network g is strongly stable if for any S ⊂ N, g′ that is obtainable from

g via deviations by S, and i ∈ S such that Πi(g′) > Πi(g), there exists j ∈ S such that

Πj(g
′) < Πj(g).

Strong stability provides a powerful refinement of pairwise stability. The concept of

strong stability mainly makes sense in smaller network situations where agents have sub-

stantial information about the overall structure and potential payoffs and can coordinate

their actions. That is, it makes sense to model agreements between firms in an oligopoly.

We are interested in the networks of international R&D collaboration that emerge in

two different settings: with subsidies or without subsidies (si = 0); and in four different
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situations: (i) no spillovers, φ = 0, (ii) weak spillovers, φ = 1
4 , (iii) medium spillovers

φ = 1
2 , (iv) strong spillovers, φ = 3

4 .

3.2 Stable R&D networks without subsidies

In order to characterize the strongly stable R&D networks we first derive the pairwise

stable networks since a strongly stable network is pairwise stable while the reverse is not

true. From Goyal and Moraga-González (2001), if there are no subsidies, the profits of

the firm at equilibrium are given in Table 1 (see also the appendix). The next proposition

is a corollary of Proposition 9 in Goyal and Moraga-González (2001) whose proof is given

for completeness.

gc gs gp ge

φ = 0 Πi .089 (a− c)2 .161 (a− c)2 .188 (a− c)2 .042 (a− c)2

Πj .089 (a− c)2 .057 (a− c)2 0 .042 (a− c)2

φ = 1
4 Πi .089 (a− c)2 .139 (a− c)2 .113 (a− c)2 .065 (a− c)2

Πj .089 (a− c)2 .068 (a− c)2 .036 (a− c)2 .065 (a− c)2

φ = 1
2 Πi .089 (a− c)2 .119 (a− c)2 .104 (a− c)2 .083 (a− c)2

Πj .089 (a− c)2 .078 (a− c)2 .063 (a− c)2 .083 (a− c)2

φ = 3
4 Πi .089 (a− c)2 .103 (a− c)2 .097 (a− c)2 .092 (a− c)2

Πj .089 (a− c)2 .085 (a− c)2 .081 (a− c)2 .092 (a− c)2

Table 1: Firm’s profits when governments cannot subsidize R&D.

Proposition 1 Suppose that governments cannot subsidize research and development. (i)

The complete network gc is always pairwise stable, (ii) the partially connected network gp

is pairwise stable only if there are no public spillovers (φ = 0), (iii) the star and empty

networks (respectively, gs and ge) are never pairwise stable.

Proof. First we show that the complete network gc is always pairwise stable. No pair

of firms k and j have incentives to delete their link kj ∈ gc. From Table 1 we have

Π∗
k(g

c) > Π∗
k(g

s) and Π∗
j (g

c) > Π∗
j (g

s) with kj /∈ gs. Thus, gc is pairwise stable. Obvi-

ously, the star network gs cannot be pairwise stable since firms k and j have incentives to

form the link kj /∈ gs. Second, the empty network ge is never pairwise stable because we

have Π∗
i (g

p) > Π∗
i (g

e) and Π∗
k(g

p) > Π∗
k(g

e) with ik ∈ gp. Third, since the empty network

is never pairwise stable, the network gp is pairwise stable if and only if Π∗
i (g

p) > Π∗
i (g

s)

or Π∗
j (g

p) > Π∗
j (g

s) with ij /∈ gp, ij ∈ gs, and j /∈ N(gp). From Table 1 the partially

connected network gp is pairwise stable only if there are no public spillovers (φ = 0).

8



Network structures are more important when public spillovers are modest. When there

are no public spillovers (φ = 0), the partially connected network is pairwise stable. The

isolated firm has a significant cost disadvantage and is driven out of the market. However,

public spillovers destabilize the partially connected network. The intuition behind this

remark is that the stability of the partially connected network relies on the great asym-

metry existing between the linked firms and the isolated firm. It is this asymmetry that

discourages a linked firm from forming a link with the isolated firm when public spillovers

are absent. As spillovers are weak, medium or strong, this asymmetry reduces, and that

destabilizes the partially connected network.

