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Abstract 

A dynamic model of investment process for a technology innovator in a market 

environment is designed. The model is focused on three interrelated decision making 

problems for an innovator: (1) identification of the econometric trends and calibration 

of the model parameters; (2) optimization of the commercialization time; (3) optimal 

control design of the investment policy. A stochastic model based on different types of 

probabilistic distribution for description of the price formation mechanism is realized in 

the part of identification of technological trajectories of the market. It has been proven 

that the extremum of the profit function coincide with the points of intersection of two 

functions, one of which is the market distribution function that describes the market 

price formation mechanism and the other is the marginal costs of the project of 

technology innovation. The model is calibrated basing on the econometric data analysis 

for the CANON firm provided by the Tokyo Institute of Technology and realized in the 

illustrative software. 
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Assessment of the Market Deveopment Trajectory 
for Optimal Timing of Technological Innovation 

 

Andrey Krasovskii 
Alexander Tarasyev 
Chihiro Watanabe 

 

Introduction 
The research is devoted to the analysis of a dynamic model of investment 

process for a technology innovator in a market environment. The model construction 

includes elements of the economic theory of growth and optimal allocation of 

resources (see Arrow, 1985; Cellini, Lambertini, Leitman, 2005; Intrilgator, 1971; 

Kryazhimskii, Watanabe, 2004). Application of the theory of economic growth to 

modeling of financial flows in investment planning seems to be quite adequate since 

they catch the main growth and decline trends which can be calibrated basing on the 

standard econometric software. One of the main control parameters of the model is the 

stopping time of the process. This parameter is introduced analogously to the model of 

optimal timing (see Barzel, 1968; Tarasyev, Watanabe, 2001). This second element of 

the model plays the key role in the decision making process due to the fact that the 

optimal time can distinguish investment scenarios depending on the current market 

conditions. 

In the model three main interacting objectives of the innovator are in focus. These three 

tasks can be formulated as: (i) assessment of the market potential innovation on the 

basis of econometric data, (ii) selection of the possible innovation scenario and 

optimization of the commercialization time, (iii) optimal design of the investment 

policy. The main feature of the model is in its dynamic setting: all three problems are 

considered as the time evolved processes. At each moment of time the innovator can 

make a decision on the new innovation scenario, optimal time of innovation and optimal 

investment level in the feedback interaction based on information about the current 

econometric characteristics of its own technology stock, the market technology stock 

and the market technology rate. The problem is to find a policy strategy for assessing 

the potential market  innovation, choosing a scenario, optimizing  the commercialization 

time and the investment level. 

 

At each level of the model the peculiar optimization problem is solved. Constructions of 

the mathematical theory of optimal processes (see Pontryagin, Boltyanskii, 

Gamkrelidze, Mishchenko, 1962) are used for optimal design of the investment policy. 

For solving the problem of competition of the innovator in the market environment we 
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apply methods of the game theory (see Krasovskii, Krasovskii, 1995; Schelling, 1980; 

Subbotin, 1995). Analysis of the market potential innovation is based on the 

econometric models of innovation processes (see Griliches, 1984; Watanabe, Lei, 

2007). Using the Pontryagin maximum principle we construct analytically the optimal 

investment plan, optimal technological trajectory and the cost function. The Pontryagin 

maximum principle in the considered problem can be interpreted as the method of 

characteristics of the dynamic programming approach for construction of the value 

function. The obtained formulas constitute the basis for analysis and solution of the 

problem of choosing optimal commercialization time. Appropriateness of application of 

methods of optimal control theory is confirmed by results of computer simulations on 

the basis of the real data which show that the synthetic model trajectories fit well to 

actual trends of financial flows of investment scenarios.  

A sensitive part of the model is the stochastic description of the market behavior. This 

block is based on different types of probabilistic distribution for simulation of the price 

formation mechanism and identification of the technological trajectories of the market.  

The solution to the problem of construction of optimal investment policy is based on the 

analysis of the properties of the profit function and its dependence on stopping time of 

the process. This stopping time is called the commercialization time of the innovation 

process. The profit function is calculated as the discounted balance between benefits of 

innovation and investment costs. It has been proven that the extremum of the profit 

function coincide with the points of intersection of two functions one of which is the 

market distribution function that describes the market price formation mechanism and 

the other is the marginal costs of the project of technology innovation.  

The model parameters are identified on the basis of the econometric data analysis for 

the CANON firm provided by the Tokyo Institute of Technology. For this data it is 

shown that the unique stable point of profit maximum for all states of the technology 

trajectory of the innovator exists. These results select the unique innovation scenario for 

the CANON firm and prescribe the sustainable tracking of this scenario. 

1. Dynamic Model of Innovation Strategy 
We consider the dynamical model of innovation strategy for an innovating firm. 

The model focuses on three interacting objectives of decision-making: (i) dynamical 

modeling and econometric analysis of the market of new technology; (ii) selection of 

the innovation scenario with optimization of the innovator’s commercialization time; 

(iii) optimal control design of the investment policy. 

  

In the problem (iii) of the optimal investment we assume that the current technology 

stock  is subject to the growth dynamics with the time-delay and obsolescence 

effects 

)(tx

(1.1))()()( trtxtx a

γσ +⋅−=&       

Here parameter 0>σ  is coefficient of technology obsolescence, the control parameter 

 is the index of R&D investment, parameter 
)(tra γ , 10 << γ  is the time-delay 

exponential coefficient.  Note that dynamics (1.1) describes the energetic behavior of 
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the innovator since the controlled investment 
)(⋅ar  directly influences the technology 

rate x& .  The homogeneous part of equation (1.1) is the Maltus’ law for diminishing 

processes. 

 

The innovator starting the innovation process at time  from the initial level  of the 

technology stock  should reach at the commercialization time  the level , 

 which is necessary for launching commercialization. In this investment process 

the innovator is minimizing its expenditures 

0t 0x

)(tx at ax

0xxa >

∫ −=⋅ at

t

a

s

aaa dssrerxtxtJ

0

)(),,),(,,,,( 00

λσλγ  (1.2)

),,,,,,,()( 00 σλγaaaaa xtxtsrsrr ==  

here parameter 0>λ  is a constant rate of discount, and functional (1.2) is the net 

present value of the innovation.  

The dynamic optimization problem with dynamics (1.1) and the functional of 

expenditures (1.2) can be treated in the framework of optimal control theory (see 

Pontryagin, Boltyanskii, Gamkrelidze, Mishchenko, 1962; Arrow, 1985). 

