

The Development of the Earth Simulator

Shigemune Kitawaki Earth Simulator Center Japan Marine Science and Technology Center October 14, 2002

Contents

Earth Simulator Project Requirement & Design target Implementation of hardware Installation of hardware Software & Achieved Performance Activities of Earth Simulator Center

Earth Simulator Center

LACSI Symposium 2002

Earth Simulator Project

The Earth Simulator (ES) is an ultra high speed parallel supercomputer.

• The development of ES had started in 1997 to make an ultra high speed supercomputer for a comprehensive understanding of the global changes such as global warming, as a project of the former STA (Science and Technology Agency of Japan, now MEXT: Ministry of Education, Culture, Sports, Science and Technology).

• It has been successfully completed achieving 40Tflops theoretical peak performance at the end of February, 2002.

Earth Simulator Center

LASCI Symposium 2002

Requirement & Design target

Requirements for the Earth Simulator

- Processor Type (scalar processor or vector processor)

 We selected vector type processors.
 NCAR reported CCM2 (NCAR Climate Model) shows more than 30% of peak performance on vector processor system, and less than 10% on scalar processor system.

 Total Peak Performance

 More than 32 Tflops

 Total Main memory size

 More than 8 TB

 Type of interconnection network and aggregate switching capacity

 We desired single stage crossbar network with more than 4 TB/sec of aggregate switching capacity.
 A single-stage crossbar network is superior in flexibility of allocating processor nodes to application programs and also in flexibility of executing many paradigm of applications.

 Performance of Atmospheric General Circulation Model (AGCM)

 More than 5 sustained Tflops (At least 1000 times faster than those of CRAY)
 - More than 5 sustained Tflops (At least 1000 times faster than those of CRAY C90)

We estimated the performance of AGCM of 6144x3074x255 mesh (T2047L255) as 16% of total peak performance, and also the main memory requirement as 8 TB.

Earth Simulator Center

LASCI Symposium 2002

5

Schedule	1997	1998	1999	2000	2001	2002
Hardware System Conceptual design Basic design Design of parts and packaging R&D for parts and packaging Detailed design Manufacture Installation IN cables IN&PN (test)				-	comp	letion
Software System (center routine) Basic design Detailed design Program development & test Peripheral Devices	•••••	···				
Facilities (Buildings)						
Application Software	·····					
Operation						

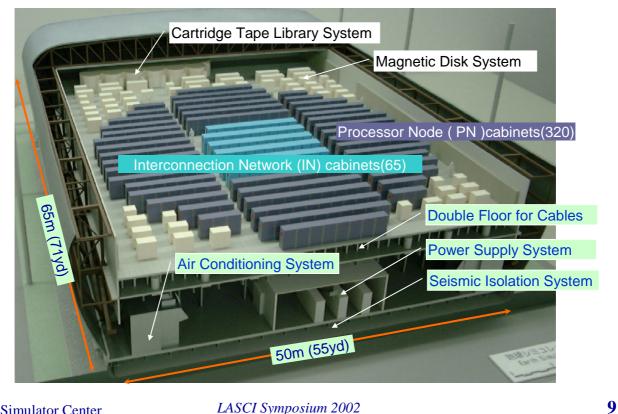
Earth Simulator Center

Earth simulator specifications

At the end of basic design stage NEC proposed specifications below, and the specifications of the Earth Simulator was decided as follows, except for the performance target of AGCM (remained as 5 Tflops).

Architecture :	A highly parallel vector processor system, consisting of 640 shared memory parallel vector processor nodes.
Total number of AP's:	5120
Total number of processor nodes :	640
Number of AP's for each PN:	8
Total peak performance:	40 Tflops
Peak performance of each PN:	64 Gflops
Peak performance of each AP:	8 Gflops
Total main memory size:	10 TB
Main memory size / PN:	16 GB
Total main memory bandwidth:	160TB/s
Main memory bandwidth / PN:	256GB/s
Main memory bandwidth / AP:	32GB/s
Interconnection network :	Single-Stage Crossbar Network
Aggregate switching capacity of inte	erconnection network : 7872GB/s
Inter-node bandwidth / PN: 12.3G	B/s (bi-sectional)
Performance estimation of AGCM c	ode: 10.4Tflops (6144x3074x255: T2047L255)

