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UN NOUVEAU LANGAGE SPÉCIFIQUE AU DOMAIN DES INTERGICIELS DE 
SYSTÈME HAUTEMENT DISPONIBLE POUR GÉNÉRER ET VALIDER LEUR 

CONFIGURATION 
 

Maxime TURENNE 
 

RÉSUMÉ 
 
 
De nos jours, les services hautement disponibles prennent de plus en plus de place dans notre 
vie quotidienne et leur demande ne cesse d’augmenter. Cependant, mettre en place des 
systèmes hautement disponibles demeure une tâche très complexe pour la majorité des 
intégrateurs de systèmes puisqu’ils doivent les construire à partir de composants peu fiables. 
De plus, ils sont tenus responsables des impacts d’une éventuelle panne de service du 
système; dans certains cas, il s’agit de très grosses sommes d’argent alors que dans d’autres 
cas, la vie d’êtres humains peut être menacée.  
 
La haute disponibilité est un terme attribué à un système ou un service qui est disponible au 
moins 99.999% du temps. Les standards de l’industrie veulent qu’un pareil système soit basé 
sur un intergiciel spécialisé. Cet intergiciel doit gérer la redondance des  composants  du 
système et doit garantir leurs disponibilités. Cependant, la majorité de ces systèmes sont 
dépendants de leur plateforme et sont rarement de type source ouverte.  
 
Le forum sur la disponibilité des services (SAForum) définit des standards ouverts pour la 
construction d’un système hautement disponible utilisant leur intergiciel. Néanmoins, la 
nature de cette tâche reste très complexe et requiert beaucoup de temps sans pour autant 
réduire les chances de faire des erreurs. Cette situation est engendrée par  la configuration 
complexe de l’intergiciel.  Dans ce mémoire, nous présentons une solution pour automatiser 
la génération des fichiers de description  concernant les types d’applications d’un système 
hautement disponible. Cette solution, basée sur l’approche précédente d’automatisation de la 
configuration, permet la génération automatique et de manière complète la configuration de 
l’intergiciel SAForum. Afin d’atteindre cet objectif, nous proposons une approche basée sur 
un nouveau langage spécifique au domaine de la haute disponibilité basé sur le diagramme de 
composant UML (component diagram). Cette approche inclut un ensemble de 
transformations de modèles et afin de vérifier l’approche, notre prototype est présenté au 
travers d’une étude de cas.  
 
Mots-clefs : Haute disponibilité, Ingénierie dirigée par les modèles, langage de modélisation 
unifié (UML), Diagramme de composants UML, standards SAForum 
 

  





 

A NEW DOMAIN SPECIFIC LANGUAGE FOR GENERATING AND VALIDATING 
MIDDLEWARE CONFIGURATIONS FOR HIGHLY AVAILABLE APPLICATIONS 

 
Maxime TURENNE 

 
ABSTRACT 

 
Nowadays, highly available services are becoming a part of our everyday life and the 
demand for them tends to always increase as we saw in the recent years. However, building 
highly available systems remains a challenging task for most system integrators who are 
expected to build reliable systems from none-reliable components. They have to deal with the 
constant pressure of the money lost in case of unplanned outages and in other cases; the 
consequences of such outages can threaten the life of humans.  
 
Highly available is a characteristic given to a system/service that is available 99.999% of the 
time. The standard in the industry for achieving such availability with a system is to build it 
on a specialized middleware. Such middleware will manage the redundancy of the 
components and will ensure their availability. On the other hand, the majority of those 
systems are platform-dependent and mostly proprietary.  
 
The service availability forum (SAForum) defines open standards for building and 
maintaining HA systems using the SAForum middleware. Nevertheless, this task remains 
tedious and error prone due to the complexity of this middleware configuration. In this thesis, 
we present a solution to automate the generation of description files for HA systems, which 
enables the automated generation of the middleware configuration of the previous approach. 
In order to achieve this objective, we propose an approach based on a new domain specific 
language extending the UML component diagrams, along with a corresponding set of model 
transformations. We also present our prototype implementation and a case study as a proof of 
concept verifying the approach.  
 
Keywords: High Availability, Model Driven Software Engineering, Unified Modeling 
Language, UML component diagrams, SAForum standards  
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INTRODUCTION 

 

1) High Availability 

 

The Information and Communications Technology (ICT) sector has witnessed a significant 

change over the last decade, where there is an advent of new service delivery models over 

broadband access. This means that more revenue generating and critical applications are 

being delivered using ICT systems. The High Availability (HA) of such systems is an 

essential non-functional requirement in which the service providers are now very interested.  

 

If the service availability is the percentage of time a service is available to the end user in a 

certain period of time, the high availability is when this service is available 99.999% of this 

period (Schmidt, 2006). For example, with a period of one year the downtime (i.e. the service 

outage) shall not exceed 5.26 minutes (SAForum). However, high availability only means 

that the service is available for the users at any instant but does not guarantee its continuity 

(i.e. the service can lose its state when a failure occur). An example of this would be in a 

highly available mobile phone network, the end user could have his call dropped in case of a 

failure of the network but, shall be able to recall its interlocutor right away. The availability 

of a system/service can be expressed with a function of the system reliability and the 

reparability protected by the redundancy of its component(s).  

 

• Reliability: This is the measure of the continuous uptime of a system without failure. 

This is expressed as the mean time between failures (MTBF).  

• Reparability: This is the measure of the time needed for a failed system/service to be 

restored. This is expressed as the mean time to repair (MTTR).  

• Redundancy: Adding redundancy to a given component augments its reparability 

because in case of failure of the given component, the replica of the component can 

be brought into service and replaces the failed one. However, it lowers the MTTR 

only to the needed time to put in service the given component. In addition, there are 

several form of redundancy configurations (2N, N+M, N-way, etc.) and readiness 
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states (cold, warm and hot switchover) in order to appropriately support the level of 

availability.  

 

By taking those parameters in consideration, the availability of a system/service is expressed 

by the following equation. 

ݕݐ݈ܾ݈݅݅ܽ݅ܽݒܣ  = 	 ܨܤܶܯ)ܨܤܶܯ  (ܴܶܶܯ+
 

The industries of today are now acknowledging the importance of the high availability. In 

2009, an Information Technology and Intelligence Corp. survey tells us that more than 40% 

of the companies want at least 99.99% of availability (ITIC). The reason behind this is that 

they are losing a lot of money when their services are not available. For example, more than 

half of the fortune 500 companies experience a minimum of 1.6 hours of downtime per week 

creating an approximate loss of 46 million only in employee’s salary say’s a Gartner report in 

2011 (Gartner). Even if this information is well known by the industry, they still struggle to 

manage the availability of their systems because a Ponemon Institute study shows that in the 

years 2012 and 2013, 91% of data centers endured unplanned outages (Ponemon). 

Furthermore, those outage costs are in average from 90 thousand up to 6 million for the large 

brokerage businesses and this is by hour of downtime. Table 1 shows the main players in the 

industry and the money loss the downtimes are generating.  
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Table 1 Main companies and the impact of the downtimes  
taken from (Gagnaire et al., 2012) 

 

 

 

2) SAForum solution 

 

Nonetheless software developers and system integrators still find it challenging to design and 

implement HA systems. Moreover, the classic HA solutions have suffered from platform 

dependencies and vendor lock-in. To address this issue, the Service Availability Forum 

(SAForum) was established by world leading telecom and computing companies in an effort 

to standardize the way HA systems are built, and enable the portability and interoperability 

of highly available services across any platform compliant with the standards. In fact, the 

SAForum establishes a set of specifications defining standard Application Programming 

Interfaces (APIs), and guidelines to develop and deploy highly available systems. These 

specifications also define the architecture of a middleware (i.e. the SAForum middleware) 

capable of maintaining a cluster of servers and the services they host highly available. More 

specifically, the middleware is a distributed application deployed across the cluster’s nodes. 

