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INTRODUCTION 
The aim of this paper is to introduce a new generalization of the von 

Neumann model and to show how this model can be applied in practical 
economic planning. 

The von Neumann theory of growth is one of the best known models in 
mathematical economics. Since 1937, when von Neumann first published his 
famous article, many authors have tried to generalize his results and, there- 
fore, have investigated in great depth the properties of the original model and 
those of i ts various generalized forms. Kemdny. Morgenstern, and Thompson 
(1956) changed von Neumann's original assumptions and made the model more 
plausible for economic applications. In 1960 Morishima introduced a n o n l i n e a r  
generalization of the model, in which the input and output matrices are non- 
linear functions of variables. In 1974 J. Lo$ introducing revenue and cost 
matrices that are generally different from the usual input and output matrices. 
extended the von Neumann theory of growth to the case of asymmetric models. 
Morgenstern and Thompson (1976) opened the model by including foreign trade, 
as well as taxes and subsidies. The model presented in this paper is an open,  
n o n l i n e a r ,  a d  a s y m m e t r i c  generalization of the von Neumann model. 

During the past few years, priority in Hungarian economic planning has 
been given to the problem of economic equilibrium, mainly as a response to the 
rapid changes in the world economy. Therefore, attempts were made to develop 
various models able to examine various aspects of the equilibrium problem. 
Our present investigation is also focused on the question of economic equilib- 
rium. Equilibrium is a fairly complex and much discussed notion in economic 
theory and it has many facets. These include supply and demand on both 
domestic and foreign markets and consequently also the foreign trade balance; 
certain amounts and distribution patterns of production in both physical and 
value terms must be considered, so that pricing cannot be avoided either; and 
finally, tradeofls between present and future growth rates and the profit rate 



prevailing in an economy are also closely connected with the equilibrium posi- 
tion of the country concerned. Broadly speaking these are the fields we have 
tried to investigate (even if sometimes in a fairly simple way) with the help of 
our model. 

The literature contains a number of applications of von Neumann-type 
models in planning; an excellent survey is contained in Cheremnikh (1982), pp. 
37-45. The present model is particularly suitable for planning purposes, as it 
mirrors the most important phases in the planning process: 

- When a plan is being elaborated, various alternatives are drawn up and 
a choice made between them. The different alternatives can be built 
into the model. 

- When any plan (even the annual plan. which is the most static in the 
entire system of plans) is worked out, at least some consideration 
should be given to future dynamic developments. Although this is pri- 
marily a static model, there are also some useful dynamic features. 

- When the major economic and political guidelines of the plan are 
being formulated, planners prefer to think in time intervals. The 
model makes this possible for a specified group of variables. 

The paper consists of three main parts. In the first part, starting from a 
general picture of an abstract economy a "theoretical" model is drawn up and 
the existence of its solution is proved. The second part presents the 
specification of a "practical" version that could be used in the earlier phases of 
planning work. Various qualitative features and ideas for a solution algorithm, 
as well as results from some practical computations are also reviewed. T h e  
third part consists of an appendix that  gives a brief survey of the major ver- 
sions of von Neumann-type models. 

1. A GENERAL EXISENCE THEOREN 
Let us suppose that there is an abstract economy, where n commodities 

are produced by m sectors. Let F be the input matrix and B the output matrix. 
Thus, if z = (zl, x 2 , .  . ., 2,) is the activity level of the sectors, then Ez is the 
production input vector and 3% denotes the production output vector of the 
commodities. We denote by H the matrix of "nonproductive" expenditures in 
the economy that are not directly required for production in the short term; 
these might include investment activity, the costs of education and health ser- 
vices, etc. 