Assume that the problem (iii) is solved. Denote by the symbol  the optimal 

investment intensity, and by the symbol  the corresponding scenario of the 

technology growth. Substituting the optimal intensity into the functional (2.1) one can 

calculate the optimal total investment 

)(00 srr aa =
)(00 sxx =

∫ −= at

t

a

s

aa dssrextxtw

0

)(),,,,,,( 0

00

λσλγ  (1.3)

Fixing in relation (1.3) parameters σλγ ,,,, aa xt  and varying initial positions 

),(),( 00 xtxt =  one can consider the series of value functions (optimal result functions) 

),,,,,,(),( σλγaa xtxtwxt →  (1.4)

parameterized by variables σλγ ,,,, aa xt . In the problem (ii) of selecting the innovation 

scenario we will be interested in the dependence of the series )(⋅w  (1.4) with respect to 

the commercialization time  and consider this time as the basic parameter of at

optimization. 

The stochastic model for the description of dynamics of the market is considered in  

problem (i). The probability of the presence of new agents on the market at the current 

time  is defined by the distribution function . This function is being constructed 

on the basis of analysis of econometric parameters of the market. The sensitivity 

analysis of the considered functions of parameters allows modeling the possible 

distribution functions of the market. Then one can forecast possible technological 

trajectories of the market and solve the decision-making problems for the innovator. 

t )(tF
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We consider some distribution functions that are well known from the theory of 

econometrics and statistics and fit the statistical data on the price parameters and sales 

of the market. These distribution functions are defined by parameters that can be 

economically interpreted and have some basic numerical characteristics.  

Using standard software for econometric and statistical data analysis (SPSS13, 

STATISTICA6), we identify the parameters of distribution functions from the real 

statistical data on the market of considered innovation technology. The results of 

analysis of real data provided by the Department of Industrial Engineering and 

Management of Tokyo Institute of Technology show that the following distribution 

functions fit quite well to the data and can be used for description of the price formation 

mechanism of the market: distribution with δ-function, exponential distribution, logistic 

and bi-logistic curves, Johnson-Schumacher distribution, Weibull distribution: 

 

Distribution with δ-function ⎩⎨
⎧

+∞<<
≤<∞−=

xx

xx
xF

0

0

,1

,0
)(  

Exponential distribution )( 10)(
xbb

ecxF
++=  

Logistic curve xb
eb

b
xF

3
2

1

1
)( −+=  

Johnson-Schumacher distribution ⎟⎟⎠
⎞⎜⎜⎝

⎛
+
−=

)(
exp)(

3

2
1

bx

b
bxF  

Weibull distribution )exp()( 4
321

b
xbbbxF −−=  

  

Further, to model the market technology trajectories of the exponential growth we apply 

“heavy” dynamics, which describes the inert behavior of the market environment  

)()()()()()( tytztytrtyty b +⋅σ−=+⋅σ−=&  
(1.5) 

)()( tvtz =& , 0)( vtv ≤  

Here parameter  stands for the average market technology stock, parameter  

denotes the average market investment, and variable 

)(ty )(trb

( ) ( ) / ( )bz t r t y t=  is the market 

R&D intensity. 

The market dynamics with the small acceleration describes the exponential growth of 

the market technology stock . The small variations of the second derivative  of 

the market technology stock describe the small variations  of R&D intensity.Let us 

)(ty )(ty&&

)(tz&
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introduce the benefit function )(⋅d  of commercialization of the new technology as the 

total average present value of revenues. Denote by the symbol  the usual amount of 

sales of innovator; by the symbol  - bonus sales of innovator; by the symbol 

aS

bS ( )f τ  - 

the density of distribution function that describes the probability of presence of all 

technology agents on the market at time τ . Let time  denote the beginning of 

investment process. Let us fix time  and denote random variable that describes the 

bonus sales at time  by the symbol 

at

as t≥
s ( , )b sξ τ   

0,
( , )

,
b

b

s
s

S s

τξ τ
τ

⎧ <⎪= ⎨⎪ ≥⎩
 

(1.6) 

The expectancy of random bonus sales ( , )b sξ τ  (average expected sales) at time  is 

defined by the following formula (1.7) 

s

( , ) ( , ) ( ) ( ) ( ( ) ( ) ) (1 ( ))

s

b b b b b

s

s s f d S f d S f d f d S F sξ ξ τ τ τ τ τ τ τ τ τ+∞ +∞ +∞

−∞ −∞ −∞
Ε ⋅ = = = − = −∫ ∫ ∫ ∫   

Here function  stands for the probability distribution function describing presence 

of technological competitors on the market. 

( )F s

We assume that sales are subject to exponential growth with the rate μ  of discounted 

stream of innovation (see Barzel, 1968). The coefficient of discount λ  is chosen on the 

level of average values of the internal rate of return of innovation.  The rate μ  of 

discounted stream of innovation and the constant rate λ  of discount are connected by 

inequalities 0 μ λ< < . 

The benefit function  of innovation is the total revenues  estimated on the usual 

level of sales. The expected bonus sales 

)(⋅d aS

bξ  are described by the money-flow discounted 

to the initial time   at

∫∞ −−−+=⋅=
at

)s(
babaa dsF(s)))e(S(S)),F(,,S,Sd(td 1, . (1.8) 

Let us introduce the profit function )(⋅R  of the innovation (the net present value of 

innovation) as the balance of the benefit function )(⋅d  and the optimal investment 

expenditures  )(⋅w

( , , , , , , , , , , ( )) ( , , , , , ( )) ( , , , , , , )a a a b a a b a aR t x t x S S F d t S S F w t x t xγ λ μ σ λ μ γ λ σ⋅ = ⋅ − . (1.9)

The key problem of the innovator is to maximize its profit R  in the dynamical 

investment process. The optimal solution essentially depends on the distribution 

function  of the market commercialization. Identifying dynamically the possible 

distribution functions of the market, the innovator can choose the possible scenarios of 

optimal investment policy which correspond to the profit function 

( )F ⋅
)(⋅R . 
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Combining all three levels of the model: (i) identification of the market trajectories, (ii) 

scenarios selection, and (iii) feedback optimization of the investment level, we obtain 

the dynamic design of the optimal innovation strategy. 

2.  Dynamic Optimality Principles and Investment Synthesis 
Let us consider the first problem of optimal control design for the investment level. 

To reach this objective we are dealing with the investment dynamics (1.1) of the 

innovator and its expenditure functional (1.2). Introducing notations 

(2.1) )()( trtu a

γ= , attt ≤≤0 , 10 << γ , 

we obtain the optimal control problem with the linear dynamics for the growth of the 

technology stock   )(tx

(2.2) )()()( tutxtx +−= σ& , 

and the exponential expenditure functional 

∫ −=⋅ at

t

s

aa dssueuxtxtJ

0

)(),,),(,,,,( 00

αλσλγ , (2.3) 

1
1 >= γα ,  ),,,,,,,()( 00 σλγaa xtxtsusuu == . 