At runtime, the middleware will monitor the components providing the services, and in case 

a failure is detected, the middleware will automatically clean up the faulty components, fail 

over the services provided by the faulty component to a healthy replica, and attempt to repair 

the faulty component.  
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Figure 1.1 Typical clustered HA solution 

 

Figure 1.1 illustrates a typical clustered HA solution where the SAForum middleware can be 

used. In a solution like this, where the components are abstracting software of hardware that 

provide services, the Availability Management Framework (AMF) constitutes the core of the 

SAForum middleware. It is AMF that maintains the HA in the cluster and reacts to failures. 

AMF’s runtime behavior is mainly based on a configuration file (referred to as the AMF 

configuration) defined by the system integrator(s) designing the HA solution. The AMF 

configuration specifies the software components that AMF will instantiate at runtime, and 

defines the redundancy scheme employed (active/active, active/standby etc.), and the default 

recovery action for a given component, as well as the escalation policy in case the recovery 

action fails.  

 

3) Thesis Motivation and Contributions 

 

In order to define the AMF configuration, the system integrator needs to refer to the types 

description file. The types description file is expected to be provided by software 

vendors/providers to describe the software that will be managed by the SAForum 

middleware. This types description file will describe the type of the software in terms of the 

service types it can provide and in which capacity, as well as its dependencies and 
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deployment limitations. The format of the types description file is defined by a standardized 

XML schema, and the content should comply with a set of informally described constraints 

from two different SAForum specifications (SAI-AIS-AMF; SAI-AIS-SMF). The manual 

definition of the types description file is a tedious and error prone task that requires deep 

knowledge of the specification details that many software developers do not necessarily 

have. In fact, the developers not only need to understand the structure of the elements of this 

file, but they should also respect the domain constraints that are spread across hundreds of 

pages in the specifications. This thesis presents an alternative and more intuitive approach for 

the automatic generation of the types description file. The approach is based on a high-level 

modeling language that software developers can easily understand, and that also abstracts the 

domain specific details that our approach automatically generates. More specifically, our 

approach is based on extending the UML component diagrams to enable expressing the 

requirements of the domain. In addition, a definition of a sequence of model transformations 

that eventually yields to the generation of the types description file. Our contributions in this 

thesis will: (1) enable the system integrators to automatically generate middleware 

configurations; (2) enable the software vendors to describe their software in a SAForum 

compliant manner using an approach that facilitates the creation and validation of types 

description files.  

 

4) Thesis Organization 

 

The rest of the thesis is organized in four chapters. In CHAPTER 1, the necessary 

background information on OpenSAF, a SAForum compliant open source middleware 

implementation, is provided. More precisely, this chapter elaborates about the needed 

information for understanding this thesis and the domain. In other words, this chapter 

explains the important parts of the OpenSAF middleware which are the IMM, AMF and 

SMF specifications including the ETF file. The CHAPTER 2 explains the existing approach 

for generating the middleware configuration and reviews the more general related works. In 

CHAPTER 3, the approach for generating the types description file (i.e. the ETF file) and the 

HA requirements is presented together with the challenges and issues encountered with their 
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solutions. The prototype tool and its architecture are described in CHAPTER 4 as well as the 

case studies used to verify the work. Finally, we present the conclusion of this thesis along 

with a discussion on the possible future directions for this research.  

 



 

CHAPTER 1  
 
 

BACKGROUND 

1.1 SAF Middleware 

Creating highly available, mission critical system in a clustered solution is a challenging task 

with heavy responsibilities. Software providers and developers need to distinguish 

themselves with the value-added functions of the applications they are providing in order to 

be competitive. Therefore, it became very hard to focus on such quality of service. This is 

why the SAForum provides specifications for a middleware that manages all the high 

availability functions and responsibilities. The SAF middleware is a distributed software 

designed to achieve high availability of the computer-based services provided in a cluster 

(SAForum). The SAF middleware is composed of two main sets of services; the Application 

Interface Specification (AIS) services and the Hardware Platform Interface (HPI) services. 

While the HPI services allow the monitoring and management of the providing hardware, the 

AIS services enable the management of the high availability at the applications and 

components level.  

 

 

Figure 1.1 The Application Interface Specification services and frameworks  
(from (SAI-Overview)) 
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As shown in the Figure 1.1, the AIS architecture is composed of 12 services and two 

frameworks. The four next categories describe briefly the purpose of those services and 

frameworks and the role they play in enabling the application highly available:  

 

• The AIS Platform Services provide a higher level of abstraction of the underling 

hardware components and of the operating system functions to the other AIS services and 

application. Those services are grouped into two distinct sets of APIs:  

o Platform Management Service (PLM): It provides a set of APIs that gives a 

convenient abstraction for monitoring and managing hardware and low level 

software resources.  

o Cluster Membership Service (CLM): It provides and maintains a consistent view 

of the healthy node in a cluster membership. It monitors the nodes joining or 

leaving the cluster and determines if the node is eligible to be a member of the 

cluster.  

• The AIS Management Services provides APIs that enable standard management of the 

highly available cluster to the others AIS services and applications. The following four 

services groups the concerned APIs: 

o Information Model Management Service (IMM): This service contains APIs that 

enables definition, manipulation and exposition of both the configuration and the 

runtime management information. It also enables the invocation of administrative 

commands on the cluster objects.  

o Notification Service (NTF): Those APIs and data structures answer the needs of 

notification for alarms, state changes, object life cycle changes, attribute value 

changes, security alarms and specifics events.  

o Log Service (LOG): It provides APIs that enable logging of alarms, notifications, 

system messages and application defined logs. This service is made to work at a 

cluster-wide scale.  

o Security Service (SEC): It provides APIs that enable security management of the 

access to the AIS and HPI services.  
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• The AIS Utility Services provides the generic APIs that enable functions that highly 

available distributed systems need to have by definition. Those APIs are organized in the 

following services: 

o Checkpoint Service (CKPT): It provides an API that allows a process to save any 

kind of checkpoint data regarding its state. The purpose of this service is to enable 

a process to retrieve its last saved state after recovering from a failure. 

o Event Service (EVT): It provides an API that allows processes to communicate 

between them. The service is designed to work as the following; one or many 

publisher(s) publish an event through an event channel and the subscribers of this 

channel can read the published event.  

o Lock Service (LCK): It provides an API that is intended to be used in a cluster 

where processes across different nodes may compete with each other for access to 

the same shared resource.  

o Message Service (MSG): It provides an API that allows the use of a buffered 

message-passing system based on the concept of a message queue. The same 

queue can be acceded everywhere in the cluster and the messages are preserved 

when they have not been read.  

o Naming Service (NAM): It provides an API that enables the boundary of human 

readable names to objects of the middleware. Therefore, those objects can be 

looked up given their names.   

o Timer Service (TMR): It provides an API that enables a mechanism by which the 

client processes can get notified when a given timer expires. The timer is a logical 

object dynamically created and it represents an absolute time or duration.  

• The AIS Frameworks provides important functionalities, APIs and data structures that 

enable the management of the high availability of the provided services. There is two 

distinct categories of functionalities, which are grouped in the following frameworks: 

o Availability Management Framework (AMF): This is the core of the high 

availability management in the SAForum Middleware. The objective of AMF is 

to achieve the high availability of the services. Therefore, it provides rules, 
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architectures, constraints and functionalities that enable a cluster to achieve high 

availability for their services.  

o Software Management Framework (SMF): It provides functionalities that are used 

for managing the applications of the highly available cluster during hardware, 

operating system, middleware and application upgrades while ensuring their 

availability.  

