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Abstract

The problem of dynamical identification of unknown characteristics (states/parameters) in
a biochemical model of an artificial lake with only inflow and given observations of some
states is considered. An algorithm that solves this simultaneous state and parameter
estimation problem and that is stable with respect to bounded informational noises and
computational errors is presented. The algorithm is based on the principle of auxiliary
models with adaptive controls. Convergence of the algorithm is proven and a convergence
rate is derived. The performance of the algorithm is illustrated to a typical single-species
environmental example.
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On Feedback Identification of Unknown

Biochemical Characteristics in an Artificial Lake

K. J. Keesman(karel.keesman@wur.nl)*

V.I. Maksimov(maksimov@imm.uran.ru)**

1 Introduction

The problem of dynamical identification on the basis of available information on a specific
object is well known in engineering and scientific researches (e.g. [1]–[5]). For certain
modern applications there is the necessity to reconstruct the unknown characteristics,
system states and/or parameters, dynamically and preferably in real time (see e.g. [6]–
[7], for biotechnological applications). Our goal now is to present an algorithm for the
identification of unknown process characteristics using unknown-but-bounded data and to
apply it to a typical single-species environmental system.
Let us describe our problem in some more detail. Let, therefore, a dynamical system

be described by differential equations on a given bounded interval of time. Let, further-
more, some of the state trajectories of the system depend on a time-varying parameter,
which in what follows is considered as an input with bounded non-homogeneity. A pri-
ori for both the state trajectories and input (time-varying parameter) only a set that
contains admissible realizations is known. It is assumed that some of the system states
are directly observed and that these observations are inaccurate. Hence, we are looking
for an algorithm that approximately reconstructs the input (time-varying parameter) and
unobservable states and which is both dynamical and stable. The algorithm is dynamical
when the current values of input and states are produced on-line, i.e. in real time, so that
the current values can be used for decision making during the process. The algorithm is
stable when an approximation is as precise as one likes under sufficient accuracy of the
observations.
The problem is treated within the class of inverse problems of dynamics of controlled

systems. In a more general context, we can say that it is embedded in the theory of ill-
posed problems. The modifications of this problem in a posteriori formulations have been
solved in, for example [8]–[10]. The solution presented here follows the theory of stable
dynamical inversion developed in [11]–[18], where a combination of the methods from the
theory of ill-posed problems [10] and from the theory of positional control [19] was used.
The essence of the approach applied here is that the state/parameter estimation algorithm
is represented as a control algorithm of some artificial dynamical system (a model). Given
current observations of the system the control input to the model is adapted such that

*Corresponding author. Systems and Control Group, Wageningen University and Research Center, P.O.

Box 43, 6700 AA Wageningen, The Netherlands. Email: karel.keesman@wur.nl. Tel: +31 317 483780,

Fax: +31 317 484957
**Institute of Mathematics and Mechanics, Ural Branch, Acad. Sci. of Russia, S. Kovalevskaya St. 16,

620219, Ekaterinburg, Russian Federation



– 2–

its realization in time is subjected to some regularization principle, which guarantees the
stability of the algorithm.
So, the essence of the problem of dynamical identification may be described in the

following way. There is a dynamical system S functioning on a time interval T = [t0, ϑ].
Its trajectory x(t) = x(t; x0, µ(t)) ∈ R

q, t ∈ T depends on an unknown time-varying input
µ(t) ∈ P . Here P ⊂ L2(T ;R

N) is the set of admissible inputs. On the interval T , a
uniform net Δ = {τi}

m
i=0 with a step δ is chosen, where τ0 = t0, τi+1 = τi + δ, τm = ϑ.

An output y(t) = Cx(t) is measured at the time instants τi (C is an r × q-dimensional
matrix). The inaccurate measurement vector ξi = ξ(τi) ∈ R

r satisfies the inequality

‖ξi − y(τi)‖ ≤ h, i ∈ [0 : m− 1],

where h is the error bound. It is required to design an algorithm which allows us to
reconstruct some pair (ϕ(t), w(t)) synchro with the process. This pair must be ”close”
to the pairs (µ(t), x(t)) compatible with the output y(t). In Fig.1 the scheme of solving
algorithms, which is stable with respect to informational noises and computational errors,
is shown. According to the scheme, the system S is accompanied by a certain artificial
computer-modeled closed-loop control system (a model M). This model, functioning on
the time interval T , has an unknown input (control) ϕh(t) and an output wh(t). The
modelM can be given a priori or can be constructed. The process of synchronous feedback
control of the systems S andM is organized on the interval T . This process is decomposed
into m− 1 identical steps. At the i-th step carried out on the time interval δi = [τi, τi+1),
the following actions are performed. First, at time instant τi, according to a chosen rule
ϕh, the control ϕh(t) = ϕh(τi, ξ0, . . . , ξi, w

h(τ0), . . . , w
h(τi)), t ∈ [τi, τi+1) is calculated.

Then (till the moment τi+1) the control ϕ
h(t), τi ≤ t < τi+1, is put into the system M .

The values of ϕh(τi) and w
h(τi+1) result from the algorithm at the i-th step. Thus, all

complexity of solving the problem is reduced to the appropriate choice of the model M
and the function ϕh.
In essence, the procedure for solving the problem of dynamical identification is equiv-

alent to the procedure for solving the following two problems:

1. the problem of choosing a model M

2. the problem of choosing some rule ϕh for forming a control in the model.

Note that a number of factors play an important role for solving problems (i) and (ii). For
example, among these factors are the prior information on the structure of S (form of the
equation(s), solution properties and so on), the properties of the set of admissible inputs
P , the structure of output y (e.g., the properties of matrix C) and so on.
A more specific implementation of the scheme described above has been developed in

[11–18]. In particular, Chapter V of [11] is devoted to the investigation of the discussed
problem of dynamical identification for one, wide enough, class of systems S described by
a vector nonlinear ordinary differential equation of the form

ẋ(t) = f1(t, x(t)) + f2(t, x(t))µ(t), t ∈ [0, ϑ],

x(0) = x0, x ∈ R
q, u ∈ RN.

