New sequence variants in *BRCA1* and *BRCA2* genes detected by high-resolution melting analysis in an elderly healthy female population in Croatia

Mirela Levacic Cvok, Maja Cretnik, Vesna Musani, Petar Ozretic and Sonja Levanat*

Rudjer Boskovic Institute, Division of Molecular Medicine, Zagreb, Croatia

Abstract

Background: Mutations in *BRCA1* and *BRCA2* genes are associated with family predisposition to breast and ovarian cancer. Novel screening methods are required for efficient and rapid detection of sequence variants in cancer patients and their family members.

Methods: The screening for variants in the breast and ovarian cancer susceptibility genes *BRCA1* and *BRCA2* in Croatia was performed by a high-resolution melting approach, which is based on differences in melting curves caused by variations in nucleotide sequence. This is the first screening in Croatia on elderly healthy women with no family history of cancer. *BRCA1* screening was performed on 220 and *BRCA2* screening on 115 samples.

Results: In a population well beyond the average age of breast/ovarian cancer onset, 21 different sequence variants in the *BRCA1* gene (one novel: c.5193+49_50delTA) and 36 variants in the *BRCA2* gene (7 novel: c.459A>C, c.3318C>A, c.4412_4414delGAA, c.4790C>A, c.6264T>C, c.9087G>A, and c.9864A>G) were detected.

Conclusions: Nine *BRCA1* and seven *BRCA2* known variants appeared with such high frequencies that they could be declared as harmless in this population. Eight *BRCA1* high frequency variants, located further from the promoter region, appear to be strongly correlated. Three novel variants that changed the amino acid sequence of the *BRCA2* protein (two missense base substitutions, c.3318C>A and c.4790C>A, and one codon deletion c.4412_4414delGAA), appearing only once, were predicted to have no potential effect on protein structure and function.

Keywords: allele frequency; *BRCA1*; *BRCA2*; high-resolution melting.

*Corresponding author: Sonja Levanat, PhD, Division of Molecular Medicine, Rudjer Boskovic Institute, Bijenicka 54, 10000 Zagreb, Croatia
Phone: +385-1-456-1110, Fax: +385-1-456-1010; E-mail: levanat@irb.hr
Received February 26, 2008; accepted July 8, 2008

Introduction

BRCA1 and *BRCA2* genes, involved in DNA repair processes, are the major breast and ovarian cancer susceptibility genes (1, 2). Epidemiological data indicate that 5%–10% of all breast and/or ovarian cancers are associated with inherited mutations in *BRCA* genes (3, 4). The penetrance of deleterious *BRCA* mutations has been variably estimated; a recent combined analysis of different reports (5) estimates that average cumulative risks (by age 70 years) in *BRCA1* mutation carriers are 65% for breast cancer and 39% for ovarian cancer, whereas the corresponding risks for *BRCA2* are 45% and 11%, respectively.

Carriers of *BRCA1* or *BRCA2* mutations are also at increased risk for other cancers: uterine, cervical, early-onset prostate and pancreatic cancer in *BRCA1*, and male breast, prostate, pancreatic, gallbladder, biliary duct, stomach cancers and melanoma in *BRCA2* (6, 7).

Various *BRCA* mutations associated with breast/ovarian cancer may significantly differ in distribution; some were found to be unique to the family tested or to a specific group, whereas others appeared across different populations (8). Most reported disease-associated alleles of *BRCA1* and *BRCA2* have been attributed to frameshifts, nonsense or missense mutations, large rearrangements and splice alterations. They usually lead to the truncation of *BRCA1* or *BRCA2* protein, or affect amino acids that are critical for its structure or function. However, a large number of sequence variants, in particular missense variations, routinely encountered in clinical and research laboratories, cannot be readily distinguished as either disease-causing (deleterious) mutations or benign polymorphisms (clinically not significant), and thus are classified as variants of unknown clinical significance.