The problem is to find the optimal investment level  and the corresponding 

trajectory  of the technology stock subject to dynamics (2.2) for minimizing the 

expenditure functional (2.3). 

)(0 ⋅u

)(0 ⋅x

As an example, let us consider the new variable 

∫ −= t

t

s dssuetw

0

)()( αλ  (2.4) 

for the accumulated effective R&D investment and substitute the problem with integral 

functional (2.2), (2.3) by the terminal optimal control problem 

)()()( tutxtx +−= σ&  
(2.5) 

)()( tuetw t αλ−=&  
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with the following boundary conditions 

00 )( xtx = ,  aa xtx =)( ,  00 )( wtw = , (2.6)

00 ≥> tta ,  ,  .  00 ≥> xxa 00 ≥w

For dynamics (2.5) it is necessary to minimize the terminal boundary value of 

coordinate  at time  )(tw at

(2.7) 
))(),(),((

min)( ⋅⋅⋅→
wxu

atw , 

or equivalently to maximize the terminal boundary value of negative coordinate  

at time  

)(tw−
at

))(),(),((
max)( ⋅⋅⋅→−

wxu
atw . 

(2.8)

We solve the problem of optimal investment (2.5), (2.8) using Pontryagin’s maximum 

principle (see Pontryagin, Boltyanskii, Gamkrelidze, Mishchenko, 1962). We find the 

optimal investment process  as the planned scenario, starting 

from the initial position . We then synthesize the equivalent optimal feedback 

procedure  which react in the interactive regime on the current position  

of the technology stock and generate the same optimal trajectory . Finally, we 

calculate the optimal accumulated R&D investment 

))(),(),(( 000 twtxtut →
),,( 000 wxt

),( xtuu = ),( xt

)(0 txt →
)(⋅w  as the function of the 

problem’s parameters σλα ,,,,,, 00 aa xtxt . Function )(⋅w  is called the value function of 

the optimal control problem (2.8). 

One can calculate the expression for the optimal investment plan  

 
)(

)(
),,,,,,,(

)()(

)(

0

)(

00

00

0

0

ρρ
σσ ρσλα

tsst

tsst

a
aa

ee

exex
xtxtsuu

a

a

−−−
−−−

−
−== . (2.9) 

Remark 2.1. The optimal investment plan  (2.9) is the exponential growing 

function of time on the time interval  with the growth rate 

)(0 su

s ],[ 0 att )1/()( −+ ασλ . 

3. Sensitivity Analysis of Optimal Investment Plan 

Let us examine the sensitivity of the optimal investment plan  (2.9) with 

respect to parameters 

)(0 ⋅uα , λ , σ . One can prove the following results. 

Proposition 3.1. For the range of time  s

(3.1) ]2/)(,[ 00 attts +∈  
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the level of the optimal plan  (2.9) decreases to zero, while the discount parameter )(0 suλ  grows to infinity, or parameter α declines to unit. 

If time is located in the second half of time interval s ],[ 0 att  

),2/)(( 0 aa ttts +∈ ,     (3.2) 

then the level of the optimal plan  (2.9) first grows and then declines to zero, 

while the discount parameter 

)(0 suλ  grows to infinity, or parameterα  declines to unit. 

For time  the level of optimal plan  (2.9) first grows and then 

decreases to zero, while the obsolescence parameter 

),2/)[( 0 aa ttts +∈ )(0 su

σ  grows to infinity. For time 

 there are two alternatives for the level of the optimal plan 

(2.9) depending on the values of parameters 

)2/)(,[ 00 attts +∈ )(0 su  

att <0 , axx <0  и 1>α , 0>λ : it can 

strictly decline to zero, or it can first grow and then decline to zero, while the 

obsolescence parameter σ grows  to infinity. 

At the final moment of time 

ats =   

the level of the optimal plan  (2.9) grows to infinity, while the discount parameter )(0 suλ  grows to infinity, or the obsolescence parameter σ grows to infinity, or parameter α   

declines to unit. 

Remark 3.1. Proposition 3.1 means that the optimal investment plan  (2.9) 

asymptotically has an impulse character: for the discount parameter 

)(0 su

0>λ , or the 

obsolescence parameter 0>σ  tending to infinity, or the delay parameter 1>α  tending 

to unit, the optimal investment level  (2.9) converges to zero for times )(0 su atst <≤0  

and it converges to infinity for . ats =
The properties of solution indicated in proposition 3.1. are shown in Fig. 3.1 and Fig. 

3.2. 
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Fig. 3.1. Sensitivity analysis of the optimal investment plan with respect to parameter γα /1=  of time-delay of investments.  

 

 

Fig 3.2. Sensitivity analysis of the optimal investment plan with respect to the discount 

coefficient λ . 
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4. Optimal Technological Trajectories 
In this section we analyze properties of optimal technological trajectories. 

Substituting the optimal control plan  (2.9) into the Cauchy formula (2.5) for 

technological trajectories  we obtain the optimal technological trajectory  

)(0 ⋅u

)(⋅x

0 0

0

0

( ) ( )
( )0 0

0 ( )

( )(
( ) ( )

( 1)

a

a

t t s t
s t a

t t

e x x e
x s e x

e

σ ρσ
ρ

− −− −
−

1)− −= + − . (4.1) 

Let us indicate properties of the optimal technological trajectory  (4.1). We begin 

with indicating boundaries for its values. It is possible to prove the following 

statements.  

)(0 ⋅x

Proposition 4.1. The values of the optimal technological trajectory  (4.1) are 

restricted by boundaries 

)(0 ⋅x

(4.2) 
axsx ≤≤ )(0 0 ,  atst ≤≤0 . 

Proposition 4.2. The monotonicity condition with respect to commercialization time t  

is valid for the optimal technological trajectories 

a

)(0 ⋅x  

(4.3) )'',()',( 00

aa tsxtsx > ,  t aa t ''' < ,  t }'','min{0 aa tts ≤<  

Monotonicity condition (4.3) means that optimal technological trajectories for different 

commercialization times  don’t intersect each other and thus form the field of 

characteristics. 

at

Proposition 4.3. At the commercialization t  the rate  of the technological 

trajectory  is positive. 

a )(0

atx&

)(0 ⋅x

At the initial time t  the rate  of the technological trajectory  could be 

positive and negative. Two scenarios depending on the sign of the function 

0 )( 0

0 tx& )(0 ⋅x

)1(

)(
)(

)(

0

)(

0

0

−
−= −

−
tt

a

tt

a
a

a

e

xxe
tf ρ

σ
 with time t  as a parameter are possible. 0

The growth scenario 

ρ
σ>)( atf ,  0)( 00 >tx& (4.4) 

takes place for small innovation times )( 0tta − . 

The scenario with recession  

ρ
σ≤)( atf , 0)( 00 <tx&  (4.5) 
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corresponds to the optimal technological trajectories  first decreasing and then 

converging to the final level . 