We shall assume that the productive activities in the economy are 
exponentially growing; that is, if r is the vector of activity levels during any 
given period, then there is a constant h > 0 that determines the activity levels 
during the next period as hz. If e represents imports, then the following 
primal-type equalities hold: 

in other words, production plus imports is equal to the sum of exports and 
nonproductive expenditures plus the input for the next production period. Let 
p be the price vector and G the cost matrix of production. If t is the vector of 
taxes and s the vector of subsidies then the dual formulation of the above equa- 
tion can be obtained in the form: 

t + p p G  = p B + s  (2) 



Equation (2) shows that the product of the interest factor (p > 0) and the cost 
of production ( p G )  plus taxes ( t )  must be equal to production revenues pB plus 
subsidies. It should be emphasized that in contrast to normal von Neumann 
models we shall n o t  assume that the input and cost matrices are equal. Instead 
(after J. Log). we assume these matrices to be different; thus our model can be 
considered as a generalized version of the Log three-matrix model. 

Further, following the approach of Morgenstern and Thompson, we shall 
also assume that the activity level vector z has lower and upper bounds: 

In addition, i t  also seems reasonable that the complementary equations should 
hold true: 

The relations (4)-(7) are equivalent to the following equalities: 

ep-  = ip+ = ep = ip (10) 

tz+ = SZ- = tz = S2  (1 1) 

The economic meaning of relations (1)-(11) is straightforward. According 
to (8) and (9). none of the commodities can be exported and imported simul- 
taneously. and none of the sectors can be both taxed and subsidized at  the 
same time. .If there is some overproduction of the i t h  commodity on the 
domestic market then its price will be at  the lower bound; that is, if a certain 
sector exports, then its price will be at  the lower bound, which meahs that the 
lower bound of prices is effectively the export price vector. Similarly, the 
upper bound of the prices, p+, is the import price vector, and the real price 
vector p must be in the range b'.p+]. If in some sector there is an extra 
profit then this sector works a t  the upper bound, since it wishes to extend its 
activity as far as possible. Thus, the taxable sectors work at  the upper bound. 
Similarly, the subsidized sectors work at the lower bound of productive activity. 

Relation (10) expresses the foreign trade balance, while eqn. (11) 
represents the balance of supports and taxes, which is a kind of budget con- 
s traint. 

So far we have assumed that the parameters of the model - the matrices 
F, G, B, and H - are constant. In most real cases, however, they may well be 
functions of variables (z.p,X,p). Since in what follows we will be focusing on 
this more general problem. we need to summarize the assumptions necessary 
to prove the existence of the solution. 



Let us introduce additional notation: 

X = { z ) z - $ 2  $ z + j a n d P  = [ P I P - $ p  $p+j 

Assumptions 

2. F(z.p, A,p) . G(z.p, A, p) , B(z ,p ,  A,  p) , H(z,p, A,  p) are continuous, 
nonnegative, matrix-valued functions on X x P x [0, m) x [O, m). 

3. There is a positive scalar do, such that max, 1 F(Z ,p.  A, p) z j 2 go. 

4. There is a positive scalar dl, such that p ~ ( z  ,p ,  A, p) z-  2 dl. 

5. l?(z,p, h,p) is bounded on X x P x [0, =) x [0, =), and 
maxj IpB(z, p , A. p) j > 0. 

6. pH(z,p,h,p)z 5 max I0,pBz -pGzj. 

Remarks on the Assumptions 

1. The first assumption is quite trivial. If some element of the upper 
bound vectors were zero, then this commodity or activity could be 
deleted without any effect on the  solution. 

2. The third assumption is a version of the  original Kemgny- 
Morgenstern-Thompson assumption. If every column of F has a t  least 
one positive entry, that  is, if every sector uses some commodity, then 
ma% I&{ is positive if z # 0. If F is independent of h and p, then 
from the compactness of X and P i t follows that  the continuous func- 
tion m q  tF(z,p) z has a positive minimum. In some applications F 
can often be transformed into the form: 

F(z,p.A,p) = Fo(z,p) + Fl(z,p,A.p) 

where Fo satisfies the KemCny-Morgenstern-Thompson assumption 
and F1 is nonnegative, t ha t  is, the second assumption is trivially 
satisfied. (See also Assumption 5.) 