To date, more than 3500 *BRCA1* and *BRCA2* variants have been reported in the Breast Cancer Information Core (BIC) database (http://research.nhgri.nih.gov/projects/bic/index.shtml). This database comprises accumulated research data gained from both diseased and healthy individuals (9); no distinction is made between them, except for classification by clinical significance.

No data on *BRCA* variants in an affected or healthy population of Croatia have been collected so far. Therefore, a pilot project involving the screening of healthy women with the intention to facilitate the introduction of genetic testing into the national program of early detection of breast and ovarian cancer was undertaken. In the Croatian population of 4.5 mil-
lion, an average of 2200 new breast cancer and 400 ovarian cancer cases have been reported annually over the last 10 years (with a moderate tendency of increase), and 800 women die of breast cancer each year (data from the Central Bureau of Statistics of Republic of Croatia and Croatian National Institute of Public Health, 2006). Subjects for the screening pilot project were recruited among elderly women with no personal or family history of cancer, in order to identify benign high frequency variants of BRCA1 and BRCA2 in the Croatian population.

The screening was performed by a high-resolution melting approach, which is based on differences in melting curves caused by variations in nucleotide sequence; detected variants were confirmed by direct sequencing. The high-resolution melting approach is a rapid method for screening and detection of nucleotide variations.

Patients and methods

Initially, 115 healthy Croatian females, aged between 64 and 100 years (mean age 78 ± 8; median 76 years) were selected to be screened for BRCA1 (MIM#113705) and BRCA2 (MIM#600185) sequence variants. Subsequently, the analysis of BRCA1 was extended to another group of 105 healthy women (matched by age with the first group) for reasons described below.

All subjects were healthy, not undergoing any therapy, and with no family history of breast, ovarian, prostate, colon, pancreatic, or any other cancer. They were recruited from several locations in the Zagreb area (General Medical Practice Kalinovica, General Medical Practice Dobojska, Gynecological Clinic Srednjaci and Nursing Home for the Elderly Godan). Blood samples were taken from subjects after they had signed an informed consent form and were collected adhering to all necessary ethical and legal requirements; all were stripped of identifiers and could not be traced back to subjects. All patients gave their informed consent to perform DNA analysis on their blood samples before the samples were taken. The study was conducted according to the Declaration of Helsinki principles and approved by the Ethical Committee of Clinical Hospital Petrova, University School of Medicine, Zagreb (No. 021-1/49-2006) and by the Ethical Committee of Medical Center Zagreb-West based on Health Care Law of Republic of Croatia (NN121/03). The study was also strongly supported by the Croatian League Against Cancer (http://www.hlpr.hr) and the Croatian Society of Human Genetics (http://hdhg.mef.hr).

DNA was extracted from peripheral blood leukocytes, and the entire coding sequence and exon-intron boundaries were amplified using polymerase chain reaction (PCR) resulting in 36 PCR products sized 150–437 bp for BRCA1 and 49 PCR products 179–500 bp long for BRCA2 (10).

PCR was performed in 10 μL reaction mixture containing 50 ng template DNA, 0.2 mM dNTPs (Roche, Mannheim, Germany), 0.4 U FastStart Taq DNA Polymerase (Roche), 1 × fluorescent dye LCGreen Plus (Idaho Technology, Salt Lake City, ID, USA), 2 mM MgCl2 (Idaho Technology) and forward and reverse primers (0.5 mM each) for each gene segment, in Roche LightCycler capillaries and amplified in an adapted RapidCycler2 instrument (Idaho Technology). PCRs were performed using appropriate sets of primers as described previously (10) with slight modifications (primer sequences are available by e-mail: levanat@irb.hr).