 

 

Figure 1.2 SAF Middleware (AIS) high level architecture view 

 

As depicted by the high level architectural view in the Figure 1.2, the SAF middleware 

operates the HA management of the applications through the AIS services. In fact, this is 

mainly possible because the APIs provided by those services enable the implementation of 

callback functions by the applications. In the case of off-the-shelf applications that cannot 

implement those callback functions, the middleware provide command line supports for 

using scripts that can replace some of the callback functions. In the next Sub-section, the 

IMM, AMF and SMF services are described.  
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1.2 Information Model Management (IMM) 

In the SAF middleware, all entities defined by the different SAF services have their own 

logical representation into the SAF information model (IM). These logical representations are 

the objects and attributes, which abstract and capture the information needed for the various 

management functions of the different services. Those objects and attributes are expressed in 

a UML model and its serialization is normalized by an Extensible Markup Language (XML) 

schema (SAI-AIS-IMM-XSD). For example, any application managed by AMF have its 

objects and attributes definition in the information model. Another example would be the 

upgrade campaign from SMF that allows the middleware to migrate from one configuration 

to a new one. Like the application, the upgrade campaign has its own objects in the 

information model that captures the information needed in order to be executed.  

 

The entities defined by the different services are not the only objects of the information 

model. In fact, all the information regarding the state of the cluster is captured by the model. 

This information is relevant for an appropriate management of a clustered solution based on a 

HA distributed middleware. The information captured by the objects and attributes of the 

information model fit into two main categories: (1) the runtime information that mainly 

characterizes the state of the cluster and its applications at runtime, (2) and the configuration 

objects that describe the design of the cluster, the managed applications and the desired level 

of availability.  

 

The IM objects also define administrative operations that can be performed on the 

represented entities through the SAF interfaces. Since the IM is only providing information, 

the IMM service provides the actual execution of the operations on the appropriate entities 

referred to by the IM objects. However, the IMM does not execute the actual operations but, 

it refers the operations to the appropriate service. Furthermore, it provides the necessary APIs 

for creating, accessing and managing these objects.  
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1.3 Availability Management Framework (AMF) 

The Availability Management Framework is the main software entity that enables the 

management of the high availability of the applications providing services. It achieves this by 

coordinating all the entities within a SAF cluster. Furthermore, it defines entities for 

representing all kind of applications providing a service. Those are called the AMF entities 

and their life cycle is managed by the Availability Management Framework itself. In order to 

manage the availability of the applications, the SAForum chose an approach with a distinct 

separation between the service provided and the application providing the service. 

Concretely, AMF ensures that the services are always provided and in case of a failure, this is 

AMF that orchestrate the recovery actions (SAI-AIS-AMF).  

 

Due to the nature of the clustered solution based on an HA middleware like the SAF one, the 

main strategy to ensure the persistence of the provided services through a failure is to deploy 

the service providers in a redundant manner.  In the case where a failure occurs at the service 

provider or at the node level, AMF detect the service outage and reassign the service 

workload to a healthy replica of the service provider. However, AMF is able to perform such 

operation only when given a proper configuration. This is why the configuration is very 

important; it allows AMF to know what the resources are and how they can be used. For 

capturing this information, AMF defines entities and relations between them that capture the 

necessary information for maintaining the high availability of the applications. The AMF 

entities are part of the information model as objects, attributes and operation, and together 

they form a complex UML model. Together with the IMM services APIs, AMF can perform 

runtime assignation of the service workload in order to keep the service at the desired HA 

state. In the following Sub-section, the AMF entities are discussed in more details since they 

are needed to understand the contributions in this thesis.  
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1.3.1 AMF Entities 

 

 

Figure 1.3 AMF logical entities  
(from (SAI-AIS-AMF)) 
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In the AMF information model, the AMF logical entities are defined in detail. Those entities 

are representing the resources under AMF control. All the non-runtime information part of 

the IM is regarded as the AMF configuration, and it is stored in a repository while the 

runtime information can be obtained only when the system is operating. The UML class 

diagram in the Figure 1.3 illustrates the model that abstract the resources under AMF control. 

The entities of the model are described in the following Sub-sections:   

 

• CLM Cluster and Node: The CLM cluster is composed of CLM nodes. This entity 

abstracts the actual physical cluster composed of physical nodes. In other words, The 

CLM cluster and its nodes abstract the resources an AMF cluster is going to use for 

providing services.   

• AMF Cluster and Node:  The AMF cluster groups the AMF nodes. Furthermore, the 

AMF node is a logical entity that represents all the AMF entities that can be provided by 

a CLM node.  

• Component: This is the logical entity that represents the set of resources AMF is going 

to use for providing services. More precisely, the component entities abstract the specific 

functionalities that can be provided. These functionalities enable the services and they 

can be provided by both hardware and/or software resources. This is the smallest entity 

on which AMF performs the availability management. Depending on where the 

component is executing, what environment it needs and if it implements the AMF APIs 

or not, are what distinguish the different specializations of the component. So, in order to 

distinguish the different behaviors, functionalities and properties, the following 

categories are defined:  

o Local Component: This entity represents any component that is executing within 

the CLM cluster in which the AMF cluster is running.  

 SA-aware: This category means that the software abstracted by the 

component implements the AMF APIs. When software implements them, 

the framework has a full control over the life cycle of the component. 

Consequently, the component must obey the AMF command by 

implementing the corresponding callback functions. The principal 
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behavior specific to this type of component is that an instantiated SA-

aware component is providing services only when assigned a workload by 

AMF. This behavior is called pre-instantiable and it is mandatory for all 

SA-aware components.   

• Container and Contained: In order to integrate the applications 

running on a specific controlled execution environment rather than 

directly on the operating system, AMF defines the concept of 

Container and Contained components. In such scenario, the 

container represents any kind of specific execution environment 

running on top of the operating system (e.g. virtual machines). On 

the other hand, the application running in the specific controlled 

environment is represented by the contained component.  

 Non-SA-Aware: Any component that does not implement the AMF APIs 

is represented as a non-SA-aware component. That means AMF have a 

limited control over the component life cycle.  

• Non-Proxied, Non-SA-Aware: In the scenario of a local 

component without AMF APIs implementation and no application 

to relay the communication between the framework and the 

component, AMF is controlling the life cycle only for instantiating 

or terminating the component.  

 Proxy and Proxied: When a component mediates the communication 

between another component and AMF, it is represented by a proxy 

component. All proxy components are SA-aware. However, the 

component for which the proxy is mediating the communication is called a 

proxied component, and it is always a non-SA-aware component.  

o External Component: Any resource running outside the AMF cluster is 

represented by the external component and it is always non-SA-aware. Also, the 

usage of a proxy component is mandatory because AMF cannot directly reach 

components outside the AMF cluster.  
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• Component Service Instance (CSI): The featured services provided by a component are 

abstracted and separated from the service provider, namely the components. When AMF 

assigns a service workload to a component, it means that it assign a component service 

instance, therefore it represents the workload of providing the service. When the 

configuration designer defines this entity, it must capture the featured service at a fine 

granularity level. Having a separation between the service provider and the workload of 

the service provided allows the middleware to dynamically assign the workload during 

runtime. Therefore, it enables the middleware to take action in case of a failure and 

swiftly redirect the workload on a healthy redundant replication of the component.  

• Service Unit (SU): The service unit is an entity that aggregates one or many components 

in order to provide a higher level of service. In other words, service units can be 

composed of a set of components that needs to combine their functionalities in order to 

provide a certain high level functionality. There are two categories of service units: the 

local service unit that aggregates the local components and the external service units that 

aggregate the external components. Also, it is worth noting that a given component can 

be in only one SU.  

