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Preface 

This new research project a t  IIASA is concerned with modeling technological and organisational 
change; the broader economic developments that are associated with technological change, both 
as cause and effect; the processes by which economic agents - first of all, business firms - acquire 
and develop the capabilities to  generate, imitate and adopt technological and organisational in- 
novations; and the aggregate dynamics - a t  the levels of single industries and whole economies - 
engendered by the interactions among agents which are heterogeneous in their innovative abili- 
ties, behavioural rules and expectations. The central purpose is t o  develop stronger theory and 
better modeling techniques. However, the basic philosophy is that such theoretical and modeling 
work is most fruitful when attention is paid t o  the known empirical details of the phenomena 
the work aims to  address: therefore, a considerable effort is put into a better understanding of 
the 'stylized facts7 concerning corporate organisation routines and strategy; industrial evolution 
and the 'demography7 of firms; patterns of macroeconomic growth and trade. 

From a modeling perspective, over the last decade considerable progress has been made on 
various techniques of dynamic modeling. Some of this work has employed ordinary differential 
and difference equations, and some of it stochastic equations. A number of efforts have taken 
advantage of the growing power of simulation techniques. Others have employed more traditional 
mathematics. As a result of this theoretical work, the toolkit for modeling technological and 
economic dynamics is significantly richer than it was a decade ago. 

During the same period, there have been major advances in the empirical understanding. 
There are now many more detailed technological histories available. Much more is known about 
the similarities and differencers of technical advance in different fields and industries and there is 
some understanding of the key variables that lie behind those differences. A number of studies 
have provided rich information about how industry structure co-evolves with technology. In 
addition to  empirical work a t  the technology or sector level, the last decade has also seen a 
great deal of empirical research on productivity growth and measured technical advance a t  the 
level of whole economies. A considerable body of empirical research now exists on the facts that 
seem associated with different rates of productivity growth across the range of nations, with the 
dynamics of convergence and divergence in the levels and rates of growth of income in different 
countries, with the diverse national institutional arrangements in which technological change is 
embedded. 

As a result of this recent empirical work, the questions that successful theory and useful 
modeling techniques ought to  address now are much more clearly defined. The theoretical work 
described above often has been undertaken in appreciation of certain stylized facts that needed 
to  be explained. The list of these 'facts7 is indeed very long, ranging from the microeconomic evi- 
dence concerning for example dynamic increasing returns in learning activities or the persistence 
of particular sets of problem-solving routines within business firms; the industry-level evidence 
on entry, exit and size-distributions - approximately log-normal; all the way t o  the evidence 
regarding the time-series properties of major economic aggregates. However, the connection 
between the theoretical work and the empirical phenomena has so far not been very close. The 
philosophy of this project is that the chances of developing powerful new theory and useful 
new analytical techniques can be greatly enhanced by performing the work in an environment 
where scholars who understand the empirical phenomena provide questions and challenges for 
the theorists and their work. 

In particular, the project is meant to  pursue an 'evolutionary' interpretation of technological 
and economic dynamics modeling, first, the processes by which individual agents and organisa- 



tions learn, search, adapt; second, the economic analogues of 'natural selection' by which inter- 
active environments - often markets - winnow out a population whose members have different 
attributes and behavioural traits; and, third, the collective emergence of statistical patterns, 
regularities and higher-level structures as the aggregate outcomes of the two former processes. 

Together with a group of researchers located permanently a t  IIASA, the project coordinates 
multiple research efforts undertaken in several institutions around the world, organises workshops 
and provides a venue of scientific discussion among scholars working on evolutionary modeling, 
computer simulation and non-linear dynamical systems. 

