
Bayreuther Arbeitspapiere zur Wirtschaftsinformatik

Lehrstuhl für
Wirtschaftsinformatik

Information Systems
Management

Bayreuth Reports on Information Systems Management

No. 3

2005

Pablo Chacin, Isaac Chao, Felix Freitag

Analysis of current middleware used in peer-to-peer
and grid implementations for enhancement by
catallactic mechanisms

ISSN 1864-9300

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by EPub Bayreuth

https://core.ac.uk/display/33806308?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Die Arbeitspapiere des Lehrstuhls für

Wirtschaftsinformatik dienen der Darstellung

vorläufiger Ergebnisse, die i. d. R. noch für

spätere Veröffentlichungen überarbeitet werden.

Die Autoren sind deshalb für kritische Hinweise

dankbar.

 The Bayreuth Reports on Information Systems

Management comprise preliminary results

which will usually be revised for subsequent

publications. Critical comments would be

appreciated by the authors.

Alle Rechte vorbehalten. Insbesondere die der

Übersetzung, des Nachdruckes, des Vortrags,

der Entnahme von Abbildungen und Tabellen –

auch bei nur auszugsweiser Verwertung.

 All rights reserved. No part of this report may

be reproduced by any means, or translated.

Authors: Information Systems and Management
Working Paper Series

Edited by:

Prof. Dr. Torsten Eymann

Managing Assistant and Contact:

Raimund Matros

Universität Bayreuth

Lehrstuhl für Wirtschaftsinformatik (BWL VII)

Prof. Dr. Torsten Eymann

Universitätsstrasse 30

95447 Bayreuth

Germany

Email: raimund.matros@uni-bayreuth.de ISSN

Pablo Chacin, Isaac Chao, Felix Freitag

1864-9300

EU-IST Project IST-FP6-003769 CATNETS
CATNETS - Evaluation of the Catallaxy paradigm for decentralized operation of dynamic application networks

Copyright © 2005 UPC 1

D3.1

UPC CATNETS WP3

Abstract

CATNETS EU IST-FP6-003769 Project Deliverable D1.1

This deliverable describes the work done in task 3.1, “Middleware analysis: Analysis of current
middleware used in peer-to-peer and grid implementations for enhancement by catallactic
mechanisms” from work package 3, “Middleware Implementation”. The document is divided in
four parts: The introduction with application scenarios and middleware requirements, Catnets
middleware architecture, evaluation of existing middleware toolkits, and conclusions

Document
Id.

CATNETS/2005/D3.1/v1.0

Project CATNETS EU IST-FP6-003769
Date 03-03-2005
Distribution Resticted

EU-IST Project IST-FP6-003769 CATNETS
CATNETS - Evaluation of the Catallaxy paradigm for decentralized operation of dynamic application networks

Copyright © 2005 UPC 2

CATNETS Consortium

This document is part of a research project partially funded by the IST Programme of
the Commission of the European Communities as project number IST-FP6-003769.
The partners in this project are: LS Wirtschaftsinformatik (BWL VII) / University of
Bayreuth (coordinator, Germany), Arquitectura de Computadors / Universitat
Politecnica de Catalunya (Spain), Information Management and Systems / University of
Karlsruhe (TH) (Germany), Dipartimento di Economia / Università delle merche
Ancona (Italy), School of Computer Science and the Welsh eScience Centre /
University of Cardiff (United Kingdom), Automated Reasoning Systems Division /
ITC-irst Trento (Italy)

University of Bayreuth
LS Wirtschaftsinformatik (BWLVII)
95440 Bayreuth
Germany
Tel: +49 921 55-2807, Fax: +49 921 55-2816
Contactperson: Torsten Eymann
E-mail: catnets@uni-bayreuth.de

Universitat Politecnica de Catalunya
Arquitectura de Computadors
Jordi Girona, 1-3
08034 Barcelona
Spain
Tel: +34 93 4016882, Fax: +34 93 4017055
Contactperson: Felix Freitag
E-mail: felix@ac.upc.es

University of Karlsruhe
Institute for Information Management and
Systems
Englerstr. 14
76131 Karlsruhe
Germany
Tel: +49 721 608 8370, Fax: +49 721 608
8399
Contactperson: Daniel Veit
E-mail: veit@iw.uka.de

Università delle merche Ancona
Dipartimento di Economia
Piazzale Martelli 8
60121 Ancona
Italy
Tel: 39-071- 220.7088 , Fax: +39-071-
220.7102
Contactperson: Mauro Gallegati
E-mail: gallegati@dea.unian.it

University of Cardiff
School of Computer Science and the Welsh
eScience Centre
University of Caradiff, Wales
Cardiff CF24 3AA, UK
United Kingdom
Tel: +44 (0)2920 875542, Fax: +44 (0)2920
874598
Contactperson: Omer F. Rana
E-mail: o.f.rana@cs.cardiff.ac.uk

ITC-irst Trento
Automated Reasoning Systems Division
Via Sommarive, 18
38050 Povo – Trento
Italy
Tel: +39 0461 314 314, Fax: +39 0461 302
040
Contactperson: Floriano Zini
E-mail: zini@itc.it

EU-IST Project IST-FP6-003769 CATNETS
CATNETS - Evaluation of the Catallaxy paradigm for decentralized operation of dynamic application networks

Copyright © 2005 UPC 3

Changes

Version Date Author Changes

EU-IST Project IST-FP6-003769 CATNETS
CATNETS - Evaluation of the Catallaxy paradigm for decentralized operation of dynamic application networks

Copyright © 2005 UPC 4

1 Introduction.. 6

1.1 Middleware toolkit selection objectives ... 6

1.2 Adopted approach .. 6

1.3 Application Scenarios.. 7
1.3.1 Sample applications.. 8

1.3.1.1 Applications for the Grid scenario.. 8
1.3.1.2 Applications for Content Distribution.. 10
1.3.1.3 Applications for peer-to-peer networks ... 11

1.4 Middleware Requirements... 12

1.5 References .. 13

2 CATNETS Architecture... 15

2.1 The Need for an Architecture... 15
2.1.1 Architecture Design Process .. 16
2.1.2 Architecture Specification... 17

2.2 Architecture Analysis .. 17
2.2.1 Architectural requirements .. 18
2.2.2 Architecture Design Strategies... 22

2.3 Architecture Design ... 24
2.3.1 Proposed Architecture.. 25
2.3.2 Related Work... 26

2.4 P2P Agent layer... 27

2.5 References .. 31

3 Middleware toolkits evaluation ... 36

3.1 Identification of candidate middleware toolkits and evaluation process..... 36

3.2 Presentation of the candidates.. 38
3.2.1 Introduction ... 38
3.2.2 Web Services JAX-RPC implementations (Axis) .. 38
3.2.3 WSRF/ OGSA ... 39
3.2.4 J2SE .. 41
3.2.5 JXTA .. 41
3.2.6 JADE ... 42
3.2.7 Diet Agents .. 43

3.3 Functional view: Mapping middleware toolkits into the architecture 44

3.4 Technical View ... 45

3.5 Development view ... 48

3.6 Tests on middleware toolkits integration .. 50

3.7 Conclusions... 51
3.7.1 Conclusions on functional, technical and development views 51
3.7.2 Joint selection of middleware and application .. 53

3.8 References .. 54

4 Conclusions ... 72

4.1 Conclusions on the architecture design process .. 72

EU-IST Project IST-FP6-003769 CATNETS
CATNETS - Evaluation of the Catallaxy paradigm for decentralized operation of dynamic application networks

Copyright © 2005 UPC 5

4.2 Conclusions on the middleware toolkit selection process 72

4.3 Future steps ... 74

EU-IST Project IST-FP6-003769 CATNETS
CATNETS - Evaluation of the Catallaxy paradigm for decentralized operation of dynamic application networks

Copyright © 2005 UPC 6

1 Introduction
This deliverable describes the work done in task 3.1, “Middleware analysis: Analysis of
current middleware used in peer-to-peer and grid implementations for enhancement by
catallactic mechanisms” from work package 3, “Middleware Implementation”. The
document is divided in four parts: The introduction with application scenarios and
middleware requirements, Catnets middleware architecture, evaluation of existing
middleware toolkits, and conclusions.

1.1 Middleware toolkit selection objectives

We recall from the Catnets project proposal [Catn04]:

“The main objective of the project is to provide a significant statement about
using ‘free market’ (catallactic) mechanisms in application layer networks. Our
conclusions will concern their applicability and implementation possibilities in
Grid/P2P middleware, providing a prototype, and performance results and
further insight in their behaviour”

The objective of this deliverable D3.1 is the selection of middleware toolkit as the basis
for the Catnets prototype implementation. We address various Application Layer
Network (ALN) types, like Grid, Peer-to-Peer (P2P) and Content Distribution Networks
(CDN). This document should guide the selection of the tools for the design,
implementation and evaluation of middleware using Catallaxy[ERA+03] in real ALN
scenarios and given a concrete application. This document should be helpful for the
design and implementation of a “proof of concept” prototype.

1.2 Adopted approach

“To achieve our objective the project faces the challenge to combine
contributions both from computer science and economics to address the
features of coming Grid and P2P applications and infrastructures. Catallaxy
has been proposed as a model to describe the behaviour of complex and large
scale real world economy. However, its results have not yet been transferred to
coordinate large and dynamic computer networks” [Catn04]

Considering this issue of transference of research results, we have studied which are the
new elements that real Grids and P2P applications bring into the catallactic model, and
secondly which is the impact on the previous model used in the Catnet assessment
project [Catn03]. We have found that composing a prototype for deploying Catallactic
agents into real Grid and P2P scenarios is far more complex than just porting the
simulation to some convenient middleware toolkit.

The next sections of this document will describe ongoing work in the identification and
exposition of requirements in applications, the design of an architecture that meets the
found requirements, and the analysis and testing of existing middleware tools that can
be used to implement such architecture in Catnets.

This deliverable is organized as follows: Section 1.3 introduces the problematic of
Catalaxy applied to information systems. Its purpose is to introduce the vast problematic
of Catalaxy applied to ALNs. Its function is to contextualise the ideas described in other
sections of the document. Section 1.4 introduces Catallactic middleware requirements.

EU-IST Project IST-FP6-003769 CATNETS
CATNETS - Evaluation of the Catallaxy paradigm for decentralized operation of dynamic application networks

Copyright © 2005 UPC 7

Section 2 presents the proposed middleware architecture. Section 3 evaluates six
different candidate middleware toolkits regarding the identified functional and non-
functional requirements of Catnets. Section 4 exposes the conclusions and indicates
next steps.

It is important to note the “layered” structure of this deliverable. The architecture
introduced in section 2 offers a solution to the Catnets middleware development from
the software engineering point of view. The whole picture is presented, but in the
context of this deliverable the focus is on the low level layers of the architecture.
Section 2 allows to situate the middleware toolkits analysis and evaluation described in
section 3, and to understand the way it can be used in conjunction with the architecture
to select middleware toolkit for the Catnets prototype implementation, given an ALN
scenario.

1.3 Application Scenarios

Application scenarios of interest in the Catnets project are centred in the concept of
“Application Layer Networks” (ALN), which includes generic application classes such
as Content Distribution Networks (CDN), Peer-to-Peer Networks (P2P) or Grid. An
ALN is a collective entity that provides a certain service using a composition of service
elements that cooperate among them, organized as an overlay network.

The rationale for selecting scenarios are those where there may be potential benefit from
using a decentralized economic approach, as it was identified in the previous Catnet
assessment project. The following are some environments where Catallaxy has potential
for success:

• Dynamic: changing environments and the need for adaptation to changes is
one of the potential areas where Catallaxy can have a competitive advantage.

• Diverse: requests may have different priorities and responses should be
assigned according to them.

• Large: with such number of elements that locality is required to scale.
These environments have the following features:

• Partial knowledge: it is not possible to know everything on time because of
its high cost. This can be caused by scale issues such as a large number of
elements, number of messages, or communication latency (information
arrives too late), which requires locality (that leads to scalability).

• Complex: many parameters must be taken into account, many messages.
Learning mechanisms are necessary to self-adjust or adapt to changes, and
optimal solutions are not easily computable.

• Evolutionary: open to changes which cannot be take into account in the
initial set-up, and able to learn and decide with limited information:
neighbours, few parameters that are summarized as a single price value, few
historic data, etc.

Taking into account these environments and characteristics, we have selected a few
applications representing of certain ALN classes to explore how these applications
could be modified to work under the Catallaxy model.

EU-IST Project IST-FP6-003769 CATNETS
CATNETS - Evaluation of the Catallaxy paradigm for decentralized operation of dynamic application networks

Copyright © 2005 UPC 8

1.3.1 Sample applications
The criteria for selection of these sample applications has been the following: for all
potential applications, we have selected applications which are exemplary of their
application area, which have a certain degree of popularity, and the source code is
available for inspection, modification and experimentation. Ideally, the candidate
applications should have been evaluated and characterized in public papers, so we could
then compare our results with an external baseline evaluation.

In the next subsections we present three different application scenarios: Grids
(Planetlab), CDN (Coral) and P2P file sharing (Bitorrent).

1.3.1.1 Applications for the Grid scenario
In the context of ALN for distributed computing using computing resources across
administrative boundaries (Grid computing), we have identified two unique initiatives
offering an open infrastructure for the deployment of services and the use of
computational resources in the academic or industrial environment. Both are unique in
terms of size, availability and relative maturity. They are Planetlab and Globus.

PlanetLab, as described in [BBC+04], is a geographically distributed overlay network
designed to support the deployment and evaluation of planetary-scale network services.
Two high-level goals shape its design. First, to enable a large research community to
share the infrastructure, PlanetLab provides distributed virtualization, whereby each
service runs in an isolated slice of PlanetLab’s global resources. Second, to support
competition among multiple network services, PlanetLab decouples the operating
system running on each node from the network-wide services that define PlanetLab, a
principle referred to as unbundled management.

Figure 1.1 Planetlab map of member organizations (as of 2/2005)

PlanetLab currently includes over 500 machines spanning 250 sites (i.e. organizations)
and more than 20 countries (figure 1.1). It supports more than 500 research projects
which focus on a wide range of services, including file sharing and network embedded
storage, content distribution networks, routing and multicast overlays, QoS overlays,
scalable object location services, anomaly detection mechanisms, and network
measurement tools.

EU-IST Project IST-FP6-003769 CATNETS
CATNETS - Evaluation of the Catallaxy paradigm for decentralized operation of dynamic application networks

Copyright © 2005 UPC 9

The PlanetLab middleware and API is open and extensible. Distributed applications can
use the services offered by the virtualized operating system in each node (currently the
Linux API) plus the XML-RPC interface offered by the PlanetLab Central (PLC)
administration

The service-resource cycle in PlanetLab is as follows:

• In every node, the node manager is in charge of creating and allocating
resources to vservers (virtual machines), and the resource monitor is in
charge of tracking node’s availability of resources and informing the central
agent about available resources.

• The agent tracks nodes’ free resources, which are advertised to resource
brokers and offered as tickets to services interested in acquiring and using
resources. This agent is part of PLC (Planet-Lab Central), a centrally-
controlled brokerage service that can be decentralized using a delegation
mechanism.

• In every service, the resource broker obtains tickets from agents on behalf of
service managers, which are in charge of redeeming tickets with node
managers to acquire resources, and if resources can be acquired, start the
service in that node.

In terms of the Catnets model, people or processes interested in using a given service
have the role of Client. They should look for and select a service instance (a Service
Copy in the Service Market). All nodes (represented by node managers and resource
monitors; acting as Resources), all service instances (represented by resource brokers
and service managers; acting as Service Copies), both mediated by the central Agent
(PLC) belong to the Resource market.
The Globus toolkit [Glob05] is the reference implementation of the standard Grid
protocols and APIs that the Global Grid Forum (GGF) is defining for different aspects
of distributed computing, such as security, resource management, data management, and
information discovery. The status of this implementation is now on a public version 3.0
release and working on version 4.0. The Globus middleware has been adopted by most
of the Grid projects world-wide.

In comparison with the Globus Grid implementation which offers a higher level
homogeneous API, Planetlab offers a less coupled and simpler API based on the idea of
virtualization. While the grid offers an ample collection of middleware services unified
in a single architecture (as exemplified by the Globus, Planetlab offers an API for the
basic service for creating slices, and associating people and nodes to them. Slices appear
to users as a set of virtual Linux machines (i.e. offering a multiple Linux API instead of
a higher level and abstract API: virtualization in contrast to abstraction). Additionally,
there may be competing services providing additional functionality that also run using
the Planetlab infrastructure (multiplicity in contrast to homogeneity). There is another
difference to emphasize: While the grid is primarily interesting in gluing together a
modest number of high-performance computing resources connected by high
performance networks, Planetlab is focused on scaling less bandwidth and CPU
intensive applications offering innovative services across a wider collection of nodes
[PACR02]. Finally, both worlds can be combined: There are pilot experiments where
Globus based applications are run on top of PlanetLab (in a slice, on several nodes or
slivers).

EU-IST Project IST-FP6-003769 CATNETS
CATNETS - Evaluation of the Catallaxy paradigm for decentralized operation of dynamic application networks

Copyright © 2005 UPC 10

1.3.1.2 Applications for Content Distribution
In the context of content distribution, the selection criteria applies to two academic
CDN which by coincidence both run on the PlanetLab infrastructure: Coral [FFM04]
and CoDeeN [PWP+03]. CoDeeN is a proxy based CDN with some restrictions and
limitations, and in contrast Coral provides the typical service that a CDN does with
some very interesting properties, and focusing on redirecting clients requests to the
“best” copy in terms of load, locality, proximity, offloading work from web origin
servers.

Coral CDN is a decentralized, self-organizing, peer-to-peer web-content distribution
network (use illustration in figure 1.2). Coral CDN leverages the aggregate bandwidth
of volunteers (typically PlanetLab slivers) running the software to absorb and dissipate
most of the traffic of web sites using the system. In doing so, CoralCDN replicates
content in proportion to the content’s popularity, regardless of the publisher’s resources,
in effect democratizing content publication [FFM04].

Figure 1.2. Coral's deployment and clusters based on network round-trip-time (letter
identifies cluster).

To use Coral CDN, a content publisher —or someone posting a link to a high-traffic
portal— simply appends “.nyud.net:8090” to the hostname in a URL. Through DNS
redirection, oblivious clients with unmodified web browsers are transparently redirected
to nearby Coral web caches. These caches cooperate to transfer data from nearby peers
whenever possible, minimizing both the load on the origin web server and the end-to-
end latency experienced by browsers.

This requires two mechanisms: finding a close peer, finding a close copy of the
requested object. The first is achieved by mapping Coral servers and clients into clusters
based on latency. The second is done using a locality-aware request routing algorithm
or indexing abstraction (also know as a Distributed Sloppy Hash Table or DSHT).
Every Coral peer is running three elements: a DNS server, a HTTP proxy and a DSHT
element.

The Coral CDN is implemented on top of a very simple middleware based on RPC over
UDP, structured in terms of events and callbacks, with a module for clustering nodes,
mapping client locations, routing requests by proximity (Coral DSHT), and modified
DNS and HTTP proxy servers.

In terms of the Catnets model, people interested in downloading a file, running an
unmodified web browser (or one with a Coral plug-in to “coralize” URLs) has the role
of a Client. They request a coralized URL, thus going to a Coral DNS server where a
response, the IP address of a close-by Coral proxy will be selected among many of

EU-IST Project IST-FP6-003769 CATNETS
CATNETS - Evaluation of the Catallaxy paradigm for decentralized operation of dynamic application networks

Copyright © 2005 UPC 11

them, based on the location of the client (this is the Service market and the Coral http
proxy has the role of Service Copy). The client web browser will contact the http proxy
with the given IP address. Then the proxy will look for the requested file in its own
store or it will look for a close copy of the file in other peers using the Coral DSHT
routing algorithm. Proxies belong to the Resource market, the election in the market is
determined by the DSHT algorithm looking for a close copy of a file, and proxies are
acting as Resources.

1.3.1.3 Applications for peer-to-peer networks
In the context of peer-to-peer networks, we have selected a P2P protocol which has a
clearly specified protocol, that is popular enough, and that is used for clearly useful and
legal purposes (some other P2P networks are almost only used for sharing copyrighted
content). This protocol is BitTorrent [Bitt05].

With BitTorrent [Cohe03], when multiple people are downloading the same file at the
same time, they are also uploading pieces of the file to each other. This redistributes the
cost of upload to downloaders, thus making hosting a file with a potentially unlimited
number of downloaders affordable.

Following [IUB+04], a torrent consists of a central component, called tracker and all the
currently active peers. BitTorrent distinguishes between two kinds of peers depending
on their download status: clients that have already a complete copy of the file and
continue to serve other peers are called seeds; clients that are still downloading the file
are called leechers. The tracker is the only centralized component of the system. The
tracker is not involved in the actual distribution of the file; instead, it keeps meta-
information about the peers that are currently active and acts as a rendez-vous point for
all the clients of the torrent.

A user joins an existing torrent by downloading a torrent file (usually from a Web
server), which contains the IP address of the tracker. Generic or specialized web search
engines usually lead to pages where a file can be downloaded from one or several
trackers. The user has to select one torrent file (and thus the tracker) to start
downloading the file which will let him connect to the tracker and an initial seed with a
complete copy of the file. In case of multiple trackers available for the same object,
statistics about every tracker are published to help the visitor choose the right tracker.
To update the tracker’s global view of the system, active clients periodically (every 30
minutes) report their state to the tracker or when joining or leaving the torrent. Upon

EU-IST Project IST-FP6-003769 CATNETS
CATNETS - Evaluation of the Catallaxy paradigm for decentralized operation of dynamic application networks

Copyright © 2005 UPC 12

joining the torrent, a new client receives from the tracker a list of active peers to connect
to.

Typically, the tracker provides 50 peers chosen at random among active peers while the
client seeks to maintain connections to 20−40 peers. If ever a client fails to maintain at
least 20 connections, it recontacts the tracker to obtain additional peers. The set of peers
to which a client is connected is called its peer set.