Earth Simulator Center

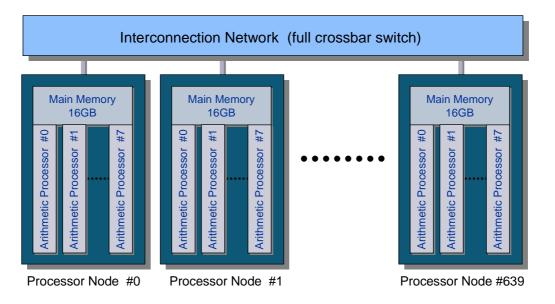

LASCI Symposium 2002

Implementation of hardware

Scale Model of the Earth Simulator

Earth Simulator Center

LASCI Symposium 2002

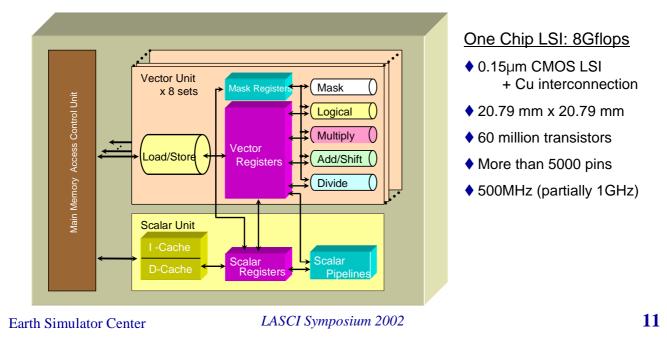


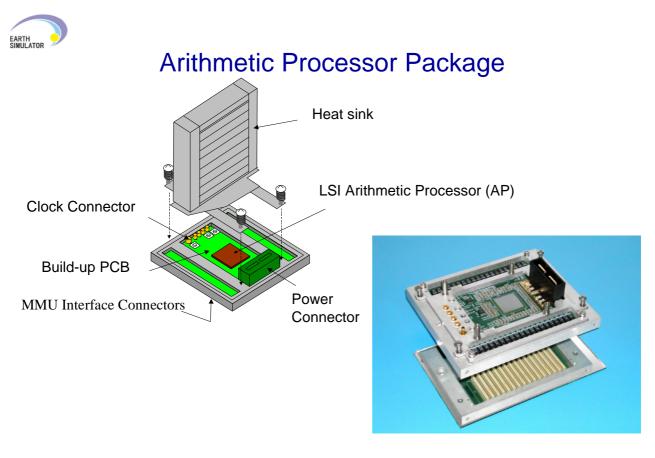
Configuration of the Earth Simulator

- Peak performance/AP
- 8Gflops 2

: 16GB

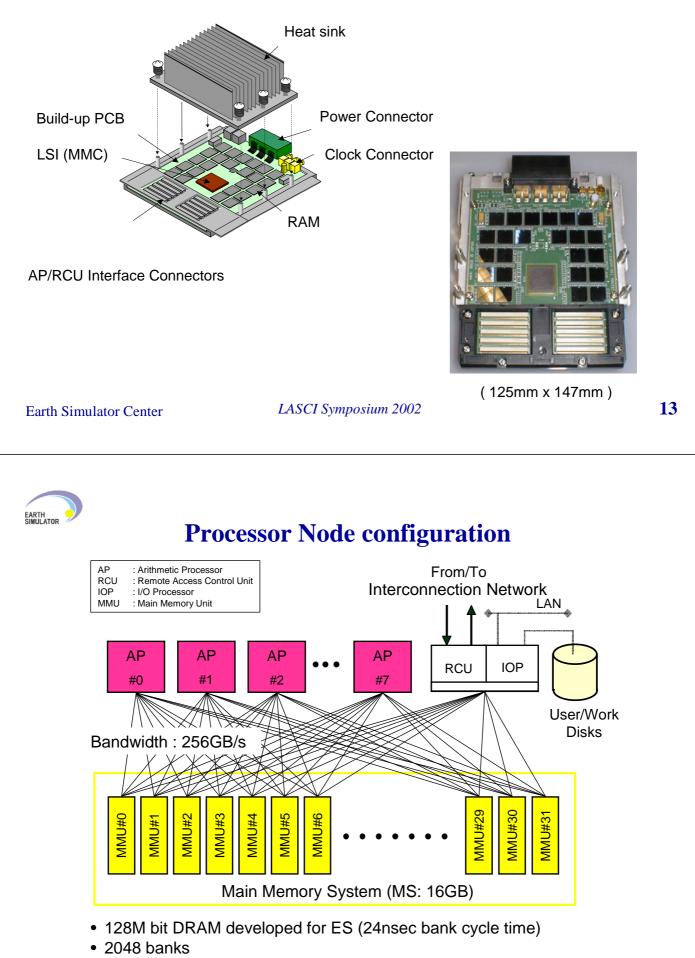
- Peak performance/PN
- : 64Gflops
- Main memory/PN
- Total number of APs
 - 5120 : Total number of PNs : 640
 - Total peak performance: 40Tflops
 - Total main memory : **10TB**

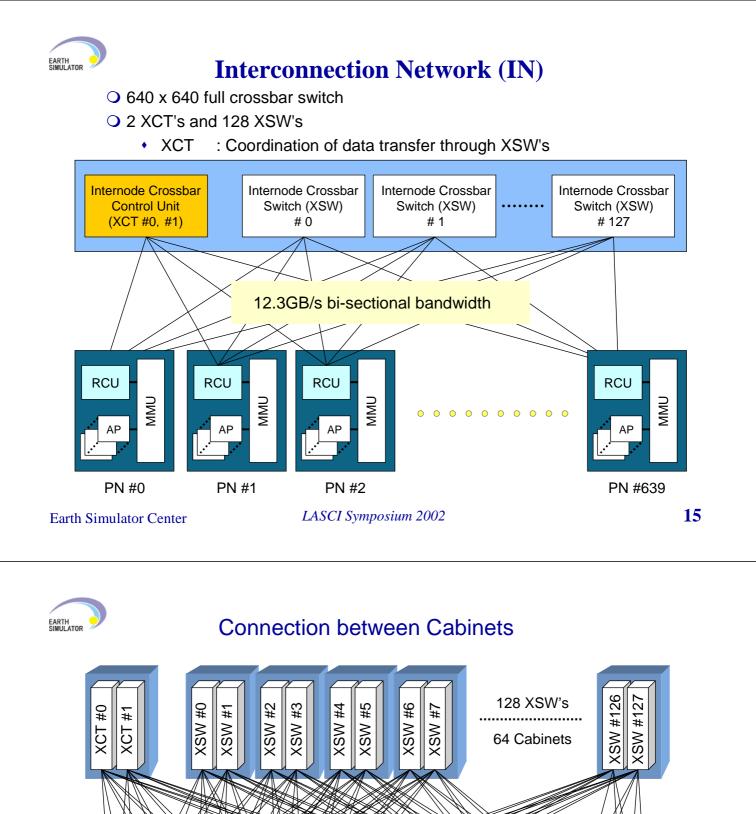



Arithmetic Processor configuration

- 4-way superscalar
- 128 scalar registers
- 64KB Instruction cache
- 64KB data cache

- 8 units of vector pipelines(VU)
 - 6 types of operation pipeline
 - 144KB vector registers
 - 256bit x 17 vector mask registers
- Main memory access contorl unit




(115mm x 139mm)