3. The assumption pG(z,p, A,p)z- > 0 expresses the fact that  the cost of 
production is positive in any price system (cf. Assumption 2). 

4. p& - pGz is the surplus value. If it is negative then there is no room 
for any nonproductive expenditure since even the production costs 
are not covered by income from production. If pBz - pGz 2 0 then 
Assumption 6 means that the  nonproductive expenditure should not 
be greater than the surplus value. 

lheorem 1 .  There exists a solution of the model (1)--(9) under Assumptions 
1-6. 

Proof. Theorem 1 will be proved using the Kakutani fixed-point theorem. 
Fist. let u s  introduce some new notation. Let 

and let  



Define a point-to-set mapping: 

~ ( ~ I P I A I ~ )  = W x vx  it1 x I?/] 
where 

E P ~ ~ " [ ( A P  - 8 ) z ]  = rnax 1p^[(h9 - ~ ) z ] {  
j i  EP I 

2" E x I b ( p G  - B ) Z ]  = min f p [ ( p G  - B ) Z ] J  
P EX I 

A + rnax tO,p& - A p & ]  
( ( z , p ,  h .p )  = 

fhp"& -$EzJ 

1.1 + max 10, pl3z - fipC;2 1 
q ( z n p s X , p )  = 

ippGE - p H ]  

Now we investigate the properties of the correspondence (p. It is evident tha t  
( P ( ~ s P I A , ~ )  is convex and non-empty for every 
( 2 . p .  A,p) E X x P x [0, m) X [ O ,  =) and from the continuity of @, B and G i t can 
easily be seen that  the graph of (p is closed Since we intend to apply Kakutani's 
fixed-point theorem, we need to  prove that functions [ and q  are bounded: 

p + rnax IO.pI3k - pp& 
q ( z , p , X , p )  = 

j l p e N  - p S j  I 

- + rnax 0, rnin pGz" - =m 
Because of Assumption 5 above, it is evident that  the numerator is bounded 
from above, and therefore it remains to be proved that the denominator is 
bounded from below by a positive constant. By Assumption 4, 

If e < dl, then there is a pa sumciently large that  



Let us now consider the function #: 
A + max IO,pBz - hp&j 

C ( P , 2 , A , L L )  = # . 

A + max 10,pBz - Apfi - pHz ]  s f \ 

1 + max 10. gi;p"thfi + Hz - Bzj I 
h + max 10,pBz - A p k ]  

5 I I 

As the boundedness of the numerator is once again obvious, the denominator 
remains to be investigated: 

max [ 0, max 5 E p u l  p  fi - - ~ ] ] 2 ~ z : f i ( f i - ~ ]  

2 1 9 ~  min z jpi+j - A &=&zCE A 

Utilizing the fact that 3 > 0 and arguing as above, we can find a constant k  and 
a Ao, such that  

t ( z , p , A . p )  5 k l  , when A z A 0  

Since X x P x [O,ko] x 10, k l j  is compact and the functions 4 and 7 are continu- 
ous, there exists a constant k such that 0 < # 5 k ,  and 0 5 r ]  5 k .  Therefore the  
correspondence 9 maps the function X x P x [0, k] x [0, k]  into itself, and 
hence, by the  Kakutani theorem, q has a fixed point ( z , p ,  A,p). 

To complete the proof we need to show that, for suitable values of e ,  a,  s, 
and t ,  (2 , p ,  A. & e , a ,  s, t )  meets the conditions of eqns. (1)-(9). 

I. z E w ( z , P , A , ~ )  

2. p E V ( z , p , A , p )  

3. A = A + max 1 0 . p ~ ~  - hp&j 

~AP& -* 1 



From 3 we obtain: 

1 A p " h  - p"Bz j = max jo,p& - A p h  j 

We shall now prove that  p& - A p h  = 0. If A = 0, then 
rnax IO.p& - 0  . phj = 0,  tha_t is, p E z  = p H = .  Now, suppose that A > 0. First, 
assume that  p B z - A p F k < O .  Since A > O ,  we have that 
maxGEp (hF& -5Bzj < - 0, that is. A p h  -P& 5 0, which contradicts the origi- 
nal assumption. Now, assume that p B z  - Ap&> 0. Since A > 0  and p  E V, we 
have that 

0  < rnax tAp"& -FEZ ]  = A p h  - p B z  
g € P  

which is again impossible. 

