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Abstract

The effect of viscoelastic contribution on wall-bounded turbulent flow of
drag-reducing surfactant solution is investigated through direct numerical
simulations (DNS). A series of DNS on turbulent channel flow is performed
for different rheological properties at two different Reynolds numbers. It is
found that high drag reduction is achieved by suppressing the turbulent con-
tribution for high Weissenberg number, and/or by decreasing the viscosity
ratio and the effective viscosity. A highly drag-reduced turbulent flow at
a high Reynolds-number is caused mainly by the viscoelastic effect in the
elastic layer whereas the outer-layer flow hardly affects the drag reduction.
Moreover, we focus on the viscoelastic contribution term in the budget of
Reynolds stress and its relation to the local flow pattern. It is shown that, in
the near-wall region of the highly drag-reduced flow, a positive work done by
viscoelastic stress is closely associated with vortex stretching that produces
turbulent kinetic energy from stored elastic energy, whereas a negative one
causes vortex compression.
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1. Introduction

As has been well known for sixty years, turbulent friction drag can be re-
duced by up to 80% through the addition of minute amounts of polymers or
surfactants to water. The observation by Toms [1] triggered a number of stud-
ies that attempted to characterize the phenomenon and apply it to practical
engineering problems. Indeed, surfactant-induced DR is a useful technique
for reducing the pumping power used in district heating and cooling systems.
One promising additive is a cationic surfactant of cetyltrimethyl ammonium
chloride (CTAC) under appropriate conditions of surfactant chemical struc-
ture, concentration, temperature, and so on, to create a micellar network
in the surfactant solution. The resulting microstructure gives rise to vis-
coelasticity in the solution. Consequently it is important to investigate the
characteristics of turbulence of viscoelastic fluids.

There have been many studies on DR by either polymer or surfactant ad-
ditives, and several comprehensive reviews [2, 3, 4, 5] provide some highlights
of the progress in understanding of this subject. A number of experimental
studies have been increasingly carried out, in part because the subject lies at
the intersection of two complex and important fields of rheology and turbu-
lence. Although it is practically difficult to analyze the interaction between
additives and turbulent motions at the molecular level, many key aspects
of drag-reduced turbulent flow by adding polymers have gradually been elu-
cidated. For instance, we have already known that additives inhibited the
transfer of energy from the streamwise to the wall-normal velocity fluctua-
tions, and that the strong vorticity fluctuation near the wall disappeared in
the drag-reducing flow. Recent experiments on CTAC-solution channel flows
reported that the drag-reducing CTAC additives reduced the frequency of
turbulent bursting events near the wall, and its characteristics were not only
dependent on drag-reduction level but also on concentration of additives.
Therefore, a parametric study should be expected to ascertain the influences
of the surfactant property and the concentration of additives [6, 7, 8].

Direct numerical simulation (DNS) has become an important tool to
study the physics of turbulence and make it possible to identify instantaneous
flow structures in turbulence. Although employing constitutive equations de-
rived from modeling the polymer molecules, DNS has been used to study the
drag-reduced turbulent flow by polymer additives [9, 10, 11, 12, 13, 14, 15, 16,
17, 18, 19], and confirmed that viscoelastic models can reproduce most of the
experimental observations (such as wider buffer layer, reduction of Reynolds
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shear stress and larger spacing between low-speed streaks). Although there
are competing models (e.g., FENE-P, Oldroyd-B), we selected the Giesekus
model [20] for our study because this model can describe well the measured
apparent shear viscosity and extensional viscosity of the surfactant solution:
cf. Wei et al. [21]. On the other hand, the FENE-P model was shown to
be able to reproduce the essential effect of polymers and provided evidences
that polymers disrupt the near-wall turbulence regeneration cycle and reduce
the turbulent friction drag (see, for example, White & Mungal [5]). As for
surfactant additives, Suzuki et al. [22] studied numerically drag-reduced flow
using the Giesekus model. The author’s group [23, 24, 25, 26] has simu-
lated viscoelastic fluids by DNS with the Giesekus model. These works have
provided ample, albeit qualitative, evidences that many of the phenomena
that have been experimentally observed in association with drag reduction
in the presence of surfactant additives can also be predicted by DNS using
the Giesekus model, indicating that this model is appropriate for surfactant
solutions. One of the objectives of the present work is to carry out a similar,
but much more quantitative and systematic, numerical investigation.

In this study, we consider dilute surfactant solutions, in which the shear-
thinning behavior is assumed to be negligible, but the elongational viscoelas-
tic effect is taken into account using a method for the extra elastic stresses.
Then we perform a series of DNS, using the Giesekus model, of surfactant-
based drag-reducing turbulent flow in a wide range of drag-reduction rate at
different Reynolds numbers. Through this, we investigate aspects of the cou-
pling between fluid rheology and amount of DR. In the contexts of the budget
of the energy transport equation and the flow topology, we examine how the
energy is transferred between turbulent kinetic energy and elastic energy.
From this, we attempt to identify the role and influence of viscoelasticity in
drag-reducing effect on the structures of turbulent channel flow.

2. Numerical procedure

A series of DNS on a channel flow of viscoelastic fluid is performed at
two different friction Reynolds numbers of Reτ0 = uτδ/η0 = 150 and 395
based on the friction velocity uτ , the channel half width δ, and the kinematic
viscosity η0 of the viscoelastic solution. We consider a turbulent flow which
is driven by the mean pressure gradient and is assumed to be fully developed,
denoting the streamwise direction as x, the wall-normal direction as y, and
the spanwise direction as z. The configuration of the plane channel is shown
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in Fig. 1, and the computational conditions are given in Table 1. The periodic
boundary condition is employed in the horizontal direction, and the non-slip
boundary condition is imposed on the walls. In this paper, u, v, and w are
velocity components in the x, y, and z directions, respectively.

