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Abstract 
We investigate the role of manipulation in a model of opinion formation where agents have opinions 
about some common question of interest. Agents repeatedly communicate with their neighbors in the 
social network, can exert some effort to manipulate the trust of others, and update their opinions taking 
weighted averages of neighbors’ opinions. The incentives to manipulate are given by the agents’ 
preferences. We show that manipulation can modify the trust structure and lead to a connected society, 
and thus, make the society reaching a consensus. Manipulation fosters opinion leadership, but the 
manipulated agent may even gain influence on the long-run opinions. In sufficiently homophilic 
societies, manipulation accelerates (slows down) convergence if it decreases (increases) homophily. 
Finally, we investigate the tension between information aggregation and spread of misinformation. We 
find that if the ability of the manipulating agent is weak and the agents underselling (overselling) their 
information gain (lose) overall influence, then manipulation reduces misinformation and agents 
converge jointly to more accurate opinions about some underlying true state. 
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1 Introduction

Individuals often rely on social connections (friends, neighbors and coworkers as well

as political actors and news sources) to form beliefs or opinions on various economic,

political or social issues. Every day individuals make decisions on the basis of these

beliefs. For instance, when an individual goes to the polls, her choice to vote for one

of the candidates is influenced by her friends and peers, her distant and close family

members, and some leaders that she listens to and respects. At the same time, the

support of others is crucial to enforce interests in society. In politics, majorities are

needed to pass laws and in companies, decisions might be taken by a hierarchical

superior. It is therefore advantageous for individuals to increase their influence

on others and to manipulate the way others form their beliefs. This behavior is

often referred to as lobbying and widely observed in society, especially in politics.1

Hence, it is important to understand how beliefs and behaviors evolve over time

when individuals can manipulate the trust of others. Can manipulation enable a

segregated society to reach a consensus about some issue of broad interest? How

long does it take for beliefs to reach consensus when agents can manipulate others?

Can manipulation lead a society of agents who communicate and update naïvely to

more ecient information aggregation?

We consider a model of opinion formation where agents repeatedly communicate

with their neighbors in the social network, can exert some eort to manipulate the

trust of others, and update their opinions taking weighted averages of neighbors’

opinions. At each period, two agents are first selected through some deterministic

manipulation sequence and can exert eort to manipulate the social trust of each

other.2 If one of them provides some costly eort to manipulate the other one,

then the manipulated agent weights relatively more the belief of the agent who is

manipulating her when updating her beliefs. Second, all agents communicate with

their neighbors and update consequently their beliefs using the DeGroot update

rule.3 This updating process is simple. Using her (possibly manipulated) weights,

an agent’s new belief is the weighted average of her neighbors’ beliefs (and possibly

her own belief) from the previous period. When agents have no ability to manip-

1See Gullberg (2008) for lobbying on climate policy in the European Union, and Austen-Smith

and Wright (1994) for lobbying on U.S. Supreme Court nominations.
2Notice that it would be possible to use more general manipulation sequences, especially prob-

abilistic ones, since our main results in Section 4 and Section 5.1-2 will not depend on them.

However, it would, at least quantitatively, aect some of the results, e.g. those on the convergence

in Section 5.3.
3See M.H. DeGroot (1974).
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ulate each other, the model coincides with the classical DeGroot model of opinion

formation.

The DeGroot update rule assumes that agents are boundedly rational, failing

to adjust correctly for repetitions and dependencies in information that they hear

multiple times. Since social networks are often fairly complex, it seems reasonable

to use an approach where agents fail to update beliefs correctly.4 Chandrasekhar

et al. (2012) provide evidence from a framed field experiment that DeGroot rules

of thumb models best describe features of empirical social learning. They run a

unique lab experiment in the field across 19 villages in rural Karnataka (India) to

discriminate between the two leading classes of social learning models — Bayesian

learning models versus DeGroot rules of thumb models. They find evidence that the

DeGroot rule of thumb model better explains the data than the Bayesian learning

model at the network level.5 At the individual level, they find that the DeGroot

rule of thumb model performs much better than Bayesian learning in explaining the

actions of an individual given a history of play.6

Manipulation is modeled as a communicative or interactional practise, where

the manipulating agent exercises some control over the manipulated agent against

her will. In this sense, manipulation is illegitimate (Van Dijk, 2006). Agents only

engage in manipulation if it is worth the eort. That is, agents manipulate if it

brings the opinion of the society — from their point of view — suciently closer to

their own opinion compared to the cost of manipulation. In other words, agents

prefer a society holding beliefs similar to theirs, reflecting the idea that the support

of others is necessary to enforce interests. We use a concrete functional form to

represent these preferences that, in our view, constitutes a natural way to model

lobbying incentives. However, as we will discuss subsequently, our main results will

not depend on these preferences. Broadly speaking, we take lobbying activities as

given in the main part of the paper and attempt to explain its consequences for

society.

4Choi et al. (2012) report an experimental investigation of learning in three-person networks and

find that already in simple three-person networks people fail to account for repeated information.

They argue that the Quantal Response Equilibrium (QRE) model can account for the behavior

observed in the laboratory in a variety of networks and informational settings.
5At the network level (i.e. when the observational unit is the sequence of actions), the Bayesian

learning model explains 62% of the actions taken by individuals while the DeGroot rule of thumb

model explains over 76% of the actions taken by individuals.
6At the individual level (i.e. when the observational unit is the action of an individual given a

history), the DeGroot rule of thumb model explains nearly 87% of the actions taken by individuals

given a history.
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We nevertheless first analyze the decision problem of an agent having the pos-

sibility to exert eort and having preferences for manipulation as described above.

We find necessary and sucient conditions for manipulation and show that agents

can have too much ability to manipulate in some situations, that is they would be

better o with less ability. Second, we show that manipulation can modify the trust

structure. If the society is split up into several disconnected clusters of agents and

there are also some agents outside these clusters, then the latter agents might con-

nect dierent clusters by manipulating the agents therein. Such an agent, previously

outside any of these clusters, would not only get influential on the agents therein,

but also serve as a bridge and connect them. As we show by example, this can lead

to a connected society, and thus, make the society reaching a consensus.

Third, we show that manipulation fosters opinion leadership in the sense that

the manipulating agent always increases her influence on the long-run beliefs. For

the other agents, this is ambiguous and depends on the social network. Surpris-

ingly, the manipulated agent may thus even gain influence on the long-run opinions.

Fourth, we provide examples showing that manipulation can accelerate or slow down

convergence. In particular, in suciently homophilic societies, i.e. societies where

agents tend to trust those agents who are similar to them, and for reasonable abil-

ities to manipulate, manipulation accelerates convergence if it decreases homophily

and otherwise it slows down convergence.

Furthermore, we show that a definitive trust structure evolves in the society and

in each of the disconnected clusters manipulation comes to an end and they reach a

consensus (under some weak regularity condition). At some point, opinions become

too similar to be manipulated. Finally, we investigate the tension between informa-

tion aggregation and spread of misinformation. We find that if the ability of the

manipulating agent is weak and the agents underselling their information gain and

those overselling their information lose overall influence, then manipulation reduces

misinformation and agents converge jointly to more accurate opinions about some

underlying true state. In particular, this means that an agent that has substantial

ability to manipulate can severely harm information aggregation.

Notice that our results on the trust structure,7 on opinion leadership, on the

speed of convergence and on the spread of misinformation do not depend on the

preferences for manipulation. Furthermore, our result that manipulation comes to

an end, eventually, only requires that agents do not manipulate if (their beliefs

about) the beliefs of others are very close to their beliefs.

There is a large and growing literature on learning in social networks. Models

7Except for Proposition 2 (i).
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of social learning either use a Bayesian perspective or exploit some plausible rule of

thumb behavior.8 We consider a model of non-Bayesian learning over a social net-

work closely related to DeGroot (1974), DeMarzo et al. (2003), Golub and Jackson

(2010) and Acemoglu et al. (2010). DeMarzo et al. (2003) consider a DeGroot rule

of thumb model of opinion formation and they show that persuasion bias aects

the long-run process of social opinion formation because agents fail to account for

the repetition of information propagating through the network. Golub and Jackson

(2010) study learning in an environment where agents receive independent noisy sig-

nals about the true state and then repeatedly communicate with each other. They

find that all opinions in a large society converge to the truth if and only if the in-

fluence of the most influential agent vanishes as the society grows.9 Acemoglu et al.

(2010) investigate the tension between information aggregation and spread of misin-

formation. They characterize how the presence of forceful agents aects information

aggregation. Forceful agents influence the beliefs of the other agents they meet, but

do not change their own opinions. Under the assumption that even forceful agents

obtain some information from others, they show that all beliefs converge to a sto-

chastic consensus. They quantify the extent of misinformation by providing bounds

on the gap between the consensus value and the benchmark without forceful agents

where there is ecient information aggregation.10 Friedkin (1991) studies measures

to identify opinion leaders in a model related to DeGroot. Recently, Buechel et al.