Proposition 2 Suppose that governments cannot subsidize research and development.

The partially connected network gp is the unique strongly stable network if and only if

there are no public spillovers (φ = 0). Otherwise, no network g ∈ G is strongly stable.

Proof. First, since strong stability is a refinement of pairwise stability, we have that the

empty and star networks are never strongly stable. Second, we show that the complete

network gc is never strongly stable. Indeed, from Table 1 we have Π∗
i (g

p) > Π∗
i (g

c) and

Π∗
k(g

p) > Π∗
k(g

c) with ik ∈ gp. Third, from Proposition 1 we know that the partially

connected network is not pairwise stable if either public spillovers are weak, medium or

strong; and so is not strongly stable. But, if there are no public spillovers (φ = 0), then gp

is pairwise stable. Is gp strongly stable too? Since gp is pairwise stable, it suffices to show

that no coalition has incentives to add links to form the complete network gc. The answer

is no since Π∗
i (g

p) > Π∗
i (g

c) and Π∗
k(g

p) > Π∗
k(g

c) with ik ∈ gp as shown above. Thus,

if there are no public spillovers (φ = 0), then gp is the unique strongly stable network;

otherwise no network is strongly stable.

Since a strongly stable network is a pairwise stable network, the only two candidates

to be strongly stable are gp and gc when governments cannot subsidize R&D. We observe

that in the four cases (φ = 0, φ = 1
4 , φ = 1

2 , φ = 3
4) the complete network gc is never

strongly stable because two firms have incentives to form a coalition and to delete their

links with the third firm; so moving to the partially connected network gp. Thus, gp is

strongly stable if there are no public spillovers (φ = 0), and it is the unique one. Otherwise,

no network g ∈ G is strongly stable.

Whenever no network is strongly stable we will observe a sequence of R&D networks

due to continuously profitable deviations. In terms of competition policy, it would be

interesting to know which networks are likely to be visited by such sequence of profitable

deviations. In fact we will show that some R&D networks will be visited at most once,

while others will belong to a closed cycle and will be visited regularly. We now define what

9



is meant by a closed cycle. A network g′ strongly defeats g if (i) g′ is obtainable from g

via deviations by S ⊂ N and (ii) Πi(g′) ≥ Πi(g) for all i ∈ S and Πj(g′) > Πj(g) for some

j ∈ S. An improving path from a network g to a network g′ is a finite sequence of graphs

g1, g2, ..., gK with g1 = g and gK = g′ such that for any k ∈ {1, ...,K − 1} we have gk+1

strongly defeats gk . A set of networks G form a cycle if for any g ∈ G and g′ ∈ G there

exists an improving path connecting g to g′. A cycle G is a closed cycle if no network in G

lies on an improving path leading to a network that is not in G. The characterization of

the closed cycles follows immediately from the proofs of pairwise and strong stable R&D

networks. When no strongly stable network exists we will observe a unique closed cycle of

R&D networks where the star network will succeed to the partially connected network, the

complete network will succeed to the star network, and the partially connected network

will succeed to the complete network. The empty network which is the only network

outside the closed cycle will be visited at most once. In fact, it will be visited only if it is

the initial network.

Figure 2: Profits of each firm when governments cannot subsidize R&D.

We would like to examine more deeply the relation between stable networks and public

spillovers; that is, for φ ∈ [0, 12 ]. The equilibrium values of the profits in the different

networks are given in the appendix and are plotted (for a − c = 1) in Figure 2. Using

Figure 2 we can study the stability of different networks with respect to public spillovers

when governments cannot subsidize R&D as in Goyal and Moraga-González (2001). The

complete network gc is pairwise stable for all φ ∈ [0, 12 ], while the partially connected

10



network gp is pairwise stable for φ ∈ [0, φ] where φ � 0.04 is the solution to equation

Πi(gs) = Πi(gp) with firm i being a hub in gs and a linked firm in gp. The star network

and the empty network are never pairwise stable. As already mentioned, greater spillovers

destabilize the partially connected network rapidly. We have that the complete network gc

is never strongly stable because two firms have incentives to form a coalition and to delete

their links with the third firm; so moving to the partially connected network gp. Thus,

gp is strongly stable if φ ≤ φ where φ � 0.04 is the solution to equation Πi(gs) = Πi(gp)

with firm i being a hub in gs and a linked firm in gp. So, if φ ≤ φ � 0.04 the partially

connected network gp is the unique strongly stable network; otherwise, no network g ∈ G

is strongly stable (a formal proof is given in the appendix).