Earth Simulator Center

Main Memory Unit Package

#3

Z

#2

Z

Q

R

#1

Ч

640 PN's

320 Cabinets

PN #636

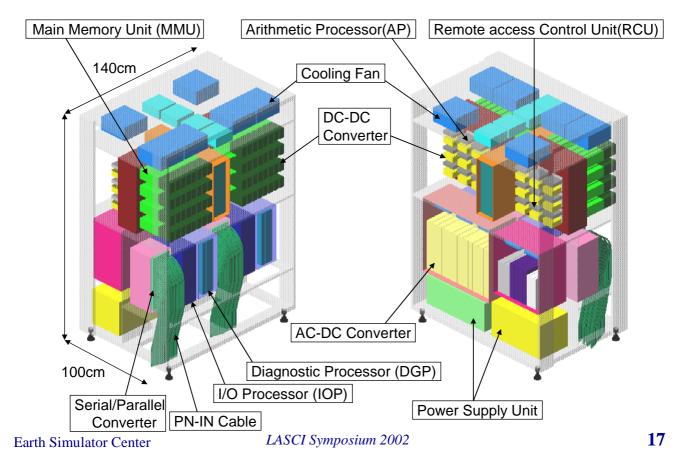
#637

Z

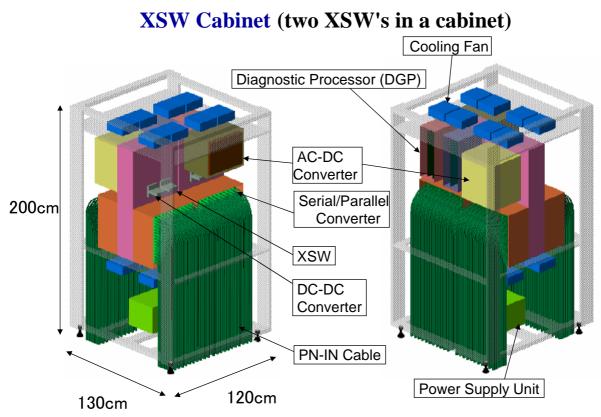
PN #638 PN #639

PN-IN Electric Cables : 640 x 130 = 83,200

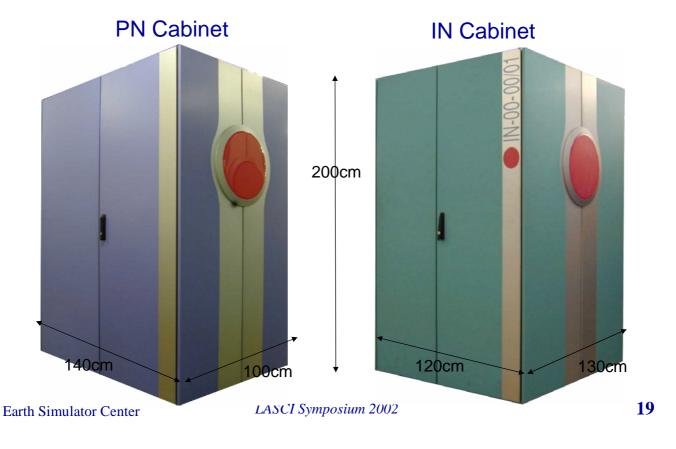
£5 #5


ЪЛ

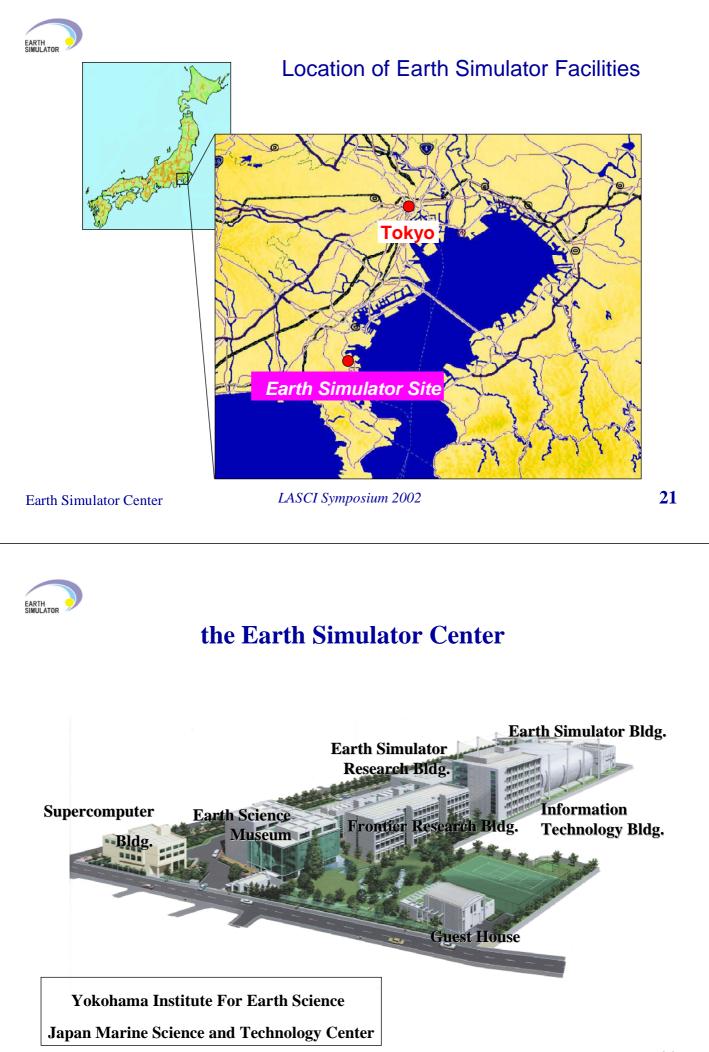
#4


Z

Processor-Node Cabinet (two nodes in a cabinet)