The research will focus upon the following three major areas: 

1. Learning Processes and Organisational Competence. 

2. Technological and Industrial Dynamics 

3. Innovation, Competition and Macrodynamics 



Summary 

Consider a game that is played repeatedly by two populations of agents. In fictitious play, agents 
learn by choosing best replies to the frequency distribution of actions taken by the other side. 
We consider a more general class of learning processes in which agents7 choices are perturbed 
by incomplete information about what the other side has done, variability in their payoffs, and 
unexplained trembles. These perturbed best reply dynamics define a non-stationary Markov 
process on an infinite state space. We show that for 2 x 2 games it converges with probability 
one to  a neighborhood of the stable Nash equilibria, whether pure or mixed. This generalizes 
a result of Fudenberg and Kreps (1993)) who demonstrate convergence when the game has a 
unique mixed equilibrium. 

Key words: evolutionary game theory, perturbed best reply dynamic, convergence with 
probability one, non-stationary Markov processes, stable Nash equilibria, rate of convergence. 
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Learning Dynamics in Games with 
Stochastic Perturbations* 

By Yuri M. Kaniovski and H. Peyton Young 

1 A model of technological adoption 

Consider two classes of agents who are deciding whether to adopt complementary technologies. 

Suppose, for example, that a new kind kind of gasoline (technology X )  comes on the market. 

Filling stations must decide whether t o  stock X ,  and they will base their choice on an estimate 

of how many consumers have cars that run on X .  Similarly, a consumer faced with the choice 

of whether to  buy a car that runs on X will consider how many filling stations already offer 

X .  In both cases the individual's decision depends on the proportion of people in the other 

class who have already adopted X ,  but these proportions are not precisely known. A consumer, 

in driving around, will notice that some stations offer X and some do not. Similarly, a filling 

station owner observes that some cars use X some do not. From these casual and somewhat 

random observations they infer the proportions that are relevant to  their decisions, but the 

information on which they base their decisions is incomplete. A similar story can be told for 

any technological innovation that complements other innovations. 

Such a dynamical adjustment process exhibits several features that are found in many dif- 

ferent learning situations, whether the learning is by individuals or groups of individuals. First, 

the decision of each agent hinges on the actions taken by other agents. In other words it has 

the structure of a game. Second, an agent may know some of the previous actions taken by 

others, but there is no reason to  suppose that she actually knows all of them. Third, while a 

well-informed and highly sophisticated individual might, in theory, be able to  forecast how such 

a process is going t o  evolve over time, we do not want t o  assume that individuals are especially 

well-informed or highly sophisticated. We prefer t o  assume that they do more or less sensible 

things given a limited knowledge of the world around them. Finally, no matter how carefully 

we try to specify individuals' decision making processes, there will inevitably be some random 

variation in their responses that arise from unmodeled factors. 

In this paper we examine a class of learning dynamics that incorporate these features. Specif- 

ically, we consider a stochastic version of fictitious play in which agents' information is incom- 

'An earlier version of the paper was entitled "Dynamic Equilibrium Selection Under Incomplete Information". 



plete, their payoffs functions wobble, and their choices are sometimes random. We then analyze 

the behavior of such process for 2 x 2 games. We show that, under suitable regularity conditions 

on the perturbations, the learning process converges with probability one to a neighborhood 

of a stable Nash equilibrium. In particular, if the game has a unique Nash equilibrium (pure 

or mixed), then it is stable and the process converges to  a neighborhood of it with probability 

one. If on the other hand the game has exactly three Nash equilibria (two pure and one mixed), 

then the process converges to  a neighborhood of one or both of the pure equilibria (which are 

stable), and with probability zero to  the mixed equilibrium (which is unstable). The size of the 

neighborhood shrinks to  zero as the probability of making random errors becomes vanishingly 

small. 

This result is related to  other recent work in evolutionary game theory and learning, par- 

ticularly Fudenberg and Kreps (1993)'. They showed that, when agents play a 2 x 2 game 

repeatedly with slightly perturbed payoffs, then the frequency distribution of play converges 

with probability one to  a neighborhood of the mixed strategy equilibrium provided that the 

game has a unique, completely mixed equilibrium. We show in a more general setting that con- 

vergence obtains for all 2 x 2 non-degenerate games whether they have pure or mixed equilibria. 