)(0 ⋅x

0xxa >
The peculiarities of investment trajectories given in Propositions 4.1-4.3 are indicated in 

Fig. 4.1. 

 

 

 

Fig. 4.1. Sensitivity analysis of the optimal technological trajectories with respect to the 

commercialization time . at

5. The Value Function and Optimal Feedback for Technological 
Dynamics 

Let us pass now to the analysis of the value function , 

 

),(),( xtwxt →
),(),( 00 xtxt =

∫ === −at

t

s

aa dssuextxtww αλσλα ))((),,,,,,( 0
 

(5.1) 

∫ == −
+

−at

t

s

aa dseextxtK )1(

)(

),,,,,,( α
σλα

λα σλα  
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=−
−ρ=

−
−⎟⎟⎠

⎞⎜⎜⎝
⎛

−α
λ+ασ

−α−ρ
α−σλ−−α

−α−−α
λ+ασ

α−σλ−−α
)1()(

)(
)1(

)1(
)(

)1(

)(

)()1(

)1(

)(

)1(

)(

)1(

)(

tt
a

ttt

tt

a
ttt

a

a

a

a

e

xxee

e

xxee
 

)1()(

)(
)1(

)1(

)(

−α−ρ−
α−σ−λ−−α

−
−ρ

tt

tt
a

t

a

aa

e

xexe
, 

)1(

)(

−
+= α
λασρ . 

Let us indicate properties of the value function )(⋅w  with respect to the optimization 

parameter – the commercialization time . One can prove the following results. at

Proposition 5.1. For the fixed parameters α , λ , σ , initial condition  and the 

commercialization technology level  x  the value function  (5.1) has the 

following properties as function , 

),( xt

ax , xa > )(⋅w

)( aa twt → ),,,,,,()( σλαaaa xtxtwtw =  of the 

commercialization time  at :

it converges  to infinity when the commercialization time  tend to the initial time t  at

+∞→)( atw , ; tta ↓
it decreases to zero with the exponential rate λ−  when the commercialization time 

converges to infinity 

at  

0)( →atw , +∞→at , . +∞<=+∞→ aa

t

t
wtwe a

a

)(lim
λ

Remark 5.1 The optimal investment feedback is quite clear: if the current technology 

stock  does not yet reach the commercialization level  , then the 

optimal R&D investment level  increases proportionally to the difference 

 with the intensification coefficient 

)(txx = ax , axx <
0u

)(
)(

xxe a

tta −−σ )1(
)( −−ttae

ρρ . This coefficient 

rapidly increases when time t  approaches the commercialization time  and enforces 

the innovator to reach the commercialization technology level  with the 

optimal expenditure. 

at

axtx ↑)(

The typical trends of the value function are shown in Fig. 5.1. 
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Fig. 5.1. The graph of dependence of the cost function on the commercialization time. 

6. Selection of Optimal Scenario and Commercialization Time 
Let us introduce the profit function of innovation. It is reasonable to use the 

usual structure of profit from innovation as a balance between benefit from 

commercialization of new technologies and expenditure for creating new technologies. 

The benefit from commercialization of a new technology can be expressed by the 

amount of sales of goods in which this technology is embedded (see Barzel, 1968).  Let 

us assume that the innovator has the usual amount of sales . In the case when the 

innovator has the leading position on the market, he can obtain bonus sales . The 

competitive activities on the innovation market are presented by the density distribution 

aS

bS

( )f τ  that describes the probability of presence of agents on the market at time τ . Let 

us fix time  and introduce the random variable for the bonus sales of the innovator 

as follows 

as t≥

0,
( , )

,
b

b

s
s

S s

τξ τ
τ

⎧ <⎪= ⎨⎪ ≥⎩
 (6.1) 

The expectancy of random bonus sales ( , )b sξ τ  (average expected sales) at time  is 

defined by the following construction 

s

( , ) ( , ) ( ) (1 ( ))b b bs s f d S Fξ ξ τ τ τ+∞

−∞
Ε ⋅ = = −∫ (6.2) s . 

Here function  stands for the probability distribution function describing presence 

of technological competitors on the market. 

( )F s
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The benefit function  of innovation is the total revenues  estimated at the usual 

level of sales. The expected bonus sales 

)(⋅d aS

bξ  are described by the money-flow discounted 

to the initial time   at

 . ∫∞ −−−+=⋅=
at

)s(
babaa dsF(s)))e(S(S)),F(,,S,Sd(td 1, (6.3) 

Let us introduce the profit function )(⋅R  of the innovation (the net present value of 

innovation) as the balance of the benefit function )(⋅d  and the optimal investment 

expenditures                            (6.4) )(⋅w

( , , , , , , , , , , ( )) ( , , , , , ( )) ( , , , , , , )a a a b a a b a aR t x t x S S F d t S S F w t x t xγ λ μ σ λ μ γ λ σ⋅ = ⋅ −  
 

)1()(

)(
)1()(

)1(

)(
)))(1(( −α−ρ−

α−σ−λ−−α∞ μ−λ−
−

−ρ−−+∫ tt

tt
a

t

t

s
ba

a

aa

a
e

xexe
dsesFSS , 

)1(

)(

−
+= α
λασρ . 

The key problem of the innovator is to maximize its profit R  in the dynamical 

investment process. Let us look for the maximum point of profit function R  by 

considering the following equation 

0=∂
∂

at

R
. (6.5) 

Resolving equation (6.5) with respect to the commercialization time  as parameter we 

find the moments of time  maximizing the profit function . Let us calculate the 

first derivative of the profit function  in time   

at

at )( atR

)( atR at

a

t
aba

aaa t

w
etFSS

t

w

t

d

t

R
a ∂

∂−−+−=∂
∂−∂

∂=∂
∂ μ−λ− )(

)))(1(( . (6.6) 

Substituting this derivative (6.6) into an equation (6.5) we obtain the following equation 

b

t

ab

a
a

S

e

t

w

S

S
tF

a)(

1)(
μ−λ

∂
∂++= . (6.7) 

Equation (6.7) means that the maximum profit function R  attains at the points of 

intersection of two functions. One of these functions is the market distribution  

that describes the market price formation mechanism and another one is the scaled 

marginal costs 

)( atF

a

a

t

tw

∂
∂ )(

  of the project of technology innovation. 