We employ a viscoelastic Giesekus constitutive equation to calculate the
extra stress caused by the interaction between shear rate and the elasticity
network structure of surfactant additives. The dimensionless governing equa-
tions for an incompressible viscoelastic-fluid flow can be written as follows:
the continuity equation

∂u+
i
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i
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and the constitutive equation for the conformation tensor cij associated with
deformation of network structures, based on the Giesekus model [20]
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, (3)

where ui and p denote the velocity vector and the pressure, respectively, and
δij the Kronecker delta. The quantities with superscript + indicate that they
are normalized by uτ and η0, while those with ∗ denote normalization by uτ

and δ. In Eq. (3) the mobility factor, which is a parameter determining the
extensional viscosity, is set to be α = 0.001. As for a rheological property
of fluids, the parameter β (= ηs/η0) is the ratio of solvent contribution ηs to
the total zero-shear viscosity η0, and ranges from 0 to 1. Equation (2) can
be reduced to that for a Newtonian fluid, if β is set to 1. The Weissenberg
number

Weτ =
relaxation time

viscous timescale
=

λ

η0/u2
τ

(4)

is chosen to be 10–40.
Time advancement is done by the second-order Adams-Bashforth method,

but the second-order Crank-Nicolson method is used for the viscous terms
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in the wall-normal direction. For the spatial discretization, the finite differ-
ence method is adopted. The numerical scheme with fourth-order accuracy
is employed in the streamwise and spanwise directions, and second-order
accuracy is applied in the wall-normal direction. It is well known that high
Weissenberg-number problem, namely breakdown of the calculation at a high
Weτ , has to be solved to reach a converged solution for viscoelastic flows.
Thus in order to prevent numerical instability, special attention should be
paid to the numerical modeling of the convective term in the constitutive
equations. In the present simulation, the second-order MINMOD scheme is
implemented for the convective term in the constitutive equation without
any additional term, although the numerical diffusivity term was introduced
(artificial diffusion scheme) in earlier studies by other researchers. The MIN-
MOD scheme (almost identical to SOUCUP scheme) is a composite scheme
consisting of the second-order upwind, central differencing and first-order
upwind schemes, the switch between them being controlled by a convection
boundedness criterion [27]. Therefore, this MINMOD flux-limiter scheme es-
sentially involves numerical diffusion, and successfully stabilizes the present
simulations without adding artificial diffusivity term. It should also be noted
that this scheme is relatively more diffusive than other composite schemes,
but shows low-dispersion characteristics of the high-order schemes (compared
to a single use of first-order scheme) [27, 28]. In addition, our previous work
[23] reported that the MINMOD scheme stabilized the simulation of vis-
coelastic flow at high Weissenberg number, whereas the artificial diffusion
scheme required large artificial diffusivity to stabilize the calculation.

3. Results and discussion

We investigated effects of the various rheological parameters on the drag
reduction by systematically varying β and Weτ . In presenting the DNS re-
sults which follow, we attempt to study the correlation between some turbu-
lence statistics and achieved drag-reduction rates. Table 2 summarizes the
test parameters and some important mean-flow variables for a Newtonian
fluid and several types of viscoelastic fluids. The effective wall kinematic vis-
cosity ηeff given in the table is calculated from the proportionality between

the total wall shear stress τw = ρu2
τ and the mean velocity gradient at the

wall as follows: ∣∣∣τw
ρ

∣∣∣ = ηeff

∣∣∣∣dudy
∣∣∣∣
y=0

. (5)
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Based on ηeff, we introduce two kinds of actual Reynolds numbers of Reτ =

uτδ/ηeff and Rem = 2Umδ/ηeff, where Um is the bulk mean velocity, and

corresponding values for each fluid are also given in Table 2. Note that
uτ is defined for each drag-reduced flow state (but not the corresponding
Newtonian case), since the externally imposed pressure gradient along the
x direction is fixed at each Reτ0. In the following subsection, we define
the drag-reduction rate DR% and discuss its dependence on Rem and the
rheological parameters.

3.1. Drag-reduction rate

The friction coefficient is defined as the non-dimensional wall shear stress
of τw:

Cf =
τw

1
2
ρU2

m

=
2

U+
m

2 , (6)

where ρ is the density of fluid. Figure 2(a) presents the results obtained
here against the bulk Reynolds number for different values of the rheological
parameters. The friction coefficient in the turbulent regime for a Newtonian
fluid is represented by Dean’s empirical correlations [29]:

Cf = 0.073Re−0.25
m . (7)

The limiting equation proposed by Virk [30, 31], who examined friction factor
and velocity profile results for a large number of high polymer solutions,
which is called Virk’s maximum-drag-reduction asymptote (MDR), is

1√
Cf

= 19.0 log
(
Rem

√
Cf

)
− 32.4. (8)

Although originally proposed for a pipe flow, this relation has been believed
to be applicable to a channel flow [32, 33, 34].

As can be seen clearly in Fig. 2(a), DR occurs for viscoelastic fluids (cases
except for fluids A1 and A2). When we increase Weτ at the fixed Reτ0 of
150, the value of Cf approaches the MDR. In our simulations, as the mean
pressure drop is kept constant, the DR is accompanied by an increase of the
bulk mean velocity, i.e., Rem. The highest value of the Weissenberg number
(Weτ = 40, fluid G) gives rise to Cf of almost the MDR. Note that it is not
surprising that asymptotic surfactant solutions can lead to greater DR than
that predicted by the MDR for polymer surfactants. Indeed, a number of
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researchers using surfactant drag-reducing additives have reported somewhat
higher levels of DR than Virk’s suggested correlation (cf., Zakin et al. [35]
and references therein).