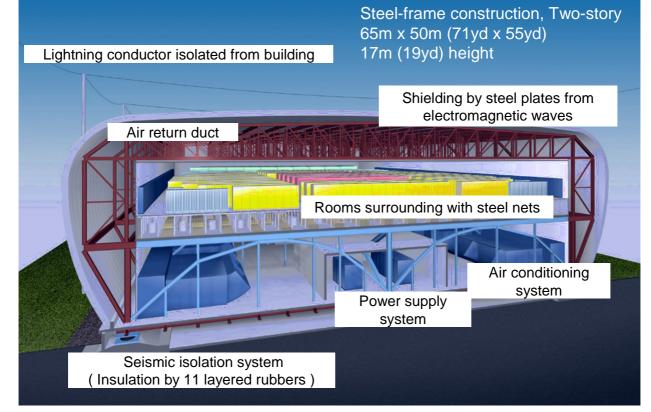
EARTH SIMULATOR



External appearance of Cabinets

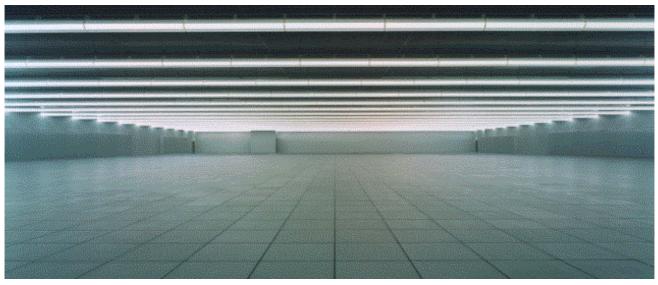
Installation of hardware

Earth Simulator Building


Earth Simulator Center

LASCI Symposium 2002

23



Features of Earth Simulator Building

Lighting of Computer Room

Lighting

- : Light propagation system inside a tube (255mm diameter, 44m(49yd) length, 19 tubes)
 : halogen lamps of 1kW
 : 300 lx at the floor in average
- Light source : ha Illumination : 30

Earth Simulator Center

LASCI Symposium 2002

Electric Cables Connecting Cabinets

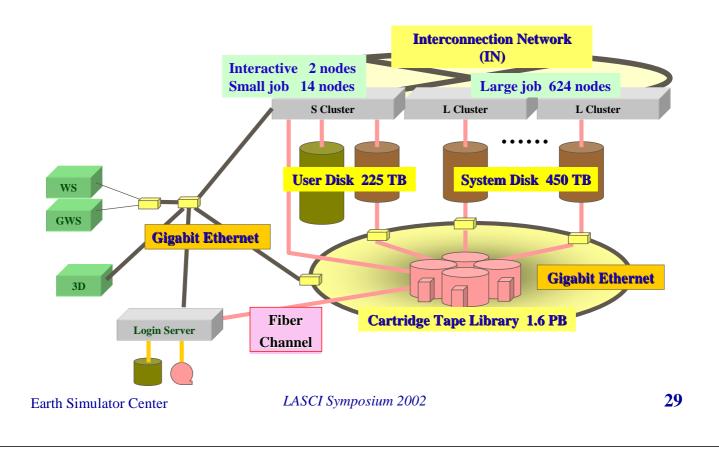
Earth Simulator at Completion

Earth Simulator Center

LASCI Symposium 2002

27

Another Photo of Earth Simulator

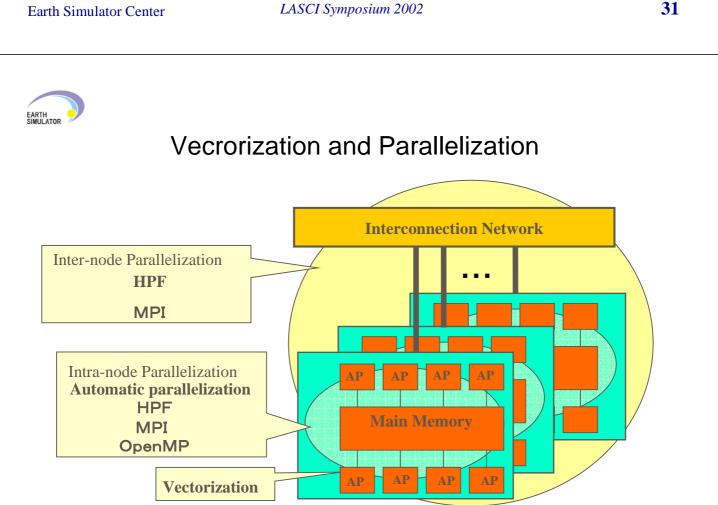


Earth Simulator Center

LASCI Symposium 2002

Connection among Peripherals

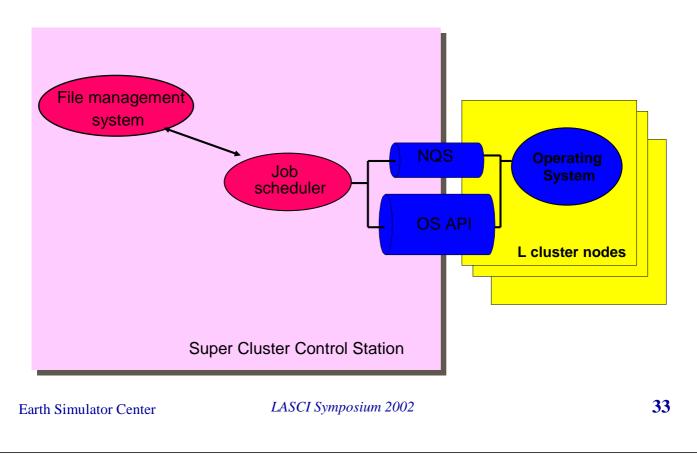
Software & Achieved Performance


Software Environment

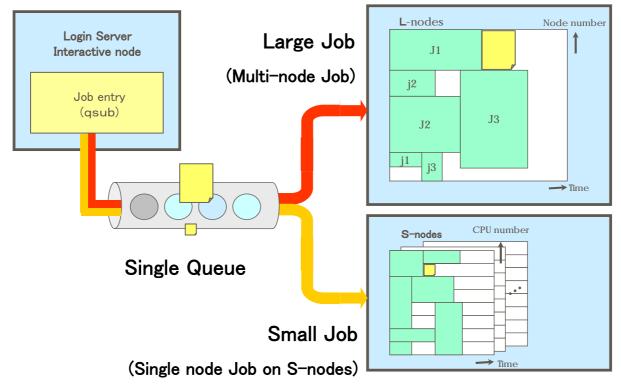
- Operating System
 - UNIX-based system (Enhanced version of NEC SUPER-UX)
 - Parallel file system (MPI-IO, HPF)
- **O** Programming Environment
 - Parallel programming environment ({Fortran90,C,C++}+MPI, HPF)
 - Tuning tools