In a similar way we can show from 1 and 4 that  

ppGz - p m  = 0  

Since p  E V and z E W, 

p"(a -*) ~ p ( h h  -B) = 0  = ( p P ~  - p ~ ) z  

g (ppG - p B ) Z  , whenever @,z")  E P x X 

From these relations i t  trivially follows that 

(A& - Bz), & - ei < O+ pi = pi- - 

To complete the  proof of the theorem we need to investigate whether A'> 0  and 
F > 0. The case of p  = 0  is impossible (since t = p B  r 0 from Assumption 5 and 
0 < z+t = sz' = 0); consequently p > 0. Since pGr > 0,  pBz is also positive. 
Because ApR + p H z  =pbh: if A is zero, i t  follows that  
0  < p B z  = phk  s rnax t0,pbh: - p &  j, which is impossible since pGz > 0. Q.E.D. 

2. ON A SPECIFICATION OF THE MODEL 
Using the framework of the  model described in Section 1, a wide range of 

specifications can be developed, within which narrower fields of investigation 
can be pursued using individual elements of differing degrees of sophistication. 
This part of the paper, therefore, will emphasize the specific characteristics of 
the applied model as opposed to the general framework. The points elucidated 
in this way will be partly economic (or planning) in nature and partly computa- 
tional (or algorithmic). 



2.1. Growth and Profit Factors 
One of the features of the model discussed is that i t  assumes that there are 

general growth (A)  and profit (b) factors in the economy, which prevail in every 
sector. However, if we want to speed up growth or seek remedies for particular 
economic problems it is quite evident that the structural set-up of the economy 
must be modified. 

Ideas on how the growth and profit factors should differ by sectors can be 
included in the form 

where: 

I' is a diagonal, whose elements represent how individual sectoral 
growth factors differ from the economy-wide factor (A), 

.k is a diagonal that expresses the differences between sectoral profit 
factors and the economy-wide factor (p). 

2.2. Quasidynamic Properties 
The production and price variables of the model can trace the process from 

period t to period t + 1. If z denotes the activity level in period t ,  that in 
period t + 1 will be hrz. Furthermore, we can take the sectoral price levels in 
period t as unity, and so we can define vector p as the changes in prices for the 
next period. In this case, the production in "new" prices is given by h < p  > rz. 

These quasidynamic properties can only be referred to the primal form of 
the equation, because the dual is only a price-formation rule. 

2.3. Alternative Technologies in the Model 
The general framework of the specification makes it possible to use various 

different "technologies" in the model. When the model is used for planning pur- 
poses the role of different "technologies" can be taken over quite straightfor- 
wardly by the different plan variants under consideration. Thus in an e z  post 
analysis the role of variants can be successively assigned to the "plan" for the 
year and to the "fact" that has been realized on the basis of the plan. This 
approach makes it possible to compare plan and fact and analyze any 
discrepancies between them. 

T h e  alternatives can be built into the model in two ways, namely through 
the matrix coefficients and through the constraints used for production and 
price ihdices. In the model specification the plan and fact alternatives were 
used fdr each of the major planning categories studied. Thus the two alterna- 
tives figure side-by-side and are represented by the following parameter ensem- 
ble: 

material inputs: 

A = ( + . A J )  

structure and level of consumption: 

~ ( b )  E RXzn 



where c p ,  cr E R describe the consumption structure and the d = ( d p ,  d f )  are 
parameters controlling the level of consumption; 

wage rates: 

v = (up ;v , )  E R~~ 

depreciation rates: 
d = ( d p ; d f )  E R~~ 
rn = v  + d  

outputmatrix: 