Figure 2(b) shows the same data as that of Fig. 2(a), but plotted as the
drag-reduction rate DR% versus Rem. Usually the amount of drag reduction
is expressed as the reduction of Cf due to the additives compared to a cor-
responding Newtonian flow at the same level of Rem. In addition, Housiadas
& Beris [16] proposed the following relationship between DR% and Um:

DR% =
CfNewt − Cf visc

CfNewt

= 1−
(
η+
eff

)2(1−n)/n
(
U+
mNewt

U+
mvisc

)2/n

Reτ0

, (9)

where the suffixes ‘visc’ and ‘Newt’ stand for values in a viscoelastic flow and
Newtonian flow, respectively, and n = 1.1713. Utilizing this relationship, we
have computed DR% since DNS Newtonian data at each Reτ0 are available .
The result indicates that the viscoelastic flows with higher DR% are mainly
related to an increase of Weτ (see also Table 2). For instance, a slight
increase of Weτ = 10 → 11 (fluids C to D1) induces a rise of 5% in DR%.
This increment is relatively large compared with that from fluids E1 to G
(Weτ = 30 → 40). This is because the Cf and DR% of fluids E1 and G
are close to Virk’s MDR asymptote whereas those of fluids C and D1 are
approximately turbulence values, as given in Fig. 2(a). In a high-DR% flow
at high Weτ (fluids E1, E2, F, and G), the production and redistribution of
streamwise velocity fluctuations are suppressed, as discussed later.

A comparison between fluids E1 and F (or fluids B and C) also indicates
that the DR% increases with the decrease of β at a constant Reτ0. In this
case, ηeff decreases, accompanied by a decrease in Cf and an increase in

DR%. If we focus on the Reynolds-number dependence, a comparison be-
tween fluid E1 and E2 (as well as D1 and D2) indicates that no meaningful
distinction in DR% and in ηeff/η0 is found between two different Reynolds

numbers, as implied in Table 2.
Based on the above discussion, we would propose two aspects of the

coupling between fluid rheology and amount of DR%. The first aspect is a
decrease of turbulence contribution by increasing Weτ , and the second one is
a decrease of the effective viscosity by decreasing β. Through these aspects,
DR is enhanced. In the following sections we present various turbulence
statistics to discuss these two aspects.
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3.2. Mean velocity profiles

The mean velocity profiles are plotted in semi-logarithmic coordinates
in Fig. 3, including the experimental data obtained by Yu et al. [24]. In
their experiment, a DR% of 51% was achieved using a surfactant solution of
cetyltrimethyl ammonium chloride dissolved in water with a concentration
of 75 ppm. Here, the abscissa is the renormalized distance from the wall,
yη = yuτ/ηeff, based on the viscous length of the effective viscosity ηeff.

Note that, for Newtonian turbulent flow, yη = y+.
The present results in Fig. 3 are in qualitative agreement with their data.

All profiles collapse to the linear law of the wall in the viscous sublayer.
Further away from the wall, however, the velocity of the viscoelastic flow
increases compared to the Newtonian case (fluids A1 and A2). The dotted
line in Fig. 3 is Virk’s asymptote for MDR [31]:

u+ = 11.7 ln yη − 17.0. (10)

The zone in which the velocity profile follows this asymptote is called the
elastic layer, since the solution exhibits an elastic flow behaviour in this layer
[4]. For yη > 10 the profiles of fluids E1–G with high DR% of more than
50% are close to Eq. (10), while those of the other fluids are not. In the
logarithmic region, where the flow is represented by u+ = 2.5 ln yη+B, there
exists a noticeable discrepancy between the Newtonian flow (fluid A1) and
the viscoelastic flows (fluids B–G). The logarithmic profiles for viscoelastic
flows are shifted upwards parallel to that of Newtonian flow. The upward
shift of the log-law profile is known to be equivalent to DR [2, 4]. In Fig. 3 we
observe that the magnitude of the shift seems to depend mainly on Weτ . The
log-law profiles for Weτ = 30 (fluids E1, E2, and F) can be observed from
a position higher than that of Newtonian flow. However, the case of fluid G
with Weτ = 40, in which the highest DR% in the present study is achieved,
reveals no apparent log-law region between the elastic layer and the outer
layer. The same behavior is seen in the experimental results of Yu et al. [24]
and others [33, 34] (not shown here). The existence of log-law region in fluid
F implies a wide scale range of turbulent vortices in the flow. Therefore, the
turbulent contribution to the momentum transfer is not so different between
fluids E1 and F. It can be conjectured that the high DR%, which has been
obtained in fluid F, is attributed to a decrease of the effective viscosity rather
than suppressing turbulent motions, thus inducing a thinning of the viscous
sublayer by a relative decrease of β. As β decreases with a fixed Weτ , ηeff/η0
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decreases accompanied by an increase of DR% (see fluids B → C and E1 →
F in Table 2).

Note that the given friction Reynolds numbers for both fluids D2 and
E2 are different from the other cases, but the rheological parameters are
the same as those of fluids D1 and E1, respectively. Comparison between
them reveals that the shift displacement of the log-law from the Newtonian
profile is almost the same magnitude regardless of the Reynolds number, as
shown in Fig. 3. In addition, there was less discrepancy in DR% between two
different Reynolds-number flows, i.e., fluids D1 and D2 (also E1 and E2): see
Fig. 2(b). An increase of Reτ0 with constant Weτ denotes an enlargement of
the channel width, because the parameters of uτ , η0, and λ are constant for
the same fluid: if Reτ0 increases due to an increase in the driving force, the
value of Weτ also increases in proportion to the square of uτ . In other words,
for a given Reτ0 and Weτ , the channel width (2δ) still appears as another
parameter. Therefore the lower dependence on the Reynolds number when
the parameters of rheological properties are fixed implies that DR% is a
strong function of uτ and λ in Eq. (4). This dependency is similar to the
‘diameter effect’ observed in pipe flow experiments [36, 37].

