Discovery of very high energy gamma-ray emission from the blazar 1ES 1727+502 with the MAGIC Telescopes

(Affiliations can be found after the references)

Received ...; accepted ...

ABSTRACT

Motivated by the Costamante & Ghisellini (2002) predictions we investigated if the blazar 1ES 1727+502 (z = 0.055) is emitting very high energy (VHE, E>100 GeV) γ rays. We observed the BL Lac object 1ES 1727+502 in stereoscopic mode with the two MAGIC telescopes during 14 nights between May 6th and June 10th 2011, for a total effective observing time of 12.6 hours. For the study of the multiwavelength spectral energy distribution (SED) we use simultaneous optical R-band data from the KVA telescope, archival UV/optical and X-ray observations by instruments UVOT and XRT on board of the Swift satellite and high energy (HE, 0.1 GeV - 100 GeV) γ-ray data from the Fermi-LAT instrument. We detect, for the first time, VHE γ-ray emission from 1ES 1727+502 at a statistical significance of 5.5σ. The integral flux above 150 GeV is estimated to be (2.1 ±0.4)% of the Crab Nebula flux and the de-absorbed VHE spectrum has a photon index of (2.7 ±0.5). No significant short-term variability was found in any of the wavebands presented here. We model the SED using a one-zone synchrotron self-Compton model obtaining parameters typical for this class of sources.

Key words. BL Lac objects: individual(1ES 1727+502) – galaxies: active – gamma rays

1. Introduction

Since the detection of the first extragalactic VHE γ-ray source, Mrk 421 in 1992 by the Whipple Observatory (Punch et al. 1992), the extragalactic VHE sky turned out to be densely populated. Currently, around 50 extragalactic sources are known, most of them blazars, i.e. Active Galactic Nuclei (AGN) with a relativistic jet pointed towards the Earth. Blazars can be further divided into BL Lacertae objects (BL Lacs) and Flat Spectrum Radio Quasars (FSRQs). The former class constitutes the vast majority of blazars detected so far in the VHE γ-ray regime.

Their spectral energy distributions (SEDs) are characterized by two broad peaks, located in the radio - IR - optical - UV - X-ray regime and the HE - VHE γ-ray bands respectively. BL Lacs are further divided into high frequency peaked BL Lacs (HBL) and low frequency peaked BL Lacs (LBL, Padovani & Giommi 1995). Their emission is generally believed to be caused by a population of relativistic electrons, trapped in a region with magnetic field, that emit synchrotron photons, forming the low-energy peak. Those photons are then up-scattered to higher energies by the same population of electrons, through the inverse Compton process to form the second bump (SSC, Synchrotron Self Compton scenario).

1 http://tevat.cat.uchicago.edu/
Imaging atmospheric Cherenkov telescopes carry on pointed observations in search for extragalactic sources and do not perform scans of the entire sky due to their limited field of view (≈ 3.5°). The selection of promising candidates for VHE emission is thus of fundamental importance. The BL Lac object 1ES 1727+502 (discuss in this paper) is the latest in a long list of MAGIC discoveries of objects selected from X-ray catalogues (e.g. for 1ES 1727+502 Costamante & Ghisellini 2002, but for other sources also Donato et al. 2001). Among those are 1ES 1218+30.4 (Albert et al. 2006a), PG 1553+113 (Albert et al. 2007a), 1ES 1741+196 (Berger et al. 2011) and 1ES 0033+595 (Mariotti et al. 2011). Also many of the sources, whose discoveries have been triggered by an optical high state (Mrk180, Albert et al. 2006a; 1ES 1011+496, Albert et al. 2007b; B3 2247+381, Aleksic et al. 2012a; 1ES 1215+303, Aleksic et al. 2012b) are listed in the above mentioned catalogues.