BO E Rn x2n 

2.4. Pricing System 
In a planned economy different pricing systems can be formed. In the 

model speciflcation a simple price-formation rule is built in, namely that the 
price should cover the cost of raw materials, wages, and the depreciation of the 
means of production. The profit is proportional to the sum of these three 
items, but the costs of production in the individual sectors are included in the 
price with different weights (*) depending on economic and political considera- 
tions. In order to calculate the economy-wide profit rate, the sectoral price 
indices are selectively further modified by taxes that burden and subsidies that 
beneflt the sectors. In this way, through the weight parameters and the taxes 
and subsidies, a two-step balancing mechanism is built into the model. 

2.5. Investments 
In the model the source of investments is the amount of profit realized by 

production z. This amount of profit can be written down as: 

The average profit factor (total income divided by total costs) is given by 

whence: 

E ( p , z )  = (p - l )(pA+ + m+)z 

Let us assume that the ratio of investments originating from profit ( g )  and the 
investment structure ( b )  is exogenously given. Thus the total investment can 
be written as d z ,  where 

Returning to the dynamic features we note that the investment of a given 
period can be associated with the production of the same period in a fairly 
natural way. The general primal equation (I), however, permits a time-lag of 
one period between protfuction and investment; that is, the production of a 
given year can be the basis of investment in the following year. 



2.6. Constraints and Balances 
Two remarks are necessary concerning constraints. First, since we are 

considering a single output system with alternative technologies we should 
apply constraints to  the output levels (i.e. B O Z )  rather than to the activity lev- 
els ( 2 ) .  Secondly, the relation assumed for export and import price indices in 
Section 1 (i.e. that  the export price index is lower than the import price index 
and that the  domestic price index lies zomewhere in between) has held t rue in 
practice during the  past few years, so that  their application as lower and upper 
bounds, respectively, seems reasonable. Turning to balances, when the foreign 
trade balance is planned i t  is usually not fixed a t  zero but i t  can be positive or 
negative according to the aims of economic policy. The same is also t rue of the  
balance of taxes and subsidies. 

2.7. Further Modifications 
Because of the  two alternatives included in the specification t he  output 

can be obtained as the sum of production activities carried on with individual 
alternative conditions. The output matrix, therefore, is @ = (I, I). where I is a 
unit  matr ix of order n .  This is now the specification of a von Neurnann- 
Leontief-type model. Mainly for computational reasons, the right-hand side 
equations of (10) and (11) (i.e. equations ep = ip and tz = sz) are not required. 
In this way the complementary equations are relaxed. 

2.8. Complete Formal Statement of the Model 

This formulation of the model can easily be traced back to one similar t o  tha t  
described by eqns. (1)-(1 I),  by introducing the following notation: 

h the course of the calculations a special type of A-matrix was used, which included not only 
domestic eupplies of raw materials but also any imports indispensable for production. This latter 
volume of imports must be equaled by exporte. Therefore s and i represent the surplus valuea 
above this limit. In eqns. (18) and (19) a1 and ae stand for the planned balances of foreign trade 
and the budget, respectively. 



and for (15): 

Differences between the two formulations will remain in the complementary 
equations and in (14). 

2.9. O n  the Solution of the Specified Model 
With a slight modification to Theorem 1, the existence of a solution for the 

model system (12)-(19) can also be proved. However, although the applied ver- 
sion is much simpler, this theorem (being nonconstructive) offers no method 
for i ts solution. The properties of the specification itself must, therefore, also 
be investigated. 

The overall problem (12)-(19) falls into two parts, since we have omitted 
the right-hand-side equations of (10) and ( l l ) ,  i.e. the equations ep = ip and 
tz = sz. The two subproblems will be formulated as follows: 

Aprimal (P) problem: (12), (14), (16), (18); and 

A dual (D) problem: (13), (15), (17), (19). 

None of the variables of problem (P) are found in problem (D). Making use of 
Proposition 1 (below), problem (D) can be solved with ease; then with this solu- 
tion problem (P) can also be solved similarly. 

