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A b s t r act

The paper introduces a procedureto select an "E-Bayesian"

optimal reply after a non-optimal move in zero-sum games defined

in extensive form. The procedurewas suggestedby John Harsanyi.

The "e:-Bayesiansolution" for the class of zero-sumsequential

games with incomplete information is derived.



"E-BayesianSolutions"

of

Zero-Sum Games in Extensive Form

1. Introduction

The traditional approachto games in extensive form had always

been to put them in normal form and then derive the optimal behav-

ioral strategiesfrom the optimal mixed strategies. This procedure,

while perfectly legitimate, had the obvious drawback of not going

much insight into the interpretationof the extensivesolution of

the game. Indeed, while formal propertiesof optimal mixed strat-

egies have been studied at length, not much was known about optimal

behavioral strategies(with the notable exception of games with

perfect information).

However, in recent years, there has been some renewed interest

in games in extensive form [A-M, P, W] and the study of some examples

pointed out that indeed optimal behavioral strategiesdo have a

significantly different rationale (if they have any) than the mixed

strategies. For instance, it can be shown that optimal behavioral

strategiesdo not guaranteeany security level conditional of what

is learned during the game. Nevertheless,they seem to maximize

conditional expectationsgiven the other players optimal strategies

(see [A-M]). Thus, their rationale would be better interpretedin

an equilibrium framework than in a minimax one. The objective of

this paper is to develop such an interpretationin a Bayesian context.

Such an exerciseis appealingfor at least one reason. From a
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practical standpoint, it is worthwhile to compare the recommendations

of game theory with those of decision theory and inconsistencies

should be resolved or at least thoroughly understood.

Now, it is quite obvious that optimal behavioral strategies

should maximize a player's conditional expectationsat each informa-

tion set provided this information set may be obtained with some

positive probability (since otherwise a Bayesianbest reply at this

information set would generatenot only a preferable conditional

expectationbut a preferableunconditional one as well, hence a

contradiction). Thus, our main task will be concernedwith the

question of what to do after a non-optimal move.

In principle game theory delineatesa set of "optimal replies"

for non-optimal moves. We wish to understandthe rationale of such

"optimal replies". An interpretationwill be proposed: a player

confrontedwith a non-optimal move should look at the game as the

limiting case of an E-game in which this non-optimal move had to be

played with some small probability E. Letting E go to zero,

"E-optimal" replies will be derived. Ordinarily the subset of

E-optimal replies will be strictly included in the set of the optimal

replies of the original game. Furthermore, it will be shown that

E-optimal replies are the limits of Bayesianreplies for the E-game.

This procedurewill define an "E-Bayesiansolution".

These ideas are illustrated by means of examples in the next

section. Then in section 3 we derive the E-Bayesiansolutions for

the class of sequentialzero-sum games with incomplete information

[p-z] .
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2. The Main Ideas

2.1 An Introductory Example

Consider the following zero-sum game in extensive form in which

Player 1 is the maximizer and Player 2 the minimizer.

1

-1

Player 1 Player 2

A set of optimal behavioral strategiesfor this game is (b;d)

but note that (b;ac + (1 - a) d)!1 would do just as well as far as

1the value is concernedif 0 < a ｾ 2' Define a Bayesianoptimal

behavioral strategy as one which maximizes the player's conditional

expectationat each information set. Then clearly, (b,d) is the

Bayesiansolution of this game.

Note that a strategy in which a # 0 might still be interpreted

as a threat: it is a commitment which should deter Player 1 of ever

playing move a. This interpretationhas serious drawbacks; first,

threats should certainly play no role in a zero-sumcontext, second

if Player 2 may commit himself then this should be explicitly

!/(b;ac + (1 - a) d) means that Player 1 selectsmove band
Player 2 selectsmove c with probability a and move d with probabilitJ
(1 - a). This notation is used consistently.
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modelled in the extensive form. Consequentlythis interpretation

does not appear very convincing,

This example was presentedto point out that we are likely to

have some difficulties after non-optimal moves, Admittedly these

difficulties are easily bypassedin this case. Our next example

will show that these difficulties may be more serious but it will

also introduce a general procedureto deal with them,

2.2 The Main Example

Consider the following example which may be interpretedas a

one stage simplified poker game. Player 1 receives one card which

be low (L) high (H) , each 'th 'I' 1 Then he maymay or Wl probabl lty 2'

drop (D) , raise 1 (Rl) or raise 2 (R2) . If Player 1 raised, Player 2

may drop (d) or call ( c ) . The correspondingpayoffs are shown in

the tree, Player 1 is the maximizer.

o

o

d

c
d

c

d

c
d

c

1

2

1

3

1

-1

1

-2

Chance Player 1 Player 2
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To generalizethe idea of a Bayesiansolution to this game,

the first difficulty concerns the definition of conditional expec-

tatiops given that a player is at some information set. ｈ ｯ ｷ ｾ ｶ ･ ｲ Ｌ

given Player lIs optimal strategy, then one may derive conditional

probabilities on (H,L) dependingon which move is played and then

look for an optimal behavioral strategy for Player 2 which maximizes

his conditional expectations. This procedurewill work except for

Player lIs non-optimal moves. There the problem of defining a

Bayesianoptimal behavioral strategy seems to be self-defeating

since the conditional expectationdoes not exist. Let us take a

closer look at the example.