(2012) develop a model of opinion formation where agents may state an opinion

that diers from their true opinion because agents have preferences for conformity.

They find that lower conformity fosters opinion leadership. In addition, the society

becomes wiser if agents who are well informed are less conform, while uninformed

agents conform more with their neighbors.

We go further by allowing agents to manipulate the trust of others and we find

that the implications of manipulation are non negligible for reaching a consensus,

aggregating dispersed information and accelerating convergence to a consensus.

The paper is organized as follows. In Section 2 we introduce the model of opinion

8Acemoglu et al. (2011) develop a model of Bayesian learning over general social networks, and

Acemoglu and Ozdaglar (2011) provide an overview of recent research on opinion dynamics and

learning in social networks.
9Golub and Jackson (2012) examine how the speed of learning and best-response processes

depend on homophily. They find that convergence to a consensus is slowed by the presence of

homophily but is not influenced by network density.
10In contrast to the averaging model, Acemoglu et al. (2010) have a model of pairwise interac-

tions. Without forceful agents, if a pair meets two periods in a row, then in the second meeting

there is no information to exchange and no change in beliefs takes place.
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formation. In Section 3 we analyze the decision to manipulate or not. In Section 4

we show how manipulation can change the trust in society. In Section 5 we look at

the long-run eects of manipulation. In Section 6 we investigate how manipulation

aects the extent of misinformation in society. In Section 7 we conclude.

2 The Model

Let N = {1, . . . , n} be the set of agents who have to take a decision on some issue
and repeatedly communicate with their neighbors in the social network. Each agent

i  N has an initial opinion or belief xi(0)  R about the issue and an initial vector
of social trust mi(0) = [mi1(0), . . . ,min(0)] with 0  mij(0)  1 for all j  N and


jN mij(0) = 1, where mij(0) is the initial trust of agent i in agent j. For i = j,

mii(0) can be interpreted as how much agent i is confident in her own initial opinion.

Let ij  0 denote the ability of agent i  N to manipulate agent j  N , j = i.
At each period t  N, two agents are first selected through some deterministic

manipulation sequence and can exert eort to manipulate the social trust of each

other. Then, all agents communicate with their neighbors and update their beliefs.

The agents’ beliefs are represented by the vector x(t) = [x1(t), . . . , xn(t)]
  Rn

and their social trust by the matrix M(t) = [mij(t)]i,jN .11 Given the vector of

opinions x(t) at period t, a pair of agents is picked according to some given sequence

E = (Et)

t=0, Et  {E  2N | |E| = 2}, and both agents have the possibility to

manipulate each other in order to modify the trust of the other agent.12 We write

for simplicity Et = ij whenever Et = {i, j}. We assume that each agent i  N holds

some belief about her future trust (BT) in the next period t + 1, denote mi(t + 1),

and equal to

mi(t+ 1) = mi(t).

Thus, agents do not take into account the fact that the way they trust others might

be manipulated. Hence, agent i’s belief about her future opinion (BO), xi(t+ 1), is
given by

xi(t+ 1) = mi(t+ 1)x(t) = mi(t)x(t).

At each period t  N, each agent i  Et decides whether to exert eort on the

other agent j  Et\{i} or not, eij(t)  {0, 1} ("no"/"yes"), according to her utility

11We denote the transpose of a vector (matrix) x by x.
12Most of our results are robust to more general manipulation sequences, e.g. probabilistic

sequences, especially our main results in Section 4 and Section 5.1-2. We mainly chose these

manipulation sequences to keep the analysis in Section 2 tractable.
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function

uti(eij(t)) = [xi(t) si(t+ 1; eij(t))]
2  ieij(t),

where i > 0 is the cost for manipulating the other agent and si(t+1; eij(t)) is agent

i’s belief about society’s future opinion (BS), with

si(t+ 1; eij(t)) =


kN

mik(t+ 1)xk(t+ 1).

So, agent i evaluates her BS using her BT. That is, she views the society’s opinion

as a weighted average of the opinions of the agents she is trusting, and she wants

her BS close to her opinion. Thus, the trade-o for agent i is between the reduction

of the gap between her opinion and society’s opinion due to manipulation on the

one hand and the costs of manipulation i on the other hand. Note that — as we

will see later on — xj(t + 1) depends on eij(t) and that her beliefs about the future

opinions of other agents are correct.13 The decision of agent i leads to the following

updated trust weights of agent j:

mjk(t+ 1) =


mjk(t)/ (1 + ijeij(t)) if k = i
(mjk(t) + ijeij(t)) / (1 + ijeij(t)) if k = i

.

If agent i manipulates agent j (eij(t) = 1), then j’s trust in i increases according to

i’s ability to manipulate j (ij) and all trust weights of j are normalized. Otherwise

(eij(t) = 0), the trust matrix does not change. Secondly, using the updated trust

weights, the agents update their opinions:

x(t+ 1) =M(t+ 1)x(t).

From this equation it is clear that, given j  Et, xj(t + 1) depends on eij(t) since
mj(t+ 1) does so. We can rewrite this equation as x(t+ 1) =M(t+ 1)x(0), where

M(t+ 1) =M(t+ 1)M(t) · · ·M(1) denotes the overall trust matrix.

Remark 1. If no agent has any ability to manipulate, ij = 0 for all i, j  N , i = j,
then our model reverts to the classical model of DeGroot (1974).

We now introduce the notion of consensus. For G  N , we denote by x(t)|G =
(xi(t))iG the restriction of x(t) to agents in G. Whether or not a consensus is

reached in the limit depends generally on the initial opinions.

Definition 1. We say that a group of agents G  N reaches a consensus given

initial opinions (xi(0))iN , if there exists x()|G  R such that

lim
t

xi(t) = x()|G for all i  G.

13Most of our results do not depend on these preferences, especially our main results in Section

4 and Section 5.1-2. They are mainly used for the analysis in Section 2 and in examples.

6



3 The Decision Problem

We study the decision problem that an agent faces when she has the opportunity to

manipulate another agent. First, we derive a necessary and sucient condition for

an agent to exert eort.

Proposition 1. Suppose that Et = ij at period t. Then, agent i manipulates agent
j if and only if

fij(x(t),M(t),ij) :=
ij

(1 + ij)2
mij(t) [xi(t) xj(t+ 1)] ·


(1 + ij) [xi(t) si(t+ 1; 0)]

ij
2
mij(t) [xi(t) xj(t+ 1)]



i
2
.

All proofs can be found in the appendix. Broadly speaking, the first part of fij
reflects that on the one hand, an increasing dierence between agent i’s opinion and

agent j’s BO, i.e. j’s future opinion in case i abstains from manipulation, fosters

manipulation. On the other hand, its last part reflects that if this dierence becomes

too large relative to the dierence between agent i’s opinion and her BS given she

does not manipulate (denoted by BS|0), then i will not manipulate. In this case, j’s
opinion is not important enough for i.

From Proposition 1 we can draw some intuition about the behavior of agents.

Indeed, we are able to find necessary and sucient conditions for manipulation and

we provide a condition under which more ability is beneficial for the manipulator.

Corollary 1. Suppose that Et = ij at period t.

(i) The following conditions are necessary for agent i manipulating agent j :

(a) ij > 0,

(b) mij(t) > 0,

(c) xi(t) = xj(t+ 1), and, in particular, mji(t) < 1,

(d) sgn(xi(t) xj(t+ 1)) = sgn(xi(t) si(t+ 1; 0)).14

(ii) If ij,mij(t) > 0, then agent i manipulates agent j if

(a) sgn(xi(t) xj(t+ 1)) = sgn(xi(t) si(t+ 1; 0)) and
14For a real number x  R, the operator sgn(x) denotes the sign of x, with sgn(x) = 1 if x > 0,

sgn(x) = 1 if x < 0 and sgn(x) = 0 if x = 0.
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(b)

|xi(t) si(t+ 1; 0)|  |xi(t) xj(t+ 1)|

 (1 + ij)

i/[ijmij(t)(2 + ij(2mij(t)))].

(iii) fij is strictly increasing in ij if and only if

(a) mij(t) > 0,

(b) sgn(xi(t) xj(t+ 1)) = sgn(xi(t) si(t+ 1; 0)) = 0, and

(c) |xi(t) si(t+ 1; 0)| > |xi(t) xj(t+ 1)| · ijmij(t)/(1 + ij).

We now interpret Corollary 1. Part (i) first says that ability to manipulate

is necessary for manipulation. Second, agent i abstains from manipulation if she

does not trust agent j at all, the reason is that in this case j is not part of i’s

society. Third, if agent i’s opinion coincides with agent j’s BO, then it follows that

xi(t) = xj(t+1) = xj(t+1) in case i abstains from manipulation. That is, j’s future
opinion and i’s opinion coincide, and thus she has no incentives to manipulate. In

particular, this is the case when j already trusts solely i. Fourth, agent i does not

manipulate agent j if j’s BO and i’s BS|0 do not dier from i’s opinion in the same
direction. In other words, i does not manipulate j if her opinion lies between j’s BO

and i’s BS|0. In this situation, manipulating j would even increase the gap between
i’s opinion and society’s opinion.