PCR conditions were optimized to temperatures between 49°C and 68°C for each segment. After 40 cycles of amplification, PCR products underwent an additional 1 min at 98°C and then 5 min at 40°C to promote heteroduplex formation.
Each capillary was then transferred to the High-Resolution Melter instrument (HR-1, Idaho Technology) for high-resolution melting and curve analysis. Samples were melted at 0.2°C/s ramp rate. Melting profiles were analyzed with HR-1 software using fluorescence normalization, temperature shift and conversion to difference and derivative plots (Figure 1). Fragments with melting patterns different from the wild type were sequenced to determine the exact sequence alterations (11, 12). Coding variants are described according to the GenBank accession number U14680 for BRCA1 and GenBank accession number NM_000069.3 for BRCA2 reference sequences. Intronic variants are described according to GenBank accession number NG_005905.1 for BRCA1 and GenBank accession number NW_001838072.1 for BRCA2 genes. Nucleotide numbering is based on cDNA sequence and nucleotide +1 corresponds to A of the ATG translation initiation codon. The nomenclature used in this study follows the Nomenclature for Description of Genetic Variations approved by the Human Genome Variation Society.

Before sequencing, the chosen PCR products were purified with ExoSAP-IT (USB, Cleveland, OH, USA) and then sequenced in both directions using the Big Dye Terminator 1.1 Cycle Sequencing kit (Applied Biosystems, Foster City, CA, USA). Sequencing analysis was performed on an automatic sequencer ABI PRISM 310 Genetic Analyzer (Applied Biosystems).

Associations among nine BRCA1 sequence variants with highest minor allele frequency (all conform to Hardy-Weinberg equilibrium) were assessed by measuring pairwise linkage disequilibrium (LD) using r² statistics. All calculations were carried out using HaploView (13). Associations among nine BRCA1 sequence variants with highest minor allele frequency (all conform to Hardy-Weinberg equilibrium) were assessed by measuring pairwise linkage disequilibrium (LD) using r² statistics. All calculations were carried out using HaploView (13). Online splice prediction tools NNSPLICE (http://violin.genet.sickkids.on.ca/ali/splicesitefinder.html), SpliceSiteFinder (http://fruitfly.org/seq_tools/splice.html), and ESEfinder3.0 (http://rulai.cshl.edu/tools/ESE/) (15) were used to examine potential impact on the splicing for the newly found variants. We used increased threshold values of 2.0 for SF2/ASF and 3.0 for SC35, SRp40, and SRp55 motives in order to reduce false-positive results (16).

Results

Detected variants of BRCA1 and their frequencies in the enlarged group of 220 subjects are listed in Table 1. The results for BRCA2 in the initial group of 115 subjects are listed in Table 2. Novel variants are given in boldface.

BRCA1

We detected 21 different sequence variants in the BRCA1 gene: 11 variants were missense, four were synonymous and six were intronic. Figure 2 shows their distribution along the gene/protein and the proportion of homozygous/heterozygous carriers.

One novel sequence variant was detected: the intronic variant c.5193 + 49_50delTA. For this intronic variant, it was predicted by both NNSPLICE and SpliceSiteFinder that a deletion of two nucleotides would not change the score probability for the recognition of either donor or acceptor site.

Screening for BRCA1 variants was performed in the enlarged group, because the results for the initial 115 subjects were subject to strong correlation between several high frequency variants. In order to obtain a statistically more reliable picture, an additional 105 women were screened.

In the enlarged population, only four additional low frequency variants were detected (they are included

Table 1 BRCA1 sequence variants in 220 healthy Croatian women (novel variant in boldface).