The BL Lac 1ES 1727+502 (z = 0.055, de Vaucouleurs et al. 1991) was observed with the Whipple 10 m γ-ray telescope, in March-April 1995 and April-May 1996, for a total of 4.6 hours, but no signal from this source was detected. Upper limits above 300 GeV were reported for both data sets at the level of 1.08 × 10⁻¹¹ erg cm⁻² s⁻¹ (8.6% Crab), and 1.58 × 10⁻¹¹ erg cm⁻² s⁻¹ (15% Crab), respectively (Horan et al. 2004). It has also been a target studied with the single telescope MAGIC-I (Albert et al. 2008a), before starting stereoscopic observations with two MAGIC telescopes (Aleksic et al. 2012c). It was observed between May 2006 and May 2007 for ≈ 6.1 hours, with zenith angles from 21° to 36°. An upper limit on the integral flux of 3.6 × 10⁻¹¹ cm⁻² s⁻¹ above 140 GeV (11.8% of the Crab Nebula flux above 140 GeV) was calculated. These observations were merged with the ones from 20 other pre-selected blazars observed between 2004 and 2009, and analysed with a stacking method (Aleksic et al. 2011). The combined dataset with 394.1 hours exposure time resulted in a detection of VHE γ-ray events above 140 GeV (11.8% of the Crab Nebula flux above 140 GeV) was calculated. These observations were merged with the ones from 20 other pre-selected blazars observed between 2004 and 2009, and analysed with a stacking method (Aleksic et al. 2011). The combined dataset with 394.1 hours exposure time resulted in a detection of VHE γ-rays with a statistical significance of 4.9σ, thus indicating that at least some of those blazars are VHE γ-ray emitters. In June 2010, a high optical flux of 1ES 1727+502 triggered target of opportunity observations with the MAGIC telescopes. Unfortunately, data were unusable due to adverse atmospheric conditions.

The hard spectrum in the HE band (spectral index 2.0 in the Fermi-LAT first source catalogue, Abdo et al. 2010), combined with the better sensitivity achieved by the MAGIC telescopes with respect to the one of 2006 and 2007 observations, motivated renewed MAGIC observations in 2011, which are described in the following sections. In the second Fermi-LAT catalog (Nolan et al. 2012) the object 1ES 1727+502 (2FGL J1728.2+5015) confirmed a hard spectrum with spectral index of 1.8.

2. MAGIC observations and results

2.1. Observations and data analysis

The VHE γ-ray observations were performed with the MAGIC telescopes located on the Canary Island of La Palma (28.8°N, 17.8°W at 2200 m a.s.l.). The two 17 m telescopes use the imaging atmospheric Cherenkov technique, with a sensitivity of (0.76 ± 0.03)% of the Crab Nebula flux. The energy threshold can be as low as 50 GeV, a characteristic making the MAGIC telescopes well-suited for discovering and studying extragalactic VHE γ-ray sources.

The BL Lac object 1ES 1727+502 was observed with the two MAGIC telescopes, using a hardware stereo trigger, between May 6th and June 10th 2011. During 14 nights 20.2 hours of data were collected. After a quality selection based on the event rate, excluding runs taken during adverse atmospheric conditions or with technical problems, the final data sample amounts to 14.0 hours. The effective time of this observation, corrected for the dead time of the trigger and readout systems is 12.6 hours.

Parts of the data were taken under moderate moonlight and twilight conditions and were analysed together with the dark data (Britzger et al. 2009). The source was observed at zenith angles between 22° and 50°.

All the data were taken in the false-source tracking mode (wobble, Fomin et al. 1994), in which the telescopes were alternated every 20 minutes between two sky positions at 0.4° offset from the source.

The data were analysed using the standard MAGIC analysis framework MARS as described in Moralejo et al. (2009) with additional adaptations incorporating the stereoscopic observations (Lombardi et al. 2011). The images were cleaned using timing information as described in Aliu et al. (2009) with absolute cleaning levels of 6 photoelectrons (so-called “core pixels”) and 3 photoelectrons (“boundary pixels”) for the first telescope and 9 photoelectrons and 4.5 photoelectrons for the second telescope. The images were parametrised in each telescope separately following the prescription of Hillas (1985).