3.3 Stable R&D networks with subsidies

Whenever governments can subsidize R&D, the subsidies and profits of the firm at equi-

librium are given in Table 2 and Table 3, respectively. Some observations are made: (i)

in the complete network gc, the equilibrium subsidy rate does not depend on the public

spillovers; (ii) in the star network gs, the equilibrium subsidy rates are decreasing with

the public spillovers; (iii) in the empty network ge, the subsidy rate first decreases with

public spillovers, then it increases with spillovers; (iv) in the partially connected network

gp, there is a continuum of optimal subsidy rates for the government of the isolated firm

when there are no public spillovers. The reason is that the governments of the linked firms

do not need to subsidize R&D to keep the isolated firm out of the market. Thus, the

continuum of optimal subsidy rates for the government of the isolated firm are the levels

of subsidies such that the isolated firm does not find profitable to produce. For instance,

if sj > 1.375 then it would be profitable to produce and to enter the market. However,

the welfare of the country of the isolated firm would be negative.

gc gs gp ge

φ = 0 si .146 .5 0 .25

sj .146 .5 [0, 1.375] .25

φ = 1
4 si .146 .181 .344 .046

sj .146 .334 .406 .046

φ = 1
2 si .146 .132 .169 0

sj .146 .257 0 0

φ = 3
4 si .146 .086 .019 .039

sj .146 .197 .122 .039

Table 2: Governments R&D subsidy rates.
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gc gs gp ge

φ = 0 Πi .095 (a− c)2 .389 (a− c)2 .188 (a− c)2 .028 (a− c)2

Πj .095 (a− c)2 .056 (a− c)2 0 .028 (a− c)2

φ = 1
4 Πi .095 (a− c)2 .173 (a− c)2 .255 (a− c)2 .065 (a− c)2

Πj .095 (a− c)2 .075 (a− c)2 0 .065 (a− c)2

φ = 1
2 Πi .095 (a− c)2 .132 (a− c)2 .119 (a− c)2 .083 (a− c)2

Πj .095 (a− c)2 .084 (a− c)2 .057 (a− c)2 .083 (a− c)2

φ = 3
4 Πi .095 (a− c)2 .110 (a− c)2 .103 (a− c)2 .093 (a− c)2

Πj .095 (a− c)2 .090 (a− c)2 .082 (a− c)2 .093 (a− c)2

Table 3: Firm’s profits when governments can subsidize R&D.

Comparing Table 1 with Table 3 we observe that allowing governments to subsidize

R&D does not necessarily increase firms’ profits, except in the complete network gc. For

instance, in the empty network ge without public spillovers, subsidies will push firms to

overinvest even more in R&D in order to gain market shares from their rivals.5 In the

complete networks gc, this effect is absent because each firm benefits entirely from the

R&D effort of each other firm. We now study pairwise and strongly stable networks when

governments can subsidize R&D.

Proposition 3 Suppose that governments can subsidize research and development. (i)

The complete network gc is always pairwise stable, (ii) the partially connected network gp

is pairwise stable if only if there are weak public spillovers (φ = 1
4), (iii) the star and

empty networks (respectively, gs and ge) are never pairwise stable.