The clients involved in a torrent cooperate to replicate the file among each other using
swarming techniques: the file is broken into equal size chunks (typically 256kB each)
and the clients in a peer set exchange chunks with one another. The swarming technique
allows the implementation of parallel download where different chunks are
simultaneously downloaded from different clients. Each time a client obtains a new
chunk, it informs all the peers it is connected with. Interactions between clients are
primarily guided by two principles. First, a peer preferentially sends data to peers that
reciprocally sent data to him. This “tit-for-tat” strategy is used to encourage cooperation
and ban “free-riding”. Second, a peer limits the number of peers being served
simultaneously to 4 peers and continuously looks for the 4 best downloaders (in terms
of the rate achieved) if it is a seed or the 4 best uploaders if it is a leecher.

In terms of the Catnets model, people interested in downloading a file, running a web
browser and a Bittorrent client has the role of Client. They look for a torrent file (a
tracker) on a search engine and looking at the statistics of several trackers offering the
same file they manually select one tracker (the Service market and the tracker has the
role of Service Copy). The tracker joins the client in a swarm of peers exchanging
fragments of the file of common interest. All Bittorrent clients in the swarm belong to
the Resource market and are acting as Resources.

Bittorrent has monolithic software architecture, not intended to be extensible in the form
required for Catnets. Nevertheless, JXTA [Jaxt05] as perhaps the most known
middleware for P2P will be evaluated in section 3.

1.4 Middleware Requirements

We start this requirements introduction recalling what is pointed out in the Catnets
proposal:

“Compared to the assessment project, the implementation of a real system with
Catallactic mechanisms might need a higher complexity of service discovery and
management as in the assessment and will thus carry out resource discovery
(and also topology maintenance) based on overlay structures like DHTs, and
multiple stateful servers. The performance of the system will be measured to
evaluate the contribution of using Catallactic mechanisms”

We knew that the “real world” was going to introduce new challenges to the
applicability of Catallaxy. We knew as well from our previous experience in distributed
systems that key issues like decentralization, resource discovery, scalability, fault-
tolerance and computational efficiency are very rarely fully addressed by just one
middleware tool. We decided to tackle this complexity by composing the requirements
of the ideal middleware for Catnets, regardless if some existent middleware toolkit
could fully meet these requirements or not. But these requirements can be used as a
guide for the architecture and evaluation of existent middleware toolkits.

We decompose the analysis of middleware requirements into 3 different views:

EU-IST Project IST-FP6-003769 CATNETS
CATNETS - Evaluation of the Catallaxy paradigm for decentralized operation of dynamic application networks

Copyright © 2005 UPC 13

• The Functional View considers the required functionalities to implement a
distributed platform.

• The Technical View reflects the technical requirements for the middleware
toolkit.

• The Development View reflects the properties concerning the ease of
development with the middleware toolkit.

The Functional View defines the functions that the Catallactic middleware should
provide to support the implementation of Catallaxy. These functions cover the hosting
of the agents, the coordination of their execution in a decentralized way and the
integration with the underlying platform. Section 2 of this document explores these
functionalities in detail, taking into account the identified scenarios and their
architectural requirements.

Catallactic systems may be formed by thousands of agents engaged in numerous
negotiations that must be completed in a reasonable time. The Technical View evaluates
the general requirements to accomplish technical issues in an efficient way under
diverse implementation scenarios. One of the principal requirements is the scalability to
huge number of software agents and their coordination in a decentralized way. Closely
related is the need for handling massive parallel negotiations among those agents.
Another set of technical requirements are related to the architectural flexibility to allow
the implementation of the Catallactic middleware into different platforms using diverse
middleware toolkits, and the openness of these toolkits concerning the interoperability
with external applications.

The Development View evaluates to what extend it is feasible to implement the
designed architecture using the selected middleware toolkits within the time and
resource constrains of the project. Factors like API complexity, documentation,
tutorials and support for development are critical to successfully achieve the planned
goals. Also the maturity of the platform and the availability of reference
implementations are important aspects concerning the Catallactic middleware.

Both Technical and Development Views requirements are used, developed and
evaluated in a set of candidate middleware toolkits in of section 3.

1.5 References

[BCC+04] A. Bavier, M. Bowman, B. Chun, D. Culler, S. Karlin, S. Muir, L. Peterson, T.
Roscoe, T. Spalink, and M. Wawrzoniak, Operating System Support for Planetary-Scale
Network Services. First Symposium on Networked Systems Design and Implementation (NSDI)
(March 2004), 253-266

[Bitt05] http://bittorrent.com/ (2005)

[Catn04] CATNETS project (2004),”Annex I - Description of Work”, IST-FP6-003769

[Catn03] CATNET Project (2003), “Catallaxy Simulation Study. Report No. D2”, ITS-2001-
34030

[Cohe03] Bram Cohen, Incentives Build Robustness in BitTorrent (May 2003)

[ERA+03] T. Eymann, M. Reinickke, O. Ardaiz, P. Artigas, F. Freitag, L. Navarro (2003),
“Self-organizing resource allocation for autonomic network”, Proceedings. 14th International
Workshop on Database and Expert Systems Applications, Germany, 656- 660

EU-IST Project IST-FP6-003769 CATNETS
CATNETS - Evaluation of the Catallaxy paradigm for decentralized operation of dynamic application networks

Copyright © 2005 UPC 14

[FFM04] Michael J. Freedman, Eric Freudenthal, and David Mazières , Democratizing
Content Publication with Coral,. In Proc. 1st USENIX/ACM Symposium on Networked Systems
Design and Implementation (NSDI '04) San Francisco, CA, March 2004.

[Glob05] http://www.globus.org/ (2005)

[IUB+04] Mikel Izal, Guillaume Urvoy-Keller, Ernst W. Biersack, Pascal A. Felber, Anwar
Al Hamra and Luis Garces-Erice Dissecting BitTorrent: Five Months in a Torrent's Lifetime.. In
Proceedings of Passive and Active Measurements (PAM), 2004

[Jaxt05] http://www.jaxta.org (2005)

[PACR02] L. Peterson, T. Anderson, D. Culler, and T. Roscoe A Blueprint for Introducing
Disruptive Technology into the Internet.. First Workshop on Hot Topics in Networking
(HotNets-I) (October 2002)

 [PWP+03] VS Pai, L Wang, K Park, R Pang, L Peterson , The dark side of the web: An open
proxy’s view, Proceedings of the 2nd Workshop on Hot Topics in Networking, 2003

EU-IST Project IST-FP6-003769 CATNETS
CATNETS - Evaluation of the Catallaxy paradigm for decentralized operation of dynamic application networks

Copyright © 2005 UPC 15

2 CATNETS Architecture

“The project will investigate how “Catallactic” mechanisms can be implemented
for resource allocation in real application layer networks. This requires a
specification of the components that use "Catallactic” mechanisms and how
these components can be integrated in the middleware of current Grid and P2P
platforms. Their functionality covers resource brokerage, resource discovery,
and re-deployment of services. The prototype will be an important result to
demonstrate the feasibility and applicability of the approach.”[Catn04]

The main goal of WP3 during this stage of the project is the selection of middleware
toolkits and options for the integration of Catallactic Middleware mechanisms in current
ALN applications. This requires a specification of the components that use Catallactic
mechanisms, which cover resource brokerage, resource discovery, and re-deployment of
services, and how these components can be integrated into diverse ALN architectures.

In this document we have collected the requirements for the Catallactic Middleware, as
well as the potential constraints imposed by diverse deployment scenarios, depending
on the ALN architecture. It is clear from the identified heterogeneity that the problem of
integration of Catallactic mechanisms and components into current Grid and P2P
platforms is far from being a simple one. In fact we face a very complex design problem
which needs from a highly structured design approach.

2.1 The Need for an Architecture

“As the size and complexity of software systems increases, the design problem goes
beyond the algorithms and data structures of the computation: designing and specifying
the overall system structure emerges as a new kind of problem”. [GaS93]

To address this complexity, a different approach for developing is needed. Architecture
based development focuses on reasoning about the structural issues of a system.
“Structural issues include gross organization and global control structure; protocols for
communication, synchronization, and data access; assignment of functionality to design
elements; physical distribution; composition of design elements; scaling and
performance; and selection among design alternatives” [GaS93]

The importance of the architecture goes far beyond the simple documentation of
technical elements. According to [BBC+00], the architecture serves as “the blueprint for
both the system and the project developing it” and therefore it helps in the definition of
how the work can be organized. Also, the authors state that the architecture “is the
carrier of system qualities such as performance, modifiability, and security, none of
which can be achieved without a unifying architectural vision”. Finally, it is “a vehicle
for early analysis to make sure that the design approach will yield an acceptable
system”.

Considering the importance of the architecture and its impact in the overall system and
project organization, the main objectives of the architecture design process in
CATNETS project can be summarized as:

• Define a set of common design concepts that bring coherence to the architecture

EU-IST Project IST-FP6-003769 CATNETS
CATNETS - Evaluation of the Catallaxy paradigm for decentralized operation of dynamic application networks

Copyright © 2005 UPC 16

• Define a set of sound design and implementation principles that assure the
quality of the resulting middleware

• Identify key architectural requirements that allow the evaluation of potential
implementation options, including the adoption of already existing middleware
toolkits and development platforms

• Separate design concerns to facilitate the division of work in the different work
packages, giving each group the freedom to experiment with implementation
options, but avoiding the risk of incompatibilities

• Structure the system in a way that allows future experimentation in specific
areas like negotiation protocols and basic middleware mechanisms and policies
(peer location, resource replication, etcetera) with minimal impact on the rest of
the system

2.1.1 Architecture Design Process
The architecture design process goes from the system’s requirements to the architecture
specifications. We have adapted the methodological approaches proposed in [HNS99]
and [KaBa99] to define an architecture design process that considers three steps, as
shown in figure 2.1.

Analysis

Validation

Elaboration
Architecture

Specifications &
Design Decisions

System
Requirements

Architecture
Requirements and
Design Guidelines

Figure 2.1. The Architecture Design Process

The Analysis process translates the various systems requirements to architecture
requirements. It consists of three main tasks:

• Review the functional requirements (described in usage scenarios) that the
architecture must address, along with the nonfunctional requirements
(performance, scalability, security) that it must meet.

• Identify the architectural requirements that will constrain the design options

• Define strategies to deal with identified factors and state design guidelines that
will guide the elaboration phase.

The Elaboration phase consist in the construction of a set of specifications of the
architecture, covering different levels of detail and from diverse perspective, so that the
complexity of the system can be properly reflected to different stakeholders (e.g. project
managers and developers). One important part of the design process is the

EU-IST Project IST-FP6-003769 CATNETS
CATNETS - Evaluation of the Catallaxy paradigm for decentralized operation of dynamic application networks

Copyright © 2005 UPC 17

documentation of the design decisions that lead to this architecture, so that future
reviewers (architects, developers) can understand the rationale behind those decisions.

Finally, the Validation phase consists in the exploration of different usage scenarios to
verify the compliance of the architecture with the requirements [KABC96].

This process is iterative and it is expected to continue even when the detailed design of
the system is well advanced [KaBa99].

2.1.2 Architecture Specification
We use a model composed of multiple views or perspectives to describe a software
architecture ([Kruc95]), see Table 2.1. Each model covers a set of relevant aspects of
the specification from one stake holder’s point of view (for example, project manager or
developers) during a stage in the development process (for example, design or
implementation). The following table resumes the different architectural views we
consider.

D
ev

el
op

m
en

t • Specifies how code is organized
• Defined in terms of software packages and their

dependencies
• Helps to manage the development process

Lo
gi

ca
l • Specifies what the system does

• Defined in terms of logical entities (classes) and their
relationships

• Helps to understand the problem and the proposed solution

Agent

Seller

Market

Goods

Buyer

Agent

Seller

Market

Goods

Buyer

D
yn

am
ic

 • Specifies how functions are distributed at run time
• Defined in terms of executable components (processes,

threads, agents) and their interactions
• Helps to understand how the system behaves

D
ep

lo
ym

en
t • Specifies how software is deployed

• Defined in terms of physical components (modules and
nodes) and their references

• Helps to manage the system’s operation

Table 2.1. Architectural Views.

As the initial phase of middleware development focuses on the evaluation of the
implementation alternatives, we have delimited the architecture description to the
identification of the overall organization (Development View) and the identification of
the main functionalities it must cover (a partial Logical View). As we proceed with the
project, the remaining views shall also be covered.

2.2 Architecture Analysis

WP3 Middleware Implementation focuses on the technical requirements of ALN
middleware. It evaluates the available middleware toolkits used in peer-to-peer and grid
implementations, identifies and implements specific components of the infrastructure
required for the integration of economic enhanced components developed in WP2.

EU-IST Project IST-FP6-003769 CATNETS
CATNETS - Evaluation of the Catallaxy paradigm for decentralized operation of dynamic application networks

Copyright © 2005 UPC 18

These additional components will include extensions to the market environment, new
and extended components for network agents, and new components for measuring
performance of the ALN. A major deliverable of WP3 and a milestone for the project is
a “ready-to-use” middleware, which will be used in the prototype application.

The term “application layer networks” (ALN) integrates different overlay network
approaches, like Grid and P2P systems, on top of the Internet. Their common
characteristic is the redundant, distributed provisioning and access of data, computation
or application services, while hiding the heterogeneity of the service network from the
user’s view [ERA+03].

The main challenge is therefore to build a middleware architecture that could be adapted
to different ALN architectures, what will define aspects like the logical topology used
for communication, the characteristics of the nodes and the physical distribution of
components.

To address this challenge, the Catallactic middleware has been envisioned as a set of
economic agents that interact between them and with the software components of the
underlying ALN, to coordinate, in a decentralized way and using economic criteria, the
assignment of resources, as can be seen in the Figure 2.2.

Figure 2.2 CATNETS as a P2P network of agents.
In that vision, those agents interact under a P2P architecture. The term P2P should be
interpreted not as an specific system architecture, but as a general approach for
distributed system design ([Pepi03a]) that can be realized under very different
architectures and topologies, ranging from unstructured and disperse networks to very
centralized systems ([P2p02a], [MKL+02]).

In the following sections we present the specific requirements that the Catallactic
Middleware should satisfy and the design principles that guided the process of
designing its architecture. We also analyze their impact on the selection of the
middleware architecture and implementation options.

2.2.1 Architectural requirements

C

SC

R

SC

R

SC

R

R

R SC

R

C

SC

SC

R

CR

R

SC RCNode Client Service Copy Resource Negotiation

EU-IST Project IST-FP6-003769 CATNETS
CATNETS - Evaluation of the Catallaxy paradigm for decentralized operation of dynamic application networks

Copyright © 2005 UPC 19

• Scalability: The very essence of the CATNETS project is to use Catallactic
mechanism to manage the resource allocation in very large ALNs, so the
possibility to scale cannot be limited by any design decision. The Catallactic
middleware should be able to address scenarios with thousands of nodes in a
highly dynamic environment, where nodes enter and leaves the network
frequently.

The dynamism in the network configuration implies that information about the
system should be maintained at a minimum (avoiding global topological
information) and that updates must be easy and efficient. Also, under this
scenario, the common assumption that nodes and resources are organized in
well known and trusted administrative domains might not apply. So, excessive
dependency of existing services on each administrative domain should be
avoided. Scale also implies a high level of heterogeneity in applications, the
underlying platform, resources, QoS of providers, reliability of any middleware
service and availability of nodes (some will be quasi permanent, other will
enter and leave).

• Variability of ALN characteristics: One of the objectives of CATNETS is to
provide a clear statement of the applicability of the Catallactic mechanism to a
wide variety of ANLs.

The characteristics of the resource allocation scenarios being considered might
be very variable, with very different usage scenarios like collaborative P2P
networks, scientific P2P grids and P2P CDNs. Even when all those systems are
P2P, they have a great variability in terms of key characteristics

Table 2.2 summarizes some of those characteristics in an abstract ANL model
(based on [Catn03] and [IaFo01]) and evaluates how it could impact the
Catallactic middleware.

Characteristic Description Impact on middleware
Overlay
topology

Topology of the logical network
that ALN components uses to
communicate (e.g. random,
hierarchical, power law)

Communication mechanisms
must adapt to diverse topologies
to guarantee an efficient message
routing

Configuration
Dynamism

to what extend the ALN
configuration is maintained in
terms of participant nodes and
overlay structure.

Information regarding resource
location and network topology
must be updated frequently

Resource
Distribution

Resources in the network might be
highly distributed among nodes or
concentrated in few nodes

The overlay network architecture
and the request forwarding
algorithm for centralized
resources can be hierarchical,
whereas for distributed resources
a flooding style might be more
efficient (mostly when
considered in highly dynamic
environments)

Resource
Diversity

From commodity resources to
highly specialized, unique
resources

Commodity resources can be
easily located by local broadcasts
or DHT-like mechanisms.
Unique resources might need
efficient network-wide discovery
and match making algorithms

EU-IST Project IST-FP6-003769 CATNETS
CATNETS - Evaluation of the Catallaxy paradigm for decentralized operation of dynamic application networks

Copyright © 2005 UPC 20

Usage Patterns Clients might request same
resources recurrently or each
request might be unique

Recurrent request might benefit
from caching information from
previous requests (resource
location, for example)

Table 2.2. Characteristics of ANL applications.

It is possible that different policies and algorithms need to be applied to adapt
the system to different scenarios. Our vision is a system modular enough to
considerer the replacement, following a plug-and-play metaphor, of key
components like:

� Overlay network management (peer node, topology maintenance
and heuristic learning)

� Resource discovery

� Resource-Request Match making

� Resource allocation

� Request processing/forwarding

� Negotiation protocols

� Message format handling

� Security mechanisms (message encryption, agent authentication)

• Compatibility with different base platforms
The design of the middleware should consider a generic design that allows the
integration of different base platforms. This might lead to the definition of
generic APIs and the definition of very flexible and extensible models to
represent the platform’s information (resources, for example). Also, some
adaptors would be needed to translate this generic model to the specific model
used for each platform. This translation mechanism could harm the
performance of the system if transformations are complex or frequent.

• Allow the self-organization of components
The exact characteristics of the P2P architecture for the Catallactic Middleware
will be one of the key issues to be addressed in the design and implementation
phases. However, all P2P systems exhibit a set of characteristics that are
relevant from the architectural point of view (P2P02b, Pepi03a):

� Decentralization: there is no single or centralized coordination
nor administration point

� Symmetric interaction between peers: all peers are
simultaneously clients and servers requesting service of, and
providing service to, their network peers

� Non-deterministic topology: At any moment in time, the overall
topology of a P2P network is completely unpredictable. The set
of nodes that makes up the network varies constantly

� Heterogeneity: The devices contributing in P2P applications can
differ in many respects, including communication bandwidth,

EU-IST Project IST-FP6-003769 CATNETS
CATNETS - Evaluation of the Catallaxy paradigm for decentralized operation of dynamic application networks

Copyright © 2005 UPC 21

available memory and the persistence of their network
connections.

� Dynamic and virtual allocation of communication paths: due to
communication paths between peers are created dynamically
based on various factors, like network conjunction or
intermediate peers state.

These characteristics, when considered together, lead to a set of astringent
architectural requirements for self-organization. The dynamicity of the network
prevents an a priori configuration of the peers or the maintenance of centralized
configuration files. Peer need to discover continuously the network
characteristics and adapt accordingly, what requires a distribution of some
important system functions like security, resource management, topology
management, among other, which have been traditionally reserved to very
specialized nodes.

As all the system function should be implemented in all peers and there have
heterogeneous properties and configurations, all these self-organization
functions should make little assumptions about the underlying platform’s
features.

• Support different implementation architectures
The Catallactic mechanisms could be implemented in different platforms and
for a diversity of applications, each with its unique architecture regarding the
organization of clients, service providers and brokers, as well as with respect to
the communication topology.

Therefore, the Catallactic Agents (that implement the behavior of Clients,
Services, Service Copies, as described in section 1.3 of this document) and the
Catallactic middleware components (that implements supporting functions like
resource discovery, resource management, request processing, etcetera) will be
deployed under different configurations and will use different communication
patterns.

Different architecture will lead to different ways to organize and deploy the
Catallactic components. Therefore, each component should not make any
assumptions about a specific distribution. Basic functions of the Catallactic
middleware should be implemented as independent agents instead of
subroutines into a complex agent. This will facilitate their redistribution across
the different components of the underlying platform and the applications that
use it.

Different architecture models will lead to different interaction patterns between
the base platform, the applications and the Catallactic middleware. Under some
scenarios, the applications will make request for resources to the base platform,
which will in turn, forward it to the Catallactic middleware (probably, using a
component specifically modified to interact with it). In other scenarios, the
application will make request directly to the Catallactic middleware (probably,
using a component specifically modified to interact with it) which will interact
with the base platform to fulfil it.

EU-IST Project IST-FP6-003769 CATNETS
CATNETS - Evaluation of the Catallaxy paradigm for decentralized operation of dynamic application networks

Copyright © 2005 UPC 22

2.2.2 Architecture Design Strategies

To address the architectural requirements defined in the previous sections, we have
defined a series of strategies that allows us to separate the different concerns and
manage them individually without missing the coherence of the architecture as a whole.
These strategies are summarized as follows:

• Isolate economic agents from the underlying ALN
Agents should relay in its ability to discover other agents and to efficiently
communicate with them. However, due to the potential variability of the ALN’s
topology as well as the discovery and communication mechanisms, agents
should neither be aware of the overlay topology nor make any assumption
about its communication mechanisms.

On the other hand, the scalability of CANTNETS will be determined to great
extend by the ability of the Catallactic middleware to efficiently handle a huge
amount of nodes and resources in very dynamic environments.

Middleware will probably need to implement different algorithms to adapt to
different scenarios (for example, adaptation to sudden changes in the network
or disruptions). Also, different algorithms could be used simultaneously to
search resources, combining strategies and increasing the success. It is therefore
expected that discovery will be one of the components more likely to change.

However, isolating the economic agents from the agent discovery process
should not limit the ability of agents to learn about the best peers to negotiate
with, neither should it preclude the integration of agent level information (for
example, success ratio of negotiations with other agents) into the adaptation
mechanisms used by the middleware.