Moreover only the stable equilibria are attained with positive probability. In particular, if the 

game has exactly three equilibria - two pure and one mixed - then the former are attained with 

probability one and the mixed one with probability zero. 

The paper proceeds as follows. In section 2 we define a stochastic version of fictitious play 

in which the only noise arises from incomplete information (i.e. sampling variability). This 

stripped-down version of the model exhibits many of the key features mentioned above, and is 

easy to  grasp intuitively. Section 3 shows how to  analyze the long-run behavior of such processes 

using stochastic approximation techniques (see, for example, Nevelson and Hasminskii (1976)). 

Unlike most other work in this area, we do not rely on Lyapunov functions to  prove convergence 

(indeed we do not know how to  construct the relevant Lyapunov functions for some classes of 

games). Rather we derive the relevant stability conditions for the system of differential equations 

using a geometric argument. Numerical simulations of fictitious play with sampling are given in 

section 4. We then broaden the framework in sections 5 and 7 to  include other sources of noise 

such as random perturbations in the players' choices and in the payoff functions. In section 

6 we introduce the concept of a "perturbed best reply dynamic," which covers all the above 

sources of noise, as well as many others. We then prove a general result concerning the almost 

'For stochastic evolutionary game theory models of this kind see also Foster and Young (1990), Kandori, 

Mailath and Rob (1993), Young (1993a, 1993b), Ellison and Fudenberg (1994), Dosi and Kaniovski (1994), Posch 

(1994). 



sure convergellce of such a process t o  a Nash equilibrium. The rate of convergence is studied in 

section 8. 

2 Fictitious play with sampling 

Fix a two-person game G with payoff matrix 

( 
all, Pll a 1 2 7  P12 

a 2 1 7  P21 a22! P 2 2  ) .  
Assume there are two populations of agents: row players (R) and column players (C). Each 

of these populations consists of one or more players. In every time period t = 1,2, .  . . one 

pair is drawn from R x C to play the game. The state a t  t is a vector of nonnegative integers 

(a;, a;, b;, bi), where a;, a; are the numbers of row players who have chosen strategies 1 and 

2 respectively up to  and including time t, and bt, bi are the numbers of column players who 

have chosen 1 and 2 respectively. We assume the agents selected to  play the game in period 

t + 1 have incomplete information about the current state, which they gather by randomly 

sampling from previous actions (as in Young (1993a)). For notational simplicity we assume that 

all players have the same sample size s (a  positive integer), though in fact our results extend 

to  the case where players have different sample sizes. The sample size measures the extent of 

an agent's information, but we do not view it as the result of an optimal search. Rather, it 

reflects the extent t o  which the agent "gets around", i.e., is networked with other members of 

the population. We take this as exogenously given. 

The process unfolds as follows. At time t + 1 one new row player and one new column player 

come forward. The row player draws a subset of s actions taken so far by the column players. 

The total number of such actions is bt = b; + bi. For convenience we shall assume that all 

samples of size s are equally likely to  be drawn. 

Let the random variables B:, B i  denote the actual numbers of previous actions by column 

players that Row draws a t  time t + 1. Row then adopts strategy 1 or 2 according as the following 

criterion is positive or non-positive 

Independently and simultaneously Column draws a subset of s previous actions by Row, the 

total number of such actions being at  = a: + a:. The random variables A:, A: denote the 

number of actions of each type in the column player's sample. She then adopts strategy 1 or 2 

according as the following expression is positive or non-positive 



These definitions yield a stochastic process of form 

where p(., ., ., .) are independent random vectors that take the values (1,0,1,  O), (0,1,1,0) ,  

(0,1,0,1)  and (1,0,0,1) with probabilities that depend on the current state. 

To analyze this process, we project it into the space of proportions of the two populations. 