• Service Instance (SI): In the same way the SU aggregates components, AMF defines the 

aggregation of the CSIs into a logical entity, namely the SI. When AMF assign a SI to a 

SU, all the CSIs of the SI are assigned to the corresponding components of the SU.  

• Service Group (SG): Since the strategy for maintaining high service availability is 

managing the redundancy of the service provider entities in case of a failure, AMF 

defines the entity service group that groups the redundant SUs. Moreover, the SUs within 

the SG are going to be used for protecting the SIs. All the SUs of the SG must be able to 

take an assignment for any SIs protected by this SG. The SG also defines the notion of 

redundancy model where the components within the SUs participating in the SG must be 

able to support. The following is describing the different redundancy models:  

o The 2N redundancy model: In a SG with a 2N redundancy model, for all the SIs 

there is at most one SU with an active assignation and exactly one SU with a 

standby assignation. Figure 1.4 illustrates a graphical example of this model with 
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four components grouped on two SUs distributed on two nodes. In the case of a 

failure of the active SU, AMF is going to switch the standby SU assignment to 

active.  

 

Figure 1.4 Example of the 2N redundancy model  
(from (SAI-AIS-AMF)) 

 

o The N+M Redundancy Model: In a redundancy model of N+M, there is N SUs 

with active assignments for all the SIs, and M SUs with standby assignments for 

all the SIs. In this redundancy model, an SI is assigned active for at most one SU 

and standby also for at most one SU. The Figure 1.5 illustrates an example of the 

redundancy model with 8 components grouped on four SUs distributed on four 

nodes providing the services for 3 SIs.  
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Figure 1.5 Example of the N+M redundancy model  
(from (SAI-AIS-AMF)) 

 

o The N-Way redundancy model: This redundancy model means that there is N 

SUs protecting the SIs. More importantly, any SUs can simultaneously have 

active assignment for some SIs while they have some standby assignment for 

some other SIs. However, the SIs can be assigned active to at most one SU while 

they can be assigned standby to zero, one or many other SUs. The Figure 1.6 

illustrates an example of the model with six components grouped on three SUs 

distributed on three nodes and the SG protects three SIs. Furthermore, each SIs 

has one active assignment and two standby assignments.  
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Figure 1.6 Example of the N-Way redundancy model  
(from (SAI-AIS-AMF)) 

 

o N-Way Active redundancy model: The main characteristic of this redundancy 

model is that it does not support the standby assignation for the SIs. Furthermore, 

this model allows the SU to have an active assignation for zero, one or many SIs. 

Likewise, an SI can have an active assignation on zero, one or many SUs. The 

Figure 1.7 depicts an example of the N-Way active redundancy model with six 

components grouped on three SUs distributed on three nodes forming an SG that 

protect three SIs. Additionally, each SI has two active assignations and no standby 

assignation.   
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Figure 1.7 Example of the N-Way Active redundancy model  
(from (SAI-AIS-AMF)) 

 

o No redundancy model: This redundancy model typically addresses non-critical 

components that do not significantly affect the system when they fail. Instead of 

using standby assignation on some service unit, the SIs can have a minimum level 

of protection with spare service unit that have no assignation at all. Hence, the SI 

can have at most one active assignation while the SU can also be active for at 

most one SI. The Figure 1.8 shows an example of the no redundancy model with 
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six components grouped on three SU distributed on three nodes forming an SG 

that provides the service for three SIs.   

 

 

Figure 1.8 Example of the No redundancy model  
(from (SAI-AIS-AMF)) 

 

• Application: The application entity combines the individual functionalities of its SGs. 

Moreover, this entity represents the highest level of service.  

• Protection Group (PG): This is a dynamic entity that informally represents the groups 

of components to which a CSI has been assigned.  
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1.3.2 AMF Entity Types 

In order to facilitate the configuration and the software management, AMF defines types for 

all of the entities except for the node and the cluster. Moreover, the entity types containing a 

version are capturing general information, and when entity types differ mainly by the 

version, they are grouped into an entity base type. Defining the entity types in the 

configuration is mandatory and allows the specification of important aspects regarding the 

entities. Thus, an entity type defines important attributes regarding the service that the entity 

is providing, the limitation of this entity, compatibility, dependency and etc. This information 

is mainly derived from the Entity Type File discussed in Section 1.5. The following is 

describing briefly the entity types AMF use in the configuration:  

• Component Type (CT): The component type captures information that represent a 

particular version of the software/hardware implementation used to make the actual 

component. The main characteristics of a Component Type are the following:   

o The type of service (CST) a component of this type can provide and how it can 

provide it.  

o The CTs this CT needs in order to provide a certain CST.  

o The component category of the implementation; SA-aware, container, contained, 

non-proxied non-SA-aware, proxy and proxied.  

o The capability model for each provided CST. In other words, this is the number of 

CSIs of the CST that can be provided by this type of component. There are seven 

capability models and the following table shows in which redundancy model a 

component of the given capability model can participate.  
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Table 2 Map of the Component Capability model and the Redundancy Model 
 

Redundancy Model 2N N+M N-Way N-Way 

Active 

No-

redundancy Component Capability Model

x_active_and_y_standby X X X X X 

x_active_or_y_standby X X - X X 

1_active_or_y_standby X X - X X 

1_active_or_1_standby X X - X X 

x_active X X - X X 

1_active X X - X X 

non-pre-instantiable  X X - X X 

 

• Component Service Type (CST): All the services that are equivalent and managed in 

the same manner shall be of the same type and therefore, enabling AMF to see them as 

equivalent. Meanwhile, the CST is the type of service a component of a given type can 

provide and therefore, this is the CT that specifies the CST a component can provide.  

• Service Type (SvcT): The service type groups a set of CST that a certain SU can 

provide. Since this type defines the general feature of an SI, it also captures the limits of 

an SU regarding an SI of a given type. The limits regards the number of CSI of each CST 

composing the SvcT can compose the SI of that type and therefore, specifying how CSI 

an SU can support.  

• Service Unit Type (SUT): The service unit type is composed of CT and like the SvcT, it 

can specify the maximum number of components of each CT composing the SUT an SU 

of that type can contains.  

• Service Group Type (SGT): The service group type captures information about what 

type of availability an SG of this type can offer. Therefore, it specifies the redundancy 

model and it aggregates the SUT that can participate in this SGT.  

• Application Type (AppT): The purpose of this type is to groups the set of SGT that can 

provide a very high level type of services. 
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1.3.3 OpenSAF implementation 

The OpenSAF framework is an open source project that implements the SAForum 

specifications (OpenSAF).  The SAF community recommends the use of this framework as a 

mature implementation of the standards. In fact, all the services needed for the HA 

management are implemented and well documented to be usable. Consequently, this 

middleware is used in this research project as a reference for the purpose of testing and 

validating the work.  