We reconstructed the shower arrival direction with the random forest regression method (RF DISP method, Aleksic et al. 2010) which was extended using stereoscopic information such as the height of the shower maximum and the impact distance of the shower on the ground (Lombardi et al. 2011). The gamma-hadron separation the random forest method was used (Albert et al. 2008b). In the stereoscopic analysis image parameters of both telescopes are used as well as the shower impact point and the shower height maximum. We additionally rejected events whose reconstructed source position in each telescope differs by more than 0.05 degree². A detailed description of the stereoscopic MAGIC analysis can be found in Aleksic et al. (2012c).
2.2. Results

In the distribution of the squared angular distance between the catalogue position of 1ES 1727+502 and the reconstructed source position in the MAGIC data, the so-called θ^2 plot shown in Fig. 1, we find an excess (N_{ex}) of (73.8 ± 15.0) events above the normalized background (N_{bg}) of (125.2 ± 5.0) events in the energy range above 150 GeV. This corresponds to a significance of 5.5σ calculated with formula 17 of Li & Ma (1983), marking this observation as the first detection of 1ES 1727+502 in the VHE γ-ray regime. The integral flux above 150 GeV is $(2.1 \pm 0.4)\%$ of the Crab Nebula flux. The fitted position of the excess is consistent with the catalogue coordinates (RA: 17.47184^{d}, Dec: 50.21956^{d} as in Ma et al. 1998) within $(0.032 \pm 0.015_{stat} \pm 0.025_{sys})^{d}$, and thus compatible within the expected statistical and systematic errors (Aleksić et al. 2012c).

Comparing the extension of the excess to the point spread function of MAGIC (~0.1d, Aleksić et al. 2012b), the source appears to be point-like.

In order to take into account the effects of the finite energy resolution of the instrument, we unfolded the spectrum using the Forward Unfolding algorithm (described in Albert et al. 2007c). Considering the resolution of the instrument, we unfolded the spectrum using the model developed by Domínguez et al. (2011). The obtained differential flux can be described by a power law function $dF/\nu = f_{0}(150 \text{ GeV})^{-\Gamma}$ with the following values of the parameters: flux normalization $f_{0} = (9.6 \pm 2.5) \times 10^{-12} \text{ cm}^{-2} \text{ s}^{-1} \text{ TeV}^{-1}$ and spectral index $\Gamma = (2.7 \pm 0.5)$. We estimate a 10% additional systematic uncertainty in the measured flux compared to Aleksić et al. (2012c) due to the inclusion of moonlight and large zenith angle conditions in our data.

In Fig. 2 we present the VHE γ-ray light curve between 200 GeV and 2 TeV. In order to have a uniform distribution of days with observations in the bins and due to the weakness of the signal, a 14 day binning is applied starting from 2011 May 4. The resulting light curve has five observation nights in the first and last bin and four in the second bin. The emission is compatible with a constant flux of $(2.6 \pm 0.8) \times 10^{-12} \text{ cm}^{-2} \text{ s}^{-1}$. The relatively low probability of a constant flux (0.6%, corresponding to a 2.5σ rejection) might indicate variability below our detection threshold. The sparse binning and additional systematic errors due to moonlight and larger zenith angles can indeed fully explain this effect.

3. Multiwavelength properties

3.1. Optical observations and results

1ES 1727+502 has been observed continually in the optical R-band as part of the Tuorla blazar monitoring program for almost ten years, starting from 2002. The observations were carried out with the 1 m Tuorla telescope and 35 cm KVA telescope in La Palma. The brightness of the object was inferred from calibration stars in the same CCD-frames as 1ES 1727+502 using differential photometry and comparison star magnitudes from Fiorucci & Tosti (1996). The magnitudes are converted to fluxes using the standard formula and values from Bessell (1979).

1ES 1727+502 has a bright host galaxy, contributing > 50% to the flux in the optical R-band (Nilsson et al. 2007). To derive the V_F, in the optical band, this contribution is subtracted from the measured flux and in addition the brightness was corrected for galactic absorption by $R=0.079 \text{ mag}$ (Schlegel et al. 1998).

3 http://users.utu.fi/kanji/
Fig. 3. 10 years light curve in the optical R-band from the Tuorla blazar monitoring program. The contribution of the host galaxy (1.25 ± 0.06 mJy) has not been subtracted. Vertical lines indicate beginning and end of the MAGIC observing window in 2011. See text for details.