RopoSi t ion  1. I f  a > 0, Z'B 2 z - B  2 - 0,  and z - B  # 0, for  an a rb i t r a r y  b , 
t hen  p, t ,  and  s are the so lu t ion of 

b = p a  + t  - s  

i f  and  on ly  i f  

z b  - a2 
p = max ( 2 - B s z  ~ Z + B  

Proposi t ion 1A. I f  h > 0, p+  2 p' 2 - 0,  and  p-  # 0,  for  an arb i t ra ry  g ,  t h e n  
A, 8 ,  and i are the so lu t ion of 

i f  a n d  on l y  i f  

A = min P - I P  gP+] 

R o o f  of A.oposi.tion 1. If p. t ,  and s are the solution of (20). then 

t, =rnaxlO,bj -pail 



sj = max 10, paj - b j  j 

and 

z+Bt - z-Bs = z(p)(b - p a )  

where 
I 

Finally, for p, t ,  and s as a solution of (20), it follows that 

a2 = z + ~ t  -z'B = z(p)(b -pa) 

; ? z ( b - p a )  V Z E X  

that is, 

Conversely, if 

zb - a2 
ji = rnax 

za 

then there exists z@)  E X ,  so that 

and (23) also holds true. Now we And that = t (fi) and ŝ  = s(fi), by (23), and ji, 
F, and s^, are a solution of (20). Q.E.D. (The proof of Proposition 1A is analo- 
gous.) 

The basic solut ion algorithm is as follows: 

Choose p so that p -  6 p  g p +  and, computing a and b by means of 
(pA + m) + = a and p ~ O  = b ,  respectively, solve (21). The values of 
t and s can then be determined using (22) with the optional p. 

CQoose z so that z-B S z  SZ 'B and solve (21A). where 
B z - HOZ = g and (A + C(6))T'z - h. The values of e and i can then 
be easily computed with the optimal A. 

From the above i t  can be seen that the system (12)-(19) has several solu- 
tions. The question, therefore, arises as to which X is maximal (and conse- 
quently which p. is minimal), subject to (12)-(19). Answering this question 
necessitates the solution of a nonlinear programming problem. An algorithm 
for this purpose has also been developed (Eels6 et al. 1983). In this algorithm. 
first p. is minimized subject to the constraints of problem (D), and then in the 
second step the maximum of A is sought, subject to the constraints of (P). The 



following property of (D) can be utilized in its solution: if in (13), (15), and (19) 
there exists a solution with pO, then one also exists for every p 2 pO, and if p is 
a minimum the conditions of (17) are also met. Thus, the minimum p and also 
the other variables associated with p will be determined through the solution of 
a series of linear equation systems. Similarly, the solution of (P) is based on 
the property that (12), (14), and (18) can be solved for every A in the interval 
(-m, Am,,], and if h is a maximum the conditions of (16) are also satisfied. 

2.10. Results of Model Calculations 
In this section we report some of the more characteristic features of model 

computations carried out for the year 1979. Three topics will be touched upon, 
namely the most aggregate figures for growth and profit rates, the alternatives 
chosen, and some dual-type indicators. 

Table 1 shows the  most aggregate results of nine computations; these are 
distinguished on the basis of three criteria: 

a. Wage rate in three variants (higher, average, lower); 

b. Foreign trade balance in four variants. of which number 1 is the 
"worst" and number 4 the "best"; 

c. Extremal values of growth and profit rates (from the solution algo- 
r i thm it can be seen that the maximum A and the minimum p are of 
particular importance). 

In Table 1 the following points deserve special attention. First, on comparing 
computation 1 (which is considered to be the basic variant) with computations 
2 and 3, it is clear how sensitive the growth rate is to  improvements in the 
foreign trade balance. Second. computations 4-6 show how the growth rate 
decreases with a 0.05 increase of profit factor. Third, computations 7-9 show 
that an increase in the wage rate has a positive effect on the growth rate. 

TABLE 1 Growth rates and profit factors. 