  

1.3.4 AMF Configuration Example 

As explained in the section 1.3.2, the types are facilitating the configuration effort and the 

software management at runtime. Figure 1.9 illustrates the entity types of an AMF 

configuration example for a web service. In this example, there are two component types, 

one is representing the version 5.6 of the MySQL implementation and is capable of providing 

the DB component service type. The second component is representing the version 2.4 of the 

Apache implementation and is known to be capable of providing an HTTP component 

service type. Both components are grouped into the SUT Web and this SUT is capable of 

providing the service type WebSrv. The SUT is grouped by the SGT Web_site that can 

protect the WebSrv with SU of the type Web. This is the SGT Web_site that composes the 

application type Web_app. An important detail is expressed in this example; this is the 

grouping of the component types MySQL_5.6 and Apache_2.4. Because of the nature of a 

dynamic web site, more than one component is needed in order to provide this higher level 

service. Basically, it means that the system needs both components types in order to be able 

to provide a service of the type WebSrv.   
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Figure 1.9 Entity Types of an AMF configuration example 

 

Following the same example, Figure 1.10 illustrates a configuration of entities based on the 

type of the precedent shown in Figure 1.9. Those logical entities represent the running 

processes that provide the service. In this example, the service is protected in a service group 

with a 2N redundancy model, meaning that there is one active and one standby SU. Those 

SU are named Web SU 1 and Web SU 2 and they are respectively located on the Node 1 and 

Node 2. The SUs are grouping two components, namely MySql and Apache. Furthermore, in 

this configuration the middleware is protecting one SI composed of two CSIs; one 

abstracting the workload of a database named DB and another one abstracting the workload 

of an HTTP service named HTTP. This SI is assigned active on the Web SU 1 and standby on 

the Web SU 2.  
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Figure 1.10 Entities of an AMF configuration example 

 

Since the components MySql and Apache are grouped in the same SU, it means that if one of 

them is no longer capable of providing its assigned CSI because of a failure, AMF will 

failover the whole SI including both CSI on the standby Web SU 2 and therefore, this latter 

SU will become active for the Web SI.  

 

According to the specification, the configuration shall be saved persistently to a file based on 

a XML schema. However, this XML file is containing all the information of the UML class 

diagram. For a very simple cluster of two nodes with two applications, the content of the file 

is already heavy and its management is time consuming and error prone. Figure 1.11 

illustrates an overview of the content of such configuration file. In this particular example, 

the file is reaching more than 13000 lines of XML for a cluster of two nodes and two 

applications.  
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Figure 1.11 Content of a SG in the XML configuration file 

  

1.4 Software Management Framework (SMF) 

In a highly available system based on the SAF middleware, the configuration is loaded from 

a repository when the system is starting. More precisely, the IMM service is parsing a XML 

file which is a serialisation of an instance of the XML schema representing the IM and 

including the AMF configuration model. Using only this service, updating the configuration 

implies shutting down the whole system, changing the serialized instance of the IM in the 

XML file and then starting the system again. This procedure implies unnecessary downtime 

because the whole AMF cluster needs to stop while the XML file is being upgraded. In fact, 

this procedure is used when a new AMF cluster is being deployed.  
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In practice, the SAF systems are required to provide their highly available services over a 

long period of time. During the long term life cycle of the system, the AMF configuration 

may change in order to follow the evolution of the software being managed. Those changes 

can imply addition, modification or removal of the AMF entities representing the changing 

software or hardware resources. By definition, highly available services should not suffer 

significant loss of service in the case of such changes (SAI-AIS-SMF).  

 

The SMF specification defines the procedure in which the system can swiftly migrate from 

one configuration to a new one with minimum service loss. In order to achieve this, SMF 

define entities and in the following, the main entities are briefly described: 

• The upgrade campaign: This is a configuration object that can be added at runtime. 

Mainly, it contains the location of the file containing the procedure and the steps for 

manipulating the entities being updated. It is worth noting that this file is also normalized 

by a XML schema (SAI-AIS-SMF-XSD).  

• The upgrade procedure: This entity is runtime only and is created by SMF based on the 

XML file of the upgrade campaign. This entity specifies the scope of the campaign, 

meaning the set of entities on which the steps will be executed. It also specifies the 

upgrade method that defines how the step will be executed, and it aggregates the steps of 

the campaign.  

• The upgrade steps: This is also a runtime entity and it represents the action to be taken 

on the different entities of the campaign scoop.  

  

1.5 Entity Type File (ETF) 

The types used in the AMF configuration and the upgrade campaign description files are 

directly derived from the types defined in the ETF file. The ETF file is also normalized by an 

XML schema (SAI-AIS-SMF-XSD). Basically, the ETF file is the content description of the 

software that can be delivered to a SAF system. The SMF specification assumes that this file 

is provided by the software provider.  
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The content is organized around an entity called the software bundle. While the minimal 

content that need to be provided in the file is the component type (CT) and the component 

service type (CST) they can provide, the file can also describe in which SUT, SGT and AppT 

the components can participate, as well as the SvcT in which the CST can participate. Indeed, 

the later entity types are optional, and if they are not specified, it means that the child type 

can participate in any type of parent. For example, if the SUT of a component is not 

specified, it means that the component is not restricted to any SUT and thus, can participate 

in any kind of SUT when delivered to the SAF system.  

 

Other than the capacity of the software being delivered to the system, the file shall also 

specify the commands to install or remove the components from the system. Since the AMF 

types are derived from this file, it needs to describe the type of implementation (e.g. SA-

aware, etc.) of the component and the capacity and limitations. Mostly, the attributes carrying 

this information are expressed in range of value that can take the derived AMF types. Also, 

important information captured by this file is the dependency of the component regarding 

what CST a component need in order to be able to provide another given CST. For example, 

a web application CT may need the CST of a database in order to provide a web application 

CST.  





 

CHAPTER 2  
 
 

RELATED WORK 

2.1 Previous Approach for Generating the AMF Configuration 

In previous works (Kanso, Toeroe, Hamou-Lhadj, & Khendek, 2009; Kohzadi, 2009), an 

approach for the automatic generation of configurations and upgrade campaigns is presented. 

Figure 2.1 illustrates the global approach for generating the middleware configuration. This 

approach is based on two inputs; (1) the ETF file expected to be provided by the software 

provider and (2) the HA requirements that describe the level of service desired by the system 

designer. Assuming that ETF file is valid and can provide the service level described by the 

HA requirement, the configuration generator will produce a valid AMF configuration. The 

system designer can use the generated configuration as input for the middleware only if this 

is a new system that is being deployed. Otherwise, the upgrade-campaign generator will 

generate a valid upgrade campaign describing the steps the SAF middleware needs to 

perform in order to swiftly migrate to a new configuration.  

 

 

Figure 2.1 Previous configuration generation approach 

 

In practice, it appears that: (1) In large companies using the SAForum middleware, a big 

portion of the software is developed in-house, and therefore the software vendor or provider 

and the software user or maintainer are the same company. (2) Even software vendors 

developing SAForum compliant software prefer to shield their developers from having to 
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manually create and validate ETF files. (3) The use case of using a proxy to allow the 

SAForum middleware to manage legacy software (non-SAForum compliant) is widely 

spread, and requires the existence of an ETF file to generate the AMF configuration that 

includes the legacy applications. For all those reasons, the previous tool chain shown in 

Figure 2.1 has been extended in order to include one more step for the automatic generation 

of the ETF file. The ETF file is described in the Sub-section 1.5, AMF configuration in Sub-

section 1.3 and the upgrade campaign, part of the SMF, is described in Sub-section 1.4. 

However, the following Sub-sections describe the other artefacts used for generating the 

middleware configuration.  

  

2.1.1 The HA Requirements 

While the ETF file capture only the capacities, limits and functionalities of the components, 

the HA requirements1 capture the level of availability desired by the system designer. 

Concretely, this level of availability for the services is expressed in terms of SIs and CSIs to 

be provided. It also include how the services shall be protected (i.e. the redundancy model) 

and also the cluster with the nodes on which the components will be deployed. The author of 

the AMF configuration generation defines a UML profile including a UML model for 

capturing the HA requirements. In this UML model, the HA requirements are captured by 

entities called template2. The following describes those template entities:  

• Service Group Template (SGTemp): This template captures information about the 

requirement for the SG that will protect a given set of SIs. This template also specifies 

the redundancy model needed for protecting the SIs and it also specify the number of SUs 

the SG will use to protect the SIs. More precisely, this template captures the required 

number of active, standby and spare SUs. Finally, it groups the SI templates that will 

represent the SIs to be protected by the resulting SG of this template.  

