
Investment in Public Infrastructure and Tax

Competition between Contiguous Regions

Carole Dembour∗and Xavier Wauthy†

October 16, 2003

Abstract

Two contiguous regions compete to attract a population of het-
erogeneous firms. They choose infrastructure levels in a first stage,
then compete in tax. We compare the properties of subgame perfect
nash equilibria in this stage-game depending on the intrisic features
of the infrastructure considered. Then we derive some implications
regarding the scope for cooperation between the regions.

1 Introduction

The last decades have been marked by a sharp decrease of transportation
costs, and more generally trade costs, together with an increased mobility
for capital and to a lesser extent of the labour force caused by institutional
factors. As a result, the location of firm’s productive activities is more and
more disconnected from the destination market of their final products. Be-
cause firms are more mobile, national or regional governments have become
more and more concerned by tax competition issues. In particular, by the
risk that firms actually bid up local authorities one against the other to ob-
tain tax reliefs. Observations suggests that the risk is indeed present. For
instanc eSorensen (2000) presents evidence of a significant fall in capital
nominal tax rate from the 80’s to the end of the 90’s.

A growing body of the literature deals with tax competition games.
Fortunately this literature most often conclude to the development of a
mitigated tax competition. In a sense, tax revenues may not decrease that
much because of tax competition. At the same time, it is obvious the
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fiscal motives are not the only reason why firms would delocalize produc-
tion. The specific amenities of regions, be it exogenous or resulting from
agglomeration externalities, enter the picture as well. Public authorities
are not passive either in this respect. In particular they tend to attract
firms by magnifying their local amenities, and/or stimulating the emer-
gence of strong spatial externalities. Thus, local authorities may affect
firms’ location decisions in essentially two ways: by offering an attractive
fiscal package, and by developing a favorable economic environment (en-
hancing the quality of their infrastructure, braodly defined). Head and al.
(1999) conducted an empirical analysis revealing how sensitive firms can
be to non-fiscal arguments.1As argued recently by Justman et al. (2003) it
may actually be the case that by specializing their infrastructure packages,
regions may in fact relax tax competition.2

In the literature dealing with regional competition, When local author-
ities compete one against the other at the level of taxes as well as at the
level of infrastructure, it is most often assumed that the infrastructure of-
fer is specific to each region. Justman and al. (2001) is a good example.
Therefore, regional infrastructures are viewed as substitutes from the point
of view of the firms. This is clearly reasonable when regions really differ in
geographical locations, i.e. they are located at a significant distance from
each other. Suppose by contrast that a well-defined economic activity area
is actually divided in two (or several) political regions, each endowed with
some fiscal autonomy.3. In a sense firms actuallly contemplate the possi-
bility of locating their activities in the economic area, as a whole. Then, if
they chose to move to the area, they would have to address the question of
where (i.e. in which political region) to locate within the area. The choice
of a particular region will reflect the presence of tax differentials ans well as
possible differences in the in frastructure supplied by the regions. However,
if regions are contiguous, it might difficult to argue that the benefits of
an infrastructure developed by one of the regional government is entirely
confined to its political frontiers. In many cases, a ”local” infrastructure
will inevitably see its ”benefits” spillover accross political entities to the
whole economic bassin. If this is the case, then an infrastructure located in
one region might be viewed as a complement to the development strategy
of the other entities. Think for instance of an airport terminal located in
one region. Clearly enough, this infrastructure increases the attractiveness
of the region. However, it is hard to see why it would not increase that

1See also Dembour (2003) for a recent selective survey on theoretical models dealing
with competition for business units.

2More generally, local authorities are very likely to transfer tax competition towards
less direct fields. See Peralta and al. (2003).

3As is typically the case for the region of Bruxelles Capitale in Belgium
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of the contiguous regions as well. Most reasonably, this infrastructure in-
creases the attractiveness of the economic area as a whole. By contrast,
the positive impact of a high speed telecommunication network could be
more easily restricted to one region region only. Similarly, it is reasonably
easy to condition access to ”administrative” support services on the fiscal
location of firms.

The present note builds on this intuition. We consider a model where
regions compete for firms by choose the ”quality” of the infrastructure they
will offer to the firms. They also compete in taxes. Regarding infrastruc-
ture, the critical issue is the extent to which the infrastructure proposed by
one the region is truly specific to this region or spills over to the contiguous
ones. We shall consider the two polar cases of a strictly regional-specific
infrastructure and an infrastructure whose effects are equally distributed
accross regions. In the first case, infrastructure is a pure private good
whereas in the second case, it is a pure public good.

We address two questions: to which extent does the economic nature
of the infrastructure alter the equilibrium behaviour of regions? To which
extent does the nature of the infrastructure enhances or hinders cooperation
between regions?

Part of the regions’ problem can then viewed as follows: regions could
find interesting to cooperate at the level of infrastructure, and the more
so the more they are closely connected, while being competitors at the
fiscal level. Cooperation at the infrastructure level seems desirable if both
regions benefit from the increased attractiveness of the area. However, since
infrastructure as the attribute of a public good, each region is likely to adopt
a free rider behavior, thereby inducing too low a level of investment.

In order to address these questions, we build a stylized model inspired
by the canonical location model of Hotelling (1929). This model will allow
to formalize regional competition as a two-stage between two contuguous,
though different, regions. In a first stage regions choose infrastrucutre levels
non-cooperatively, in a second stage they set taxes non-cooperatively. Then
firms decide on locations. Our equilibrium concept is subgame perfect Nash
equilibrium. Our analysis also rests on a 2 by 2 typology characterizing the
infrastructure’s type. On the one hand, infrastructure benefits may either
be strictly localized or strictly non-localized. On the other hand the benefits
might be either depedent or independent on firms’ types. We show that the
scope for regional cooperation is highly dependent on the characteristics of
the infrastructure, because these characteristics impact differently the tax
competition stage.

In the next section, we present the basic model. Section 3 is devoted
to the analysis of infrastructures that affect firms symmetrically. We char-
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acterize subgame perfect equilibria.4 Then, in section 4 we draw some
implications of our findings and discuss extensions of the basic model.

2 A Model

Let us denote by C a well-defined economic area (for simplicity we shall
talk of the ”country”, when referring to the economic area C) which is
divided in two contiguous ”regions” (in the following, ”regions” designate
local political entities): A and B.

2.1 The Firms

There is a continuum of heterogeneous mobile firms contemplating to re-
locate their activities in C. Each firm is identified by a type x. Types
are uniformly distributed in the continuous [0, 1] interval. The density is
normalized to 1 so that the total number of firms is also n,ormalized to 1.
These firms are supposed to be located somewhere outside C and if they
decide not to move to C, they enjoy a reservation profit π. Thus, π defines
their status quo option.