In this chapter, procedures for choosing the model M and for forming the control ϕh,
in the case where all or some coordinates of x are measured, have been developed. In
[13] three more rules for choosing models and control laws have been suggested. Two of
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them allow us to find functions ϕh(t) that are weakly convergent (in L2-metrics) to an
unknown input µ(t) as h → 0. The algorithm provides strong convergence in the case
where all states coordinates are measured. The papers [12, 14, 15, 17] have been devoted
to the investigation (from the viewpoint of the approach under discussion) of dynamical
identification problems for parabolic and hyperbolic distributed parameter systems. In
particular, in [14, 15], given measurements of pollutant concentration at fixed domains,
the problem of reconstructing point-wise sources intensities is considered. In these studies,
the system is supposed to be described by diffusion type of equations. In [16], a problem of
”compensation” of disturbances is solved on the base of controlled models. In particular,
the solving algorithm is an ”identification–control” algorithm with the synchro (”in real
time”) functioning blocks ”dynamical identifier” and ”controller”. In [18], the problem of
reconstructing a right-hand part of one system in a Hilbert space unsolved with respect
to the derivative has been investigated.
In the present report, the approach presented in [11–18] is used for solving the iden-

tification problem of unknown characteristics (states/parameters) in a biochemical model
of an artificial lake with only inflow and given bounded-noise observations of some states.
Unfortunately, it is impossible to directly apply the algorithms from the studies cited above
to solve our problem (with the exception of one, see Remark 1 in section 3). However,
taking into account the specific form of the environmental system, in the next section we
will show how to apply the scheme presented in Fig.1. In this case we consider a system of
nonlinear ordinary differential equations of the third order with an unknown time-varying
scalar input entering the right-hand side of two equations and where only the first state
coordinate is inaccurately measured under bounded noise. The identification objective is
to reconstruct the other two coordinates and the unknown input/time-varying parameter.
Alternatively, for the stochastic noise case an Extended Kalman Filtering (EKF) ap-

proach could have been chosen to solve this simultaneous state and parameter estimation
problem, but it is well-known that the EKF will not guarantee convergence. As a solution
to this, in the 90’s, for specific classes of systems modifications based on regularization
theory have been suggested (see e.g. [20] and [21]). In the last decade computational
Bayesian methods, generally requiring a large computational effort, have also been intro-
duced to solve the state/parameter estimation problem (see e.g. [23]). Most recently, a
set-membership solution to this problem has been proposed [22].

S

ϕ M�ϕh(t) �w
h(t)

�

� µ(t)ξ(t)

�

Figure 1: Scheme of solving algorithms for the dynamical identification problem.

In this paper the scheme of Fig. 1 is, in particular, applied to the dynamical identi-
fication of biochemical parameters and states in an artificial lake with only inflow on the
basis of the model introduced in section 2. In section 3 the problem is further formulated
in mathematical terms and the solution algorithm is described. Section 4 contains the
proof of the convergence theorem via Lemmas 1-6 and a more general Theorem 1.2.1 from
[12]. The algorithm’s convergence rate is derived in section 5. The algorithm is further
illustrated in section 6 by applying it to the environmental system introduced in section
2. Finally, the conclusions are stated in section 7.
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2 A Dynamical Model of an Artificial Lake

The case study we wish to address here has a close relationship with the previous work
by Vanrolleghem and van Daele [24] and the recent work by Stigter et al. [25], which
both focussed on optimal experiment design in bioreactor modeling (see also [26] and [27]
for further details). This paper can then be considered as a follow-up on this work and
an extension towards environmental applications. Recall, once again, that (speaking in
general terms) we want to determine the input/time-varying parameter µ(t) and some
states of S (see Fig. 1) from experimental data with unknown-but-bounded error. Hereto
we first define our system S.
Let us, without loss of generality, assume that the dissolved oxygen concentration in

the inflow of the system is at saturation level, i.e. it is not affected by bacteria which are
assumed not to be present in the inflow. The consumption of substrate by the bacteria in
the system is aerobic and directly affects the dissolved oxygen concentration in the system.
The following non-linear dynamic model describes the biochemical processes in S under
ideally mixed conditions,

dCDO(t)

d t
= kLa [C

en
sat −CDO(t)]− OUR(t) +

Fin(t)

V (t)
[Csat −CDO(t)] ,

dCX (t)

d t
= µ(CS(t))CX(t)−

Fin(t)

V (t)
CX(t), (1)

dCS(t)

d t
= −

µ(CS(t))

Y
CX(t) +

Fin(t)

V (t)
(CS,in(t)− CS(t)),

where

V (t) =

t
∫

0

Fin(τ) dτ + V (t0),

OUR(t) =
(1− Y )

Y
µ(CS(t))CX(t),

µ(CS(t)) = µmax(t)
CS(t)

KS +CS(t)
, t ∈ T = [t0, ϑ).

Furthermore, kLa is the re-aeration coefficient, V (t) is the volume of the lake, C
en
sat is the

saturation concentration of dissolved oxygen, including a small (constant) correction for
the endogenous respiration of the biomass, Csat is the (normal) saturation concentration
of dissolved oxygen in the inflow, µmax(t) is the maximum specific growth rate, KS is
the half-saturation constant, Y is the yield coefficient of biomass on substrate, OUR(t)
is the oxygen uptake rate of the biomass in the lake, CDO(t) is the dissolved oxygen
concentration in the lake, CX(t) is the biomass concentration, and CS(t) is the biomass
growth rate. Notice that in (1) µmax(t) is a time-varying parameter. Most often, it varies
due to adaptation of the organisms, additional substrate limitations or, in general, to
kinetic modeling errors.
For a further interpretation of our system we note that the first equation in (1) de-

scribes the dissolved oxygen concentration in the system, where the first term on the
right-hand side presents the re-aeration, the second term the oxygen consumption by the
aerobic biomass and the last term the inflow and dilution of dissolved oxygen. The second
equation in (1) describes the biomass dynamics, where the first term on the right-hand
side describes the biomass growth and the last term the dilution. This growth term with
some yield coefficient (Y ) can also be found in the third equation in (1), but then as
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a consumption term in the substrate balance. It is furthermore assumed that there are
dissolved oxygen data only and no biomass nor substrate data. In the sequel we will thus
focus on the simultaneous estimation of the parameter µmax(t), the biomass concentration
CX (t) and the biomass growth rate CS(t) through the measurements of the dissolved oxy-
gen concentration CDO(t) with point-wise bounded error. Hence, we will assume that the
parameters V (t0), Y , KS, CX(t0), CS(t0), C

en
sat, Csat, kLa and functions Fin(t), CS,in(t)

have already been estimated off-line or have been established from literature.