                                                 
 
1 The HA requirements are also referred as the Configuration Requirement (CR) in the authors publications. 
2 They are often called the HA requirement template or simply template for simplicity purpose.  
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• Service Instance Template (SITemp): This template captures information about SIs to 

be generated. It specifies the service type (SvcT) of the SIs, the dependency among the 

SIs, and like the SGTemp, it groups the CSI templates that will represent the CSIs 

grouped by the generated SIs. Furthermore, it specifies the number of SI to generate and 

also the number of active and standby assignment each SI of this template will acquire at 

runtime.  

• Component Service Instance Template (CSITemp): This template captures 

information about the CSIs to be generated. Similarly to the SI template, it specifies the 

component service type (CST) of the CSIs and how many CSI to generate.  

• Node and Cluster Template: The Node template and the Cluster template capture the 

information about the deployment infrastructure. In other words, the requirements for the 

AMF nodes and the AMF cluster.  

  

2.1.2 The Configuration Generator 

The configuration generator can only operate once the input is specified. Then, the 

generation can proceed and if the input was valid, the generator will produce the 

configuration file in the IMM XML format. The work of the generator is grouped in three 

main steps; they are described in the following Sub-sections. 

1) Type’s selection/creation: First, the load of SI each SUs is expected to support need to 

be calculated. Then, starting with the highest defined level of types and templates, the 

generator will find the types that can support the service requirement from the templates. 

When a type is missing, it means that there is no restriction on the child types and 

therefore, the generator will create a type.   

2) Creating the entities and populating their attributes: Once all the entity types capable 

of supporting the service are found, the generator will create the needed entities based on 

those types to support the required level of services. The generator will also create and 

fill the attributes in regards of the templates.  
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3) Distributing the SUs on the Nodes: Once the entities are created, the SUs will be 

distributed equally on the nodes assuming the nodes are all identical. Also, if the number 

of node is sufficient, each of them will contain at maximum one SU of each SG.  

  

Once all of the steps are completed, the generator will produce the XML file based on the 

IMM XML schema of the specification. Actually, the configuration generator is now known 

to be capable of generating multiple configurations from the same input (Kanso, 2012; Kanso 

et al., 2009), and the authors also define an approach for analysing the configuration based on 

heuristics describing the probability of falling of a component.  

 

2.1.3 The Upgrade Campaign Generator 

As explained in Sub-section 1.4, the system is expected to evolve without loss of service. So, 

when the system manager wants to update components, he needs to write an upgrade 

campaign. Writing an upgrade campaign manually is a complex task and therefore, this is 

still a time consuming and error prone task. The complexity is relative to the number of 

entities being updated, the relations between them and also the steps needed to perform the 

upgrade whit minimum loss of service. Due to the complex nature of the configuration as 

explained in 1.3, writing the XML upgrade campaign file always imply a high number of 

entities, relations and steps.  

 

 

Figure 2.2 Overview of the Upgrade Campaign Generation 
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Figure 2.2 illustrates an overview of the upgrade campaign. The inputs are the actual 

configuration of the running cluster, the Upgrade Tuples Set and optionally, the configuration 

containing the entities that are going to be added, if any. After the validation of the input, the 

generator will proceed and generate the actual upgrade campaign XML file.  

 

The Upgrade Tuples Set contains the information about the set of modifications to apply at 

the current configuration. More precisely, each Upgrade Tuple contains the information 

about the source entity and target entity, the service group that contains the source and/or will 

contain the target entities and also, it contains the node where the upgrade will be executed. 

The Current Configuration is the configuration of the running cluster that will be updated; 

this input is needed because the generator needs to know the configuration in order to 

manipulate the entities without unnecessary outage of the services. Finally, the Additional 

Configuration includes the entities that will be added to the current configuration. However, 

this input is optional because not all upgrade scenarios are adding or updating entities, some 

scenario can simply remove some entities that are no longer needed in the current 

configuration.  

 

2.1.4 ETF UML Domain Models 

The work presented in (Salehi, 2012) related to the ETF file discussed in Sub-section 1.5 was 

a first step towards capturing the domain constraints in a formal way. This results in a UML 

profile containing a model for the ETF domain. The model is a UML class diagram that 

captures all possible information about the ETF domain. Plus, the author defined OCL 

constraints representing the domain constraints initially expressed informally in the 

specification and in the XML schema. However, those OCL constraints are design for the 

ETF model and therefore, they can be used for validation only when the ETF file is described 

whit the ETF model. Given that the work targets mainly the validation and not the 

automation of the generation, the work did not reduce the complexity of producing an ETF 

file. This is mainly due to the one to one mapping between the specifications and the model 

concepts. Considering this work as a first step, the work in this thesis is believed to be its 
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logical evolution leading to the generation of the ETF file allowing the definition of a new 

approach for generating the middleware configuration. The ETF domain model is used in the 

new approach presented in the CHAPTER 3.  

  

2.2 Other Related Works 

In the work from (Szatmári, Kövi, & Reitenspiess, 2008), the authors present a systematic 

approach for developing application based on the SAF middleware services. This approach is 

based on a model-driven framework giving the software developer a model for designing an 

application based on the SAF middleware. The model supports the development of SA-aware 

application and can generate a generic configuration and a code skeleton based on this type 

of entity. However, it does not allow the generation of an ETF file, also the generated 

configuration is not customizable and does not consider the user requirement in term of high 

availability. Moreover, this approach does not allow the use of commercial off-the-shelf 

(COTS) which is an important type of application used in clustered solution. In (Kövi & 

Varró, 2007), another model driven approach (MDA) is used for allowing the software 

development of SAF middleware compliant applications. However, it does not target the 

generation of configuration of any type of software, does not consider the user requirement in 

term of HA and finally, it does not allow the creation of the ETF file.  

 

Several works target the extension of the UML component diagram for different purposes. In 

(Espindola, Becker, & Zorzo, 2004), the authors extend the component diagram to include 

the distribution requirements in the early design phase of the software. In (Lu, Halang, & 

Zhang, 2005), the authors define a component-based UML model to capture the requirements 

of a real-time system that can later on be transformed into a platform specific model. In 

(Mahmood & Lai, 2009), the authors present an extension to the UML component diagram 

allowing the specification and analysis of the stakeholders’ requirements. These work relate 

to our approach from the perspective of extending the UML component diagram to satisfy 

certain domain requirements, however, none of them target the HA domain, nor the 

generation of middleware configurations. 



 

CHAPTER 3  
 
 

APPROACH FOR AUTOMATIC CONFIGURATION GENERATION 

This chapter addresses the problem of generating the type description file, known as the ETF 

file in the SAF domain, by proposing a new approach that extends the previous approach for 

generating the middleware configuration (Gherbi, Kanso, Khendek, Hamou-Lhadj, & 

Toeroe, 2009; Kanso, 2012; Kanso et al., 2009). The previous approach for generating the 

configuration (described in Sub-section 2.1) was leaving in the hand of the configuration 

designer the responsibility of providing an ETF file and therefore, requiring the designer to 

possess deep domain knowledge. Consequently, there is still a high level of complexity that 

persists when using the previous approach.  

 

 

Figure 3.1 Approach for generating the ETF file 
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The proposed approach reduces the complexity by capturing the inputs with a graphical 

modeling language. This language abstracts the complexity of the domain by minimizing the 

exposure of the user to the concepts and entities of the SAF domain. This abstraction is done 

by moving to a higher level language that is well known by software developers. Capturing 

the input with a graphical and domain specific language that abstracts the complexity of the 

domain enables the automatic generation of the ETF file. Figure 3.1 illustrates an overview 

of the new approach. In this new approach, the user designs the configuration using a 

graphical modeling language and he/she validates the design with respect to a set of OCL 

constraints extracted from the domain. If the validation succeeds, the transformation can 

proceed and furthermore, the abstracted entities will be inferred from the modeling language 

semantic. Finally, the process will result in an ETF XML file.  