Let us examine the properties of the first derivative 
a

a

t

tw

∂
∂ )(

 of the value function   )( atw
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−−
−−σαρ=∂

∂
−α−ρ−

−α−ρ−−α−σ−−σ−λ−−α
)1(2)(

)1()()1()()(
)1(

)1(

)1()(
((

)(

tt

tttt
a

tt
t

a

a

a

aaa
a

e

exexex
e

t

tw
 

−−
−−ρ−α

−α−ρ−
α−σ−−α−ρ−−ρ−

)
)1(

)()1()1(

)1(2)(

)()2()()(

tt

tt
a

tttt

a

aaa

e

xexee
 

(6.8) 

)
)1(

)(

)1()(

)(

−α−ρ−
α−σ−λ−

−
−λ−

tt

tt
at

a

a
a

e

xex
e . 

Proposition 6.1. For the fixed parameters α , λ , σ , initial condition  and the 

commercialization technology level  x  the first derivative of the value function 

with respect to time  has the following properties as function 

),( xt

ax , xa >
at

a

a
a

t

tw
t ∂

∂→ )(
 of the 

commercialization time  at :

it decreases to infinity when the commercialization time  tends  to the initial time t  at

−∞→∂
∂

a

a

t

tw )(
, ; tta ↓

it decreases to zero when the commercialization time  tends to infinity at

0
)( →∂

∂
a

a

t

tw
, +∞→at . 

Proof. Let us denote by symbols  and  the following functions: a b

)(
)( tt

a
axexa
−σ−−= ,  axxe a

tta −=−σ− )(
(6.9)

)1(
)( ttaeb

−ρ−−= ,  be
tta −=−ρ−

1
)(

Substituting  and  (6.9) into expressions (5.1 and 6.8) we obtain the following 

constructions for the value function  and its derivative 

a b

)( atw
a

a

t

tw

∂
∂ )(

: 

)1(
)1(

)1()(

)(
)1(

)1(

)(
)( −α

αλ−−α−α−ρ−
α−σ−λ−−α ρ=−

−ρ=
b

a
e

e

xex
etw a

a

a
a t

tt

tt
at

a ,  (6.10)

=λ−−ρ−α−−ασρ= −α
α

−α
−αα−α−αλ−−α )

)1()1()(
(

)(
)1()1(2

)2()1()1(
)1(

b

a

b

babbaax
e

dt

tdw at

a

a a  
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))1()1(( 11
)1(

)1( λ−ασ−ρ−α+ρ−α−ασρ −−−α
αλ−−α bax

b

a
e a

ta . (6.11) 

One can note that the derivative 
a

a

t

tw

∂
∂ )(

 (6.11) of the value function  can be 

expressed through the value function  (6.10) itself. Returning to the original 

parameters we obtain the following construction                (6.12) 

)( atw

)( atw

=λ−ασ−λ+ασ+λ+ασ−ασρ= −−−α
αλ−−α ))((

)( 11
)1(

)1( bax
b

a
e

dt

tdw
a

t

a

a a  
 

)
)1(

)(

)(
)(())()((

)()(
11

tttt
a

a
aaa

aa exex

x
twbaxtw −ρ−−σ−−−

−
λ+ασ−−

ασ=λ+ασ−ασ . 

Denoted by the symbol  the function of commercialization time  )( atq at

)1(

)(

)(
)(

)()( tttt

a

a

a
aa eexx

x
tq −⋅⋅−−⋅⋅− −

+⋅−⋅−
⋅⋅= ρσ

λσασα
, (6.13)

we present the derivative of the value function as a result of the multiplication of two 

functions 

)()(
)(

aa
a

a tqtw
t

tw ⋅=∂
∂

. (6.14)

Let us examine the properties of function . For convenience we express 

function  (6.13) in the following form: 

)( aa tqt →
)( atq

=−⋅−
−λ+ασ−−ασ= −ρ−−σ−

−σ−−ρ−
)1()(

))(()1(
)(

)()(

)()(

tttt
a

tt
a

tt
a

a
aa

aa

exex

xexex
tq  

(6.15) 

)1)((

)(
)()(

)()(

tttt
a

a
tt

a
tt

aa

aa

exex

xexxe
−ρ−−σ−
−ρ−−σ−

−−
λ−ασ−λ+ασ

. 

Let us calculate the limits of function  (6.15): )( atq

−∞=−⋅−
−⋅+⋅=

→ )11()(

)()(
)(lim

xx

xx
tq

a

a
a

tta

λσα
, 

(6.16) 

λλ −=⋅−=
∞→ a

a

a
t x

x
tq

a

)(lim . 
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Proposition 5.1 implies that the value function  has the following asymptotic 

behavior 

)( atw

∞=
→

)(lim a
tt

tw
a

, 

(6.17) 

0)(lim =
∞→ a

t

tw

a

. 

Combining expressions (6.16), (6.17) we obtain the necessary relations for limits of 

derivative 
a

a

t

tw

∂
∂ )(

  

( )
( ( ) ( ))lim lim

a a

a
a a

t t t ta

w t
w t q t

t→ →
∂ = = −∞∂ , 

(6.18) 

( )
( ( ) ( )) 0lim lim

a a

a
a a

t ta

w t
w t q t

t→∞ →∞
∂ = =∂ . 

Proposition 6.2. There is at least one solution to the equation (6.7). 

 
Proof. The solution of equation 6.7 coincides with the moments of time  at which 

distribution function of the market meets the function of the scaled marginal 

costs 

at

)( atF

a

a

t

tw

∂
∂ )(

 in equation 6.7. The probabilistic distribution  is continuous on the 

whole time interval and its values belong to the interval . 

)( atF

]1,0[

Let us examine the function of the scaled marginal costs 
a

a

t

tw

∂
∂ )(

 in equation 6.7. Using 

expressions (6.18) we obtain the following relations for limits of this function 

−∞=⎟⎟⎠
⎞

⎜⎜⎝
⎛

∂
∂++ μ−λ

→ b

t

ab

a

tt S

e

t

w

S

S a

a

)(

1lim , 

(6.19) 

111
)(

lim >+=⎟⎟⎠
⎞

⎜⎜⎝
⎛

∂
∂++ μ−λ

∞→ b

a

b

t

ab

a

t S

S

S

e

t

w

S

S a

a

. 

Since the function 
a

a

t

tw

∂
∂ )(

 is continuous and grows asymptotically according to (6.19) 

the value larger than 1, there exists then at least one point of intersection of this function 

with the distribution function . )( atF

The practical consequence of Proposition 6.2 is the algorithm of construction of the 

innovation scenario. That is, the points of local maximum of profit function obtained as 

the points of intersection of scaled marginal costs and market distribution function 

assign different scenarios for the investment process. The optimal strategy of the 
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innovator should be constructed in the following way: Staying at the current position of 

the investment trajectory (4.1) the innovator estimates the market condition by means of 

the distribution function (6.7) and forecasts its behavior according to dynamics (1.5). 

Furthermore, he compares this prediction with his function of the scaled marginal costs 

(6.6). This comparison extracts the final set of scenarios that are defined by points of 

intersection. The innovator selects a scenario with the maximum income and follows it 

according to the optimal investment plan (2.9) until the next moment of decision-

making. This procedure is repeated for all positions of decision-making on the 

investment trajectory.  