3.3. FIK identity

According to Fukagata et al. [38], the friction coefficient can be decom-
posed into a viscous contribution (referred as a laminar contribution in [38]),
a turbulent contribution, and inhomogeneous and transient contributions.
They proposed a direct relation between the skin friction coefficient and the
Reynolds stress distribution and established an identity equation for three
canonical wall-bounded flows (including channel flow). Based on a similar
procedure, the equation for a fully-developed channel flow of a viscoelastic
fluid, which is governed by Eq. (2), is derived as,

Cf = 12
β

Rem
+

6

U+
m

2

∫ 1

0

(
−u′+v′+

)
(1− y∗) dy∗

+
6

U+
m

2

∫ 1

0

c+xy (1− β)

Weτ
(1− y∗) dy∗. (11)

The first term is the viscous contribution, which is identical to the well-known
laminar solution. The second and third terms are, respectively, the turbulent
contribution proportional to the weighted Reynolds stress and the viscoelastic
contribution proportional to the weighted viscoelastic stress. These terms
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further suggest that near-wall turbulent motions, which induce strong shear
stresses, are more responsible for the frictional drag than the turbulence in
the outer layer, where the Reynolds shear stress and the viscoelastic stress
are dominant in the total shear.

The above perspective, often referred to as the FIK identity, is useful for
analyzing the elements of the DR [24, 39]. Figure 4 shows the fractional con-
tributions made by each term for five typical cases. The reduction of the fric-
tional coefficient Cf for viscoelastic fluid is attributed mainly to the reduction
of the turbulence contribution, although there is an additional viscoelastic
contribution with a small, but not trivial, value of about 0.001. In all cases
of the present simulations, the effect of reduction of the turbulence contri-
bution on Cf exceeds that of onset of the viscoelastic contribution, resulting
in a positive DR%. The turbulence contribution for fluid G (Weτ = 40) is
very small and becomes comparable to the other contribution components,
whereas that for fluid C (Weτ = 10) remains dominant. It is conjectured
that this contribution decreases with the increase of the Weissenberg number.

Figure 5 presents the weighted Reynolds shear stress as appearing in
Eq. (11). As also mentioned in the previous section, a high value of the
Weissenberg number affects DR by damping the turbulent vortical motion
and decreasing the Reynolds shear stress. Its behavior for fluid F is almost
the same or slightly higher than that for fluid E1, where the same value of
Weτ is given. Hence the turbulence contributions for these cases are at the
same level. It should also be noted that the Cf of fluid F is lower than that of
fluid E1. This is caused by the reduction of the viscous contribution, which is
attributed to a decrease of the effective viscosity ηeff for low β. This is why

the obtained DR% for fluid F is comparable to that of a higher-Weτ fluid
(G). Again, it is worth noting that, although fluids F and G yield almost
the same high DR%, the former gives a smaller viscous contribution and a
larger turbulence contribution than those of the latter case. In brief, a low
β (such as for fluid F) induces a decrease of the viscous contribution, and a
high Weτ (such as for fluid G) damps down the turbulence contribution.

3.4. Turbulence intensity, Reynolds stress and cross-correlation coefficient

Figures 6–8 show profiles of the turbulence intensities as a function of yη.
It can be seen that, for high-DR% cases, the value of u′+

rms tends to increase
for yη > 5 and both v′+rms and w′+

rms decrease in the whole channel width (see
(a) in the figures). In other words, the flow at high DR% is prone to become
anisotropic turbulence. The peak positions of v′+rms and w′+

rms for viscoelastic
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flow shift away from the wall as DR% increases. This is consistent with the
shift of the logarithmic region in the u+ profile shown in Fig. 3.

As seen from Fig. 6(b), the profiles of u′+
rms for rheologically identical

fluids (e.g., fluids D1 and D2 at constant Weτ and β) are independent of
the Reynolds number, Reτ0. On the other hand, discrepancies due to the
Reynolds-number dependence are found in the other two components of v′+rms

and w′+
rms, as shown in Figs. 7(b) and 8(b) respectively. This seems to be an

effect of the low Reynolds number. Antonia et al. [40] and Abe et al. [41]
indicated that the Reynolds-number dependencies for v′+rms and w′+

rms are sig-
nificant compared to that for u′+

rms: the wall-normal and spanwise compo-
nents are enhanced with increasing Reτ0, because the energy redistribution
increases for them. However, the v′+rms of fluids E1 and E2 for yη < 40 (and
also those of D1 and D2 for yη < 20) do not differ much from each other. In
this respect we note that the wall-normal velocity fluctuation in the elastic
layer of viscoelastic flow is suppressed to a certain degree that depends on
the level of DR%.

In a case where the near-wall value of v′+rms is reduced, the Reynolds shear
stress also becomes very small in the near-wall region. Figure 9 shows the
−u′+v′+ distribution. We see that the peak value of the −u′+v′+ decreases
monotonically with increasing Weτ . Also, the location of the peak moves
continuously away from the wall with increasing Weτ . This behavior gives
rise to a significant decrease of Cf (i.e., an increase of DR%), as suggested
by Eq. (11).

As described above and by other researchers [9, 24, 34, 6], it has been
elucidated that under DR conditions the Reynolds shear stress of −u′+v′+

is strongly damped. The reduction of −u′+v′+ should be responsible for a
decrease in the magnitude of the correlation between the streamwise velocity
fluctuation u′ and the wall-normal component v′ as well as in the magnitude
of v′. The profile of the cross-correlation coefficient

Ruv =
−u′+v′+

u′+
rmsv

′+
rms

(12)

is shown in Fig. 10. It is already known that Ruv for Newtonian turbulent
channel flow is less dependent on the Reynolds number, and that the value
except for the wall vicinity and channel center lies around 0.4 [43, 42]. It is
clearly seen that Ruv for turbulent viscoelastic flow becomes small compared
to the Newtonian cases. In particular, the reduction of Ruv is noticeable in
the near-wall region, and its diminution seems to depend on the magnitude
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of DR%. Compared to the other fluids, Ruv of fluid G is much smaller
throughout the channel—note that a point where Ruv = 0 indicates the
channel center. In addition, a secondary peak of Ruv near the channel center
can be observed in the Newtonian (fluid A1) and low-DR% cases (B–D), but
Ruv for high-DR% cases at Reτ0 = 150 (fluids E1, F, and G) monotonically
decreases as it approaches the channel center. This suggests that turbulent
structures in highly drag-reduced flow are damped also in the outer layer.

