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ABSTRACT

This paper reports progress on the development of a population
projection process that emphasizes model selection over demographic
accounting. Transparent multiregional/multistate population projections
that rely on parametrized model schedules are illustrated, together with
simple techniques that extrapolate the recent trends exhibited by the
parameters of such schedules. The parametrized schedules condense the
amount of demographic information, expressing it in a language and
variables that are more readily understood by the users of the
projections. In addition, they permit a concise specification of the
expected temporal patterns of variation among these variables, and they
allow a disaggregated focus on demographic change that otherwise would not

be feasible.






PARAMETRIZED MULTISTATE POPULATION PROJECTIONS

It has been argued that the population projection process should be
formulated as one of model selection rather than of demographic accounting
(Brass, 1974 and 1977; Keyfitz 1972). This paper reports progress on the
development of such a projection process. It describes methods for
generating multiregional/multistate population projections that rely on
parametrized model schedules and simple techniques that extrapolate trends
for the parameters of such schedules. The parametrized schedules condense
the amount of information to be specified as assumptions, simpiifying and
making more transparent what is being modeled; they express this condensed
information in a language and variables that are readily understood by the
users of the projections; they permit a more concise specification of the
expected temporal patterns of variation among these variables; and they
allow a finer disaggregation of demographic change components than would
otherwise be feasible.

1. INTRODUCTION

Multistate generalizations of the classical single state projection
models widely used in applied demography today assess the numerical
consequences, to an observed or hypothetical (single-sex) multistate
population, of a particular set of assumptions regarding future patterns
of mortality, fertility, and interstate transfers. The multistate model
of demographic growth and change expresses the population projection
process by means of a simple matrix operation in which a population set
out as a vector is multiplied by a growth matrix that survives the
population forward over time. The projection computes the state- and
age-specific survivors of a given sex and adds to this total the

corresponding surviving new births.
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Multistate demographic projections incorporate two important aspects
of population dynamics that lead to greater consistency among projected
outputs: 1) accounting identities that interconnect changes in events
and flows with changes in population stocks, and 2) interstate transition
probabilities that reflect the influences of past events and flows through
the currenf age and status distributions of the aggregate population.

For example, the number of widowings in a given region will be influenced
by the number of married women residing there, a number that in turn is
influenced by the number of marriages in previous pefiods in all regions
and the number of married women inmigrating to and outmigrating from the
region of interest.

To ensure that accounting identities connecting events, flows, and
stocks are respected, the multistate projection model traces the evolution
of each status-specific category of individuals by adjusting an initial
stock to take into account the number of events and flows that are
expected to occur during a projection period. In this way, changes in the
number of events and fiows are reflected in the projected age- and
status-specific distribution of the population.

The influences running in the reverse direction are aiso included.
Changes in age- and status-specific population stocks influence future
events and flows. For example, increases in the number of marriages at a
particular age in a given region will lead to increases in the number of
married persons and thereby produce a rise in nuptial births there in the
future.

Multistate population projections generally need to keep track of
enormous amounts of data. The disaggregations incorporated in such

projections are introduced either because forecasts of the specified
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population subgroups are important in their own right, or because it is
believed that simple and regular trends are more likely to be discovered
at relatively higher levels of disaggregation.

High Tevels of disaggregation permit a greater flexibility in the use
of the projections by a wide variety of users; they also often lead to a
detection of greater consistency in patterns of behavior among more
homogeneous population subgroups. But greater disaggregation requires the
estimation of even greater numbers of data points, both those describing
initial population stocks and those defining the future rates of events
and flows that are expected to occur. The practical difficulties of
obtaining and interpreting such data soon outstrip the benefits of
disaggregation.

~Mathematical descriptions of schedules of demographic rates, here

called parametrized model schedules, offer a means for condensing the

amount of information to be specified as assumptions. They also express
this condensed information in a language and variables that are more
readily understood by the users of the projections, and they provide a
convenient way of associating the variables to one another, extrapolating
them over time, and relating them to variables describing the economic
environment that underlies the projections.

The use of parametrized model schedules in the population projection
process allows one to develop an effective description of how the
components of demographic change (e.g. mortality, fertility, and
migration) are assumed to vary over time in terms of a relatively few
parameters. Insofar as the assumptions correctly anticipate the future,
the projection foretells what indeed comes to pass. Insofar as the

parameters are readily interpretable by non-demographer users of the
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projection, they make possible the assessment of the reasonableness of a
set of assumptions instead of a set of projected population totals.