Part (ii) says that when agent i has some ability to manipulate agent j and trusts

her at least a bit, it is sucient for i to manipulate j that the opinions are such

that j’s BO diers suciently from i’s opinion and additionally i’s BS|0 diers even
more and into the same direction from her opinion. Hence, j’s BO lies between i’s

opinion and i’s BS|0.
We could expect that a higher ability to manipulate would foster manipulation.

However, part (iii) shows that this is the case if and only if the necessary conditions

in part (i) (apart from ij > 0) are satisfied15 and furthermore, j’s BO diers not

much more from i’s opinion than i’s BS|0. Thus, a higher ability to manipulate
can hinder manipulation in situations where j’s BO diers from i’s opinion a lot

more than i’s BS|0. The reason is that in such situations, there is an optimal ability
to manipulate that perfectly aligns i’s opinion and her belief about society’s future

opinion given she manipulates, i.e. the first part of i’s utility function vanishes.

15Note that sgn(xi(t) xj(t+1)) = sgn(xi(t) si(t+1; 0)) = 0 if and only if xi(t) = xj(t+1)
sgn(xi(t) xj(t+ 1)) = sgn(xi(t) si(t+ 1; 0)).
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Beyond this level of ability, agent i somehow manipulates too much and it leads to

a worse outcome for her.

We illustrate our findings with the following example of a three-agent society.

Example 1 (Three-agent society). Consider N = {1, 2, 3} and i = 1/10 for all

i  N . We assume that only agent 1 and 3 can manipulate: E = (13, 13, . . .), where
13 = 3/4 and 31 = 1/2. Let x(0) = (10, 3, 0) be the vector of initial opinions and

M(0) =




3/5 1/5 1/5

1/10 2/5 1/2

0 3/5 2/5





be the initial trust matrix. First, agent 1 and 3 have the possibility to exert eort

on each other. Since f13(x(0),M(0), 3/4)  3.4 > 1/20 = 1/2, agent 1 decides

to do so, while agent 3 renounces since m31(0) = 0 (see Corollary 1 (i.b)). Thus,

manipulation leads to the updated trust of agent 3,

m3(1) = (3/7, 12/35, 8/35) ,

while the others’ trust does not change,

M(1) =




3/5 1/5 1/5

1/10 2/5 1/2

3/7 12/35 8/35



 .

We get the following updated opinions:

x(1) =M(1)x(0) = (33/5, 11/5, 186/35)  (6.6, 2.2, 5.3) .

However, the classical DeGroot model gives xcl(1) =M(0)x(0) = (33/5, 11/5, 9/5)
 

(6.6, 2.2, 1.8). So, manipulation leads to a significantly dierent opinion of agent 3

at period 1. In addition, by Corollary 1 (iii), agent 1 always gains influence from

having more ability to manipulate since

|x1(0) s1(1; 0)| = 131/25 >
13

1 + 13
· 41/25 =

13m13(0)

1 + 13
|x1(0) x3(1)|

for all 13  0. 

4 The Trust Structure

We now investigate how manipulation can modify the structure of interaction or

trust in society. We first shortly recall some graph-theoretic terminology.16 We call
16See Golub and Jackson (2010).
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a group of agents C  N minimal closed at t if these agents only trust agents inside

the group, i.e.


jCmij(t) = 1 for all i  C, and if this property does not hold for a
proper subset C   C. The set of minimal closed groups at period t is denoted C(t)
and is called the trust structure. A walk at period t of length K  1 is a sequence
of agents i1, i2, . . . , iK such that mik,ik+1(t) > 0 for all k = 1, . . . , K  1. A walk is
simple if iK = il for l = 2, . . . , K  1, and a walk is a path if all agents are distinct.
A cycle is a walk that starts and ends in the same agent. A cycle is simple if only

the starting agent appears twice in the cycle. We say that a minimal closed group

of agents C  C(t) is aperiodic if the greatest common divisor17 of the lengths of
simple cycles involving agents from C is 1.18 Note that this is fulfilled if mii(t) > 0

for some i  C.
At each period t, we can decompose the set of agents N into minimal closed

groups and agents outside these groups, the rest of the world, R(t):

N =


CC(t)

C R(t).

Within minimal closed groups, all agents interact indirectly with each other, i.e.

there is a path between any two agents. We say that the agents are strongly con-

nected. For this reason, minimal closed groups are also called strongly connected

and closed groups, see Golub and Jackson (2010). Moreover, agent i  N is part of

the rest of the world R(t) if and only if there is a path at period t from her to some

agent in a minimal closed group C  i.
We say that a manipulation at period t does not change the trust structure if

C(t + 1) = C(t). It also implies that R(t + 1) = R(t). We find that agents within
a minimal closed group do only manipulate agents that are part of their group

since the others are not part of "their society", a finding that clearly relies on the

preferences for manipulation we are using. Contrary to this, it holds in general

that only agents that are not part of a minimal closed group can change the trust

structure by exerting eort. This happens if these agents exert eort on an agent

within a minimal closed group. Intuitively, it means that the manipulating agent and

possibly others join the group, but it might as well happen that the resulting group

is not any more closed. This is the case if there is a path between the manipulating

agent and some agent in another minimal closed group and it results in the group

of the manipulated agent being disbanded.

17For a set of integers S  N, gcd(S) = max {k  N | m/k  N for all m  S} denotes the great-
est common divisor.
18Note that if one agent in a simple cycle is from a minimal closed group, then so are all.
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Proposition 2. Suppose that Et = ij at period t.

(i) Let agent i  C  C(t). Then, agent j  C is a necessary condition for i

manipulating j, and in this case, the trust structure does not change.

(ii) Let i, j  R(t). Then, agent i manipulating agent j does not change the trust
structure.

(iii) Let i  R(t) and j  C  C(t) and suppose that there exists C   C(t)\{C}
such that there is a path from i to some k  C . Then, agent i manipulating
agent j means disbanding C, i.e. C(t+ 1) = C(t)\{C}.

(iv) Let i  R(t) and j  C  C(t) and suppose that there is no path from i

to k for any k  CC(t)\{C}C . Then, agent i manipulating agent j means
that R  {i} joins C, i.e. C(t + 1) = C(t)\{C}  {C  R  {i}}, where
R = {l  R(t)\{i}| there is a path from i to l}.

The following example shows that manipulation can enable a society to reach a

consensus due to changes in the trust structure.

Example 2 (Consensus due to manipulation). Take N = {1, 2, 3, 4} and i =
1/10 for all i  N . Suppose that agent 4 meets alternately agents 1 and 3:

E = (14, 34, 14, . . .), with 41 = 1/4, 43 = 1/2 and 14,34 > 0. Let x(0) =

(10, 5, 5,5) be the vector of initial opinions and

M(0) =





4/5 1/5 0 0

2/5 3/5 0 0

0 0 1 0

2/5 0 1/5 2/5





be the initial trust matrix. Hence, C(0) = {{1, 2}, {3}} and R(0) = {4}. At period
0, agents 1 and 4 have the possibility to exert eort on each other. By part (i) of

Proposition 2, agent 1 renounces to do so. But, since f41(x(0),M(0), 1/4)  11.5 >
1/20 = 4/2, agent 4 exerts eort. This leads to the updated trust of agent 1,

m1(1) = (16/25, 4/25, 0, 1/5) ,

while the others’ trust does not change, i.e. mi(1) = mi(0) for i = 2, 3, 4, and the

updated opinions become

x(1) =M(1)x(0) = (6.2, 7, 5, 3) .
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Notice that the group of agents 1 and 2 is disbanded (see part (iii) of Proposition 2).

In the next period, agent 3 renounces to exert eort since she is isolated. Regarding

agent 4, the conditions of part (ii) of Corollary 1 are satisfied since s4(2; 0)  5.1

and x3(2) = 5, i.e. she manipulates agent 3. It results in the following updated

trust matrix

M(2) =





16/25 4/25 0 1/5

2/5 3/5 0 0

0 0 2/3 1/3

2/5 0 1/5 2/5




.

Using part (iv) of Proposition 2, we have that N is now minimal closed, which im-

plies that the group will reach a consensus, as we will see later on.

However, if we would start with x(0) = (6, 5, 4, 5) as initial opinions, then there

would be no manipulation at all and thus, the agents would not reach a consen-

sus. Thus, it clearly depends on the initial opinions whether or not agents reach

a consensus. Notice that close opinions at the beginning — relative to the cost of

manipulation — are likely to kill the incentives to exert eort. 