7. Econometric analysis of the model 

 Econometric analysis of the models and identification of its parameters is made 

on the basis of the data provided by the Tokyo Institute of Technology (see [12]). In 

particular, the innovation process for technology of CANON laser printers has been 

studied. The data is presented by time series on R&D expenditure, technology stock, 

sales of printers, and prices of printers measured in money equivalent. Details of the 

basic results of econometric analysis are given in this section. 

7.1. Identification of the coefficient of technology obsolescence 

For the econometric identification of the coefficient of technology obsolescence  in 

the equation of investment dynamics (1.1) we consider the following model  

σ

ttxmtr
dt

tdx ε+σ−=−− )()(
)(

. (7.1)

Here symbol  denotes the value of technology stock, symbol  denotes the 

rate of technology stock, parameter 

)(tx dttdx /)(

)( mtr −  describes R&D investment in a period of 

, where parameter  assigns the time-delay effect in investment realization, and 

errors of the model are denoted by symbol 

mt − m

tε . 

Data for variables of the econometric model are given in Table 7.1. By doing 

calculations it is assumed that the value of the parameter  is equal to three years of 

delay, , according to the average data on electronic industry of Japan. In Table 7.1 

and Table 7.3 the R&D expenditure and the technology stock are measured in yen 100 

million at 1995 fixed prices. 

m

3=m
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Table 7.1. Data on delays of R&D investments, technology stock and its rates for the 

Canon company from 1982-1998. 

Years R-R&D X - stock dX/dt dX/dt-R(t-m) Y 

1982 3,13     

1983 3,99     

1984 5,23 10,521    

1985 6,68 12,324 1,803 -1,327 1,327 

1986 7,82 14,625 2,301 -1,689 1,689 

1987 8,75 17,632 3,007 -2,223 2,223 

1988 10,91 21,681 4,049 -2,631 2,631 

1989 12,42 26,91 5,229 -2,591 2,591 

1990 13,88 32,924 6,014 -2,736 2,736 

1991 15,54 39,466 6,542 -4,368 4,368 

1992 16,45 47,729 8,263 -4,157 4,157 

1993 17,61 56,952 9,223 -4,657 4,657 

1994 21,17 67,015 10,063 -5,477 5,477 

1995 23,1 78,065 11,05 -5,4 5,4 

1996 28,32 89,284 11,219 -6,391 6,391 

1997 32,25 100,907 11,623 -9,547 9,547 

1998 35,25 115,321 14,414 -8,686 8,686 

 

For calculations of the model (7.1) the standard program Data Analysis - Regression in 

Excel has been used. The value of the coefficient of technology obsolescence is 

identified on the level . The high value of determination coefficient R-

squared, , high value of t-statistics, 

0,094518=σ
0,9029022 =R 23,843209=− statisticst  and small 

values of P-value, , indicate the high statistic significance of the model and 

the high accuracy of econometric calculations.  

-12104 ⋅=P

 

The detailed report on the results of econometric regression for the coefficient of 

technology obsolescence  is given in Table 7.2. σ
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Table 7.2. Results of calculations for the coefficient of technology obsolescence. 

 Regression Statistics 

 Multiple R  0,950211339 

 R Square  0,902901589 

 Adjusted R Square  0,825978512 

 Standard Error  0,78168997 

 Observations  14 

 

 ANOVA df SS MS F Significance F 

 Regression 1 73,86534 73,86534 120,8848 1,2737E-07 

 Residual 13 7,94351 0,611039   

 Total 14 81,80885    

 

 Coefficients Coefficients Standard Error t Stat P-value Lower 95% Upper  95%

 X Variable 1 0,094518182 0,003964155 23,843209 4,092E-12 0,085954147 0,103082217

7.2. Identification of the cost-effectiveness coefficient 

The cost-effectiveness coefficient  can be determined from the model (7.2) in which 

amortization factor 

γ
σ  is identified. To be more precise, the following model is used for 

econometric identification of the cost-effectiveness coefficient   γ
ttrtx

dt

tdx ε+=−σ− γ )()1(
)(

. (7.2)

Here, as above, variable  is the current technology stock of innovator in a period 

of ; variable  denotes the rate of technology stock; parameter 

)1( −tx

)1( −t dttdx /)( σ  is the 

coefficient of technology obsolescence; parameter  denotes R&D investments, and 

errors of the model are denoted by symbol 

)(tr

tε . 

Data for model 7.2 is given in Table 7.3. 
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Table 7.3. Data on logs of R&D investments, technology stock and its rates for the 

Canon company from 1984-1998. 

Years X-stock R-R&D DX DX-sig*X(t-1) LN(Y) LN(R ) 

1984 10,521      

1985 12,324 6,68 1,803 2,967842 1,087835 1,899118 

1986 14,625 7,82 2,301 3,683328 1,303817 2,056685 

1987 17,632 8,75 3,007 4,673545 1,541918 2,169054 

1988 21,681 10,91 4,049 6,098249 1,808002 2,38968 

1989 26,91 12,42 5,229 7,772484 2,05059 2,519308 

1990 32,924 13,88 6,014 9,125917 2,211118 2,630449 

1991 39,466 15,54 6,542 10,27225 2,329447 2,743417 

1992 47,729 16,45 8,263 12,77426 2,547432 2,800325 

1993 56,952 17,61 9,223 14,606 2,681432 2,868467 

1994 67,015 21,17 10,063 16,39714 2,797107 3,052585 

1995 78,065 23,1 11,05 18,42856 2,913902 3,139833 

1996 89,284 28,32 11,219 19,65796 2,978482 3,343568 

1997 100,907 32,25 11,623 21,16055 3,052138 3,473518 

1998 115,321 35,25 14,414 25,31393 3,231355 3,562466 

 

The calculations of model 7.2 give the following results. The value of the cost-

effectiveness coefficient is identified on the level 0,856144=γ . The high value of 

determination coefficient R-squared, , high value of t-statistics, 

 and small values of P-value, , indicate the 

statistic significance of the model and the reasonable accuracy of econometric 

calculations.  

0,8552232 =R

734,5839709statisticst =− -14103,5 ⋅=P

The detailed results of econometric calculations are given in Table 7.4. 

 21



Table 7.4. Results of calculations for the cost-effectiveness coefficient. 