Proof. First we show that the complete network gc is always pairwise stable. No pair

of firms k and j have incentives to delete their link kj ∈ gc. From Table 3 we have

Π∗
k(g

c) > Π∗
k(g

s) and Π∗
j (g

c) > Π∗
j (g

s) with kj /∈ gs. Thus, gc is pairwise stable. Obvi-

ously, the star network gs cannot be pairwise stable since firms k and j have incentives to

form the link kj /∈ gs. Second, the empty network ge is never pairwise stable because we

have Π∗
i (g

p) > Π∗
i (g

e) and Π∗
k(g

p) > Π∗
k(g

e) with ik ∈ gp. Third, since the empty network

is never pairwise stable, the network gp is pairwise stable if and only if Π∗
i (g

p) > Π∗
i (g

s)

or Π∗
j (g

p) > Π∗
j (g

s) with ij /∈ gp, ij ∈ gs, and j /∈ N(gp). From Table 3 the partially

connected network gp is pairwise stable only if there are weak public spillovers (φ = 1
4).

5An R&D subsidy by the "domestic" government enhances the firm’s cost advantage through discour-

aging the "foreign" rival’s R&D investment, which in turn enables the "domestic" firm to snatch a larger

market share at the expense of the other "foreign" firms.
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Proposition 4 Suppose that governments can subsidize research and development. The

partially connected network gp is the unique strongly stable network if and only if there are

weak public spillovers (φ = 1
4). Otherwise, no network g ∈ G is strongly stable.

Proof. First, since strong stability is a refinement of pairwise stability, we have that the

empty and star networks are never strongly stable. Second, we show that the complete

network gc is never strongly stable. Indeed, from Table 3 we have Π∗
i (g

p) > Π∗
i (g

c) and

Π∗
k(g

p) > Π∗
k(g

c) with ik ∈ gp. Third, from Proposition 3 we know that the partially

connected network is not pairwise stable if either public spillovers are absent, medium or

strong; and so is not strongly stable. But, if there are weak public spillovers (φ = 1
4), then

gp is pairwise stable. Is gp strongly stable too? Since gp is pairwise stable, it suffices to

show that no coalition has incentives to add links to form the complete network gc. The

answer is no since Π∗
i (g

p) > Π∗
i (g

c) and Π∗
k(g

p) > Π∗
k(g

c) with ik ∈ gp as shown above.

Thus, if there are weak public spillovers (φ = 1
4), then gp is the unique strongly stable

network; otherwise no network is strongly stable.

We observe again that the complete network gc is never strongly stable because two

firms have incentives to move to the partially connected network gp by deleting their link

with the third firm. Thus, gp is strongly stable for φ = 1
4 ; otherwise, no network is strongly

stable. When no network is strongly stable we will observe a sequence of R&D networks due

to continuously profitable deviations. In fact, we will again observe a unique closed cycle of

R&D networks where the star network will succeed to the partially connected network, the

complete network will succeed to the star network, and the partially connected network

will succeed to the complete network.

Once we allow the government to subsidize R&D and to choose the subsidy rate, the

solution of the whole game becomes much more complex, especially when we are solving

for the partially connected and star networks; and, we cannot obtain closed-form solutions

for those asymmetric networks. However, we can analyze numerically the general case

where φ ∈ [0, 12 ]. The equilibrium values (for a − c = 1) of the profits in the different

networks are plotted in Figure 3. Using Figure 3 we observe that the complete network gc

is pairwise stable for all φ ∈ [0, 12 ]. The profits of the hub firm in the star network gs are

still decreasing with φ. But, the profits of a linked firm in the partially connected network

gp are now first increasing with φ until it becomes profitable for the isolated firm to enter

the market, then the profits start to decrease with φ. As a consequence, we have that the

partially connected network gp is pairwise stable when φ is not too small nor too large.

Precisely, gp is pairwise stable for φ ∈ [φ,φ] where φ � 0.125 and φ � 0.36 are the solutions

to the equation Πi(g
s) = Πi(g

p) with firm i being a hub in gs and a linked firm in gp. The

13



Figure 3: Profits of each firm when governments can subsidize R&D.

star network and the empty network are never pairwise stable. With respect to strong

stability, we observe again that the complete network gc is never strongly stable because

two firms have incentives to move to the partially connected network gp by deleting their

link with the third firm. Thus, gp is strongly stable for φ ∈ [φ,φ] where φ � 0.125 and

φ � 0.36 are the solutions to the equation Πi(gs) = Πi(gp) with firm i being a hub in gs

and a linked firm in gp. So, if φ ∈ [φ,φ] the partially connected network gp is the unique

strongly stable network. Otherwise, no network g ∈ G is strongly stable.