3 Problem Formulation and Description of Solution

Algorithm

The problem in question can be more specifically formulated as follows. An unknown func-
tion µmax(t) acts on the system (1) generating an unknown solutionC(t) = C(t;C0, µmax) =
(CDO(t), CX(t), CS(t)). Here C0 = (CDO(t0), CX(t0), CS(t0)) is an initial state. The time
interval T is put into parts by subintervals [τi, τi+1), τi+1 = τi + δ, δ > 0, i ∈ [0 : m],
τ0 = t0, τm = ϑ. At the time instants τi the elements CDO(τi) are measured inaccurately,
i.e. ξhi = ξ(τi) ∈ R, such that

|CDO(τi)− ξ
h
i | ≤ h (2)

for i = 1, . . . , m, are given. Herein, the symbol |x| denotes the absolute value of a
number x. An algorithm calculating the function v(t) = vh(t) and the function wh(t) =
{wh1(t), w

h
2(t)} being approximations of µmax(t) and CX(t), CS(t), respectively, has thus

to be found.
Notice that the functions C(t), CDO(t) and µmax(t) correspond to the general functions

x(t), y(t) and µ(t) in the Introduction. From now on, it is assumed that we know a real
number K ∈ (0,+∞) such that the unknown functions µmax(t) and OUR(t) satisfies the
following conditions:

OUR(t), µmax(t) ∈ L∞(T ;R), |OUR(t)| ≤ K for almost all t ∈ T. (3)

Let the following condition be fulfilled.

Condition 1. b0 ≤ Fin(t) ≤ b1 for almost all t ∈ T , 0 < b0 ≤ b1,

Y ∈ (0, 1), V (t) ≥ V0 > 0, CS,in(t) ∈ C
1(T ;R), Fin(t) ∈ L∞(T ;R),

CX(t) ≥ CX > 0, CS(t) ≥ CS > 0.

Here, R denotes the set of all real numbers; C1(T ;R) is the space of continuously
differentiable functions x(t) : T → R with the norm

‖x(t)‖C1 = max{max
t∈T
|x(t)|,max

t∈T
|ẋ(t)|};

L∞(T ;R) is the space of Lebesque measurable functions x(t) : T → R with the norm
‖x(t)‖L∞ = vrai supt∈T |x(t)|. We assume that the initial states of the system CX(t0),
CS(t0) and function V (t) are known.
For solving our dynamic identification problem, we apply the adaptive control method

proposed in [11]–[18] (see also the block scheme in Fig.1). Hereto, first a family

Δh = {τh,i}
mh
i=0, τh,0 = t0, τh,mh = ϑ, (4)
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τh,i+1 = τh,i + δ(h), mh = (ϑ− t0)δ
−1(h),

of partitions of the interval T with diameters

δ(h) = δ(Δh), δ(h)→ 0 as h→ 0,

is defined, where the error bound h (as in what follows) is explicitly denoted in the indices.
Furthermore, an auxiliary system M , functioning synchronically with the “real” system

(1), is chosen. Noting that (i) OUR(τi) = ϕ
h
i , (ii)

Fin(t)
V (t) =

V̇ (t)
V (t) ≈ δ

−1 ln
(

V (τi+1)
V (τi)

)

, (iii)

µ(CS(τi))CX(τi) = ψ
h
i and (iv) Fin(τi) ≈

Vi−Vi−1
δ , the model M in Fig. 1 can be described

by the linear system

wh0(τi+1) = wh0(τi) + δ[kLa(C
en
sat − ξ

h
i )− ϕ

h
i ] + ln(V (τi+1)V

−1(τi))(Csat − ξ
h
i ),

wh1(τi+1) = W (τi+1)CX(t0) + V
−1(τi+1)δ

i
∑

j=0

V (τj)ψ
h
j , (5)

wh2(τi+1) = W (τi+1)CS(t0) +CS,in(τi+1)−W (τi+1)CS,in(t0)−

− V −1(τi+1)
[

i
∑

j=0

(CS,in(τj+1)−CS,in(τj))V (τj) + δY
−1

i
∑

j=0

V (τj)ψ
h
j

]

,

with the initial states

wh0(t0) = ξ
h
0 , w

h
1 (t0) = CX(t0), w

h
2(t0) = CS(t0).

Here

ψhi = Y ϕ
h
i /(1− Y ), ϕ

h
i = ϕ

h(τi), W (τj) = V (t0)/V (τj)

and wh0(t) is an approximation of CDO(t). Hence, the linear model M has a control input
ϕh(t) and output wh(t), i.e. where the vectors wh(τi) are found from (5) and the rule for
calculating ϕhi is given below.
Let us describe the algorithm. Before time instant t0, the value h ∈ (0, 1), the function

α = α(h) : (0, 1)→ R
+ = {r ∈ R : r > 0}

and the partition Δ = Δh with diameter δ = δ(Δh) (see Eqn. (4)) and the model (5) are
fixed. After that, a process of feedback control of the model M synchro with operation of
system (1) is organized. This will constitute the essence of the identification algorithm.
The work of the algorithm starting at time t0 is decomposed into mh − 1 steps. At the
i-th step carried out during the time interval δi = [τi, τi+1), the following actions take
place. First, the control in the linear model M (i.e. the non-linear function OUR(t)
which contains the unknown time-varying parameter µmax(t), see Introduction and text
above)

ϕh(t) = ϕhi , t ∈ δi (6)

is calculated. This calculation is based on the following feedback principle (see Fig. 1)
with tuning parameters α(h) and K,

ϕhi = ϕ
h
i (ξ
h
i , w

h
0(τi)) =

⎧

⎨

⎩

−siα
−1(h), if |si| ≤ α(h)K

−K sign si, otherwise
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si = ξ
h
i −w

h
0(τi).