○ Job scheduler

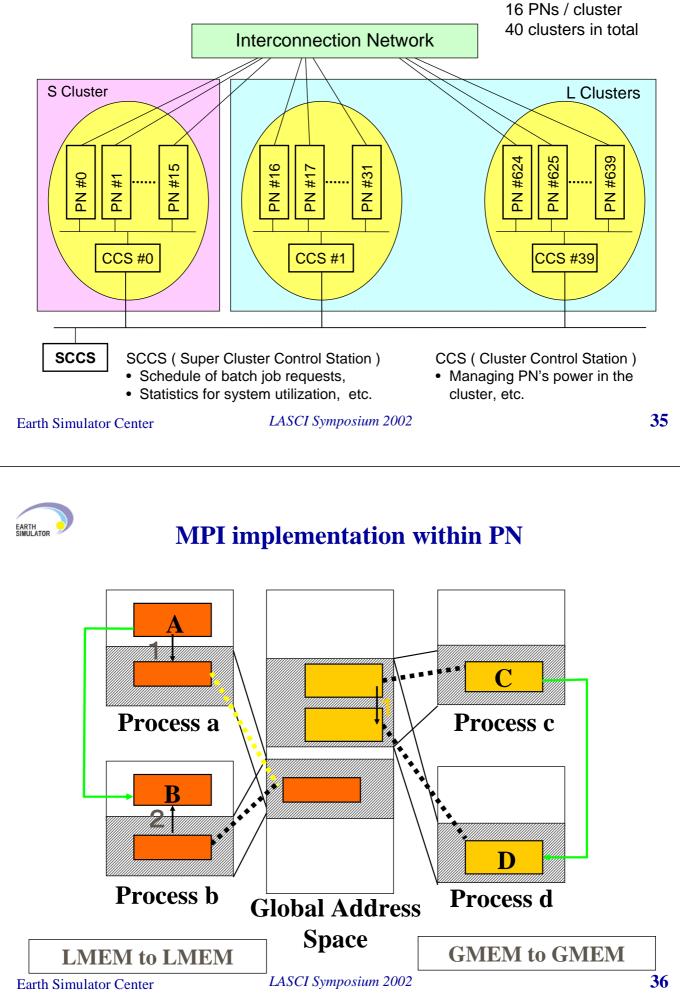
- Extension of NQS
- Running on the SCCS
- Job assignment to PN's with file loading to appropriate system disks


These software have a good scalability up to 640 nodes.