<table>
<thead>
<tr>
<th>Band</th>
<th>Flux [10^{-12} erg cm^{-2} s^{-1}]</th>
</tr>
</thead>
<tbody>
<tr>
<td>V</td>
<td>5.4±0.7</td>
</tr>
<tr>
<td>B</td>
<td>6.0±0.7</td>
</tr>
<tr>
<td>U</td>
<td>6.7±0.4</td>
</tr>
<tr>
<td>W1</td>
<td>6.0±0.3</td>
</tr>
<tr>
<td>M2</td>
<td>6.3±0.3</td>
</tr>
<tr>
<td>W2</td>
<td>7.2±0.3</td>
</tr>
</tbody>
</table>

Table 2. Results of Swift/UVOT observations from 2010 April 5.

R = 0.079, V = 0.098, B = 0.127, U = 0.160 (taken from NED), and for the UV data W1 = 0.185, M2 = 0.272 and W2 = 0.243 using the curve from Fitzpatrick & Massa (1999) and the central wavelengths from Poole et al. (2008). Final magnitudes have been converted into vFν, and are summarized in Table 2.

These archival Swift/UVOT data were taken on 2010 April 5 when the optical flux was already increasing but before it reached the highest value, on 2010 May 31. Unfortunately there were no simultaneous observation with the KVA telescope but the R-band SED point has a value of the flux, 4.93 ± 0.2 × 10^{-12} erg cm^{-2} s^{-1}, comparable to the spectral points obtained from Swift/UVOT data (see Table 2). Consequently, the archival Swift/UVOT can be regarded as representative of the baseline optical-UV flux and be included in the compilation of the multi-wavelength SED.

3.3. Fermi-LAT data analysis and results

1ES 1727+502 has been observed with the pair conversion Large Area Telescope (LAT) aboard Fermi operating in the energy range from 20 MeV up to energies beyond 300 GeV (Atwood et al. 2009, Abdo et al. 2012). In survey mode, the Fermi-LAT scans the entire sky every three hours. The data sample used for this analysis covers observations from August 5th, 2008 to August 5th, 2011 and was analysed with the standard analysis tool gtlike, part of the Fermi ScienceTools software package (version 09-27-01) available from the Fermi Science Support Center (FSSC). Only events belonging to the Pass7-V6 Source class and located within 10° of 1ES 1727+502 were selected. Moreover, to reduce the contamination from the Earth-limb y rays produced by cosmic rays interacting with the upper atmosphere, the data were restricted to a maximal zenith angle of 100° and time periods when the spacecraft rocking angle exceeded 52° were excluded. To extract the source spectral information we used the standard background models publicly available at the FSSC website. The background template separately models the Galactic diffuse emission and an isotropic diffuse emission, resulting from extragalactic isotropic emission and residual instrumental background. The normalization of these two templates were left free in the subsequent spectral fitting. Sources from the 2FGL catalogue (Nolan et al. 2012) located within 15° of 1ES 1727+502 were incorporated in the model of the region by setting their spectral models and the initial parameters for the modelling to those reported in the 2FGL catalogue. In the fitting procedure the parameters of sources located within 10° radius centred on the source of interest were allowed to vary freely while parameters of sources located within the 10°–15° annulus were fixed. The model of the region around the source was forward folded with the post-launch instrument response functions P7SOURCE V6 and an unbinned maximum likelihood analysis was performed against the flight dataset between 300 MeV − 300 GeV to derive the sources flux. The uncertainties here reported in the LAT flux measurements are statistical only, systematic uncertainty in the LAT flux can be derived from the systematic uncertainty on the effective area which is estimated to be 10% at 100 MeV, 5% at 560 MeV and 10% at 10 GeV and above (Abdo et al. 2009).

