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PREFACE 

IIASA's Food and Agriculture Program has always been interested 
in seeking explanations for some of the more fundamental prob- 
lems in economic decision making. Much of this work has been 
carried out in collaboration with t.he System and Decision Sciences 
Area at IIASA. This note is a result of such collaboration 
and comes from a former member of the Food and Agriculture 
Program who is now working at the Institute of Economic Sciences 
of the Polish Academy of Sciences in Warsaw, Poland. The note 
concentrates on the problem of evaluating consumer demand when 
there is a shortage of certain commodities. 
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EVALUATION OF DE-NAND UNDER RATIONING 
WHEN ONLY INDIRECT UTILITY FUNCTIONS 
ARE KNOWN: A NOTE* 

Leon Podkaminer 

This note outlines a simple routine for evaluation of 

consumer demand under disequilibrium (shortage of some 

commodities) when the representative consumer's preferences 

are characterized by a cost function, or an indirect utility 

function consistent with the conventional theory of consumer 

behavior. The routine may be applied whenever the explicit 

form of the direct utility cannot be easily derived from the 

indirect utility function. 

1. INTRODUCTION 

The determination of consumer demand under disequilibrium 

(i.e. shortage or rationing of some commodities) may be easily 

concluded whenever the representative consumer's direct utility 

function is known. This involves solving a convex programming 

model with the utility function as maximand and constraints 

consisting of the conventional budget constraint and, 

additionally, the (upper) bounds on the values of demand for 

commodities subject to rationing (see L. Podkaminer, 1982). 

However, since the estimation of the parameters of the direct 

utility functions cannot be easily executed - unless quite 

restrictive views on the nature of underlying consumer's 

preferences are accepted - the current trend has been to 

* A comment of Krzysztof Kiwiel is gratefully acknowledged. 



characterize the consumers' preferences with indirect utility 

functions (or, which effectively amounts to the same thing, 

with the cost or expenditure functions). While both approaches 

are theoretically equivalent (see Diewert, 1974) the estimation 

of indirect utility functions is much easier to perform without 

postulating the oversimplified properties of the underlying 

preferences. However, if the estimated indirect utility function 

cannot be easily transformed into the corresponding direct 

utility function, it may be difficult to evaluate the consumer 

demand, should the market prices, or supplies, exhibit 

rigidities leading to disequilibria. Neary and Roberts (1980) 

have provided the formulae for this evaluation under additional 

condition, requiring that the consumer is "forced" to purchase 

quantities of the commodities that are deemed to be in short 

supply. This, however, leaves unanswered the question how one 

can know which of the commodities supplied will, given prices 

and intended total expenditure, eventually turn out to be 

effectively lacking, which will turn out to be oversupplied, 

and which will be neither lacking nor oversupplied. 

The subject of the following text is to provide a general 

method for the determination of the demand under additional 

quantity constraints reflecting the fact that the supplies of 

all commodities are fixed at some level - and so are their 

prices, irrespective of what level and structure of the market 

disequilibrium this may imply. 

2. THE PROBLEM AND ITS SOLUTION 

Let us start withthe statement of the problem in terms of 

the direct utility function. The representative consumer whose 

preferences are reflected by a continuous, nondecreasing and 

quasiconcave utility function U(q) is assumed to respond to the 

state of the market in accordance with the optimum solution 

q0 to the following problem: 

maximize U (q) (1) 

- 
s.t. Pq 2 Y 

and S l s  



- 
where q is the vector of commodities demanded, p is the 

vector of "official" market prices, y is consumer's intended 
- 

total expenditure, q is the vector of supplies. If the value 

of supplies (evaluated at the prices p) is equal to or less 

than the consumer's total expenditure, then the optimum solution 

q0 is equal to q. In this case neither direct hor indirect 

utility function is needed to predict the demand. If, on the -- 
other hand, pq > y, then the optimum q0 is to be derived from 

(1) - (3) upon the application of a suitable algorithm of 

mathematical programming theory. All that is known about this 

case before having a look at the specific numerical solution 

to (1) - (3) is that some goods will be oversupplied. Because 

of the properties of the utility function, (1) - (3) belongs 

to the class of convex programming models. As such it evidently 

possesses exactly one local (and therefore global) optimum. 

