Memetic Computing manuscript No.
(will be inserted by the editor)

Ferrante Neri · Shengxiang Yang

Guest Editorial: Thematic Issue on “Memetic Computing in the Presence of Uncertainties”

Received: date / Accepted: date

1 Memetic computing in the presence of uncertainties

The complexity of the fitness landscapes, e.g., in terms of multi-modalities and presence of plateaus, resulting from real-world optimization problems, from one hand, and the limitations imposed by the No Free Lunch Theorem, from the other hand, suggested the diffusion of domain specific Memetic Computing approaches. More specifically, since the No Free Lunch Theorem proves that the performance of each algorithm over all the possible problems is the same, it is clear there was no longer a reason to discuss which algorithm is universally better or worse. Thus, instead of trying to propose universally applicable algorithms, algorithmic designers started, in the recent years, to propose algorithms which are tailored to specific problems. In this context, the Memetic Computing paradigm offers the possibility of flexibly designing domain specific optimization algorithms by integrating and coordinating algorithmic components capable to deal with the specific difficulties related to the decision space and fitness landscape of a given problem.

This thematic issue deals with a set of problem difficulties which are of great interest in industrial contexts, i.e., uncertainties in the fitness func-

---

This research was supported by the Academy of Finland, Akatemiatutkija 130600, Algorithmic Design Issues in Memetic Computing, and by the UK Engineering and Physical Sciences Research Council (EPSRC) Project: Evolutionary Algorithms for Dynamic Optimisation Problems, under Grant EP/E060722/1.

F. Neri
Department of Mathematical Information Technology, P.O. Box 35 (Agora), University of Jyväskylä, Finland
E-mail: ferrante.neri@jyu.fi

S. Yang
Department of Computer Science, University of Leicester, University Road, Leicester LE1 7RH, United Kingdom
E-mail: s.yang@mcs.le.ac.uk
tion, and gathers novel Memetic Computing approaches which attempt to solve this set of problems. In other words, this thematic issue addresses those optimization problems characterized by a complex fitness landscape and uncertain environments. An optimization problem contains uncertainties when, for a given point, the fitness value varies over time. In other words, the same solution can score differently if its fitness value is calculated in different moments of the evolution. Two macro-categories characterize uncertainties in optimization problems: 1) dynamic fitness environment, and 2) noisy fitness function. The first means that the fitness landscape varies its shape, with the position of the optima, during the run-time. This situation is typical, for example, in telecommunications and control engineering. The second means that the fitness function is non-deterministic but, on the contrary, is affected by noise. This situation occurs when, for example, measurement devices and approximators are involved within the fitness calculation/measurement/construction.

2 Papers submitted and selected for this thematic issue

This thematic issue includes three novel studies, two of them on dynamic fitness landscapes and one on noisy optimization problems. The paper, titled “A predictive gradient strategy for multiobjective evolutionary algorithms in a fast changing environment” and authored by Wee Tat Koo, Chi Keong Goh, and Kay Chen Tan, proposes a memetic approach composed of an evolutionary framework and a gradient search method for handling multiobjective optimization problems in fast changing dynamic environments. The proposed algorithm makes use of a prediction logic, which attempts to foresee the dynamics of the landscape, and a memory structure which saves only the most promising solutions in order to reduce the computational overhead.

In the paper “A memetic differential evolution approach in noisy optimization” by Ernesto Mininno and Ferrante Neri, a Differential Evolution framework is hybridized with a line search attempting to locally optimize the scale factor and thus the offspring performance. The algorithm also integrates a noise analysis component for performing, on the basis of a theoretical background, only the necessary fitness evaluations which guarantee an efficient fitness averaging.

In the paper “Dynamic function optimisation with hybridised extremal dynamics” by Irene Moser and Raymond Chiong, three memetic approaches for moving peaks problems are presented. The three approaches differ from each other in the employed local search structure. In addition, this paper offers a valuable comparative analysis on the role and the performance of the three local search approaches for moving peaks problems.

Acknowledgement

The Guest Editors would like to thank all authors who responded to the call for papers and anonymous reviewers who offered their expertise and competence in order to compose this thematic issue with a collection of important
works for this constantly growing niche of Memetic Computing. The Guest Editors would also like to thank the Editor-in-Chief, Assoc Prof. Meng Hiot Lim, for his professional attitude and outstanding dedication to the quality of the journal.