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Abstract

Jackson and Watts [J. of Econ. Theory 71 (2002), 44-74] have examined the dy-

namic formation and stochastic evolution of networks. We provide a refinement of

pairwise stability, p−pairwise stability, which allows us to characterize the stochasti-

cally stable networks without requiring the "tree construction" and the computation

of resistance that may be quite complex. When a 1

2
−pairwise stable network exists, it

is unique and it coincides with the unique stochastically stable network. To solve the

inexistence problem of p−pairwise stable networks, we define its set-valued extension

with the notion of p−pairwise stable set. The 1

2
−pairwise stable set exists and is

unique. Any stochastically stable networks is included in the 1

2
−pairwise stable set.

Thus, any network outside the 1

2
−pairwise stable set must be considered as a non-

robust network. We also show that the 1

2
−pairwise stable set can contain no pairwise

stable network and we provide examples where a set of networks is more "stable" than

a pairwise stable network.
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1 Introduction

The organization of individual agents into networks and groups or coalitions has an impor-

tant role in the determination of the outcome of many social and economic interactions.1

There are many possible approaches to model network formation. One is simply to model

it explicitly as a non-cooperative game (see e.g. Aumann and Myerson, 1988). A different

approach is to analyze the networks that one might expect to emerge in the long run and

to examine a sort of stability requirement that individuals not benefit from altering the

structure of the network. This is the approach that was taken by Jackson and Wolinsky

(1996) when defining pairwise stable networks. A network is pairwise stable if no player

benefits from severing one of their links and no other two players benefit from adding a

link between them, with one benefiting strictly and the other at least weakly. Another

approach is to analyze the process of network formation in a dynamic framework.2 Jack-

son and Watts (2002) have proposed a dynamic process in which individuals form and

sever links based on the improvement that the resulting network offers them relative to

the current network. This deterministic dynamic process may end at stable networks or

in some cases may cycle. To explore whether some networks might be regarded as more

reasonable than others, Jackson and Watts (2002) add to this deterministic process ran-

dom perturbations and examine the distribution over networks as the level of random

perturbations vanishes.

Exploiting the tree construction of Freidlin and Wentzel (1984), Jackson and Watts

(2002) have shown that the outcome of their selection process (called stochastically stable

networks) can be fully characterized in terms of resistances. However, these results are

not always helpful in determining the outcome, because the required computation for

resistances and the tree construction may be quite complex. To be more precise, this

problem is known to be NP-complete in complexity theory.3 Thus we do not have much

knowledge on which network will arise in these processes in general. In order to extend the

applicability of these results, more succinct criteria are needed to determine the outcome

of this selection theory. One goal of the paper is to find a criterion for network selection

that is free from the computation of resistances and the tree construction.4

1Jackson (2003, 2005) has provided a survey of models of network formation.
2Watts (2001) has extended the Jackson and Wolinsky model to a dynamic process but she has limited

attention to the specific contest of the connections model and a particular deterministic dynamic.
3See Garey and Johson (1979, p.206). We know that for NP-complete problems, all known algorithms

to solve the problem require time which is exponential in the problem size (for instance in the number of

individuals considered).
4In noncooperative games Young (1993), Ellison (1993), Kandori, Mailath and Rob (1993) among

others have applied the Freidlin and Wentzell (1984) techniques in order to provide evolutionary models

that select among (strict) Nash equilibria. But these results are submitted to the same criticism than
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We propose a new concept, p−pairwise stability, which is a refinement of the notion of

pairwise stability. A network is said to be p−pairwise stable if when we add a set of links

to this network (or sever a set of links), then if we allow players to successively create or

delete links, they will come back to the initial network. The parameter p ∈ [0, 1] indicates

the "number" of links that can be modified: p = 0 means that all links may be modified,

p = 1 means that no link may be added or severed. Thus, 1−pairwise stability reverts

to Jackson and Wolinsky (1996) pairwise stability concept. Also, a network is said to be
1
2−pairwise stable if when we add a set of links to this network (or sever a set of links)

such that the number of changes is less than half the total of possible changes, then if

we allow players to successively create or delete links, they will come back to the initial

network.

We show that when a 1
2−pairwise stable network exists, it is unique. Moreover it is

the only stochastically stable network in Jackson and Watts (2002) stochastic evolutionary

process. But while our notion of a 1
2−pairwise stable network leads to a unique selection

when it exists, it does not always exist. Therefore, we define its set-valued extension with

the notion of 1
2−pairwise stable set of networks that is proved to exist and to coincide

with the 1
2−pairwise stable network when it exists. We also show that if a network is

stochastically stable then it belongs to the 1
2−pairwise stable set of networks. Thus, any

network outside the 1
2−pairwise stable set must be considered as a non-robust network.

Interestingly, the 1
2−pairwise stable set of networks can contain no pairwise stable network.

We see this as a drawback of pairwise stability, and we provide examples where a set of

networks is more "stable" than a pairwise stable network.

The paper is organized as follows. In Section 2 we define the notion of p−pairwise stable

network and we study its properties. In Section 3 we propose a set-valued extension, the

p−pairwise stable set of networks. In Section 4 we provide an evolutionary foundation to

the 1
2−pairwise stable set of networks. In Section 5 we conclude.

2 p−Pairwise Stable Networks

Let N = {1, ..., n} be the finite set of players who are connected in some network rela-

tionship. The network relationships are reciprocal and the network is thus modeled as a

Jackson and Watts (2002) and so they are not always helpful in determining the selected action profiles.

Then, some authors have looked for criteria for equilibrium (or non-equilibrium) selection that are free

from the computation of resistances and the tree construction. For instance, Young (1993) has shown

that in a two player, two action game, only the risk-dominant equilibrium (in the sense of Harsanyi and

Selten (1988)) is stochastically stable. This result was generalized by Maruta (1997) and Durieu, Solal and

Tercieux (2003) to two players finite games.
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non-directed graph.5 Individuals are the nodes in the graph and links indicate bilateral

relationships between individuals. Thus, a network g is simply a list of which pairs of

individuals are linked to each other. If we are considering a pair of individuals i and j,

then {i, j} ∈ g indicates that i and j are linked under the network g. For simplicity, we

write ij to represent the link {i, j}, and so ij ∈ g indicates that i and j are linked under

the network g. Let gN be the set of all subsets of N of size 2. GN denotes the set of

all possible networks or graphs on N , with gN being the complete network. The network

obtained by adding link ij to an existing network g is denoted g + ij and the network

obtained by deleting link ij from an existing network g is denoted g− ij. For any network

g, let N(g) = {i | ∃j such that ij ∈ g} be the set of players who have at least one link in

the network g.