Firms’ types can be understood as designating some technological speci-
ficities of the firm that will have to be matched to in area C. These types
are for instance related to the particular industry in which the firm is ac-
tive. It could consist of a specific know-how that has to be taugth to new
workers. The matching cost contributes to define the fixed cost the firm
will have to bear if it chooses to locate in area C. Obviously, this cost may
also depend on the region in which it chooses to locate. Indeed, regions
themselves display a priori characteristics inherited from their own history.
The key point at this step is to assume that regions and firms are heteroge-
neous. To capture this idea, we assume that each region is located at one
point xA, xB respectively. For simplicity, we assume xA = 0, xB = 1.

The matching cost of a firm with type x ∈ [0, 1] depends positively
on the ”distance” from the region’s location.5 We may therefore define a
matching cost function for each region: mA(x), mB(1 − x). Finally, we
denote by tA and tB the lump-sum fee each region levies on firms.

Under the preceding assumption, we formalize a firm’s location decision
as follows: a firm chooses the location where its profit is larger. This
profit is defined as the operating profit (i.e. the profit resulting from the

4The parallel analysis for type dependent benefits of infrastructure is developed in the
Appendix.

5note that the term location should not be understood here in the geographical sense.
Firms are located in the characteristics’ space.
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production activity)6 minus the matching cost and the lump-sum tax. In
case the firm does not move to country C (stays abroad), the ”status quo”
profit is defined by π. Moving to area A yields a payoff:

πA(x) = KA −mA(x)− tA, (1)

whereas moving to region B yields:

πB(x) = KB −mB(1− x)− tB, (2)

where Ki denotes operating profits in region i.

2.2 The Regions

Regional authorities choose the infrastructure they supply to the firms.
They also choose tax levels non-cooperatively. Given the specification of
firms’ profits as a function of location (equations (1) and (2)), two types
of infrastructure can be distinguished: either it affects the matching cost
(negatively) or the operating profits (positively). In both cases, the attrac-
tivness of the region is reinforced if the quality of infrastructure supplied to
the firms is increased. Infrastructure levels are committed to by the regions
in a first stage, than tax levels are set simultaneously in a second stage.

Two basic type of infrastructures must be distinguished because they
have different implications in a world where tax competition takes place.
We may consider first infrastructures whose benefits to a firm depends on
the type of this firm. This is especially true of a training program aimed
at matching local workers’ qualifications to incoming firms’ needs, or of a
development office aimed at helping firms to install their administrative
and sales network. On the other hand, infrastructures such as the supply
of public transport or high speed communication networks benefit have
their benefits more uniformly distributed accross firms. Moreover, they are
recurrent benefits related to the daily activity of incoming firms whereas
the previous examples were related to the installation costs of the incoming
firm. We shall show later on that these two infrastructure types have
different implications on the tax competition game.

A last feature of infrastructure expenses must be considered: the lo-
calization of its effects. Two polar cases are considered hereafter. Either
the infrastructure is entirely general. This implies that any firm locating

6For instance, Justman et al. (2000) assume the following operating profits structure:
Firms produce according to a production function y(l) = lα, where l designates units of
labor input and 0 < α < 1. Labor is homogeneous perfectly mobile within C so that the
wage prevailing in the two regions is identical and given by w. Operating profits are thus
defined as y(l)− wl.
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in country C benefits from the infrastructure symmetrically. In this case,
any infrastructure investment by one region increases the attractiveness of
the whole area, without giving any specific advantage to this region. At
the other extreme, we shall consider the case of a purely specific7 infras-
tructure with i = A,B. In this case, the infrastructure benefits to a firm
only if the firm locates in the specific region where the infrastructure has
been installed. Accordingly, no region can benefit from the infrastructure
installed by the other one. In this context, providing more infrastructure
in the first stage is apt to give a competitive advantage in the second stage:
being more attractive, the high infrastructure region can attract firms even
if taxes are significantly higher than in the contiguous region.

The objective of the local authorities is to maximize regional Welfare,
defined as the wage bill in the region minus the cost of infrastructure plus
the tax revenue (or minus the subsidy expenses).

Wi = w ∗ Li + tiMi − c(Ki)

where Li denotes the labour demand of the firms located in the region, Miti
is the tax revenue and c(Ki) is the cost of infrastructure. For simplicity, we
assume ti ≥ 0, i.e. regions are not allowed to offer net subsidies to firms.
We do not impose in this paper any explicit budget constraints. Obviously,
this does not mean that the cost of public fund is zero in the model. Indeed
lower taxes and infrastructure expenses affect the objective negatively.8

2.3 The Game

We solve the following stage game

• Stage 1: Regions decide simultaneously on infrastructure levels.

• Stage 2: Regions decide on tax levels with infrastructure levels being
publicly observed, choosing ti ≥ 0

• Stage 3: Observing infrastructure decisions and taxes, firms decide of
their location

7The specificvs general typology is inherited from Labour economics, where human
capital is said to be ”general” if transferable from one firm to another.

8In section 4, we nevertheless discuss the implications of specific budgetary constraints
that could apply to local authorities. It is indeed often the case that regional author-
ities face constitutional constraints which limit their ability to display budget deficits.
Obviously, this is likely to affect equilibrium behaviour.
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3 Infrastructure with Uniform Benefits

In this section, we assume that decisions made regarding infrastructure
alter the operating profits of firms, i.e. the term Ki in equations (1) and
(2).9 Note that a key feature of this type of infrastructure is that it affects
equally all the firms that choose to locate within a given region.

3.1 The Public Good Case

In the pure public good case, any invesment by one of the region affects
Ki symmetrically. We shall assume for simplicity that in (1) and (2), we
have KA = KB = K, where K depends positively and symmetrically of the
investments realized by either regions. Thus, the level of K will be used as
a proxy for the quality of the infrastructure supplied by the regions.

•We first characterize firms’ equilibrium behaviour at stage 3, i.e. firms’
optimal choices given K and ti.

Given its outside option π, each firm compares π, πA(x) and πB(x).
Two types of configurations must be distinguished:

• (K, ti) are such that some firms are better off choosing their outside
option. We shall denote such configurations as non-covered ones

• (K, ti) are such that all firms are attracted in country C. These
configurations will be referred to as covered configurations.

For a non-covered configuration to prevail, there must exist some type x

such that max
{
πA(x), πB(x)

}
< π. Focusing on the possibility of locating

in, say, region A, or not moving at all, any firm x compares K−ma(x)− tA
to π. Solving

K −ma(x)− tA = π

for x, we identify the subset of firms preferring to move to region A rather
than enjoying the status quo. Let us denote this set of firms by MA.

Performing a similar analysis for region B allows us to define a another
set MB which contains those firms willing to move to region B if the al-
ternative is the status quo. Obviously, non-covered configurations prevail
whenever require that [0, 1]/(MA ∪MB) defines a non empty set.