As Keyfitz (1972) correctly observes, a trend extrapolation of each
age-specific rate in a population projection is an excessive concession to
flexibility that can readily produce erratic results. On the other hand,
to assume that change in a set of rates occurs uniformly at all ages is to
go against experience. Parametrized model schedules offer a way of
introducing flexibility, while at the same time retaining the
interdependence between the rates of a particular schedule.

The aim of this paper is to illustrate a procedure for multistate
population projection that requires the specification of future trends for
a number of significant parameters defining a collection of model
schedules. The intent of such a procedure is, in the words of William
Brass (1977, p. 15):

...to sketch out a procedure for population projection which
requires the estimation of future trends for a minimum of
significant parameters.

...to shift as far as practicable from the appearance of a
bookkeeping, accounting system to one in which the somewhat crude
model elements are apparent and, thus, their inescapable lack of
certainty displayed.

The illustration considers a two region-four state description of the
Swedish female population in 1974 and examines alternative projections of
that population into the future. We begin with a description of
parametrized model schedules and the input data, continue with a
discussion of the associated multistate life tables and constant
coefficient projections, and conclude with an exposition of simple

variable coefficient projections that are driven by assumed patterns of

change in fertility, marital status transitions, and internal migration.



5

2. PARAMETRIZED MODEL SCHEDULES AND INPUT DATA 1

The use of mathematical functions, expressed in terms of a small set
of parameters, to smooth and describe parsimoniously schedules of
age-specific rates is a common practice in demography. Such functions
have been fitted to mortality and fertility data, for example, and the
results have been widely used for data smoothing, interpolation,
comparative analysis, data inference, and forecasting (Brass 1971, Coale
and Demeny 1966 and 1983, Coale and Trussell 1974, Heligman and Pollard
1980, Hoem et al. 1981, and United Nations 1967 and 1983.)

More recently, the range of parametrized schedules has been expanded
to include interstate transfers such as migration (Rogers, Raquillet, and
Castro 1978; Rogers and Castro 1981) and changes in marital status other
than first marriage (Rogers and Williams 1982, and Williams 1981). Thus
it is now possible to define a model (hypothetical) multistate dynamics
that describes the evolution of a single-sex population exposed to
parametrized schedules of mortality, fertility, migration, and several
forms of marital status change (that is, first marriage, divorce,
widowhood, and remarriage).

Parametrized mode]l schedules describe the remarkably persistent
regularities in age pattern that are exhibited by many empirical schedules
of age-specific rates. Mortality schedules, for example, normally show a
moderately high death rate following birth, after which the rates drop to
a minimum between ages 10 to 15, then increase slowly until about age 50,

and thereafter rise at an increasing pace until the last years of life.

1 This section is drawn from Rogers (1982).
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Fertility rates generally start to take on nonzero values at about age 15
and attain a maximum somewhere between ages 20 and 30; the curve is
unimodal and declines to zero once again at some age close to 50. Similar
unimodal profiles may be found in schedules of first marriage, divorce,
and remarriage. The most prominent regularity in age-specific schedules
of migration is the high concentration of migration among young adults;
rates of migration also are high among children, starting with a peak
during the first year of life, dropping to a 1ow point at about age 16,
turning sharply upward to a peak near ages 20 to 22, and declining
regularly thereafter except for a possible slight hump or upward slope at
the onset of the principal ages of retirement. Although data on rates of
labor force entry and exit are very scarce, the few published studies that
are available indicate that regularities in age pattern also may be found
in such schedules. Figure 1 illustrates a number of typical age profiles
exhibited by schedules of rates in multistate demography.

The shape or profile of a schedule of age-specific rates is a feature
that may be usefully examined independently of its intensity or level.
This is because there are considerable empirical data showing that
although the latter tends to vary significantly from place to place, the
former remains remarkably similar.

The level at which occurrences of an event or a flow take place in a
multistate population system may be represented by the area under the
curve of the particular schedule of rates. In fertility studies, for
example, this area is called the gross reproduction rate if the rates
refer to parents and babies of a single sex. By analogy, therefore, we

shall refer to areas under all schedules of rates as gross transition

rates (GTRs), inserting the appropriate modifier when dealing with a
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particular event or flow--for example, gross mortality transition rate and
gross accession transition rate. The term "transition" is introduced
throughout in order to distinguish this aggregate measure of level from
the other more common gross rates used in demography, such as the
directional gross (instead of net) rate of migration.