Let X t  = a;/at and Yt = bi/bt. Then there exist Bernoulli random variables t t ( y )  = 0 or 1 and 

@(x)  = 0 or 1 such that 

Xt+l  = X t  + ( l /at+'  ) [ t t (Yt)  - Xt] ,  t 2 1, X '  = a:/al, 

yt+' = Yt + (l/bt+')[$t(Xt) - Yt], t >_ 1, Y' = b:/bl. 
(4) 

These equations define two parallel or co-evolving process on the space [O,1] x [ O , l ] .  The two- 

dimensional process (X t ,Y t )  is Markovian but non-stationary because the denominators at+' 

and bt+' depend on t. In fact we have the simple relations at+' = t + a' and bt+' = t + b' because 

the number of actions already taken grows by one in each period. Note that the distributions 

of t t ( . )  and qt( . )  depend on the number of agents in the other class (not just their proportions) 

because the sampling is without replacement. We call this process fictitious play with sampling. 

The process can also be represented as an urn scheme. Imagine two urns R and C of infinite 

capacity. Each contains two colors of balls - red for strategy 1 and white for strategy 2. Initially 

there are a: red balls and a; white balls in the first urn. Similarly, there are b: red balls and 

6: white balls in the second urn. In the first period, a representative row player reaches into 

the second urn and pulls out s balls a t  random. Then he adds a red ball to  the first urn if 

the criterion (1) is positive and adds a white ball if it is non-positive. Simultaneously and 

independently a representative column player reaches into the first urn and pulls out s balls a t  

random. He then applies criterion (2) to  determine what color of ball to  add to  the second urn. 

We call this a co-evolving urn scheme. 

It can also be represented (in a more complicated way) by a single urn containing four colors 

of balls. At each stage t = 1 ,2 , .  . . two balls of various colors are added according to  a probability 

distribution that depends on t and the proportions of balls currently in the urn. Let us identify 

a ball of the first color with a red ball in the first urn, a ball of the second color with a white 

ball in the first urn, a ball of the third color with a red ball in the second urn, and a ball of the 

fourth color with a white ball in the second urn. Designate by xf. the current proportion of balls 

of the i-th color, i = 1,2,3. (The value x i  is determined by these.) Then 

Now we can characterize the process as follows. Add one ball of the first color and one ball of the 

third color if both (1) and (2) are positive. If (1) is non-positive but (2) is positive, add one ball 



of the second color and one of the third color, and so on. This an example of a generalized single- 

urn scheme with multiple additions (Arthur, Ermoliev, and Kaniovski (1987)). Unfortunately, 

proving convergence for such processes using the approach of Arthur, Ermoliev and Kaniovski 

(1987) requires the construction of a Lyapunov function, which poses difficulties in this case. 

Instead, we shall develop a new approach that exploits the geometry of the situation together 

with the qualitative theory of ordinary differential equations. 

3 Asymptotic behavior of fictitious play with sampling 

We begin by analyzing the situation when the only source of noise is sampling variability. Players 

always choose best replies given the information in their samples; there is no variability in their 

payoffs and no trembling. This model is easy to  grasp and contains almost all of the essential 

features of the more general case. 

Consider the following example 

This game has three equilibria: ((0, I ) ,  (0, I ) ) ,  ((1, O), (1, O)), and ((1/3,2/3), (213,113)). To 

simplify notation we shall refer to  these equilibria as (0,0), (1, I ) ,  and (113,213) respectively. 

The direction of motion of ordinary fictitious play (which is deterministic) are shown in Figure 1. 

Note that each of the pure equilibria is dynamically stable in the sense that it is the unique limit 

of the deterministic process whenever the process starts in a sufficiently small neighborhood of 

that equilibrium. The mixed strategy equilibrium, by contrast, is dynamically unstable. 

Consider now the stochastic process defined by (4) when agents have sample information 

with sample size s. Let the process begin in an arbitrary state (a:,  a:, b:, bi) .  (We have to  

assume here that a: +a: 2 s and b: + bi 2 s to be sure that the samples are feasible.) Sampling 

changes fictitious play in two ways: i) it creates variability around the best-reply path; ii) it 

creates bias in the replies because of the finiteness of the sample. 