In order to obtain closed form solutions, we shall assume from now that

ma(x) = mx and mb(x) = m(1− x) with m > 0 (A1)
9Think for instance of an investment increasing labour productivity, or a .
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Moreover, we assume without loss of generality that π = 0.10

Using (A.1), the fact that the distribution is uniform in [0, 1] and the
density is 1, we compute the number of firms locating in both regions. We
solve K −mx− tA = 0 and K −m(1− x)− tB = 0 to obtain11

Mn
A =

K − tA
m

(3)

Mn
B = 1− K − tB

m
. (4)

Notice that Mn
A > 1 whenever K − tA > m (resp. Mn

B < 0 whenever
K − tB > m). This condition therefore identifies the constellations where
all firms prefer region A (resp. B) to the status quo.

Direct computations using the above expressions indicate that Mn
A <

Mn
B whenever 2K−m > t. When 2K−m < t, no firm prefers the status quo

to locating in at least one region, i.e. we have a covered configuration. For
such configurations it then remains to characterize in which of the regions
A or B will a firm with type x locate. To answer this question we solve
K −mx− tA = K −m(1− x)− tB to obtain:

x̃(tA, tB,K) =
m− tA + tB

2m
(5)

Any firm with type x < x̃ locates in region A whereas firms with types
x >: tildex locate in region B. We have12

M c
A =

m− tA + tB
2m

(6)

M c
B = 1− m− tA + tB

2m
. (7)

It then remains to check for the boundary conditions, i.e. the con-
ditions which ensure that the number of firms locating in each region is
non-negative. Using equation (6) and (7) we obtain:

0 < x̃ < 1 ⇐⇒ −m < tA − tB < m

.

Proposition 1. The equilibrium partition of the firms in stage 3 is defined
as follows:

10Notice that under (A1), our model is formally equivalent to the generic Hotelling
model with linear transportation costsd and endogenous market coverage.

11The upperscript n denotes the non-covered configuration.
12The upperscript c denotes covered configurations.
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• Whenever 2K−m ≥ tA+tB a non-covered configuration prevails. The

number of firms locating in region A is given by max
{
0,min

{
1,Mn

A

}}
.

The number of firms locating in region B is given by max
{
0,min

{
1,Mn

B

}}
.

• Whenever 2K −m < tA + tB, a covered configuration prevails. The

number of firms locating in region A is given by max
{
0,min

{
1,M c

A

}}
.

The number of firms locating in region B is given by max
{
0,min

{
1,M c

B

}}
.

Figure 1 illustrates Proposition 1 by partitioning the (tA, tB) space ac-
cording to the firms’ optimal choices.

Insert figure 1 about here

We may restrict attention to the sub-domain where ti ≤ K. Indeed,
ti > K is clearly a dominated strategy. There are then 4 areas of interest.
In Area I, each region benefits from a local monopoly: regions are not
competition among themselves but each are separately competing with the
status quo option. In Area IIA, they are truly competing with each other.
In Area IIC and IIB, tax differentials are so large that only one region
attracts all the firms.

• We are now equipped to solve for the second stage of the game where
regions compete in taxes.

In order to simplify the exposition, let us first neglect the wage bill
component of the Regions’ objective function13 so that we are left, in stage
2, with two regions wishing to maximize tax revenues.14.

Figure 1 provides a useful benchmark to understand the nature of tax
competition in this game. In Area I, region’s payoffs are independent. We
may then characterize a region’s optimal behaviour by maximizing tAMn

A

over tA. We obtain

tnA = tnB =
K

2
(8)

The corresponding partition of firms is given by Mn
A = K

2m and Mn
B =

1 − K
2m . This solution is feasible if only we are indeed located in Area I.

Solving 2K −m < tnA + tnB we obtain the necessary and sufficient condition

K < m. (C1)
13We discuss the implication of this assumption in the last section of the paper.
14Recall that since we do not consider for the moment any explicit budget constraint,

infrastructure expenses made in stage 1 are totally irrelevant in stage 2, i.e. they are
pure sunk costs.
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Turning to Area II we note that there cannot be an equilibrium in area
IIB or IIC. Indeed, in these areas, one region enjoys a zero payoff since no
firm locates in the region15 On the other hand, it is always possible for this
firm to name a lower tax, that leads to Area IIA where its payoff is positive.
Accordingly, we concentrate on the payoffs in Area IIA. Observe that these
payoffs are now interdependent through the definition of x̃(tA, tB). We solve
for a Nash equilibrium. Maximizing tiM

c
i over ti, we obtain the following

specification for regions’ best reply functions:

ϕi(tj) =
m + tj

2
(9)

Straightforward computations lead to the following characterization of Nash
equilibrium taxes:

tcA = tcB = m (10)

All firms on the left of type x = 1
2 locate in region A whereas the com-

plement locates in region B. It then remains to verify that this solution is
indeed defined in Area IIA. To this end we check that 2K −m > tcA + tcB.
We obtain the necessary and sufficient condition

K ≥ 3m

2
. (C2)

Combining C1 (the feasibility condition for the non-covered interior
equilibrium with that of the interior covered equilibrium (C2), we observe
that none of them is satisfied in the sub-domain k ∈ [m, 3m

2 ]. In such cases,
a continuum of corner solutions exists. It is defined by:

tcor
b ∈ [min

{K

2
,
4K

3
−m

}
, 2K −m− t−A] (11)

with t−A = min
{

K
2 , 4K

3 − m
}
. We do not develop the characterization of

these corner solutions. The intutition underlying their existence is best
summarized referring to figure 2.

Inser Figure 2 about here

For intermediate values of K relative to m, each region’s best reply
consiste of three segments: first there is the segment ϕi, up to the frontier
between Area I and II. Then there is the frontier itself, down to tni then
tni . Corner solutions are thus located along the frontier.

We may now summarize the characterization of equilibrium tax rates
as a function of the values of K, that result from first stage choices.

15One could think here of a variant of the modelwhere the payoffs in these areas might
be positive, and increasing in the number of firms located in the other region. This
could be the case with a spillover effect. Typicallly, attracting firms might require a tax
decreases which may not compensate for the gain.
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Proposition 2a. Nash equilibrium tax rates in stage 2 are given by:

• tcA = tcB = m whenever K ≥ 3m
2

• (tcor
A , tcor

B ) whenever K ∈ [m, 3m
2 ]

• tnA = tnB = K
2 whenever K ≤ m.

• Using the above proposition, we analyze now the first stage of the
game where region choose infrastructure levels.