3.5. Anisotropy characteristic

It is interesting to analyze the relation between DR and the anisotropy
of the Reynolds stresses to clarify the dynamics of drag-reduced turbulence.
Turbulence anisotropy can be quantified by examining the anisotropy invari-
ant map (AIM) proposed by Lumley & Newman [44], as shown in Fig. 11(a).
The anisotropy tensor

bij =
u′
iu

′
j

2k
− 1

3
δij

(
k =

1

2
u′
iu

′
i

)
, (13)

satisfies its characteristic polynomial, where its second and third invariants
of bij are given by

II = bijbji (14)

III = bijbjkbki (15)

While II measures the intensity of the anisotropy, the shape of eddies is
characterized by III [45]. Due to realizability conditions for the Reynolds
stress tensor, the possible values of II and III must be within the trian-
gle area in Fig. 11(a). This region is bounded by three lines, namely the
two-component turbulence state, 2− 9II + 18III = 0, and two axisymmetric
states, 6II3 − III2 = 0. For the axisymmetric states, positive III represents
the rod-like turbulence strained by axisymmetric expansion, and negative
III describes the disk-like turbulence by axisymmetric contraction. The in-
tersections of the bounding lines can be found at (III, II) = (0, 0), (2

9
, 2
3
),

and (− 1
36
, 1
6
), each corresponding to the isotropic, one-component, and two-

component axisymmetric states of turbulence, respectively.
Figure 11(b) shows the AIM for the Newtonian and viscoelastic flows. A

typical trend in trajectories of the data can be clearly distinguished regard-
less of the fluid properties. In the wall vicinity, v′rms is negligible compared
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to the other components, so the invariants reside near the upper bound-
ary which represents the two-component state. As y increases from zero
through the sublayer, the data point approaches the one-component limit
state with the streamwise turbulence intensity larger than the other direc-
tion components. After that, data curves along the axisymmetric boundary
(rod-like turbulence) towards the isotropic state as y comes close to the
channel center. It can clearly be seen that the anisotropy of near-wall tur-
bulence (y → 0) is shifted to higher values as DR% increases. Especially,
highly drag-reduced flows (fluids E1, F, and G) reveal a noticeable trend that
turbulence in the central region of the channel tends toward the axisymmet-
ric (or one-component) turbulence state rather than isotropic turbulence,
(v′+rms < w′+

rms � u′+
rms). Since in such a state there is less Reynolds shear

stress of −u′+v′+, the sole production for u′+u′+ in turbulent channel flow,

P = −2u′+v′+
∂u+

∂y+
, (16)

decreases consequently. These trend of increased anisotropy in the entire
channel is observed if the Reynolds number in Newtonian turbulent flows is
reduced. This results obtained for DNS of surfactant DR are in close agree-
ment with those obtained by DNS studies [46, 47], which reported that the
polymer-induced DR should be accompanied by increasing anisotropy in the
near-wall region. They demonstrated that turbulence with drag-reducing
polymer additives forces the polymer chains to stretch in the mean-flow di-
rection and, through this process, turbulent fine-scale eddies are restructured
into axisymmetric flows: see Jovanović et al. [46] for a full discussion of this
topic.

To clarify the difference between the fluids considered here, we plot the
profiles of the second invariant II, which represents the degree of anisotropy,
as a function of the dimensionless wall distance of the inner or outer scaling in
Fig. 12. In Fig. 12(a), the value of II increases with increasing DR%, showing
a significant difference between the high DR% cases (fluids E–G) and the
others. Moreover, the peak location seems to shift away from the wall and
widen in the elastic layer, the one-component state area being extended. The
distributions for fluids F and G, where DR% > 60 is achieved, show good
collapse throughout the channel if plotted against yη. This may imply that
the maximum level of DR has been obtained by the fluids, at least for the
present Reynolds number.
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In contrast to the inner scaling, we can find a collapse in the outer layer
(generally, y/δ > 0.2 in Newtonian flow) if we focus on the plot with the
outer scaling, given in Fig. 12(b). The profiles of rather low DR% fluids (C
and D1) are matched very well. It is interesting to note that the behavior
for fluid E2 is close to them, whereas fluid E2 gives a rather high DR% of
52.5%. Although this collapse might be a coincidence, we conjecture that, in
the outer layer, a moderately drag-reduced turbulence is qualitatively similar
to a low-DR% (or no DR) turbulence at a lower Reynolds number. As
for the inner layer, the profile for fluid E2 is approximately the same as
those of the highest DR% cases (fluids F and G): see Fig. 12(a). Thus
it can be concluded that a high DR in a high Reynolds-number turbulent
flow is caused mainly by the viscoelastic effect in the elastic layer whereas
the outer-layer flow remains almost Newtonian flow. Recently, a similar
concept was reported for experiments of surfactant solutions by Watanabe
et al. [48]. They demonstrated that a shear-induced structure (SIS) exists in
the near-wall region, but not in the outer layer due to the mixing potential
of turbulence. Here, SIS is a state where moderate shear stress assists the
formation of a micellar network and this network expresses the viscoelasticity
of fluid, cf. [49]. This bilayered structure model with viscoelastic (SIS)
and non-viscoelastic fluids (non-SIS) has been observed also in the turbulent
boundary layer of drag-reducing surfactant solutions [50, 51].