After that, the phase state wh(τi+1) of the model at the moment τi+1 is found by the
equations in (5). At the same time, the function vh(t), an approximation of µmax(t),
defined by the rule

vh(t) = vhi , t ∈ [τi, τi+1),

with

vhi = v
h
i (ξ
h
i , ϕ

h
i , w

h(τi)) =
Y (KS + w

h
2(τi))ϕ

h
i

(1− Y )wh1(τi)w
h
2(τi)

,

is calculated using the expressions of OUR(t) and µ(CS(t)), see Eqn. (1). The algorithm
stops at time instant ϑ. The convergence of this algorithm is stated in Theorem 1, but
first we introduce the following condition.

Condition 2. There exist numbers w1 > 0 and w2 > 0, such that for all h ∈ (0, 1) and
all t ∈ T the following inequalities are true:

wh1(t) ≥ w1, w
h
2(t) ≥ w2.

Theorem 1. Let Conditions 1, 2 and the convergence

α(h)→ 0, (h+ δ(h))α−1(h)→ 0 as h→ 0 (7)

hold. Then

sup
t∈T
|wh1(t)− CX(t)| → 0, sup

t∈T
|wh2(t)−CS(t)| → 0,

ϑ
∫

t0

|vh(τ)− µmax(τ)|
2 dτ → 0 as h→ 0.

As it is seen from this theorem, the function vh(t) = vh(ξ(t), ϕh(t), wh(t)) can serve as
“an appropriate” approximation of the unknown time-varying parameter µmax(t) under a
corresponding value of h, and the functions wh1 (t), w

h
2(t) as the ones to CX(t) and CS(t),

respectively. Furthermore, (7) defines required properties of the tuning parameter α(h).
Let us dwell on considerations underlying such a choice of the model and its control

law. Model (5) is, in essence, a discrete approximation to system (1). Indeed, as can be
seen from the proof given in the next section, in particular inequalities (12) (Lemma 4) and
(16) (Lemma 6), if the control action ϕh(t) (6) in the model is close to OUR(t) in the mean
square metric then the model trajectory {wh0(t), w

h
1(t), w

h
2(t)} approximates the trajectory

{CDO(t), CX(t), CS(t)} of system (1). In its turn, our way of choosing the control ϕ
h(t)

provides an insignificant increase of the functional ε(t) (see Eqn. (40) in Appendix). This
fact allows us to make a conclusion on the convergence of ϕ(t) to OUR(t) (Theorem 2).

Remark 1. One of the methods for solving the problem of dynamical identification appli-
cable to the case discussed above is given in [11, sections 17, 19]. Let us describe it briefly.
On a finite time interval T = [t0, ϑ], a system of ordinary differential equations

ẏ(t) = f(t, y, z, v),
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ż(t) = g(t, y, z),

where y, z and v are vectors of corresponding dimensions, is considered. At time instants
τi ∈ T (τ0 = t0, τi+1 = τi + δ, δ > 0), the values of z(τi) are inaccurately measured. The
resulting measurement vectors ξ(τi) satisfy the inequality

‖ξ(τi)− z(τi)‖ ≤ h.

The objective is to reconstruct the unmeasured state coordinates y = y(t) and the unknown
input v = v(t) ∈ Q (Q is a convex, bounded and closed set).
To solve this dynamical identification problem, the scheme described in the Introduction

is applied, where the model is of the form

w(τi) = w(τi−1) + δu(τi).

At each time step δi = [τi, τi+1), the vectors p∗(τi), u(τi) and v̄(τi) are found from

p∗(τi) ∈ argmin{|δ
−1(ξ(τi)− ξ(τi−1))− g(τi, w, ξ(τi))| : w},

u(τi) = −α
−1(p∗(τi)− w(τi)),

v̄(τi) ∈ argmin{|u(τi)− f(τi, p∗(τi), ξ(τi), v)| : v ∈ Q},

where α is an auxiliary parameter. As approximations to the unknown input v(t) and
coordinates y(t), the functions

vh(t) = v̄(τi), y
h(t) = p∗(τi) for t ∈ [τi, τi+1), i ∈ [0 : m− 1]

are taken. Hence, this shows that the algorithm from [11, sections 17, 19] is rather com-
plicated to be applied for solving our problem, since at each ith step it is necessary to solve
two nonlinear extremal problems (to find p∗(τi) and v̄(τi)). In our algorithm, there are no
extremal problems to solve, all the values are found from explicit formulas.

4 Proof of algorithm convergence

Before we turn to the proof of Theorem 1 (convergence of the algorithm), let us adduce
auxiliary statements related to the bounding of terms in (5) and estimation errors.
Let c(0) = 2Fmax(CS,in(t0)+Cmax(ϑ−t0)) and i(t) = κ((t−t0)/δ), where κ(a) denotes

the integer part of a real number a. Furthermore, we define

a(t) = d(lnV (t))/dt.

Lemma 1. Let |ĊS,in(t)| ≤ Cmax, 0 < Fin(t) ≤ Fmax for almost every t ∈ T . Then the
inequality

∣

∣

∣

∣

∣

t
∫

t0

V (τ)a(τ)CS,in(τ) dτ −
[

CS,in(τi(t))V (τi(t))−CS,in(t0)V (t0)−

−

i(t)−1
∑

i=0

(CS,in(τi+1)−CS,in(τi))V (τi)
]

∣

∣

∣

∣

∣

≤ c(0)δ for t ∈ T

holds.