There are two extremal sets of optimal behavioral strategies:

or (1 D + 1R2IL)

(1 d + 1c1R2) or (! d + ! cIRl))

Cl2 :: « R2 IH) or (1 D + j R2IL)

(1 d + 1c1R2) or (1 d + ｾ cIRl))

Given Player lIs optimal behavioral strategy, we may derive

the following conditional probabilities:

Prob (HID) Prob (D!H) Prob (H)
::

Prob (DIH) Prob (H) + Prob (DIL) Frob (L)

0 1. -
2 0:: ::

o • 1 1 1
"2 + - .

"23

ＮｾＯ (R21H) means "play move D if move H is playedII. This notation
is used consistently.
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and similarly,

Prob (HIR2) = 3"5

Consequently,if move R2 is played the conditional expectation

of calling is

3 2"5 • 3 + "5 • (-2) = 1

Thus in terms of conditional expectationPlayer 2 is indifferent

betweenmove d or move c and his optimal reply at this stage

Ｈ ｾ d + 1c1R2) may indeed be qualified as Bayesian. So far, so

good.

Note, however, that move Rl is non-optimal and that we may not

define a conditional expectationgiven Rl. But any optimal reply

for Player 2, which has to be a convex combination of ul and a
2

,

will imply a randomizationbetweend and c and so if we insist that

this strategy be Bayesian, this will imply that the conditional

expectationsassociatedwith c or d be equal. This in turn implies

that

Prob (HIRl)
2

= "3 ,

(so that Prob (HIRl) • (2) + Prob (LIRl) • (-1) = 1).

At this point we have two possible interpretations;either to

interpret Player 2's optimal behavioral strategy given Rl as a

threat (see §2.1) or to insist on a Bayesianinterpretation.

Let us try to pursue the logic of the Bayesian interpretation.
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If this case "makes sense", it implies that

2
Prob (H IRl) = '3

and thus if move Rl is played, then it was played with

probability k, say, with a low card and 2k with a high card. So

that

Prob (H IRl) = _____Pr_o'---'b,-------o(_R-=--lIH) Prob (H)

Prob (R1IH) Prob (H) + Prob (R1IL) Prob (L)

=
1

2k • '2
1 12k • '2 + k • '2

2= 3"

This suggeststhat if this non-optimal move was to be played,

l.·t h d'l 1 d d' t 't . ,11soul stl. 1 be p aye accor l.ng 0 some crl. erl.um.-

Let us then define an E-game, the rules of which will converge

to the rules of the original game as E goes to zero. In the E-game

each personal information set should be obtained with a probability

of at least E. Hence the two constraints

Prob (R1IH) Prob (H) + Prob (R1IL) Prob (L) > E

Prob (R2IH) Prob (H) + Prob (R2IL) Prob (L) > E

Letting E go to zero the optimal behavioral strategiesof the

E-game will converge to some optimal behavioral strategiesin the

original game. For E small enough, the application of this procedure

generatesthe following unique E-optimal strategy (this will be

proved in the next section).

!/This disturbing implication is the motivation of our analysis.
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ﾫｾ e:Rl + (l -
4

a = 3 e:) R2IH) or
e: 3

(1:(1 + £. e:) D + 2 £.(1 4
3 e:Rl + - 3 e:) R2/L)

3 3 3

(£. d + ! c1R2) or (.:!. d + ｾ cIRl))3 9

Note that

Prob (RIIH) = 2 Prob (RIlL)

and so

Prob (HIRl) 2= 3

Thus, it looks like our assumptionthat Rl had to be played

was the missing part of the Bayesian interpretationpuzzle and,

once this requirement is introduced, then the picture gets focused.

2 1
Indeed, as e: goes to zero, ae: convergesto (3 al + 3 a 2 ) and so

Player 2's e:-optimal reply to move Rl convergesto a subsetof the

optimal replies in the original game. We shall call this subset

the "e:-Bayesiansolution".

From a practical point of view, our answer to the problem of

non-optimal move is certainly not entirely satisfactoryand exogenous

considerationsshould play a more significant role in the analysis

[L-R, §4-11]. However, it is hoped that these purely endogenous

theoretical considerationsmay help to develop a better understanding

of the subject.
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3. The £-BayesianSolution of Zero-Sum Sequential
Garnes with Incomplete Information

This class of games was introduced in [p-Z] , the value and

the optimal behavioral strategieswere explicitly derived. The

objective of this section is to provide the £-Bayesiansolution

of these games according to the ideas developedso far. The main

difficulty concerns the degeneracyof the set of optimal behavioral

strategiesafter a non-optimal move.