3.6. Budget of Reynolds stress

In this section we consider the budget terms of the Reynolds normal
stress (here, the streamwise component), and then differences which occur
between two high-DR% cases and between high-DR% and low-DR% cases
are discussed. The balance equation for u′+u′+ in fully-developed channel
flow can be expressed as

D

Dt
u′+u′+ = P − ε+Π+ T +D + E, (17)

where the production term P is defined as Eq. (16) and the other terms are

dissipation : ε = 2β
∂u′+

∂x+
k

∂u′+

∂x+
k

, (18)

VPG : Π = −2

(
u′+∂p

′+

∂x+

)
, (19)
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turbulent transport : T = − ∂

∂x+
k

u′+u′+u′+
k , (20)

molecular diffusion : D = β
∂2

∂x+
k
2u

′+u′+, (21)

VEC : E = 2
1− β

Weτ

(
u′+∂c

′+
xk

∂x+
k

)
. (22)

Here, VPG and VEC denote the velocity pressure-gradient correlation term
and the viscoelastic contribution term, respectively. The VPG term can be
split into pressure strain and pressure diffusion terms: the former term is
known to play a dominant role in the energy redistribution, while the latter
term is zero for u′+u′+. In Eq. (17), the conformation tensor cij appears
only in the VEC term of Eq. (22), which is an extra term derived from
the viscoelastic effect, and it appears as the correlation between velocity and
viscoelastic stress fluctuations. Figure 13 shows the budget terms normalized
by ηeff/u

4
τ with respect to the viscous wall region for some typical high-DR%

cases. As given in the figure, very good balances are achieved, demonstrating
high accuracy in the present DNS. The maximum value of residual is less than
10−2 in all cases.

A clear difference between Newtonian (fluid A1) and viscoelastic fluids
can be found in the VPG term corresponding to the redistribution term (see
Fig. 13). Over most of the channel, negative Π is the dominant sink for
u′u′, while positive Π in the v′v′ and w′w′ balances are the dominant energy
sources. Thus the reduction of the VEC term represents the inhibition of the
transfer of energy to the two other components, inducing the one-component
turbulent state. For highly drag-reducing fluids, the VPG term is much
smaller than that of Newtonian fluid, and hence the relevant flow strengthens
the tendency toward anisotropic turbulence, as discussed for Fig. 11.

Although almost the same DR% values are obtained in fluids F and G,
their budgets compared in Fig. 13 are slightly but significantly different. For
instance, the maximum turbulence production in fluid G is apparently smaller
than that in fluid F due to higherWeτ . In addition the turbulent transport in
fluid G is also moderated so the relevant profile of u given in Fig. 3 becomes
laminar-like. On the other hand, the magnitudes of the dissipation and the
molecular diffusion in fluid G are larger than those in fluid F, which might
be due to the small β (i.e., small ηeff) of fluid F. These results indicate

that high DR% in fluid G is attributed to the suppression of turbulence

15



production and that in fluid F is due to the decrease of effective viscosity.
It is also noteworthy that the difference between the productions in fluids F
and G, i.e., the surplus production ΔP = PF−PG, almost balances with that
of VEC, ΔE(= EF − EG), as well as turbulent transport, ΔT (= TF − TG):

ΔP +ΔE +ΔT ≈ 0. (23)

This means that the VEC term for fluid F is more effective as a dissipation
and diffusion term. In the next section, we will consider this term in more
detail.

In Fig. 14 the results of the budget for high and low DR% cases show
a similar behavior to that for the two highest DR% cases given in Fig. 13,
although shown in semi-logarithmic coordinates of yη. Again we observe
smaller magnitudes of production and turbulent transport with increasing
Weτ (and DR%), corresponding to smaller turbulence contribution. The
much smaller VPG in Fig. 14(a) than in (b) is consistent with the smaller tur-
bulence intensities of the wall-normal and spanwise components (see Figs. 7
and 8). It is of interest that, for the high-DR% case, the budget terms are
less dependent on the Reynolds number throughout the channel, as shown in
Fig. 14(a). As can be seen in (b), on the other hand, for the low-DR% flow
as well as Newtonian flow (not shown in the figure), the near-wall values of
production, dissipation, molecular diffusion and turbulent transport tend to
increase as Reτ0 increases. Moreover, focusing on the behavior of VEC in
the near-wall region, a small bump at yη ≈ 8 can be found only in the high
DR% cases. It can be construed that the VEC term of the high-DR% flows
(fluids E1, E2, F, and G) works as a gain of turbulent energy in some areas,
whereas it works as a dissipation in almost the entire channel. As also for
polymer DR, Massah & Hanratty [52] and Min et al. [14] showed that the
polymer chains absorbed elastic energy in the vicinity of the wall and released
it in the buffer and log layers when the relaxation time of the polymers was
long enough (meaning the high Weissenberg number). The present results
support their proposed DR mechanism.

3.7. Viscoelastic contribution

3.7.1. Decomposition of VEC term

In order to discuss the viscoelastic contribution in more detail, the VEC
term of Eq. (22) is divided into Ed and Eε:

E = Ed − Eε, (24)
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transport by viscoelastic stress:

Ed = 2
(1− β)

Weτ

∂

∂x+
k

u′+c′+xk, (25)

work by viscoelastic stress:

Eε = 2
(1− β)

Weτ

(
c′+xk

∂u′+

∂x+
k

)
. (26)

Regarding these two terms, results in several cases are shown in Fig. 15. It
can be seen in Fig. 15(a) that energy is convected by Ed from the buffer
layer (in yη = 5–30) and the elastic layer (i.e., up to yη = 60 in the case of
fluid G), where the production is high (see Figs. 13 and 14), to the vicinity
of the wall yη < 2 and the outer layer. On the other hand, Eε transfers the
turbulent energy to the elastic energy in almost the whole channel; hence
this term can be interpreted as an ‘energy-transfer rate between between the
turbulent kinetic energy and the elastic energy’. Negative (positive) −Eε

means that the kinetic energy carried by velocity fluctuations u′+ is damped
(enhanced) by storage (release) of elastic energy in the micellar structure of
the surfactant additive. In the wall vicinity (yη < 2), as Ed carries sufficient
energy inward to balance −E, the VEC term E of Eq. (22) becomes zero
there. It is worth noting that there exists a region (from yη = 3 up to
10–20) where −Eε becomes positive. This is consistent with the findings of
different DNS using the FENE-P model for polymer solutions [13, 18, 19],
that the correlation of u′ and the streamwise polymer stress is positive close
to the wall but changes its sign away from the wall. This implies that, in
this region, a fraction of the elastic energy, which is accumulated at the outer
region (−Eε < 0 at yη > 20), is transferred backward to the turbulent kinetic
energy. Moreover, both Ed and −Eε are found to be highly dependent on
Weτ and β. Their behaviors are not scaled by the microscale based on the
effective viscosity nor by an outer scale such as δ.