 Regression Statistics 

 Multiple R  0,924782665 

 R Square  0,855222978 

 Adjusted R Square  0,778299901 

 Standard Error  0,259905848 

 Observations  14 

 

 ANOVA df SS MS F Significance F 

 Regression 1 5,187465 5,187465 76,79325 1,46187E-06 

 Residual 13 0,878163 0,067551   

 Total 14 6,065628    

 

 Coefficients Coefficients Standard Error t Stat P-value Lower 95% Upper  95%

 X Variable 1 0,856143556 0,024755501 34,58397097 3,4946E-14 0,802662556 0,909624556

7.3. Identification of the rate of the discounted stream of innovation  

Parameter μ  that determines the rate of the discounted stream of innovation is identified 

on the basis of data on the sales level of CANON laser printers. The exponential model 

is the adequate construction for description of this economic process 

tt
P

S

tP

tS ε+μ+=
0

0ln
)(

)(
ln . (7.3)

Here parameter  is the sales time series, variable  describes the price 

dynamics, parameter t  provides the exponential time trend with the growth rate μ , and 

symbol  denotes errors of the model. 

)(tS )(tP

tε
Data for model (7.3) is given in Table 7.5. The prices of printers are measured in yen 

10,000  at 1995 fixed prices and the sales of printers are measured in yen 100 million at 

1995 fixed prices. 
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Table 7.5. Data on prices and sales of Canon printers from 1985-1998. 

Years P-prices S-sales Y=S/P LN(Y) t - time 

1985 76,346 302 3,955675 1,375151 0 

1986 47,051 529 11,24312 2,419756 1 

1987 32,702 883 27,00141 3,295889 2 

1988 23,608 1302 55,1508 4,010071 3 

1989 18,139 1753 96,64259 4,57102 4 

1990 14,517 2084 143,5558 4,966724 5 

1991 11,716 2782 237,4531 5,46997 6 

1992 9,55 3585 375,3927 5,927973 7 

1993 8,234 4025 488,8268 6,192008 8 

1994 7,189 4605 640,562 6,462346 9 

1995 6,3 5801 920,7937 6,825236 10 

1996 5,463 7478 1368,845 7,221723 11 

1997 4,995 7914 1584,384 7,367951 12 

1998 4,436 9058 2041,93 7,621651 13 

 

The following results have been obtained for the model (7.3). The value of the growth 

rate of the discounted stream of innovation is identified on level 0,448931=μ . The high 

value of determination coefficient R-squared, , high value of t-statistics, 

 and small values of P-value, , indicate the 

statistic significance of the model and the high accuracy of econometric calculations.  

0,9500082 =R

15,100957statisticst =− -9103,599 ⋅=P

The detailed results of econometric analysis for model 7.4 are shown in Table 7.6. 
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Table 7.6. Results of calculations for the growth rate of the discounted stream of 

innovation. 

 Regression Statistics 

 Multiple R 0,974683593

 R Square 0,950008106

 Adjusted R Square 0,945842115

 Standard Error 0,448400591

 Observations 14 

 

 ANOVA df SS MS F Significance F 

 Regression 1 45,85021 45,85021 228,0389 3,59937E-09 

 Residual 13 2,412757 0,201063   

 Total 14 48,26297    

 

 Coefficients Coefficients Standard Error t Stat P-value Lower 95% Upper  95%

 Intercept 2,348193801 0,2273806 10,327151 2,526E-07 1,85277404 2,843613562

 X Variable 1 0,448931376 0,02972867 15,100957 3,599E-09 0,38415817 0,513704582

  

7.4. Identification of the distribution function 

The stochastic model is based on different types of distribution functions: distribution 

with δ-function, exponential distribution, logistic and bi-logistic curves, Johnson-

Schumacher distribution, Weibull distribution, All are used for the description of price 

formation mechanism of the market. Numeric experiments prove that the most fitting 

distributions for the CANON data are exponential distribution and Johnson-Schumacher 

distribution. Let us consider the first model in which distribution is determined by the 

exponential function  

t
tbb

ecty ε++= + )( 10)( . (7.4) 

For identification of parameters of the distribution function of the nonlinear exponential 

model econometric software SPSS SigmaStat 3.0 is used.  Data for calculations of the 

model are in Table 7.7. The sales of printers are measured in yen 100 million at 1995 

fixed prices. 
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Table 7.7. Data on prices of Canon printers from 1985-1998. 

Years y-prices t-time 

1985 76,346 0 

1986 47,051 1 

1987 32,702 2 

1988 23,608 3 

1989 18,139 4 

1990 14,517 5 

1991 11,716 6 

1992 9,55 7 

1993 8,234 8 

1994 7,189 9 

1995 6,3 10 

1996 5,463 11 

1997 4,995 12 

1998 4,436 13 

 

The following results have been obtained for the nonlinear exponential model (7.4). The 

values of parameters of the exponential function are determined as follows: , 

, . Calculations show that the model is statistically significant. 

Detailed results of econometric analysis for the model (7.4) are given in Table 7.8. 

,8415=c

234,40 =b 455,01 −=b
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Table 7.8. Results of SPSS calculations for the parameters of the exponential 

distribution. 

Nonlinear regression 

Data source: Data 1 in Canon prices 

[Parameters] 

c=0,1; b0=0,1; b1=0,1 

[Variables] 

y=col(1); t=col(2) 

[Equation] 

f=c+Exp(b0+b1*t) 

fit f to y 

 

Results 

R = 0,998; Rsqr = 0,996; Adj Rsqr = 0,995;  Standard Error of Estimate = 1,384 

  

  Coefficient Std. Error t P VIF 

c 5,841 0,602 9,703 <0,001 2,649 

b0 4,234 0,0191 221,267 <0,001 1,524 

b1 -0,455 0,0196 -23,180 <0,001 2,533 

 

Analysis of Variance 

 DF SS MS F P 

Regression 2 5,433,435 2,716,718 1,418,149 <0,001 

Residual 11 21,072 1,916   

Total 13 5,454,508 419,578   
 

Normality Test: Passed (P = 0,689) 

Constant Variance Test: Passed (P = 0,482) 

Power of performed test with alpha = 0,050: 1,000     
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The graph of fitness of the data approximation on the basis of the nonlinear exponential 

model is shown in Fig. 7.1.  

 

 

 

Fig. 7.1. Fitness of the exponential distribution to the real data. 

The second nonlinear model is considered by Johnson-Schumacher function  

t
btb

ebty ε+= +− ))/((
1

32)( . (7.5)

For identification of parameters of the Johnson-Schumacher function of the nonlinear 

model (7.5) econometric software SPSS SigmaStat 3.0 is used. The following results are 

obtained for model 7.5. Values of parameters of the Johnson-Schumacher function are 

determined as: ,648401 =b , 7363,432 −=b , 1766,93 =b . Calculations show that the 

model is statistically significant. Detailed results of the econometric analysis for model 

7.5 are given in Table 7.9. 
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Table 7.9. Results of SPSS calculations for the parameters of the Johnson-Schumacher 

distribution. 