In order to capture the idea that the regions’ respective infrastructure
are public goods, we simply assume that the aggregate level K is defined by
the addition of regional infrastructure levels. Stated differently, we assume
K = KA + KB. In the first stage of the game, regions are assumed to
choose (KA,KB) simultaneously and non-cooperatively.

Insert Figure 3 about here

Figure 3 partitions the strategy space according to the nature of tax
equilibrium that will follow the corresponding infrastructure choices. There
are obviously three areas of interests. A key feature of Area a is that regions’
payoffs in the tax game do not depend on infrastructure levels. Accordingly,
even when infrastructures are almost not costly , no (KA,KB) pair in the
interior of Area a can be part of a subgame perfect equilibrium. In Area
b, the corner solution prevails. It is again easy to show that no subgame
perfect equilibrium can exist in this Area.16.

The following Proposition summarizes the previous finding.

Proposition 3. When the infrastructure is a public good, there exists no
SPE involving KA + KB > m.

We are thus left with candidates SPE in the interior or at the frontier
of Area c. Suppose that infrastructure costs are zero, then we cannot have
an equilibrium in the interior of Area c. Since only the aggregate level
matters, each region is willing to complement the other’s investment up
to Ki = m − Kj . Accordingly, we expect to end up with a continuum
of subgame perfect equilibria characterized by K∗

A + K∗
B = m whenever

infrastructure costs are low enough. Notice that the marginal value of
investing in infrastructure is constant and in particular does not depend on
the possible difference KA−KB. Accordingly, regarding investment levels,
each region is actually willing to invest up to the level of infrastructure it
would invest for itself, should it be alone.

16Notice that we face here an additional problem: the existence of mutliple equilibria
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In Area c region A’s payoff in stage 2 is given by K2

4m . The marginal
benefit of increasing K is therefore given by K

2m . Denoting the cost of
investing up to an infrastructure level Ki by C(Ki), the optimal level of
infrastructure in the aggregate is the level for which K

2m = ∂c
∂K . Let us

denote this level by K∗ < m. Then, we may claim that against any KB <
K∗ region A will complement region B’s investment in order to ensure that
KA + KB = m as long as KA < k∗. It follows that equilibrium in the first
stage can be summarized as follows:

Proposition 4. When infrastructure is a pure public good, there exists
a continuum of SPE with the following features: any pair (KA,KB) such
that KA + KB = m and Ki ≤ K∗ for i = A,B is part of an equilibrium.
In the ensuing subgame, regions announce the equilibrium taxes tnA = tnB.
All the firms are attracted in country C and each region hosts half of the
firms.

This Proposition may seem surprising. Indeed, it essentially states that
in a SPE, i.e. when regions behave non-cooperatively, they jointly invest
so as to acheive the efficient level of infrastructure. This is especiallly sur-
prising if one recalls that the infrastrcuture is a public good. In such cases
indeed, it is traditionally accepted that under-investment should prevail
ina Nash equilibrium. Should we conclude that in the present framework,
players manage to get rid of the free-riding problem that occurs when con-
tributing to a public good? The answer is no. The problem regions face here
can be summarized as follows: If they choose infrastructure simultaneously,
the realization is likely to be ”too much” or ”too few” investment, which in
both cases are problematic. Either because too few firms are attracted in
the region or because too much money is spent on attracting them. How-
ever, from a individual viewpoint, the marginal value of complementing the
other’s investment is only related to the number of firms that will end up
in the specific region. Thus given that the other has invested too little, i.e.
some firm would not be attracted, it is a best response to contribute up to
the required joint level. Actually the free-riding issue is at work. Indeed, in
order to avoid inefficient realization of the equilibrium, regions could play
in sequence. But then a very clear first mover advantage appears. If it can
indeed commit not to revise his decision, the first mover will invest only
m−K∗ because it is then a best reply for the follower to contribute for the
remaining. Thus, free-riding will take the form of competing for leadership.
If they both act as leaders, only 2(m−K∗) is invested.
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3.2 The Private Good Case

The previous analysis has been performed under the assumption that in-
frastructures developed in some region was equally beneficial to any firm
locating in the country. In other words, the benefits of the infrastructure
spilled over throughout the whole country. We now turn to the case where
these regional investments benefit to the firms if and only if they locate
within the region. In other words, access to the infrastrcture can be denied
on a location basis. Infrastructure can then be viewed as a local private
good: a firm ”buys” the good by locating in the corresponding region. In
this context, investing in infrastructure increases the attractivness of coun-
try C only to the extent that firms are willing to locate in the region that
initiates the investment.

We shall not develop the analysis of the three stage game in full details.
Indeed, the formal derivation is similar to that developed in the previous
subsection. Rather, we focus on the key differences that emerge in the game
when we switch from the public good infrastructure to a private good one.

The key difference between the two approaches is simple to understand:
because they are exclusive attributes of each region, infrastructure levels
now affect the relative attractivness of a region (i.e. in comparison to the
contiguous one) in addition to its absolute attractivness (which refers the
comparison with the status quo).

Firms now compare KA−mx− tA, KB −m(1− x)− tB and the status
quo (which we normalize again to zero). Focusing on the last stage of the
game, we may adapt Figure 1 to depict the possible distribution of the
firms on the (tA, tB) space. This is done in Figure 4.

Insert Figure 4 about here

With respect to non-covered configurations the structure is essentially
identical to the previous case. However the equation of the frontier between
Are I and II is now given by KA +KB−m = tA + tB. Obviously, different
infrastructure levels induce an asymmetry between regions that will result
in asymmetric market coverage.

The formal specifications of firms’ distribution accross regions is Mn
i =

Ki−ti
m with i = A,B for non-covered configuration. For covered configura-

tions, we may identify the firm which is indifferent between the two regions.
The type of this firm, which we denote by x̃(.) is now equal to

x̃(tA, tB) =
m + KA −KB − (tA − tB)

2m
. (12)

The above equation indicates that when infrastructure are private goods,
they will matter in the covered configurations only to the extent that they
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exhibit different levels.17 This is also materialized by the fact that the
frontiers separating areas IIB and IIc from IIa may not be symmetrically
positioned.18

We may then turn to the analysis of the tax competition game. Optimal
behaviour in non-covered configurations is now directly related to each
regions’ investment levels:

tnA =
KA

2
with corresponding Mn

A =
KA

2m
. (13)

As for covered configurations direct computations yield the following best
reply function:

χi =
tj + m + Ki −Kj

2
. (14)

This expression has to be compared with ϕ in the public good case (see
equation (5)). The comparison illustrates the key difference between the
two models: when infrastructure are purely private goods, investing more
than the other has a strategic value in the tax competition game. Taking
this into account we may characterize Nash equilibrium in the tax game
for covered configuration. Last, checking the interiority conditions for the
above candidate equilibria in their respective domainss we identify again
a domain for (KA,KB) values where the equilibrium consists of a corner
solution, which we denote tcor

i . Summing up we obtain the following propo-
sition, which parallels proposition 2a for the private good case

Proposition 2b. In the private good case, the Nash equilibrium tax rates
in stage 2 is given by:

• tci = m + ki−kj

3 with x̃ = 1
2 + KA−KB

6m whenever KA + KB ≥ 3m

• (tcor
A , tcor

B ) whenever KA + KB ∈ [2m, 3m]

• tni = Ki
2 whenever K ≤ 2m.

