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The objective of the Forest Sector Project a t  IIASA is to study long- 
term development alternatives for the forest sector on a global basis. 
The emphasis in the Project is on issues of major relevance to industrial 
and governmental policy makers in different regions of the world who are 
responsible for forestry policy, forest industrial strategy, and related 
trade policies. 

The key elements of structural change in the forest industry are 
related to  a variety of issues concerning demand, supply, and interna- 
tional trade of wood products. Such issues include the development of 
the global economy and population, new wood products and substitution 
for wood products, future supply of roundwood and alternative fiber 
sources, technology development for forestry and industry, pollution 
regulations, cost competitiveness, tariffs and non-tariff trade barriers, 
etc. The aim of the  Project is to analyze the consequences of future 
expectations and assumptions concerning such substantive issues. 

In this article the supply of roundwood is discussed within the 
framework of renewable resource economics. Quantitative guidelines for 
forestry are derived and tested against possible disturbances to planta- 
tion managenent conditions. It is shown that certain rules of thumb for 
renewable resource management are robust with respect to a broad set  
of incidental disturbances, e.g., weather conditions, market fluctuations, 
etc. 

Markku Kallio 
Project Leader 
Forest Sector Project 
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RENEWABLE RESOURCE ECONOMICS - 
OPTIWK RULES OF THUMB 

A E. Andersson (IIASA) and P. Lesse (CSIRO) 

In this paper we formulate a simple model for optimum manage- 

men t  of large forests. When seeking the optimum management policy, 

we aim t o  reconciliate the ever-present conflict between the forest as a 

valuable capital resource to be exploited, and as a valuable biotope to be 

protected and preserved. 

We are aware of previous work in this field, which already led to  valu- 

able results. Kilkki and Vaisanen (1969) developed an optimum thinning 

policy for Scotch pine stands in Finland. Their work has been Further 

refined by Clark (1976). In both cases, the problem has been treated as 

that of linear optimum control leading to a "bang-bang" cutting policy. 

There is also a large group'of models using operations research 

approaches. These models can often be viewed as resource management 



simulators. A recent example is the integrated se t  of models developed 

in New Zealand by Garcia (1981), Levack and Jennings (1981), and Lee 

(1981, 1982). Large scale (20,000 variables, 10.000 constraints) 

mathematical programming model for forestry management were 

developed by Whyte and Baird (1982, 1983) and Dykstra (1984). (See also 

Kallio, Andersson, and Seppal5 1984 and the forthcoming book on renew- 

able resource and forest economics by Lofgren and Johansson 1985). 

In this paper, we concentrate on deriving qualitative rules of thumb 

plantation for management. This approach takes into account both 

economic and some simple ecological aspects of the problem. For an 

easy interpretation, we derive the qualitative rules using a very simple 

model a t  ArsL Later, we investigate the robustness of these rules, i-e., 

we test  their validity by gradually relaxing some of the assumptions 

underlying the  simple model. 

2. A SIMPLE MODEL FOR OFl'IMUM MANAGEMJCNT OF FORESTS 

The aim of this section is to formulate a simple model capable of 

generating as clear-cut and hard-boiled conclusions as possible. We are 

primarily interested in management of large areas, and hence do not 

address the problem of the optimum period. The model is based on the 

following simplifying assumptions: 

(a) Harvested volume h is proportional to the  standing volume z, 

i.e. h ( t  ) = u ( t ) z  ( t )  where u ( t )  E [O; u,,] is a control variable 

called thinnang ef for t .  



(b) The ne t  revenue derived from t h e  amount harvested p with 

prices assumed to  be known is independent of the scale of har- 

vesting and time. Accordingly, the  net revenue per unit har- 

vested, p, is a constant. 

(c) Growth of wood is given by the differential equation 

i = az - b z 2 ,  (1) 

which is t reated as  the only constraint relevant to our problem. 

(d) Parts or the whole of the plantation can be sold a t  any t ime in a 

market. This assumption implies that  there is no terminal date 

at which the optimization must  e n d  

(e) The plantation owner maximizes the profit discounted over 

time by 6, which is  the maximal real rate of interest in any seg- 

ment of the  capital market. Thus, the plantation owner seeks 

to 

subject to constraint (1). 