Since the source is not always significantly detected, flux upper limits at 95% confidence level were calculated for each time bin where the test statistic (TS, it is 2 times the difference of the log(likelihood) with and without the source, see Mattox et al. 1996) value for the source was TS<4 or the number of predicted photons N_{pred} < 3. The light curve, from August 5th, 2008 to July 20th 2011, is presented in Fig. 4. Possible variations in the source emission have been tested following the same likelihood method described in the second Fermi catalogue (Nolan et al. 2012). The result here obtained are consistent with a constant flux (TS_{var}=6 for 11 degrees of freedom), albeit a trend towards

4 http://ned.ipac.caltech.edu/
a higher flux in the last bin, partially coincident with the MAGIC observations, is evident. We also present in Fig. 5 the spectrum obtained from three months of observations centred around the MAGIC observing period. Compared to the average flux, in the energy range from 300 MeV to 300 GeV, measured in three years of observations (3.5 ± 0.5 × 10^{-9} ph cm^{-2}s^{-1}), the flux measured in the three months around the MAGIC observations is higher (7.2 ± 1.9 × 10^{-9} ph cm^{-2}s^{-1}), while the spectral indices are similar (1.90±0.08 and 2.0±0.2 respectively). When performing the fit for the light curve and SED bins, the spectral indices of the sources were frozen to the best-fit values obtained from the time-independent analysis.

3.4. Multiwavelength spectral energy distribution

The quasi-simultaneous multiwavelength data described in the previous section have been used for the compilation of the SED, which has been modelled with a one-zone SSC model (Maraschi & Tavecchio 2003). In this scenario, a blob of radius R populated by relativistic electrons and filled with a tangled magnetic field of intensity B, is moving down the jet with a Doppler factor δ. The electrons emit synchrotron radiation, producing the low-energy peak in the SED. The γ rays are produced by the same electron population up-scattering the synchrotron photons, resulting in the second peak in the SED.

The electron spectrum is assumed to be described by $N(\gamma) = K\gamma^{-n_1}(1 + \gamma/\gamma_b)^{-n_2}$. The parameter values that give a good match between the SSC model and the SED data are: the Lorentz factors $\gamma_{\text{min}} = 100, \gamma_0 = 3 \times 10^4, \gamma_{\text{max}} = 6 \times 10^5$; the slopes $n_1 = 2, n_2 = 3.5$; and the electron density $K = 8 \times 10^3$ cm$^{-3}$. The parameters that describe the astrophysical environment are the magnetic field $B = 0.1$ G, the radius $R = 7 \times 10^{15}$ cm and the Doppler factor $\delta = 15$ of the emitting region. These values are compatible with the values obtained with the sample analyzed in Tavecchio et al. 2010.

4. Discussion

The HBL 1ES 1727+502 shows little variability in the optical R-band, is bright in the X-ray band, has a hard spectrum in the HE γ-ray band and, as shown in this paper, is visible in the VHE γ-ray range. The discovery of this source as VHE γ-ray emitter demonstrates the importance of combining data at different wavelengths, namely radio, optical, X-ray, and the recently opened Fermi–LAT energy range, to help identify potential VHE γ-ray emitters. The MAGIC detection indeed confirms the prediction made by Costamante & Ghisellini (2002) and Donato et al. (2001) more than ten years ago, using X-ray, optical and radio data. Of the 33 sources in the list they compiled, 21 have been already detected. They predicted a flux of 0.7×10^{-12} cm$^{-2}$ s$^{-1}$ at the Fermi–LAT energy range, to help identify potential VHE γ-ray emitters. The MAGIC detection indeed confirms the prediction made by Costamante & Ghisellini (2002) and Donato et al. (2001) more than ten years ago, using X-ray, optical and radio data. Of the 33 sources in the list they compiled, 21 have been already detected. They predicted a flux of 0.7×10^{-12} cm$^{-2}$ s$^{-1}$