 

 

Figure 3.2 New approach for generating the middleware configuration 
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Figure 3.2 illustrates the new approach for generating the configuration enabled by the 

automatic generation of the ETF file. The previous approach is extended because the ETF 

file and the HA requirements are now automatically generated by the input generator that 

takes its input from the new graphical language. As a consequence, the user is freed from the 

domain complexity that requires deep domain knowledge. In the next Sub-sections, the 

different artefacts of the new approach are explained.  

 

3.1 Graphical Modeling Language for Expressing Configuration Input 

Using a graphical modeling language allows the configuration designer to express the 

Configuration Input at a higher level than the ETF file and the HA requirements. 

Furthermore, the main idea is to minimize the exposure of the SAF domain to the 

configuration designer. However, this new language needs to map the functionality and 

architecture of the software into the ETF file without exposing to the user the low level 

details of the ETF domain. While hiding the low level details and complexity, the language 

must respect the semantic of the ETF file. This semantic is characterised by the association 

between the two main entities of the ETF file which are the component types providing 

and/or requiring component service types. The UML component diagram (UML) is based on 

the similar semantic where the Components provide and/or require Interfaces. In the UML 

component diagram, the Interfaces typically represent a functionality provided by a 

component while the latter one represents the software that may provide and require 

interfaces. Those elements bear similar meaning to the ETF entities. Therefore, the UML 

Component can be mapped to the ETF Component Type and the UML Interfaces to the 

Component Service Type.  
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Figure 3.3 Main constructs of the ECM language 

 

The new graphical domain specific language is an extension of the UML component diagram 

because this is a software friendly language whit similar semantic and elements. However, 

the UML component diagram expressiveness is limited because the information captured 

with this diagram only captures the association between basic components and interfaces. On 

the other hand, the ETF file also captures information related to the high availability offering 

of the different component types. Therefore, we extended the UML component diagram in 

order to include the constructs that capture the minimum information required for generating 

the ETF file. Since the language will be used in an approach where the ETF file is generated, 

it is named the ECM language (ETF Component Model). Figure 3.3 illustrates the main 

constructs of the ECM language. The new constructs are described in the next Sub-sections.  

 

3.1.1 Interface Colocation Dependency (ICD) 

This association captures the colocation relationship between two Component Types. More 

precisely, the ICD means that the Component Types related by this association need to work 

in close relation in order to provide the Component Service Types. For instance, the 

collocated dependency association in Figure 3.4 can be read as the follows: The CT_1 needs 

the CT_2 to provide the CST_B in a collocated environment in order to provide the CST_A. 
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Having CT_1 and CT_2 in the same environment means they should run in the same server. 

Eventually, the generator will interpret this association as the CT_1 need the CST_B in order 

to provide the CST_A and in addition, the CT_1 needs to be in the same SUT than the CT_2.  

 

 

Figure 3.4 Example of the collocation dependency from the ECM language 

 

Assuming than the Component Types are sharing Service Unit Types only when they need to 

work in close relation, it is possible to remove the notion of Service Unit Type from the 

language. Therefore, the complexity is greatly reduced because the user can focus on the 

dependency of the software without considering the complex constraints of the SUT concept.  

 

3.1.2 Interfaces 

There are four categories of interfaces in the ECM language. They represent different kinds 

of CSTs and capture specific information. The following explain them in detail, but the 

attributes of those entities are discussed in Sub-section 3.2: 

 

• Regular Interface: This interface captures the type of service a component type can 

provide to the user or to another component type. Typically, this interface represents a 

service non-related to the SAF middleware and it can be provided by all component types 

of the language. For example, with a CT representing an Apache HTTP server type, the 

interface representing the HTTP service type will be a normal interface. Furthermore, the 

generator will transform this interface into a CST representing the HTTP service type.  
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• Proxy Interface: This interface captures information about the CST representing the 

workload of a proxy CT when proxying a given proxied CT. In other word, a CT 

providing a Proxy Interface is automatically considered as a Proxy Component Type and 

the requiring CT of this interface is also automatically considered as a Proxied 

Component Type.  

• Container Interface: This interface captures the information about the CST of the 

containing service type a given container CT gives to its contained CT. Like the proxy 

interface, the component type providing the Container Interface is automatically 

considered as a Container Component Type and the requiring component type is also 

automatically considered as a Contained Component Type.  

• SAF Interface: This interface does not capture information about a CST but, denotes that 

a given CT is implementing the SAF AMF APIs. In other words, when a given CT is 

providing this interface, it implies that it is an SA-aware CT.  

 

With those interfaces, some rules are added to the basic semantic of the UML component 

diagram in order to comply with the domain constraints. For example, a Component Type 

cannot require a Container Interface while providing a Proxy Interface meaning that a 

Component Type cannot be both Contained and Proxy. Another important rule is that in 

order to provide a Proxy or/and a Container interface, the Component Type must be SA-

aware and therefore, must provide the SAF interface. Those rules are further discussed in 

Sub-section 3.3 because they are implemented as OCL constraints.  

 

3.1.3 Component Type 

This entity is named Component in the ECM language in order to avoid confusion since this 

is how it is named in the UML component diagram. However, in this thesis this entity is 

always referred to as the Component Type because of its equivalent entity in the ETF file. 

The component type represents a type of software that can be deployed in a cluster and it 
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contains the attributes characterizing the implementation. It can provide and/or require 

interfaces and based on those associations, the type of the component will be determined.  

 

3.1.4 Provide and Require Associations 

The provide association between a component and an interface in the UML component 

diagram does not capture any information about how the interface is provided by the 

component is terms of capacity, limitation and dependency. However, this information is 

mandatory in the ETF file and it cannot be simply inferred. This information is known 

exclusively by the software developer and/or the configuration designer. In order to capture 

this information, the association itself is extended by having some attributes essential for the 

generator when it will create the proper association in the ETF file. The basic semantic of the 

associations provide and require remains the same as the one in the UML component 

diagram. In other words, in the ECM language, the components are providing and/or 

requiring interfaces. The require association however, have no need to capture more 

information than the UML component diagram one and therefore, is simply reused.  

 

3.1.5 HA Requirements and Deployment Information 

The HA requirements entities capture information about the level of availability of the 

service to be provided. The concept is very similar to the original one explained in Sub-

section 2.1.1. However, it has been adapted to better fit the semantic of the language. The 

CSITemp is represented by the interface template. Also, the user specifies only the 

association between the interface and the interface template because the concepts of the 

SvcT and SUT are not part of the language for simplification purpose. On the other hand, the 

user still needs to specify the entities from the concept of the service instance template and 

the service group template because they capture important information that cannot be 

inferred. Those entities do not have an association with their corresponding types because 

they do not exist in the ECM language since they have been abstracted. The template entities 

will be transformed into an instance of the original template UML model after the generation 
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of the ETF file. Therefore, the missing association will be filled with the corresponding types 

created for the ETF file.  

  

3.1.6 An Example to Illustrate the ECM Language 

The added constructs have been carefully designed in order to comply with the main 

semantic of both the domain and the UML component diagram while being friendly to the 

user. Based on the semantic, the generator can infer the appropriate missing entities and thus, 

build a complete ETF file and HA requirement template. 