We now provide some intuition for the fact that, once governments can subsidize R&D,

the partially connected network gp is no more stable for very small public spillovers. For

very small spillovers we have: (i) Πi(gs) < Πi(gp) when governments cannot subsidize

and (ii) Πi(gs) > Πi(gp) when governments can subsidize, with i being a hub in gs and

a linked firm in gp. Subsidies have a double effect on the profits of linked firms in the

partially connected network gp. First, there is a bigger overinvestment in R&D due to

subsidies that implies a stronger competition between the two linked firms and tends to

reduce profits. Second, there is a cost advantage for the linked firms with respect to the

isolated firm that tends to increase profits. The first effect (which is much weaker when

government cannot subsidize) dominates the second effect for low values of spillovers when

government can subsidize R&D. Notice that overinvestment in R&D is decreasing with φ.
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4 Efficiency of international R&D networks

In evaluating societal welfare, we may take various perspectives. A network g is Pareto

efficient if there does not exist any g′ ⊂ G such that Wi(g′) ≥ Wi(g) for each country i

with strict inequality for some country i. This definition of efficiency of a network can be

thought of as applying to situations where no intervention is possible. A network g ⊂ G

is strongly efficient if W (g) =
∑

iWi(g) ≥
∑

iWi(g′) = W (g′) for all g′ ⊂ G. This is a

strong notion of efficiency as it takes the perspective that value is fully transferable.

If there are no subsidies, the social welfare of each country at equilibrium is simply the

profit of its firm. Thus, social welfare of each country at equilibrium is given in Table 1

and some observations can be made. Suppose that governments cannot subsidize research

and development:

(i) The partially connected network gp is the strongly efficient network if and only if

public spillovers are absent (φ = 0) or weak (φ = 1
4) or strong (φ = 3

4). Otherwise,

the star network gs is the strongly efficient network (i.e. for φ = 1
2).

(ii) The partially connected network gp and the star network gs are always Pareto effi-

cient, the complete network gc is always Pareto efficient except if public spillovers are

strong (φ = 3
4), and the empty network ge is Pareto efficient only if public spillovers

are strong (φ = 3
4).

Once governments can subsidize R&D, the equilibrium social welfare of each country

is given in Table 4 and some observations can be made. Suppose that governments can

subsidize research and development:

(i) The partially connected network gp is the strongly efficient network if and only if

public spillovers are absent (φ = 0) or weak (φ = 1
4), and the star network gs is

the strongly efficient network if and only if public spillovers are medium (φ = 1
2) or

strong (φ = 3
4).

(ii) The partially connected network gp and the star network gs are always Pareto effi-

cient, the complete network gc is always Pareto efficient except if public spillovers are

strong (φ = 3
4), and the empty network ge is Pareto efficient only if public spillovers

are strong (φ = 3
4).

A question we would like to answer is whether allowing for subsidies is superior in

terms of societal welfare. In order to answer this question we compare the societal welfare

levels of the different pairwise stable networks when governments cannot subsidize R&D

15



gc gs gp ge

φ = 0 Wi .094 (a− c)2 .333 (a− c)2 .188 (a− c)2 0

Wj .094 (a− c)2 0 0 0

φ = 1
4 Wi .094 (a− c)2 .164 (a− c)2 .200 (a− c)2 .063 (a− c)2

Wj .094 (a− c)2 .070 (a− c)2 0 .063 (a− c)2

φ = 1
2 Wi .094 (a− c)2 .128 (a− c)2 .114 (a− c)2 .083 (a− c)2

Wj .094 (a− c)2 .082 (a− c)2 .057 (a− c)2 .083 (a− c)2

φ = 3
4 Wi .094 (a− c)2 .107 (a− c)2 .101 (a− c)2 .093 (a− c)2

Wj .094 (a− c)2 .089 (a− c)2 .082 (a− c)2 .093 (a− c)2

Table 4: Social welfare of each country when governments can subsidize R&D.

and when governments can do it. Using Table 1 and Table 4, as well as the results on

pairwise stable networks, we get the following proposition.