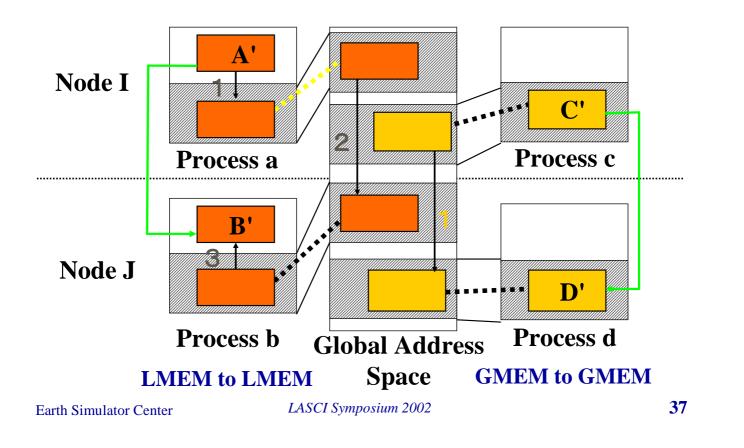
Processor Node

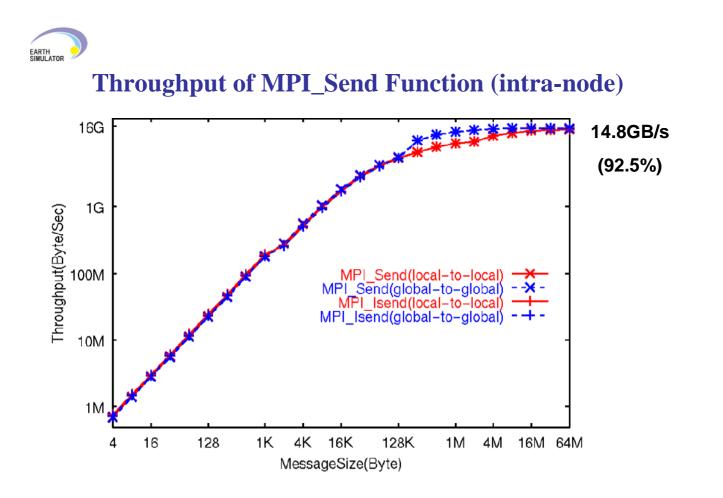


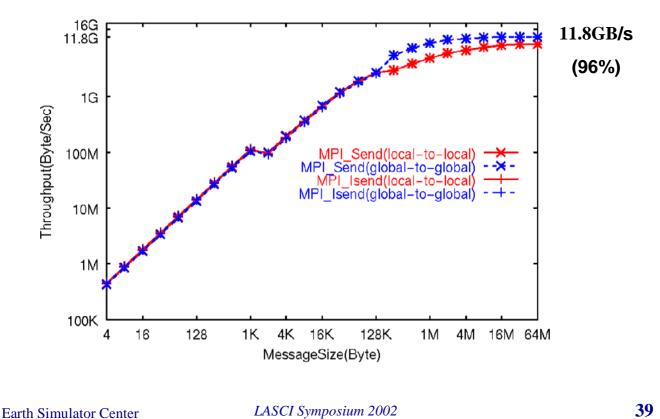
Job Scheduler


EARTH

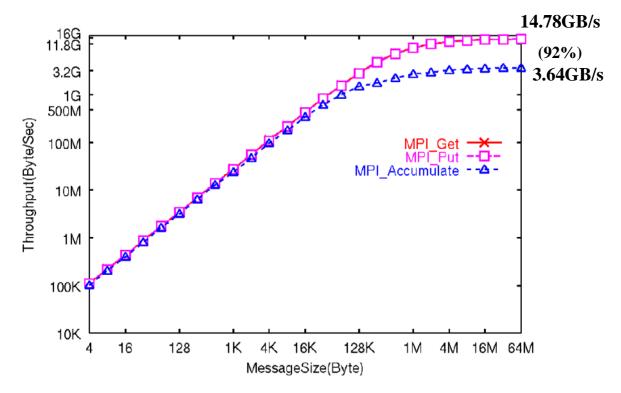
Batch Jobs

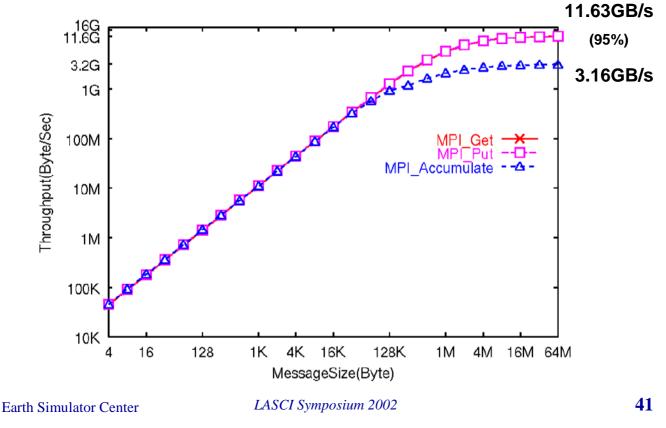



Cluster Structure in ES



MPI Implementation between PN's


Throughput of MPI_Send Function (inter-node)


EARTH SIMULATOR

Throughput of MPI-2 Functions (intra-node)

Latency of MPI Functions

Function name	Inter-node	Intra-node
MPI_send	5.58	1.38
MPI_Isend	5.90	1.75
MPI_Put	6.36	1.35
MPI_Get	6.68	1.27
MPI_Accumulate	7.65	3.87

(microseconds)

• The inter-node barrier synchronization uses special hardware and takes about 3.2 microsecond independent to the number of nodes.

AFES

AFES (AGCM For Earth Simulator) is an optimized code of the atmospheric general circulation model SAGCM for the Earth Simulator, which has been developed by the Earth Simulator Research and Development Center (ESRDC). The model SAGCM is based on the CCSR/NIES AGCM jointly developed by the Center for Climate System Research of the University of Tokyo and the National Institute for Environmental Studies, Japan.

AFES is a three-dimensional global hydrostatic model with spectral transform method, consists of dynamics and physics parts, and written in Fortran90.

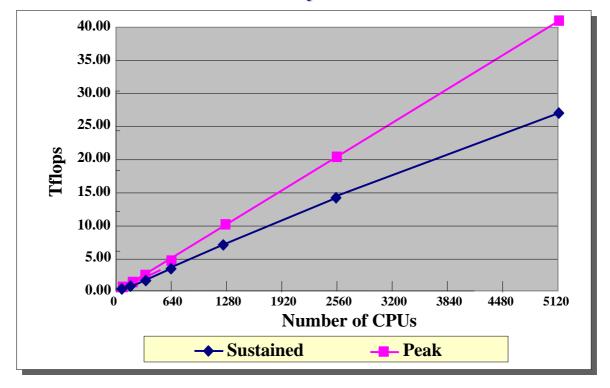
For three years, ESRDC optimized this program for the Earth Simulator using Fortran90 automatic vectorization, micro tasking, MPI, and so on.

We achieved the sustained performance 26.58 Tflops for the AFES (horizontal resolution : approx. 10 km) with full exploitation of the 640 nodes configuration. The resulting computing efficiency is 65 % of the peak performance.

Earth Simulator Center

LASCI Symposium 2002

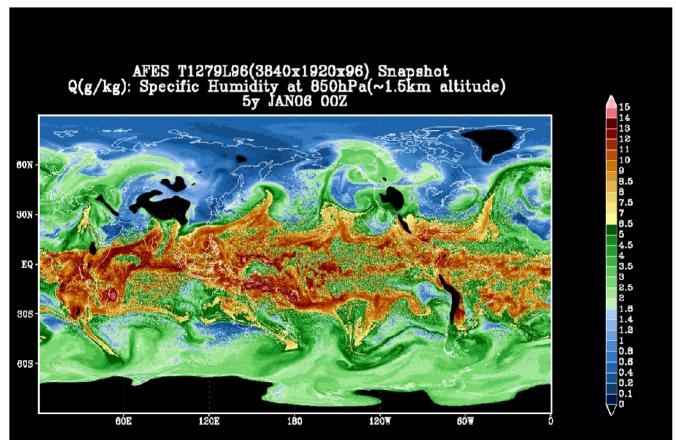
43



Performance Scalability of AFES (T1279L96)

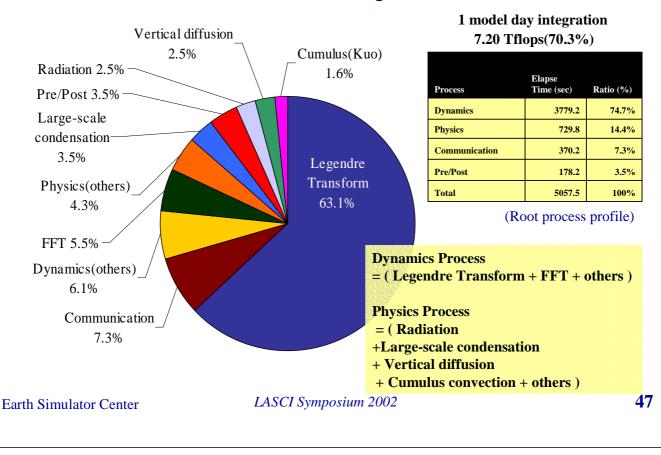
Total CPU	Node	CPU/Node	ELAPSE	Tfle	Ratio	
	node	CPU/INOUE	(sec)	Sustained	Peak	(%)
80	80	1	238.04	0.52	0.64	81.1
160	160	1	119.26	1.04	1.28	81.0
320	320	1	60.52	2.04	2.56	79.8
640	80	8	32.06	3.86	5.12	75.3
1280	160	8	16.24	7.61	10.24	74.3
2560	320	8	8.52	14.50	20.48	70.8
5120	640	8	4.65	26.58	40.96	64.9

Number of time integration steps : 10



Performance Scalability of AFES (T1279L96)