Following Clark (1976), we formally derive the Euler Lagrange equa- 

tion corresponding to (I),  (2). By inserting for uz = rzz - b z 2  - i into 

(2). we obtain 

The corresponding Euler Lagrange equation leads to the expression for 

the optimal path z 



and hence 

The equation (3) defines a singular solution to t he  l inear optimum con- 

trol problem (I),  (2). The control rule i s  to  use the maximum effort of 

harvesting u,,, whenever z > z *, and  stop thinning, if z < z*. Along 

the optimum path, the optimum policy should satisfy 

uz*  = ux* - b ~ * ~ ,  

and hence if z*  # 0 

Note tha t  the optimal steady-state harvest, equal to  

2 u = (a2  - d2)/4b, is always Less than the muximum sustainable 

yield. which equals to a2/ 4 b .  The relative difference compared to max- 

imum yield is (6/ a)'. For example, if the parameter a corresponds to  

10% annual  growth and the interest ra te 6 is 5%. then the difference is 

25%. 

The optimum thinning policy thus leads to  a stationary (equili- 

brium) state.  This equilibrium state is stable, provided that  a > 6, as  can 

be shown by introducing a new variable X = 2-z*. and by transforming 

(1) into 

The asymptotic stability of the solution X = 0 can be proven, e.g., by 

using the positive definite Lyapunov function 



The equation (3'). (4) thus define a stable equilibrium point, which may 

be called a b io -economic  equ i l ib r ium.  We have just proven the following 

Proposition: 

PROPOSITION 1: The m a z i m i z a t i o n  of n e t  prof i t  (Z), sub jec t  to  

the  g r o w t h  equa t i on  ( I ) ,  l eads  to  a stable b ioeconomic equi l i -  

b r i u m  g i v e n  by equat ions  (39, (4), i f  the mazimum ef for t  of 

t h i nn ing  e z c e e d s  the ari fhrnet ic average o f  t h e  l inear  g row th  

ra te  a n d  t h e  d iscount  ra te  (4). 

The original problem can be easily transformed into an equivalent Hamil- 

toniari maximization problem: 

In equilibrium we expect 

As 2 # 0, in any sustainable plantation, this implies that -A = j T e d f .  As 

6.p are parameters, i t  follows that 

The problem of A+O can easily be avoided by inserting a requirement 

that the standing volume should be kept always above a certain positive 

value. Our second proposition car, thus be formulated. 

PROPOSITION 2: Under the  cond i t ion  speci f ied in mode l  (5), the  

r a t e  of  m t e r e s t  is equal  to  t he  re la t ive r a t e  of change of  the  

p lantat ion 's  v d u e  (measured  in t e r m s  of t h e  shndow pr ice 6). 



The interpretation of this proposition is obvious. If the plantation 

value would change slower than the rate of interest requires, there is an 

inducement for the owner to invest in another object, carrying the 

increase of value 6. If the rate of value increase is larger than the rate of 

interest, resources are withdrawn from the alternative uses, until the 

condition is fulfilled. Such an adaptation could occur both in the non- 

forestry and the forestry markets. 

This adaptation is closely related to the harvesting effort as can be 

observed by the following condition 

or by substituting expression (6) into (7): 

A = AIL + ha - Zhbz - h u  

or 

Above i t  has been shown that ) ; / A  must equal the interest rate 6 at  an 

optimal trajectory. The only way of achieving this is by adjusting the 

size of the standing volume to  this requirement. Such a procedure can 

be illustrated in a simple diagram (see Figure 1). The Figure shows how 

the steady state standing volume z *  increases from z; to  z i ,  when the 

rate of interest changes from b1 to  d2. 

COROLLARY 1: There is a danger of extinction of the whole 

standing volunie if a < 6; i.e., if the real rate of interest is 

larger than the  coefficient of linear growth in the biological 

equation (1). 



t 
Figure 1. The relative role of growth -as function of standing volume Z .  

Z 

This can easily happen in a society where the  industrial growth rate is 

high while the ecological conditions prevent a high biological growth 

rate. Par ts  of japan and similar countries with a high rate of growth 

(and a correspondingly high real interest ra te  in their  industrial sectors) 

fall into this category. These countries could lose certain biological 

species, presumably due to violating the condition specified by Corol- 

lnry 1. 

CoroUa7y 1 thus il lustrates a general rule that  decision making in 

forestry management has to be based on both ecological and economic 

facts. 

3. CONSEQUENCES OF USING THE FOREST AS A POLLUTION SINK 

Forests act as powerful pollution sinks, especially in industrialized 

countries with moderate to warm and humid climatic conditions. Thus 



we would, for most situations, need to modify our analysis to include con- 

siderations of the forests being of value both as flow generators and as 

stocks.  