Moreover, any standard gradient algorithm of mathematical 

programming theory (see Hadley, 1964) is capable of producing 

q0 with any desired precision in a quite short time. The 

execution of the gradient algorithms proceeds in an iterative 

way. At each iteration step an approximation to the optimum 

(qi) is computed. Also, it is usually necessary to compute the 

derivatives (gradients) of the maximand, 7 u (qi) , evaluated at 
i the point of approximation q and the value of the maximand 

i itself, U(q ) .  Now, let us consider a situation arising when 

the direct utility function U is not known. Instead, let us 

assume that the indirect utility function g(p) is given. Under 

familiar regularity conditions for g(p), including its being 

quasi-convex, nonincreasing and "continuous enough", there is 

a duality between the values of the direct and indirect utility 

functions (see Diewert, 1974, p. 124) : 

and 

~ ( q )  = min Ig(p) : pq 5 1, P > 0 )  - 
P 



According to ( 5 1 ,  the value of the direct utility function 

for any bundle of commodities q may be calculated upon solving 

a (relatively simple) convex programming model with the minimand 

defined in terms of the indirect utility function. At this 

point it may be observed that provided the formulae are devised 

for the determination of the derivatives of the direct utility 

function from the analysis of the indirect utility function, 

the solution of (1) - ( 3 )  with classical gradient methods is 

again straightforward1. We now proceed to establish a result 

linking the gradient VU(q) to the indirect utility function. 

Lemma 

Let U (q) and g (p) defined by (4) - (5) be a pair of direct 

and indirect utility functions, both quasiconvex over positive 

orthants (or strictly quasiconvex), continuous and once 

differentiable, monotonous. Then 

where p* is the solution to the optimisation problem: 

minimize g(p) ( 7  

and A* is the corresponding Lagrange multiplier for (8): 

The proof of Lemma is a quite elementary exercise in comparative 

statics. Because of the assumed strict quasiconvexity of g(p) , 
( 5 )  can be rewritten as: 

According to some recent results in theory of mathematical 
programming, the ability to compute the values of the maximand 
is sufficient for the construction of quasi-gradient algorithms 
which are claimed to be not inferior to the classical gradient 
ones (see Brauninger, 1981). The quasi-gradient methods replace 
exact derivatives with their approximations given by finite 
differences h-l(u(q + hei) - U(q)) where ei is the i-th unit 

vector and h a positive scalar. 



which is equivalent to (7) = (8). The unique solution to 

(7) - (8) satisfies the first-order conditions: 

where A* = 6g(p*)/6(pq) is the Lagrange multiplier for (8). 

NOW, since all qi are positive: 

Hence, differentiating (12) with respect to qi we obtain: 

(1 - c p? q.) 
i = 2  3 3 

and 

6U(q) = - Pi 6 g(p*,p*, ... , p*) for k >  2 
1 2  

- % F; n 
6qk 



1, p 2 ,  . . . , pi)/6pl = A* ql (see (11) 1 ,  we conclude Since Sg(p* 

that for all k. 

Q.E.D. 

3. CONCLUSIONS 

We have shown that the numerical determination of the 

gradient of a utility function can be executed on the basis of 

the numerical analysis of its indirect utility function. Hence, 

the determination of the optimum solution to (1) - (3) ; i.e. the 

determination of the consumer demand under rationing, is not in 

the least impeded by the absence of the explicit formula for 

the direct utility function. It is interesting to note that 

the same qualification is true whenever there are more elaborate 

regulations concerning the distribution of the commodities 

under disequilibrium than the simple principle of "first c o ~  

first served, as long as supplies are not depleted" reflected 

in the upper bound constraints (3). For instance, if the 
(1) ( 2  consumer is given some total "ration points" y , y , ..., y (m 

and "ration point prices" I7 (j) are prescribed, the (3) is to be 

complemented by the following system of linear inequalities: 

- 
Similarly, the imposition of lower bound constraints (q - > q ) ,  
which may make sense with respect to the good "leisure" under 

involuntary unemployment, does not reduce the applicability of 

the approach outlined above. For, as long as the problem 

(1) - (3) , complemented by any further constraints, continues 

to belong to the domain of convex programming theory, the 

application of the gradient algorithms~necessarily results in 

the determination of its unique optimum. 
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