5 The Long-Run Dynamics

We now look at the long-run eects of manipulation. First, we study the conse-

quences of a single manipulation on the long-run opinion of minimal closed groups.

In this context, we are interested in the role of manipulation in opinion leadership.

Secondly, we investigate how manipulation aects the speed of convergence of min-

imal closed groups. Notice that these results will not depend on the preferences for

manipulation nor on the manipulation sequence. Finally, we study the outcome of

the influence process and illustrate our results by means of an example.

5.1 Opinion Leadership

Typically, an agent is called opinion leader if she has substantial influence on the

long-run beliefs of a group. That is, if she is among the most influential agents

in the group. Intuitively, manipulating others should increase her influence on the

long-run beliefs and thus foster opinion leadership.

To investigate this issue, we need a measure for how directly agents trust other

agents. For this purpose, we can make use of results from Markov chain theory.

Let (Xs)

s=0 denote the homogeneous Markov chain corresponding to the transition
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Matrix M(t).19 Then, the mean first passage time from state i  N to state j  N
is defined as E[min{s  N | Xs = j} | X0 = i]. It is the expected time the Markov

chain needs to travel from i to j. In our terminology, the time to travel from i to j

corresponds to the length K  1 of a simple walk i = i1, i2, . . . , iK = j at period t
from i to j, and taking the expectation means weighting the lengths of these walks

with their overall trust K1k=1 mik,ik+1(t). We therefore call this measure mean simple

walk length from i to j. Intuitively, it takes small values if short simple walks have

high overall trust, i.e. if agent i trusts agent j rather directly.

Definition 2. Take i, j  N , i = j. The mean simple walk length at period t from
agent i to agent j is given by

rij(t) = E[min{s  N | Xs = j} | X0 = i],

where (Xs)

s=0 is the homogeneous Markov chain corresponding to M(t).

Let us give some properties of the mean simple walk length.

Remark 2. Take i, j  N , i = j.

(i) rij(t)  1,

(ii) rij(t) < + if and only if there is a path from i to j, and, in particular, if

i, j  C  C(t),

(iii) rij(t) = 1 if and only if mij(t) = 1.

Since calculating the mean simple walk length can be quite demanding using the

definition, let us look at an alternative, implicit formula. Suppose that i, j  C 
C(t) are two distinct agents in a minimal closed group. By part (ii) of Remark 2,
the mean simple walk length is finite for all agents in that group. The simple walk

from i to j with length 1 has overall trust mij(t) and if it passes through k first, it

has mean length rkj(t) + 1, for k  C\{j}. Thus,

rij(t) = mij(t) +


kC\{j}

mik(t)(rkj(t) + 1).

Finally, applying


kCmik(t) = 1 leads to the following result.

Lemma 1. Take i, j  C  C(t), i = j. Then,

rij(t) = 1 +


kC\{j}

mik(t)rkj(t).

19The agents are then interpreted as states of the Markov chain and the trust of i in j, mij(t),

is interpreted as the transition probability from state i to state j.
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Note that computing the mean simple walk lengths using this formula amounts

to solving a linear system of |C|(|C| 1) equations, which has a unique solution.
We denote by (C; t) the probability vector of the agents’ influence on the final

consensus of their group C  C(t) at period t, given that the group is aperiodic and
the trust matrix does not change any more.20 In this case, the group converges to

x()|C = (C; t)
 x(t)|C ,

where x(t)|C = (xi(t))iC is the restriction of x(t) to agents in C. In other words,
i(C; t), i  C, is the influence of agent i’s opinion at period t, xi(t), on the consen-
sus of C. Each agent in a minimal closed group has at least some influence on the

consensus: i(C; t) > 0 for all i  C.21 We now turn back to the long-run conse-
quences of manipulation and thus, opinion leaders. We restrict our analysis to the

case where both the manipulating and the manipulated agent are in the same mini-

mal closed group. Since in this case the trust structure is preserved we can compare

the influence on the long-run consensus of the group before and after manipulation.

Proposition 3. Suppose that at period t, group C  C(t) is aperiodic and agent
i  C manipulates agent j  C. Then, aperiodicity is preserved and the influence
of agent k  C on the final consensus of her group changes as follows,

k(C; t+ 1) k(C; t) =

[ij/(1 + ij)] i(C; t)j(C; t+ 1)


lC\{i}mjl(t)rli(t) if k = i

[ij/(1 + ij)] k(C; t)j(C; t+ 1)


lC\{k}mjl(t)rlk(t) rik(t)

if k = i

.

Corollary 2. Suppose that at period t, group C  C(t) is aperiodic and agent i  C
manipulates agent j  C. Then,

(i) agent i always increases her long-run influence, i(C; t+ 1) > i(C; t),

(ii) any other agent k = i of the group can either gain or lose influence, depending
on the trust matrix. She gains if and only if



lC\{k,i}

mjl(t)[rlk(t) rik(t)] > mjk(t))rik(t),

(iii) agent k = i, j loses influence for sure if j trusts solely her, i.e. mjk(t) = 1.

20In the language of Markov chains, (C; t) is known as the unique stationary distribution of

the aperiodic communication class C. Without aperiodicity, the class might fail to converge to

consensus.
21See Golub and Jackson (2010).

14



Proposition 3 tells us that the change in long-run influence for any agent k

depends on the ability of agent i to manipulate agent j, agent k’s long-run influence

now and the future influence of the manipulated agent j. When agent k = i, we

find that this change is always positive. In this sense, manipulation fosters opinion

leadership. It is large if agents (other than i) that are significantly trusted by j have

a high mean simple walk length to i. To understand this better, let us recall that

the long-run influence of an agent depends on how much she is trusted by agents

that are trusted. Or, in other words, influential agents are influential on influential

agents. Thus, there is a direct gain of influence due to an increase of trust from j

and an indirect loss of influence (that is always dominated by the direct gain) due

to a decrease of trust from j faced by agents that (indirectly) trust i. This explains

why it is better for i if agents facing a high decrease of trust from j (those trusted

much by j) do not (indirectly) trust i much (have a high mean simple walk length

to i).

For any other agent k = i, it turns out that the change can be positive or

negative. It is positive if, broadly speaking, j does not trust k a lot, the mean

simple walk length from i to k is small and furthermore agents (other than k and i)

that are significantly trusted by j have a higher mean simple walk length to k than

i. In other words, it is positive if the manipulating agent, who gains influence for

sure, (indirectly) trusts agent k significantly (small mean simple walk length from i

to k), k does not face a high decrease of trust from j and those agents facing a high

decrease from j (those trusted much by j) (indirectly) trust k less than i does.

Notice that for any agent k = i, j, this is a trade-o between an indirect gain

of trust due to the increase of trust that i obtains from j, on the one hand, and

an indirect loss of influence due to a decrease of trust from j faced by agents that

(indirectly) trust k as well as the direct loss of influence due to a decrease of trust

from j, on the other hand. In the extreme case where j only trusts k, the direct loss

of influence dominates the indirect gain of influence for sure.

In particular, it means that even the manipulated agent j can gain influence. In

a sense, such an agent would like to be manipulated because she trusts the "wrong"

agents. For j, being manipulated is positive if agents she trusts significantly have a

high mean simple walk length to her and furthermore, the mean simple walk length

from i to her is small. Hence, it is positive if the manipulating agent (indirectly)

trusts her significantly (small mean simple walk length from i to j) and agents

facing a high decrease of trust from her (those she trusts) do not (indirectly) trust

her much. Here, the trade-o is between the indirect gain of trust due to the increase

of trust that i obtains from her and the indirect loss of influence due to a decrease
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of trust from her faced by agents that (indirectly) trust her. Note that the gain of

influence is particularly high if the manipulating agent trusts j significantly.

The next example shows that indeed in some situations an agent can gain from

being manipulated in the sense that her influence on the long-run beliefs increases.

Example 3 (Being manipulated can increase influence). Take N = {1, 2, 3} with
E0 = 13 and 13 > 0. Let

M(0) =




1/4 1/4 1/2

1/2 1/2 0

2/5 1/2 1/10





be the initial trust matrix. Notice that N is minimal closed. Suppose that agent 1

is manipulating agent 3. Then, from Proposition 3, we get

3(N ; 1) 3(N ; 0) =
13

1 + 13
3(N ; 0)3(N ; 1)



l =3

m3l(0)rl3(0) r13(0)

=
13

1 + 13
3(N ; 0)3(N ; 1)

7

10
> 0,

since 3(N ; 0), 3(N ; 1) > 0. Hence, being manipulated by agent 1 increases agent

3’s influence on the long-run beliefs. The reason is that, initially, she trusts too

much agent 2 — an agent that does not trust her at all. She gains influence from

agent 1’s increase of influence on the long-run beliefs since this agent trusts her.

In other words, after being manipulated she is trusted by an agent that is trusted

more. 