Different network configurations lead to different values of overall production or overall

utility to players. These various possible valuations are represented via a value function.

A value function is a function v : GN → R. The set of all possible value functions is

denoted V . A value function only keeps track of how the total societal value varies across

different networks. We also wish to keep track of how that value is allocated or distributed

among the players forming a network. An allocation rule is a function Y : GN ×V → RN

such that
∑

i∈N Yi(g, v) = v(g) for all v and g. It is important to note that an allocation

rule depends on both g and v. This allows an allocation rule to take full account of a

player i’s role in the network. This includes not only what the network configuration is,

but also and how the value generated depends on the overall network structure.

In evaluating societal welfare, we may take various perspectives.6 A network g is Pareto

efficient relative to v and Y if there does not exist any g′ ⊆ GN such that Yi(g
′, v) ≥ Yi(g, v)

for all i with strict inequality for some i. This definition of efficiency of a network takes

Y as fixed, and hence can be thought of as applying to situations where no intervention

is possible. A network g ⊆ GN is strongly efficient relative to v if v(g) ≥ v(g′) for all

g′ ⊆ GN . This is a strong notion of efficiency as it takes the perspective that value is fully

transferable.

A simple way to analyze the networks that one might expect to emerge in the long

run is to examine a sort of equilibrium requirement that agents not benefit from altering

the structure of the network. A weak version of such condition is the pairwise stability

notion defined by Jackson and Wolinsky (1996). A network is pairwise stable if no player

5Bala and Goyal (2000) have studied network formation in directed networks. See also Dutta and

Jackson (2000).
6Throughout the paper we use the notation ⊆ for weak inclusion and � for strict inclusion. We also

use the symbols ∨ and ∧ which mean "or" and "and", respectively. Finally, # will refer to the notion of

cardinality.
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benefits from severing one of their links and no other two players benefit from adding a

link between them, with one benefiting strictly and the other at least weakly.

Definition 1 A network g is pairwise stable with respect to value function v and allocation

rule Y if

(i) for all ij ∈ g, Yi(g, v) ≥ Yi(g − ij, v) and Yj(g, v) ≥ Yj(g − ij, v), and

(ii) for all ij /∈ g, if Yi(g, v) < Yi(g + ij, v) then Yj(g, v) > Yj(g + ij, v).

Let us say that g′ is adjacent to g if g′ = g+ ij or g′ = g− ij for some ij. A network g′

defeats g if either g′ = g−ij and Yi(g′, v) > Yi(g, v), or if g′ = g+ij with Yi(g′, v) ≥ Yi(g, v)

and Yj(g′, v) ≥ Yj(g, v) with at least one inequality holding strictly. Pairwise stability is

equivalent to saying that a network is pairwise stable if it is not defeated by another (nec-

essarily adjacent) network. The following example shows the main insight of the stability

requirement we will introduce. In particular, the example shows that a network that is

both pareto-dominant and pairwise stable can be "less stable" than another network.

Example 1. Consider a situation where four players can form links. The payoffs they

obtained from the different network configurations are (see Figure 1): for a non-empty

network g, Yi(g) = #(g) if i ∈ N(g) with #(g) being the number of links in g, Yi(g) = 0

if i /∈ N(g), and Yi(g) = 10 if g is the empty network. Both the empty network and the

complete network are pairwise stable networks. The empty network is also the efficient

network.

Suppose that at least two links are added to the empty network to form g′. Then, from

g′ all "undefeated" improving paths go to the complete network and none goes back to

the empty network. An improving path is a sequence of networks that can emerge when

players form or sever links based on the improvement the resulting network offers relative

to the current network. Each network in the sequence differs by one link from the previous

one. If a link is added, then the two players involved must both agree to its addition, with

at least one of the two strictly benefiting from the addition of the link. If a link is deleted,

then it must be that at least one of the two players involved in the link strictly benefits

from its deletion. By an "undefeated" improving path, we mean that the final network

in the sequence of the improving path is not defeated. Suppose now that at most four

links are deleted from the complete network to form g′′. Then, from g′′ all "undefeated"

improving paths go back to the complete network. Thus, we say that the empty network

(while being the efficient network) is "less stable" than the complete network, while both

are pairwise stable.
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Figure 1: The empty and complete networks are pairwise stable (Example 1).

In order to formalize such refinement of pairwise stability, we first define a notion of

distance between two networks. For g, g′ ⊆ gN we denote by

d(g, g′) ≡
#{ij ∈ gN | (ij ∈ g ∧ ij /∈ g′) ∨ (ij /∈ g ∧ ij ∈ g′)}

#gN

the distance between g and g′. That is, d(g, g′) is the number of links that g does have

while g′ does not, plus the number of links that g does not have while g′ does, the total

being divided by the maximum number of links. Thus, 0 ≤ d(g, g′) ≤ 1. The formal

definition of an improving path is due to Jackson and Watts (2002). An improving path

from a network g to a network g′ is a finite sequence of graphs g1, ..., gK with g1 = g and

gK = g′ such that for any k ∈ {1, ...,K − 1} either:

(i) gk+1 = gk − ij for some ij such that Yi(gk − ij) > Yi(gk), or

(ii) gk+1 = gk + ij for some ij such that Yi(gk + ij) > Yi(gk) and Yj(gk + ij) ≥ Yj(gk).
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The length of an improving path is K−1, K ≥ 2. If there exists an improving path from g′

to g, then as Jackson and Watts (2002) we use the symbol g′ → g. For a given network, g,

let im(g) = {g′ ⊆ gN | g′ → g}. This is the set of networks for which there is an improving

path leading from g′ to g. An improving path from g′ to g is of maximum length if gK is

not defeated by any g′′ ⊆ gN . Remember that a network g′ defeats g if either g′ = g − ij

and Yi(g′, v) > Yi(g, v), or if g′ = g + ij with Yi(g′, v) ≥ Yi(g, v) and Yj(g′, v) ≥ Yj(g, v)

with at least one inequality holding strictly. Thus, for any improving path from g′ to g,

if g is not defeated by any other g′′, then the path is of maximum length. We say that

an improving path g1, ..., gK with g1 = g′ and gK = g goes directly from g′ to g if for all

k ∈ {1, ...,K − 1}, we have d(gk+1, g) ≤ d(gk, g).