<table>
<thead>
<tr>
<th>Observation date (MJD)</th>
<th>Observation time [ks]</th>
<th>Flux (2 – 10 keV) [10^{-14} erg cm^{-2} s^{-1}]</th>
<th>photon index</th>
<th>$\chi^2_{\nu}(n_{\text{dof}})$</th>
</tr>
</thead>
<tbody>
<tr>
<td>55291.69584</td>
<td>2181.82</td>
<td>8.9 ± 0.6</td>
<td>2.1±0.1</td>
<td>1.28(30)</td>
</tr>
<tr>
<td>55291.96182</td>
<td>1457.44</td>
<td>7.6 ± 0.7</td>
<td>2.3±0.1</td>
<td>0.62(21)</td>
</tr>
<tr>
<td>55317.53682</td>
<td>1689.39</td>
<td>6.2 ± 0.8</td>
<td>2.2±0.1</td>
<td>1.14(17)</td>
</tr>
</tbody>
</table>

The HBL 1ES 1727+502 shows little variability in the optical R-band, is bright in the X-ray band, has a hard spectrum in the HE γ-ray band and, as shown in this paper, is visible in the VHE γ-ray range. The discovery of this source as VHE γ-ray emitter demonstrates the importance of combining data at different wavelengths, namely radio, optical, X-ray, and the recently opened Fermi–LAT energy range, to help identify potential VHE γ-ray emitters. The MAGIC detection indeed confirms the prediction made by Costamante & Ghisellini (2002) and Donato et al. (2001) more than ten years ago, using X-ray, optical and radio data. Of the 33 sources in the list they compiled, 21 have been already detected. They predicted a flux of 0.7×10^{-12} cm$^{-2}$ s$^{-1}$

![Fig. 4. Light curve with a binning of three months of the Fermi–LAT data between 1 GeV and 300 GeV. The downward pointing arrows correspond to a 95% upper limit. The vertical lines indicate beginning and end of the MAGIC observing window in 2011. The emission is consistent with a constant flux, albeit a trend towards a higher flux in the last bin, partially coincident with the MAGIC observations, is evident.](image4)

![Fig. 5. Multiwavelength spectral energy distribution fitted with a one zone synchrotron Self Compton model (Maraschi & Tavecchio 2003). MAGIC observations, (red butterfly) have been corrected for the extragalactic background light absorption using the model of Domínguez et al. (2011). The data used for the fit (red triangles) are: optical from KVA, archival UV and optical from Swift/UVOT, archival X-ray from Swift/XRT, HE γ rays from Fermi-LAT (triangles, three months centred around the MAGIC observing period) and VHE γ rays from MAGIC. We also show the 3 year LAT data (light blue triangles) and archival data (grey) from the ASI/ASDC archive (http://tools.asdc.asi.it/).](image5)
above 300 GeV and we observed a flux a factor of two higher
(1.6×10^{-12} cm$^{-2}$ s$^{-1}$).

Furthermore it is also interesting to compare this result with
the excess seen in the stacked AGN sample observed by MAGIC
in mono energy (Aleksić et al. 2011). The spectral index
measured for 1ES 1727+502 in the MAGIC energy range is com-
parable with the average spectral index of the stacked AGN sample:
(2.7±0.5) compared to (3.2±0.5). Finally, when compared to the
sample of all blazars detected in VHE γ-rays, its spectral index
has the value of a typical BL Lac, while the flux is one of the
lower fluxes detected so far (Becerra et al. 2012; Becerra et al.
2013).

We have interpreted the emission with a single-zone SSC
model and find that the model parameters are compatible with
those obtained for other sources of the HBL class. We inves-
tigated the multil wavelength variability of the source. During
MAGIC observations the source was in a quiescent state in the
optical band, and the Fermi–LAT data suggest (though not sig-
ificantly) a flux enhancement during our observations com-
pared to the three year averaged spectrum. We thus con-
clude that a study of the variability of this source, complemented
with simultaneous multil wavelength observations, should be the
focus of future observations. It will indeed help us in understanding
not only the behaviour of this particular γ-ray emitter, but also
the general features characterizing the HBL class of blazars.