<table>
<thead>
<tr>
<th>Nucleotide variants (n=11)</th>
<th>AA change</th>
<th>Proportion of carriers, %</th>
<th>Allele frequency, %</th>
<th>Exon</th>
<th>BIC accession no. or reference</th>
<th>Times reported in BIC</th>
<th>Clinically important (reference)</th>
</tr>
</thead>
<tbody>
<tr>
<td>c.3548A>G</td>
<td>p.Lys113Arg</td>
<td>49.09</td>
<td>27.50</td>
<td>11</td>
<td>1099</td>
<td>33</td>
<td>No</td>
</tr>
<tr>
<td>c.4837A>G</td>
<td>p.Ser1613 Gly</td>
<td>46.82</td>
<td>24.77</td>
<td>16</td>
<td>1140</td>
<td>36</td>
<td>No</td>
</tr>
<tr>
<td>c.3113A>G</td>
<td>p.Glu1038C</td>
<td>46.36</td>
<td>24.55</td>
<td>11</td>
<td>1087</td>
<td>37</td>
<td>No</td>
</tr>
<tr>
<td>c.2612C>T</td>
<td>p.Pro871Leu</td>
<td>43.18</td>
<td>22.05</td>
<td>11</td>
<td>1067</td>
<td>26</td>
<td>No</td>
</tr>
<tr>
<td>c.1067A>G</td>
<td>p.Gln356Arg</td>
<td>11.36</td>
<td>5.68</td>
<td>11</td>
<td>2558</td>
<td>82</td>
<td>No/little (17)</td>
</tr>
<tr>
<td>c.3119G>A</td>
<td>p.Ser1040Asn</td>
<td>4.09</td>
<td>2.05</td>
<td>11</td>
<td>1089</td>
<td>45</td>
<td>No/little (17)</td>
</tr>
<tr>
<td>c.4956G>A</td>
<td>p.Met1652Ile</td>
<td>2.73</td>
<td>1.36</td>
<td>16</td>
<td>1143</td>
<td>39</td>
<td>No/little (17)</td>
</tr>
<tr>
<td>c.4535G>T</td>
<td>p.Ser1512Il e</td>
<td>1.36</td>
<td>0.68</td>
<td>15</td>
<td>1136</td>
<td>53</td>
<td>No</td>
</tr>
<tr>
<td>c.2077G>A</td>
<td>p.Asp689Asn</td>
<td>0.91</td>
<td>0.45</td>
<td>11</td>
<td>1045</td>
<td>16</td>
<td>No</td>
</tr>
<tr>
<td>c.4039A>G</td>
<td>p.Arg1347G</td>
<td>0.91</td>
<td>0.45</td>
<td>11</td>
<td>1351</td>
<td>154</td>
<td>No/little (17)</td>
</tr>
<tr>
<td>c.2002G>T</td>
<td>p.Leu668Phe</td>
<td>0.45</td>
<td>0.23</td>
<td>11</td>
<td>2313</td>
<td>25</td>
<td>Unknown</td>
</tr>
</tbody>
</table>

Synonymous variants (n=4)

c.4308T>C	p.–	42.27	25.23	13	1128	35	No
c.4082T>C	p.–	44.55	24.77	11	1047	14	No
c.2311T>C	p.–	40.00	20.23	11	1055	25	No
c.1911T>C	p.–	0.45	0.23	11	1047	14	No

Intronic variants (n=6)

c.5074+65G>A	45.91	26.59	17	Song et al. (19)	No (19)	No
c.442-34C>T	43.18	22.95	8	1424	9	No
c.5075-53C>T	0.91	0.45	18	10455	2	Unknown
c.5277+48_59dup12	0.91	0.45	20	1292	26	No (20)
c.301+7G>A	0.45	0.23	6	2238	12	Unknown
c.5193+49_50delTA	**0.45**	**0.23**	**19**	**–**	**–**	**No** (18)

Brought to you by | Biblioteca Universita (Biblioteca Universita)
Authenticated | 172.16.1.226
Download Date | 3/19/12 2:28 PM
Intronic and non-coding variants (nc.442–34C)

We found 36 different sequence variants in the Brca2 among nine most frequent frequency groups (online supplementary Figure 2), but among the 21 variants in Table 1). Also, the previous structure of the high frequency group (nine variants with similar allele frequencies, 20%–30% each) remained essentially unchanged (online supplementary Figure 1 illustrates the frequencies for the entire set of subjects). Characterization of linkage disequilibrium among nine most frequent Brca1 (Table 1) sequence variants proved that eight out of nine of them manifest higher association (r² from 0.346 to 0.768), while sequence variant c.442–34C>T stays clearly outside that cluster (Figure 3).