For g′ 
= g, we write g′ �−→ g if:

(i) all improving paths of maximum length from g′ go directly to g,

(ii) there does not exist an infinite improving path from g′.7

Thus, g′ �−→ g means that g should be the endpoint of any improving path of maximum

length if g′ is its initial point, and that all improving paths of maximum length from g′

should go to g without moving away from g. We write g �−→ g if from g there is no

improving path. For a given network g, let IM(g) = {g′ ⊆ gN | g′ �−→ g}. In the sequel,

we note φ(p) the largest number smaller or equal to p such that φ(p) ·#gN is an integer.

This notation will be useful in defining our notion of p−pairwise stable networks.

Definition 2 Let p ∈ [0, 1]. A network g is p−pairwise stable with respect to allocation

rule Y and value function v if for all g′ ⊆ gN such that d(g′, g) ≤ 1 − φ(p), we have

g′ ∈ IM(g).

Any network g that is p−pairwise stable is p′−pairwise stable for p′ ≥ p. The notion of

p−pairwise stability is a refinement of pairwise stability in the following sense. A network

g is pairwise stable if and only if it is 1−pairwise stable. Thus, any network g that is

p−pairwise stable is pairwise stable.8

7An infinite improving path from g′ is an infinite sequence of graphs g1, g2, ... such that for any k ∈

{1,2,3, ...} either (i) gk+1 = gk − ij for some ij such that Yi(gk − ij) > Yi(gk), or (ii) gk+1 = gk + ij for

some ij such that Yi(gk + ij) > Yi(gk) and Yj(gk + ij) ≥ Yj(gk). Thus, no network is not defeated in an

infinite improving path.
8In Appendix C we provide an alternative definition, p−stability, which is shown to be equivalent to

p−pairwise stability if Y and v exhibit no indifference. A network is said to be p−stable if when we take

two linked (not linked) players and we add and sever a set of links to the network, then both players still

do not want to sever (add) the link between them. In other words, p−stability asks a pairwise stable link

(no-link) to be robust against perturbations to the network.
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Proposition 1 Let p ≤ 1
2 . A p−pairwise stable network is unique when it exists.

Proof. We proceed by contradiction. Let us assume that g1 and g2 are two dis-

tinct p−pairwise stable networks where p ≤ 1
2 . Then, they are 1

2−pairwise stable. If

d(g1, g2) ≤ 1 − φ(12), we have a straightforward contradiction. (Since we must have

g1 ∈ IM(g2), i.e. g1 �−→ g2 which is not possible since g1(
= g2) is pairwise stable

(or indifferently 1−pairwise stable)).

Assume now that d(g1, g2) > 1−φ(12). Pick g
1 and delete some elements in {(ij ∈ g1∧ij /∈

g2)} and add some elements in {(ij /∈ g1∧ ij ∈ g2)} so that the total number of changes is

(1− φ(12))#g
N . We obtain a network g′ satisfying d(g′, g1) = 1− φ(12). By construction,

this network g′ satisfies d(g′, g2) ≤ φ(12) ≤ 1−φ(12). Then, since g
1 and g2 are 1

2−pairwise

stable, we have that g′ ∈ IM(g1), i.e. g′ �−→ g1, and g′ ∈ IM(g2), i.e. g′ �−→ g2, which is

not possible since g2 
= g1.

In Example 1, the empty network is pairwise stable and is the unique strongly stable

network.9 However, the complete network is the unique 1
2−pairwise stable network. The

reason is that from any network g′ with #(g′) ≥ 3 (or d(g′, gN) ≤ 1
2) any "undefeated"

improving paths go directly to the complete network gN , but none goes to the empty

network.10 The next two examples show that a 1
2−pairwise stable network may fail to

exist while a pairwise stable network exists. In the first example, none of the two pairwise

stable networks is 1
2−pairwise stable, because there exists a network at mid distance from

which there are improving paths going to both pairwise stable networks. In the second

example, the unique pairwise stable is not 1
2−pairwise stable because improving paths are

enclosed in a cycle.

Example 2. Consider a situation where four players can form links. The payoffs

they obtained from the different network configurations are (see Figure 2): Yi(g) =

[#(g)]2 − c · #{j ∈ N such that ij ∈ g} if i ∈ N(g), Yi(g) = 0 if i /∈ N(g), (and so,

Yi(g) = 0 if g is the empty network). The parameter c > 0 is the individual cost of form-

ing a link. For c < 11 the complete network is pairwise stable, for c > 1 the empty network

is pairwise stable. For c < 5 our refinement will select the complete network which is the

unique 1
2−pairwise stable network. For c > 7 the empty network is the unique 1

2−pairwise

9Jackson and van den Nouweland (2005) have introduced the notion of strongly stable networks. A

strongly stable network is a network which is stable against changes in links by any coalition of individuals.

Strongly stable networks are Pareto efficient and maximize the overall value of the network if the value of

each component of a network is allocated equally among the members of that component.
10Note that in all examples of the paper, we will choose the number of players N so that #gN = N(N−1)

2

is even. This will allow us to have φ( 1
2
) = 1

2
.
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stable network. But, if 5 < c < 7 then a 1
2−pairwise stable network fails to exist. The

reason is that at g′ = {12, 13, 34} players 2 and 4 have incentives to form the link 24 but

at the same time players 1 or 3 has an incentive to sever the link he has with 2 or 4. So,

from g′ some improving paths go to the empty network, while others go to the complete

network. It follows that no 1
2−pairwise stable network exists.
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Figure 2: Non-existence of 1
2−pairwise stable networks (Example 2).

Example 3. Suppose that five players can form links. In the complete network, Yi(g) = 8

for all i. In any network g players i /∈ N(g) have a payoff Yi(g) = 0. In networks g such

that #(g) ∈ [3, 9], we have Yi(g) = 9 −#(g) if i ∈ N(g). In any g such that #(g) = 1

or 2 and players 4 or 5 belong to N(g) then Yi(g) = 0 for all i. In any g such that

#(g) = 2 and players 4 and 5 do not belong to N(g), we have that Yi(g) = 7 for i ∈ N(g).