The gross transition rate measures the intensity of particular events
within a state population or of flows between state populations during a
given interval of time. The index, therefore, is a cross-sectional
measure and should not be confused with the net transition rate (such as
the net reproduction rate), which is a cohort-related index that measures
the intensity of such events or flows over a lifetime. Moreover, in a
multistate framework, where return flows such as remarriages play an
important role, gross and net rates can give widely differing indications
of interstate movement intensities.

2.1 Mortality

Three principal approaches have been advanced for summarizing age
patterns of mortality: functional descriptions in the form of
mathematical expressions with a few parameters (Benjamin and Pollard
1980), numerical tabulations generated from statistical summaries of large
data sets (Coale and Demeny 1966 and 1983), and relational procedures
associating observed patterns with those found in a standard schedule
(Brass 1971).

The search for a "mathematical Taw" of mortality has, until recently,
produced mathematical functions that were successful in capturing
empirical regularities in only parts of the age range, and numerical

tabulations have proven to be somewhat cumbersome and inflexible for
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computer-based applied analysis. Consequently, the relational methods
first proposed by William Brass have become widely adopted. With two
parameters and a standard life table, it has become possible to describe
and analyze a large variety of mortality regimes parsimoniously.

Recently, Heligman and Pollard (1980) described a mathematical model
that appears to provide satisfactory representations of a wide variety of
age patterns of mortality across the entire age range. Their function
defines the variable q(x), the probability of dying within one year for an
individual at age x. We have found it more convenient to focus instead on
d(x), the annual death rate at age x, and to adopt the slightly modified
Heligman-Pollard formula, suggésted by Brooks et al. (1980) of the IMPACT
Project, that appears as Equation 1 in Figure 2. The three terms in that
equation represent infant and childhood mortality (I), mortality due to
accidents (A), and a senescent mortality component (S) which reflects
mortality due to aging. Figure 3 exhibits those three components and
their sum, drawing on Australian data for 1950.

Death rates differ markedly not only between ages, but also between
sexes, marital states, and occasionally regions. At the IMPACT Project,
model schedules based on Equation 1 of Figure 2 have been successfully
fitted to Australian age-specific data for the death rates of persons of
each sex and marital status (Figure 4). Not all components of the
Heligman-Pollard curve were used; the first component was omitted for
married males and females , as well as for divorced and widowed females;
the first and second components were both omitted for divorced and widowed

males.
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MORTALITY
dix) = dI(x) + dA(x) + ds(x)
WHERE
Q0 for x =0
dI(X) = v
Qf for x > 0
_(ln x - 1ln XA>2
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dA(x) QA e
ex/XS
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d(x) = & (x) + dg(x)
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=X (x-yu)

£(x) = ae 0(x-u) -e

Figure 2. Model Schedules.

Source: Rogers (1982)
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MIGRAT.iON
-)\z(x-uz)
-a,X -az(x-uz) -e
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Figure 2 (continued) Model Schedules.
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After fitting such model schedules in each region of a multiregional

system, movements over time in their parameters could then be analyzed and
used for projecting future mortality by age, sex, marital status, and
region. For example, linear regression equations could be fitted to the
trajectories set out in Figure 4, and short extrapolations of those trends
could produce the needed projected future regimes of mortality. The
relatively large number of parameters, however, suggests the desirability
of extrapolating some function of the parameters instead--for example, the
two-parameter Brass (1971) logit transformation of the mortality schedule.

2.2 Fertility

Among the relatively large number of different parametric functions
that have been proposed recently for representing schedules of
age-specific fertility, the formula put forward by Coale and Trussell
(1974) has assumed a certain pre-eminence. This formula can be viewed as
the product of two component schedules: a model nuptiality schedule and a
mode] marital fertility schedule. The former adopts the

double-exponential first marriage function of Coale and McNeil (1972):

0.17n -%(X-XO-G.OGk)

-——(xXx-X%X,-6.06k) ~e
g(x) = 0.13465 e k 0

where xg is the age at which a consequential number of first marriages
begin to occur, and k is the number of years in the observea population
into which one year of marriage in the standard population is

transformed. Integrating, one finds

X
G(x) = ‘J g(a)da
0
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which when multiplied by the proportion who will ever marry represents the
proportion married at each age.
Coale and Trussell (1974) argue that marital fertility either follows
a pattern that Henry (1961) called natural fertility or deviates from it
in a regular manner that increases with age, such that the ratio of

marital fertility to natural fertility can be expressed by

r(x) mv (x)

n(x) = Me

where M is a scaling factor that sets the ratio r(x)/n(x) equal to unity
at some fixed age, m indicates the degree of control of marital fertility,
and v(x) and n(x) are fixed values that are assumed to remain invariant
across populations and over time.