The simple model is then reformulated in the  following way: 

maximize J 6 . u  -I +o.z)e d t  
Ir,u1 0 

subject to: = az - bz2 - uz (10) 

o in this case denotes the  net ecological value of the  forest stock, i.e., 

the value of the forest as a pollution sink, which, for obvious reasons 

depends on the standing volume. 

The corresponding Hamiltonian formulation is 

max f ~ d t  = f @uz + o z ) e t  - A(= -bz2-) 
luP1 0 0 

Following the  same procedure as in the last  section we obtain 

ped t  = - A  and ) ; / ~ = d  

The condition 

leads to  

and this implies that  the  steady state (optimal) standing forest volume is 

deterrnined by the expression 



The determination of the rate of harvesting, corresponding to steady 

state, is a slight extension of the earlier results (cf. (4)) 

The interpretation of equation (14) can be formulated as a CoroUary 2. 

COROLLARY 2 : If the standing volume of forest is valued p e r  se 

(i.e., as a pollution-reducing ecological asset), the steady state 

standing volume increases proportionally to the fraction value 

of the forest p e r  se, over net value of forest as a material har- 

vested resource. 

The procedure for determining w / p  will not be addressed in this 

paper. However, determination of the relative valuation of the standing 

volume is one of the  most complicated issues within the framework of 

public goods theory. 

The simple rules for optimum management of forests derived in the 

preceding sections were obtained on the basis of a mathematical model. 

This model is certainly not an exact representation of reality. The ques- 

tion arises, how sensitive are the management rules to changes of the 

model. For example, should the conclusions reached on the basis of the 

simple model remain valid for a whole class of plausible models, one 

would feel much more confident, when implementing the model in prac- 

tice. Alternatively, the parameters of the simple model can be expected 

to depend on unpredictable exogenous factors (e.g., weather, insect 



attacks, etc.) and on slowly evolving variables (like age and other biologi- 

cal distribution factors). It is important to  know how the parameter 

changes influence the management policies. To improve our  under- 

standing of these problems, the simple model of the preceding sections 

is modified and generalized and the conditions sufficient to  preserve the 

validity of the management rules already derived are  also investigated in 

Section 4. 

4.1 The Modified Growth Equations 

We commence by replacing the equation (1) by a more general equa- 

t ion, thus allowing for t h e  influence of incidental disturbances. These 

disturbances may be due to  biological, meteorological and other factors. 

Let the dynamics be given by a more general  equation 

z = zF(z,u,v) ,  (18) 

where F (z )  is a function, which is Lipschitz continuous in z. and let  

urnax 2 u 1 0 denote the harvesting effort related to  the rate of thinning 

by the equation h = uz. The variable v summarizes the influence of the 

disruptive factors. We shall assume tha t  equation (16) is integrable for 

u E nu. v E R,,. which a re  the  appropriate control and disruption sets. 

To ensure tha t  the ra te  of thinning is proportional t o  the biomass z, 

t he  function F(z ,u,v)  is assumed to have t h e  form 

F(Z,U,V) = u F l ( v )  + F~(X,V) .  

The term Fl(v) 2 0 can be interpreted as disturbance of the thinning ra te  

due to incidental factors. The function zFZ(z,v) then represents a gen- 

eral  form of growth dynamics influenced by fluctuations of biological, 



meteorological and other nature. The reader can verify that ( 1 )  is a spe- 

cial case of (16). if F 1  = l,Fz = a-bz. The equation (16) has a t  least one 

equilibrium point z = 0. Let some other equilibrium point be denoted z, , 

i.e., z,: F(z,,u,v) = 0 for some values of uo,vo from RU,Rv  In the vicinity 

of such an equilibrium point, the r.h.s. of equation (16) can be linearized: 

zF(z,uo,vo) =zoF(zo.~O.vo) +Z~~I , , (Z-Z, )  + . . . 
az 

The equilibrium will be stable, if 

or, more specifically, if 

51 az co.  

for some u,,v,. The condition can be written 

+&)I 0 co. 
az z ,=, 

a z A dynamics satisfying +-) < 0 has been called c o m p e n s a t o r y  (cf. 
az z 

Clark, 1976). 

The equilibrium point z,, which depends on u E R,.v ER, is thus 

stable, if the dynamics is Locally c o m p e m a t o r y .  The equilibrium point 

z,(u,v) is stable with respect to the harvesting efforts from the set A,. 

and with respect to the incidental factors from A,, if the dynamics is 

locally compensatory for all u E A,, c R,. and v E A, c R,. Obviously, a 

aF2 
model with dynamics (16), satisfying - ( z , v )  c 0 for z > 0.v E A,. is a~ 

compensatory for all harvesting efforts, and for all values of incidental 



factors v from the set A, 

The model which is not compensatory, is said to be depensatory. 