• Implement middleware using lightweight agents
Scalability, efficiency and flexibility are the main issues to consider when
implementing the Catallactic mechanisms. Handling a potentially high number
of negotiations simultaneously requires an efficient implementation of
economic agents.

Traditional agent development approach requires sophisticated platforms where
key functions like discovery and ontology handing are tightly integrated and
difficult to replace or modify. The resulting implementations usually impose a
high overhead in terms of memory footprint and CPU consumption [HWBM02].

On the other hand, a “bare java code” will impose the heavy burden of
implementing mechanisms like thread, memory and communication
management, which requires a great deal of low level work to obtain the
required efficiency. Also, this approach might lead to tightly coupled code,
which will result hard to maintain and extend.

Therefore, the Catallactic Middleware requires a minimum platform to handle
efficiently low level functions like message routing and thread management
without imposing an overhead or limiting the flexibility of the solution.

Using a lightweight agent approach might limit the complexity of the functions
and algorithms that could be implemented in the expected time frame of the
project and with the estimated resources. Functions such as learning should be

EU-IST Project IST-FP6-003769 CATNETS
CATNETS - Evaluation of the Catallaxy paradigm for decentralized operation of dynamic application networks

Copyright © 2005 UPC 23

carefully considered and a trade off between feature richness, efficiency and
development effort must be established.

• Create complex behaviour by interaction of simple agents

Traditional agent development approaches are based on the implementation of
complex agents that exhibit sophisticated capabilities like learning or reasoning.
However, this impose some limitations on the protocols and algorithms that can
be used in key concerns like agent discovery and negotiation, which are
expected to change during the design and implementation phase of the project,
as the requirements are refined.

Instead, we propose that agent behaviour and negotiation algorithms should be
expressed in terms of the interaction of multiple simple, specialized and
efficient agents. These agents are responsible for basic functions like agent
discovery, managing individual negotiations, message routing, message format
handling, exception handling and message encryption ([ZaPa04]), [HWBM02],
[MKL+01]).

These agents will require a minimum execution platform, it will be easy to be
implemented and collective behaviour could be adapted changing interaction
patters and including new agents.

Also, designing the system as a set of cooperating agents makes easier to
change the distribution of functions among different nodes, either statically at
deployment time or dynamically depending on the environment (work-load,
requirement patterns), including the possibility of dynamic agent creation and
agent migration.

Depending on the capabilities of the implementation platform and the
performance issues that the interaction among many agents might generate,
some these simple agents could be aggregated as specialized behaviours of one
“heavy” agent. However, efficiency must be balanced with the flexibility of the
implementation, because the specification of some key functions is expected to
change along the implementation phase.

• Allow pluggable mechanisms and strategies

When implementing the Catallactic middleware, it is very probable that
different mechanisms, strategies and policies might be considered to adapt the
system to very different environments. Those components might even coexists,
to allow a dynamic adaptation to the changing conditions. This will allow, for
example, using two completely different requests forwarding algorithms to find
local and remote peers, and deciding to use one or the other depending on the
type of request, past experience or other environmental conditions.

For all major components, like resource discovery, request processing,
negotiation and resource allocation, consider the separation of the basic
mechanism from the decision making of how (and when) to use them.

The separation of mechanisms from strategies requires a great deal of design in
the basic abstractions and interfaces between those two components. Some
design patterns [GHJV95] should be considered:

� Chain of responsibility (allow more than one object to handle
one request, adding functionality dynamically to the process)

EU-IST Project IST-FP6-003769 CATNETS
CATNETS - Evaluation of the Catallaxy paradigm for decentralized operation of dynamic application networks

Copyright © 2005 UPC 24

� Strategy (encapsulate one object’s behaviours as independent,
pluggable objects)

� Command (encapsulate requests as objects)

� Decorator (adds functionality to an object by encapsulating it in
a richer interface)

• Use APIs with opaque data types

Many of the APIs for the different Catallactic middleware layers will handle
information that will depend on the specific application domain and base
platform used for implementation. For example, the resource discovery will
return a list of resource descriptions, which depends on the kind of resources
used by application: processors for a Grid, bandwidth for a CDN, and so forth.

Therefore, we found very restrictive to specify those APIs with concrete data
types for their parameters, which will very probably be changed in each
implementation scenario, and might require a massive software actualization.

This limitation can be overcome using opaque data types in APIs, which can be
extended or specialized on each specific implementation. These opaque data
types can by language dependent, like abstract parameter objects in Java or can
be language neutral, like XML documents.

Abstracts parameters are generic objects capable of introspection, that is, to
inform on runtime what their structure is (for example, the list of attributes) and
to access the parameter’s content in some “neutral” data type like Strings.
These abstracts objects can be specialized to handle the specific parameter’s
structures and data types needed by each implementation scenario, allowing
their optimization.

XML documents can be considered a kind of abstract parameters, because they
offer methods to introspect their structure and access their content. The main
difference is that the interface is very standardized in the DOM programming
interface and there are many implementations available. Also, they are based on
text formats that are platform and language independent.

Language dependent abstract parameters are more efficient but impose
interoperability problems. XML is more interoperable but imposes a
considerable runtime overhead in the manipulation of data.

2.3 Architecture Design

In this stage of the project we have focused on the definition of the Development View
of the architecture, which will allow us a better organization of the work and a clear
separation of design and implementation concerns.

We structure the architecture in terms of the separation of two fundamental layers: the
Middleware Services and the Framework [Bers96]. A Middleware Service is a general-
purpose service that sits between platform and applications and is defined by the APIs
and protocols it supports [Emme00].

The framework is a software environment, defined by a set of programming interfaces
and tools, designed to simplify application development for a specific application
domain.

EU-IST Project IST-FP6-003769 CATNETS
CATNETS - Evaluation of the Catallaxy paradigm for decentralized operation of dynamic application networks

Copyright © 2005 UPC 25

2.3.1 Proposed Architecture
This architecture, shown in figure 2.3, is composed of five different layers:

• Application Layer: is given by the domain specific end user applications like
collaboration tools, problem solving environments, and many others.
Applications rely on the base platform for functions like communication and
platform level resource management. However, applications can have
application level resources, like a virtual meeting room in a collaboration tool
or a matrix resolution algorithm in a scientific environment.

The interaction model between the application layer and the Catallactic
middleware is application and middleware dependent. Application can interact
directly with the Catallactic middleware (becoming Catallactic enabled
applications) to manage their resources or they can interact transparently by
means of the base platform they are built on.

• Catallactic Algorithms Layer: Implements economic algorithms for resource
allocation. These algorithms should be domain independent and platform
independent.

This layer is structured as a set of interacting agents that play the roles of
Sellers and Buyers in service and resource markets. Also, in this layer are
extensions and specializations of the functionalities provided by the underlying
framework, to adapt them to the specific ALN and the resource allocation
polices in place.

• Catnets Framework Layer: offers the primitives that supports the
implementation of Catalactic algorithms, like find peers agents to negotiate,
start negotiation, make a bid, wait for a bid. It is dependent on the agent
platform being used, but should be independent of the application domain and
the base platform.

This layer is structured in a set of basic entities that model the interaction of
trading agents in a market to exchange goods. These abstract entities are the
building blocks of the Catallactic algorithms.

• P2P Agent Layer: Platform that hosts the Catallactic agents offering a generic
P2P application model with abstractions for the discovery and communication
mechanism, and a generic interface with the underlying platform.

This layer offers a rich development environment, covering the basic functions
that will be used by all implementations; it is responsible for interfacing with
the underlying platform and complementing it when necessary.

• Base Platform Layer: Supports applications and Catallactic middleware. It is
(potentially) domain specific.

EU-IST Project IST-FP6-003769 CATNETS
CATNETS - Evaluation of the Catallaxy paradigm for decentralized operation of dynamic application networks

Copyright © 2005 UPC 26

The model of interaction with the Catallactic middleware depends on the
architecture of the base platform, but in general will require the implementation
of a connector, which routes the request for resources to the corresponding
economic agents. In some cases, this might even require the re-implementation
of some core platform components, like the GRAMs (Globus Resource
Allocation Managers) in Globus [FKL+99]

Figure 2.3 Catnets architecture – Development View.

2.3.2 Related Work
Both P2P and economy based resource allocation have received a great deal of attention
in the last couple of years. Therefore, there are some projects that have coincidences in
their goals with CATNETS and whose architectures can have some similarities.

PEPITO project [Pepi03a, Pepi03b] address the P2P computing model in general, from
the formal perspective, the programming paradigms and the middleware services to
develop distributed applications under this model. The architecture proposed by this
project is based on the vision of a distributed virtual machine. CATNETS, on the other
hand, focus on the development of generic middleware components needed for
decentralized resource allocation. It makes no special emphasis on P2P application
development, because it should adapt to different ALN architectures. However, we
expect to take advantage of the results from PEPITO project during the design stage, in
areas like the design of DHTs, fault tolerance and mobility.

MMAPPS project (Mmap04a, Mmap04b) aimed to provide a toolkit for the
development of P2P applications that uses economic based incentive mechanism that
allows the coordination and optimization of these applications. The base architecture
considered a set of applications that users employ to access services distributed in a P2P
overlay network. These applications and services use a middleware which offers
functions like group management, search, service management, security, negotiation,
rules and policies enforcement, accounting and pricing. This architecture allows a

Resource
Agent

Client
Agent

Service Copy
Agent

Agent
Strategy

Learning
Rules

Market
Norms

Applications
Layer

P2P
Agent
Layer

C
a
ta

lla
ctic

M
id

le
w

a
re

Base
Platform
Layer

Catallactic
Algorithms
Layer

Coral GlobusJXTA Web
services

Environmen-
tal Learning

Market Accounting &
Payment

NegotiationTrading
Agent

Good

Science Engineering Commerce Peer-
Sharing

Content
distribution

Collabora-
tion

Framework
Layer

Catallactic MW
Interface

Execution
Platform

Overlay
Network

Resource
Mgmt.

Security &
Reputation

Communica-
tion

Discovery

Resource
Agent

Client
Agent

Service Copy
Agent

Agent
Strategy

Learning
Rules

Market
Norms

Resource
Agent

Client
Agent

Service Copy
Agent

Agent
Strategy

Learning
Rules

Market
Norms

Applications
Layer

P2P
Agent
Layer

C
a
ta

lla
ctic

M
id

le
w

a
re

Base
Platform
Layer

Catallactic
Algorithms
Layer

Coral GlobusJXTA Web
services

Environmen-
tal Learning

Market Accounting &
Payment

NegotiationTrading
Agent

Good

Science Engineering Commerce Peer-
Sharing

Content
distribution

Collabora-
tion

Framework
Layer

Catallactic MW
Interface

Execution
Platform

Overlay
Network

Resource
Mgmt.

Security &
Reputation

Communica-
tion

Discovery

EU-IST Project IST-FP6-003769 CATNETS
CATNETS - Evaluation of the Catallaxy paradigm for decentralized operation of dynamic application networks

Copyright © 2005 UPC 27

transparent integration of economic mechanism for service negotiation into the
application. MMAPPS considered that all applications and services would be developed
using this framework, so integration of already existing applications was not considered
(at least explicitly) in the design. This is a fundamental departure from CATNETS
approach, where integrability to heterogeneous ALNs is a key design objective.
However, we have found MMAPPS’ pluggable rules and policies an interesting
approach for handling the adaptation of the Catallaxy market’s rules to different
environments and needs, which will be studied in detail during the design stage.

Related to the idea of economic based resource allocation is the GridBus Project
([BuVe04],[VBW05]). However, its strong emphasis on computational intensive grids,
(just one of the several ALNs considered by CATNETS) and the hierarchical nature of
some of the proposed components, like the Grid Market Directory, diverges from the
proposed CATNETS’s architecture, which promote a fully decentralized resource
allocation mechanism for diverse ALNs.

2.4 P2P Agent layer

The P2P Agent Layer encompasses the basic functionalities that supports all the
Catallactic middleware, providing the basic mechanism that will allow the system to
self-organize according to the policies implemented in the upper layers ([EAB+99],
[BJM04]). Therefore, this layer has the responsibility to address the critical
requirements of interoperability, flexibility and scalability required by the project. In
this section we will offer a detailed explanation of this layer, their functionalities and
the requirements it should fulfil.

The P2P Agent layer also provides a rich execution interface to speed the
implementation of the Catallactic agents, providing a set of common functions and
complementing the base middleware when necessary. This layer also isolates the rest of
the Catallactic middleware from the particularities of the underlying base middleware,
promoting more portable components in the upper layers.

The P2P Agent Layer is built based on the basic abstraction of a set of agents, each of
them implementing a basic function within the system, and interacts using a logical
topology. It is important to notice that there is no one-to-one correspondence between
the trading agents in the Catallactic Algorithms layer (for example, Clients, Service
copies and Resources) and the agents in the P2P Agent Layer. Actually, we expect that
for each trading agent there will be several agents supporting them, carrying with low
level tasks like optimizing the logical topology, handling failures, and many others, as
was stated in the section 2.2.2 “Architecture Design Strategies”.

One additional consideration regarding this layer is the need for a great deal of
flexibility to allow the experimentation with diverse mechanisms like discovery and
agent migration, to explore the adaptation of the Catallactic middleware to different
ALNs. Therefore, the architecture should support a pluggable component architecture
(BCG04], [BJM0])

This layer encompasses the following main functional blocks:

• Execution Platform: will provide hosting for the efficient execution of agents.
It should permit coexistence of a number of agents on an execution node and
facilities the creation, monitoring, scheduling, and management of agents.

EU-IST Project IST-FP6-003769 CATNETS
CATNETS - Evaluation of the Catallaxy paradigm for decentralized operation of dynamic application networks

Copyright © 2005 UPC 28

Besides, the implementation of agents will be much simplified if such
functionality is provided by the platform. In scenarios when node failures are
possible, good failure management features are essential and the persistence of
agent’s state or even the mobility of agents to other nodes, could be required to
increase its availability ([HoB02], [PNC02])

• Resource Management: offers a generic interface to base platform’s local
resource management to permit its allocation and de-allocation of resources to
requesting agents. In some scenarios, it could be necessary to handle efficiently
the assignment of different types of resources in a single location (co-
allocation) and the reservation of resources for future usage. Finally, some
resource monitoring mechanism is required to control the state of resource
allocations for management, auditing, etc. ([ADG+04], [PBC03])

• Communication: abstracts the basic communication mechanisms and isolates
agents form the complexities of the communication protocols. Since network
topology will be very dynamic and agent location could vary frequently, a
logical addressing to distinguish communications among different agents
regardless it location is required. In general, we are considering a dynamic
scenario where communication and node failures are not just possible, but very
likely; therefore communications should be assumed as unreliable and delivery
guarantee is not a requirement. Also, a robust failure management is required
([CJK+03])

• Overlay Network: manages the logical communication topology to efficiently
communicate cooperating agents regardless of their physical location. The
project is considering very large scale and highly dynamic scenarios where
logical communication topology can not be maintain in a single server, a
hierarchy of servers, and direct discovery of nodes is not feasible. It is required
a distributed mechanisms that provides overlay network construction and
maintenance. P2P topology construction mechanisms could be optimised for
fast location or fast information dissemination. Finally, in such a huge networks
of agents, the possibility of grouping them could be appealing to make
communication more efficient and management easier. ([GCB+04], [HCW04],
[DZD+03])

• Object Discovery: offers mechanism for the location of objects (agents and
resources). Catallactic middleware will be used in very large scale and dynamic
scenarios where resources, services and the agents which represent them can
not be maintained in a table. Therefore it required mechanisms to discover
resource and the agents which manage them. Discovery can be performed either
by resource advertising or by resource query and matchmaking mechanisms.
Besides, information changes can be published and subscribed to. In order to
diminish communication cost, some information cache management system
could be used. Finally, it might be required mechanism that permit complex
queries (multiple resources, multiple attributes, partial matches, range matches),
independent of the semantic of the resource description. ([TsRo03], [LCC+02],
[BHPW04])

• Security and Trust: We consider an open system where communication
attacks are possible, and agents are autonomous agents which could be
malicious. Therefore, mechanisms for agent authentication, agent access
authorization (e.g. trade on a given market), encryption of agent-to-agent

EU-IST Project IST-FP6-003769 CATNETS
CATNETS - Evaluation of the Catallaxy paradigm for decentralized operation of dynamic application networks

Copyright © 2005 UPC 29

communications, non-repudiation of settled agreements, are required. Agent
reputation mechanisms could also be considered, since they has been proven to
diminish fraudulent operations ([FCC+03], [YHF+03]).

One important consideration with respect to the P2P Agent layer is the dependence of
its implementation on the functionalities provided by the underlying platform. This can
be observed in the figure 2.4.

Figure 2.4 - Implementation scenarios for P2P Agent Layer.

For example, if the base platform already provides a distributed location, the P2P Agent
will implement a simple “pass through” interface to this functionality, instead of
duplicating it. If the base platform’s functionality is incomplete, the P2P Agent layer
will complement it to guarantee the required level of functionality. In any case, it will
provide a standardized interface to the upper layer, regardless of the implementation
details.

The table 2.3 shows the detailed functionalities of this layer and the key requirements
that should be considered during the design stage and for the evaluation of
implementation alternatives. Each function is classified as “Required” (�),
“Convenient” (�) or “Optional” (�).

Component Functions Key requirements
Execution Platform
Hosting for the
efficient execution of
agents

� Agent life cycle management,
execution resource
management (thread
dispatching, memory, comm.
channels)

� Exception notification and
management

� Agent state persistence
� Migration and mobility of

agents
� Distributed activation (objects,

components, agents)
� Distributed transaction

• Manage short lived agents (very
frequent creation and destruction of
agents)

• Do not expose the thread and
memory management issues to
programmers

• Provide mechanism for agent
chaining and composition

• Do not impose negotiation or
communication protocols

C
a
tn

e
ts

M
id

le
w

a
re

Applications Layer

P2P Agent Layer

Base Platform Layer

Catallaxy Layer

Framework Layer

Applications Layer

P2P Agent Layer

Base Platform Layer

Catallaxy Layer

Framework Layer

Simulator

P2P Agent Layer

Simulator

Catallaxy Layer

Framework Layer

Platform doesn’t provide basic
functions to implement the
agents. P2P/Agent layer
supplies the required functions

Platform provides basic
functions. P2P/Agent layer is
an interface for upper layers

Simulator simulates the base
middleware and the behavior of
the application. P2P/Agent layer
is an interface for upper layers

Applications Layer

P2P Agent Layer

Base Plaform Layer

Catallaxy Layer

Framework Layer

C
a
tn

e
ts

M
id

le
w

a
re

Applications Layer

P2P Agent Layer

Base Platform Layer

Catallaxy Layer

Framework Layer

Applications Layer

P2P Agent Layer

Base Platform Layer

Catallaxy Layer

Framework Layer

Applications Layer

P2P Agent Layer

Base Platform Layer

Catallaxy Layer

Framework Layer

Simulator

P2P Agent Layer

Simulator

Catallaxy Layer

Framework Layer

Simulator

P2P Agent Layer

Simulator

Catallaxy Layer

Framework Layer

Platform doesn’t provide basic
functions to implement the
agents. P2P/Agent layer
supplies the required functions

Platform provides basic
functions. P2P/Agent layer is
an interface for upper layers

Simulator simulates the base
middleware and the behavior of
the application. P2P/Agent layer
is an interface for upper layers

Applications Layer

P2P Agent Layer

Base Plaform Layer

Catallaxy Layer

Framework Layer

EU-IST Project IST-FP6-003769 CATNETS
CATNETS - Evaluation of the Catallaxy paradigm for decentralized operation of dynamic application networks

Copyright © 2005 UPC 30

management
Resource Management

Generic interface to
base platform’s local
resource management

� Resource discovery and query
� Resource allocation and

deallocation
� Resource reservation (future

allocation)
� Resource monitoring
� Resource usage accounting
� Resource related alarms (e.g.

malfunctioning)

• Extensible representation of
resource properties

• Support both direct queries and
Publish/Subscribe models for
resource information actualization

• Support monitoring of frequently
changing attributes (e.g CPU
workload or network bandwidth)

Communication
Abstracts the basic
communication
mechanisms and
isolates agents form
the complexities of
the communication
protocols.

� Communication primitives
(send, receive, multicast)

� Logical addressing (global
naming) of agents

� Failure management

• Best effort message delivery
• Easy coordination of many parallel

conversations by a single agent
• Synchronous and asynchronous

communication primitives
• Support for mobile nodes (location

independent addressing)
• Support efficient group and system

wide multi and any-casts
Overlay Network

Logical
communication
topology

� Overlay network construction
and maintenance

� Key based routing
� Peer grouping

• Location awareness
• Enable both local and system wide

information and request
dissemination

• Support very frequently changing
topologies (node membership and
communication paths)

Object Discovery
Localization of
catallactic
middleware’s objects
based on attributes

� Resource advertising and
location

� Resource query and
matchmaking

� Information cache
management

� Publication/subscription of
information changes

• Decentralized; do not requires
global repositories

• Independent from the semantic of
the resource description

• Complex queries (multiple
resources, multiple attributes, partial
matches, range matches)

• Scalable to the millions of objects
and very frequent updates

Security & Trust
Assurance interacting
agents’ identities and
rights

� Agent authentication
� Agent access authorization

(e.g. trade on a given market)
� Encryption of agent-to-agent

communications
� Non repudiation
� Generic interface to base

platform’s security mechanism
� Agent Reputation

• Compliant with standards
• Decentralized/Federated to work in

multi-domain environments
• Extensible to allow protection of

new kind of objects
• Auditable

Table 2.3. P2P Agent Layer functionality.

Besides providing these functional requirements, the Catallactic middleware should also
meet some technical requirements concerning performance, quality of service,
scalability, availability, etc. Such technical requirements vary from one implementation
to another even when providing the same functionality, due to the technology used to
implement such functionality and the specific usage scenario (application and
environment).

EU-IST Project IST-FP6-003769 CATNETS
CATNETS - Evaluation of the Catallaxy paradigm for decentralized operation of dynamic application networks

Copyright © 2005 UPC 31

Therefore, in this initial analysis, we have limited the analysis to identify those
requirements without quantifying them. During the design and implementation of the
prototype, we will refine this analysis and provide specific metrics. In the table 2.4 the
principal metrics are listed with an expected range for an “average” scenario (one that
would not be atypical to find).