Multiplying the two-parameter model schedule of proportions ever
married at each age by the one-parameter model schedule of marital
fertility, Coale and Trussell (1974) generated an extensive set of model
schedules that describe empirical fertility rates with surprising

accuracy. Their representation as

f(x) = G(x) *r(x) = G(X)n(x)emv(.X)

allows one to obtain fertility age profiles (but not levels) that depend
only on the fixed single-year values of the functions n(x) and v(x), and
on estimates for xg, k, and m.

If the populations to be projected are already disaggregated by
marital status, such that the proportions married, never married, and

previously married at each age are known, appropriate model schedules for
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the age-specific fertility rates of women of each marital status may be
developed. This allows one to consider separately marital and non-marital
fertility, each of which may be influenced by different demographic and
economic factors. In the illustrative projection developed later in this
paper, a double-exponential function (set out as Equation 3 in Figure 2)
is used to describe fertility rates at age x for women of each marital
status in each region. Figure 5 illustrates the fit of this function to
the 1962-1971 age-specific fertility rates of Denmark analyzed by Hoem et
al. (1981).

The shape of the double-exponential curve is defined by the three
parameters, a, &4, and A, and the level of the curve is defined by the
scaling parameter a. Although these parameters are not readily
interpretable, it is possible to derive the propensity, mean, variangg,
and mode of the double-exponential function in terms of them (Coale and
McNeil 1972; Rogers and Castro 1981; and Sams 1981).

2.3 Migration

A recent study of age patterns in migration schedules (Rogers and
Castro 1981) has shown that such patterns exhibit an age profile that can
be adequately described by the mathematical expression appearing as
Equation 4 in Figure 2. The four terms in the equation represent
childhood migration, labor force age migration, retirement migration, and
a constant level of migration across all ages.

The shape of the second term, the labor force component of the curve,
is the double exponential formula put forward by Coale and McNeil (1972).
The first term, a simple negative exponential curve, describes the
migration age profile of children and adolescents. Finally, the

post-labor force component is a constant, another double-exponential, or
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an upward sloping positive exponential. The fourth term decribes a
constant level of migration across all ages. The migration rate, m(x),
therefore, depends on values taken on by anywhere from 7 to 11
parameters. Figure 6 illustrates the fit of the nine parameter model
schedule to intercommunal migrétion in the Netherlands.

2.4 Marital Status

Coale and McNeil's (1972) double-exponential model schedule of first
marriages was introduced a decade ago. Parametrized schedules of other
changes in marital status, however, seem to have been first used only
recently, in a study carried out by the IMPACT Project in Australia
(Powell 1977). Working with a detailed demographic data bank produced by
Brown and Hall (1978), Williams (1981) fitted gamma distributions to
Australian rates of first marriage, divorce, remarriage of divorcees, and
remarriage of widows, for each year from 1921 to 1976. These model
schedules provided adequate descriptions of Australian marital status
changes, although some difficulties arose with age distributions that
exhibited steep rises in early ages; in particular, the age distributions
of first marriages. This difficulty was overcome by the addition of a
second time-invariant gamma distribution.

Functions based on the Coale-McNeil double-exponential distribution
seem better able to cope with the problem of steeply rising age
distributions than the gamma distribution. Figure 7 illustrates the
goodness-of-fit of the double-exponential distribution to data on
Australian males in 1976. Although the parameters of both functions can be
expressed in terms of the propensity, mean age and variance in age, the
double-exponential function requires a further parameter--the modal

age--whose movements over time may be more difficult to model and project.
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2.5 Other Transitions

The notion of model schedules may_be used to describe a wide range of
demographic transitions. We have considered mortality, fertility,
migration, marriage, divorce, and remarriage. We could as easily have
focused on flows between different states of, for instance, income,
education, health, and labor force activity.