The distinction between compensatory and depensatory dynamics, and 

the possibility of a transition from one to another, is a matter of crucial 

importance (c.f. Holling 1973). Indeed, as long as there is a chance that 

an environmental or economic factor could distort the dynamics to 

make i t  become depensatory. the optimal management policies could 

lead to environmental damage, and even to an extinction of the biotope 

through destabilization of the system (see Figure 2). Conversely, a gen- 

eral class of models (16), which is locz!ly compensatory with respect to 

sufficiently 'large' sets A,, A,, is safe to use. In particular, models with 

are safe for all harvesting efforts, and for all incidental disturbances 

from A, In the following, we shall limit our attention to models of this 

type only. 

4.2 Optimum Management in the Presence of Incidental Factors 

In this paragraph, we shall combine the general dynamics of 4.1 with 

an optimality criterion including a more general 'cost' function. This 

function will be assumed either positive, in which case it will represent 

the harvesting cost, or negative, in which case it will be interpreted as a 

benefit derived from the forest in a non commercial way (e.g., acting as a 

pollution sink. cf. Section 3). We shall now proceed to  derive the formu- 

lae for the steady state standing volume under optimal management, 

and for the relationship between the shadow price and the rate of 



a) Compensatory dynamics; equilibrium at x = xo is stable. 

b) Dtpensatory case;the dynamics having been distorted the equilibrium first becomes 
unstable since the system heads for extinction. 



interest.  

The valuation equation for the model is now assumed to be of the 

form 

where C ( u , v , z )  is general cost function which depends both on the thin- 

ning effort, and  on the incidental factors v. 

The cost function is assumed to  satisfy the requirement 

c = 7f.Zc1(v) + C 2 ( 2 , v )  

The cost function is separable into two parts: the  first part is a l inear 

function of the  rate of thinning, influenced by disruptive factors. It may 

be called product ion cos t .  The second par t  is not directly under the  con- 

trol of the forester, and may be interpreted as additional costs or 

benefits, not immediately connected with the thinning operation, but  

attr ibutable t o  the  interaction between, for example, weather or biologi- 

cal calamities on the one hand, and the biomass on the other. This par t  

can be called e n v i r o n m e n f d  cos t  (benefit).  

Denoting ~ ( v )  = p  - c l ( v )  and calling i t  producers  price,  we can 

write ( 1 7 )  

This expression is to  be compared with (2) and ( 1 0 ) .  

In contrast  to  the present model, the  earlier model thus assumed a 

constant ne t  revenue per unit harvested 6). This revenue was con- 

sidered independent of the disturbing factors, while the environmental 



cost/benefit was neglected. Following the  standard procedure, we form 

the Hamiltonian 

aH = 0. we obtain for z 20 From the condition - 
au 

P(v) exp(-6t) = -hF1(v) (18) 

Under special circumstances, the  equation (13) allows, to  interpret the 

discount rate as the  relative change of the  shadow price A. To reproduce 

the equation (9) 

dv 
i t  is necessary to  assume either -= 0, i.e. slowly acting disruptive 

dt 

forces or, alternatively, 

d n P  which translates into - = 1, i.e. t he  producers price should have 
dlnF, 

unit elasticity with respect to  the disruptive effect on the  thinning rate 

due to  incidental factors. 

Summing up: The discounting ra te  6 can be interpreted as the  relative 

change of the shadow price (cf. 9) either if the disturbances of the  

/ 

environment are extremely slow, o r  if disturbances affect the producers 

price and harvesting rate in a similar manner. 

Returning to the optimum management problem, we can obtain a 

condition connecting interest rate,  consumers price, and value of stock, 

8 H  . by using the equation -- = h which yields after some algebra a~ 



In a special case when F1 = 1, F2  = a - b z ,  - = 0. ( 1 9 )  becomes 
a2 

a -2bz = 6 ( 2 0 )  

i.e., the expression ( 9 )  obtained in Section 2. Similarly, the equation ( 1 4 )  

of Section 3 is obtained as a special case, when 

F1 = -1. F2 = a - b z , C l ( v )  = 0, Cz = -oz,. We have thus arrived a t  a gen- 

eralization of Proposition 1, and of Corollary 2. 