Data source: Data 1 in Canon prices 

[Parameters] 

b1=0,6; b2=-44; b3=9 

[Variables] 

y=col(1); t=col(2) 

[Equation] 

f=b1*Exp((-b2)/(t+b3)) 

fit f to y 

 

  Results 

R = 

1,000; 

Rsqr = 1; Adj Rsqr =1,000;  Standard Error of Estimate = 0,270 

  

  Coefficient Std. Error t P VIF 

b1 0,647 0,0555 11,668 <0,001 1,077,080 

b2 -43,774 1,975 -22,163 <0,001 5,741,627 

b3 9,181 0,254 36,178 <0,001 1,932,042 

 

  Analysis of Variance 

 DF SS MS F P 

Regression 2 5,453,706 2,726,853 37,420,328 <0,001 

Residual 11 0,802 0,0729   

Total 13 5,454,508 419,578   

 

Normality Test: Passed (P = 0,510) 

Constant Variance Test: Passed (P = 0,173) 

Power of performed test with alpha = 0,050: 1,000   
 

 28



 

The graph of fitness of the data approximation on the basis of the nonlinear Johnson-

Schumacher model is shown in Fig. 7.2.  

  

 

Fig. 7.2. Fitness of the Johnson-Schuhmacher distribution to the real data. 

8. Simulation of the model on optimal strategies 
  Numeric experiments are carried out for all blocks of the model. Identified 

parameters of the model have been used in these experiments. Results of these 

experiments for three cases are given below. The aim of numerical experiments is to 

demonstrate that the proposed algorithm has a universal character allowing us to find 

the optimal commercialization time for distribution functions of different types. Another 

aim is to show that solutions of the algorithm qualitatively depend on shapes of 

distribution functions. 

In the first experiment the simulation of the model is performed, in which the density 

distribution function that describes price formation mechanism is defined as δ-function. 

Such a probability density function describes the instantaneous change of the price on 

the innovation product upon appearance of principal competitors on the market at time 
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The results of modeling are shown in Fig. 8.1. They distinctively show that the stepwise 

distribution function has exactly three intersections with the marginal costs function. 

One point of intersection corresponds to the local minimum of the profit function, and 

two points of intersection correspond to points of the local maximum, one of which is 

the global maximum. These points of local maximum at times  and 

correspond to two possible investment scenarios, one of which is the fast 

scenario and the other one being the slow scenario. The problem for the innovator is to 

determine these scenarios at each current position of the investment trajectory and to 

make a decision on the selection of the more preferable scenario between these two 

scenarios. It is assumed that one can switch from one scenario to another one depending 

on the information about the market dynamics. 

483.11 =mt

627.12 =mt

 

 

Fig. 8.1. Double-humped curve of the profit function for the Heaviside step function of 

probability distribution. 

In the second experiment, the exponential distribution function has been chosen for the 

description of the market dynamics. 
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The parameters of this distribution function have been using CANON data 455.0−=β , 

. The results of the modeling are shown in Fig. 8.2. In this figure one can see 

that in the case of using real data in the model the distribution function has only one 

point of intersection with the marginal costs function at time . This point 

corresponds to the global maximum of the profit function. It determines the unique 

investment scenario. Experiments show that such a situation is stable in the sense that 

there exists the unique investment scenario for any position of decision-making on the 

investment trajectory. Parameters of this scenario can vary depending on the market 

dynamics, but the qualitative behavior of the solution is stationary in the sense that the 

investment scenario is unique. 

34.1=bt

49.1=mt

 

 

Fig. 8.2. The graph of the profit function with the unique maximum. 

  

 In the third numeric experiment the bi-logistic curve has been considered for 

description of the distribution function. It corresponds to the probability density 

function with two modes, which describe the more representative positions of 

competitors on the market. The results of this experiment are shown in Fig. 8.3. In this 

case the distribution function has three points of intersection with the marginal costs 

function. One of these points corresponds to local minimum, while the other two 

correspond to points of local maximum of the profit function. The problem for the 

innovator is to select his own “niche” in the market. To be more precise, the innovator 
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should deviate from the point of local minimum that corresponds to time of appearance 

of principal competitors on the market and then to shift to the point of global maximum 

that is chosen between two points of local maximum. 

 

 

Fig. 8.3. Niche searching in the market. 

 

These three experiments demonstrate that the proposed algorithm for the construction of 

the optimal investment plan has a universal character with respect to variations of 

probability distribution functions describing the market dynamics. That is, for three 

essentially different distributions the algorithm selects the optimal commercialization 

time in a robust way as points of intersection of the market distribution function and 

marginal costs. On the other hand, these three experiments show that depending on the 

shape of the market distribution function different qualitative cases for these points of 

intersection are possible: the number of points of intersection determines different 

investment scenarios.  
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Fig. 8.4. Scheme of decision making on investment strategy. 

 

The application of the proposed algorithm to strategic decisions of investors can be 

described in brief as follows: from the endogenous block of “Optimization of 

Investment Plan” one can obtain the “Marginal Costs”, and, in parallel, from the 

exogenous block “Analysis of Price Formation Mechanism” one can estimate the 

“Market Distribution Function”; using this information one can optimize the “Profit 

NPV” by intersecting the marginal costs and the market distribution function; as a 

result, the “Optimal Commercialization Time” is obtained and passed to the block 

“Optimization of Investment Plan” closing the feedback loop of the endogenous 

scheme. It is worth noting that the proposed scheme is constructed on the feedback 

principle and responds to the current situation in the market and current position of the 

investment plan, and, hence, the procedure of decision making can be gradually 

updated. The general scheme of the proposed algorithm of investment strategy is 

depicted in Fig. 8.4.  

It is worth noting, that the model has a block structure and in the present version the 

blocks are adjusted to the case study of the innovation process of Canon laser printers. 

In principle, one can modify the model blocks in such a way that they fit to the data of 

various high-tech sectors. 

9.  Conclusions 
In the paper a stochastic version of an investment dynamic model is elaborated 

for a process of technology innovation. Three interrelated decision making problems 

for an innovator are: econometric identification of trends of the market; optimal 

selection of the commercialization time; construction of the optimal investment strategy 

on the feedback principle. Stochastic modeling of the price formation mechanism 

constitutes the basic element of the proposed algorithm for identification of market 
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technological trajectories. A general method is proposed for construction of the optimal 

commercialization time and investment scheduling in reply to price trends of the 

market. The model is constructed under the assumption that the basic parameters such 

as the discount rate, the rate of discounted stream of innovation, and the level of bonus 

sales, are fixed at the constant level. Besides that, it is assumed that the market 

distribution function can be identified uniquely. In the future research one can focus on 

the game statement of the problem of investment optimization when the basic 

parameters of the model and the procedure of selection of the market distribution 

function are considered as a counterpart.   
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