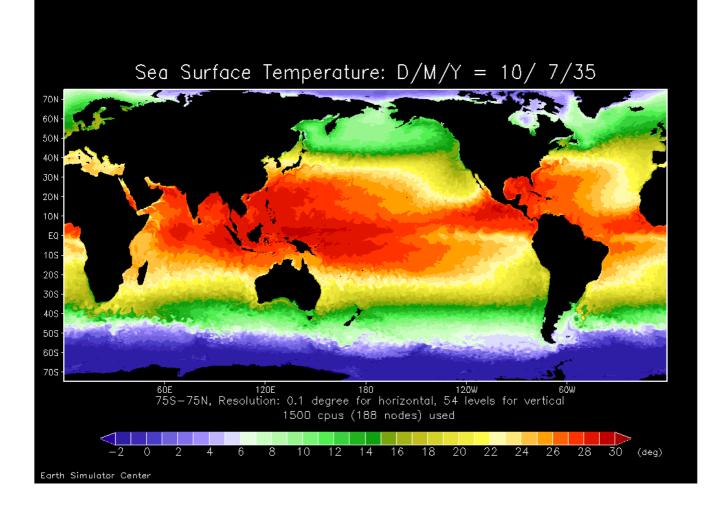
Earth Simulator Center


LASCI Symposium 2002

Horizontal resolution is 10.4 km at the equator. The number of vertical layers is 96 levels. A cumulus parameterization is Kuo scheme.

Using 1280cpus(160nodes) on the Earth Simulator, sustained performance is 7.2TFLOPS(70% of peak) and elapsed time is 5,054 seconds per 1 model day.

Cost profile of AFES (T1279L96) for a 1-day simulation on the ES (160 nodes * 8 CPUs per node =1280 CPUs)



EARTH SIMULATOR

MOM3

MOM3 :Oceanic General Circulation Model developed in GFDL, USA is optimized and parallelized for the Earth Simulator, by the Earth Simulator Research and Development Center (ESRDC). The test run using 175 nodes with eddyresolving resolution (0.1 degree) shows the Kuroshio Current and Gulf Stream and achieved 2.5Tflops (22% of the peak performance).

Achievements of the High Performance Fortran (HPF) for the Earth Simulator

- PFES (Oceanic General Circulation Model based on Princeton Ocean Model) achieved 9.85TFLOPS with 376 nodes (41% of the peak performance).
- Impact3D (Plasma fluid code using TVD scheme) achieved 14.9 TFLOPS with 512 nodes (45% of the peak performance).

Linpack (Highly Parallel Computing) Benchmark

We achieved **35.86 Tflops for the Linpack benchmark suite with full node configuration.** Nmax and N1/2 were 1075200 and 266240, respectively.

June 4, 2002

Table 3: Highly Parallel Computing

43

_					
Computer	Number of	R_{max}	N_{max}	$N_{1/2}$	R_{peak}
(Full Precision)	Processors	Gflop/s	order	order	Gflop/s
Earth Simulator ****	5120	35860	1075200	266240	40960
ASCI White-Pacific, IBM SP Power 3(375 MHz)	8000	7226	518096	179000	12000
Compaq AlphaServer SC ES45/EV68 1GHz	3016	4463	280000	85000	6032
Compaq AlphaServer SC ES45/EV68 1GHz	3024	4059	525000	105000	6048
Compaq AlphaServer SC ES45/EV68 1GHz	2560	3980	360000	85000	5120
IBM SP Power3 208 nodes 375 MHz	3328	3052.	371712		4992
Compaq Alphaserver SC ES45/EV68 1GHz	2048	2916	272000		4096
IBM SP Power3 158 nodes 375 MHz	2528	2526.	371712	102400	3792
ASCI Red Intel Pentium II Xeon core 333MHz	9632	2379.6	362880	75400	3207
IBM p690 cluster, Power 4 1.3 GHz	864	2310	275000	62000	4493
ASCI Blue-Pacific SST, IBM SP 604E(332 MHz)	5808	2144.	431344	432344	3868
ASCI Red Intel Pentium II Xeon core 333MHz	9472	2121.3	251904	66000	3154
Compaq Alphaserver SC ES45/EV68 1GHz	1520	2096	390000	71000	3040
IBM p690 cluster, Power 4 1.3 GHz	768	2002	252000		3994
IBM SP 112 nodes (375 MHz POWER3 High)	1792	1791	275000	275000	2688
HITACHI SR8000/MPP/1152(450MHz)	1152	1709.1	141000	16000	2074
HITACHI SR8000-F1/168(375MHz)	168	1653.	160000	19560	2016
ASCI Red Intel Pentium II Xeon core 333Mhz	6720	1633.3	306720	52500	2238
SGI ASCI Blue Mountain	5040	1608.	374400	138000	2520
IBM SP 328 nodes (375 MHz POWER3 Thin)	1312	1417.	374000	374000	1968
Intel ASCI Option Red (200 MHz Pentium Pro)	9152	1338.	235000	63000	1830
NEC SX-5/128M8(3.2ns)	128	1192.0	129536	10240	1280

Earth Simulator Center

LASCI Symposium 2002

EARTH

Table 3: Highly Parallel Computing

	0.		1	U			
Computer	Number of	Rmax	Nmax	N _{1/2}	Rpeak	Dmor/Dnook	
	Processors	Gflop/s	order	order	Gflop/s	Rmax/Rpeak	
Earth Simulator ****	5120	35860	1075200	266240	40960	87.5%	
ASCI White-Pacific, IBM SP Power 3(375 MHz)	8000	7226	518096	179000	12000	60.2%	
Compaq Alpha Server SC ES45/EV68 1GHz	3016	4463	280000	85000	6032	74.0%	
Compaq Alpha Server SC ES45/EV68 1GHz	3024	4059	525000	105000	6048	67.1%	
Compaq Alpha Server SC ES45/EV68 1GHz	2560	3980	360000	85000	5120	77.7%	
IBM SP Power3 208 nodes 375 MHz	3328	3052	371712		4992	61.1%	
Compaq Alpha server SC ES45/EV68 1GHz	2048	2916	272000		4096	71.2%	
IBM SP Power3 158 nodes 375 MHz	2528	2526	371712	102400	3792	66.6%	
ASCI Red Intel Pentium II Xeon core 333MHz	9632	2379.6	362880	75400	3207	74.2%	
IBM p690 cluster, Power 4 1.3 GHz	864	2310	275000	62000	4493	51.4%	

**** The Earth Simulator is not a commercial product, it is a computer of the Earth Simulator Center,

the arm of the Japan Marine Science and Technology Center. It is based on vector processors that are

manufactured by NEC.