– 9–

Proof. From the inequality

|V (t)− V (t+ δ)| ≤

t+δ
∫

t

|Fin(τ)| dτ ≤ Fmaxδ, t, t+ δ ∈ T,

we have

∣

∣

∣

∣

∣

t
∫

t0

ĊS,in(τ)(V (τ)− Vδ(τ)) dτ

∣

∣

∣

∣

∣

≤ Fmax(t− t0)Cmaxδ (8)

where Vδ(t) = V (τi) for t ∈ [τi, τi+1). Note that

t+δ
∫

t

|V (τ)a(τ)CS,in(τ)| dτ ≤ Fmax(CS,in(t0) +Cmax(ϑ− t0))δ.

Therefore we have for t ∈ [τi, τi+1)

∣

∣

∣

∣

∣

τi
∫

t0

V (τ)a(τ)CS,in(τ) dτ −

t
∫

t0

V (τ)a(τ)CS,in(τ) dτ

∣

∣

∣

∣

∣

≤ Fmax(CS,in(t0) + Cmax(ϑ− t0))δ

(9)

Then, applying integration by parts, we obtain

τi
∫

t0

V (τ)a(τ)CS,in(τ) dτ = V (τi)CS,in(τi)− V (t0)CS,in(t0)−

τi
∫

t0

V (τ)ĊS,in(τ) dτ. (10)

The desired inequality follows from (8),(9) and the previous equality.

Lemma 2. Let the conditions of Lemma 1 be fulfilled, V (t) ≥ V0 > 0, and

b̃(τ) = b̃j for τ ∈ [τj, τj+1), |b̃j| ≤ d for j ∈ [0 : mh − 1].

Then the inequality

∣

∣

∣
V −1(t)

t
∫

t0

V (τ)b̃(τ) dτ − V −1(τi(t))δ

i(t)
∑

j=0

V (τj)b̃j

∣

∣

∣
≤ c1δ for t ∈ T

holds.

Lemma 2 can be verified by simple algebraic transformations.
For what follows, let us introduce the system of differential equations

Ċxψ(t) = ψ(t)− a(t)Cxψ(t)

ĊSψ(t) = −
ψ(t)

Y
+ a(t)CS,in(t)− a(t)CSψ(t), t ∈ T

(11)

with the initial conditions

Cxψ(t0) = CX(t0), CSψ(t0) = CS(t0)
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and function ψ(·) of the form

ψ(t) = ψhj = Y ϕ
h
j /(1− Y ) for t ∈ [τj, τj+1).

Let us furthermore define the piecewise-continuous functions

wh1(t) = w
h
1(τi), w

h
2(t) = w

h
2(τi) as t ∈ [τi, τi+1) ∩ T.

Then, the following Lemmas can be stated.

Lemma 3. Let the conditions of Lemmas 1 and 2 be fulfilled. Then the following inequal-
ities

|Cxψ(t)− w
h
1(t)| ≤ c2δ, |CSψ(t)− w

h
2(t)| ≤ c3δ for t ∈ T

hold.

Proof. The equation

ẋ(t) = f(t)− a(t)x(t), x(t0) = x0, f(·) ∈ L2(T ;R),

has a solution that can be found by the Cauchy integral formula:

x(t) = V −1(t)V (t0)x0 + V
−1(t)

t
∫

t0

V (τ)f(τ) dτ.

In this case, the solution to system (11) is being found by the formulas:

Cxψ(t) = V
−1(t)V (t0)CX(t0) +

t
∫

t0

V −1(t)V (τ)ψ(τ) dτ,

CSψ(t) = V
−1(t)V (t0)CS(t0) +

t
∫

t0

V −1(t)V (τ)(a(τ)CS,in(τ)− ψ(τ)Y
−1) dτ.

Validity of the Lemma now follows from these equalities and from Lemmas 1 and 2.

Lemma 4. Let Y ∈ (0, 1) and the conditions of Lemma 3 be fulfilled. Then the following
inequalities

|CX(t)− w
h
1(t)| ≤ c4(δ +

t
∫

t0

|ϕh(τ)−OUR(τ)| dτ), (12)

|CS(t)− w
h
2(t)| ≤ c5(δ +

t
∫

t0

|ϕh(τ)−OUR(τ)| dτ) for t ∈ T

hold.
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Proof. Let µ1(t) = Cxψ(t) − CX(t), µ2(t) = CSψ(t) − CS(t). The second and the third
equation of the system (1) can be written in the form

dCX(t)

d t
=

Y

1− Y
OUR(t)− a(t)CX(t),

dCS(t)

d t
= −

Y

1− Y
OUR(t) + a(t)(CS,in(t)− CS(t)).

Then functions µ1(t) and µ2(t) are solutions to the equations:

µ̇1(t) =
Y

1− Y
(ϕh(t)−OUR(t))− a(t)µ1(t),

µ̇2(t) = −
1

1− Y
(ϕh(t)−OUR(t))− a(t)µ2(t),

with the initial conditions: µ1(t0) = µ2(t0) = 0. Using the Cauchy integral formula,

µ1(t) =
Y

1− Y

t
∫

t0

Φ(t, τ)(ϕh(τ)− OUR(τ))dτ,

µ2(t) = −
1

1− Y

t
∫

t0

Φ(t, τ)(ϕh(τ)−OUR(τ))dτ,

where Φ(t, τ) = V −1(t)V (τ). In this case the following inequalities:

|µ1(t)| ≤ c1

t
∫

t0

|ϕh(τ)− OUR(τ)| dτ (13)

|µ2(t)| ≤ c2

t
∫

t0

|ϕh(τ)− OUR(τ)|dτ, t ∈ T (14)

hold. The validity of the Lemma follows from inequality (13), (14) and from Lemma 3.