Relying on the above proposition, we go backward in the game tree and
analyze the first stage. There are three configurations of interest in the
(KA,KB) space. Either both infrastrcuture levels are small and the un-
covered configuration prevails, or we have a domain of intermediate values
where the ensuing tax game exhibits corner equilibria. Last, for high levels
of Ki, a covered configuration prevails in the ensuing tax game. In order
to study optimal infrastructure choices in each case we assume

C(Ki) =
K2

I

F
, (A2)

17This expression is best understood when compared to equation (5) which applied in
the public good case.

18The frontier between IIa and IIb is for instance given by tA = tB + m + KA −KB
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with F > 0.
Figure5 depicts the relevant somains in the (KA,KB) space.

insert Figure 5 about here

Under non-covered configurations, regions’ equilibrium welfare in stage
2 is equal to K2

A
4m − K2

A
F . This expression is strictly increasing and convex

in the domain where KA > 0 whenever F > 4m. In this case, a region’s
optimal investment decision is to maximize Ki. Otherwise the ptimal in-
vestment is zero. Therefore, whenever F > 4m, the best reply of region i
to any Kj < 2m is Ki = 2m−K − j.

When a corner solution prevails in the tax game, i.e. in the domain
where KA + KB ∈ [2m, 3m], there is a continuum of tax equilibria. In
any of these equilibria, at least one region obtains a payoff which is strictly
increasing in Ki whenever F > 4m. Therefore, this region is better off devi-
ating upwards, to the boundary KA +KB = 3m. Proposition 5 summarizes
our analysis of the two first configurations.

Proposition 5. Suppose investment cost is defined by (A2). Then, in
the private good case, there exist no subgame perfect equilibrium in the
non-covered domain, nor in the interior of the corner solution domain.

Notice that this proposition can be viewed as the exact opposite to
Proposition 3: indeed, it implies that, contrarily to the public good case, a
subgame perfect equilibrium must belong to the sub-domain where covered
configurations prevail in the tax subgames.

Contrarily to the case of a public infrastructure, each region’s payoffs are
dependent on both KA and KB in covered configurations. More precisely, a
region’s equilibrium gross welfare, i.e. neglecting investment costs, is given
by:

(m +
Ki −Kj

3
)(

1
2

+
Ki −Kj

6m
) (15)

This expression is clearly convex in Ki and reaches a minimum for
Ki = 3m −Kj , i.e. precisely along the lower bound of the domain where
covered configurations prevail. Accordingly, as far as tax revenues are con-
cerned, regions are always willing to increase Ki in the covered configuration
domain. The upper limit to investments should come from costs. Using
equation (15), we express a region’s net welfare as:

W ∗
i (Ki,Kj) = (m +

Ki −Kj

3
)(

1
2

+
Ki −Kj

6m
)− K2

i

F
(16)
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This expression is globally concave whenever F < 18m19. In this domain,
region i’s best reply in the first stage is given by:

Ki(Kj) = (3m−Kj)
F

18m− F
(17)

Straigthforward algebra yields the subgame perfect equilibrium candidate:

K∗
A = K∗

B =
F

6
. (18)

It then remains to check for interiority conditions, i.e. K∗
A + K∗

B ≥ 3m.
This condition is satisfied whenever F ≥ 9m. We have thus establish the
following proposition:

Proposition 6. Suppose costs is defined by (A2) and infrastructure are
private goods. Then, whenever F ∈ [9m, 18,m], there exists a unique
symmetric subgame perfect equilibrium. In this equilibrium, regions invest
in infrastructure up to K∗

A = K∗
B = F

6 ; equilibrium taxes are t∗A = t∗B = m
and each region hosts half of the firms.

Proposition 6 Should be contrasted with Proposition 4. It show sin-
deed that for a non-trivial domain of the parameters, where investments
costs take intermediate levels, the non-cooperative behaviour of the region
induces too much investments. Indeed, part the amount invested is striclty
unvaluable to the regions (although it increases firms’s rent).

4 Comments and Extensions

In this section, we discuss some obvious limitations of the present model as
well as possible extensions. Last, we identify the scope for regional coop-
eration as it is revealed by the outcome of the non-cooperative behaviour
of the regional governments.

4.1 Budget Constraints

The analysis has been performed without any explcit budget constraint. As
already mentioned, we assumed that public funds were costly since expenses
or lost taxes affect a region’s welfare negatively. However, in reality, local or
local public authorities may face binding constraint, for instance because
the constitution does not allow for too large a deficit, or imposes strict
budget balances. A possibly important implication of such constitutional
aspects is that regions may actually be heterogeneous with respect to fiscal
issues.

19Should F ≥ 18m the function would be convex and the game has no solution.
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One easy way to introduce such an asymmetry in the model is to put
some explicit weight λi in the objective function of each region, in order
to reflect the fact that the cost of public funds differ, depending on each
region’s fiscal global balance. As long as the λi is assumed to be constant,
our results will not be qualitatively affected. However, assuming that λi

depends on the budget balance as it results from the model (i.e. λi is a
function of Ki and ti) severely complicate the picture. The following limit
case may provide some intuition about the nature of the problem at stake
here.

Suppose that infrastructure investments must be financed ”within the
model”, i.e. we assume that at the beginning of the game, regions are
already budget constrained while the constitution imposes strict budget
balance. Thus, any investment aimed at attracting firms must be financed
by the tax levied on the incoming firms. This obviously affects the rule of
the game since any investment committed to in period 1 fixes a lower bound
on the minimum tax revenue a region must secure in stage 2. Moreover,
tax revenues of a region depends on the tax pair (tA, tB), and not only on
this region’s actions. We plan to pursue the analysis of such situations in
future research.

4.2 Reducing Firms’ Matching Costs

Up to now we have considered the case where regional infrastructure aimed
at decreasing sunk costs uniformly accross firms. However, it seems reason-
able to assume that depending on their specific type, firms value regional
policies differently. This is for instance the case of training programs aimed
at matching workers’ qualifications to the firms requirements. The actual
value of such a program is typically dependent on the firms’ types. To what
extent do the implications of such policies differ from those emphasized in
the case of Ki infrastructure?