Finally, let Y1({12}) = Y3({13}) = Y2({23}) = 6, Y2({12}) = Y1({13}) = Y3({23}) = 8.

Figure 3 presents some of these network configurations. In this example there is a unique

pairwise stable network, the complete network. But, there does not exist a 1
2−pairwise
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stable network. Indeed, from any g′ such that d(g′, gN ) ≥ 1
5 , no improving path goes to gN .
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Figure 3: Another example of non-existence of 1
2−pairwise stable networks (Example 3).

Thus, a 1
2−pairwise stable network does not always exist. In the spirit of Tercieux

(2005) we aim to solve the problem of non-existence of 1
2−pairwise stable networks by

providing a set-valued extension. Interestingly, such an approach will put into relief that

a set of networks that are not pairwise stable can be more "stable" than a pairwise stable

network.

3 p−Pairwise Stable Sets of Networks

Let us first restate the definition of an improving path. An improving path from a network

g to a set of networks G ⊆ GN is a finite sequence of graphs g1, ..., gK with g1 = g and

gK ∈ G such that for any k ∈ {1, ...,K − 1} either:

9



(i) gk+1 = gk − ij for some ij such that Yi(gk − ij) > Yi(gk), or

(ii) gk+1 = gk + ij for some ij such that Yi(gk + ij) > Yi(gk) and Yj(gk + ij) ≥ Yj(gk).

The length of an improving path is K − 1, K ≥ 2. An improving path from g′ to

G ⊆ GN is of maximum length if gK is not defeated by any g′′ /∈ G. For g′ /∈ G, we write

g′ �−→ G if:

(i) all improving paths of maximum length from g′ go directly to G,

(ii) for any infinite improving path from g′, there exists K such that for all k ≥ K,

gk ∈ G.

We write g �−→ G if from g ∈ G there is no improving path going to g′ /∈ G. For a given

set of network G, let IM(G) = {g′ ⊆ gN | g′ �−→ G}. Note that, in the following, for

G ⊆ GN , and g′ ⊆ gN we will note d(g′,G) ≤ 1 − φ(p) if d(g′, g) ≤ 1 − φ(p) for some

g ∈ G.

Definition 3 Let p ∈ [0, 1]. A set of networks G ⊆ GN is p−pairwise stable with respect

to allocation rule Y and value function v if

(1) for all g′ ⊆ gN such that d(g′, G) ≤ 1− φ(p), we have g′ ∈ IM(G),

(2) there does not exist G′ � G such that G′ satisfies (1).

Remark 1 The set GN (trivially) satisfies (1) in Definition 3 for any p ∈ [0, 1].

Proposition 2 Let p ∈ [0, 1]. Two (distinct) p−pairwise stable set of networks must be

disjoint.

Proof. We proceed by contradiction. Assume that G and G′ are two (distinct)

p−pairwise stable sets of networks and G ∩ G′ 
= ∅. Then, for all g′ ⊆ gN such that

d(g′,G∩G′) ≤ 1− φ(p), we have g′ ∈ IM(G). But since this assertion is also true for G′,

we have that for all g′ ⊆ gN such that d(g′,G ∩G′) ≤ 1 − φ(p), g′ ∈ IM(G ∩ G′). Thus

G∩G′ satisfies (1) in Definition 3, contradicting the fact that G (and G′) are p−pairwise

stable sets, i.e. the minimality is violated (point (2) in Definition 3 of p−pairwise stable

sets).

As underlined earlier, the main drawback of our definition of 1
2−pairwise stable net-

works is that existence may fail also when a pairwise stable network exists. We now show
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that our set-valued notion of 1
2−pairwise stable set always exists. As will become clear

(for instance through Example 3), when there does not exist any 1
2−pairwise stable net-

work, our notion allows to eliminate many possibilities. Moreover, it is possible that the
1
2−pairwise stable set of networks does not contain any pairwise stable network (see Exam-

ple 3). We claim that this last point is important and underlines an important drawback

of pairwise stability. The selection result we will introduce in the next section will give

a foundation to this informal argument since we will prove that any network outside the
1
2−pairwise stable set is not robust in a precise sense.

Proposition 3 Let p ∈ [0, 1]. There always exists at least one p−pairwise stable set of

networks.

Proof. Let us proceed by contradiction. Let p ∈ [0, 1] and assume that there does

not exist any set of networks G ⊆ GN that is p−pairwise stable. This means that for any

G0 ⊆ GN that satisfies (1) in Definition 3 (there always exist such a G0, see Remark 1),

we can find a proper subset G1 that satisfies (1). But again for G1, we can find a proper

subset G2 that satisfies (1). Iterating the reasoning we can build an infinite (decreasing)

sequence {Gk}k≥0 of distinct elements of GN satisfying (1). But since #GN < ∞, this

is not possible; so the proof is completed.

Note first that if g is a 1
2−pairwise stable network then {g} is a 1

2−pairwise stable set

of networks. What our next result shows in particular is that {g} is the only 1
2−pairwise

stable set of networks and thus the two notions coincide in that special case.

Proposition 4 Let p ≤ 1
2 . There always exists a unique p−pairwise stable set of networks.

Proof. We proceed by contradiction. Assume that G1 and G2 are two distinct

p−pairwise stable networks where p ≤ 1
2 . Then, they satisfy (1) in Definition 3 for

p = 1
2 .

If d(G1, G2) ≤ 1−φ(12). Then we have a straightforward contradiction. (Since from g ∈ G1

we must have g ∈ IM(G1), i.e. g �−→ G1 and g ∈ IM(G2), i.e. g �−→ G2 which is not

possible since G1 ∩G2 = ∅.

If d(G1,G2) > 1− φ(12), we take g
1(∈ G1) and g2(∈ G2). Then, pick g1 and delete some

elements in {(ij ∈ g1 ∧ ij /∈ g2)} and add some elements in {(ij /∈ g1 ∧ ij ∈ g2)} so

that the total number of changes is (1 − φ(12))#g
N . We obtain a network g′ satisfying

d(g′,G1) = 1−φ(12). By construction, this network g
′ satisfies d(g′,G2) ≤ φ(12) ≤ 1−φ(12).