Proposition 5 Except if there are no public spillovers (φ = 0), societal welfare is higher

when governments can subsidize research and development.

From the above observations we have that a conflict between stability and strong

efficiency may occur when governments cannot subsidize R&D as well as when they can

do it. When governments cannot subsidize R&D, the conflict will occur except if spillovers

are absent (φ = 0). When governments can subsidize R&D, the conflict will occur except

if spillovers are weak (φ = 1
4). Thus, a conflict is likely to arise but we do not know

whether it is more likely when governments can subsidize or when governments cannot.

Regarding the general case φ ∈ [0, 12 ], the equilibrium values (for a − c = 1) of the

societal welfare in the different networks are plotted in Figure 4 and Figure 5. Remember

that societal welfare is simply the sum of the welfare of producing countries. When

governments are not allowed to subsidize R&D (see Figure 4), the partially connected

network gp is the strongly efficient network for φ ∈ [0, φ̂] where φ̂ � 0.113 is the solution

to equation W (gs) = W (gp). For φ ∈ [φ̂, 12 ], the star network gs is the strongly efficient

network. When governments can subsidize R&D (see Figure 5), the partially connected

network gp is the strongly efficient network for φ ∈ [0, φ̂] where φ̂ � 0.375 is the solution

to equation W (gs) = W (gp). For φ ∈ [φ̂, 12 ], the star network gs is the strongly efficient

network.

Figure 6 and Figure 7 contrast the strongly efficient and stable networks with respect

to public spillovers. We observe that, when governments cannot subsidize R&D, the

likelihood of a conflict is 92%. This conflict will arise if spillovers are not very small.

However, when governments can subsidize R&D, the likelihood of a conflict is considerably
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Figure 4: Societal welfare when government cannot subsidize R&D.

reduced to 53%. Indeed, a conflict will arise "only" if spillovers are very small or quite

large. Notice that the same conflict exists if we consider the global welfare (which includes

the consumer surplus of the fourth country) instead of the sum of the welfare of producing

countries (see Figure 9 and Figure 11 of the appendix).

Finally, using Figure 4 and Figure 5 (and the results on pairwise stable networks),

we compare the societal welfare levels of the different pairwise stable networks when gov-

ernments cannot subsidize R&D and when governments can do it, and we confirm that,

except if public spillovers are very small (φ ≤ 0.04), one should definitely allow for R&D

subsidies. As public spillovers grows, it becomes always superior to allow governments to

subsidize R&D.

5 Conclusion

It has become increasingly prevalent that rival firms of different countries engage in R&D

collaboration. Thus, it is important to understand how government policies affect the

stability and efficiency of international R&D collaboration networks. We have shown that

a conflict between stability and efficiency is likely to occur. When governments cannot

subsidize R&D, this conflict occurs if public spillovers are not too small. However, when

governments can subsidize R&D, the likelihood of a conflict is considerably reduced. In-

deed, a conflict arises only if public spillovers are very small or quite large.
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Figure 5: Societal welfare when government can subsidize R&D.
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Figure 6: The conflict between stability and strong efficiency without R&D subsidies.
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Figure 7: The conflict between stability and strong efficiency with R&D subsidies.

Appendix A: Networks without subsidies

From Goyal and Moraga-González (2001) we have that, in the complete network gc,

the equilibrium effort, effective R&D output, quantity, and profits are given by

x∗i (g
c) =

a− c

13
; X∗

i (g
c) =

3(a− c)

13
; q∗i (g

c) =
4(a− c)

13
; Π∗

i (g
c) =

15(a − c)2

169
.

Consider the star network gs and let firm i be the hub and firm j be a spoke. Then, the

equilibrium effort levels of the different firms are

x∗j(g
s) =

4(a− c)(2− φ)

7φ2 − 13φ+ 58
; x∗i (g

s) =
(a − c)(φ2 − 3φ+ 6)

7φ2 − 13φ+ 58
.

and the effective R&D outputs are

X∗
j (g

s) =
(a− c)(14 + φ− 3φ2)

7φ2 − 13φ+ 58
; X∗

i (g
s) =

(a− c)(22 + (−11 + φ)φ)

7φ2 − 13φ+ 58
.