Factor Functional
Component

Description Expected
Range

Hosting Number of agents per node > 1000
Communications Number of concurrent conversation per agent > 10
Resource Mgmt. Number of resource information updates (per

second)
> 100

Object Discovery Number of object queries issued by node (per
second)

> 100

 Total number of objects registered > 106

Scalability

Overlay Number of actives nodes > 1000
Maximum agent creation time (milliseconds) < 100
Maximum state persistence time (milliseconds) < 500

Hosting

Maximum migration time (seconds) < 2
Communications Maximum message round trip (milliseconds) < 250
Object Discovery Maximum search time (seconds) < 1

Maximum allocation time (seconds) < 1

Responsivene
ss

Resource Mgmt.
Maximum resource information update time
(seconds)

< 1

Efficiency Hosting Maximum memory footprint (Mb) < 20
Table 2.4. Performance requirements for P2P Agent Layer.

2.5 References

[ADG+04] G. Allen, K. Davis, T. Goodale, A. Hutanu, H. Kaiser, T. Kielmann, A.
Merzky, R. van Nieuwpoort, A. Reinefeld, F. Schintke, T Schütt, E. Seidel, B. Ullmer
(2004) “The Grid Application Toolkit: Towards Generic and Easy Application
Programming Interfaces for the Grid” to appear in Proceedings of the IEEE, 93(3)

[BBC+00] F. Bachmann, L. Bass, J. Carriere, P. Clements, D. Garlan, J. Ivers, R. Nord,
R. Little (2000), “Software Architecture Documentation in Practice: Documenting
Architectural Layers”, Technical Report, Software Engineering Institute, Carnegie
Mellon University

[BCG04] G. Blair, G. Coulson, P. Grace (2004), "Research Directions in Reflective
Middleware: the Lancaster Experience", Proceedings of the 3rd Workshop on Reflective
and Adaptive Middleware (RM2004) co-located with Middleware 2004, Toronto,
Ontario, Canada, October 2004.

[Bers96] P. Berstain (1996), “Middleware: A Model for Distributed System Services”,
Communications of the ACM, 39(2):86-98

[BHPW04] D. Bauer, P. Hurley, R. Pletka, M. Waldvogel (2004),“Bringing Efficient
Advanced Queries to Distributed Hash Tables”, 29th Annual IEEE International
Conference on Local Computer Networks (LCN'04), November 16 - 18, 2004

EU-IST Project IST-FP6-003769 CATNETS
CATNETS - Evaluation of the Catallaxy paradigm for decentralized operation of dynamic application networks

Copyright © 2005 UPC 32

[BJM04] O. Babaoglu, M. Jelasity, A. Montresor (2004), “Grassroots Approach to
Self-Management in Large-Scale Distributed Systems”, In Proceedings of the EU-NSF
Strategic Research Workshop on Unconventional Programming Paradigms, Mont Saint-
Michel, France, September 2004.

[BuVe04] R. Buyya, S. Venugopal (2004), “The Gridbus Toolkit for Service Oriented
Grid and Utility Computing: An Overview and Status Report, Technical Report,
GRIDS-TR-2004-2”, Grid Computing and Distributed Systems Laboratory, University
of Melbourne, Australia, April 2004.

[Catn03] CATNET Project (2003), “Catallaxy Simulation Study. Report No. D2”,
http://research.ac.upc.es/catnet/pubs/D2_Simulation_Study.pdf

[Catn04] CATNETS Project (2004), “Annex I – Description of work”, IST-FP6-
003769

[CJK+03] M. Castro, M. B. Jones, A.-M. Kermarrec, A. Rowstron, M. Theimer, H.
Wang, A. Wolman (2003), “An Evaluation of Scalable Application-level Multicast
Built Using Peer-to-peer Overlays”, In Proceedings. of IEEE INFOCOM, March-April
2003.

[DZD+03] F. Dabek, B. Zhao, P. Druschel, J. Kubiatowicz, I Stoica, (2003),“Towards a
Common API for Structured Peer-to-Peer Overlays”, In the Proceedings of the 2nd
International Workshop on Peer-to-Peer Systems (IPTPS '03), Berkeley, CA, 2003.

[EAB+99] F. Eliassen, A. Andersen, G.S. Blair, F. Costa, G. Coulson, V. Goebel,
O. Hansen, T. Kristensen, T. Plagemann, H.O. Rafaelsen, K.B. Saikoski, Y.
Weihai Yu, (1999), “Next generation middleware: requirements, architecture, and
prototypes”, Proceedings. 7th IEEE Workshop on Future Trends of Distributed
Computing Systems, Cape Town , South Africa, 1999

[Emme00] W. Emmerich (2000), “Software engineering and middleware: a roadmap”.
In Proceedings of the conference on The Future of Software Engineering (ICSE 2000)

[ERA+03] T. Eymann, M. Reinickke, O. Ardaiz, P. Artigas, F. Freitag, L. Navarro
(2003), “Self-organizing resource allocation for autonomic network”, Proceedings. 14th
International Workshop on Database and Expert Systems Applications, Germany, 656-
660

[FCC+03] Y. Fu, J. Chase, B. Chun, S. Schwab, A. Vahdat (2003),“SHARP: an
architecture for secure resource peering”, In Proceedings of the nineteenth ACM
symposium on Operating systems principles, Bolton Landing, NY, USA, 2003

 [FKL+99] I. Foster, C. Kesselman, C. Lee, R. Lindell, K. Nahrstedt, A. Roy “A
Distributed Resource Management Architecture that Supports Advance Reservations
and Co-Allocation”, Intl Workshop on Quality of Service, 1999.

[GaS93] D. Garlan, M. Shaw (1993), Also published as “An Introduction to Software
Architecture,” Advances in Software Engineering and Knowledge Engineering, Volume

EU-IST Project IST-FP6-003769 CATNETS
CATNETS - Evaluation of the Catallaxy paradigm for decentralized operation of dynamic application networks

Copyright © 2005 UPC 33

I, edited by V.Ambriola and G.Tortora, World Scientific Publishing Company, New
Jersey

[GHJV95] Gamma, E., R. Helm, R. Johnson, and J. Vlissides (1995), “Design Patterns -
Elements of Reusable Object-Oriented Software”, Addison-Wesley

[Gon01] L. Gong (2001), “Project JXTA: A Technology Overview”, Sun
Microsystems Whitepaper

[GCB+04] P. Grace, G. Coulson, G. Blair, L. Mathy, D. Duce, C. Cooper, W. Yeung,
W. Cai, "GRIDKIT: Pluggable Overlay Networks for Grid Computing", Proceedings of
International Symposium on Distributed Objects and Applications (DOA), Larnaca,
Cyprus, October 2004.

 [HCW04] D. Hughes, G. Coulson, I. Warren, (2004), "A p2p Network with inherent
support for adaptation", Technical Report, (comp-006-2004), Lancaster University,
Lancaster, LA1 4YR.

[HNS99] C. Hofmeister, R. Nord, D. Soni (1999), “Applied Software Architecture”,
397 pages, Addison-Wesley Professional 1st edition

[HoB02] C. Hoile and E. Bonsma (2002), "Towards a minimal hosting specification
for open agent systems : the lessons of IP" 1st International Workshop on "Challenges
in Open Agent Systems", AAMAS2002, July 2002, Bologna, Italy.

[HWBM02] C. Hoile, F. Wang, E. Bonsma , P. Marrow (2002), “Core specification and
experiments in DIET: a decentralised ecosystem-inspired mobile agent system “,
Proceedings of the first international joint conference on Autonomous agents and
multiagent systems”, ACM Publishing, 623 – 630

[IaFo01] A. Iamnitchi , I. T. Foster (2001), “On Fully Decentralized Resource
Discovery in Grid Environments”, Proceedings of the Second International Workshop
on Grid Computing, p.51-62

[KaBa99] R. Kazman, L. Bass, (1999), “Architecture Based Development”, Software
Engineering Institute, Carnegie Mellon Univertity, Technical report CMU/SEI-99-TR-
007

[KABC96] R. Kazman, G. Abowd , L. Bass, P. Clements (1996), “Scenario-Based
Analysis of Software Architecture”,IEEE Software, 13 (6):47 - 55

[Kaz01] R. Kazman (2001), "Software Architecture", in Handbook of Software
Engineering and Knowledge Engineering, S-K Chang (ed.), World Scientific Publishing

[Kru95] P. Kruchten (1995), “Architectural Blueprints—The ´4+1´ View Model of
Software Architecture", IEEE Software 12 (6), 42-5

[LCC+02] Q. Lv, P. Cao, E. Cohen, K. Li, S. Shenker (2002),“Search and replication in
unstructured peer-to-peer networks”, In Proceedings of the 16th international
conference on Supercomputing table of contents, New York, USA, Pages: 84 – 95, 2002

EU-IST Project IST-FP6-003769 CATNETS
CATNETS - Evaluation of the Catallaxy paradigm for decentralized operation of dynamic application networks

Copyright © 2005 UPC 34

[MKL+01] P. Marrow, M. Koubarakis, R.H. van Lengen, F. Valverde-Albacete, E.
Bonsma, J. Cid-Suerio, A.R. Figueiras-Vidal, A. Gallardo-Antolin, C. Hoile, T. Koutris,
H. Molina-Bulla, A. Navia-Vazquez, P. Raftopoulou, N. Skarmeas, C. Tryfonopoulos, F.
Wang, C. Xiruhaki (2001), “Agents in Decentralised Information Ecosystems: The
DIET Approach”. Symposium on Information Agents for E-Commerce, AISB'01
Convention, 21st - 24th March 2001 University of York, United Kingdom

[MKL+02] D. Milojicic, V. Kalogeraki, R. Lukose, K. Nagaraja1, J. Pruyne, B. Richard,
S. Rollins ,Z. Xu (2002), “Peer-to-Peer Computing”, HP Laboratories Palo Alto,
Reseach report PL-2002-57

[Mmap04a] MMAPPS Project (2004), “Deliverable 5: Peer-to-peer Services
Architecture”, September, 2004

[Mmap04b] MMAPPS Project(2004), “Deliverable 27- Final Project Summary Report”,
November 2004

[P2p02a] P2P Architect Project (2002), “Deliverable D1 - Comprehensive Survey of
contemporary P2P technology”, IST-2001-32708

[P2p02b] P2P Architect Project (2002), “Deliverable D4 - P2P applications
development process overview”, IST-2001-32708

[PBC03] Parlavantzas, N., Blair, G.S., Coulson, G. (2003), "A Resource Adaptation
Framework for Reflective Middleware", Proc. 2nd Intl. Workshop on Reflective and
Adaptive Middleware (located with ACM/IFIP/USENIX Middleware 2003), Rio de
Janeiro, Brazil, June, 2003.

[Pepi03a] Pepito Project (2003a), “Deliverable D1.1 –Required foundations for peer-
to-peer systems”, IST-2001-33234

[Pepi03b] Pepito Project (2003b), “Deliverable D4.2 - Report on the basic distribution
subsystem”, IST-2001-33234

[PNC02] M. Purvis, M. Nowostawski, S. Cranefield (2002), “A multi-level approach
and infrastructure for agent-oriented software development”, Proceedings of the first
international joint conference on Autonomous agents and multiagent systems, Bologna,
Italy, 2002

[RoDr01] A. Rowstron and P. Druschel, "Pastry: Scalable, distributed object location
and routing for large-scale peer-to-peer systems". IFIP/ACM International Conference
on Distributed Systems Platforms (Middleware), Heidelberg, Germany, pages 329-350,
November, 2001.

[TsRo03] D. Tsoumakos, N. Roussopoulos (2003),”A Comparison of Peer-to-Peer
Search Methods” In Proceedings of the Sixth International Workshop on the Web and
Databases, June 12-13 2003, San Diego, USA

[YHF03] Y. Yan, Y. Huang, G. Fox, S. Pallickara, M. Pierce, A. Kaplan, A. Topcu.
(2003),“Implementing a Prototype of the Security Framework for Distributed Brokering

EU-IST Project IST-FP6-003769 CATNETS
CATNETS - Evaluation of the Catallaxy paradigm for decentralized operation of dynamic application networks

Copyright © 2005 UPC 35

Systems”, Proceedings of the 2003 International Conference on Security and
Management. Volume I pp 212-218.

[VBW05] S. Venugopal, R. Buyya, L. Winton (2005), “A Grid Service Broker for
Scheduling e-Science Applications on Global Data Grids”, Journal of Concurrency and
Computation: Practice and Experience, Wiley Press, USA

[ZaPa04] F. Zambonelli, V. Parunak, "Towards a Paradigm Change in Computer
Science and Software Engineering: a Synthesis", The Knowledge Engineering Review,
2004

EU-IST Project IST-FP6-003769 CATNETS
CATNETS - Evaluation of the Catallaxy paradigm for decentralized operation of dynamic application networks

Copyright © 2005 UPC 36

3 Middleware toolkits evaluation

3.1 Identification of candidate middleware toolkits and
evaluation process

We start this section recalling passages from the proposal:

“For proper classification of this proposal, it should be noted that CATNETS
surpasses the objectives of the ‘Grids for complex problem solving’ call (FP6-
2.3.2.8), as its goals are not directly aimed at Grid technology but likewise at
Autonomic Computing, Peer-to-Peer Computing, Web Services etc., and it does
not intent to produce ready-to-use software tools, but aims at more fundamental
understanding of the transferability of an economic concept to information
systems in general”

It is clear from this statement, from the rich set of functional and non-functional
requirements given in sections 1.4 and section 2 of this document that CATNETS
middleware has no direct match with any existing middleware toolkit, but will rather
integrate a set of features currently applied in separate approaches.. The tools to be
analyzed and evaluated for CATNETS middleware are thus taken from Web Services
(WS), Grid, P2P, Content Distribution Networks (CDN), and from agent toolkits

The list of candidate tools to be examined is the following:

• J2SE [J2SE05] (including RMI [RMI05] and JNDI [JNDI05])

• Web Services [WeSe05], JAX-RPC [JaRp05], Axis implementation [Axis05]

• WSRF [WSRF05] / OGSA [OGSA05]

• JXTA [JXTA05]

• JADE [JADE05]

• Diet Agents [DIET05]
We select these tools for evaluation considering the following criteria:

• How well do they fit the identified CATNETS requirements

• Which is the current strength of the platform (support and maintenance,
community commitment)

• Availability as open source

• Sources of information available, like bibliography (surveys and performance
comparison papers), platform’s websites documentation and mailing lists, and
our own and third parties/colleagues real experience with them.

Agent platforms are considered for the P2P-Agent Layer. There are important reasons
for that. Decentralized negotiations in CATNETS will need support for these
negotiations. Such support will provide maintaining several states, and the efficient
performance of parallel conversations. Explicit support to agent’s mobility could also be
required. Those functionalities are addressed by agent platforms, but are not explicitly

EU-IST Project IST-FP6-003769 CATNETS
CATNETS - Evaluation of the Catallaxy paradigm for decentralized operation of dynamic application networks

Copyright © 2005 UPC 37

addressed by Grid or P2P platforms, like the Globus and JXTA implementations,
neither by current WS specifications.

We have considered several alternatives to cover the P2P Agent Layer like JADE and
DIET agent toolkits, pure Java, and others. JADE was selected because it is actually the
“de facto” reference implementation of the FIPA standard, widely adopted in MAS
community. Also it was shown by surveys to outperform alternative agent platforms
(BGN04) like Tryllian [Tryl05] (commercial platform based on JXTA) and SAP
[SAP05], a new platform close to but not fully implementing FIPA standard. DIET was
selected for its novel bottom-up and light-weighted approach which we found very
appropriate to comply with the identified CATNETS requirements. Another
performance-oriented agent platform has been considered, Cougaar [Coug05], a java-
based architecture for the construction of large-scale distributed agent-based applications. Even
considering its interesting technical properties (Wrig04), we discarded it due to the fact that
their objectives were far from the ones in CATNETS.

An alternative to using agent platforms is developing in Java the low level
functionalities required by the P2P2 Agent Layer, namely thread management, state
management, event management and agent/node mobility. The inconvenience is the
high implementation cost of doing so, therefore our focus is first evaluating existing
agent toolkits. The previously introduced tools are the ones we are going to carefully
evaluate in the next sub-sections. Other platforms to be taken into account during the
design and implementation phases are:

• P2P DHTs (Free Pastry[Past05], Coral DHT[Coral05], CHORD[Chor05],
CAN[RFH+01])

• Peer-to-Peer-Simplified (P2PS) [P2PS05]
For the present evaluation P2P DHTs are too “low level” from the view of most of the
considered properties. In fact they are could be suitable to cover one or only a few
functions on the architecture, but not the complete P2P Agent Layer or Base Platform
Layer. However, we see them as “complementary tools” to potentially provide some
specific functionality in a later stage.

P2PS is a P2P platform which appeared recently is. It aims to provide a simplified
version of JXTA. P2PS focus on the provision of basic P2P functions, an expressive and
extensible P2P discovery mechanism and pipe based communication, without caring
about more complicated functionalities commonly not required [Wang05]. P2PS
currently is in its early stages, and lacks from some interesting features like peer groups
and security (planned to be incorporated in the future). However, we appreciate its light
weighted orientation and once further developed we should take it into account as a
candidate for the Agent P2P Layer.

In the rest of this section we describe the evaluation of the selected six middleware
toolkit candidates, regarding the properties relevant from CATNETS requirements point
of view, and organized in three separated evaluations:

• Functional view: to what extent does the middleware toolkit cover the
functionalities identified in the architecture?

• Technical view: which is the performance cost associated with the basic
operations. Which are the technical limitations of the platform?

• Development view: community support, available resources and other aspects
that important for the implementation

EU-IST Project IST-FP6-003769 CATNETS
CATNETS - Evaluation of the Catallaxy paradigm for decentralized operation of dynamic application networks

Copyright © 2005 UPC 38

3.2 Presentation of the candidates

We first introduce the tools and then describe the analysis, testing done and evaluation.

3.2.1 Introduction
We will take here much more time describing what we refer to by “WebServices” and
“Globus toolkit/WSRF” than describing the rest of platforms. The reason for that is that
for the rest of platforms the current releases are stable and it is easy to get a common
agreement to what their properties are. We cannot say the same of Web Services, which
are currently merged in a complex and hard to follow standardization process. Since
GT4 is implements WSRF, it is also involved in the same unstable process, moving
from OGSI to WSFR and re-factoring the whole specification. To clarify what exactly
we consider inside of our Web Services evaluation and GT4/WSRF evaluation, we
explicitly state which specifications we take into account for the evaluation. For the rest
of the evaluated platforms we just give some architectural details.

3.2.2 Web Services JAX-RPC implementations (Axis)
Web Services (WS) [W3c04] is an interoperability architecture that provides a standard
means for interaction between different software applications, running on a variety of
platforms and/or frameworks. In this architecture, a Web Service is a software system
designed to support interoperable machine-to-machine interaction over a network. It has
an interface described in a machine-process able format (specifically WSDL). Other
systems interact with the Web service in a manner prescribed by its description using
SOAP messages, typically conveyed using HTTP with an XML serialization in
conjunction with other Web-related standards. WS today goes far beyond the initial
SOAP/WSDL/UDDI standards triad. Figure 3.1 presents a basic Web Services Stack.
Annex B to this section describes in detail the WS specifications taken into account.

 Figure 3.1: Web Services Stack (from [Cdbi04])

EU-IST Project IST-FP6-003769 CATNETS
CATNETS - Evaluation of the Catallaxy paradigm for decentralized operation of dynamic application networks

Copyright © 2005 UPC 39

Apache Axis is an implementation of the JAX-RPC [JaRp05], specification, which
defines a mapping between WSDL[WSDL05] and Java architecture, and supports
communications based on SOAP [SOAP05]. One important feature of the JAX-RPC
architecture is its extensibility by means of handlers that can be chained in the SOAP
request processing for additional processing, like encryption.

Axis has proven itself to be a reliable and stable base on which to implement Java Web
Services. There is a very active user community, which is part of the Apache Project
[APAC] and there are many companies which use Axis for Web Service support in their
products

There are some extensions to Axis that support additional WS related specification:

• WS-Addressing (Addressing)

• Support for WS-Security (WSS4J)

• Support for WS-ReliableMessaging (project still in incubation stage, with
codename “Sandesha”)

3.2.3 WSRF/ OGSA
The WS-Resource Framework [WSRF05] is inspired by the work of the Global Grid
Forum's Open Grid Services Infrastructure (OGSI) Working Group [OGSI05]. Indeed,
it can be viewed as a straightforward refactoring of the concepts and interfaces
developed in the OGSI V1.0 specification in a manner that exploits recent developments
in Web services architecture (e.g. WS-Addressing).

OGSA design [Ggf04] is intended to facilitate the seamless use and management of
distributed, heterogeneous resources. In this architecture, the terms “distributed,”
“heterogeneous” and “resources” are used in their broad sense. For example:
“distributed” could refer to a spectrum from geographically-contiguous resources linked
to each other by some connection fabric to global, multi-domain, loosely- and
intermittently-connected resources. “Resources” refers to any artifact, entity or
knowledge required to complete an operation in or on the system

OGSA pretends to enable interoperability between diverse, heterogeneous, and
distributed resources and services as well as reduce the complexity of administering
them. The need to support heterogeneous systems leads to requirements that are
amenable to CATNET’s needs:

• Resource virtualization: management of diverse resources in a unified way.

• Common management capabilities: mechanisms for uniform and consistent
management of heterogeneous systems

• Resource discovery and query: Mechanisms for discovering resources with
desired attributes and for retrieving their properties

• Standard protocols and schemas: to allow platform and language neutral
interoperability

Some of the functions required in distributed environments, such as security and
resource management, may already be implemented by stable and reliable legacy
systems. Therefore the integration of external components is a key design consideration.

EU-IST Project IST-FP6-003769 CATNETS
CATNETS - Evaluation of the Catallaxy paradigm for decentralized operation of dynamic application networks

Copyright © 2005 UPC 40

The primary assumption is that work on OGSA both builds on, and is contributing to
the development of the growing collection of technical specifications that form the
emerging Web Services Architecture. Indeed, OGSA can be viewed as a particular
profile for the application of core WS standards.