Then, since G1 and G2 are p−pairwise stable for p ≤ 1
2 (i.e. they both satisfy (1) in De-

finition 3 for p = 1
2), we have that g′ ∈ IM(G1), i.e. g′ �−→ G1 and g′ ∈ IM(G2), i.e.
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g′ �−→ G2 which again is not possible since G1 ∩G2 = ∅.

In Example 2 we have that, for 5 < c < 7, there does not exist a 1
2−pairwise stable

network, but the set formed by the complete and empty networks is the 1
2−pairwise stable

set of networks. In Example 3, the complete network is the unique pairwise stable network

and there is no 1
2−pairwise stable network. However, the

1
2−pairwise stable set of networks

is G′ = {g1, g2, g3, g4, g5, g6} (see Figure 3), which does not include the complete network,

because there is a cycle g1 → g2 → g3 → g4 → g5 → g6 → g1 and all "undefeated"

improving paths from any g′ such that d(g′,G′) ≤ 1
2 go directly to G′ and stay in G′. By

an "undefeated" improving path, we mean that the final network in the sequence of the

improving path is not defeated by a network that does not belong to G′.

Our set-valued notion generalizes many existing concepts of the literature. We can

easily link this to two definitions, the first one is the well-known definition of pairwise

stable networks of Jackson and Wolinsky (1996). The second one is the one of closed

cycle provided by Jackson and Watts (2002). The following straightforward proposition is

stated without proof.

Proposition 5 {g} is a p−pairwise stable set if and only if g is a p−pairwise stable

network. And so, {g} is a 1−pairwise stable set if and only if it is a pairwise stable

network.

The following definition is due to Jackson and Watts (2002, p.273). A set of networks

G, form a cycle if for any g ∈ G and g′ ∈ G, there exists an improving path connecting g

to g′. A cycle G is a closed cycle if no network in G lies on an improving path leading to

a network that is not in G.

Proposition 6 G is a 1−pairwise stable set if and only if it is a closed cycle.

Proof. The proof can be found in Appendix A.

4 Evolutionary Selection

In this section, we show that our notion of 1
2−pairwise stable networks (and

1
2−pairwise

stable set of networks) is relevant in the stochastic evolutionary process proposed by

Jackson and Watts (2002).

4.1 The Process

Let us recall first the Jackson and Watts (2002)’s process. At a discrete set of times,

{1, 2, 3, ...} decisions to add or sever a link are made. At each date, a pair of players ij
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is randomly identified with probability p(ij) > 0. The (potential) link between these two

players is the only link that can be altered at that time. If the link is already in the

network, then the decision is whether to sever it, and otherwise the decision is whether

to add the link. The players involved act myopically, adding the link if it makes each at

least as well off and one strictly better off, and severing the link if its deletion makes either

player better off. After the action is taken, there is some small probability ε > 0 that a

mutation (or tremble, or mistake) occurs and the link is deleted if it is present, and added

if it is absent.11

The above process defines a (finite) Markov chain with states being the network in place

at the end of a given period. Note that with mutations as part of the process, each state of

the system is reachable with positive probability from every other state. The Markov chain

is said to be irreducible and aperiodic, and thus has a unique corresponding stationary

distribution (see Freidlin and Wentzel, 1984). As ε goes to zero, the stationary distribution

converges to a unique limiting stationary distribution. A network that is in the support

of the limiting (as ε goes to zero) stationary distribution of the above-described Markov

process is said to be stochastically stable. Intuitively, a stochastically stable network

is one that is observed infinitely many more times than others when the probability of

mutations is infinitely small. Jackson and Watts (2002) provides a characterization of

stochastically stable networks using the tree construction of Freidlin and Wentzell (1984).

In the following, we prove that our concept can be used to avoid this complex construction.

4.2 Relationship between p−Pairwise Stability and Stochastic Stability

The following theorem shows that under the process we have just described, the only

networks that will arise with a significant frequency in the long run (i.e., the stochastically

stable one) are in the 1
2−pairwise stable set.

Theorem 1 Let G be the 1
2−pairwise stable set of networks. The set of stochastically

stable networks is included in G.

Proof. See Appendix B.

Thus any network outside the 1
2−pairwise stable set must be considered as a non-robust

network. To be more precise, the stochastic process presented above can be thought of as

11Mutations may be due to exogenous unmodeled factors that are beyond player’s control. Alternatively,

players may simply make errors in calculating whether adding or severing a link is beneficial. Finally, we

could think to players having a limited information. Thus they occasionally experiment to see if adding or

severing a link will make them better off (endogenous mutations have been formalized in several papers,

see for instance van Damme and Weibull (2002) or Maruta (2002)).

13



a check on the robustness of pairwise networks or cycles. Although a number of networks

may be pairwise stable, they can differ in how resilient they are to the random mutations.

For instance, it may be relatively hard to leave and easy to get back to some networks,

our above theorem tells us that such networks are included in the 1
2−pairwise stable set of

networks. This result also tells us that any network that is not in the 1
2−pairwise stable

set is relatively easy to leave and hard to get back.

In order to understand these points, note that once the process has reached the
1
2−pairwise stable set of networks G, it cannot leave it without further mutations. On the

first hand, in order to get off that set, it is necessary that strictly more than #gN

2 muta-

tions occur (notice that in order to give the intuition of our result, we skip some technical

points in assuming that N is such that #gN

2 is an integer). If it is not the case, the process

will come back to G with no further mutation. On the other hand, as it will become clear,

if the process has reached a network that is outside G, it is sufficient that less than #gN

2

mutations occur to allow the process to reach a network that belong to G. In order to see

why it is so, note that from a network g′ that does not belong to G, with (less than) #gN

2

mutations, one can reach a network ḡ such that d(g, ḡ) ≤ 1
2 where g belongs to G. Thus,

by definition, the process will move to G without any further mutations. To see how we

can build ḡ, we just have to add links to g′ that belong to g and not to g′ or to delete

links that do not belong to g but belong to g′. By repeating this procedure less than #gN

2

times, we can reach such a ḡ. Thus there exist networks in G which are the easiest to

reach from other networks, where - again - "easiest" is interpreted as requiring the fewest

mutations. These networks are stochastically stable. The formal argument is given in the

appendix.