The equilibrium quantities and profits are

q∗j (g
s) =

16(a− c)

7φ2 − 13φ+ 58
; Π∗

j(g
s) =

16(a− c)2(12− φ2 + 4φ)

(7φ2 − 13φ + 58)2
;

q∗i (g
s) =

4(a− c)(φ2 − 3φ+ 6)

7φ2 − 13φ+ 58
; Π∗

i (g
s) =

15(a− c)2(φ2 − 3φ+ 6)2

(7φ2 − 13φ + 58)2
.

Consider the partially connected network gp and let firms i and k be the linked firms and

firm j be the isolated firm. Then, the equilibrium effort levels of the different firms are

x∗i (g
p) =

(a− c)(2 + 9φ− 9φ2 + 2φ3)

2(4 + 33φ− 16φ2 + 7φ3 − 2φ4)
; x∗j (g

p) =
φ(a− c)(9− 9φ+ 2φ2)

4 + 33φ− 16φ2 + 7φ3 − 2φ4
.

and the effective R&D outputs are

X∗
i (g

p) =
(a− c)(2 + 9φ− 7φ3 + 2φ4)

2(4 + 33φ− 16φ2 + 7φ3 − 2φ4)
; X∗

j (g
p) =

φ(a− c)(11 + φ2(−7 + 2φ))

4 + 33φ− 16φ2 + 7φ3 − 2φ4
.
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The equilibrium quantities and profits are

q∗i (g
p) =

2(a− c)(1 + 5φ− 2φ2)

4 + 33φ− 16φ2 + 7φ3 − 2φ4
; Π∗

i (g
p) =

(a − c)2(1 + 5φ− 2φ2)2(12− φ2 + 4φ)

4(4 + 33φ− 16φ2 + 7φ3 − 2φ4)2
;

q∗j (g
p) =

4(a− c)φ(3− φ)

4 + 33φ− 16φ2 + 7φ3 − 2φ4
; Π∗

j (g
p) =

(a − c)2φ2(3− φ)2(7 + 12φ− 4φ2)

(4 + 33φ− 16φ2 + 7φ3 − 2φ4)2
.

In the empty network ge, the equilibrium effort, effective R&D output, quantity, and

profits are given by

x∗i (g
e) =

(a− c)(3− 2φ)

13− 4φ+ 4φ2
; X∗

i (g
e) =

(a− c)(3− 2φ)(1 + 2φ)

13− 4φ + 4φ2
;

q∗i (g
e) =

4(a− c)

13− 4φ+ 4φ2
; Π∗

i (g
e) =

(a− c)2(7 + 12φ − 4φ2)

(13− 4φ+ 4φ2)2
.

The societal welfare under the different networks is given by W (g) =
∑

i∈N Wi(g) =∑
i∈N Πi(g). The global welfare is given by V (g) which is simply

∑
iΠi(g) +

Q2

2 . Then,

we have

V ∗(gc) =
9(a − c)2

13
; V ∗(gs) =

(a− c)2(2492− 1084φ+ 579φ2 − 138φ3 + 23φ4)

(7φ2 − 13φ+ 58)2
;

V ∗(gp) =
(a− c)2(28 + 380φ+ 1345φ2 − 802φ3 − 111φ4 + 108φ5 − 12φ6)

2(4 + 33φ− 16φ2 + 7φ3 − 2φ4)2
;

V ∗(ge) =
3(a − c)2(31 + 12φ− 4φ2)

(13− 4φ+ 4φ2)2
.

Proposition 6 (Goyal and Moraga-González, 2001) Suppose that governments can-

not subsidize research and development and φ ∈ [0, 1]. The complete network gc is pair-

wise stable for all φ ∈ [0, 1], while the partially connected network gp is pairwise stable for

φ ∈ [0, φ] where φ � 0.04 is the solution to equation Πi(gs) = Πi(gp) with firm i being

a hub in gs and a linked firm in gp. The star network and the empty network are never

pairwise stable.