To state our result precisely, let us say that a 2 x 2 game G is non-degenerate if it has exactly 

three Nash equilibria (two pure and one mixed) or exactly one mixed Nash equilibrium. 

Theorem 1 Let G be a non-degenerate 2 x 2 game. For all suficiently large sample sizes, 

fictitious play with sampling converges with probability one to a random vector (X* ,  Y*) which 

lies close to a stable Nash equilibrium of G. That is, for every E > 0 there exists a positive 

integers, such that whenever s 2 s, l imt+w(Xt,Yt) = (X* ,Y*)  exists with probability one, and 

its support lies within an €-neighborhood of the stable Nash equilibria. 



Figure 1: Direction of motion of fictitious play. 

We now give the intuition behind this theorem. (A formal proof of a more general result 

from which this one follows is given in Appendix.) We can think of the process as fictitious 

play with a small noise or "wobble". The source of the wobble is the stochastic variation in the 

choices that agents make each period. As time runs on, each new choice counts for less and less 

relative t o  the total number of choices that have already been made. The incremental changes 

in the population proportions decreases as l l t ,  and so does the variability in these increments. 

Thus we have an annealing process in which the level of noise damps down over time. The 

result says that the state of the system - projected into the space of proportions - converges 

with probability one. Moreover, the limit of the process is precisely a fixed point of the expected 

motion, which is equal to  (or close to) a Nash equilibrium of the game when s is large. If this 

equilibrium is dynamically unstable, however, then because of the perpetual wobble the process 

will not converge to  it (except with probability zero). 

All of this make sense intuitively. What remains to  be shown is that the process converges 

almost surely, and that the only things to  which it can converge (with positive probability) do 

in fact lie close to  the stable Nash equilibria of the game. Here we shall sketch the outlines of 

the argument. 

Let G be a non-degenerate game as above. The situation in which G has exactly three 

equilibria will be called "case 1" and the situation where it has a unique equilibrium will be 



termed "case 2". 

In both cases the formula for the mixed equilibrium (P, a )  is (see, for example, Vorob7ev 

(1977), p.p. 99-103) 

Without loss of generality in case 1 we have 

while in case 2 we may assume that 

all - 0 2 1  - 012 + a 2 2  > 0 and P11 - P21 - P12 + P22 < 0. 

Now let us derive analytic expressions for the distributions of the Bernoulli random variables 

involved in (4). Assume we are in case 1. At time t , as above, X t  stands for the proportion of 

strategy 1 chosen so far by the row players, and Yt the proportion of strategy 1 chosen so far by 

the column players. Let t t ( Y t )  be the indicator of the random event that Row plays strategy 1 

in period t and let Gt(Xt)  be the indicator of the random event that Column plays strategy 1 

in period t .  Let s be the sample size. The random variable BE denotes the number of 1's that 

appear in Row's sample, while Bi = s - B: denotes the number of 2's in Row's sample. Define 

A! and A; similarly. Then we have the relations2 

In case 2, (6) still applies but (7) must be replaced by 

(This follows from the fact that in case 2, all - 0 2 1  - a12 + az2 > 0 and Pll - P21 - P12 +P22 < 0.) 

Consider the inequality BE > a s .  The probability of this event is equal to  

where H (i; bt, s ,  6;) is the hypergeometric distribution 

2From these formulae it is clear why we require G to be non-degenerate. If, for example, a $! ( 0 , l )  then the 

event {B:  > as) becomes deterministic and the dynamic for X i  is also deterministic. Hence sampling does not 

create anything interesting for degenerate games. 



To avoid the trivial case when this probability is identically 0 or 1, we have to  assume that 

bi > [as ]  and bi 2 s - [ as ]  - 1, 

where [as ]  designates the integer part of a s .  The analogous condition for the row players is 

a: > [ps ]  and a; > s - [ps ]  - 1. 

We say that the initial state is rich if the above inequalities hold. We shall henceforth assume 

this condition to  avoid the less interesting case where the process is deterministic. 