5.2 Speed of Convergence

We have seen that within an aperiodic minimal closed group C  C(t) agents reach a
consensus given that the trust structure does not change anymore. This means that

their opinions converge to a common opinion. By speed of convergence we mean the

time that this convergence takes. That is, it is the time it takes for the expression

|xi(t) xi()|

to become small. It is well known that this depends crucially on the second largest

eigenvalue 2(C; t) of the trust matrix M(t)|C , where M(t)|C = (mij(t))i,jC denotes

the restriction of M(t) to agents in C. Notice that M(t)|C is a stochastic matrix
since C is minimal closed. The smaller it is in absolute value, the faster the influence
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process converges (see Jackson, 2008). If M(t)|C is diagonalizable, then there exists
a constant K > 0 such that22

|xi(t+ s) xi()|  K |2(C; t)s| for all i  C.

It follows from the Perron—Frobenius theorem (see Seneta, 2006) that |2(C; t)| <
1.23 Moreover, if additionally M(t)|C is nonsingular, then there exists some i  C,
xi(t) and k > 0 such that for large enough s,

|xi(t+ s) xi()|  k |2(C; t)s|.

This shows that the speed of convergence is governed by the second largest eigen-

value. To study how manipulation changes the speed of convergence, we therefore

need to investigate the change in the second largest eigenvalue. However, as the

above estimations indicate, this will only vaguely capture the change in speed of

convergence.

For non-generic trust matrices the change in speed of convergence depends con-

tinuously on the ability to manipulate. If M(t)|C is diagonalizable and agent i  C
manipulates agent j  C, then it follows from the Bauer-Fike theorem (see Bauer

and Fike, 1960) that there exists some K > 0 such that for each eigenvalue (C; t)

there exists an eigenvalue (C; t+ 1) such that

|(C; t+ 1) (C; t)|  K(1mji(t))
ij

1 + ij
.

However, for a given ability, the right hand side can be large if agent j does not

trust agent i a lot before manipulation since the constant K can be rather large.

Next, we want to investigate whether the second largest eigenvalue becomes

larger or smaller due to manipulation. In this context, the concept of homophily

is important, that is the tendency of people to interact relatively more with those

people who are similar to them.

Definition 3. The homophily of a group of agents G  N at period t is defined as

Hom(G; t) =
1

|G|






i,jG

mij(t)


iG,j /G

mij(t)



 .

22The non-diagonalizable case is non-generic. However, a similar result holds for these matrices.

See Seneta (2006).
23Note that M(t)|C is a non-negative primitive matrix since C is minimal closed and aperiodic.
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The homophily of a group of agents is the normalized dierence of their trust in

agents inside and outside the group. Notice that a minimal closed group C  C(t)
attains the maximum homophily, Hom(C; t) = 1. As a first step, we establish the

relation between manipulation and homophily. Consider a cut of society (S,N\S),
S  N,S = , into two groups of agents S and N\S.24 The next lemma establishes
that manipulation across the cut decreases homophily, while manipulation within a

group increases it.

Lemma 2. Take a cut of society (S,N\S). If i  N manipulates j  S at period t,
then

(i) the homophily of S (strictly) increases if i  S (and


kSmjk(t) < 1), and

(ii) the homophily of S (strictly) decreases if i / S (and


kSmjk(t) > 0).

Now, we come back to the speed of convergence. Given the complexity of the

problem, we consider first an example of a two-agent society and show that ho-

mophily helps to explain the change in speed of convergence.

Example 4 (Speed of convergence with two agents). Take N = {1, 2} and suppose
that at period t, N is minimal closed and aperiodic. Then, we have that 2(N ; t) =

m11(t)  m21(t) = m22(t)  m12(t). Therefore, if agent i manipulates agent j at

period t,

|2(N ; t+ 1)|  |2(N ; t)| |m11(t+ 1)m21(t+ 1)|  |m11(t)m21(t)|

 |m22(t+ 1)m12(t+ 1)|  |m22(t)m12(t)|.

It means that convergence is faster after manipulation if afterwards agents behave

more similar, i.e. the trust both agents put on agent 1’s opinion is more similar

(which implies that also the trust they put on agent 2’s opinion is more similar).

Thus, if for instance

m22(t) > (1 + 12)m12(t), (1)

then agent 1 manipulating agent 2 accelerates convergence. However, if m22(t) <

m12(t), it slows down convergence since manipulation increases the already existing

24There exist many dierent notions of homophily in the literature. Our measure is similar to

the one used in Golub and Jackson (2012). We can consider the average homophily (Hom(S; t) +

Hom(N\S; t))/2 with respect to the cut (S,N\S) as a generalization of degree-weighted homophily
to general weighted averages.
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tendency of opinions to oscillate. The more interesting case is the first one, though.

We can write (1) as

(1 + 12)Hom({1}, t) +Hom({2}, t) > 12,

that is manipulation accelerates convergence if there is sucient aggregated ho-

mophily in the society and the ability to manipulate is not too high. The homophily

of agent 1 is weighted higher since she is manipulating. 

So, it can be that manipulation speeds up the process in the sense that a con-

sensus is reached faster, but it can as well be the case that it is slowed down. More

important, the example suggests that in a suciently homophilic society with rea-

sonable abilities to manipulate, manipulation reducing homophily (i.e. across the

cut, see Lemma 3) increases the speed of convergence. Notice however that manip-

ulation increasing homophily (i.e. within one of the groups separated by the cut) is

not possible in this simple setting since both groups are singletons. Therefore, let

us reconsider the three-agents example to get further insights on this issue.

Example 1 (Three-agents society, continued). Take N = {1, 2, 3} with i = 1/10
for all i  N , E = (13, 13, . . .), 13 = 3/4 and 31 = 1/2, x(0) = (10, 3, 0) and

M(0) =




3/5 1/5 1/5

1/10 2/5 1/2

0 3/5 2/5



 .

This society is homophilic, taking the cut ({1}, {2, 3}), we get

Hom({1}, 0) = 1/5 and Hom({2, 3}, 0) = 9/10.

The initial speed of convergence is 2(N ; 0) = 2,cl = (1 +

3)/5  .546. Note that

under the given manipulation sequence, manipulation is across the cut and therefore

it reduces homophily. We already know that only agent 1 exerts eort at period 0,

which leads to

M(1) =




3/5 1/5 1/5

1/10 2/5 1/2

3/7 12/35 8/35





and 2(N ; 1) = (8 +

246)/70  .338 < 2(N ; 0)  .546. So, convergence is

faster and indeed the second group is less homophilic, Hom({2, 3}, 1) = 33/70 <

Hom({2, 3}, 0) = 9/10.
Let us now consider the manipulation sequence E = (23, 23, . . .) and 23,32 =

1/10, i.e. manipulation is within a group and therefore it increases homophily. At

19



period 0, agent 3 exerts eort since f32(x(0),M(0), 1/10)  .2 > 1/20 = 3/2, while
agent 2 renounces to do so since f23(x(0),M(0), 1/10)  .03 < 1/20 = 2/2. This
leads to

M(1) =




3/5 1/5 1/5

1/11 4/11 6/11

0 3/5 2/5





and 2(N ; 1) = (10 +

419)/55  .554 > 2(N ; 0)  .546. So, convergence is

slower and indeed the second group is more homophilic, Hom({2, 3}, 1) = 10/11 >
Hom({2, 3}, 0) = 9/10.25 

We conclude from the examples that in suciently homophilic societies and for

reasonable abilities to manipulate, manipulation reducing homophily increases the

speed of convergence, while manipulation increasing homophily slows down conver-

gence.

5.3 Convergence

We now determine where the process finally converges to. First, we look at the case

where all agents are in the same minimal closed group and we show that manipu-

lation comes to an end, eventually. At some point, opinions in the society become

too similar to be manipulated.26 Hence, this result holds whenever agents do not

manipulate if (at least their beliefs about) the beliefs of others are very close to their

own beliefs. Second, we determine the final consensus the society converges to. Let

M(t) = In for t < 1, where In is the n n identity matrix.

Lemma 3. Suppose that C(0) = {N}. Then, there exists T (E)  0 such that for

all t  T (E), eij(t), eji(t) = 0, where Et = ij. If N is aperiodic, then the society

converges to

x() = (N ;T (E)) M(T (E) 1) x(0).

Notice that the outcome depends crucially on the manipulation sequence E . Now,
we turn to the general case of any trust structure. We show that after a finite number

of periods, the trust structure settles down. Then, it follows from the above result

25Notice that these results hold for a large space of abilities to manipulate (and thus as well

for the case when both agents manipulate). Only for very high abilities, manipulation can lead to

oscillating opinions and thus, slow down convergence even in the case of manipulation across the

cut.
26Without aperiodicity, the opinions might oscillate forever, but manipulation also comes to an

end at some period.
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that manipulation within the minimal closed groups that have finally been formed

comes to an end. We also determine the final consensus opinion of each aperiodic

minimal closed group.

Proposition 4.