Even when OGSA emerged to address resource intensive scenarios related to e-Science
(computational grids, data grids) it has evolved to a more general architecture and aims
to include other scenarios like interaction from mobile devices and P2P systems.

To close the gap between those two worlds, the Commodity Grid Toolkit (CoG Kit)
defines and implements a set of general components that map Grid functionality into
commodity environment/framework, the Like J2EE and DCOM.

The Globus Toolkit [Glob05] can be used to program grid-based applications. The
toolkit, first and foremost, includes quite a few high-level services that we can use to
build grid applications. These services, in fact, meet most of the abstract requirements
set forth in OGSA. In other words, the Globus Toolkit includes a resource monitoring
and discovery service, a job submission infrastructure, a security infrastructure, and data
management services. Globus uses Axis SOAP engine and incorporates a Tomcat
[Tomc05] Web Server.

OGSA has recently evolved to adhere to WSRF [WSRF05] as a fully WS based
architecture. Annex 3.3 shows the more relevant specifications from WSRF.

The soon-to-be-released Globus Toolkit 4 (GT4) [GT405] (figure 3.2), in fact, includes
a complete implementation of the WSRF and Web Services Notification specifications.
GT4 provides an API for building stateful Web services targeted to distributed
heterogeneous computing environments.

Since the working groups at GGF are still working on defining standard interfaces for
these types of services, we cannot say at this point that GT4 is an implementation of
OGSA (although GT4 does implement some security specifications defined by GGF).
However, it is a realization of the OGSA requirements and a sort of de facto standard
for the Grid community while GGF works on standardizing all the different services.

EU-IST Project IST-FP6-003769 CATNETS
CATNETS - Evaluation of the Catallaxy paradigm for decentralized operation of dynamic application networks

Copyright © 2005 UPC 41

Figure 3.2 GT4 Architecture (from [GT4])

3.2.4 J2SE
Java technology [J2SE] is a portfolio of products that are based on the power of
networks and the idea that the same software should run on many different kinds of
systems and devices. In addition to the core and extension Java language libraries, J2SE
includes the following

• RMI: Java Remote Method Invocation (Java RMI) [RMI05] enables the
programmer to create distributed Java technology-based to Java technology-
based applications, in which the methods of remote Java objects can be invoked
from other Java virtual machines*, possibly on different hosts. RMI uses object
serialization to marshal and un-marshal parameters and does not truncate types,
supporting true object-oriented polymorphism.

• JNDI: The Java Naming and Directory Interface (JNDI) [JNDI05] is part of the
Java platform, providing applications based on Java technology with a unified
interface to multiple naming and directory services. It is possible to build
powerful and portable directory-enabled applications using this industry
standard.

3.2.5 JXTA
JXTA™ [JXTA05] technology is a set of open protocols that allow any connected
device on the network to communicate and collaborate in a P2P manner. JXTA peers
create a virtual network in which any peer can interact with other peers and resources
directly even when some of the peers and resources are behind firewalls and NATs or
are on different network transports. Figure 3.3 presents the basic architecture of JXTA,
including the JXTA services and protocols.

The Project JXTA virtual network allows a peer to exchange messages with any other
peers independently of its network location (firewalls, NATs or non-IP networks).
Messages are transparently routed, potentially traversing firewalls or NATs. The Project
JXTA virtual network standardizes the manner in which peers discover each other, self-
organize into peergroups, discover peer resources, and communicate with each other.

Project JXTA builds upon the 5 virtual network abstractions. First, a logical peer
addressing model that spans the entire JXTA network. Second, peergroups that let peers
dynamically self-organize into protected virtual domains. Third, advertisements to
publish peer resources (peer, peergroup, endpoint, service, content). Fourth, a universal
binding mechanism, called the resolver, to perform all binding operations required in a
distributed system. Finally, pipes as virtual communication channels enabling
applications to communicate between each other.

All network resources in the Project JXTA network, such as peers, peergroups, pipes,
and services are represented by advertisements. Advertisements are language-neutral
metadata structures resource descriptors represented as XML documents. Project JXTA
standardizes advertisements for the following core JXTA resource: peer, peergroup,
pipe, service, metering, route, content, rendezvous, peer endpoint, transport.

EU-IST Project IST-FP6-003769 CATNETS
CATNETS - Evaluation of the Catallaxy paradigm for decentralized operation of dynamic application networks

Copyright © 2005 UPC 42

Figure 3.3 JXTA Architecture (from [Li01]).

The JXTA 2.x release introduces the concept of a rendezvous peer view (RPV) to
propagate resolver queries, and a shared resource distributed index (SRDI) to index
advertisements on the rendezvous peer view for efficient advertisement query lookups.

3.2.6 JADE
JADE (Java Agent Development Framework) [JADE05] is a software framework
implemented in the Java language. It simplifies the implementation of multi-agent
systems by a middleware toolkit that complies with the FIPA [FIPA05] specifications
and by a set of graphical tools that support the debugging and deployment phases.

The agent platform can be distributed across machines (which not even need to share
the same OS) and the configuration can be controlled via a remote GUI. The
configuration can even be changed at run-time by moving agents from one machine to
another one, as and when required

The communication architecture of JADE offers flexible and efficient messaging, where
it creates and manages a queue of incoming ACL messages, private to each agent.
Agents can access their queue via a combination of several modes: blocking, polling,
timeout and pattern matching based. The full FIPA communication model has been
implemented and its components have been clearly distincted and fully integrated:
interaction protocols, envelope, ACL, content languages, encoding schemes, ontologies
and transport protocols. The transport mechanisms like a chameleon because it adapts to
each situation, by transparently choosing the best available protocol. Java RMI, event-
notification, and IIOP are currently used, but more protocols can be easily added and
HTTP has been integrated. Most of the interaction protocols defined by FIPA are
already available and can be instantiated after defining the application-dependent
behaviour of each state of the protocol. Service level and agent management ontology
are available, as well as the support for user-defined content languages and ontologies
registered with the agents and automatically used by the framework. JADE has also
been integrated with JESS, a Java shell of CLIPS, in order to exploit its reasoning
capabilities. Figure 4.4 illustrates the main elements of the JADE platform.

EU-IST Project IST-FP6-003769 CATNETS
CATNETS - Evaluation of the Catallaxy paradigm for decentralized operation of dynamic application networks

Copyright © 2005 UPC 43

Figure 4.4. FIPA/JADE architecture (from [JadA04])

3.2.7 Diet Agents
DIET Agents [DIET05] is a multi-agent platform in Java. It was developed as part of
the DIET project [DIET05] and released as Open Source at the end of the project. A
bottom-up design was used to ensure that the platform is lightweight, scalable, robust,
adaptive and extensible. It is especially suitable for rapidly developing peer-to-peer
prototype applications and/or adaptive, distributed applications that use bottom-up,
nature-inspired techniques. The basic architecture is presented in figure 4.5.

The platform has been designed to be scalable, robust and adaptive using a "bottom-up"
design approach:

• It is scalable at a local and at a global level. Local scalability is achieved because
DIET agents can be very lightweight. This makes it possible to run large
numbers of agents in a single machine. The DIET Agents platform is scalable in
the sense that the architecture does not impose any constraints on the size of
distributed DIET application. The architecture is fully decentralized, thus does
not impose centralized bottlenecks.

• It is robust and supports adaptive applications. The DIET kernel itself is robust
to hardware failure and/or system overload. The effects of these failures are
localized, and the kernel provides feedback when failure occurs allowing
applications to adapt accordingly. The decentralized nature of the DIET Agents
platform also makes it less susceptible to failure.

• It is based on a bottom-up, nature-inspired design approach. DIET agents are not
assumed have artificial intelligence features and/or use complex communication
protocols. Instead, agents can be very small and simple, allowing intelligent
behaviour to emerge from the interactions between large numbers of agents

• Lightweight: The agents have a minimal memory footprint and inter-agent
communication can be very fast. Agents can be thought of as small, mobile
processes.

EU-IST Project IST-FP6-003769 CATNETS
CATNETS - Evaluation of the Catallaxy paradigm for decentralized operation of dynamic application networks

Copyright © 2005 UPC 44

• Extensible: A high quality Object-Oriented design ensures that the code is
general, modular and extensible. The Application Reusable (ARC) Layer
provides support for plug-and-play agent behaviours, enabling modular
construction of agents.

Application Layer Application components

Application Reusable
Layer

(plugged into agents as
jobs)

Application reusable components

- remote communication

- agent behaviours

- events scheduling

Core Layer

(minimal agent hosting
environment)

DIET Agents kernel

- Basic messaging

- Thread Management

- Mobility

Figure 4.5. DIET Agents Architecture (from [DietA04]).

3.3 Functional view: Mapping middleware toolkits into the
architecture

In the functional view we evaluate which roles in the architecture could cover each
middleware toolkit, mapping toolkits into the architecture low level layer boxes. This
mapping requires considering characteristics like centralization/decentralization,
discovery types supported, degree of modularity, persistence, communication functions
and security. A detailed evaluation concerning each of the identified functional
requirements is presented in Table A.1 of annex A at the end of section 3.

The middleware toolkits are evaluated in view of a set of functional requirements,
which are: 1) execution platform, 2) resource management, 3) interoperable
communication, 4) overlay network, and 5) security. Detailed explanation of those
requirements is available in section 2.4

DIET and JADE provide the best execution platform for agents, due to the fact that
they are developed to manage Multi-Agent Systems (MAS). JADE implements the
FIPA standard and provides all the functionalities of the Agent Management System. A
JADE platform relies on a main container, which contains the AMS and the yellow
pages service or Directory Service (DF). Additional secondary containers in remote
hosts are linked to the main one. The architecture is rather centralized concerning the
agent management. Some support to decentralisation is given by the federation of
replicated DFs. Significant support for the construction and management of reasoning
agent is given (ontologies, integration with rule-engines and rich built-in behaviours
templates). Contrarily, DIET concentrates in offering a much more light-weighted core
with agent management being fully decentralized It provides basic support for

EU-IST Project IST-FP6-003769 CATNETS
CATNETS - Evaluation of the Catallaxy paradigm for decentralized operation of dynamic application networks

Copyright © 2005 UPC 45

messaging and thread management,. The goal of DIET is to achieve high performance,
scalability and fault tolerance, promoting self-organization rather those hard-coded
reasoning agents. Thus, no extra support for the construction of reasoning agents is
provided,

Resource Management is offered by WSRF/OGSA, since Grid resources managements
is one of the design goals. Within GT4 extensive support is given for local resource
management, resource data collection and resource monitoring. The other middleware
toolkits evaluated here do not give support to Resource Management, with exception of
JXTA, which has some support for peer information management by means of the
resolver service and peer monitoring service. Out of the evaluated middleware toolkits
only GT4 considers the support for multiple competing applications (instead of
cooperative applications), in which resource sharing becomes a critical issue.

Web Services provide support for interoperable communication with SOAP and a huge
and continuously growing set of specification for WS-everything. This feature is very
important because of the worldwide adoption and industrial support of WS standards for
component interaction in loosely coupled distributed systems. JXTA also is oriented
towards this direction providing pipes for point-to-point communication and XML
based messaging. Ongoing projects of JXTA incorporate SOAP based communication
in JXTA pipes.WSRF/OGSA leverages interoperability from WS. As for JADE and
DIET, both accept extensions to support SOAP communication by means of a
convenient java API. Though important,SOAP may not be always the best solution,
especially if performance becomes an issue. RMI or TCP/UDP may become much more
adequate for those cases.

Overlay network functionalities and decentralized resource discovery is best provided
by JXTA. The JXTA 2.x super-peer network [Trav03] provides a powerful and scalable
key-based routing engine, enriched with JXTA expressive XML advertisements
discovery. In contrast, centralized, or at best federated, discovery and notifications are
supported in GT4/WSRF and Web Services by Index Service and UDDI respectively,
which however limits their use in large-scale decentralized environments.Security
issues are best supported by standard WS-specifications in Web Services and GT4.
JXTA provides also integrated but inflexible support for security. J2SE itself provides
flexible APIs for security which can in fact turn much more modular for application
integration by a good support for delegation.

It becomes clear from this functional analysis, that strong complementarities exist
between the different middleware toolkits, and no single toolkit will cover all of the
desired functionalities for CATNETS.

3.4 Technical View

We consider in this section technical parameters related to scalability, supported
protocols, messaging channels, messaging types and performance, naming services and
yellow pages performance, robustness and fault-tolerance. The comparison of the
middleware toolkits is given in Table A.2 in the Annex A at the end of section 3. The
parameters taken into account are the following:

Standards & Protocols: Which standards are supported by the platform, and which
protocols does it implement (if any)

Messaging Channels: Possible message channels for inter-platform messaging

EU-IST Project IST-FP6-003769 CATNETS
CATNETS - Evaluation of the Catallaxy paradigm for decentralized operation of dynamic application networks

Copyright © 2005 UPC 46

Messaging Types: Considers synchronous and asynchronous messaging. Synchronous
means that buffers are not used. Request from an agent/peer A to an agent/peer B are
supposed to be followed by an answer from B before the start of any other conversation.
Asynchronous means using buffers for messages and the ability to perform parallel
conversations. Also covers if P2P multicast style communication is supported or not.

Messaging Performance: This is based on the Round Trip Time (RTT) measured in ms
for the sending and reception of a message. The test beds are taken from existent
surveys. This performance measure does not indicate the overall performance, since that
also depends on scalability, naming services and memory issues. In order to get a
comparative performance measure, we give the RMI messaging performance in ms, and
express the other platforms relative to the RMI case, indicating N x RMI time.

Resource Discovery Performance: How well perform the publishing and discovery
services on the platform.

Scalability Nº Agents/Noses/Resources: Maximum number of agents/nodes/resources
that can be instantiated without platform crash or heavy performance degradation.

The results of our study concerning the technical view are:

Standards & Protocols: Axis and GT4 leverage basically WS technologies and
protocols. These standards have important supported in industrial settings. JXTA
specifies a set of P2P standard protocols, targeting the full spectre of P2P applications
(from file-sharing to corporative P2P applications).

JADE implements FIPA specification for MAS architectures, providing also standard
behaviours. It is bound to that standard and it has been proved it is quite complicated for
JADE-based multi-agent systems to interoperate with agent platforms not complying
with FIPA. Some research efforts have been trying to interoperate FIPA with WS and
J2EE architectures [LRCN03], but still remains unclear the future of those approaches.
More and more Web Services are growing as the standard for “loosely couple open
systems”, and that includes most of multi-agent applications. FIPA standard probably
won’t be continued and agent platforms will be based on extensions upon the WS-
standards such as Web Services Conversation Language (WSCL) and WS-Agreement
(the path followed by [PaJe05]). Another important conclusion from this paper is that
WSCL and WS-Agreement are suitable for closing deals, but they don’t give explicit
support for auctioning and/or bargaining. That is an important fact to be taken into
account by CATNETS if aiming to develop negotiating agents.

With a totally opposed philosophy, DIET Agents is standard agnostics and concentrates
in providing modularity and a bottom-up design. DIET agents are not assumed to be
highly intelligent and/or to use complex communication protocols. Instead, agents can
be very small and simple, allowing intelligent behaviour to emerge from the interactions
between large numbers of agents.

Messaging channels: We have here two kinds of middleware toolkit. On one side, the
ones with XML envelope and commonly transported on top of HTTP (SOAP in WS and
GT4, pipes in JXTA), which focuses on functionality. They bring loosely coupled
interoperability and are also firewall and NAT friendly. On the other side the ones

EU-IST Project IST-FP6-003769 CATNETS
CATNETS - Evaluation of the Catallaxy paradigm for decentralized operation of dynamic application networks

Copyright © 2005 UPC 47

which focus more on performance. RMI brings an efficient invocation compared to
SOAP. The penalty here is the loose in interoperability, since the applications need to
talk Java RMI. In general JADE and DIET approaches to messaging are more flexible,
since basic messaging is provided (RMI, TCP/UDP sockets),and XML based messaging
however is either given as a plugging or expected to be implemented and plugged by the
developer whenneeded.

Messaging Types: WS SOAP messaging is not explicitly specified to be synchronous,
but current implementations are so. It is expected that JAX-RCP 2.0 will support
asynchronous messaging. GT4 leverages from the AXIS engine and incorporates the
same synchronicity. JXTA pipes provide more flexible communication by means of
asynchronous messaging and P2P multicast. JADE and DIET, being agent platforms,
provide asynchronous handling of messages such that agents are able to maintain
parallel interactions with other agents.

Message Performance: SOAP and pipes as XML-based messaging mechanism perform
considerably slower than RMI (~10 times slower) [Juri04]. Although different
techniques exist in order to increase the performance of XML messaging [Chiu04], it
needs to be considered in which cases SOAP messaging is actually required. JXTA
messaging based on JXTA pipes also has a higher overhead than RMI. In general,
starting a platform in JXTA and performing peers discovery and messaging is a
computationally demanding task [HaDe03a, HaDe03b]. JADE communication is based
on RMI and its performance is close to this underlying technology [VQC02]. DIET
agents default for remote communication is using TCP/UDP sockets, but other
mechanisms could be plugged given a suitable Java API.

Resource Discovery Performance: jUDDI [JUDD05] was the implementation of WS
UDDI repository evaluated due to its extensive presence. It has an average performance
as centralized registry and suffers from performance degradation in the case of
concurrent publications [SSB04]. Globus Index Service is expected to improve
performance in GT4 from previous GT3 release. GT3 Index Service had problems to
scale to thousands of nodes, but Globus developpers expects from GT4 information
Services (MDS4) to be able to scale up to 10000 nodes without performance
degradation. JXTA super-peers network with the rendevous nodes and the SRDI
distributed hash table is expected to perform well for key-based routing [Sing03]. The
provided DHT is considered as a compromise to perform well in most typical P2P
configurations [Trav03]. JXTA rendevous super peer network performance is analysed
in deep and found to be good compared to both centralized and previous P2P flooding
approaches [HDT04]. JADE Directory Facilitator performance is good for small
platforms, but has been reported by some users to be very problematic when using
federated registries [Jadx04].

Scalability Nº Agents/Noses/Resources: UDDI and Globus Index Service central
directories have limited scalability. Nevertheless, GT4 developers claim GT4 Index
Service to be able to scale up to 10000 nodes, but no empirical test is available. JXTA
P2P overlay network is expected to be able to gracefully scale using rendevous nodes.
Thus the current JXTA super peer network provides increased scalability (Trav03]. For
JADE, performance degrades when platform size scales, as pointed out by several
colleagues when performing direct experimental testing. Additionally, some tests have
been performed on JADE containers distributed across 8 nodes. The platform was not
able to manage more than 600 agents, and some uncontrolled complex interactions
JVM-JADE were detected (CTGK+04). DIET, which is specifically designed for
scalability, is scalable at a local and at a global level. Local scalability is achieved

EU-IST Project IST-FP6-003769 CATNETS
CATNETS - Evaluation of the Catallaxy paradigm for decentralized operation of dynamic application networks

Copyright © 2005 UPC 48

because DIET agents can be very lightweight. This makes it possible to run a large
numbers of agents in a single machine. The DIET Agents platform is also globally
scalable, because the architecture does not impose any constraints on the size of
distributed DIET applications. This is mainly achieved because the architecture is fully
decentralized. An example of more than 100000 DIET agents successfully living in a 16
nodes cluster is given in [BoHo03].

3.5 Development view

We evaluate the middleware toolkit as a development platform for a complex
development tasks. This is an important view since the challenge to “make real” the
designed middleware architecture depends also on the ease of development and support
provided by the platform and tools. The complete evaluation of development view is
given in Table A.3 in Annex A at the end session 3. The criteria considered in this
evaluation are:

Languages: The programming languages supported for developing with this platform

Community Support: Strength of the community built around the platform. Universities
and companies involved, deployed real applications, the platform and website
maintenance are taken into account.

API: Richness and complexity of the API provided. How easy is to program with the
given API?

Modularity & integrability: How amenable to be integrated within different
architectures is the platform?

Available tooling: Are there any tool developed to ease the use of this platform from the
designer and implementer point of view?

Specifications & Documentation: Is it understandable for the developers the
specification? Which is the quality of the documentation provided with the software
package or online?

Tutorials, books Developers sup. & mailing-list: Available tutorials or books. Mailing
lists are helpful? We evaluate also here to what extent platform developers are involved
in the support to the platform users.

 The results of our study concerning the development view are:

Languages: All 6 middleware toolkits are java based. The JXTA protocols specification
has only one complete reference implementation, the Java one. WS has also a C++
implementations, but we consider Axis, developed by the Apache foundation and it is
Java based. JADE and DIET are also fully developed in Java. It is clear that Java
provides many facilities for distributed systems middleware programming which are not
present in any other OO language. The most salient is platform independence due to the
Java Virtual Machine. C++ libraries for networking are clearly inferior to the ones
provided by Java. The only drawback for Java is the performance, and JIT technology
for bytecode compilation is narrowing step by step the difference with machine
compiled languages. In CATNETS we assume Java as the language most suitable for
the project purposes.

EU-IST Project IST-FP6-003769 CATNETS
CATNETS - Evaluation of the Catallaxy paradigm for decentralized operation of dynamic application networks

Copyright © 2005 UPC 49

Community Support: WS is clearly leading on the industrial support. That is certainly
true, to the point that JXTA is adding a plugging to its pipe-based communication
mechanism in order to provide SOAP invocation support. JADE also offers SOAP
plugging, and in the future the FIPA standard which JADE implements will probably be
replaced by some new multi-agent systems standards, focused in WS-family standards.
Apart from that fact, JADE community is big and important within the agent
community. Globus went even farer and moved from GT2 to the OGSI approach. WS
standards are a first attempt, which finally embraced into WS with GT4 and WSRF.
J2SE has the Java community behind, Sun support and a currently generalised and even
increasing uptake of Java for distributed computing worldwide. JXTA is also supported
by Sun and the community behind is quite big and very active. Nevertheless, their initial
attempt to become the de-facto P2P standard has been far from succeeding. DIET is the
weakest platform in this aspect, since it is a product developed by British Telecom and
later released open-source. There are several academic projects using it, and BT is
continuing industrial development with the platform as well as platform maintenance
and enhancement.