Computation Profit Growth Wage Foreign trade 
number factor rate (%) levelu balance 

7 1.2067 0.00 a 4 
8 1.2378 -2.00 1 4 
9 1.1750 1.68 h 4 
u a. h, and 1 stand for average, higher, and lower levels, respectively. 

Table 2 shows how the model chooses between the two alternatives (with 
the assumptions of computation 1). The table indicates that if the alternatives 



are considered by coefficient ensemble the "plan" variant is chosen in four sec- 
tors out of five, while if the alternatives are considered in terms of constraints 
the picture is rather more mixed. This is due to the fact that economic reality 
over the period investigated was rather less favorable than had previously been 
expected. 

TABLE 2 Alternatives in the model. 

Alternative chosen 

By Constraints 

Sector A1 ternative By coefficients Lower Upper 

Industry Plan x 
Fact x 

Construction Plan x 
Fact x 

Agriculture Plan x 
Fact x 

Material Plan x 
services Fact 

Nonmaterial Plan x 
services Fact 

Table 3 shows indicators of profit/GDP in sectoral breakdown (once again 
for computation 1). It can be seen that the model's chosen alternative does not 
greatly differ from the statistical (factual) data. The very severe discrepancies 
between sectors (even at  this very aggregated level), however, emphasize the 
paramount importance of a balanced and smoothly-operating mechanism of tax 
and subsidies in order to provide equal opportunities in different fields of the 
economy. 

TABLE 3 Share of profits in GDP. 

On the basis of 

Sector Statistical data Model solution 

Industry 18.10 17.84 
Construction 19.10 21.55 
Agriculture 10.22 11.00 
Material services 36.10 41.33 
Norimaterial services 5.01 - 5.36 

APPENDIX 
In the development of mathematical economics the "von Neumann models" 

have become a special family of models. This appendix attempts to give a brief 
historical survey of this field, emphasizing those points which, in our view, have 
been particularly crucial in the methodological advance. 



The original von Neumann model may be written as follows: 

where z is the production intensity vector, p is the price system, h is the 
growth factor and p is the interest factor. A denotes the input matrix and B 
the output matrix. N N  denotes non-negativity, P primal. D dual, PC primal com- 
plementary, and DC dual complementary relations. The primal and the primal- 
complementary relations represent the conditions of market equilibrium. By 
(P), supply must be greater than or equal to demand, and by (PC), the prices of 
free goods must be zero. By (D), none of the sectors can earn extra profit, and 
by (DC), the activity of unprofitable sectors is not used. These classical equa- 
tions were first published in 1937 in German and then in 1945 in English. von 
Neumann proved the existence of an equilibrium in his model by a fixed-point 
theorem, which later became familiar as Kakutani's fixed-point theorem, von 
Neumann assumed that the matrices A and B are greater than or equal to zero, 
and that A + B is strictly positive. The latter assumption was criticized by 
KemCny e t  al. (1956). In their famous article they introduced the well-known 
KMT (Kem~ny-Morgenstern-Thompson) conditions: the matrix A has nonzero 
columns and B has nonzero rows. From the economic point of view these 
assumptions imply first that "there is no output without input" and that all 
commodities may be produced. Second, they also require that, a t  equilibrium, 
the value of the output pBz should be positive. From this i t  follows that the 
growth factor h and the interest factor p are equal; hence the complementary 
conditions are superfluous, and the model can be reduced to the much simpler 
form: 

Here PO denotes a positive output value. The existence of an equilibrium in 
this model can be proved by the Farkas theorem or by other theorems on linear 
inequalities. It is worth noting that it was only in 1971 that J. Lds, the  eminent 
Polish mathematician, obtained a really simple and elegant proof using only 
the Farkas theorem. Most textbooks, e.g. Nikaido's Convez S r u c t u r e s  and 
Economic l 'heory, prove the existence theorem by means of the Tucker com- 
plementarity theorem, which is a fairly &fficult theorem on linear inequalities. 
Some other textbooks, however, e.g. Gale's Linear Economic Models, prove the 
consistency of equations (NN), (P), and (D) only, which is intrinsically a much 
weaker statement. 