(i) There exists T (E)  0 such that for all t  T (E), C(t) = C(T (E)).

(ii) There exists T (E)  T (E) such that for all t  T (E), eij(t), eji(t) = 0 if

Et = ij  C for some C  C(T (E)). Moreover, the agents in an aperiodic
group C  C(T (E)) converge to

x()|C = (C; T (E))
 M(T (E) 1)|C · · · M(1)|C x(0)|C .

In what follows we use T (E) and T (E) in the above sense. We denote by i(C; t)
the overall influence of agent i’s initial opinion on the consensus of group C at

period t given no more manipulation aecting C takes place. The overall influence

is implicitly given by Proposition 4.

Corollary 3. The overall influence of the initial opinion of agent i  N on the

consensus of an aperiodic group C  C(T (E)) is given by

i(C; T (E)) =
 

(C; T (E)) M(T (E) 1)|C · · ·M(1)|C


i
if i  C

0 if i / C
.

It turns out that an agent outside a minimal closed group that has finally formed

can never have any influence on its consensus opinion. Finally, let us reconsider the

three-agents example to illustrate the results of this section.

Example 1 (Three-agents society, continued). Take N = {1, 2, 3} with i = 1/10
for all i  N , E = (13, 13, . . .), 13 = 3/4 and 31 = 1/2, x(0) = (10, 3, 0) and

M(0) =




3/5 1/5 1/5

1/10 2/5 1/2

0 3/5 2/5



 .

The vector of initial long-run influence — and of long-run influence in the classical

model without manipulation — is (N ; 0) = cl  (.115, .462, .423) and the initial

speed of convergence is 2(N ; 0) = 2,cl = (1+

3)/5  .546. We already know that

only agent 1 exerts eort at period 0, which leads to

M(1) =




3/5 1/5 1/5

1/10 2/5 1/2

3/7 12/35 8/35




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and x(1) = (33/5, 11/5, 186/35)  (6.6, 2.2, 5.3). Hence, (N ; 1)  (.4, .3, .3) and
2(N ; 1) = (8 +


246)/70  .338. So, both agents 2 and 3 lose influence on the

long-run beliefs and moreover, convergence is faster. At the next period, we find

that again agent 1 exerts eort since f13 (x(1),M(1), 3/4)  .2 > 1/20 = 1/2, while
agent 3 renounces to do so. To see why, note that s3(2; 0)  4.9 and x1(2)  5.46
and thus, the necessary condition of part (i.d) of Corollary 1 is violated. Hence, we

get

M(2) =




3/5 1/5 1/5

1/10 2/5 1/2

33/49 48/245 32/245





and x(2) = (1/17150)(93688, 71981, 95526)  (5.46, 4.2, 5.57). It implies (N ; 2) 
(.495, .249, .257) and 2(N ; 2) = (32 +


4062)/490  .195. So, again both agents 2

and 3 lose influence on the long-run beliefs and convergence is even faster. The reason

for the latter is that the first agent was not trusted a lot initially and so, the fact that

she valued her own opinion substantially led to slow down convergence. It is easy

to verify that from period 2 on, no more manipulation takes place, i.e M(t) =M(2)

for all t  2. By Lemma 2, the society reaches the following consensus,

x() = (N ; 2) M(1) x(0) = (N ; 2) M(1) x(0)  5.18

and the influence of the agents’ initial opinions on the consensus is

(N ; 2) = (N ; 2) M(1)  (.432, .286, .282).

Compared to this, the classical model gives xcl() = clx(0)  2.54, where cl =

(N ; 0)  (.115, .462, .423). Hence, our model leads to a long-run belief of soci-

ety that is much closer to the initial opinion of agent 1 due to manipulation and

moreover, we see that the agent not involved in manipulation, agent 2, loses more

influence than the agent that was manipulated. 

6 The Wisdom of Crowds

We now investigate how manipulation aects the extent of misinformation in society.

We use an approach similar to Acemoglu et al. (2010) and assume that there is a

true state µ = (1/n)


iN xi(0) that corresponds to the average of the initial opin-

ions of the n agents in the society. So, each agent initially has the same information

about the state. We also assume that the society forms one minimally closed and

aperiodic group. Clearly, societies that are not connected fail to aggregate informa-

tion. However, as in Example 2, we can observe a sequence of manipulations that
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leads to a connected society and thus can be viewed as reducing the extent of mis-

information in the society. Notice that our results in this section are qualitatively

robust to changes in the preferences or the meeting sequence. Nevertheless, whether

manipulation helps to aggregate information might hinge on the preferences and the

meeting sequence as we show by example.

At a given period t, the wisdom of the society is measured by the dierence

between the true state and the consensus they would reach in case no more manip-

ulation takes place:

(N ; t) x(0) µ =


iN


i(N ; t)

1

n


xi(0).

Hence, (N ; t)  (1/n)I2 measures the extent of misinformation in the society,
where I = (1, 1, . . . , 1)  Rn is a vector of 1s and x2 =


kN |xk|2 is the

standard Euclidean norm of x  Rn. We say that an agent i undersells (oversells)
her information at period t if i(N ; t) < 1/n (i(N ; t) > 1/n). In a sense, an agent

underselling her information is, compared to her overall influence, (relatively) well

informed.

Definition 4. A manipulation at period t reduces the extent of misinformation in
society if

(N ; t+ 1) (1/n)I2 < (N ; t) (1/n)I2,

otherwise, it (weakly) increases the extent of misinformation.

The next lemma describes, given some agent manipulates another agent, the

change in the overall influence of an agent from period t to period t+ 1.

Lemma 4. Suppose that C(0) = {N} and N is aperiodic. For k  N , at period t,

k(N ; t+ 1) k(N ; t) =
n

l=1

mlk(t)[l(N ; t+ 1) l(N ; t)].

In case there is manipulation at period t, the overall influence of the initial opin-

ion of an agent increases if the agents that overall trust her on average gain influence

from the manipulation. Next, we provide conditions ensuring that a manipulation

reduces the extent of misinformation in the society. First, the agent who is ma-

nipulating should not have too much ability to manipulate. Second, only agents

underselling their information should gain overall influence. We say that (N ; t) is

non-generic if for all k  N it holds that k(N ; t) = 1/n.
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Proposition 5. Suppose that C(0) = {N}, N is aperiodic and (N ; t) is non-

generic. Then, there exists  > 0 such that at period t, agent i manipulating agent

j reduces the extent of misinformation if

(i) ij  , and

(ii)
n

l=1mlk(t)[l(N ; t + 1)  l(N ; t)]  0 if and only if k undersells her infor-
mation at period t.

Intuitively, condition (ii) says that (relatively) well informed agents (those that

undersell their information) should gain overall influence, while (relatively) badly

informed agents (those that oversell their information) should lose overall influence.

Then, this leads to a distribution of overall influence in the society that is more

equal and hence reduces the extent of misinformation in the society — but only if i

has not too much ability to manipulate j (condition (i)). Otherwise, manipulation

makes some agents too influential, in particular the manipulating agent, and leads

to a distribution of overall influence that is even more unequal than before. In

other words, information aggregation can be severely harmed when some agents

have substantial ability to manipulate.

We now introduce a true state of the world into Example 1. The first manip-

ulation reduces the extent of misinformation since initially the first agent does not

have much influence. However, the second manipulation increases it since agent 1

gets too influential.

Example 1 (Three-agent society, continued). N = {1, 2, 3} with i = 1/10 for all
i  N , E = (13, 13, . . .), 13 = 3/4, 31 = 1/2, x(0) = (10, 3, 0) and

M(0) =




3/5 1/5 1/5

1/10 2/5 1/2

0 3/5 2/5



 .

Hence, µ = (1/3)


iN xi(0) = 13/3  4.33 is the true state. The vector of initial
overall influence is (N ; 0) = (N ; 0)  (.115, .462, .423). We already know that

only agent 1 exerts eort at period 0, and it leads to

M(1) =




3/5 1/5 1/5

1/10 2/5 1/2

3/7 12/35 8/35



 ,

x(1)  (6.6, 2.2, 5.3) and (N ; 1) = (N ; 1)  (.4, .3, .3). The manipulation has

reduced the extent of misinformation in society since

(N ; 1) (1/3)I2  .08 < .27  (N ; 0) (1/3)I2.

24



This manipulation fulfills the conditions of Proposition 5 with threshold   6.18.
So, even with a much higher ability agent 1 would have reduced the extent of mis-

information since her initial influence was low. At the next period, we have that

again only agent 1 exerts eort. We obtain x(2)  (5.46, 4.2, 5.57), (N ; 2) 
(.495, .249, .257) and (N ; 2) = (N ; 2)M(1) = (N ; 2)M(1)  (.432, .286, .282).
This manipulation has increased the extent of misinformation in society since

(N ; 2) (1/3)I2  .12 > .08  (N ; 1) (1/3)I2.