API: We find that current WS (Axis), GT4 and JXTA APIs are definitely complex.
XML-based interoperability has converted these platforms in something very abstract
and the APIs are not easy to learn. The learning curve is high for those three
technologies. It is also true that the objectives of these platforms are definitely broad
and part of the complexity they exhibit comes directly from the complexity of the real
problem they address.

A quick view on the GT4 architecture presented in section 3.2.3 can give us an idea of
the API complexity. The huge number of OGSA (from GT3 and GT4) and non-OGSA
services provided (from GT2) increases the platform complexity.

As we will document with more detail in the next section, we consider specially
complicated the JXTA API. If we look at JXTA architecture in section 3.2.5 we can see
support for groups, pipes, peer monitoring and security on the core itself, which turns
into a quite complicated API. We believe that alternative projects like P2PS may suit
better most developers needs. It is not as clear if the API complexity comes up directly
from the problem complexity. Concerning JADE and DIET, they focus much more on
providing a simple (richer in the case of JADE) API for easy developing MAS
applications.

Modularity & integrability: WS and Globus provide very good integration between
loosely coupled systems. JXTA and JADE aim to provide P2P and agent systems
standards respectively, but failed in some sense since the adoption of their standards is
not as popular as WS. JXTA is based on XML, and is in a better position in this sense. .
As for DIET, its standard agnostic condition is another point of view to address the
open systems problematic. The levels of modularity achieved by DIET are mostly due
to its property of minimal core provided [HoBo02]. All extra communication, security,
etc functionalities are plugged into the Application Reusable Component (ARC) layer.
It is very lightweight, and comparing its architecture with the JXTA API we see that the
core supports just basic messaging, thread management and agent mobility. Remote
communication, a framework for pluggable agent behaviours and support for scheduling
events are provided in the ARC Layer, promoting modularity and making it easy to plug
additional features into the platform.

Available tooling: WS has currently extensive tools for the support of creation,
management and orchestration of Web Services. GT4 expects leveraging all these WS

EU-IST Project IST-FP6-003769 CATNETS
CATNETS - Evaluation of the Catallaxy paradigm for decentralized operation of dynamic application networks

Copyright © 2005 UPC 50

tools via WSRF. JXTA provides few tools aside the JXTA platform, but that may be
due to the fact that built-in JXTA protocols cover almost any P2P functionality needed
by the developer. JADE provides debuggers and sniffers for monitoring of agents
conversations. DIET provides some support for agent’s interaction visualization. J2SE
has been enriched by numerous IDEs, debugging tools and performance measurement
tools. All this rich tooling for Java programming can be leveraged by the rest of the
middleware toolkits since they are all Java based.

Specifications & Documentation: WS specifications are generally too dense, which is
specially unpleasant for developers since there is no clear knowledge about which
specifications are draft, which standard and which between them are available in the
development platform selected. This is in part consequence of the novelty of WS, but
also due to the un-stability of the open domain it addresses. GT3 had the same problem,
but aggravated by adding the Grid-specific issues. With WSRF, specifications have
been separated into 5 different sets of documents, covering the different subsets of
issues. A main problem in GT3 was the fact that documentation for practical
development with the platform was very poor. It was really hard to get support for
practical Grid application development with GT3, with the honours exception of Borja
Sotomayor Globus tutorial [Borj05]. That lack of support is not expected to be solved in
GT4, since documentation is supposed to be developed by volunteers This is a very
negative point from the developer’s point of view. JXTA documentation is better, but it
covers just very simple cases. It is very hard to get support for more complicated
application development, while the API itself is fairly complex. JADE documentation is
much more extensive and useful from the developer’s point of view, but still lacks
support for the large scale MAS deployment step. DIET has a simple documentation,
but programming with the platform is quite easy, such that the provided documentation
is enough to understand the basics of programming with DIET. Like in JADE, support
for the large scale MAS deployment is also missing in the DIET documentation.

Tutorials, books Developers sup. & mailing-list: Papers and books on WS, Globus and
JXTA are extensively available. One problem with books is that code gets quickly
outdated. The problem with papers is that they give a good overview, but few resources
for practical implementation. In general, good tutorials for the practical development
with platforms are very rare. Users and developers mailing-lists are very active for these
platforms. JADE also has a very active mailing-list. DIET mailing lists are much less
active, one reason might be the small size of the community, but DIET platform
developers themselves have given support to DIET users. As for Java, the Java Tutorial
covers almost all need for basic development, and countless books and advanced
tutorials provide support for development.

3.6 Tests on middleware toolkits integration

We evaluate in this section the ease of integration with other platforms. This is
especially important for CATNETS since expect to build the CATNETS middleware
from a combination of middleware toolkits. Most of the evaluation work in this section
is first-hand, conducted by the CATNETS WP3 members through tests and
implementations using the toolkits of.

We have tested DIET – JXTA Discovery Service integration. Both toolkits are is
complementarily, since DIET does not provide P2P Discovery mechanism, but expect

EU-IST Project IST-FP6-003769 CATNETS
CATNETS - Evaluation of the Catallaxy paradigm for decentralized operation of dynamic application networks

Copyright © 2005 UPC 51

the developer to plug one himself taking advantage of DIET decentralized architecture.
JXTA Discovery Service has promising features, incorporating a built-in DHT (SRDI).
The result is that DIET reusable jobs in the ARC layer provide a useful placeholder for
such discovery mechanism. It could be seen that the integration of this functionality of
JXTA into DIET was fairly straightforward. From the tests it appears that integrating
another discovery or remote communication mechanism into DIET (for example an
UDDI registry for centralized discovery, or a SOAP engine for Web/Grid services
invocation) would also use the corresponding Java API (UDDI4J, AXIS, etc). That
feature comes from the minimal DIET core, which does not impose any standards for
transport channels, remote communications, directory management or semantics.

As for JXTA, we found it very hard to decouple the discovery service from the rest of
JXTA protocols in order to use it as a ready-to-use service. In the standard usage one is
forced to launch the JXTA platform using the graphical JXTA configuration tool,
including security settings. Flexibility is clearly not a feature in JXTA. Developers
aiming to use just the discovery service apparently need to start the whole JXTA
platform and use the XML-based advertisements, which can lead to a performance
problem in some applications. From this test we identified the need of considering
alternative P2P discovery implementations, as for example the earlier mentioned P2PS.
P2PS could be much more light-weighted, allowing easier integration with other
platforms. P2P DIET [StMk04], developed also within the DIET project could be
another interesting alternative to provide P2P discovery service.

Another test we have carried out is the integration of GT3 Grid Services invocation into
JADE. It revealed to be quite straightforward since both kits are Java, so importing the
Globus API into JADE application was enough to provide a clean interaction with GT3
Grid Services from JADE. We did not attempt to address Discovery issues merging
Globus Index Service with JADE, but we believe this will be quite a hard issue. JADE
Directory Facilitator has been reported by other colleagues at UPC to be very inflexible.
There are several attempts to provide a P2P-aware DF for JADE, most of them
integrating JADE and JXTA, to our knowledge without success [Jadx04]. The FIPA
specification for DF is too rigid and centralized and its integration with P2P
architectures leads to bad performance.

We will continue performing tests on middleware toolkits integration, since this is an
important issue for CATNETS and can also give us practical clues on the feasibility of
the proposed architecture for CATNETS

3.7 Conclusions

3.7.1 Conclusions on functional, technical and development views
The conclusion of our study on middleware toolkits for CATNETS implementation is
that no single middleware toolkit fulfils all the requirements. However, exploiting
complementarities of different middleware toolkits and integrating them in the proposed
architecture we could get a Catallactic middleware, which potentially can be:

• Flexible and robust, being able to cope with heterogeneity and dynamics

• Efficient in order successfully implement and reproduce expected behaviour of
the Catallactic model

EU-IST Project IST-FP6-003769 CATNETS
CATNETS - Evaluation of the Catallaxy paradigm for decentralized operation of dynamic application networks

Copyright © 2005 UPC 52

• Complete in the sense that it can cover several ALN domains.

We provided a classification of the middleware toolkits with regards to the P2P Agent
Layer. JADE, DIET Agents or just pure java with J2SE are candidates to cover the P2P
Agent Layer. WS, WSRF/OGSA, and JXTA are also able to cover the Base Platform
Layer. Additionally, several functions on the P2P Agent Layer may be also covered by
the middleware toolkit from the Base Platform Layer. For example JXTA can be used
for P2P Discovery of DIET agents; GT4 can cover security for a Grid application, and
so on. We have evaluated to what extent the middleware toolkits cover each of the
identified functionalities. From that analysis it becomes explicit that no single
middleware toolkit provides all the desired functionalities. Then, CATNETS
middleware will be a composition, guided by the developed architecture.

We have considered performance issues, since the number of negotiations required by
agents in CATNETS may constraint the type of messaging, discovery, or both,
depending on the application. Thus, to implement the prototype of CATNETS it is not
enough porting the algorithms from the simulator into a prototype.

We identify current ALN middleware WS, GT4, and JXTA to be very complex: Huge
and dense specifications, complex architectures and XML-messaging could not provide
lead the modularity desired by the CATNETS architecture.

The P2P Agent Layer is the proposed solution to address the ALN middleware
integration. We need from the middleware toolkit covering that layer to be modular
enough to provide a reasonable integration with the Base Platforms. To that respect
DIET clearly outperforms JADE, since the FIPA specification is too rigid to delegate
functionalities into the Base Platform. DIET Agents gives support where we need it
(basic messaging and platform management, thread and memory management, context
support for negotiations and mobility) without imposing communication transports,
semantics or centralized discovery mechanisms. An alternative for the P2P Agent Layer
implementation is using directly J2SE, which gives as total freedom, but also would
require considering low-level platform management implementation issues.

Considering documentation and development support, industrial standards like Web
Services have extensive support, while other technologies as GT4 and JXTA lacks
support for development when regarding their platform complexity. JADE has a good
documentation, and DIET has a too simple documentation, but good platform
developer’s support. J2SE is best rate on support issues since Sun and the Java
communities are behind taking care on comfortable Java language adoption by
developers.

In figure 3.6 we graphically summarize the scoring of each middleware toolkit
regarding the set of functional, technical and development views properties.

EU-IST Project IST-FP6-003769 CATNETS
CATNETS - Evaluation of the Catallaxy paradigm for decentralized operation of dynamic application networks

Copyright © 2005 UPC 53

MIDDLEWARE TOOLKIT/
PROPERTY

JXTA WS (JAX-
RPC)

WSRF/
OGSA

JADE DIET J2SE

Execution platform
Overlay Network
Object Discovery

Communication Primitives
Resource Management

Security
Standards support
Messaging types

Messaging performance
Object Discovery Performance

Scalability
Maturity & Support

API complexity
Modularity and Integrability

Specifications and documentation
Available tooling

Figure 3.6: Middleware toolkit scoring on the 3 views

3.7.2 Joint selection of middleware and application
As a result of our findings we state:

• CATNETS middleware must be a flexible composition of existent
middleware toolkits in order to handle the inherent complexity of real Grid
and P2P scenarios and to implement the catallactic model.

• Part of the middleware used in a particular implementation depends on the
application selected. The strengths identified in each of the candidate
middleware toolkits are then used to decide upon the set of implementation
toolkits.

 Good Average Bad

EU-IST Project IST-FP6-003769 CATNETS
CATNETS - Evaluation of the Catallaxy paradigm for decentralized operation of dynamic application networks

Copyright © 2005 UPC 54

3.8 References

[Apac05] http://ws.apache.org/

[Axis05] http://ws.apache.org/axis/

[BGN04] K. Burbeck, D. Garpe, and S. Nadjm-Tehrani, Scale-up and Performance
Studies of Three Agent Platforms, in Proceedings of International Performance,
Communication and Computing Conference, Middleware Performance workshop.,
(Phoenix, Arizona, USA), pp. 857--863, Apr. 2004

[BoHo03] E. Bonsma and C. Hoile, "A distributed implementation of the SWAN peer-
to-peer look-up system using mobile agents”, 1st International Workshop on Agents and
Peer-to-Peer Computing (AP2PC 2002), AAMAS2002, July 2002, Bologna, Italy.

[Borj05] The Globus Toolkit 4 Programmer's Tutorial, http://gdp.globus.org/gt4-
tutorial/

[Cdbi04] CDBI Forum(2004), “Web Services Stack”,
http://roadmap.cbdiforum.com/reports/protocols/index.php

[Chiu04] Chiu, Kenneth, Web Services Performance: A Survey of Issues and Solutions,
8th Multi-conference on Systemics, Cybernetics and Informatics: SCI 2004

[Chor05] http://www.pdos.lcs.mit.edu/chord/

[Cora05] http://www.scs.cs.nyu.edu/coral/

[Cort02] E. Cortese, F. Quarta, G. Vitaglione, “Scalability and Performance of JADE
MessageTransport System”, AAMAS Workshop on Agenticies, Bologna, July 2002.

[Coug05] http://www.cougaar.org/

[CTGK+04] Chmiel, D. Tomiak, M. Gawinecki, P. Karczmarek, M. Szymczak M.
Paprzycki, Testing the Efficiency of JADE Agent Platform, in: Proceedings of ISPDC
2004, IEEE CS Press, Los Angeles, 2004, 49-56

[DieA04]DIET Overview http://dietagents.sourceforge.net/PlatformOverview.html

[DIET05] http://diet-agents.sourceforge.net/Index.html

[FIPA05] http://www.fipa.org/

[Ggf04] Globus Grid Forum (2004) [url]

[Glob05] http://www.globus.org/

[GT405]http://www-unix.globus.org/toolkit/docs/development/4.0-
drafts/GT4Facts/index.html

[HaDe03a] Halepovic, E. and Deters, R. The Costs of Using JXTA. To appear at The
Third IEEE International Conference on Peer-to-Peer Computing, Linköping, Sweden,
2003

[HaDe03b] E. Halepovic and R. Deters, JXTA Performance Study. PACRIM'03
Conference, Victoria, BC, Canada, 2003

[HDT04] E. Halepovic, R. Deters, and B. Traversat, Performance Evaluation of JXTA
Rendezvous. DOA 2004 Conference, Agia Napa, Cyprus, 2004

EU-IST Project IST-FP6-003769 CATNETS
CATNETS - Evaluation of the Catallaxy paradigm for decentralized operation of dynamic application networks

Copyright © 2005 UPC 55

[HoBo02] C. Hoile and E. Bonsma , Towards a minimal hosting specification for open
agent systems : the lessons of IP", 1st International Workshop on "Challenges in Open
Agent Systems", AAMAS2002, July 2002, Bologna, Italy.

[J2SE05] http://java.sun.com/

[JadA04] Jade programmers guide, http://jade.tilab.com/doc/programmersguide.pdf

[JADE05] http://jade.tilab.com/

[Jadx04] The Jadex project at Distributed Systems and Information Systems Hamburg
University. (See http://vsis-www.informatik.uni-hamburg.de/projects/jadex/)

[JaRp05] http://java.sun.com/xml/jaxrpc/index.jsp

[JNDI05] http://java.sun.com/products/jndi/

[JUDD05] http://ws.apache.org/juddi/

[Juri04] M. Juric et al. Java RMI, RMI Tunneling and Web Services Comparison and
Performance Analysis. ACM SIGPLAN Notices, 39(5), May 2004.

[JXTA05] http://www.jxta.org/

[LFGL01] G. von Laszewski, I. Foster, J. Gawor, P. Lane (2001), “A Java Commodity
Grid Toolkit“, Concurrency: Practice and Experience, 13

[Li01] Li, S. 2001. JXTA: Peer-to-Peer Computing with Java, WROX: Birmingham

[LRCN03] M. Lyell, L. Rosen, M. Casagni-Simkins, D. Norris, On Software Agents
and Web Services: Usage and Design Concepts and issues, International Joint
Conference on Autonomous Agents and Multiagent Systems, Worshop on Web
Services and Agent-based software engeenering - Melbourne (Australia) 2003

[OGSA05] http://www.globus.org/ogsa/

[OGSI05] http://www.globus.org/ogsa/

[P2PS05] http://www.trianacode.org/p2ps/download/index.html

[PaJe05] Paurobally, S. and Jennings, N. R. (2005) Protocol engineering for web
services conversations, Int J. Engineering Applications of Artificial Intelligence 18(2).
[Past05] http://freepastry.rice.edu/FreePastry/README-1.3.2.html

[RFH+01] Sylvia Ratnasamy, Paul Francis, Mark Handley, Richard Karp, Scott
Shenker, A Scalable Content-Addressable Network, Proceedings of ACM SIGCOMM
2001

[RMI05] http://java.sun.com/products/jdk/rmi/

[SAP05] http://www.ist-safeguard.org

[Sing03] http://www-106.ibm.com/developerworks/java/library/j-jxta2/

[SOAP05] http://www.w3.org/TR/soap/

[SSB04] Saez, G., Sliva, A.L., Blake, M.B. "Web Services-Based Data Management:
Evaluating the Performance of UDDI Registries" Proceedings of the International
Conference on Web Services (ICWS 2004), San Diego, CA, July 2004

EU-IST Project IST-FP6-003769 CATNETS
CATNETS - Evaluation of the Catallaxy paradigm for decentralized operation of dynamic application networks

Copyright © 2005 UPC 56

[StMk04] Stratos Idreos, Manolis Koubarakis: P2P-DIET: One-Time and Continuous
Queries in Super-Peer Networks. EDBT 2004: 851-853

[Tomc05] http://jakarta.apache.org/tomcat/

[Trav03] Bernard Traversat et al (Project JXTA, May 2003), Project JXTA 2.0 Super-
Peer Virtual Network, white paper.

[Tryl05] http://www.tryllian.com/

[VQC02] G. Vitaglione, F. Quarta, E. Cortese, Scalability and Performance of JADE
Message Transport System. Presented at AAMAS Workshop on AgentCities, Bologna.
July the 16th, 2002.

[W3c04] Web Services Architecture W3C Working Group Note, D. Booth, H. Haas, F.
McCabe, E. Newcomer, M. Champion, C. Ferris, D. Orchard, 11 February 2004 (See
http://www.w3.org/TR/2004/NOTE-ws-arch-20040211/.)

[Wang05] Ian Wang. Peer-to-Peer Simplified), in Proceedings of 13th Annual Mardi
Gras Conference - Frontiers of Grid Applications and Technologies. To be published,
2005.

[WeSe05] http://www.w3.org/2002/ws/

[Wrig04] Todd Wright BBN Technologies, Naming Services in Multi-Agent
Systems: A Design for Agent-Based White Pages, Proceedings of the Third
International Joint Conference on Autonomous Agents and Multiagent Systems -
Volume 3, New York(USA) 2004

[WSDL05] http://www.w3.org/TR/wsdl
[WSFR05] http://www.globus.org/wsrf/

EU-IST Project IST-FP6-003769 CATNETS
CATNETS - Evaluation of the Catallaxy paradigm for decentralized operation of dynamic application networks

Copyright © 2005 UPC 57

ANNEX 3.1- Middleware toolkits Evaluation Tables:
Table 1 - Functional view
Table 2 - Technical view
Table 3 - Developers view

EU
-I

ST
 P

ro
je

ct
 IS

T-
FP

6-
00

37
69

 C
A

TN
ET

S
C

A
TN

ET
S

- E
va

lu
at

io
n

of
 th

e
C

at
al

la
xy

 p
ar

ad
ig

m
 fo

r d
ec

en
tra

liz
ed

 o
pe

ra
tio

n
of

 d
yn

am
ic

 a
pp

lic
at

io
n

ne
tw

or
ks

C
op

yr
ig

ht
 ©

 2
00

5
U

PC

58

T
A

B
L

E
 1

 C
A

T
N

E
T

S
m

id
dl

ew
ar

e
to

ol
 /

re

qu
ir

em
en

t
JX

T
A

W

S
 (J

A
X

-R
PC

Im

p)
W

SR
F

/O
G

SA

JA
D

E

D
IE

T

J2
SE

Ex
ec

ut
io

n
Pl

at
fo

rm

A
ge

nt
 H

os
tin

g
(li

fe
cy

cl
e

&
 E

xe
cu

tio
n

re
so

ur
ce

m
an

ag
em

en
t)