PROPOSITION 3: h a s y s t e m  with the  genera l  compensa to ry  

d y n a m i c s  (16), the o p t i m u m  m a n a g e m e n t  leads to a s teady  

s ta te  de te rm ined  b y  the d iscount ing ra te  a c c o ~ d i n g  to  equa t i on  

(19). Other t h ings  being equal ,  an i nc reased d iscount ing .rate 

b r ings  about  a seduc t i on  of the  s tand ing  v o l u m e  if 

a6 - 26F2 a 2 ~ ,  F ,  a2c2 -- - +z---- < 0 
az az2 az2 P az2 

fo r  all v E Av. 

Proposition 4 thus extends and confirms the qualitative conclusions 

reached on the basis of t he  simple model, which remain valid irrespec- 

tive of the  influence of incidental factors in a wide range of situations; in  

particular, it is sufficient, if the function ~ ~ ( z , v )  is positive, decreasing 

and nonconvex in the standing volume, and if the environmental cost 

(benefit) function c z ( z , v )  is nonconcave in the same variable. 



5. OPIlMUM THINNING POLICIES MADE SIldPLE; (CONCLUSIONS) 

On the basis of our considerations, we can draw the following conclu- 

sions: 

(a) The growth of wood depends on the quality and maturity struc- 

tures of the  trees, and often in a secondary way on a number of 

incidental factors including weather, pollution and interaction 

(competition, symbiosis) with other organisms. 

(b) The thinning rate is in a first approximation proportional to the 

standing volume of wood; the  thinning rate per unit standing 

volume is determined by the forester according to  the prevail- 

ing economic conditions, and i t  is also influenced by the 

incidental factors. 

(c)  An optimal thinning policy aims a t  maximizing discounted net  

profit over a period of time. Such policy leads in t he  long run  

to a steady s tate representing a bioeconomic equilibrium, i.e., a 

state a t  which the biological growth is balanced by the thinning 

operations. 

(d) The bioeconomic equilibrium is determined, in the first appoz-  

imation, by the  equation (3') (cf. Proposition 1). The equation 

(3') can be given a very simple meaning, if one takes into 

a 
account tha t  b = - where K is a carrying capacity of the habi- 

K' 

r K 6  tat. The steady s tate standing volume is then z = $I-;) 

i.e., i t  is equal to  the standing volume corresponding to the 

maximum ra te  of growth (according to the simple growth model 

this happens when the standing volume reaches 50% of carrying 



6 .  capacity), reduced by the  fraction -, 1.e.. by the rat io of the 
a 

ra te of interest t o  the initial (constant) ra te of growth of wood. 

This simple formula becomes more complicated, when the 

forest is considered not only as a source of wood, but also as a 

public good indispensable as  atmospheric filter, reservoir of 

water, etc. 

In this case, t he  steady s tate standing volume is increased, and 

the  amount of increase depends on the ratio of ecological and 

commercial values of forest (cf. equation (14), Corollary 2). In 

general, the steady s tate depends not only on the ra tes  of 

growth, interest, and on price, but also on the form of the 

cost/benefit function, and on the incidental factors. The gen- 

eral  equation, from which the steady state standing volume can 

be obtained, is given in paragraph 4.2 (equation (19)). 

(e) Having determined the optimal steady state, the optimal thin- 

ning policy is easy to formulate: Whenever the actual standing 

volume exceeds the steady state standing volume, use max- 

h u m  thinning effort. As soon as the steady state standing 

volume is reached, stop thinning. 

( f )  It is important to know whether t h e  unknown (incidental) fac- 

tors can spoil the  effect of the theoretically optimal thinning 

policy, for example by reducing irreversibly the standing 

volume below the steady s ta te  value. In an extreme case, this 

reduction can lead to a catastrophic destruction of forest. How- 

ever, Proposition 3 specifies the  conditions, under which the 



bioeconomic equilibrium is stable. The stability guarantees 

that the influence of incidental factors (e.g. draft, pest calam- 

ity, increased pollution, etc.), cannot lead to an irreversible 

damage so long as the influence is kept within predetermined 

limits. We hasten to add that this conclusion is not valid abso- 

lutely, but only in the context of what appears to be a large 

class of models. In other words, should reality be so compli- 

cated tha t  its modeling required relaxation of the assumptions 

specified in Proposition 3, then the optimal thinning policy 

need not be safe for implementation. In the final analysis, the 

practitioner's experience must decide whether the theory and 

its underlying mathematical assumptions are of sufficient gen- 

erality to accommodate the behavior of the  particular ecologi- 

cal system a t  hand. If depensation phenomena seem to be of 

great potential importance there is probably a strong case for 

viability and permanence analysis using differential inclusion 

theory as proposed by Aubin and Sigmund (1984). 
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