Consider, for example, the flows between active and inactive statuses
in studies of labor force participation. Rates of entry into the labor
force, called accession rates, exhibit an age profile that can be
described as the sum of three double exponential distributions. Rates of
exit from the labor force, called separation rates, may be described by a

U-shaped curve defined as

-0.1x u.3x
h(x) = a1e + a3e + C

Figure 8 illustrates the fit of these two curves to accession and
separation rates, respectively, of Danish males in 1972-74 (Hoem and Fong
1976).

2.6 Input Data: Swedish Females, 1974

To illustrate the process of carrying out a parametrized multistate
population projection, we have brought together data that describe the
mortality, fertility, migration, and marital status change patterns of the
Swedish female population in 1974. Data describing the first three
components of change were provided by Arne Arvidsson of the Swedish
Central Bureau of Statistics for a study of Sweden's migration and
settlement structure (Andersson and Holmberg 1980). Data on marital

status change flows were unavailable in the detail required and had to be
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inferred by borrowing the age profiles observed in Norway in 1977-78
(Brunborg et al. 1981). Table 1 sets out the resulting crude rates of
events and flows in the two region system of Stockholm and the rest of
Sweden, and Table 2 presents the parameters that define the corresponding
model schedules of age-specific rates. Figures 9 through 12 illustrate
the fits of the model schedules to observed data, including a number of
male schedules for purposes of comparison.

Our experience with fitting the Heligman-Pollard function to Swedish
data suggests that the model schedule is over-parametrized. (A similar
observation is made by Brooks et al. 1980.) With so many variables to
estimate, very similar distributions can be obtained with significantly
different combinations of values for the parameters. The net result of
this is the creation of relatively large fluctuations in parameter
estimates over time, as changes in the values of one parameter produce
compensating shifts in those of another. To dampen such fluctuations we
follow the suggestion of Brooks et al. (1980) and fix the values of Xy
and o. This establishes the position and shape of the accident component
but permits its level Qj to change from year to year;

Except for mortality, the level parameters of all model schedules have
values scaled to produce a unit area under the curve (i.e., a gross
transition rate of unity). When used for projection purposes, these
parameters need to be multiplied by the appropriate observed or forecasted
gross transition rates.

3. MULTISTATE LIFE TABLES

The simplest life tables recognize only one class of decrement, e.q.,

death, and their construction is normally initiated by estimating a set of



TABLE 1,

OBSERVED CRUDE RATES OF MULTISTATE TRANSFERS (PER THOUSAND):

SWEDEN, FEMALES, 1974

.. TO STOCKHOLM REST OF SWEDEN
FROM NEVER , NEVER

MARRIED MARRIED WIDOWED DIVORCED | MARRIED MARRIED WIDOWED DIVORCED | peEATH | Birtn
STOCKIIOLM
NEVER
MARRIED - 23.5 - -- 25.2 1.2 -- - .2 9.3
MARRIED - - 12.1 25.6 - 15.8 0.1 0.1 5.8 18.9
WIDOWED - 1.1 - -- - 0.0 5.8 - 43.7 0.3
DIVORCED - 39.8 -- - - 2.0 - 13.6 8.6 9.1
REST OF
SWEDEN
NEVER
MARRIED 5.0 0. - - -- 21.5 - - .6 .2
MARRIED - ) 0.1 0.1 - - 13.3 12.1 6.4 19.4
WIDOWED - .0 0.6 - - 1.02 - - 46.8 0.3
DIVORCED -- .5 - 1.9 - 36.5 - - 9. .1

SWEDEN 9.5 13.0

TOTAL

{

ve
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age-specific probabilities of leaving the population, e.g., dying, within
each interval of age from observed data on age-specific exit rates.
Extending simple 1ife tables to recognize several modes of exit from

the population gives rise to multiple-decrement 1ife tables. A further

generalization of the life table concept arises with the recognition of

entries as well as exits. Such increment-decrement 1ife tables allow for

multiple movements between several states, for example, transitions
between marital statuses and death (single, married, divorced, widowed,
dead), or between labor force statuses and death (employed, unemployed,
retired, dead).

Multiple radix increment-decrement 1ife tables that recognize several
regional populations, each with a region-specific schedule of mortality
and several destination-specific schedules of internal migration are

called multiregional 1ife tables. They represent the most general class

of 1ife tables and were originally developed for the study of
interrediona] migration between interacting multiple regional
populations. Their construction is usually initiated by estimating a
matrix of age-specific death and migration rates.