Of course, we would like to have a full characterization of the set of stochastically

stable networks. In order to do so, we provide several sufficient conditions that go in that

sense. These results are corollaries of Theorem 1. The first one shows that if there exists a
1
2−pairwise stable network then it must be the unique stochastically stable network. Note

that this result can be seen as a parallel to the one of Young (1993) [Theorem 3, p.72] in

noncooperative games.

Corollary 1 Assume that a network g is the 1
2−pairwise stable network. Then g is the

unique stochastically stable network.

The following two corollaries directly come from the fact that if g is stochastically stable

then g is part of a 1−pairwise stable set of networks. Furthermore, if g ∈ G is stochastically

stable and G is a 1−pairwise stable set then all g′ ∈ G are stochastically stable (this

follows from Lemma 2 in Jackson and Watts (2002) together with our Proposition 6 that

establishes the equivalence between a 1−pairwise stable set and a closed cycle).
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Corollary 2 Let G be the 1
2−pairwise stable set of networks. If G is 1−pairwise stable

then G is the set of stochastically stable networks.

Corollary 3 Let G be the 1
2−pairwise stable set of networks. If G′ ⊆ G is the unique

1−pairwise stable set in G then G′ is the set of stochastically stable networks.

Example 4. Suppose that three players can form links (see Figure 4). In the com-

plete network, Yi(g) = 3 for all i. In any network g players i /∈ N(g) have a payoff

Yi(g) = 0. In any g such that #(g) = 2, Yi(g) = 2 if i ∈ N(g). Finally, let Y1({12}) =

Y3({13}) = Y2({23}) = 1, Y2({12}) = Y1({13}) = Y3({23}) = 4. In this example there is a

unique pairwise stable network, the complete network. There does not exist a 1
2−pairwise

stable network, {gN} is the 1−pairwise stable set, and all networks except the empty one

belong to the 1
2−pairwise stable set of networks.
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Figure 4: 1
2−pairwise stable set and stochastically stable networks (Example 4).

In Example 4, the complete network is the unique pairwise stable network and there is

no 1
2−pairwise stable network because of the cycle g1 → g2 → g3 → g4 → g5 → g6 → g1.

The 1
2−pairwise stable set of networks is G

′ = {g1, g2, g3, g4, g5, g6, gN} but this set is not

1−pairwise stable. Indeed, {gN} is the unique 1− pairwise stable set and so by corollary

3 is the unique stochastically stable network.

The next example shows that our sufficient conditions are quite tight in the following

sense: a p−pairwise stable network with p = 1
2 + ε (ε small) may not be a stochastically

stable network.
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Example 5. Suppose that fifty players can form links. For #(g) ≤ 611, let Yi(g) =

611−#(g) if i ∈ N(g) and Yi(g) = 0 otherwise. For #(g) ≥ 612, let Yi(g) = #(g)− 611 if

i ∈ N(g) and Yi(g) = 0 otherwise. The empty network is a p−pairwise stable network for

p ≥ (615/1225) � 0.502, but the empty network is not stochastically stable. The unique

stochastically stable network is the complete one, which is also the unique 1
2−pairwise

stable network.

5 Conclusion

In this paper, we have defined a refinement of pairwise stability: p−pairwise stability.

When a 1
2−pairwise stable network exists, we have shown that it is unique and that it

coincides with the unique stochastically stable network. To solve the inexistence problem

of p−pairwise stable networks, we have defined its set-valued extension with the notion of

p−pairwise stable set. We have shown that 1
2−pairwise stable set exists and is unique. In

addition, any stochastically stable networks is included in the 1
2−pairwise stable set.

Appendix

A Proof of Proposition 6

In this part we prove Proposition 6 that establishes the equivalence between our notion

of 1−pairwise stability and the notion of a closed cycle proposed by Jackson and Watts

(2002). In order to do so, we first state and prove some useful lemmas. The following

lemma is stated without proof.12

Lemma 1 If G is such that for all g ∈ G, g ∈ IM(G) (note that this is (1) in Definition

3 of a 1−pairwise stable set) then there exists C ⊆ G that is a closed cycle.

Our next lemma provides a first step in establishing a link between 1−pairwise stability

and closed cycles.

Lemma 2 If C is a closed cycle then there exists G ⊆ C that is 1−pairwise stable.

Proof. Since C is a closed cycle, we know that for all g ∈ C, g ∈ IM(C). Then C

satisfies (1) of Definition 3 of a 1−pairwise stable set. Now assume that there does not

exist any G ⊆ C that is 1−pairwise stable. Then any G ⊆ C has a proper subset that

satisfies (1) in the definition of 1−pairwise stable sets. Now, as in the proof of Proposition

12A complete proof would mimic the proof of Lemma 1 in Jackson and Watts (2002, p.273).
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3, this implies that there exists an infinite decreasing sequence {Gk}k≥0 where G0 = C

and Gk+1 � Gk for all k ≥ 0. But since #GN < ∞, this is not possible; so the proof is

completed.

Now we are ready to complete the proof of Proposition 6. We first prove the "if"

part. Suppose that G is a closed cycle but G is not 1−pairwise stable and show that

this lead to a contradiction. This last point can be due to the violation of (1) or (2)

in the definition of a 1−pairwise stable set. Assume first that (1) is violated. Such a

violation implies in particular that there exists g ∈ G and g′ /∈ G such that g → g′. Which

contradicts the definition of a closed cycle. Assume now that (2) is violated. This means

that there exists G′ � G that satisfies (1) in the definition of a 1−pairwise stable set i.e.,

for all g′ ∈ G′, g′ ∈ IM(G′). But by Lemma 1, we know that there exists a closed cycle

C ⊆ G′ � G. Then, we have the following: first, because G is a (closed) cycle, we have

that for all g, g′ ∈ G, g → g′. But we also have, because C is a closed cycle, that for all

g ∈ C(� G) and g′ ∈ G− C, g → g′ is wrong. Thus we obtain a contradiction.

We now prove the "only if" part. We know by Lemma 1 that since G is 1−pairwise

stable, there exists C ⊆ G that is a closed cycle. We must prove that C = G. So let us

proceed by contradiction and assume that C � G. We know by Lemma 2 that there exists

G′ ⊆ C � G that is 1−pairwise stable. This leads to a straightforward contradiction since

it contradicts (2) (the minimality) in the 1−pairwise stability of G. This completes the

proof of Proposition 6.