The columns in Table 3 are defined as follows:

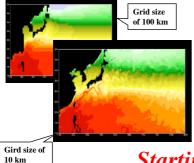
Rmax the performance in Gflop/s for the largest problem run on a machine.

Nmax the size of the largest problem run on a machine.

 $N_{\rm 1/2}$ the size where half the Rmax execution rate is achieved.

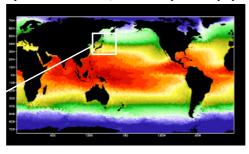
Rpeak the theoretical peak performance in Gflop/s for the machine.

LASCI Symposium 2002

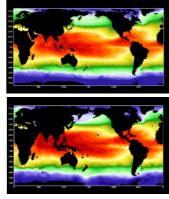

Activities of Earth Simulator Center

Earth Simulator Center

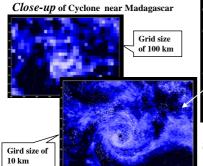
LASCI Symposium 2002


53

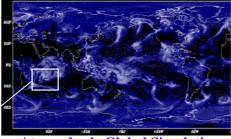
EAR Gomparison between Two Simulation SIMURESING of Low (100 km) and High (10 km) Resolution Grid Size. Close-up snapshot of sea surface temperature near Japan.

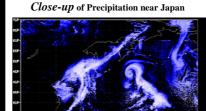

Oceanic Global Simulation

A result of the oceanic global simulation. Colored snapshot of sea surface temperature on one summer day. Higher temperature is shown in red, and lower temperature in purple.



Starting Up the Earth Simulator


Comparison between Earth Simulator's Result (upper) and Observation (lower)


Operation of the Earth Simulator began in March 2002. The Earth Simulator Center has already produced promising results through the ocean and atmospheric global simulations with an extremely high resolution of 10 km horizontal distance, which would place our hopes on reliable prediction of climate changes.

Earth Simulator Center

Atmospheric Global Simulation Snapshot of the atmospheric global simulation in winter. Higher precipitation is shown in white.

LASCI Symposium 2002

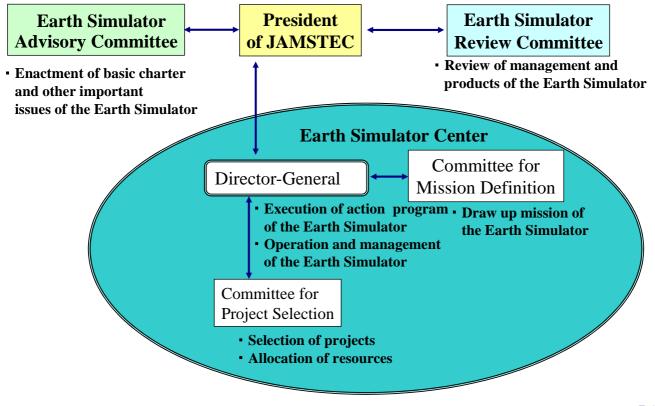
Message from Director-General Dr. Sato (extracts)

How will our mass consumption, such as automobiles, airplanes, electric device and chemical products which we have created, influence the future of global environment? Although we have been faced with various forms of highly unpredictable events such as earthquakes or

global warming phenomena, we had never a measure to predict accurately what to happen in the future. With Earth Simulator, we have come to a point where we can predict the future. I wish to contribute to ensure people's lives and properties from natural disasters and environmental destructions, and bring forth a harmonized relationship with our mother Earth.

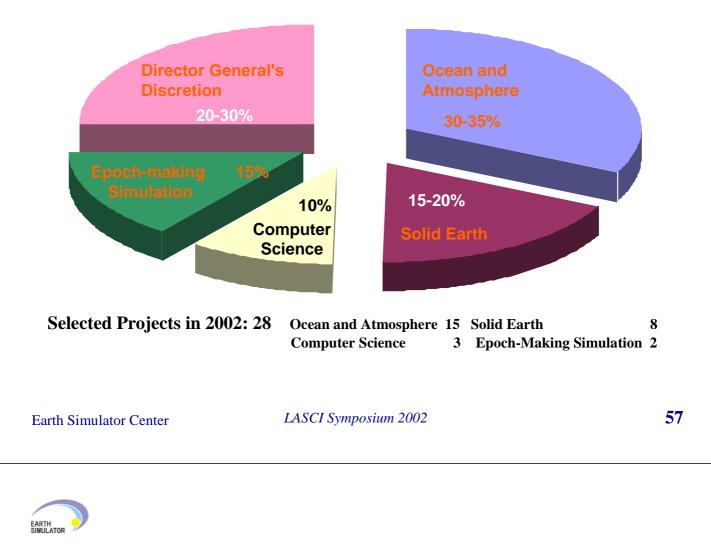
Mission of the Earth Simulator

I. Quantitative prediction and assessment of variations of the atmosphere, ocean and solid earth.


- II. Production of reliable data to protect human lives and properties from natural disasters and environmental destructions
- **III.** Contribution to symbiotic relationship of human activities with nature.
- IV. Promotion of innovative and epoch-making simulation in any fields such as industry, bioscience, energy science and so on.

Earth Simulator Center

LASCI Symposium 2002


Managing System of the Earth Simulator

Earth Simulator Center

LASCI Symposium 2002

Allocation of Computer Resources in Year 2002

Summary

- The world's fastest supercomputer, Earth Simulator, is successfully completed showing 40 Tflops theoretical peak performance.
- 35.86 Tflops is obtained in Linpack (Highly Parallel Computing).
- Application programs prepared for Earth Simulator were executed to evaluate the hardware performance. These have shown excellent results.
- Earth Simulator has already been in operation at the Earth Simulator Center (ESC), a branch of Japan Marine Science and Technology Center (JAMSTEC).

Thank you for your attention

Shigemune Kitawaki

Earth Simulator Center Japan Marine Science and Technology Center

Earth Simulator Center

LASCI Symposium 2002