Since bt = b1 + t - 1 and Y t  = b4/bt, we can write (9) in the following form 

Consequently we have 

where 

and 

sup 16i(n, Y ) l  5 ca,sln. 
yE[O,11 

We can sum up these observations in the following lemma. 

Lemma 1 Let G be a non-degenerate 2 x 2 game with mixed Nash equilibrium ( P ,  a) .  For all 

( x , Y )  E [ O ,  11 x [ O ,  11, 

case 1 : p { t t ( y )  = 1 )  = f : (y)  + 6 i (b t ,  y ) ,  p { t j t ( x )  = 1 )  = f ; ( x )  + b;(at, x ) ,  

case 2 : p{E t ( y )  = 1 )  = f : (y) + 6 i (b t ,  y ) ,  p { t j t ( x )  = 1 )  = 1 - f ; ( x )  - 6; (a t ,x ) ,  

where the functions involved are given by (10) and (11). 

Define Z t ( y )  = Et(y)  - EEt(y )  and XPt(y) = t j t ( y )  - Et j t ( y )  (here E designates mathematical 

expectation), and rewrite (4) in the following way: 

case 1 : 



These equations define a two-dimensional stochastic approximation procedure (see, for example, 

Nevelson and Hasminskii (1976)). 

Suppose that a t  time t the process is a t  the point (x, y). Then the expected motion is as 

follows 

case 1 : (2, y) H (x + ( l /at+') [ fz(y) + 6i(bt, y) - X I ,  Y + (llbt+')[f;(x) + 6;(at,x) - ~ 1 ) ;  

case 2 : (x, y) H (x + (l/at+')[fz(y) + 6i(bt, Y) - X I ,  Y + (l/bt+')[ l  - f;(x) - 6;(at,x) - YI). 

Since at+' = a' + t and bt+' = b' + t, we might reasonably conjecture that,  as t + oa, this 

process behaves like the system of ordinary differential equations 

case 1 : j: = f:(y) - x, y = f;(x) - y; 

c a s e 2 :  x = f:(y)-x, y = 1 -  f;(x)-y. 
( 12) 

(By (11) we have neglected terms of order t-I.) This conjecture turns out to be correct. (The 

argument is given in Appendix.) 

Assuming this holds, we can now see that the stationary points of (12) determine the possible 

limits of these systems, and these are precisely the solutions of 

case 1 : x = fZ(y), Y = f;(f:(y)); 

c a s e 2 :  x = fZ(y), y =  1 -  fj(fZ(y)). 
(13) 

The next step is to  show that the solutions of (13) are close to the Nash equilibria of the 

game. Consider f:(-) for a fixed a and variable s. As s increases, f:(.) becomes more and more 

S-shaped and approaches the step function (see Figure 2) 

1 if x E ( a ,  I ) ,  

0 i f x ~ ( 0 , a ) .  

We may state this result more exactly as follows. Say that a function f (.) : [O, 11 H [O, 11 is 

convex-concave if for some z E (0, I ) ,  f ( . )  is convex on [0, z )  and concave on (z , l ] .  

Lemma 2 For every a E ( 0 , l )  

i) lim,,, f:(x) = f F ( x )  for all x E [ O , l ] ;  

ii) f:(x) is strictly increasing in x, continuously differentiable, and for large s it is convex- 

concave. 



Figure 2: The function fG3(.) for s = 2,8,32,128 . 

Proof. The value f:(x) can be thought as 

where a k  are independent Bernoulli random variables satisfying 

1 with probability x, 
a k =  { 

0 with probability 1 - x. 

Set bk = a k  - x. Then the above probability equals 

From the law of large numbers it follows that,  in probability, 

1 
lirn - x bk = 0. 
s-00 s 

k = l  

Consequently, 

1 
lim f:(x) = lim P { -  bk > a - x)  = 0 for a > x, 
s-00 s-00 

k = l  

and 

1 
lim f:(x) = lim P{-  x bk > a - x) = 1 for a < x. 
s-00 s-00 S 

k = l  

Finally, f z ( a )  = 112 by symmetry. This proves statement i). 




