B Proof of Theorem 1

In order to prove Theorem 1, we first introduce some useful definitions and notations.

B.1 Definitions

For a given network g, remember that im(g) = {g′ ⊆ gN |there exists an improving path

from g′ to g}. A path p = {g1, ..., gK} is a sequence of adjacent networks. The resistance of

a path p = {g1, ..., gK} from g′ to g, denoted r(p), is computed by r(p) =
∑K−1

i=1 I(gi, gi+1),

where

I(gi, gi+1) =

{
0 if gi ∈ im(gi+1)

1 otherwise
.

Resistance keeps track of how many mutations must occur along a special path to follow

that path from one network to another. A mutation is necessary to move from one network

to an adjacent one whenever it is not in the relevant player’s interests to sever or add the

link that distinguishes the two adjacent networks.
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Let r(g′, g) = min{r(p) | p is a path from g′ to g} and set r(g, g) = 0. Note that

r(g′, g) = 0 iff g′ ∈ im(g) or g′ = g. Thus (by proposition 6) if g, g′ ∈ G where G is

1−pairwise stable, then r(g′, g) = 0.

Given a network g, a g−tree is a directed graph which has as vertices all networks and

has a unique directed path leading from each g′ to g. Let T(g) denote all the g−trees,

and represent a t ∈ T (g) as a collection of ordered pairs of networks, so that g′g′′ ∈ t if

and only if there is a directed edge connecting g′ to g′′ in the g−tree t. The resistance of

a network g is computed as r(g) = mint∈T (g)
∑

g′g′′∈t r(g
′, g′′).

In addition as noted in Jackson and Watts (2002), only closed cycles (a pairwise stable

network is a closed cycle) matter in the dynamic process. Given two closed cycles C,C′,

let r(C,C ′) = r(g, g′) where g ∈ C and g′ ∈ C ′ and set r(C,C) = 0. In the sequel, the set

of closed cycles will be denoted Ξ.

Given a closed cycle C, a C−tree is a directed graph which has as its root C, and

as other vertices closed cycles and has a unique directed path from each vertex to C.

Denote the set of C−trees by T(C), and represent a t ∈ T (C) as a collection of ordered

pairs of networks, so that C′C ′′ ∈ t if and only if there is a directed edge connecting

C ′ to C′′ in the C−tree t. The resistance of a closed cycle C is computed as r(C) =

mint∈T (C)
∑

C′C′′∈t r(C
′, C ′′).

It is well-known (see Young (1993), Jackson and Watts (2002)) that a network g is

a stochastically stable network if and only if g belongs to a closed cycle C such that

r(C) ≤ r(C′) for all C ′ ∈ Ξ. We will use this characterization in order to prove our main

results.

B.2 The Proof

The proof is divided into two parts:

(1) We give a lower bound on the resistance of the transitions that begin at g ∈ G and

end at any g′ /∈ G where d(g′,G) > 1 − φ(12). By definition of p−pairwise stability for

p ≤ 1
2 , r(g, g

′) > (1− φ(12)) ·#g
N ≥ #gN

2 .

We give now an upper bound on the resistance of paths that begin at any g′ /∈ G

and end in G. Pick g′ /∈ G. (Note that if d(g′,G) ≤ 1 − φ(12) then, by definition of G,

g′ ∈ IM(G) i.e. no mutation is necessary to go to G. Thus we will implicitly assume that

d(g′,G) > 1−φ(12).) Picking g ∈ G, we delete some elements in {(ij ∈ g′∧ij /∈ g)} and add

some elements in {(ij /∈ g′∧ij ∈ g)} so that the total number of changes is (1−φ(12))·#g
N .

We obtain a network ḡ satisfying d(ḡ, g′) = 1 − φ(12). By construction, this network ḡ

satisfies d(ḡ, g) ≤ φ(12) ≤ 1 − φ(12) where g ∈ G. But G is a p−pairwise stable set of

networks for p ≤ 1
2 and so ḡ �−→ G. Therefore with less than (1− φ(12)) ·#g

N mutations,
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we will reach a network in closed cycle included in G (note that once the process has

reached G, we cannot leave it without mutations). Therefore, r(g′, C̃) ≤ (1−φ(12)) ·#g
N

for some closed cycle C̃ ⊂ G. Such a closed cycle will be denoted C(g′). Thus for every

g′ /∈ G, r(g′, C(g′)) ≤ (1− φ(12)) ·#g
N .

(2) Suppose by contradiction that g′ /∈ G is stochastically stable. Let C ′ be the closed

cycle so that g′ ∈ C ′. First note that it must be that d(g′,G) > 1 − φ(12). Denote by t′

(one of) the C ′−tree(s) (t′ ∈ T (C′)) that minimizes resistance. We know that there is a

sequence C1, ..., Cn with C1 = C(g′)(⊂ G) and Cn = C ′ such that: ClCl+1 ∈ t′ for every

l = 1, ..., n− 1.

In addition, there exists two closed cycles C̃ and C̄ such that C̃C̄ ∈ t′ and C̃ ∩G 
= ∅

and C̄ ∩G = ∅. Delete this edge and add one from C ′ to C1. We obtain a tree t′′ ∈ T(C̃)

where C̃ ∩ G 
= ∅. It is easy to show that indeed, C̃ ⊂ G (because once the process has

reached G it cannot go out without mutations).

By construction, r(C̃) = r(C′) − r(C̃, C̄) + r(C ′, C1). But r(C̃, C̄) = r(g̃, ḡ) where

g̃ ∈ G and ḡ /∈ G, and so as proved above, r(C̃, C̄) > (1 − φ(12)) · #g
N . In addition,

r(C ′, C1) = r(g′, C(g′)) and so again as proved above, r(C ′, C1) ≤ (1 − φ(12)) · #g
N .

Hence, r(C̃) < r(C ′). This contradicts the fact that g′ minimizes stochastic potential.

This completes the proof.