Lemma 5. Let the conditions of Lemma 4 be fulfilled and CX(t) ≥ CX > 0, CS(t) ≥
CS > 0. Then under fulfillment of Condition 2, there exists an h∗ > 0, such that for all
h ∈ (0, h∗) and t ∈ [τi, τi+1), i ∈ [0 : mh − 1] the following inequality

|vhi − µmax(t)| ≤ c6(δ + |ϕ
h
i − OUR(t)|+

t
∫

t0

|ϕh(τ)−OUR(τ)| dτ) (15)

holds.

See the Appendix for the proof of Lemma 5.
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Lemma 6. Let Conditions 1 and 2 be fulfilled and let in system (5) a value ϕhi be defined
by formulas (6). Then the inequalities

|wh0(τi)−CDO(τi)|
2 ≤ C(0)(h+ δ + α), (16)

ϑ
∫

t0

|ϕh(τ)|2 dτ ≤

ϑ
∫

t0

|OUR(τ)|2 dτ +C(1)(h+ δ)α−1 (17)

hold.

See the Appendix for the proof of Lemma 6.
The monograph [12] contains Theorem 1.2.1 that for the considered case can be for-

mally stated as follows.

Theorem 2. Let Conditions 1, 2 and the inequalities

sup
i∈[0:mh]

|wh0(τi)−CDO(τi)| ≤ ν(h),

ϑ
∫

t0

|ϕh(τ)|2 dτ ≤

ϑ
∫

t0

|OUR(τ)|2 dτ + ν1(h),

where ν(h) → 0+, ν1(h) → 0+ as h → 0+, be fulfilled. Then the following convergence
takes place:

ϕh(t)→ OUR(t) in L2(T ;R) as h→ 0,

i.e.,

ϑ
∫

t0

|ϕh(τ)− OUR(τ)|2 dτ → 0 as h→ 0.

In turn, Lemmas 4–6 and Theorem 2 imply Theorem 1. Consequently, convergence of
the algorithm (see section 3) as h → 0 has been proven. However, the question remains
how fast it converges. In the next section an answer to this question is given.

5 Algorithm’s convergence rate

The estimate of the algorithm’s convergence rate can be specified under some additional
conditions. Let us give these conditions.

Theorem 3. Let function µmax(t) be a function of bounded variation. Then the following
estimate of the algorithm convergence rate can be found:

ϑ
∫

t0

|vh(τ)− µmax(τ)|
2 dτ ≤ C1λ(h, δ, α),

sup
t∈T
|wh1(t)−CX(t)| ≤ C2λ

1/2(h, δ, α), sup
t∈T
|wh2(t)−CS(t)| ≤ C3λ

1/2(h, δ, α).

Here λ(h, δ, α) = h+ δ +α+ (h+ δ)α−1, cj (j = 1, 2, 3) are some constants which can
be written explicitly.
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Proof. It can be easily seen that for t ∈ δi = [τi, τi+1) the estimates below are true

|ξhi − CDO(t)| ≤ c1(h+ δ), (18)

|CDO(t0)−w
h
0 (t0)| ≤ h, (19)

|b(t)− b(τi)| ≤ c2δ, |CDO(t)−CDO(τi)| ≤ c3δ, (20)

where b(t) = lnV (t). In addition, we have

∣

∣

∣

∣

∣

t
∫

τi

a(τ)CDO(τ)dτ − (b(τi+1)− b(τi))ξ
h
i

∣

∣

∣

∣

∣

≤ c6(h+ δ
2). (21)

Given inequality (16) we deduce

|wh0(t)− CDO(t)| ≤ c7(h+ δ + α), t ∈ T. (22)

From (18)–(22) follows the inequality

sup
t∈T

∣

∣

∣

t
∫

t0

(ϕh(τ)− OUR(τ))dτ
∣

∣

∣
≤ c8(h+ δ + α) (23)

Taking into account (17) we deduce

ϑ
∫

t0

|ϕh(τ)−OUR(τ)|2 dτ =

ϑ
∫

t0

|ϕh(τ)|2 dτ − 2

ϑ
∫

t0

ϕh(τ)OUR(τ) dτ +

ϑ
∫

t0

|OUR(τ)|2 dτ ≤

(24)

≤ 2

ϑ
∫

t0

(OUR(τ)− ϕh(τ))OUR(τ) dτ + c9(h+ δ)α
−1.

Due to the condition in the theorem, the function µmax(·) is a constrained variation func-
tion. Therefore, the function OUR(t) is of the same kind as well. In this case from (23),
(24) and Lemma 1.3.3 [12] we have

ϑ
∫

t0

|ϕh(τ)−OUR(τ)|2 dτ ≤ c10λ(h, δ, α). (25)

The validity of the theorem follows from (25) and Lemmas 4 and 5.

From Theorem 3 the following corollary can be deduced

Corollary 1. Let δ(h) = h, α(h) = h1/2 and function µmax(t) be a function of bounded
variation. Then the following estimate of algorithm convergence rate is true:

ϑ
∫

t0

|vh(τ)− µmax(τ)|
2 dτ ≤ c1h

1/4,

sup
t∈T
|wh1(t)− CX(t)| ≤ c2h

1/8, sup
t∈T
|wh2(t)−CS(t)| ≤ c3h

1/8.
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So far, the analysis holds for a lake system with only inflow (1). The next corollary
presents the result for an isolated lake without any in- and outflows (1), i.e. for Fin(t) ≡ 0.
Let, instead of Condition 1, the following one be fulfilled:

Condition 3.

Fin(t) = 0, Y ∈ (0, 1),

CX(t) ≥ CX > 0, CS(t) ≥ CS > 0 (see Condition 1).

In this case, the second and third equations of system (1) take the form

dCX(t)

dt
=

Y

1− Y
OUR(t),

dCS(t)

dt
= −

1

1 − Y
OUR(t).

Therefore, as a system M , one should take

wh0(τi+1) = w
h
0(τi) + δ{kLa(C

en
sat − ξ

h
i )− ϕ

h
i },

wh1(τi+1) = w
h
1(τi) + δ

Y

1− Y
ϕhi ,

wh2(τi+1) = w
h
2(τi)− δ

1

1− Y
ϕhi .