In our model, such policies can be captured by assuming that they
decrease m. A region is more likely to host some given firm if it commits
to take part of its matching cost in charge. Formally, we alter our basic
model as follows:

• First we define matching costs mA(x) = 1−x
qA

and mBx = 1−x
qB

• In the public good case, we assume qA = qB = qC whereas for the
private good case, each region is characterized by its specific qi

• Then we solve the model using the same methodology than in the
previous section.
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The analytical developments have been relegated to the appendix. The
analysis reveals contrarily to the case where investments affect Ki, the fact
that infrastructure are private goods is not sufficient to remove the multi-
plicity of subgame perfect equilibria. Actually, when investments are aimed
at decreasing mi regions always end up on the frontier which separates non-
covered configurations from covered ones. The intuition for this result is
to be found in the strategic value of the infrastructure investment. As long
as we consider non-covered configurations, the strategic value of Ki and
qi is strictly positive, irrespective on the public or private good nature of
the infrastructure. However, for covered configurations, this is no longer
true. Looking at Proposition 2b, we observe that Ki alters positively the
level of t∗i as well as the number of firms actuallly attracted in region i
in equilibrium. In other words, the strategic value of Ki is positive. By
contrast, looking at Proposition A1 or equation (a18) in the appendix, we
observe that larger qi decrease equilibrium taxes. Therefore, in the public
good case, investing beyond the level that ensures coverage is clearly pur-
poseless. In the private good case, increasing qi decreases t∗i but increases
the number of firms attracted in region i. However, in equilibrium, the neg-
ative tax effect dominates. Again, investing beyond the coverage treshold
is not profitable.

Both types of infrastructure make regions more attractive to firms.
However, they have very different implications for the tax competition game
in a covered configuration. Essentially, improving matching can be viewed
as making firms more mobile from one region to the other. This has the
unhappy consequence of reinforcing tax competition, so that in equilibrium,
tax levels are lower.

4.3 Scope for Cooperation

As mentioned in the introduction, a key feature of the regional competition
we envisage in this paper is that competition takes place between contigu-
ous regions. Within our model this is marked first in the fact that regions
face firms with the same status quo option. This assumption was meant to
capture the idea that firms put our two regions ”on a par”, expect for taxes
(when they differ) and/or infrastructure. More importantly, regions’ conti-
guity translates into the public nature of infrastructure decisions. Indeed,
if regions are truly contiguous, physical location in region A rather than B
does not actually matter as far as spatial externalities are concerned. This
is exactly what happens when infrastructure is public.

Regions are in a co-opetition context (see Brandenburger and Nalebuff
(1996) for a non formal treatment of co-opetition theory.). Because of their
contiguity, the spatial externalities are magnified when the country has a
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whole becomes larger. Thus, as far as the total number of firms to attract
is concerned, regions share a common interest: it is best for both to attract
as many firm as possible. Still, they might compete for the associated fiscal
revenues. Intuition suggests that regions should at least cooperate as far as
infrastructures are concerned, even if they do not manage to refrain from
competing in taxes. In the present model we have considered a purely non-
cooperative context. This allows us now to identify more clearly the scope
and necessity of cooperation. More precisely, it turns out that the interest
of cooperation, and the problem it involves differ according to the type of
infrastructure.

Essentially, Proposition 4 reveals that when the infrastructure has the
attribute of a public good, reaching the efficient level from the point of view
of regions (i.e. the minimum level ensuring that all firms move to the coun-
try, given the ensuing tax game) may result from equilibrium behaviour.
However, the mutliplicity of SPE is problematic. In this context, the scope
for cooperation comes from the benefits of coordination: once an equilib-
rium is selected, it is self-enforcing. Of course, coordination is not that
easy because all equilibria are Pareto efficient. Therefore, the key issue for
regional governments in the present context is to allow for bargaining and
communication. In this respect, the rules of the game, i.e. the institutional
framework, is likely to be determinant in enhancing cooperation.

By contrast, the case of a private good infrastructure calls for a very
different form of cooperation. Indeed, it follows from Proposition 6 that
unless infrastructure are very high, regions will overinvest ininfrastructure
in a SPE. They are actually caught in a prisoner’s dilemma where they both
end up investing in a totally unproductive manner. A cooperative solution
in this case is apt to improve regions’ welfare but is not self-enforcing. If
regions wish to implement this solution, it is crucial that they can make
credible commitments on the cooperative actions. This requires additional
cooperation in the design of institutional rules.
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5 Appendix: Matching Infrastructure

• The Public Good Case20

Under the assumption that infrastructure is a pure public good, it is
only the aggregate infrastructure qC = qA + qB that matters for the firms.
The third stage of the game is then solved as follows.

Given (qA, qB, tA, tB), each firms compares

{K − x

qC
− tA,K − 1− x

qC
− tB, π}

It decides on its location by maximizing profits.
Let us first identify the potential market share of region A. The po-

tential market is defined by the subset of firms who prefers to locate in
region A than to stay abroad. To this end, we identify the type xA which
by definition obtains the same profit in the two alternatives. Formally, we
solve K − x

qC
− tA = π for x and obtain

xA = (K − π − tA)qC (a1)

The potential market of region A is then defined by the interval [0, xA].
Under our normalizations, this implies that this potential market consists
of xA firms.

Solving K − x
qC
− tB = π for x we obtain

xB = qC(K − π − tB) (a2)

The potential market of region B is then defined by the interval [xB, 1], in
which there are thus 1− xB firms.

Assuming that firms are willing to move to country C, either in region
A or B, we identify the firm which is indifferent between locating in any
of the two regions. We denote this indifferent firm by x̃. By definition x̃
solves

K − x

qC
− tA = K − 1− x

qC
− tB

Accordingly, we obtain:

x̃(tA, tB, qC) =
1
2

+
qC(tB − tA)

2
(a3).

Clearly enough, the number of firms locating in region A is given by x̃(.)
whereas the corresponding number going to region B is 1− x̃(.)

20In the appendix, we do not normalize π to zero and we keep the wage bill component
in the regions’ objective functions.
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Using equations (1), (2) and (3), we may partition the tax space ac-
cording to the distributions of firms between the two regions and ”abroad”.
Using equation (1), we first observe that for region A to attract the firm
located at 0, we need tA ≤ K − π = t+A. Obviously, t+A defines the uppper
bound of region A relevant strategy space. On the other hand, whenever
tA < K − π− 1

qC
= t−A, the potential market of region A coincides with the

whole interval. A symmetric analysis for region B defines (t+B, t−B).
Second, we may partition the strategy space according to whether all

firms choose to locate in area C, irrespective of whether they locate in A,
or B, or some of them stay ”abroad”. To this end, we simply have to
compare xA and 1− xB. Whenever xA < 1− xB, potential markets do not
overlap. Accordingly, all of the firms located in [xA, 1 − xB] stay abroad
(a non-covered configuration). On the other hand, whenever xA ≥ 1− xB

potential markets overlap. In this case, no firm stays ”abroad”. Notice
that it is only when potential market overlap that we regions will compete
for firms’ location in a well-defined sense (a covered confiuguration).