BRCA2

We found 36 different sequence variants in the Brca2 gene: 13 of them were missense, 14 synonymous, five intronic variants, three truncating mutations and one deletion. Figure 4 shows their distribution along the gene/protein and the proportion of homozygous/heterozygous carriers.

Seven novel sequence variants were detected: four synonymous (c.459A>C, c.6264T>C, c.9087G>A, and c.9864A>G), two missense (c.3318C>A and c.4790C>A) and one deletion (c.4412_4414delGAA). For the synonymous variant c.459A>C in exon 5 (N-terminal), ESEfinder 3.0 predicted loss of one SRp40 motif and appearance of one SC35 motif. For the other two novel synonymous variants, both missense variants and the deletion, analyzed in silico, do not cause changes in ESE splicing motifs. None of these variants leads to the creation of potential cryptic splice sites.

Variants of Brca2 were also divided into two frequency groups (online supplementary Figure 2), but
with great variations within the high frequency group, so the screening was not extended beyond the initial set of 115 women. Three leading variants appeared with far greater frequencies than in the BRCA1 case and differed too much among themselves as well as from the others for any large scale correlation.

Discussion

Distribution of variants across the protein domains

BRCA1 protein contains two highly conserved regions; one is the RING finger domain and the other BRCT domains (Figure 2). Mutations in the RING finger domain were detected in breast cancer patients from Chile, Japan and India (25–27), and several large studies in Italy and Germany (6, 28–37) showed polymorphisms and mutations in this region in patients but also in the control population. However, consistent with the conserved status of the region, we did not detect any variants of the RING finger domain in the healthy Croatian population. The only alteration we found in the BRCT domains that could alter DNA repair function was c.4956G>A, but it had already been classified as a neutral polymorphism (38–40).

Most of the BRCA1 variants detected in the Croatian population were in the DNA binding domain and downstream. High incidence of missense variants indicates this region is not as vital as the RING finger or BRCT domains. These missense variants have previously been reported in both healthy individuals and patients with similar frequencies, indicating that they are not clinically significant (27, 30, 38–40).

Unlike BRCA1, BRCA2 conserved regions were not so free of variants. The conserved BRC repeats region (Figure 4) is essential for the BRCA2 protein function in DNA repair and contains the ovarian cancer cluster region (OCCR, bounded by nucleotides 3059–4075 and 6503–6629) that is associated with ovarian cancer family history (41). Mutations in the BRC repeats are common in Japanese, Indian, German, Greek and Korean breast and ovarian cancer patients (26, 27, 36, 42–44). However, in this region we found 15 different variants in the healthy Croatian population, although most of them with low incidence (the exceptions were two synonymous variants). In the other conserved region of the BRCA2 gene, the C-terminal domain, we detected only four variants. One of them was synonymous, two non-coding, and one missense variant (c.7544C>T), which had been previously reported to have no effect on the BRCA2 protein function (45).

Remaining parts of the BRCA2 sequence are not as conserved. Here, we detected most variants, includ-
Cvok et al.: BRCA1 and BRCA2 sequence variants in Croatia 1381

Figure 4 Locations of 36 detected BRCA2 sequence variants in relation to BRCA2 protein with its domains. Circles represent missense variants, squares synonymous, triangle is a deletion and X denotes truncating mutations, whereas non-coding variants are drawn only with gray lines denoting their position relative to coded counterparts. Columns above the protein represent the proportion of heterozygous (black) and homozygous (gray) carriers for each variant.

Clinical significance of the variants

The elderly population in this screening was well beyond the average age of onset of breast/ovarian cancer; therefore, high frequency variants of BRCA1 and BRCA2 would be most unlikely to cause cancer predisposition. Due to the sharp division between high and low frequency groups, a conservative limit of more than 30% carriers can be set for both genes, leading to nine BRCA1 and seven BRCA2 variants that can be declared as harmless in this population. All these high frequency variants also regularly appear in homozygous form, indicating them as harmless, since homozygous mutations in BRCA1 are usually lethal (46) and in BRCA2 lead to Fanconi anemia (47) (OMIM 605724).