One of the most useful statistics provided by a life table is the
average expectation of 1life beyond age x, calculated by applying
age-specific probabilities of survival to a hypothetical cohort of babies
and then observing at each age their average length of remaining life in
each state.

Table 3 presents four sets of expectations of life at birth,
associated with our illustration focusing on Swedish females in 1974. The
first is for the total population; the second is for a two-region

disaggregation of this total into the populations of Stockholm and the



TABLE 3, A COMPARISON OF MODEL-BASED AND DATA-BASED MULTISTATE LIFE TABLES: EXPECTATIONS
OF LIFE AT BIRTH, BY REGION OF RESIDENCE AND STATE OF EXISTENCE

1-STATE 2-STATES 4~-STATES 8-STATES
BORN IN BORN IN
BORN 1IN LIVING REST OF LIVING DORN 1IN LIVING REST OF
SWEDEN IN STOCKHOLM SWEDEN AS SWEDEN IN/AS STOCKHOLM SWEDEHN
77.9 STOCKH. 37.9 8.2 NEVER 37.2 STOCKHOLM
) RRIED ) — .
(78.2) (38.1) (8.4) MARR (37.4) NEVER 22.7 2.5
REST OF 39.8 69.5 MARRIED 26.6 HARRLED (22.7) (2.6)
SWEDEN (40.1) (69.8) (26.3) MARRIED 9.2 3.3
TOTAL 77.1 77.7 WIDOWED 6.0 (9.2) (3.3)
(78.2) (78.2) (6.1) WIDOWED 1.7 0.8
DIVORCED| . 8.0 (1.7 (0.8)
(8.4) DIVORCED 4.1 1.5
TOTAL 77.8 I e
(78.2)
REST OF
SWEDEN
NEVER 14 .4 34.7
MARRIED (14.6) (34.7)
MARRIED 16.5 23.5
(16.3) (23.3)
WIDOWED 4.2 5.3
(4.2) (5.4)
DIVORCED 4.8 6.1
(5.0) (6.3)
TOTAL 77.7 77.7
(78.2) (78.2)

A%
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rest of Sweden; the third is for a four-state disaggregation of the
Swedish total into the never married, married, widowed, and divorced
categories; and the fourth is for an eight-state disaggregation that
combines the two regional states with the four marital states.

Two sets of life expectancies are distinguished in Table 3. Those set
out in parentheses were obtained using the observed data; those without
parentheses were calculated on the basis of rates defined by the model
schedules presented in Table 2. The differences are insignificant in all
instances, with no deviation exceeding six months.

According to Table 3, a baby girl exposed to the 1974 Swedish
mortality regime could expect to live about 78 years. Of this total, she
could expect to live approximately 26 years in the married state and 8
years as a divorcee. If the girl was born in Stockholm, she could expect
to 1Tive just over a half of her total 1ife, and almost two-thirds of her

married life, outside her region of birth.

4. MULTISTATE PROJECTION WITH CONSTANT COEFFICIENTS

Multistate generalizations of the classical projection model of
mathematical demography typically involve three basic steps. The first
ascertains the starting age-by-state distribution and the age-state-
specific schedules of fertility, mortality, and interstate flows to which
the multistate population has been subject during a past period; the
second adopts a set of assumptions regarding the future behavior of such
schedules; and the third derives the consequences of applying these

schedules to the initial population.
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A multistate population projection calculates the state- and
age-specific survivors of a population of a given sex and adds to this
total the new births that survive to the end of the unit time interval.
Given appropriate data, survivorship proportions can be obtained as part
of the calculations carried out in developing a multistate 1ife table or
from the observed data, and they then can be applied to the initial
population. For example, it is possible to simultaneously determine the
projected male or female population and its age/marital status/regional
distribution from the observed age/marital status/region-specific flows of
marital status changes, regional migrant inflows and outflows, deaths, and
fertility. The projected population so derived should then be augmented
by the numbers of international migrant arrivals and departures
(disaggregated by age, marital status, and region of arrival or departure)
to give the projected male or female population by age, marital status,
and region of residence.

The asymptotic properties of multistate population projections have
been extensively studied in mathematical demography. This body of theory
draws on the properties of matrices with non-negative elements and
establishes the existence of a unique, real, positive, dominant
characteristic root and an associated positive characteristic vector to
which the population converges as it approaches its stable distribution.