However, as there is no more manipulation from period 2 on, manipulation overall

has reduced the extent of misinformation. Indeed, the agents reach the consensus

x()  5.18, which is closer to the true state µ  4.33 than the consensus they

would have reached in the classical model of DeGroot, xcl()  2.54. Since the

second manipulation has increased the extent of misinformation, the society would

have been wiser if agent 1 had a higher cost (for instance, 1 = 1/2). Then, agent

1 would have renounced to manipulate in the second period and they would have

reached the consensus (N ; 1)x(0) = 4.9, which is closer to the true state. 

7 Conclusion

We investigated the role of manipulation in a model of opinion formation where

agents have beliefs about some question of interest and update them taking weighted

averages of neighbors’ opinions. Our analysis focused on the consequences of manip-

ulation for the trust structure and long-run beliefs in the society, including learning.

We showed that manipulation can modify the trust structure and lead to a con-

nected society, and thus, to consensus. Furthermore, we found that manipulation

fosters opinion leadership in the sense that the manipulating agent always increases

her influence on the long-run beliefs. And more surprisingly, this may even be

the case for the manipulated agent. To obtain insides on the relation of manip-

ulation and the speed of convergence, we provided examples and argued that in

suciently homophilic societies and for reasonable abilities to manipulate, manipu-

lation accelerates convergence if it decreases homophily and otherwise it slows down

convergence.

Regarding learning, we were interested in the question whether manipulation is

beneficial or harmful for information aggregation. We used an approach similar to

Acemoglu et al. (2010) and showed that manipulation reduces the extent of misinfor-

mation in the society if the ability of the manipulating agent is weak and the agents
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underselling their information gain and those overselling their information lose over-

all influence. Not surprisingly, agents that have substantial ability to manipulate

can severely harm information aggregation. We should notice that manipulation

has no bite if we use the approach of Golub and Jackson (2010). They studied

large societies and showed that opinions converge to the true state if the influence

of the most influential agent in the society is vanishing as the society grows. Under

this condition, manipulation does not change convergence to the true state since its

consequences are negligible compared to the size of the society. In large societies, in-

formation is aggregated before manipulation (and possibly a series of manipulations)

can spread misinformation. The only way manipulation could have consequences for

information aggregation in large societies would be to enable agents to manipulate

a substantial proportion of the society instead of only one agent. However, these

agents would certainly harm information aggregation.

It is important to remark that these results are robust to changes in the agents’

preferences and in the manipulation sequence. In fact, they do not depend on either

of them. They are driven by the way manipulation changes the social network,

which reflects how manipulation is seen in the field of critical discourse analysis, see

Van Dijk (2006). However, relaxing the restriction to manipulation of a single agent

at a time is left for future work.

In contrast to this, our analysis of the decision problem of an agent having the

possibility to exert eort clearly depends on the preferences. Apart from necessary

and sucient conditions for an agent to manipulate, we found that in some situations

agents can have too much ability to manipulate, that is they would be better o

with less ability.

Moreover, we showed that the trust structure of the society settles down, eventu-

ally. While this result is still qualitatively robust to changes in the preferences and

the manipulation sequence since manipulation in our model can only increase con-

nectedness, this is not the case any more for the finding that manipulation comes to

an end in each of the minimal closed groups and they reach a consensus (under some

weak regularity condition). This result cleary depends on the preferences for ma-

nipulation, but it is still qualitatively robust to preferences that somehow represent

the idea that people do not manipulate if (their beliefs about) the beliefs of others

are very close to their beliefs. However, agents would reach a dierent consensus

if we change the preferences. For instance, we restrict agents to only manipulate

other agents they trust — i.e. agents that are part of their "own" society — since they

are myopic and do not anticipate the long-run eects of their decisions. However, it

could be beneficial in the long-run for agent i to manipulate agent j even if agent
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i does not trust agent j but j is influencing a lot all other agents. Regarding the

manipulation sequence, our results would change if we generalize the sequence, e.g.

to a stochastic sequence. As a result, the time when manipulation comes to an end

would then be a random variable. And hence, also the consensus the society reaches

would be a random variable.

We view our paper as first attempt in studying manipulation and misinforma-

tion in society. Our approach incorporated strategic considerations in a model of

opinion formation à la DeGroot. We made several simplifying assumptions and de-

rived results that apply to general societies. We plan to address some of the open

issues in future work, e.g. extending manipulation to groups and allowing for more

sophisticated agents.

A Appendix

Proof of Proposition 1.
First, we can rewrite i’s belief about society’s future opinion as

si(t+ 1; eij(t)) =


kN

mik(t)xk(t+ 1) =


kN

mik(t)mk(t+ 1)x(t)

=


k =j

mik(t)mk(t+ 1)x(t)

+mij(t)




l =i

mjl(t+ 1)xl(t) +mji(t+ 1)xi(t)



=


k =j

mik(t) xk(t+ 1) +
mij(t)

1 + ijeij(t)
( xj(t+ 1) + ijeij(t)xi(t)) ,

where the last equation follows from the definition of the updated trust weights.

Hence, agent i manipulates agent j if and only if

uti(1)  u
t
i(0)




xi(t)




k =j

mik(t) xk(t+ 1) +
mij(t)

1 + ij
( xj(t+ 1) + ijxi(t))

2

 


xi(t)




k =j

mik(t) xk(t+ 1) +mij(t) xj(t+ 1)
2

+ i.
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Hence,

uti(1)  u
t
i(0)


ij

(1 + ij)2
mij(t)


2xi(t)(1 + ij)( xj(t+ 1) xi(t))

+ 2(1 + ij)




k =j

mik(t) xk(t+ 1)

(xi(t) xj(t+ 1))

+mij(t)

2 xj(t+ 1)(xi(t) xj(t+ 1)) + ij(xi(t)2  xj(t+ 1)2)




 i.

Hence,

uti(1)  u
t
i(0)


ij

(1 + ij)2
mij(t)


[xi(t) xj(t+ 1)]


2xi(t)(1 + ij)

 2(1 + ij)


k =j

mik(t) xk(t+ 1) 2mij(t) xj(t+ 1)




xi(t)

2  xj(t+ 1)2

mij(t)ij


 i.

So,

uti(1)  u
t
i(0)


ij

(1 + ij)2
mij(t) [xi(t) xj(t+ 1)]


(1 + ij) [xi(t) si(t+ 1; 0)]


ij
2
mij(t) [xi(t) xj(t+ 1)]



i
2
,

which finishes the the proof. 

Proof of Corollary 1.

(i) By definition, ij,mij(t)  0. Therefore, we have fij(x(t),M(t),ij) = 0 <

i/2 whenever one of the conditions (a)—(c) is not satisfied. For (d), suppose
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that the condition does not hold. Then,

fij(x(t),M(t),ij)

=
ij

(1 + ij)2
mij(t) [xi(t) xj(t+ 1)]


(1 + ij) [xi(t) si(t+ 1; 0)]


ij
2
mij(t) [xi(t) xj(t+ 1)]



=
ij

1 + ij
mij(t) [xi(t) xj(t+ 1)] [xi(t) si(t+ 1; 0)]  

0


2ij

2(1 + ij)2
mij(t)

2 [xi(t) xj(t+ 1)]2  
0

0 <
i
2
.

which finishes this part.

(ii) By (a), we can write

fij(x(t),M(t),ij)

=
ij

(1 + ij)2
mij(t) [xi(t) xj(t+ 1)]


(1 + ij) [xi(t) si(t+ 1; 0)]


ij
2
mij(t) [xi(t) xj(t+ 1)]



=
ij

(1 + ij)
mij(t)|xi(t) xj(t+ 1)| |xi(t) si(t+ 1; 0)|  

|xi(t)xj(t+1)| by (b)


2ij

2(1 + ij)2
mij(t)

2 [xi(t) xj(t+ 1)]2



1

ijmij(t)

2(1 + ij)


ij

(1 + ij)
mij(t) [xi(t) xj(t+ 1)]2  


(1+ij)

2i
ijmij(t)(2+ij [2mij(t)])

by (b)



2 + ij[2mij(t)]

2(1 + ij)


(1 + ij)i

2 + ij[2mij(t)]

=
i
2
,

which finishes the second part.

(iii) () Suppose that conditions (a)—(c) hold. Then, taking the derivative of fij
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with respect to ij gives

fij
ij

(x(t),M(t),ij)

=
mij(t)

(1 + ij)3


(1 + ij) [xi(t) xj(t+ 1)] [xi(t) si(t+ 1; 0)] (A1)

 ijmij(t) [xi(t) xj(t+ 1)]2


(b)
=

mij(t)

(1 + ij)3


(1 + ij) |xi(t) xj(t+ 1)| |xi(t) si(t+ 1; 0)|  

>
ijmij(t)

1+ij
|xi(t)xj(t+1)| by (c)

 ijmij(t)|xi(t) xj(t+ 1)|2


(a)
>0.