C An Alternative Definition to p−Pairwise Stability

Definition 4 Let p ∈ [0, 1]. A network g is p−stable with respect to the value function v

and to the allocation rule Y if

1.) for all ij ∈ g, for all g′ ⊆ gN such that d(g′, g) ≤ 1− φ(p) and ij ∈ g′,

Yi(g
′, v) ≥ Yi(g

′ − ij, v) and Yj(g
′, v) ≥ Yj(g

′ − ij, v),

and,

2.) for all ij /∈ g, for all g′ ⊆ gN such that d(g′, g) ≤ 1− φ(p) and ij /∈ g′,

[Yi(g
′, v) < Yi(g

′ + ij, v) =⇒ Yj(g
′, v) > Yj(g

′ + ij, v)].

Any network g that is p−stable is p′−stable for p′ ≥ p. A network g is pairwise stable

if and only if it is 1−stable. Thus, any network g that is p−stable is pairwise stable. Two

networks g and g′ are adjacent if they differ by one link.

No indifference Y and v exhibit no indifference if for any g and g′ that are adjacent

either g defeats g′ or g′ defeats g.
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Proposition 7 Suppose that Y and v exhibit no indifference. Then, g is p−stable if and

only if g is p−pairwise stable.

Proof. We have that g is 1−stable if and only if g is 1−pairwise stable. Suppose now

that g is p−stable with (1− φ(p)) ·#(gN) = 1. We will show that g is p−pairwise stable.

That is, we have to show that for all g′ such that 0 ≤ d(g′, g) ≤ 1 − φ(p) (i.e. for all g′

that have up to one link different of g), g′ ∈ IM(g). We have: (i) g ∈ IM(g). (ii) Player

i and player j do not want to delete the link ij such that ij ∈ g and ij ∈ g′, and they do

not want to add the link ij such that ij /∈ g and ij /∈ g′. Denote by kl a link such that

kl /∈ g but kl ∈ g′, or kl ∈ g but kl /∈ g′. Since Y and v exhibit no indifference, we have

that: if kl ∈ g then player k and player l have incentives to add this link to g′; if kl /∈ g

then player k or player l have incentives to sever this link from g′. Thus, g′ ∈ IM(g).

Suppose now that g is p−stable with (1 − φ(p)) ·#(gN ) = 2 and p′−pairwise stable

with (1− φ(p′)) ·#(gN) = 1. We will show that g is p−pairwise stable. That is, we have

to show that for all g′ such that 0 ≤ d(g′, g) ≤ 1 − φ(p) (i.e. for all g′ that have up to

two links different of g), g′ ∈ IM(g). We have: (i) g ∈ IM(g). (ii) For all g′′ such that

g′′ = g − ij or g′′ = g + ij, g′′ ∈ IM(g). (iii) Take any g′ such that g′ has 2 links different

of g. Player i and player j do not want to delete the link ij such that ij ∈ g and ij ∈ g′,

and they do not want to add the link ij such that ij /∈ g and ij /∈ g′. Denote by kl (or

mn) a link such that kl /∈ g but kl ∈ g′, or kl ∈ g but kl /∈ g′. Since Y and v exhibit

no indifference, we have that: if kl ∈ g then player k and player l have incentives to add

this link to g′; if kl /∈ g then player k or player l have incentives to sever this link from

g′. Indeed, if g′ = g − kl +mn or g′ = g − kl −mn (i.e. g′ = g′′ − kl), players k and l

have incentives to create the link kl because none of them had incentives to delete it at

g′′ = g +mn or g′′ = g −mn; if g′ = g + kl +mn or g′ = g + kl −mn (g′ = g′′ + kl),

players k and l have incentives to sever the link kl because none of them wanted to create

it at g′′ = g +mn or g′′ = g −mn. Thus, g′ ∈ IM(g′′). Since g′′ ∈ IM(g) and g′ and g′′

are adjacent, we have g′ ∈ IM(g).

Suppose now that g is p−stable with (1 − φ(p)) ·#(gN ) = L and p′−pairwise stable

with (1 − φ(p′)) ·#(gN ) = L − 1. We will show that g is p−pairwise stable. That is, we

have to show that for all g′ such that 0 ≤ d(g′, g) ≤ 1 − φ(p) (i.e. for all g′ that have

up to L links different of g), g′ ∈ IM(g). We have: (i) g ∈ IM(g). (ii) For all g′′ such

that 0 ≤ d(g′′, g) ≤ 1 − φ(p′) (i.e. for all g′′ that have up to L − 1 links different of g),

g′′ ∈ IM(g). (iii) Take any g′ such that g′ has L links different of g. Player i and player j

do not want to delete the link ij such that ij ∈ g and ij ∈ g′, and they do not want to add

the link ij such that ij /∈ g and ij /∈ g′. Denote by kl a link such that kl /∈ g but kl ∈ g′,

or kl ∈ g but kl /∈ g′. Since Y and v exhibit no indifference, we have that: if kl ∈ g then
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player k and player l have incentives to add this link to g′ (none of them had incentives

to delete it at g′′ = g′+kl); if kl /∈ g then player k or player l have incentives to sever this

link from g′ (none of them wanted to create it at g′′ = g′ − kl). Thus, g′ ∈ IM(g′′). Since

g′′ ∈ IM(g) and g′ and g′′ are adjacent, we have g′ ∈ IM(g).

Suppose now that g is p−pairwise stable with (1 − φ(p)) ·#(gN ) = 1. We will show

that g is p−stable. Take g′ such that 0 ≤ d(g′, g) ≤ 1 − φ(p) (i.e. networks that have up

to one link different of g). Since g′ ∈ IM(g), which means that all improving of maximum

length from g′ go directly to g, we have that player i and player j do not want to delete

the link ij such that ij ∈ g and ij ∈ g′, and they do not want to add the link ij such that

ij /∈ g and ij /∈ g′. Thus, g is p−stable with (1−φ(p)) ·#(gN) = 1. Suppose now that g is

p−pairwise stable with (1− φ(p)) ·#(gN) = 2. We will show that g is p−stable. Take g′

such that 0 ≤ d(g′, g) ≤ 1 − φ(p) (i.e. networks that have up to two links different of g).

Since g′ ∈ IM(g), which means that all improving of maximum length from g′ go directly

to g, we have that player i and player j do not want to delete the link ij such that ij ∈ g

and ij ∈ g′, and they do not want to add the link ij such that ij /∈ g and ij /∈ g′. Thus, g

is p−stable with (1− φ(p)) ·#(gN ) = 2; and so on.
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