3.1 Definition of the Game

The game consistsof four steps:

Step 0:

Step 1:

Chance choosesa move k£K according to a

probability distribution pO = ＨｐｾＩｫﾣｋＧ

Player 1 is informed of the move chosen

by Chance, Player 2 is not.

Player 1 choosesa move i£I. Player 2 is

informed of the move chosenby Player 1.

Step 2: Player 2 choosesa move j£J.

Final Step: Player 1 receives an amount k (a reala ..
lJ

number) from Player 2.

(Assume that K, I, J are all finite sets).

3.2 Definition of the £-Game
iLet xk = Prob (move i is played I move k was played).

The ｦ ｯ ｬ ｬ ｯ ｷ ｩ ｮ ｾ rule will be added to the original game. Let £

be a small positive number. It is required that
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Note that it is not assumedthat each pure strategybe played

with some small probability. Such an assumptionwould be more

appropriatefor the normal form and ordinarily will generate

different results. Instead, we require that each of Player 2's

information sets be obtained with a probability of at least E.

i 0Thus the xk's are weighted by the initial probabilities (Pk) and

so a non-optimal move might not be played with the same probability

for each k in order to satisfy the constraint.

3.3 The Solution of the E-Game

For all probability distributions PEP = {p = (Pk)kEK I Pk > 0

EPk = I}, define the function u,

u(p) k= Max Min L Pka..
iEI jEJ kEK lJ

,

and denote by u the concavificationof u; i.e., the smallest

concave function f which satisfies f(p) ｾ u(p) for all pEP.

Denote by AO the set of all supporting hyperplanesto u
at p = PO and for all AEA O and iEI denote by 0i(A), a non negative

real number such that

Clearly, o. is a continuous function of A.
1
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Theorem 3.3.1 For £ < £0' the £-game has a value V(po) and

cS.(A)
l

We shall prove that each Player has a strategy which will

guaranteehim at least V(po).

Let ｹ ｾ = Prob (move j is played I move i was played).
l

Denote by AO a supporting hyperplane in AO such that

cS.(A)
l

and, to simplify notation, let ｣ ｓ ｾ

define a G. game the IKlxlJI payoff matrix of which is
l

ｉｬ｡ｾｪ - Ｈａｾ - ｣ｓｾＩ II.
Let ｹ ｾ = Prob (move j is played I move i was played) and y. = ＨｹｾＩＮ J'

l l l J£

Lemma 3.3.2 The behavioral strategyy = (y.). I such that each
l l£

y. is optimal in each G. respectively is optimal in the £-game.
l l

(see lemma 2 in [pJ)that

For each i£I, the hyperplane A
O

- ｣ｓｾ is a supporting

k
L Pka... Hence, there exists a strategy

k£K lJ

Proof:

hyperplaneto Min
j £J

- Jy. = (y.). J such
l l J £

y cS? may be interpretedas the penalty incurred to Player I by
l

playing move i. For a non optimal move, cS? > O.
l

Note that

this penalty is the same for all k.



or VPEP
k k O-j

l: l: Pk(a.. - (>'0 - c.))y. < °
kEK j EJ 1J 1 1
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By definition of ° there exists i EP such thatc . , some p
1

. k (>.0 _ c?)\fjEJ L ｐｾ (a.. - > °1J k 1 - ,
kEK

so that the value of G. is zero and y. is an optimal strategy
1 1

in G.. It follows that, for each iEI,
1

l: l: ｰｾ｡ｾＮｹｾ <
kEK j EJ 1J 1

°° - 0)But l: Pk>'k = u(Pk and so strategyy ensuresthat Player 2
kEK

will not lose more than

Prob (move i is (- ° - ｣ｾ｝l: played) u(p )
iEI

u(pO) c? ｛ ｫ ｾ ｋ . OJ= - l: ｸｾｐｫ
iEI 1

< u(pO) - E l: c? . II- iEI 1

If >.0 maximizes
y

l: ci (>.) for >'EAO then it can be shown that
iEI

for E °< EO there exists a convex combination (c.). I and points
1 1E

Y The proof is quite technical and will not be reproducedhere.
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ip in P which satisfy

L
0 i 0

YoP = P ,
ie:I 1

L 0
1Yo = ,

ie:I 1

if oi > 0 then y? = e:00 1
,

if oi = 0 then y? > e:00 1 -

13

Lemma 3.3.3 The behavioral strategy for Player 1,

,

is optimal in the e:O-game.

Proof: Given Player l's strategy, it is easily seen that
iProb (move k was played I move i is played) = Pk. It follows

that Player 1 cannot get less than

i kProb (move i is played) Min L p ak ijje:J ke:K

0 i 0
ｯｾ )= L Yo ( L Pk [A k -

ie:I 1 ke:K

L
o 0

L
o 0

= PkAk - Yo 0 0

ke:K ke:I 1 1

- 0 0= u (P ) - e:0 L 0 0 I I
ie:I 1

The combination of the two lemmas proves the theorem. Letting

e: go to zero, we obtain the e:-Bayesiansolution of the original

game.
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