Solving xA = xB, we obtain the equation of the frontier between covered
and uncovered configurations:

tA + tB = 2(K − π)− 1
qC

(a4)

.
Suppose then that (tA, tB) are low enough to ensure a covered configu-

ration. Markets shares are then defined by x̃(tA, tB) provided it belongs to
[0, 1]. Indeed, should tA be low enough relative to tB, even the firm with
type x = 1 could prefer to locate in region A: the larger matching cost be-
ing more than compensated by a lower tax. Formally, we may thus identify
the tax differentials which are compatible with a true market sharing by
the regions. To this end we solve 0 < x̃(tA, tB) < 1 to obtain

tB −
1
qC

< tA < tB +
1
qC

(a5)

Whenever tB − 1
qC

> tA region A ”preempts” the market whereas the
contrary prevails whenever tA > tB + 1

qC

The resulting partition can be depicted by a Figure which is similar to
Figure 1 in the text.

We are now in a position to analyze the second stage of the game, i.e.
the tax competition stage. In non-covered configurations, each region’s
payoff is independent of the other’s tax. Payoffs functions are defined by

Ui = qC(W + ti)(K − π − ti)

22



with i = A,B and W defining the wage bill in a firm. First order condition
yields the following equilibrium tax candidate, which we denote tmi :

tmi =
K − π −W

2
(a6)

Corresponding market shares are therefore given by

xm
i = (

K − π + W

2
)q (a7)

Equilibrium payoffs are therefore defined by Um
i = qC

(K−π+W )2

4 . Notice
then that for this tax pair to be an equilibrium, it must indeed define an
non-covered configuration, i.e. tmA + tmB ≥ 2(K − π)− 1

qC
must be satisfied.

Direct computations yield the following condition:

qC ≤
1

K − π + W
(a8)

Consider now covered configurations. As before, no region can preemt
the whole set of firms in equilibrium . Thus, thee only configuration of
interest is the configuration where regions share the firms.Regions’ payoffs
are defined as follows:

UA = (W + tA)x̃(tA, tB) ; UB = (W + tB)(1− x̃(tA, tB)) (a9)

First order conditions yield the following best reply functions:

ti =
1

2qC
− W

2
+

tj
2

(a10)

The Nash equilibrium candidate is therefore given by

t∗A = t∗B =
1
qC

−W (a11)

Obviously, the symmetry of the Nash equilibrium candidate implies that re-
gions share the set of firms equally, i.e x̃(tA, tB)∗ = 1

2 . Interiority conditions
for this equilibrium candidate yield the following condition:

t∗A + t∗B ≤ 2(K − π)− 1
qC

⇐⇒ qC ≥
3

2(K − π + W )
(12)

Comparing equation (8a) and (12a), it is immediate to see that there ex-
ists a non-empty parameter constellation in which neither the non-covered
candidate nor the covered one are valid candidates. Indeed we have 1

K−π+W <
3

2(K−π+W ) .
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Whenever q ∈] 1
K−π+W < 3

2(K−π+W ) [, a Nash equilibrium is defined as a
corner solution tA + tb = 2(K −π +W ). Combining the covering condition
with the definition of best replies in the covered configuration, we identify
the upper bound for taxes in the corner solution as t+i = 2(K−π)−W )

3 . Ac-
cordingly, regions’ market shares are defined by (xA, 1 − xA). Notice that
the equilibrium is not unique in this case.

Proposition A1 summarizes our findings regarding the tax competition
game

Proposition A1.

1. case 1: Whenever qC ≥ 3
2(K−π+W ) , there exists a unique equilibrium

in the tax competition game, given by t∗A = t∗B = 1
qC
−W

2. case 2: Whenever qC ∈] 1
K−π+W , 3

2(K−π+W ) [ , there exists a continuum

of equilibria defined by tA + tB = 2(K − π) − 1
qC

with tA, tB ≥
2(K−π)−W

3

3. case 3: Whenever qC ≤ 1
K−π+W , there exists a unique equilibrium

given by tmA = tmB = K−π−W
2 .

With the help of Proposition A1, we now turn to the analysis of the first
stage of the game where regional governments decide on infrastructure.

At this step we assume that infrastructure is not costly. Notice first that
whenever case 1 prevails, regions equilibrium utilities are given U∗

i = 1
2

1
qC

and is thus decreasing in qC . It is therefore immediate to see that no pair
(qA, qB) such that qA + qB > 3

2(K−π+W ) can be part of a subgame perfect
equilibrium. Consider indeed that the contrary prevails. Each of the two
region benefits from a downward deviation to qc = 3

2(K−π+W ) . This result
is not surprising. Since infrastructure is a public good, no region gains
from increasing the level of qC beyond the level which ensures full market
coverage. Indeed, the only impact of such a strategy is to intensify tax
competition, which is detrimental to both firms.

It therefore remains to consider subgame perfect equilibrium candidates
inducing subgames with equilibrium in case 2 or 3. From equation (a1) and
(a2), it is obvious that if infrastructure is not costly, there is no interior
subgame perfect equilibrium inducing a subgame exhibiting a non-covered
configuration in equilibrium.21 Candidate equilibria inducing case 3 sub-
game equilibrium are therefore defined by qA + qB = 1

K−π+W .

21Clearly enough, introducing a cost to infrastructure may alter this conclusion. How-
ever, the general conclusion remains valid: for many parameter constellations, regions
are willing to invest in infrastructure up to levels such that the resulting qC level does
not allow for a tax equilibrium corresponding to case 1.
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We turn then to the analysis of infrastructure choices inducing case 2
equilibria.Note first, there is a multiplicity of equilibria in the tax subgames
and they cannot be pareto ranked. However, region i is better off at the
t−i equilibrium candidate (because, if not at its monopoly equilibrium, it is
closest to it). Take then any other realization among the possible equilibria
and consider the point of view of region A. The utility of region A in such
an equilibrium is given by

U c
a = ((

3
2
(K − π + W )− 1

q
)(

1
q
− K − π + W

2
)

Direct computations show that a necessary and sufficient condition for
∂Uc

A
∂q < 0 is that q > 1

K−π+W . This argument applies whatever the cor-
ner solution equilibrium we select to any of the two regions which does
not enjoy its monopoly payoff in this equilibrium. Therefore, there can-
not be an infrastrcuture equilibrium that would lead us in the interior of
] 1
K−π+W , 3

2(K−π+W ) [
According to the above analysis, we can summarize our results in the

following proposition:

Proposition A2. When the infrastructure is a pure public good, there
exists a continuum of Subgame perfect equilibria defined as follows:

q∗A + q∗B =
1

K − π + W

tmA = tmB =
K − π −W

2
.