B
ui

lt-
in

/in

ef
fic

ie
nt

N

on
e

B
ui

lt-
in

 /W
SR

F
B

ui
lt-

in

/e
ff

ic
ie

nt

B
ui

lt-
in

/
lig

ht
w

ei
gh

t
N

on
e

E
xc

ep
tio

n
no

tif
ic

at
io

n
an

d
m

an
ag

em
en

t
B

ui
lt-

in

N
on

e
/ d

ep
en

ds

on im
pl

em
en

ta
tio

n

B
ui

lt-
in

 /W
S

–
B

as
eF

au
lt

B
ui

lt-
in

B

ui
lt-

in

N
on

e

A
ge

nt
 st

at
e

pe
rs

ist
en

ce

N
on

e
N

on
e

/ S
ta

te
le

ss

B
ui

lt-
in

 /W
SR

F
St

at
ef

ul

B
ui

lt-
in

B

ui
lt-

in

N
on

e

M
ig

ra
tio

n
an

d
m

ob
ili

ty

B
ui

lt-
in

N

on
e

N
on

e
B

ui
lt-

in

B
ui

lt-
in

R
es

ou
rc

e
M

an
ag

em
en

t

R
es

ou
rc

e
al

lo
ca

tio
n

an
d

de
al

lo
ca

tio
n

N
on

e
N

on
e

B
ui

lt-
in

 /W
S-

G
R

A
M

N

on
e

N
on

e
N

on
e

R
es

ou
rc

e
M

on
ito

ri
ng

B

ui
lt-

in
 /

R
es

ol
ve

r
Se

rv
ic

e

N
on

e
B

ui
lt-

in
 W

S-
R

es
ou

rc
eP

ro
pe

rt
ie

s

N
on

e
N

on
e

N
on

e

R
es

ou
rc

e
D

isc
ov

er
y

an
d

Q
ue

ry

B
ui

lt-
in

/
M

on
ito

rin
g

Se
rv

ic
e

N
on

e
B

ui
lt-

in
 /M

D
S

C
en

tra
liz

ed

N
on

e
N

on
e

N
on

e

EU
-I

ST
 P

ro
je

ct
 IS

T-
FP

6-
00

37
69

 C
A

TN
ET

S
C

A
TN

ET
S

- E
va

lu
at

io
n

of
 th

e
C

at
al

la
xy

 p
ar

ad
ig

m
 fo

r d
ec

en
tra

liz
ed

 o
pe

ra
tio

n
of

 d
yn

am
ic

 a
pp

lic
at

io
n

ne
tw

or
ks

C
op

yr
ig

ht
 ©

 2
00

5
U

PC

59

T
A

B
L

E
 1

 C
A

T
N

E
T

S
m

id
dl

ew
ar

e
to

ol
 /

re

qu
ir

em
en

t
JX

T
A

W

S
 (J

A
X

-R
PC

Im

p)
W

SR
F

/O
G

SA

JA
D

E

D
IE

T

J2
SE

C
om

m
un

ic
at

io
n

A
ge

nt
 a

dd
re

ss
in

g
an

d
lo

ca
tio

n
B

ui
lt-

in
 /

D
is

co
ve

ry

Se
rv

ic
e

B
ui

lt-
in

 /U
D

D
I

B
ui

lt-
in

 /W
S-

A
dd

re
ss

in
g

B

ui
lt-

in
 /

A
ge

nt

ID
s

B
ui

lt-
in

 /A
ge

nt

Ta
gs

 a
nd

 ID
S

B
ui

lt-
in

 /

JN
D

I

B
as

ic
 m

ec
ha

ni
sm

 (
se

nd
, r

ec
ei

ve
,

m
ul

tic
as

t)
B

ui
lt-

in
 /

 b
y

Pi
pe

s

B
ui

lt-
in

 /

SO
A

P

Su
pp

or
te

d/
W

S-
N

ot
ifi

ca
tio

n

B
ui

lt-
in

 /W
S-

N
ot

ifi
ca

tio
n

B
ui

lt-
in

 /

R
M

I-I
IO

P

N
o

m
ul

tic
as

t

B
ui

lt-
in

 /
 A

R
C

La

ye
r

B
ui

lt-
in

 /
R

M
I

N
o

m
ul

tic
as

t

X
M

L
 m

es
sa

ge
 h

an
dl

in
g

(m
ar

sh
al

lin
g

an
d

un
m

ar
sh

al
in

g)

B
ui

lt-
in

B

ui
lt-

in

B
ui

lt-
in

 /W
SR

F
Su

pp
or

te
d

/
pl

ug
gi

ng

ex
te

ns
io

n

N
on

e
B

ui
lt-

in
 /

Ja
va

X

M
L

to
ol

in
g

Fa
ilu

re
 M

an
ag

em
en

t i
n

co
m

m
un

ic
at

io
n

B
ui

lt-
in

B

ui
lt-

in
 /

SO
A

P
fa

ul
ts

B

ui
lt-

in
 /

W
S

–
B

as
e

Fa
ul

t
B

ui
lt-

in
/ b

ut

m
ay

 b
lo

ck

B
ui

lt-
in

/

fa
st

-fa
il

B
ui

lt-
in

 /
R

M
I

re
m

ot
e

ex
ce

pt
io

ns

O
ve

rla
y

N
et

w
or

k

O
ve

rl
ay

 N
et

w
or

k
co

ns
tr

uc
tio

n
&

m

ai
nt

en
an

ce

B
ui

lt-
in

N

on
e

N
on

e
N

on
e

N

on
e

N
on

e

Pe
er

 g
ro

up
in

g
B

ui
lt-

in
 /

JX
TA

G

ro
up

s
N

on
e

B
ui

lt-
in

 /W
S-

Se

rv
ic

e
G

ro
up

N

on
e

B
ui

lt-
in

 /
Fa

m
ily

Ta

gs

N
on

e

EU
-I

ST
 P

ro
je

ct
 IS

T-
FP

6-
00

37
69

 C
A

TN
ET

S
C

A
TN

ET
S

- E
va

lu
at

io
n

of
 th

e
C

at
al

la
xy

 p
ar

ad
ig

m
 fo

r d
ec

en
tra

liz
ed

 o
pe

ra
tio

n
of

 d
yn

am
ic

 a
pp

lic
at

io
n

ne
tw

or
ks

C
op

yr
ig

ht
 ©

 2
00

5
U

PC

60

T
A

B
L

E
 1

 C
A

T
N

E
T

S
m

id
dl

ew
ar

e
to

ol
 /

re

qu
ir

em
en

t
JX

T
A

W

S
 (J

A
X

-R
PC

Im

p)
W

SR
F

/O
G

SA

JA
D

E

D
IE

T

J2
SE

K
ey

 b
as

ed
 r

ou
tin

g
B

ui
lt-

in
 /

SR
D

I
N

on
e

N
on

e
N

on
e

Su
pp

or
te

d
/

pl
ug

gi
ng

N

on
e

R
es

ou
rc

e
D

is
co

ve
ry

A
dv

er
tis

em
en

t &
 se

ar
ch

B

ui
lt-

in
 /

Jx
ta

A

dv
s

B
ui

lt-
in

 /
W

SD
L/

U
D

D
I

B
ui

lt-
in

 /
G

lo
bu

s
In

fo
rm

at
io

n
Se

rv
ic

es

B
ui

lt-
in

 /
FI

PA

D
F

Su
pp

or
te

d
/p

lu
gg

in
g

A
R

C

La
ye

r

B
ui

lt-
in

 /
JN

D
I

M
at

ch
m

ak
in

g
B

ui
lt-

in
 /

R
ic

h
B

ui
lt-

in
 /

B
as

ic

N
on

e

B
ui

lt-
in

 /
R

ic
h

N
on

e
B

ui
lt-

in
 /

JN
D

I

C
ac

he
 m

an
ag

em
en

t
B

ui
lt-

in
 /

ef
fic

ie
nt

 N

on
e

B
ui

lt-
in

 /
G

A
SS

N

on
e

N
on

e
N

on
e

Pu
bl

ic
at

io
n/

su
bs

cr
ip

tio
n

of
 in

fo
rm

at
io

n
ch

an
ge

s

N
on

e

Su
pp

or
te

d
/ W

S-
N

ot
ifi

ca
tio

n
B

ui
lt-

in
 /

W
S-

N
ot

ifi
ca

tio
n

B
ui

lt-
in

N

on
e

N
on

e

Se
cu

rit
y

&
 R

ep
ut

at
io

n

A
ge

nt
 a

ut
he

nt
ic

at
io

n
B

ui
lt-

in

Su
pp

or
te

d
/ W

s-

Se
cu

rit
y

B
ui

lt-
in

 /W
SR

F
Se

cu
rit

y
Su

pp
or

te
d

/
Pl

ug
gi

ng

B
ui

lt-
in

/ S
SL

so

ck
et

s t
ha

t
re

qu
ire

au

th
en

tic
at

io
n

JA
A

S

EU
-I

ST
 P

ro
je

ct
 IS

T-
FP

6-
00

37
69

 C
A

TN
ET

S
C

A
TN

ET
S

- E
va

lu
at

io
n

of
 th

e
C

at
al

la
xy

 p
ar

ad
ig

m
 fo

r d
ec

en
tra

liz
ed

 o
pe

ra
tio

n
of

 d
yn

am
ic

 a
pp

lic
at

io
n

ne
tw

or
ks

C
op

yr
ig

ht
 ©

 2
00

5
U

PC

61

T
A

B
L

E
 1

 C
A

T
N

E
T

S
m

id
dl

ew
ar

e
to

ol
 /

re

qu
ir

em
en

t
JX

T
A

W

S
 (J

A
X

-R
PC

Im

p)
W

SR
F

/O
G

SA

JA
D

E

D
IE

T

J2
SE

A
cc

es
s a

ut
ho

ri
za

tio
n

(t
o

tr
ad

e
in

 a

gi
ve

n
m

ar
ke

t)
B

ui
lt-

in

Su
pp

or
te

d
/W

s-
Se

cu
rit

y
B

ui
lt-

in
 /W

S-

Se
cu

rit
y,

 S
A

M
L

Su
pp

or
te

d
/

Pl
ug

gi
ng

N

on
e

JA
A

S
/

ce
rti

fic
at

es

N
o

re
pu

di
at

io
n

B

ui
lt-

in
 /J

X
TA

Se

cu
rit

y
Su

pp
or

te
d

/ W
S-

Si
gn

at
ur

e

Su
pp

or
te

d/
W

S-
A

gr
ee

m
en

t
N

on
e

N
on

e
B

ui
lt-

in
 /

D
ig

ita
l

Si
gn

at
ur

e

In
te

rf
ac

e
to

 B
as

e
pl

at
fo

rm
 se

cu
ri

ty

m
ec

ha
ni

sm
s

N
on

e
N

on
e

N
on

e
N

on
e

N
on

e
B

ui
lt-

in
 /

JA
A

S

E
nc

ry
pt

io
n

of
 c

om
m

un
ic

at
io

ns

B
ui

lt-
in

Su

pp
or

te
d

/W
s-

Se
cu

rit
y

B
ui

lt-
in

 /W
S-

Se
cu

rit
y

Su
pp

or
te

d
/

Pl
ug

gi
ng

B

ui
lt-

in
 /

JA
D

E-
S

B
ui

lt-
in

 /

JS
SE

T
ru

st
/r

ep
ut

at
io

n
m

ec
ha

ni
sm

s
N

on
e

 S

up
po

rte
d

/W
s-

Tr
us

t
(li

m
ite

d)

W
S-

Tr
us

t (
dr

af
t

sp
ec

ifi
ca

tio
n)

N

on
e

N
on

e
N

on
e

EU
-I

ST
 P

ro
je

ct
 IS

T-
FP

6-
00

37
69

 C
A

TN
ET

S
C

A
TN

ET
S

- E
va

lu
at

io
n

of
 th

e
C

at
al

la
xy

 p
ar

ad
ig

m
 fo

r d
ec

en
tra

liz
ed

 o
pe

ra
tio

n
of

 d
yn

am
ic

 a
pp

lic
at

io
n

ne
tw

or
ks

C
op

yr
ig

ht
 ©

 2
00

5
U

PC

62

T
A

B
L

E

2
T

E
C

H
N

IC
A

L

PR
O

PE
R

TY

/P
L

A
T

FO
R

M

JX
T

A
W

eb
 S

er
vi

ce
s

(J
A

X
-R

PC
 Im

p)
W

SR
F

/ O
G

SA

JA
D

E
D

IE
T

J2
SE

-S
ta

nd
ar

ds

-&
 P

ro
to

co
ls

-

pe
er

s,
gr

ou
ps

-

JX
TA

 p
ip

es

-
X

M
L

ad
ve

rti
se

m
en

ts

-
SO

A
P

-
W

SD
L

-
U

D
D

I
-

X
M

L

-
W

eb
 S

er
vi

ce
s

-
In

de
x

Se
rv

ic
e

-
G

rid
FT

P
-

G
rid

 S
ec

ur
ity

-
FI

PA
 A

C
L

-
A

M
S

&
 D

F

-
B

eh
av

io
ur

s
-

In
te

ra
ct

io
n

-
 P

ro
to

co
ls

-
bo

tto
m

-u
p

de
si

gn

-
de

ce
nt

ra
liz

ed

-
st

an
da

rd

ag
no

st
ic

-
JV

M

-
R

M
I

-
JN

D
I

-M
es

sa
gi

ng

C
ha

nn
el

s
-

JX
TA

 p
ip

es
, v

ar
io

us

pr
ot

oc
ol

s
-

Fi
re

w
al

l a
nd

 N
A

T
fr

ie
nd

ly

•
A

ny
 (n

or
m

al
ly

H

TP
P)

-

Fi
re

w
al

l
fr

ie
nd

ly

-
Sa

m
e

as
 W

S
(A

xi
s)

-

R
M

I,
O

R
B

-

H
TT

P,
 JM

S
by

ex

is
te

nt

pl
ug

gi
ng

-
U

D
P

an
d

TC
P

-
M

ob
ile

 a
ge

nt
s

-
A

ny
 o

th
er

 c
an

be

 p
lu

gg
ed

-
R

M
I

-
So

ck
et

s

-M
es

sa
gi

ng

-
T

yp
es

-

A
sy

nc
hr

on
ou

s
-

P2
P

/u
ni

ca
st

 o
r m

ul
tic

as
t

-
Sy

nc
hr

on
ou

s
-

Sy
nc

hr
on

ou
s

-A
sy

nc
hr

on
ou

s
-

A
sy

nc
hr

on
ou

s
-

P2
P

/
m

ec
ha

ni
sm

 n
ee

d
to

 b
e

pl
ug

ge
d

-
Sy

nc
hr

on
ou

s

-M
es

sa
gi

ng

-P
er

fo
rm

.
-(

m
s)

-
10

 x
 R

M
I

-
9

x
R

M
I

-
R

el
ie

s o
n

W
S

in
vo

ca
tio

n
(A

xi
s)

-

G
T4

 im
pr

ov
es

 4

x
G

T3

pe
rf

or
m

an
ce

-
2x

R
M

I
-

Fa
st

 fo
r U

D
P

or
 T

C
P

so
ck

et
s

-
R

es
t d

ep
en

ds

on
 tr

an
sp

or
t

pl
ug

ge
d

-
R

ou
nd

 T
rip

Ti

m
e

(R
TT

)
av

er
ag

e
:

-
0.

25
m

s

-R
es

ou
rc

e
D

is
co

ve
ry

Pe

rf
or

m
an

ce

-
A

ve
ra

ge
, X

M
L

pr
oc

es
si

ng
 p

en
al

iz
es

-

G
oo

d
fo

r k
ey

 b
as

ed

ro
ut

in
g

-
A

ve
ra

ge

(jU
D

D
I)

-
D

eg
ra

da
tio

n
fo

r c
on

cu
rr

en
t

pu
bl

ic
at

io
ns

-
Ex

pe
ct

ed
 to

 b
e

A
ve

ra
ge

-

In
de

x
Se

rv
ic

e
re

fa
ct

or
ed

 in

G
T4

 (w
ith

 JN
D

I)

-
G

oo
d

fo
r s

m
al

l
an

d
 m

ed
iu

m

si
ze

d
M

A
S

-
A

ve
ra

ge
/B

ad

fo
r f

ed
er

at
ed

D

Fs

-
G

oo
d

fo
r

kn
ow

n
ho

st
ed

ag

en
ts

-

D
is

co
ve

ry

de
pe

nd
s o

n
pl

ug
ge

d
m

ec
ha

ni
sm

-
D

ep
en

ds
 o

n
pl

ug
ge

d
se

rv
ic

e

-
(e

.g
. J

N
D

I o
ve

r
LD

A
P)

EU
-I

ST
 P

ro
je

ct
 IS

T-
FP

6-
00

37
69

 C
A

TN
ET

S
C

A
TN

ET
S

- E
va

lu
at

io
n

of
 th

e
C

at
al

la
xy

 p
ar

ad
ig

m
 fo

r d
ec

en
tra

liz
ed

 o
pe

ra
tio

n
of

 d
yn

am
ic

 a
pp

lic
at

io
n

ne
tw

or
ks

C
op

yr
ig

ht
 ©

 2
00

5
U

PC

63

T
A

B
L

E

2
T

E
C

H
N

IC
A

L

PR
O

PE
R

TY

/P
L

A
T

FO
R

M

JX
T

A
W

eb
 S

er
vi

ce
s

(J
A

X
-R

PC
 Im

p)
W

SR
F

/ O
G

SA

JA
D

E
D

IE
T

J2
SE

-S
ca

la
bi

lit
y

-N
º A

ge
nt

s
-

/ N
od

es

/R
es

ou
rc

es

-
Ex

pe
ct

ed
 to

 b
e

V
er

y
G

oo
d

-
--

--
-

Ex
pe

ct
ed

-

to
 b

e
lim

ite
d

du
e

to
 c

en
tra

l
m

an
ag

em
en

t
-

G
T4

 d
ev

el
op

er
s

ex
pe

ct
 >

>
10

00
0

-
Ex

pe
ct

ed
 to

be

>1
00

00

-
Pr

ov
ed

 to
 b

e
>5

00
-

-
Ex

pe
ct

ed
 to

 b
e

>>
10

00
00

-

Pr
ov

ed
 to

 b
e

>1

00
00

-
D

ep
en

ds
 o

n
pl

ug
ge

d
se

rv
ic

e

-
(e

.g
. J

N
D

I o
ve

r
LD

A
P)

EU
-I

ST
 P

ro
je

ct
 IS

T-
FP

6-
00

37
69

 C
A

TN
ET

S
C

A
TN

ET
S

- E
va

lu
at

io
n

of
 th

e
C

at
al

la
xy

 p
ar

ad
ig

m
 fo

r d
ec

en
tra

liz
ed

 o
pe

ra
tio

n
of

 d
yn

am
ic

 a
pp

lic
at

io
n

ne
tw

or
ks

C
op

yr
ig

ht
 ©

 2
00

5
U

PC

64

T
A

B
L

E
 3

D
E

V
E

L
O

PE
R

V

IE
W

/P
L

A
T

FO
R

M

JX
T

A

W
eb

 S
er

vi
ce

s

(J
A

X
-R

PC
 Im

p)

W
SR

F
/O

G
SA

JA

D
E

D

IE
T

J2

SE

-P
ro

gr
am

m
in

g

-L
an

gu
ag

e
-J

av
a

-L
an

gu
ag

e
ne

ut
ra

l
-J

av
a

-J
av

a
-J

av
a

-J

av
a

-M
at

ur
ity

 a
nd

C

om
m

un
ity

Su

pp
or

t

-
Su

n
su

pp
or

t a
nd

ac

tiv
e

w
eb

si
te

 a
nd

co

m
m

un
ity

-V
er

y
go

od
, m

an
y

co
m

pa
ni

es
 a

nd

pr
oj

ec
ts

-I

nd
us

tri
al

 st
an

da
rd

-M
an

y
in

vo
lv

ed

co
m

pa
ni

es

-
G

T3
 st

ill
 b

ug
gy

-

A
ct

iv
e

w
eb

si
te

an

d
co

m
m

un
ity

-A
ge

nt
 c

om
m

un
ity

su

pp
or

t
-F

IP
A

 st
an

da
rd

-B
T

pr
od

uc
t

-V
er

y
sm

al
l

co
m

m
un

ity

-S
un

 a
nd

 v
er

y
ac

tiv
e

w
eb

si
te

 a
nd

co

m
m

un
ity

-P

op
ul

ar
 fo

r
ne

tw
or

ke
d

ap
p

-A
PI

-C

om
pl

ex
 A

PI
 w

ith

m
an

y
pr

ot
oc

ol
s

-
Ja

va
 A

PI

-
C

om
pl

ex
 A

PI

-
W

SR
F

re
fa

ct
or

iz
at

io
n

m
ak

es
 it

 c
le

ar
er

-N
ot

 m
od

ul
ar

 in

ge
ne

ra
l

-
A

llo
w

s n
ew

tra

ns
po

rts
 to

 b
e

pl
ug

ge
d

-S
im

pl
e

A
PI

-

-C
om

pl
et

e
an

d
fu

nc
tio

na
l

-
Sp

ec
ifi

c
su

pp
or

t
fo

r n
et

w
or

ke
d

ap
p

-M
od

ul
ar

ity
 &

in

te
gr

ab
ili

ty

-P
2P

 st
an

da
rd

pr

ot
oc

ol
s

-A
llo

w
s f

ew

ex
te

ns
io

ns

-I
nt

er
op

er
ab

ili
ty

-H

TT
P

/X
M

L
-L

ac
ks

 st
an

da
rd

s
fo

r c
om

po
si

te
 o

r
fe

de
ra

te
d

U
D

D
Is

--
G

rid
 S

er
vi

ce
s

in
te

ro
pe

ra
bi

lit
y

-

-P
2P

 st
an

da
rd

pr

ot
oc

ol
s

-A
llo

w
s f

ew

ex
te

ns
io

ns

-
M

od
ul

ar
:

m
in

im
um

 c
or

e
+

re
us

ab
le

-P
la

tfo
rm

in

de
pe

nd
en

ce

-O
bj

ec
t o

rie
nt

ed

an
d

ric
h

cl
as

s
lib

ra
ry

-A

va
ila

bl
e

to
ol

in
g

-F
ew

 o
r n

o
to

ol
in

g
-

Ex
te

ns
iv

e
-

-F
ew

 o
r i

ne
xi

st
en

t
-W

SR
F

 le
ve

ra
ge

s
W

S
to

ol
in

g

-S
ni

ff
er

 a
nd

de

bu
gg

er
 fo

r M
A

S
pr

ov
id

ed

-S
om

e
su

pp
or

t f
or

M

A
S

vi
su

al
iz

at
io

n
-A

 lo
t o

f t
oo

ls

-M
an

y
ID

Es

-D
eb

ug
ge

rs

-S
pe

ci
fic

at
io

ns
 &

-D

oc
um

en
ta

tio
n

-C
om

pl
ex

sp

ec
ifi

ca
tio

n
-A

bu
nd

an
t

do
cu

m
en

ta
tio

n

-E
xt

en
si

ve

-S
om

et
im

es
 to

o
co

m
pl

ex

sp
ec

ifi
ca

tio
ns

-T
oo

 c
om

pl
ex

sp

ec
ifi

ca
tio

ns

-W
SR

F
al

le
vi

at
es

th

is
 p

ro
bl

em

-C
om

pl
ex

 F
IP

A

Sp
ec

ifi
ca

tio
n

-A

bu
nd

an
t

do
cu

m
en

ta
tio

n

-
To

o
si

m
pl

e
do

cu
m

en
ta

tio
n

-E
xt

en
si

ve
 a

nd

te
st

ed

do
cu

m
en

ta
tio

n

EU
-I

ST
 P

ro
je

ct
 IS

T-
FP

6-
00

37
69

 C
A

TN
ET

S
C

A
TN

ET
S

- E
va

lu
at

io
n

of
 th

e
C

at
al

la
xy

 p
ar

ad
ig

m
 fo

r d
ec

en
tra

liz
ed

 o
pe

ra
tio

n
of

 d
yn

am
ic

 a
pp

lic
at

io
n

ne
tw

or
ks

C
op

yr
ig

ht
 ©

 2
00

5
U

PC

65

T
A

B
L

E
 3

D
E

V
E

L
O

PE
R

V

IE
W

/P
L

A
T

FO
R

M

JX
T

A

W
eb

 S
er

vi
ce

s

(J
A

X
-R

PC
 Im

p)

W
SR

F
/O

G
SA

JA

D
E

D

IE
T

J2

SE

-T
ut

or
ia

ls
, b

oo
ks

D

ev
el

op
er

s s
up

. &

m
ai

lin
g-

lis
ts

--
 S

om
e

ex
is

te
nt

--

 T
oo

 si
m

pl
e

ex
am

pl
es

, f
ew

tro

ub
le

sh
oo

tin
g

se
ct

io
ns

--
 A

 lo
t t

o
try

--

 M
an

y
de

ve
lo

pe
rs

in

 W
S

co
m

m
un

ity

--
 V

er
y

po
or

--

 T
oo

 m
an

y
de

sc
rip

tio
n

pa
pe

rs
,

fe
w

 c
od

e
ex

am
pl

es

--
 S

om
e

ex
is

te
nt

--

 C
ov

er
s o

nl
y

ba
si

c
is

su
es

--

 A
ct

iv
e

m
ai

lin
g

lis
t

--
 Ju

st
 o

ne
 tu

to
ria

l
--

 V
er

y
go

od

--
 E

xt
en

si
ve

 a
nd

w

el
l p

ro
ve

d
--

 M
an

y
re

us
ab

le

co
de

 a
va

ila
bl

e
on

lin
e

EU-IST Project IST-FP6-003769 CATNETS
CATNETS - Evaluation of the Catallaxy paradigm for decentralized operation of dynamic application networks

Copyright © 2005 UPC 66

ANNEX 3.2: Web Services Standards

• SOAP: W3C (www.w3c.org) standard

SOAP Version 1.2 (SOAP) is a lightweight protocol intended for exchanging
structured information in a decentralized, distributed environment. It uses XML
technologies to define an extensible messaging framework providing a message
construct that can be exchanged over a variety of underlying protocols. The
framework has been designed to be independent of any particular programming
model and other implementation specific semantics.