() By equation (A1), fij/ij  0 if condition (a) or (b) does not hold.

Furthermore, condition (c) is necessary as it can be seen from the above cal-

culations, which finishes the proof. 

Proof of Proposition 2.

(i) The first part follows from Corollary 1 since j / C implies mij(t) = 0. If

j  C, then manipulation does not change the trust structure since C is

minimal closed.

(ii) Follows immediately since all minimal closed groups remain unchanged.

(iii) If agent i manipulates agent j, then mji(t+1) > 0 and thus, since by assump-

tion there exists a path from i to k and C is minimal closed, there exists a

path at t from l to k for all l  C  {i}. Since C  is unchanged, it follows that
R(t+ 1) = R(t)  C, i.e. C(t+ 1) = C(t)\{C}.

(iv) If agent i manipulates agent j, then it follows that


lC{i}mkl(t+1) = 1 for

all k  C since C is minimal closed at t. Furthermore, since by assumption

there is no path from i to k for any k  CC(t)\{C}C  and by definition of
R,


lCR{i}mkl(t + 1) = 1 for all k  R  {i}. Hence, it follows that


lCR{i}mkl(t+ 1) = 1 for all k  C R  {i}, i.e. C R  {i} is closed.

Note that, since C is minimal closed and i manipulates j, there is a path from

k to l for all k, l  C  {i} at t + 1. Then, by definition of R, there is also a
path from k to l for all k  C {i} and l  R. Moreover, since by assumption
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there is no path from i to k for any k  CC(t)\{C}C  and by definition of R,
there exists a path from k to l for all k  R and all l  C. Combined, this
implies that the same holds for all k, l  C  R  {i}. Hence, C  R  {i} is
minimal closed, i.e. C(t+ 1) = C(t)\{C}  {C R  {i}}. 

Proof of Proposition 3.
Suppose w.l.o.g. that C(t) = {N}. First, note that aperiodicity is preserved

since manipulation can only increase the number of simple cycles. We can write

M(t+ 1) =M(t) + ejz(t)
,

where ej is the j-th unit vector, and

zk(t) =


(mji(t) + ij) / (1 + ij)mji(t) if k = i

(mjk(t)) / (1 + ij)mjk(t) if k = i

=


ij(1mji(t))/ (1 + ij) if k = i

ijmjk(t)/ (1 + ij) if k = i
.

From Hunter (2005), we get

k(N ; t+ 1) k(N ; t) = k(N ; t)j(N ; t+ 1)


l =k

zl(t)rlk(t)

=


ij/ (1 + ij) i(N ; t)j(N ; t+ 1)


l =imjl(t)rli(t) if k = i

ij/ (1 + ij) k(N ; t)j(N ; t+ 1)


l =kmjl(t)rlk(t) rik(t)

if k = i

,

which finishes the proof. 

Proof of Corollary 2.
We know that k(C; t), k(C; t + 1) > 0 for all k  C. By Corollary 1, we

have ij > 0 and mji(t) < 1. The latter implies


lC\{i}mjl(t)rli(t) > 0, which

proves part (i). Part (ii) is obvious. Part (iii) follows since mjk(t) = 1 implies


lC\{k}mjl(t)rlk(t) = 0. 
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Proof of Lemma 2.
Suppose that i  S. Since


kSmjk(t)


k/Smjk(t)  (<)1, it follows that



kS

mjk(t)


k/S

mjk(t)

 (<)




kS

mjk(t)


k/S

mjk(t)


/(1 + ij) + ij/(1 + ij)

=






kS\{i}

mjk(t)


k/S

mjk(t)



 /(1 + ij) + (mji(t) + ij)/(1 + ij)

=


kS

mjk(t+ 1)


k/S

mjk(t+ 1)

and hence Hom(S; t + 1)  (>)Hom(S; t), which finishes part (i). Part (ii) is anal-
ogous. 

Proof of Lemma 3.
Suppose that C(0) = {N}. By Proposition 2, we know that C(t) = {N} for all t  N.
To show that for any sequence E , there exits T (E)  0 such that for all t  T (E),
eij(t), eji(t) = 0, where Et = ij, it is enough to show

max
i,jN

|xi(t) xj(t)| 0 for t

since this implies fij(x(t),M(t),ij)  0 < i/2 for t   and all i, j  N .

Therefore, suppose to the contrary that maxi,jN |xi(t) xj(t)|  d for some d > 0.
Since maxi,jN |xi(t)xj(t)|  maxi,jN |xi(t+1)xj(t+1)|, we can choose d such
that

max
i,jN

|xi(t) xj(t)| d for t.

Consider D = {i  N | |xi(t)  xj(t)|  d for t   for some j  N}. We can
write D = D1 D2 such that for i  D1 and j  D2: |xi(t) xj(t)| d for t.
Note that for i, j  Dk, |xi(t)  xj(t)|  0 for t  . This implies that for all
i  Dk, k = 1, 2, either 

jDk

mij(t) 1 for t (A2)

or 

jD\Dk

mij(t) 1 for t. (A3)

Let us show that both possibilities lead to a contradiction. Suppose that (A2) holds.

Since C is minimal closed, we can fix i  Dk, k  {1, 2}, such that


jDk mij(t) < 1
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for all t  N. By (A2) and definition of Dk, we have for all j  Dk

xj(t) xi(t+ 1) = xj(t)mi(t)x(t) 0 for t,

which implies fji(x(t),M(t),ji) 0 <
j
2
for t. Therefore, there exists T  0

such that for all t  T such that Et = ij and j  Dk, eji(t) = 0. Hence,



jDk

mij(t) 


jDk

mij(T ) < 1 for all t  T,

which is a contradiction to (A2). Similarly, (A3) leads to a contradiction by showing

that xi(t) si(t+ 1; 0) 0 for t, which finishes this part.
For the second part, suppose that for all t  T , eij(t), eji(t) = 0, where Et =

ij. As already mentioned, given aperiodicity, this implies that the agents reach a

consensus that can be written as

x() = (N ;T ) x(T ) = (N ;T ) M(T ) x(T  1)

= (N ;T ) M(T  1) · · · M(1) x(0)

= (N ;T ) M(T  1) x(0),

where the second equality follows from the fact that (N ;T ) is a left eigenvector of

M(T ) corresponding to eigenvalue 1, which finishes the proof. 

Proof of Proposition 4.
Suppose that given any manipulation sequence E , the sequence (tk)Kk=1  N, K 

N  {+} denotes the periods where the trust structure changes. By Proposition
2, it follows that for all k = 1, . . . , K, either

(a) 1  |C(tk + 1)| < |C(tk)| and |R(tk + 1)| > |R(tk)|, or

(b) |C(tk + 1)| = |C(tk)| and 0  |R(tk + 1)| < |R(tk)|

holds. This implies that the maximal number of changes in the structure is

bounded, i.e. K < +. Hence, T = tK + 1 is the desired threshold, which finishes
part (i). Part (ii) follows from Lemma 2. The restriction to C of the matrices

M(t) in the computation of the consensus belief is due to the fact that M(t)|C is a
stochastic matrix for all t  0 since C is minimal closed in T (E), which finishes the
proof. 
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Proof of Lemma 4.
We can write

k(N ; t+ 1) =
n

l=1

mlk(t)l(N ; t+ 1)

=
n

l=1

mlk(t)[l(N ; t+ 1) l(N ; t)] +
n

l=1

mlk(t)l(N ; t)

=

n

l=1

mlk(t)[l(N ; t+ 1) l(N ; t)] +
n

l=1

mlk(t 1)l(N ; t)

  
=k(N ;t)

,

where the last equality follows since (N ; t) is a left eigenvector of M(t). 

Proof of Proposition 5.
Let N  N denote the set of agents that undersell their information at period

t. By assumption, the agents in N\N oversell their information and additionally,
N, N\N = . By Proposition 3, we have k(N ; t + 1) k(N ; t) 0 for ij  0

and all k  N and thus by Lemma 3 we have

k(N ; t+ 1) k(N ; t) 0 for ij  0 and all k  N. (A4)

Let now k  N, then by (ii) and Lemma 3, k(N ; t + 1)  k(N ; t). Hence, by

(A4), there exists (k) > 0 such that

1/n  k(N ; t+ 1)  k(N ; t) for all ij  (k).

Analogously, for k  N\N, there exists (k) > 0 such that

1/n  k(N ; t+ 1) < k(N ; t) for all ij  (k).

Therefore, setting  = minkN (k), we get for ij  

(N ; t)
1

n
I22 =



kN

|k(N ; t)
1

n
|2

=


kN

|k(N ; t)
1

n
|2

  
|k(N ;t+1) 1

n
|2

+


kN\N

|k(N ; t)
1

n
|2

  
>|k(N ;t+1) 1

n
|2

>


kN

|k(N ; t+ 1)
1

n
|2

= (N ; t+ 1)
1

n
I22,

which finishes the proof. 
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