The next statement follows from the results presented above.

Corollary 2. Let Conditions 2 and 3 be fulfilled, the systemM be of the form (5) and the
function ϕh(t) (the control in M) be found from (6). Then, the assertions of Theorems
1–3 as well as of Corollary 1 are valid.

6 Simulation results

The algorithm described in section 3 is tested on the lake system S, given by (1), with
limited sensor availability. Let us assume that this system evolves on the time interval
[0, 3] d, so that the amount of information is limited which justifies the bounded-error
approach. It is furthermore assumed that the maximum specific growth rate µmax(t) is
equal to 0.047987 or 2.62 · 10−4 sin(t) [1/d], so that both the time-invariant and the time-
varying case are evaluated. Our starting point is that we do not know the behavior nor
the magnitude of µmax(t). Recall that our aim is to recover µmax(t) and the states CX (t),
CS(t) from a finite number of corrupted samples of the evolution of the dissolved oxygen
concentration CDO(t) only. In particular, during the numerical experiments, at each ith
step, we use CDO(τi) + h instead of CDO(τi).
The simulation results with µmax(t) constant and for different noise levels are presented

in Fig. 2–4. In these figures, the results of the computer modeling exercise of the dynamic
inverse problem are presented for the following case (see Eqn. (1)):

KS = 1.0 [kTon/km
3], Y = 0.64 [g(CX)/g(CS)],

CS,in = 5.0 + 0.05 sin(t) [kTon/km
3], V (t0) = 1.0 [km

3],

Fin(t) = 0.1 + 0.05 sin(t) [km
3/d], kLa = 0.6 [1/d],

Censat = 7 [kTon/km
3], Csat = 9 [kTon/km

3]
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The initial conditions for the system are as follows:

CD0(t0) = 7 [kTon/km
3], CX(t0) = 4000 [kTon/m

3], CS(t0) = 0.05 [kTon/km
3]

The tuning parameters of the algorithm are chosen as:

δ = 0.001 [d], α = 0.001 [1/d], K = 2 [kTon/km3.d]

In Figs. 2–4 the thin lines represent the coefficient µmax(t) and the states CX(t), CS(t)
in mg/L (which is equal to kTon/km3), while the bold lines represent the estimate vh(t)
and the states of the auxiliary system, wh1(t) and w

h
2(t).
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Figure 2: Identification results: h = 10−2.

Fig. 2 corresponds to the case when h = 10−2. In Fig. 3, h = 10−3, while in Fig. 4,
h = 10−4. Equation (1) was solved using the Euler method with integration step δ.
At the moment t = τi the value ξ

h
i = CDO(τi) + h was measured. The results of the

numerical experiments show that the mean-square convergence of vh(t) to µmax(t) and the
uniform convergence of wh1(t) to CX(t) and w

h
2(t) to CS(t) take place under “reduction”

of parameters α, h and δ or of one of them. For a further interpretation of the graphical
results we recall that vh(t) converges to µmax(t) in the L2[0, 3] metric, not in the continuous
metric.
In the next step, we consider a realistic case with (i) µmax(t) time-varying, (ii) more

variation in the inflow, i.e. Fin(t) = sin(t) and (iii) relatively large error bound h = 0.1
on the dissolved oxygen concentration data. Fig. 5 indicates that, although a significant
(constant) off-set in the estimate of µmax(t) appears due to the relatively large error bound,
the substrate concentration is reasonably recovered from the noisy data. Notice that, for
all cases, the biomass concentration is estimated very well.
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Figure 3: Identification results: h = 10−3.
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Figure 4: Identification results: h = 10−4.

7 Conclusions

In this paper, given data with unknown-but-bounded error (2), a simultaneous state and
parameter estimation algorithm, based on stable dynamical inversion using the scheme
of Fig. 1 with M a linear approximation of S, has been proposed. In particular, the
algorithm has been developed for a rather general class of single-species lake systems (1)
with limited sensor availability, that is only the dissolved oxygen concentration is mea-
sured. Convergence of this algorithm for this specific case has been proven. Furthermore,
convergence rates, as a function of the error bound, integration step and tuning parameter
α, have been derived. Finally, the algorithm has been tested in simulation, showing stable
and reliable results.



–17 –

0 0.5 1 1.5 2 2.5 3
−5

0

5
x 10

−4

µ
 (

1/
d)

0 0.5 1 1.5 2 2.5 3
0

5

S
ub

st
ra

te
 (

m
g/

L)

0 0.5 1 1.5 2 2.5 3
0

5000

Time (d)

B
io

m
as

s 
(m

g/
L)

Figure 5: Identification results: µmax(t) time-varying and h = 10
−1.
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A Appendix - Proofs of Lemma 5 and 6

Lemma 5. Using Lemma 3 and Condition 2, it is possible to specify an h1 and δ1 such
that for all h ∈ (0, h1) and δ = δ(h) ∈ (0, δ1) the following inequalities are true:

Cxψ(t) ≥ c
(1)
ψ > 0, CSψ(t) ≥ c

(2)
ψ > 0 for t ∈ T. (26)

Define the value

Δhi,t ≡

∣

∣

∣

∣

∣

Y (KS + w
h
2(τi))ϕ

h
i

(1− Y )wh1(τi)w
h
2(τi)

−
Y (KS + CSψ(t))OUR(t)

(1− Y )Cxψ(t)CSψ(t)

∣

∣

∣

∣

∣

. (27)

Given Condition 2 and the inequalities (26), by using Lemma 3 it is easy to drive the
estimates:

Δhi,t ≤ c3(δ + |ϕ
h
i −OUR(t)|), t ∈ [τi, τi+1) (28)

uniform in all i ∈ [0 : mh − 1] and h ∈ (0, h1). In addition, the following inequalities take
place:

∣

∣

∣

∣

∣

1

CX(t)CS(t)
−

1

Cxψ(t)CSψ(t)