Two major design goals for SOAP are simplicity and extensibility (see XMLP
Requirements [XMLP Requirements]). SOAP attempts to meet these goals by
omitting, from the messaging framework, features that are often found in
distributed systems. Such features include but are not limited to "reliability",
"security", "correlation", "routing", and "Message Exchange Patterns" (MEPs).
While it is anticipated that many features will be defined, this specification
provides specifics only for two MEPs. Other features are left to be defined as
extensions by other specifications.”

(http://www.w3.org/TR/soap12-part1)

• WSDL: W3C (www.w3c.org) standard

WSDL is an XML format for describing network services as a set of endpoints
operating on messages containing either document-oriented or procedure-
oriented information. The operations and messages are described abstractly,
and then bound to a concrete network protocol and message format to define an
endpoint. Related concrete endpoints are combined into abstract endpoints
(services). WSDL is extensible to allow description of endpoints and their
messages regardless of what message formats or network protocols are used to
communicate.

A WSDL document defines services as collections of network endpoints, or
ports. In WSDL, the abstract definition of endpoints and messages is separated
from their concrete network deployment or data format bindings. This allows
the reuse of abstract definitions: messages, which are abstract descriptions of
the data being exchanged, and port types which are abstract collections of
operations. The concrete protocol and data format specifications for a particular
port type constitute a reusable binding. A port is defined by associating a
network address with a reusable binding, and a collection of ports define a
service. Hence, a WSDL document uses the following elements in the
definition of network services:

(http://www.w3.org/TR/wsdl)

• UDDI: Oasis (www.oasis-open.org) standard

Universal Description, Discovery and Integration, or UDDI, is the name of a
group of web-based registries that expose information about a business or other
entity and its technical interfaces (or API’s). These registries are run by

EU-IST Project IST-FP6-003769 CATNETS
CATNETS - Evaluation of the Catallaxy paradigm for decentralized operation of dynamic application networks

Copyright © 2005 UPC 67

multiple Operator Sites, and can be used by anyone who wants to make
information available about one or more businesses or entities, as well as
anyone that wants to find that information. There is no charge for using the
basic services of these operator sites.

By accessing any of the public UDDI Operator Sites, anyone can search for
information about web services that are made available by or on behalf of a
business. The benefit of having access to this information is to provide a
mechanism that allows others to discover what technical programming
interfaces are provided for interacting with a business for such purposes as
electronic commerce, etc. The benefit to the individual business is increased
exposure in an electronic commerce enabled world.

The information that a business can register includes several kinds of simple
data that help others determine the answers to the questions “who, what, where
and how”. Simple information about a business – information such as name,
business identifiers (D&B D-U-N-S Number®, etc.), and contact information
answers the question “Who?” “What?” involves classification information that
includes industry codes and product classifications, as well as descriptive
information about the services that the business makes available. Answering
the question “Where?” involves registering information about the URL or email
address (or other address) through which each type of service is accessed.
Finally, the question “How?” is answered by registering references to
information about interfaces and other properties of a given service. These
service properties describe how a particular software package or technical
interface functions. These references are called tModels in the UDDI
documentation

(http://uddi.org/pubs/ProgrammersAPI-V2.04-Published-20020719.htm)

• WS-Security: is a OASIS (www.open-oasis.org) standard
This specification proposes a standard set of SOAP [SOAP11, SOAP12]
extensions that can be used when building secure Web services to implement
message content integrity and confidentiality. This specification refers to this
set of extensions and modules as the “Web Services Security: SOAP Message
Security” or “WSS: SOAP Message Security”.

This specification is flexible and is designed to be used as the basis for securing
Web services within a wide variety of security models including PKI, Kerberos,
and SSL. Specifically, this specification provides support for multiple security
token formats, multiple trust domains, multiple signature formats, and multiple
encryption technologies. The token formats and semantics for using these are
defined in the associated profile documents.

This specification provides three main mechanisms: ability to send security
tokens as part of a message, message integrity, and message confidentiality.
These mechanisms by themselves do not provide a complete security solution
for Web services. Instead, this specification is a building block that can be used
in conjunction with other Web service extensions and higher-level application-
specific protocols to accommodate a wide variety of security models and
security technologies.

These mechanisms can be used independently (e.g., to pass a security token) or
in a tightly coupled manner (e.g., signing and encrypting a message or part of a

EU-IST Project IST-FP6-003769 CATNETS
CATNETS - Evaluation of the Catallaxy paradigm for decentralized operation of dynamic application networks

Copyright © 2005 UPC 68

message and providing a security token or token path associated with the keys
used for signing and encryption).

(http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-soap-message-
security-1.0.pdf)

• WS-Trust (non standard specification proposed by Microsoft and IBM)

WS-Trust will describe the model for establishing both direct and brokered
trust relationships (including third parties and intermediaries).

This specification describes a model for brokering trust through the creation of
Security Token Services (STS). These security token issuance services build on
WS-Security to transfer the requisite security tokens in a manner that ensures
the integrity and confidentiality of those tokens.

(http://www-106.ibm.com/developerworks/library/ws-trust/)

• WS.-Notification: W3C (www.w3c.org) standard not yet approved.

The Event-driven, or Notification-based, interaction pattern is a commonly
used pattern for inter-object communications. Examples exist in many domains,
for example in publish/subscribe systems provided by Message Oriented
Middleware vendors, or in system and device management domains.

The WS-Notification family of specifications defines a standard Web services
approach to notification. It defines the normative Web services interfaces for
two of the important roles in the notification pattern, namely the
NotificationProducer and NotificationConsumer roles. This specification
includes standard message exchanges to be implemented by service providers
that wish to act in these roles, along with operational requirements expected of
them

In addition, this specification defines the Web services interface for the
NotificationBroker. A NotificationBroker is an intermediary, which, among
other things, allows publication of messages from entities that are not
themselves service providers. It includes standard message exchanges to be
implemented by NotificationBroker service providers along with operational
requirements expected of service providers and requestors that participate in
brokered notifications.

(http://docs.oasis-open.org/wsn/2004/06/wsn-WS-BaseNotification-1.2-draft-
03.pdf,

http://docs.oasis-open.org/wsn/2004/06/wsn-WS-BrokeredNotification-1.2-
draft-01.pdf)

• WS-Addressing: is a W3C (www.w3c.org) standard.

WS-Addressing provides transport-neutral mechanisms to address Web
services and messages. Specifically, this specification defines XML elements to
identify Web service endpoints and to secure end-to-end endpoint identification
in messages. This specification enables messaging systems to support message
transmission through networks that include processing nodes such as endpoint
managers, firewalls, and gateways in a transport-neutral manner.

Web Services Addressing (WS-Addressing) defines two interoperable
constructs that convey information that is typically provided by transport

EU-IST Project IST-FP6-003769 CATNETS
CATNETS - Evaluation of the Catallaxy paradigm for decentralized operation of dynamic application networks

Copyright © 2005 UPC 69

protocols and messaging systems. These constructs normalize this underlying
information into a uniform format that can be processed independently of
transport or application. The two constructs are endpoint references and
message information headers.

A Web service endpoint is a (referenceable) entity, processor, or resource
where Web service messages can be targeted. Endpoint references convey the
information needed to identify/reference a Web service endpoint, and may be
used in several different ways: endpoint references are suitable for conveying
the information needed to access a Web service endpoint, but are also used to
provide addresses for individual messages sent to and from Web services. To
deal with this last usage case this specification defines a family of message
information headers that allows uniform addressing of messages independent of
underlying transport. These message information headers convey end-to-end
message characteristics including addressing for source and destination
endpoints as well as message identity.

Both of these constructs are designed to be extensible and re-usable so that
other specifications can build on and leverage endpoint references and message
information headers.

(http://www.w3.org/Submission/ws-addressing/)

• WSRF: Oasis (www.oasis-open.org) family of standards to manage stateful
services

WS-Resource specification defines what the relationship between Web services
and stateful resources is. This relationship is described as the WS-Resource
Access Pattern. In the WS-Resource Access Pattern, messages to a Web service
may include a component that identifies a stateful resource to be used in the
execution of the message. The composition of a stateful resource and a Web
service is a WS-Resource.

For more information see WSRF/OGSA subsection 3.2.3, or available links:

(http://docs.oasis-open.org/wsrf/2004/11/wsrf-WS-Resource-1.2-draft-02.pdf,

http://docs.oasis-open.org/wsrf/2004/11/wsrf-WS-ResourceProperties-1.2-
draft-05.pdf,

http://docs.oasis-open.org/wsrf/2004/11/wsrf-WS-ServiceGroup-1.2-draft-
03.pdf)

• WS-Agreement: Global Grid Forum (www.ggf.org)

The objective of the WS-Agreement specification is to define a language and a
protocol for advertising the capabilities of service providers and creating
agreements based on creational offers, and for monitoring agreement
compliance at runtime.

The goals of WS-Agreement are to standardize the terminology, concepts,
overall agreement structure with types of agreement terms, agreement template
with creation constraints and a set of port types and operations for creation,
termination and monitoring of agreements, including WSDL needed to express
the message exchanges and resources needed to express the state.

EU-IST Project IST-FP6-003769 CATNETS
CATNETS - Evaluation of the Catallaxy paradigm for decentralized operation of dynamic application networks

Copyright © 2005 UPC 70

(http://www.ggf.org/Public_Comment_Docs/Documents/Public_Comment_200
4/WS-AgreementSpecification_v2.pdf)

• WS-Reliability: Oasis (www.oasis-open.org) standard for web services reliable
messaging.

WS-Reliability is a SOAP-based specification that fulfils reliable messaging
requirements critical to some applications of Web Services. SOAP over HTTP
is not sufficient when an application-level messaging protocol must also
guarantee some level of reliability and security. This specification defines
reliability in the context of current Web Services standards.

Reliable Messaging (RM) is the execution of a transport-agnostic, SOAP-based
protocol providing quality of service in the reliable delivery of messages.
There are two aspects to Reliable Messaging; both must be equally addressed
when specifying RM features: (1) The “wire” protocol aspect. RM is a protocol,
including both specific message headers and specific message choreographies,
between a sending party and a receiving party. (2) The quality of service (QoS)
aspect. RM defines a quality of messaging service to the communicating parties,
viz., the users of the messaging service. This assumes a protocol between these
users and the provider of this service (i.e., the reliable messaging middleware).
This protocol is defined by a set of abstract operations: Submit, Deliver, Notify,
and Respond.

Reliable messaging requires the definition and enforcement of contracts
between:

The Sending and Receiving message processors (contracts about the wire
protocol)

The messaging service provider and the users of the messaging service
(contracts about quality of service).

(http://docs.oasis-open.org/wsrm/2004/06/WS-Reliability-CD1.086.pdf

EU-IST Project IST-FP6-003769 CATNETS
CATNETS - Evaluation of the Catallaxy paradigm for decentralized operation of dynamic application networks

Copyright © 2005 UPC 71

ANNEX 3.3: WSRF Related Standards
The WSRF specification: The Web Services Resources Framework is a collection of
five different specifications.

• WS-ResourceProperties: A resource is composed of zero or more resource
properties. For example, in the figure shown above each resource has three
resource properties: Filename, Size, and Descriptors. WS-ResourceProperties
specifies how resource properties are defined and accessed. As we'll see later on
when we start programming, the resource properties are defined in the Web
service's WSDL interface description.

• WS-ResourceLifecycle: Resources have non-trivial lifecycles. In other words,
they're not a static entity that is created when our server starts and destroyed
when our server stops. Resources can be created and destroyed at any time. The
WS-ResourceLifecycle supplies some basic mechanisms to manage the lifecycle
of our resources.

• WS-RenewableReferences: Once we have a WS-Resource's endpoint reference,
there might be some cases where we'll need to renew that reference if it becomes
invalid. The WS-RenewableReferences specification defines the mechanisms to
do this.

• WS-ServiceGroup: We will often be interested in managing groups of Web
Services or groups of WS-Resources, and performing operations such as 'add
new service to group', 'remove this service from group', and (more importantly)
'find a service in the group that meets condition FOOBAR'. The WS-
ServiceGroup specifies how exactly we should go about grouping services or
WS-Resources together. Although the functionality provided by this
specification is very basic, it is nonetheless the base of more powerful discovery
services (such as GT4's IndexService) which allow us to group different services
together and access them through a single point of entry (the service group).

• WS-BaseFaults: Finally, this specification aims to provide a standard way of
reporting faults when something goes wrong during a WS-Service invocation.

EU-IST Project IST-FP6-003769 CATNETS
CATNETS - Evaluation of the Catallaxy paradigm for decentralized operation of dynamic application networks

Copyright © 2005 UPC 72

4 Conclusions

4.1 Conclusions on the architecture design process

We consider that the proposed architecture brigs a set of important characteristics to
Catnets, namely a appropriated separation of concerns that will facilitate the
implementation process, a great deal of flexibility and a strong “agnosticism” regarding
the underlying platforms and the application scenario, which will make more adaptable
to changing environments.

However, there are some open issues that should be addressed during the detailed
middleware design:

• Lack of standards for APIs: there are no standard application interfaces for
some critical functions like P2P overlay management or for communication
primitives. This could limit the experimentation with different middleware
toolkits. For example, changing the overlay management from JXTA to
FreePastry might require an intensive re-work of the code that depends on
this functionality. One possible approach to overcome this is to develop a set
of abstract APIs and map them to each implementation, but the risk is to find
discrepancies in the semantic that might result impossible to unify under a
single model or to end up with functions with a semantic so generic that
results unintelligible.

• Need for a flexible framework for resource management. The ultimate
function of the Catallactic middleware is to offer a platform for
implementing resource allocation mechanisms. Therefore, the integration
with the resource managers offered by the diverse base platforms is a critical
feature. However, each base platform will use a different resource
management mechanism for resource allocation and resource monitoring.
This lead to the need for a flexible framework that allows a consistent view
and management of resources using a uniform set of mechanisms.

• Complexity of the design of systems as a group of simple interacting agents
with emergent properties. There are no proven methodologies to
systematically address the design and implementation problems derived from
such a radical change in software engineering, where basic systems
properties are emergent, instead of being a product of carefully designed and
predictable mechanism

4.2 Conclusions on the middleware toolkit selection
process

The middleware toolkit selection process was carried out taking into account three
different but related aspects, which are potential applicaction scenarios, software
architecture, and the evaluation of a number of middleware toolkits.

EU-IST Project IST-FP6-003769 CATNETS
CATNETS - Evaluation of the Catallaxy paradigm for decentralized operation of dynamic application networks

Copyright © 2005 UPC 73

Concerning the evaluation, six toolkits were selected and reviewed: DIET and JADE
agent platforms, J2SE, WSRF/OGSA, Web Services and JXTA. The evaluation
includes their functional properties according to the software architecture defined for
Catnets, their technical characteristics and their suitability as a development toolkit.

From the functional view we conclude that complementary features between the
middleware toolkits exist, which should be exploited to build the CATNETS
middleware. The flexibility of the proposed architecture should allow to use it for
different ALN domains.

Concerning technical features, the solutions provided by the different candidates could
also be complementary, in terms of scalability, messaging performance, discovery
performance and interoperability. Therefore, to address the above requirements, it
would be necessary to compose an architecture that integrates the best implementation
approaches offered by the different toolkits. For example, performance enhancements
could be achieved by a light weighted agent implementation as in DIET, interoperability
would benefit from a web services based communication and scalability could be
achieved by a strong decentralization of key functions, as in JXTA.

We discard JADE for its lack of architectural flexibility, forced by FIPA standards
compliance, and its problems to scale. With respect of J2SE imposes a huge load of low
level implementation which should be avoided if possible using what is already
available in existing toolkits. Finally, we consider that proposed Web Services standards
are still immature and many lack any reference implementation, what will lead to a high
implementation risk and probably will require a lot of implementation effort. However,
basic Web Services standards like SOAP and WSDL, offer a good deal of
interoperability and will therefore still considered in the implementation.

A condensed view of all requirements, in functional, technical and development
views is obtained considering the following criteria:

• Modularity to achieve architectural flexibility required to implement the
Catallactic middleware into different platforms and using diverse middleware
toolkits

• Amenability: The middleware toolkit should be able to cover as much as
possible of the ALN domains, like Grid, P2P and CDN

• Performance & Scalability: The middleware toolkit should allow the
organization of a huge number of software agents in a decentralized way, and
their interactions.

• Completeness: The set of functionalities provided by the middleware toolkit
should allow covering as much as possible of the desired requirements of the
P2P Agent Layer).

• Development: In order to support the CATNETS middleware development, the
middleware toolkit should provide be mature, have a rich set of development
tools and good documentation.

Figure 4.1 shows an illustration of this unified view. Each of the pentagon axis
represents one of the criteria. For each criteria the two middleware toolkits best
covering it are indicated.

EU-IST Project IST-FP6-003769 CATNETS
CATNETS - Evaluation of the Catallaxy paradigm for decentralized operation of dynamic application networks

Copyright © 2005 UPC 74

Performance
& Scalability
•DIET
•JXTA

Modularity
•J2SE
•DIET

Completeness
•OGSA/WSRF
•JXTA

Amenability
•WS
•OGSA/WSRF

Development
•WS
•Java

Architectural
flexibility

Richness of
functionalities

Susceptible for
implementation
in ALN scenarios

Maturity and
Richness of
development
tools

Decentralized
management of
huge number
of agents

Performance
& Scalability
•DIET
•JXTA

Modularity
•J2SE
•DIET

Completeness
•OGSA/WSRF
•JXTA

Amenability
•WS
•OGSA/WSRF

Development
•WS
•Java

Architectural
flexibility

Richness of
functionalities

Susceptible for
implementation
in ALN scenarios

Maturity and
Richness of
development
tools

Decentralized
management of
huge number
of agents

Figure 4.1. Condensed view of the key middleware toolkit evaluation criteria

It can be seen in the previous figure that CATNETS middleware will be composition of
different middleware toolkits, like DIET with JXTA and WSRF/OGSA, which achieve
a good balance between the functional and non functional requirements.

Tests we carried out on middleware toolkits confirm the feasibility of this composition,
in the sense that we could integrate JXTA Discovery with the DIET Agents platform.
Also the invocation of Grid Services from Java applications using the Java Globus API
has been tested.

The actual composition of the “proof of concept” middleware, depends on the
characteristics of the application to be used in CATNETS. Once the requirements
imposed by such application are determined, middleware toolkits can be matched with
application requirements.

4.3 Future steps

Currently we work on a prototype to validate the architecture presented in this
document. This prototype is oriented towards Grid scenario using the with DIET, JXTA
and Globus toolkits. The prototype will provide additional insight into technical and
functional properties which should be useful to confirm the feasibility of the software
architecture. The prototype should have a balance between efficiency in execution and
the flexibility to experiment with different implementation approaches or tools.
Efficiency can be achieved by using simple and direct designs approaches that takes
advantage of features and mechanisms optimized for the specific implementation

EU-IST Project IST-FP6-003769 CATNETS
CATNETS - Evaluation of the Catallaxy paradigm for decentralized operation of dynamic application networks

Copyright © 2005 UPC 75

platform, whereas the flexibility requires generic mechanism and more complex designs
patterns.

Experimentation will be important for to test critical features which will have a
significant impact on the architecture, specially the overlay network and the object
discovery. In this area, we will consider implementations like FreePastry, P2PSimple
and P2P-DIET.

We expect that the results form experiments with this prototype will benefit the
specification of the components made in deliverable D3.2. Secondly, it will reveal
implementation issues and provide a framework to evaluate different design
alternatives.

ISSN

Die Arbeit definiert Anforderungen an Grid und
Peer-to-Peer Middleware Architekturen und
analysiert diese auf ihre Eignung für die
prototypische Umsetzung der Katallaxie. Eine
Middleware-Architektur für die Umsetzung der
Katallaxie in Application Layer Netzwerken wird
vorgestellt.

1864-9300