The drst crucial step in every proof is the determination of the growth fac- 
tor at the potential equilibrium, which is the maximum possible growth factior. 



In this way it is possible to drop out the factor A from the model and thus deal 
with a simple linear inequality system. 

We shall refer to this model below as the symmetrical and linear von 
Neumann model. 

In 1960 Morishima introduced a symmetrical but nonlinear von Neumann- 
type model with the following equations: 

The matrix ~ ( p ,  A) is a continuous function of the variables p and A, and 
because of this nonlinearity it is obvious that the equilibrium level of A cannot 
be determined a p- ior i ,  and neither can i t  be dropped from the model, in con- 
trast to the symmetrical-linear case. To prove the existence of an equilibrium 
in this model, it is possible to use one of the Axed-point theorems. Morishima 
used Eilenberg-Montgomery's theorem, which is unfortunately a difficult one. 
Morishima's method and ideas are, however, quite straightforward. For every 
f ixedp and A the linear symmetrical von Neumann model ( ~ ( p ,  A), B) has some 
equilibrium solution. The set of these solutions is p(p, A ) .  As Nikaido has 
shown. this set is contractible, and hence the correspondence (p. A) -r p ( p , X )  
satisfies the conditions of the Eilenberg-Montgomery theorem. I t  should be 
emphasized that p ( p ,  A) is not convex, but is only contractible, so that the 
Kakutani theorem cannot be used. 

In 1974 J. Lds defined a linear but asymmetric von Neumann-type model 
called the three-matrix model: 

As i ts name implies, this model consists of three matrices, F, G, and B; B is the 
usual output niatrix, F is the input matrix, and G is the revenue matrix. In the 
symmetrical case the revenue and input matrices were equal. But because of 
the asymmetry in the Lds model, the growth rate and the interest rate are gen- 
erally different. Therefore the complementary equations are not consequences 
of the other relations but are independent, and they are frequently the most 
problematic relations. Lbs has proved the existence theorem by the Kakutani 
theorem. His proof resembles the original von Neumann proof, and i t  can be 
generalized to the case where the matrices F, G ,  and B are continuous Punc- 
tions of the variables z and p. (The proof cannot be extended to the  case when 
the matrices also depend on A and p) The most important step in the  proof is 
the determination of the equilibrium levels of the growth factor A and the 
interest factor p. As in the symmetrical nonlinear case they are once again not 
known a p-bri. To illustrate the difficulties in the proof of the existence of an 
equilibrium in a three-matrix model, we consider the following trivial example: 



The matrices F and B satisfy the usual KMT assumption, but the model has no 
equilibrium solution. The indispensible assumption in the asymmetric von 
Neumann models is the positivity of G or something similar (e.g. B + G > 0 
together with a ( such that  F I  (G). In the example above, the revenue matrix 
is not positive so these assumptions are not satisfied. J. Lds has also general- 
ized his existence theorem to  the case when all four matrices are different. 
One of the most important generalizations of the von Neumann model is the 
open von Neurnann model of Morgenstern and Thompson: 

Several authors have dealt with the Morgenstern-Thompson model (e.g. Mardon 
1974, Berezneva and Movshovitch 1975, Moeschlin 1977, Morgenstern and 
Thompson 1976). In 1976 Ballarini and Moeschlin introduced an asymmetric, 
linear, open model: 

Their proof can also be generalized to the case where F, G, and B are continu- 
ous functions of z a n d p  (see Theorem 1 earlier in this paper). 



This  paper was o r i g i n a l l y  prepared under t h e  t i t l e  "Modell ing 
f o r  Management" f o r  p r e s e n t a t i o n  a t  a  Nater  Research Centre  
(U.K. ) Conference on "River  P o l l u t i o n  Cont ro l " ,  Oxford, 
9 - 1 1  A s r i l ,  1979. 
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