To understand the relation between the energy-transfer rate −Eε further,
we have examined instantaneous flow fields. Figure 16 shows the instanta-
neous field of −Eε and the velocity vector in an arbitrarily chosen cross-
section of the (y, z) plane. Note that the axes are non-dimensionalized by
the effective viscosity. In Fig. 16(a) (fluid C as an example of low-DR%
flow), we can observe a number of eddies near the walls, especially in the
buffer layer, which has been widely accepted for the Newtonian fluids. The
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meaningful variation of −Eε is also limited only in the buffer layer. Hence
it can be said that large-scale eddies, which occur in the outer layer, are not
related with the viscoelastic contribution of flow at low DR%. For fluid E1
with high DR%, near-wall vortical structures are suppressed and only rather
large-scale eddies can be found: see Fig. 16(b). Moreover, regions of −Eε > 0
are observed not only at the near-wall region but also at the outer region,
and coincide well with the positions of a quasi-streamwise vortex, indicating
some relationship between the viscoelastic contribution and the local flow
topology. Similar results are observed for other high-DR% cases.

3.7.2. Relation to flow topology

Topological analysis through the so-called (R,Q) invariant map is useful
for describing flow fields with large data sets generated by DNS [53, 54, 55,
56]. Chong et al. [53] carried out a classification of the various types of three-
dimensional flow patterns, based on the structure in the space of invariants
of the velocity gradient tensor

aij =
∂ui

∂xj

. (27)

The second and third invariants of the characteristic equation for the eigen-
values of aij are given by

Q =
1

2

(
trace[aij]

2 − trace
[
a2ij
])

, (28)

R = −det [aij] . (29)

Note here that the first invariant is equivalent to Eq. (1). A solution to
the characteristic equation at each point determines a local linearized flow
pattern. The discriminant

D = 27R2 + 4Q3 = 0 (30)

defines the transition between rotational and extensional flows: for D < 0,
the flow is extensional. Four local-flow topologies, which can occur in an in-
compressible flow, are determined by the (R,Q) map, as given in Fig. 17. The
four classifications are unstable focus/contracting (UF), stable focus/stretching
(SF), stable node/saddle/saddle (SN), and unstable node/node/saddle (UN),
respectively (reading from the top-right corner counter-clockwise in the fig-
ure). In concrete terms, in the upper right-hand (first quadrant) region the
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local flow has uniaxial compression along one axis with outward spiraling
along the plane in the other directions; in the upper left-hand region it be-
haves in the opposite manner. It should be emphasized that both SF and
UF correspond to rotational flow, i.e., vortex. In the lower region of the
map, SN represents uniaxial elongation and biaxial compression, and UN is
the reverse behavior (biaxial elongation and uniaxial compression). The typ-
ical teardrop shape (see, for instance, [56, 57]) for the present flows remains
practically unchanged (figure not shown): in the buffer region the local-flow
pattern is most likely to lie in SF and UN.

Table 3 shows percentages of occurrence of each flow pattern at yη = 5,
30 and 94 for three kinds of fluids: i.e., fluid C (as a low-DR% case), E1 (as
a high-DR% case), and E2 (as a high-DR% at different Reτ0). In order to
examine the influence of viscoelastic fluid on the topology of the turbulent
flow field, we showed the results for each of −Eε > 0 and −Eε < 0. Here
the absolute values of (R,Q) are not considered. In all cases of the fluids, a
correlation between −Eε and the local-flow pattern is observed: if −Eε > 0,
SF is dominant; if −Eε < 0, UF is dominant, implying that the vortex
stretching and compressing are related to the gain and loss from the elastic
energy (to the turbulent kinetic energy), respectively. Such a tendency is
prominent at yη = 5 in the buffer layer (or viscous sublayer) and also at
yη = 30 in the elastic layer, which exists for high-DR% cases such as fluids
E1 and E2. This is consistent with the finding that a localized energy-gain
region exists in the buffer and elastic layers, as shown in Fig. 15, and that
turbulent vortical motions are dominant in this region, as in Fig. 16(b). In
the case of low DR% (or at low Weτ ), it is clearly seen that, away from the
wall, the preferences for SF (with −Eε > 0) and UF (with −Eε < 0) are
significantly reduced. Recalling that the SF and UF, respectively, represent
strong rotational flow and unsteady vortex, this result is an indication that
a drag-reduced flow involves energy transformation between kinetic energy
and elastic energy through the induction and damping of eddies and that the
elastic layer (in which the energy transformation is active) expands to the
outer layer in a high DR% case.

4. Conclusion

We have studied the turbulent channel flow of viscoelastic fluid using
DNS with the Giesekus constitutive equation at two different Reynolds num-
bers of Reτ0 = 150 and 395. Two simulations for Newtonian flow and eight
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simulations for surfactant solutions were performed to systematically inves-
tigate drag-reduced turbulent flows with varying values of two parameters:
the Weissenberg number (Weτ ) and the viscosity ratio (β) of the solvent
viscosity to the total zero-shear rate solution viscosity. We present various
turbulence statistics and analyzed their dependence on the parameters as well
as the obtained drag-reduction rate. Energy transfer between the flow (ki-
netic energy) and additives (elastic energy) was examined through transport
equations and flow topology, from which the mechanism for drag reduction
was elucidated.