Acknowledgements. We would like to thank the Instituto de Astrofísica
de Canarias for the excellent working conditions at the Observatorio
del Roque de los Muchachos in La Palma. The support of the German
BMFB and MPG, the Italian INFN, the Swiss National Fund SNF, and
the Spanish MICINN is gratefully acknowledged. This work was also
supported by the CPAN CSD2007-00042 and MultiDark CSD2009-
00064 projects of the Spanish Consolider-Ingenio 2010 programme,
by grant D002-353 of the Bulgarian NSF, by grant 127740 of the
Academy of Finland, by the DFG Cluster of Excellence “Origin and
Structure of the Universe”, by the DFG Collaborative Research
Centers SFB823/C4 and SFB876/C3, and by the Polish MNiSzW grant 745/N-
HESS-MAGIC/2010/0.

The Fermi-LAT Collaboration acknowledges support from a number
of agencies and institutes for both development and the operation
of the LAT as well as scientific data analysis. These include NASA
and DOE in the United States, CEA/Inrfu and IN2P3/CNRS in France,
ASI and INFN in Italy, MEXT, KEK, and JAXA in Japan, and the
K. A. Wallenberg Foundation, the Swedish Research Council and the
North American Space Board in Sweden. Additional support from INAF in
Italy and CNES in France for science analysis during the operations
phase is also gratefully acknowledged.

References

Ackermann, M., Aleksić, J., Albert, A., et al. 2012, accepted for publication in

Barthelmy, S. D., Barbiere, L. M., Cummings, J. R. et al. 2005, Space Science
Reviews, 120, 143

J. Aleksić et al.: 1ES 1727+502
1. IFAE, Edifici Cn., Campus UAB, E-08193 Bellaterra, Spain
2. INAF National Institute for Astrophysics, I-00136 Rome, Italy
3. Università di Siena, and INFN Pisa, I-53100 Siena, Italy
4. Universidad Complutense, E-28040 Madrid, Spain
5. Technische Universität Dortmund, D-44221 Dortmund, Germany
6. Max-Planck-Institut für Physik, D-80805 München, Germany
7. Inst. de Astrofísica de Canarias, E-38200 La Laguna, Tenerife, Spain
8. University of Łódź, PL-90236 Łódź, Poland
9. Dept. de Astrofísica, Universidad de La Laguna, E-38206 La Laguna, Spain
10. Deutsches Elektronen-Synchrotron (DESY), D-15738 Zeuthen, Germany
11. ETH Zurich, CH-8093 Zurich, Switzerland
12. Universität Würzburg, D-97074 Würzburg, Germany
13. Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas, E-28040 Madrid, Spain
14. Università di Udine, and INFN Trieste, I-33100 Udine, Italy
15. Inst. de Astrofísica de Andalucía (CSIC), E-18080 Granada, Spain
16. Croatian MAGIC Consortium, Rudjer Boskovic Institute, University of Rijeka and University of Split, HR-10000 Zagreb, Croatia
17. Unitat de Física de les Radiacions, Departament de Física, and CERES-IEEC, Universitat Autònoma de Barcelona, E-08193 Bellaterra, Spain
18. Università dell’Insubria, Como, I-22100 Como, Italy
19. Institut de Ciències de l’Espai (IEEC-CSIC), E-08193 Bellaterra, Spain
20. Tuorla Observatory, University of Turku, FI-21500 Piikkiö, Finland
21. Japanese MAGIC Consortium, Division of Physics and Astronomy, Kyoto University, Japan
23. Universitat de Barcelona (ICC/IEEC), E-08028 Barcelona, Spain
24. Università di Padova and INFN, I-35131 Padova, Italy
25. INAF/Osservatorio Astronomico and INFN, I-34143 Trieste, Italy
26. Università di Pisa, and INFN Pisa, I-56126 Pisa, Italy
27. ICREA, E-08010 Barcelona, Spain
28. now at Ecole polytechnique fédérale de Lausanne (EPFL), Lausanne, Switzerland
29. supported by INFN Padova
30. now at: Department of Physics & Astronomy, UC Riverside, CA 92521, USA
31. now at: DESY, Zeuthen, Germany
32. now at: Finnish Centre for Astronomy with ESO (FINCA), University of Turku, Finland
33. also at Instituto de Fisica Teorica, UAM/CSIC, E-28049 Madrid, Spain
34. * corresponding authors: K. Berger, email: berger.karsten@gmail.com, G. De Caneva, email: ges-sica.de.caneva@desy.de