•Specific Infrastructures
We consider now the case where infrastructure is purely specific to the

region where the firm locates. Now, infrastructure investment has a strate-
gic value for each region. Suppose indeed that qA > qB, then for tA = tB
region A attracts more firms than region B. In other words, a better in-
frastructure ensures a competitive advantage in the tax competition game.

The basic problem of firm in the third stage of the game is now defined
as choosing the best of the three following alternatives

{K − x

qA
− tA,K − 1− x

qB
− tB, π}

Let us first define the partition of the tax space according to the nature
of firms’ optimal locations. Notice first that the set a firms enjoying a
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positive surplus is region i is defined as follows :

xi = qi(K − π − ti) (a13),

for i = a, b.
Accordingly, all firms choose to locate in one of the two regions (covered

configuration) whenever xA +xB ≥ 1. Solving this expression for tax rates,
we define the frontier between covered and uncovered markets in the tax
space by the following relation:

tAqA + tBqB = (K − π)(qA + qB)− 1 (14)

Notice that the upper bound in the relevant tax domain firm region i
is still given by K − π whereas the tax level ensuring that the potential
market coincides with the full market is given by K − π − 1

qi
.

Let us then assume that regions’ markets overlap. The firm being in-
different between the two regions, which we denote by x̂(tA, tB) solves by
definition

K − π − x

qA
= K − π − 1− x

qB
.

We therefore obtain

x̂(tA, tB) =
qAqB

qA + qB
(

1
qB

= tB − tA). (a15)

It then remains to check for the interiority conditions of market sharing,
i.e. identify the conditions under which x̂(tA, tB) ∈ [0, 1]. Direct computa-
tions yield:

x̂(tA, tB) ≤ 0 ⇐⇒ tA ≥ tB +
1
qB

x̂(tA, tB) ≥ 1 ⇐⇒ tB ≥ tA +
1
qA

We may now characterize the equilibrium distribution of the firms as a
function of the tax pairs. Replicating the analysis of the previous section,
it is immediate to derive Monopoly equilibrium candidates for i = a, b as:

tmi =
K − π −W

2
with xm

i = qi(
K − π + W

2
) (a16)

We may then derive the feasibility condition for such an equilibrium by
using equation (a16). More precisely, we solve tmA qA +tmB qB ≤ (K−π)(qA +
qB) − 1 for qA and obtain the interiority condition for the two regions to
behave as monopolist as:

qA ≤
2

K − π + W
(a17)
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We characterize now a covered market equilibrium configuration. Using
the definition of x̂(tA, tB) and equation (9), we characterize regions’ best
replies as follows:

ti =
tj −W

2
+

1
2qj

; i, j = A,B

Accordingly, the unique Nash equilibrium is given

t∗i =
1

3qi
+

2
3qj

−W (a18)

Notice that markets shares in this equilibrium are defined by

x̂(tA, tB)∗ =
qA + 2qB

3(qA + qB)
(a19)

We now have to check for interiority conditions, i.e. solving

t∗AqA + t∗BqB ≤ (K − π)(qA + qB)− 1 (a20)

This equation can be re-expressed as

q2
A(2− 3ZqB) + qA(qB(5− 3ZqB)) < 0 (a21)

where Z = (K − π + W ).
Solving this expression for qA is not straightforward. However, in the

relevant domain of parameters, we obtain after some algebraic manipula-
tions the following condition:

qA ≥
5− 3qBZ +

√
9− 6qBZ + 9q2

BZ2

−4 + 6Z
= f(qB) (a22)

It is again a matter of computations to show that equations (a17) and
(a22) are mutually exclusive. Accordingly, these two conditions define three
mutually exclusive regions in the (qA, qB) space. Notice also that whenever
neither (a17) nor (a22) hold, the equilibrium is defined as continuum of tax
pairs such that condition (a14) is satisfied, i.e. we have corner equilibria.
These equilibria can be characterized as follows:

tcA = (tcBqB + (K − π)(qA + qB)− 1)
1
qA

(a23)

xc
A = 1− (K − π)qB − tcBqB (a24)

Nash equilibrium in the tax game can thus be summarized through the
following Proposition:
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Proposition A3. Suppose infrastructure are region’s specific, then the
equilibria are given by:

1. Monopoly tax rates as defined by (a16) whenever qA ≤ 2
K−π+W

2. Corner solutions as defined by (a23) whenever qA ∈ [ 2
K−π+W , f(qB)]

3. Duopoly tax rates as defined by (a18) whenever qA ≥ f(qB)

Having characterized tax equilibria, we may now go backward in the
game tree to consider infrastructure choices. Using equations (a19) and
(a20), we define equilibrium utilities in the covered equilibrium configura-
tions as follows:

U∗
i (qi, qj) = (

1
3qi

+
2

3qj
)

qj + 2qi

3(qi + qj)
(a26)

A sufficient condition for ∂Ui
∂qi

< 0 is qi, qj > 0. In other words, whatever
the other regions’ infrastructure, each region’s wishes to minimize its own
infrastructure. Notice that this implies that a pair (qA, qB) such that (a22)
holds with strict inequality cannot be part of a subgame perfect equilibrium.
This result may be surprising at first sight because by increasing qi, this
region will manage to capture a larger share of the firm. However, this turn
out to be very costly in terms of equilibrium tax levels. Accordingly, the
region prefers to keep qi ”small” to relax tax competition.

A similar analysis can be performed in the case of corner solutions,
leading to the same conclusion: a region always wishes to reach the lower
bound of the domain defining corner solutions, whatever the equilibrium
which is selected in the tax game. Accordingly, if a subgame perfect equi-
librium exists it must be located in the domain where monopoly tax rate
equilibria are defined. Using equations (a15), it is immediate to check that
any region’s utility is monotonically increasing in qi within the Monopoly
domain. Accordingly with end up with multiple equilibria that take the
following form:

Proposition A4. When the infrastructure is a pure private good, there
exists a continuum of Subgame perfect equilibria defined as follows:

q∗A + q∗B =
2

K − π + W

tmA = tmB =
K − π −W

2
.

Notice that in any of these subgame perfect equilibria, regions name the
same tax levels. However, they enjoy different market shares depending on
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the levels of their infrastructure. Remark also that we may identify bounds
on the admissible domain of (q∗a, q

∗
B). Specifically, arbitrarily small levels

for qi cannot be part of an interior. Indeed, the market share captured by
firm i in this equilibrium is so small that it will find it profitable to deviate
to a larger qi that would enforce an equilibrium with covered configuratinon
in the ensuing tax subgame.
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