Significance of the lower frequency variants cannot be judged on the basis of our screening: 12 of them appeared in 2%–11% of the subjects and the remaining 29 were of the order of 1% or less. Their very low appearance among these elderly subjects with no family history of cancer does not support their predisposing potential, or at least suggests limited penetrance. Only one variant from our population, c.5645C>A in BRCA2, has been classified as deleterious mutation (29). The German Consortium for Hereditary Breast and Ovarian Cancer found this mutation in two different families (33). We found it in a single sample and in a heterozygous form (an 87-year-old woman with no family history of breast or ovarian tumors, and with no sporadic disease). We cannot speculate any more on the significance of this variant in tumor formation. Various factors play a role in tumor formation and a mutation is only one of them. A mutation in one of these genes does not imply the person will develop a tumor; it only increases the risk, which can be as high as 80% by the age of 70 (8). Samples with a family history of cancer may provide answers about penetrance and expressivity of the complex cancer disease.

All our novel variants appear in one or two cases each, so their significance cannot be judged by incidence. For missense variants c.3318C>A and c.4790C>A, tools such as Align-GVGD (http://agvgd.iarc.fr) (38), SIFT (http://blocks.fhcrc.org/sift/SIFT.html) (48), and PolyPhen (http://coot.embl.de/PolyPhen/) (49), have predicted that these amino acid changes in BRCA2 protein are tolerated so they could have no potential effects on protein function. Although the 3D structure of complete BRCA2 is not yet determined, arginine 1471 in BRCA2 protein is not conserved among species (38), neither does it belong to any functional domain (http://smart.embl-heidelberg.de) (50). Therefore, it is likely that deletion of amino acid at that position also has no potential harmful effects. The two synonymous variants (c.459A>C and c.6264T>C) showed potential changes in splicing motifs, which could disrupt the usual splicing pattern. It has been previously reported that changes in exon sequence can cause exon skipping in BRCA1 and BRCA2 genes, although only for nonsense or missense mutations (51, 52). It was shown by Pettigrew et al. (53) that reported unclassified sequence variants in BRCA2 were found to colocalize to 55% of predicted ESEs, while previously reported polymorphisms do not colocalize to the conserved ESEs. This suggests that potential motifs can be indicative if detected in unclassified variants, because they are not present in benign polymorphisms.
Application of high-resolution melting

Sensitivity and specificity of this method in scanning for polymorphisms have been previously shown to be 95% and 99%, respectively (11). In this study, we conducted sequencing of suspect forms, and all heterozygous forms were identified without error. Difference plot was the most informative in our study; different sequence variants were most easily distinguishable in this plot. All the variants were easily detected based on curve shapes, and the same type variants always grouped together (Figure 1); therefore, such variants could be easily distinguished without the need for sequencing. Samples with other sequence variants regularly differed from all other curves, clearly distinguishing them as different. All of these curve patterns were verified by sequencing. We tested the application of this method in mutation detection, using 25 coded samples with known mutations and detected them by high-resolution melting in all cases. All the curves differed from wild type and from all other variants (example in online supplementary Figure 3). High-resolution melting is an effective method for variant detection in BRCA1 and BRCA2 genes and can be applied for rapid screening of samples in gene testing (54, 55).

Acknowledgements

This work was supported by the Croatian Ministry of Science, Education and Sports (TP-07/009840). We are grateful to all participating women; without their help and informed consent, this study would not be possible. We also want to thank Gynecologic Clinic Srednjaci (Dr. Banovic), General Medical Practice Dobojska (Dr. Gorajscan), General Medical Practice Kalinovica (Dr. Bergman-Markovic), and Nursing Home for the Elderly Godan (Dr. Godan) for providing the samples. We thank Prof. Edith Olah for kindly providing positive control samples.

References

Brought to you by | Biblioteca Universitaria (Biblioteca Universitaria)