Proposition 7 Suppose that governments cannot subsidize research and development and

φ ∈ [0, 1]. The partially connected network gp is the unique strongly stable network for

φ ∈ [0, φ] where φ � 0.04 is the solution to equation Πi(gs) = Πi(gp) with firm i being a

hub in gs and a linked firm in gp. The complete network, the star network and the empty

network are never strongly stable.

Proof. First, since strong stability is a refinement of pairwise stability, we have that

the empty and star networks are never strongly stable. Second, we show that the com-

plete network gc is never strongly stable. Indeed, from we have Π∗
i (g

p) > Π∗
i (g

c) and

Π∗
k(g

p) > Π∗
k(g

c) with ik ∈ gp. Third, from Proposition 6 we know that the partially
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connected network is not pairwise stable if φ > φ � 0.04; and so is not strongly stable.

But, if φ ∈ [0, φ], then gp is pairwise stable. Is gp strongly stable too? Since gp is pairwise

stable, it suffices to show that no coalition has incentives to add links to form the complete

network gc. The answer is no since Π∗
i (g

p) > Π∗
i (g

c) and Π∗
k(g

p) > Π∗
k(g

c) with ik ∈ gp.

Thus, if φ ∈ [0, φ], then gp is the unique strongly stable network; otherwise no network is

strongly stable.

In Figure 8 and Figure 9 we have plotted, respectively, the effective R&D outputs and

the global welfare for each possible network whenever governments cannot subsidize R&D.

Figure 8: Effective R&D when governments cannot subsidize R&D.

Appendix B: Networks with subsidies

Standard computations show that, in the complete network gc, the equilibrium subsidy,

effort, effective R&D output, quantity, and profits are given by

s∗i (g
c) = 0.146; x∗i (g

c) =
a− c

5 + 4
√
2
; X∗

i (g
c) =

3(a− c)

5 + 4
√
2
; q∗i (g

c) =
(3
√
2− 2)(a− c)

7
;

Π∗
i (g

c) =
(54− 25

√
2) (a− c)2

196
.

The social welfare and global welfare are, respectively, given by

W ∗
i (g

c) =
(a− c)2

5 + 4
√
2
; V ∗(gc) =

6(5
√
2− 1) (a − c)2

49
.
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Figure 9: Global welfare when governments cannot subsidize R&D.

Let A be given by A =
√
1 + φ(26 + φ(−19 + 4(−1 + φ)φ)). In the empty network ge, the

equilibrium subsidy, effort, effective R&D output, quantity, and profits are given by

s∗i (g
e) =

3− φ+ 2φ2 −A

8
; x∗i (g

e) =
(a − c)(3− 2φ)

7− 2φ+ 2A
;

X∗
i (g

e) =
(a− c)(3 + 4(1− φ)φ)

7− 2φ+ 2A
; q∗i (g

e) =
4(a− c)

11− 11φ+ 4φ3 + (1 + 2φ)A
;

Π∗
i (g

e) =
(a− c)2(7 + 123φ− 66φ2 − 44φ3 + 24φ4 + (11 + 4(4− 3φ)φ)A

8(7− 2φ+ 2A)2
.

The social welfare and global welfare are, respectively, given by

W ∗
i (g

e) =
2(2− φ)φ (a− c)2

3 + 18φ− 11φ2 − 4φ3 + 4φ4 + (3 + φ(−1 + 2φ))A
;

V ∗(ge) =
3(29 + 138φ − 111φ2 − 20φ3 + 20φ4 − 5(−5 + φ(−1 + 2φ))A) (a− c)2

4(7− 2φ+ 2A)2
.

Unfortunately, for the star network gs and the partially connected network gp we

cannot obtain closed-form solutions. However, for each possible given value of φ ∈ [0, 12 ]

(public spillovers) we are able to compute the equilibrium solutions. The equilibrium

values (for a − c = 1) of the profits, the societal welfare, the effective R&D outputs and

the global welfare are plotted in Figure 3, Figure 5, Figure 10 and Figure 11, respectively.
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Figure 10: Effective R&D when governments can subsidize R&D.
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