As with most population projection models in the demographic
literature, the multistate projection model deals only with a single sex
at a time. However, the separate projection of the evolution of the male

and female populations generally leads to inconsistencies, such as the
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number of married males not coinciding with the number of married females
for a given year, the total number of new widows during a year not
coinciding with the total number of deaths among married men that year,
and so on. Thus it is somewhat unrealistic to project the transitions
among individuals of one sex without taking into account parallel
transitions among individuals of the other sex. Methods for coping with
this inconsistency and incorporating it into a multistate projection
process are not yet well developed, but they are discussed, for example,
by Sanderson (1981). Such methods are not considered in this paper.

Tables 4 and 5 present four sets of illustrative projections of the
1974 Swedish female population corresponding to the four sets of
multistate 1ife expectancies listed earlier in Table 3. A1l projections
were carried out with unchanging age-specific rates. 0Once again, the
numbers in parentheses refer to results obtained with observed data and
those without parentheses refer to figures derived by means of
model-schedule based computations. And once again the differences between
the two are relatively minor.

The projecﬁions set out in Tables 4 and 5 show Sweden's female
population to be relatively stationary over the next 30 years with the
one- and two-state projections showing a very slight increase and the
four- and eight-state results indicating a very small decrease. The
annual rate of growth in the year 2004 is negative in all instances,

however.
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5. MULTISTATE PROJECTION WITH VARIABLE COEFFICIENTS

The population projections summarized in Tables 4 and 5 indicate that
parametrized projections provide a reasonably accurate alternative to ones
carried out with observed rates. The principal advantage of such
model-schedule-based projections, however, lies not in their ability to
replicate the results of data-based constant coefficient (CC) projections
but rather in the transparency and flexibility that they bring to variable
coefficient (VC) projections.

It is widely recognized that the age-specific rates of a demographic
event (e.g. death) or flow (e.g. migration) are interdependent and vary
differentially with changes in levels. Thus to project them individually,
age by age, or to assume that they will change uniformly at all ages, is
to invite potentially unreasonable results. An important feature of
parametr ized projection procedures is the ease with which they permit the
introduction of changes in age profiles that are associated with changes
in levels.

The relational approach proposed by Brass (1971) is a convenient
method for altering both the level and the age profile of each
parametrized model schedule used in the projection process. Two
parameters are associated with every schedule, and extrapolating their
values into the future produces the needed projected values of various
age-specific components of change.

An alternative to Brass's method is thé regression approach, used by
Coale and Demeny (1966 and 1983) and others, which embodies a
correlational perspective that associates rates at different ages to an
index of level. We adopt this approach and use the data on Swedish
females to illustrate the transparency and flexibility of parametrized

projection methods.
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Perhaps the simplest and most straightforward way of projecting the
values to be assumed by a model schedule's parameters is to asbociate such
values with the schedule's Tevel as measured by its gross transition
rate. Forecasts of levels, then, lead to corresponding forecasts of
profiles. To implement this procedure, regression equations were
developed that set each model schedule parameter as a dependent variable
with the appropriate gross transition réte as the independent variable.
Ideally all parameters should have been estimated simultaneously with a
system of equations. However, for the purposes of our illustration, it
was felt that single-equation ordinary least squares estimates were
adequate.

5.1 Estimation of the Parameters

In the Swedish illustrative YC projection, the age profiles of the
mortality, widowhood, and remarriage model schedules were held constant;
each of the four fertility model schedule parameters was regressed on the
gross reproduction rate, of the seven migration model schedule parameters
on the gross migraproduction rate (the retirement peak was treated
exogenously and held fixed), of the four first-marriage model schedule
parameters on the gross first-marriage transition rate, and of the four
divorce model schedule parameters on the gross divorce transition rate.

Fifty-three regional model fertility schedules fram seven countries,
330 mdel migration schedules from eight countries, and a time series of
30 model first-marriage and 12 model divorce schedules from Australia
constituted the data bank used to estimate the various regression
equations. A1l intercept terms were rescaled to produce exact fits to
initial conditions, i.e. such that when 1974 gross transition rates were
entered into the regression equations, 1974 model schedule parameters were

obtained.
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An example of the unrescaled estimated regression results is provided

by the four fertility equations:

a= 0.063 + 0.028(GRR) (r = 0.921)
t=28.39 + 4.21(GRR) (r = 0.899)
@= 0.244 + 0.027(GRR) (r = 0.519)
A= 0.137 - 0.022(GRR) (r = -0.924)