∣

∣

∣

∣

∣

≤ c4(|µ1(t)|+ |µ2(t)|) ≤ c5

t
∫

t0

|ϕh(τ)−OUR(τ)| dτ, (29)

∣

∣

∣

∣

∣

1

CX (t)
−

1

Cxψ(t)

∣

∣

∣

∣

∣

≤ c6

t
∫

t0

|ϕh(τ)− OUR(τ)| dτ. (30)

Using (29) and (30), it is easy to determine:

Δt ≡

∣

∣

∣

∣

∣

KS + CSψ(t)

Cxψ(t)CSψ(t)
−
KS +CS(t)

CX(t)CS(t)

∣

∣

∣

∣

∣

≤ c7

t
∫

t0

|ϕh(τ)−OUR(τ)| dτ. (31)

Further, we have

µmax(t) =
µ(CS(t))(KS + CS(t))

CS(t)
,

µ(CS(t)) =
Y

1− Y

OUR(t)

CX(t)
.

Therefore

µmax(t) =
Y (KS + CS(t))OUR(t)

(1− Y )CX(t)CS(t)
,

and

|vhi − µmax(t)| =

∣

∣

∣

∣

∣

Y (KS + w
h
2(τi))ϕ

h
i

(1− Y )wh1(τi)w
h
2(τi)

−
Y (KS +CS(t))OUR(t)

(1− Y )CX(t)CS(t)

∣

∣

∣

∣

∣

.

Combining (28), (31), and taking into account the inequality

|vhi − µmax(t)| ≤ Δ
h
i,t +

Y

1− Y
|OUR(t)|Δt, t ∈ [τi, τi+1), i ∈ [0 : mh − 1],

we get Eqn. (15) in Lemma 5.
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Lemma 6. For the proof of the lemma we estimate the variation of the function

ε(t) = |w̃h0(t)− CDO(t)|
2 + α(h)

t
∫

t0

{|ϕh(τ)|2 − |OUR(τ)|2} dτ, t ∈ T.

Here a function w̃h0(t), t ∈ [τi, τi+1), i ∈ [0 : mh − 1], defines by the rule

˙̃w
h
0(t) = kLa(C

en
sat − ξ

h
i )− ϕ

h
i + a(t)(Csat − ξ

h
i ), t ∈ [τi, τi+1),

˙̃w
h
0(τi) = w

h
0(τi).

Note, that

lim
t→τi+1−0

w̃h0(t) = w
h
0(τi+1).

Let

µi = 2(w̃
h
0(τi)−CDO(τi))

τi+1
∫

τi

( ˙̃w
h
0(t)− ĊDO(t)) dt.

It is easily seen that the following inequality is true:

ε(τi+1) ≤ ε(τi) + δ(h)

τi+1
∫

τi

| ˙̃w
h
0(τ)− ĊDO(τ)|

2 dτ + µi + α(h)

τi+1
∫

τi

{|ϕhi |
2 − |OUR(τ)|2} dτ.

(32)

Consider the value µi in the right-hand part of inequality (32). The following relation is
fulfilled:

µi = −2s
∗
i

τi+1
∫

τi

{kLa(CDO(τ)− ξ
h
i ) + a(τ)(CDO(τ)− ξ

h
i ) +OUR(τ)− ϕ

h
i )} dτ =

3
∑

j=1

λji,

(33)

where

λ1i = 2kLas
∗
i

τi+1
∫

τi

(ξhi − CDO(τ)) dτ,

λ2i = 2s∗i

τi+1
∫

τi

a(τ)(ξhi − CDO(τ)) dτ,

λ3i = 2s∗i

τi+1
∫

τi

(ϕhi −OUR(τ)) dτ,

s∗i = CDO(τi)− w
h
0(τi).

Therefore, from (32), (33) we derive

ε(τi+1) ≤ ε(τi) +
3
∑

j=1

λji + α(h)

τi+1
∫

τi

{|ϕhi |
2 − |OUR(τ)|2} dτ + δLhi , (34)
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where a value Lhi is defined by the formula

Lhi =

τi+1
∫

τi

|kLa(ξ
h
i −CDO(τ)) + a(τ)(ξ

h
i −CDO(τ)) + ϕ

h
i − OUR(τ)|

2 dτ.

Let us estimate each term in the right-hand part of inequality (34). From (3) (Sec. 3) and
Condition 1 it follows that

max{ sup
t0≤t≤ϑ

|CDO(t)|, sup
t0≤t≤ϑ

|CX(t)|, sup
t0≤t≤ϑ

|CS(t)|} ≤ d0 < +∞.

Consequently, using this inequality and the inequality |ξhi − CDO(τi)| ≤ h, we deduce the
estimates

λ1i ≤ d1(h+ δ)δ, (35)

λ2i ≤ d2(h+ δ)δ, (36)

λ3i ≤ 2si

τi+1
∫

τi

(ϕhi −OUR(τ)) dτ + d3hδ, si = ξ
h
i − w

h
0(τi), (37)

mh−1
∑

i=0

Lhi ≤ d4. (38)

Here, dj, j ∈ [0 : 4], are constants that can be explicitly written. Further, we use the
obvious equality

ϕhi = argmin{2siu+ α(h)u
2 : −K ≤ u ≤ K}.

Then, from (3), (6) (Sec. 3) and (37), the following inequality

λ3i + α(h)

τi+1
∫

τi

{|ϕhi |
2 − |OUR(τ)|2} dτ ≤ (39)

≤

τi+1
∫

τi

{[

2siϕ
h
i + α(h)|ϕ

h
i |
2
]

−
[

2siOUR(τ) + α(h)|OUR(τ)|
2
]}

dτ + d3hδ ≤ d3hδ

holds. Taking into account (34)–(37), we have for all i ∈ [1 : mh] the following estimate

ε(τi) ≤ d5(h+ δ). (40)

Inequalities (16) and (17) in Lemma 6 follow from (40).