It was shown that high drag reduction can be achieved by suppressing
the turbulent contribution for a high Weissenberg-number fluid, and/or by
decreasing the viscosity ratio (accompanied by a decrease of the effective
viscosity). An offset in the logarithmic region of the mean-velocity profile
increased as a function ofWeτ , but not of β. A highly drag-reduced turbulent
flow at a high Reynolds-number was caused mainly by the viscoelastic effect
in the elastic layer whereas the outer-layer flow remains almost Newtonian
flow and hardly affects the drag reduction, implying the existence of a shear-
induced structure that was observed for experiments of surfactant solutions.

The budget balance of the turbulence intensity was discussed focusing
on the viscoelastic contribution term, especially the energy-transfer rate
(between turbulent kinetic energy to elastic energy), which is absent in
Newtonian-fluid flow. We found that the viscoelastic contribution term for
highly drag-reduced turbulent flow worked as a gain of turbulent energy at
around yη ≈ 8 (in wall units), whereas it acted as a loss in almost the entire
channel. Moreover, the energy-transfer rate −Eε was also studied focusing
on its relation to turbulent flow topologies related to the invariants of the
velocity gradient tensor. In the near-wall region including the elastic layer of
a highly drag-reduced flow, a positive area of −Eε is closely associated with
vortex stretching that produces turbulent kinetic energy from stored elastic
energy, whereas a negative one causes vortex compression (energy loss).
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[46] J. Jovanović, M. Pashtrapanska, B. Frohnapfel, F. Durst, J. Koskinen,
and K. Koskinen, On the mechanism responsible for turbulent drag re-
duction by dilute addition of high polymers: theory, experiments, simu-
lations, and predictions, Trans. ASME I: J. Fluids Eng., 126 (2006), pp.
118–130.

[47] B. Frohnapfel, P. Lammers, J. Jovanović, and F. Durst, Interpretation
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Table 1: Reynolds number and computational domain size: Li, Ni and Δi are box length,
grid number and spatial resolution in the i-direction, respectively.

Fluid A1 A2 B, C, D1, E1, F D2, E2
L∗
x × L∗

y × L∗
z 10.0× 2.0× 5.0 6.4× 2.0× 3.2 12.8× 2.0× 6.4 12.8× 2.0× 6.4

Nx ×Ny ×Nz 128× 128× 128 256× 256× 256 128× 128× 128 256× 256× 256
Δx∗ 0.08 0.025 0.10 0.050
Δz∗ 0.05 0.0125 0.05 0.025
Δy∗min 0.00149 0.00095 0.00149 0.00075
Δy∗max 0.03013 0.01393 0.03013 0.01506

Table 2: Computational parameters (Reτ0,Weτ , β) and important results of mean flow
variables (U+

m , ηeff,Rem,Reτ ,DR%). The cases are arranged in ascending order of DR%

(except for the order between fluids E1 and E2).

Fluid Reτ0 Weτ β U+
m ηeff/η0 Rem Reτ DR%

A1 150 0 1.0 15.2 1.000 4570 150 —
A2 395 0 1.0 18.0 1.000 14200 395 —
B 150 10 0.8 16.3 0.962 5100 156 10.4
C 150 10 0.5 17.1 0.885 5780 169 14.7
D1 150 11 0.5 17.8 0.870 6130 173 20.0
D2 395 11 0.5 21.0 0.870 19000 454 20.0
E1 150 30 0.5 25.9 0.690 11300 217 52.2
E2 395 30 0.5 29.6 0.690 33900 571 52.5
F 150 30 0.3 29.6 0.518 17100 290 61.0
G 150 40 0.5 30.1 0.654 13800 229 64.6
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Table 3: Relation between −Eε, and local-flow pattern defined by topological classification
at several wall-normal positions. The values are indicated in percentage, and boldface
represents the most dominant flow pattern at each height.

yη = 5 yη = 30 yη = 94
−Eε > 0 −Eε < 0 −Eε > 0 −Eε < 0 −Eε > 0 −Eε < 0

SF (%) 51 34 34 37 37 38
Fluid UF (%) 24 38 31 34 30 34
D1 UN (%) 16 16 25 22 23 19

SN (%) 8 10 10 7 10 9
SF (%) 42 35 46 31 44 36

Fluid UF (%) 30 37 34 42 37 34
E1 UN (%) 15 16 13 20 13 23

SN (%) 13 12 7 7 6 7
SF (%) 40 35 41 33 40 36

Fluid UF (%) 32 36 35 42 32 34
E2 UN (%) 15 17 17 18 20 23

SN (%) 13 12 7 7 8 8
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z
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= 2δ

Lxz

Const.=
∂

∂

x
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Figure 1: Schematic of the flow geometry.
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Figure 2: (a) Friction coefficient as a function of solvent bulk Reynolds number. (b) DR%
versus Rem. The maximum drag-reduction asymptote (MDR) proposed by Virk [30] is
plotted for reference. For indexes (and the parameters) of fluids, see Table 2.
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Also shown are the theoretical wall laws in the viscous sublayer and the logarithmic layer
for Newtonian flow, and the empirical law (so-called Virk’s ultimate profile) for drag-
reduced flow [31].
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Figure 6: Root-mean-square of the streamwise velocity fluctuation, u′+
rms: (a) different

values of the rheological parameters at Reτ0 = 150; (b) comparison between Reτ0 = 150
and 395 at the same values of the rheological parameters.
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Figure 7: Same as Fig. 6, but for v′+rms.
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Figure 8: Same as Fig. 6, but for w′+
rms.
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Figure 9: Same as Fig. 6, but for Reynolds shear stress −u′+v′+.
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Figure 11: (a) Anisotropy-invariant map showing the limiting states of turbulence. Thick
arrows represent the turbulent fluctuations that correspond to each of the limiting states.
(b) Anisotropy-invariant mapping of drag-reducing turbulent channel flows, with an en-
largement of trajectories of data around the channel core region. Vertical arrows indicate
the value in the wall vicinity for each case, and horizontal arrows indicate the value at the
channel center. The inset in (b) is an enlargement of the framed region.
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