With the exception of A, all parameters increase with increases in
fertility level. The "height" parameter a rises, the "position"
parameter M shifts to the right on the age axis, and the "descent"
parameter a becomes larger, making the double exponential curve steeper
at ages past the mode. |

5.2 Assumptions About Levels

To develop the illustrative projection, it was assumed that the gross
reproduction rate would increase linearly from 0.82 to 0.90 in the
Stockholm region by 1984 and from 0.93 to unity in the rest of Sweden.
Moreover, it was assumed that this rise in fertility would be totally due
to increases in non-marital fertility, which would converge to equal
levels in both regions. Post-1984 fertility levels were assumed to remain
fixed.

Migration out of the Stockholm region was assumed to increase slightly
from 1974 to 1984, growing linearly from an initial gross migraproduction
rate (GMR) of 1.43 to 1.50. The migration level in the reverse direction
was held constant at a GMR of 0.29. Differentials in this rate among
marital statuses were assumed to diminish, such that by 1984 the same rate
would be exhibited by married, widowed, and divorced females. The GMRs of
the never-married population, however, were set at higher levels over the

decade. A1l levels beyond 1984 were assumed to remain fixed.
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The level of first-marriage was assumed to continue its pattern of
decrease, with an expected 10 percent fall in the gross transition rate.
Divorce, on the other hand, was assumed to exhibit a 20 percent increase
in its gross transition rate. Whereas changes in first marriage rates
were introduced in both regions, changes in divorce rates were permitted
only in the non-Stockholm (rest of Sweden) region. Once again all changes
were assumed to occur in a linear pattern over the decade 1974 to 1984 and
were held fixed thereafter.

Table 6 sets out the initial (1974) and final (1984 orwards) gross
transition rates that produced the illustrative projection. Figure 13
shows graphically the changes in age profiles produced by the assumed
changes in levels.

5.3 Results

Figures 14 and 15 summarize some of the aggregate results produced by
the 50-year illustrative projections. The constant coefficient (CC) and
variable coefficient (VC) projections are contrasted in Figure 14, for all
four levels of disaggregation. Figure 15 focuses on the expected elderly
populations in the 8-state CC and VC projections.

Figure 14 vividly demonstrates the extent to which aggregation bias
can alter projection totals. Over a period of 50 years an over-projection
of some 280,000 people is introduced by aggregating the 8-state model into
a 1-state one in the CC projection, growing to 360,000 in the case of the
VC projection. The major impact is apparently produced by the aggregation
over the four marital states.

A1l projections show a gradual increase in Sweden's future population,
peaking to a maximum either in 1984 or a decade later, and in all but one

instance (the single-region VC projection) declining immediately
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projected.
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thereafter. The lowest total populations in the year 2024 are projected
by the CC models and the highest by the corresponding VC models. For
example, the eight-state CC projection gives a total population of 3.76
million individuals; the corresponding VC projection increases this sum by
a hundred thousand.

Figure 15 indicates that although only modest increases are to be
expected in the elderly population over the next decades, the population
of the nonmarried elderly should increase dramatically. The CC and the VC
projections show a growth of between 40 to 50 percent in this subgroup
over the 50-year projection period.

6. CONCLUSION

The research summarized in this paper demonstrates that it is possible
to carry out multistate population projections of considerable generality
and Tlevels of disaggregation using a parametrized modeling approach that
emphasizes model selection in place of demographic accounting. The
replacement of observed schedules by model schedules brings both economy
and transparency. In the eight-state model, for example, 44 observed
schedules containing over 2,000 age-specific rates were replaced by the
same number of schedules defined in terms of a total of 227 parameters.
This more compact representation of the input data identifies the broad
patterns exhibited by the demographic components of growth and change,
thereby making more transparent the ways in which model schedule levels
and age profiles influence population stocks and flows.

Although the model schedule parameters are not always demographically
interpretable, future research is 1ikely to 1ink them to variables that
are. Moreover the parameters can be readily extrapolated into the future

to produce reasonable age patterns of rates, and their adoption also
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permits the introduction of changes in schedules of age-specific rates
that alternative methods do not (e.g., increased mortality due to a rise
in the relative number of deaths attributabie to accidents).
Finally, it seems 1ikely that econometric explanatory models, with
parameters instead of rates as dependent variables, will produce results
that are at least as effective as current models that focus on observed

flows or rates.
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