 

Figure 3.5 illustrates a complete example of a HA system described by the ECM language. In 

this example there are four different components and each of them is providing an interface 

representing a specific type of service. The component named HTTP-server provides to the 

client a HTTP service and requires the APP-server to handle the dynamic content. The APP-

server component needs to access the database (DB) for managing the persistent data and it 

needs a collocated access for performance purpose and also because the APP-server is not 

meant to provide its service without the database. Furthermore, the DB component is 

providing HA functions but, it does not implement the SAF APIs. Therefore, if the user 

wants to make those functions available to the middleware, he need to use a proxy for 

mediating the communication between AMF and the DB component. This is why the DB 

component is proxied and thus, requiring a proxy interface provided by the DB-proxy 

component. However, each interface (HTTP-i, APP-i, DB-i and P-i) is respectively 

representing the feature of their associated component. The APP-server and DB-proxy 

components are implementing the SAF AMF API making them SA-aware component and 

therefore, they provide the SAF interface. The four components are grouped in the software 

bundle named SWB and they participate in a service group type that will protect the provided 

services with a redundancy model of 2N.  
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Figure 3.5 Usage example of the ECM language 

 

The nodes SC-1 and SC-2 on which the service group type can be deployed are grouped into 

the node group named SCs. Those entities are not the same as the one in the template UML 

model because they capture the information about the actual deployment of the software 

instead of information about what kind of node is needed. This way of capturing the 

deployment information is used because the user is expected to know on which node the 

software can be deployed. Furthermore, the user can specify the level of availability of the 

services with the templates which is used by the configuration generator for generating the 

AMF configuration. In the example illustrated by Figure 3.5, the user wants to generate the 

AMF configuration and this is why the desired level of service is captured by the templates at 

the left of the figure. As explained in Sub-section 3.1.5, the user only needs to specify the 

association between the interface template and the interface in order to specify the type of 

service is described by the template.  
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3.2 The ECM Metamodel Definition 

Behind the ECM language explained in Sub-section 3.1, there is a metamodel capturing the 

relevant information about the system description for generating the middleware 

configuration. This ETF Component Metamodel (ECM) is composed of five packages, the 

Components, the Interfaces, the RequirementTemplates, the Cluster and the DataTypes as 

shown in Figure 3.6. The next Sub-sections are describing the different packages and their 

class.  

 

3.2.1 Components Package 

The Components package groups the Component class and the closely related classes. There 

are several specialisations of the Component class for representing the different types of 

Component that can be configured in the system. However, the entities like the Service 

Group Type or the Software Bundle are part of this package because they are strongly related 

to the Components. Furthermore, the component hierarchy is a simplification of the ETF 

metamodel because it is possible to infer certain categorizations based on the interface 

provided by the component, e.g. there is no need for a ProxyComponent or 

ContainerComponent because they do not have unique attribute and it is possible to infer 

them based on the interface provided by an IndependentComponent. The main classes of this 

package are described in the following:  

• Component: This class specifies the attributes that any AMF managed component must 

have regardless of its category. Those attributes captures information about the default 

recovery action the middleware must take for this component in case of failure. They also 

capture the command and their arguments used by the middleware for managing the 

component life cycle. Plus, it captures the timeouts regarding those commands after 

which the middleware will assume the component is faulty. Additionally, the maximum 

and minimum number of components of this type that can be grouped in a specific SU is 

captured by the attributes. This entity is having the very important provide and require 

associations to the interface representing the featured services of a component. 
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Furthermore, the component is specialized by the following classes that represent the 

different types of component: 

o NonProxiedNonSaAwareComponent: This class represents the Non-Proxied, 

Non-SA-Aware entity type. When managing this particular type of entities, the 

middleware needs to know the command for instantiating, terminating and 

cleaning the component in term of life cycle. Hence, this class specifies attributes 

regarding those commands and the arguments they may need.  

o ProxiedComponent: This class represents the Proxied entity type. Since this type 

of entity is not directly managed by the middleware, but rather with a proxy 

mediating the communication, the middleware only needs to know the command 

for cleaning the instance in case the proxy fails to mediate the terminating 

command. Plus, there is an attribute for the quiescing timeout and also for the 

type of instantiation the component supports.  

o SaAwareComponent: This class represents the SaAware component types. 

Furthermore, components of this type are associated with a SAFInterface and this 

class is specialized by two other classes characterizing more precisely 

components of this type.  

 ContainedComponent: This class represents the ContainedComponent 

which is also a SaAwareComponent. However, there is an attribute for the 

quiescing timeout. 

 IndependentComponent: This class represents an independent 

SaAwareComponent meaning that a component of this type does not 

require any proxy or container interface. This class specifies the attributes 

about the commands and arguments regarding the instantiation and the 

cleaning of a component of this type. And plus, there is an attribute for the 

quiescing timeout.  

• ServiceGroupType: This class is very similar to the ServiceGroupType of the ETF 

metamodel; the difference is that it includes components instead of grouping SUT and it 

is not grouped into any application type since this entity does not exist in this metamodel. 

During the generation of the missing ETF entities, the association to the component of 
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this class will be adapted to the corresponding created SUT. Furthermore, this class 

specifies attributes regarding how the availability of the participating components and 

SUT will be protected with the specified redundancy model.  

• SoftwareBundle: This class is a one-to-one mapping to the ETF SoftwareBundle. They 

are both composing components that can be deployed into a HA system. This class 

specifies attributes about commands for managing the deployment of the grouped 

components.  

 

3.2.2 Interfaces Package 

This package contains the Interface class at the top of the hierarchy. The Interface class is 

specialized by several classes that mainly characterize different types of abstracted service. 

While the ETF entity corresponding to the ServiceInterface class is the Component Service 

Type, the semantic of a component providing an Interface is also used to capture certain 

characteristic regarding the type of a component, i.e. when a component is providing the 

SAFInterface; it means that the component is SaAware even if the SAFInterface itself does 

not represent a CST. The main classes of this package are described in the following:  

• Interface: This class only represents the concept of the interface and does not abstract 

any workload service. Nonetheless, this class has specializations that either represents a 

workload or a characteristic of the component implementation.  

o ServiceInterface: This class specifies attributes that represent a general workload 

at runtime. Furthermore, the content of this class will be transformed in a CST. 

There are three specializations to this class:  

 RegularInterface: This class represents the runtime services that are not 

related to the middleware. For example, a database has a SQL runtime 

service and therefore, the component representing this database should 

provide a RegularInterface describing the SQL runtime service.  

 ProxyInterface: This class represents the SAF middleware specific 

runtime service of a proxy proxying another component. When providing 

this interface, the IndependentComponent will be interpreted as a 
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ProxyComponent by the generator and it will be expected to mediate the 

communication between the middleware and the components requiring its 

ProxyInterface. Furthermore, the component requiring this interface needs 

to be a ProxiedComponent.  

 ContainerInterface: This class represents the SAF middleware specific 

runtime service of a container containing another component. When 

providing this interface, the IndependentComponent will be considered as 

a ContainerComponent by the generator and it will be expected to provide 

the execution environment used by the components requiring its 

ContainerInterface (this is regarded as containing because the 

ContainedComponent can only be executed inside the container specific 

execution environment). However, the component requiring this interface 

needs to be a ContainedComponent.  

o SAFInterface: This class represents the SaAware features. In other words, 

providing this interface means that the component implements the SAF AMF API 

and therefore, providing the runtime service of supporting all the AMF life cycle 

features.  

 

3.2.3 RequirementTemplates Package 

This package encloses the classes that feature the attributes used to capture the level of 

availability desired by the user. The classes of this package are very similar to the one found 

in the original model (Salehi, 2012). However, because of the semantic of the component 

diagram, the associations of those classes were adapted to better fit the ECM metamodel. The 

ServiceGroupTemp class specifies attributes about the number of SUs that will be used and 

the redundancy model used to protect the service. In other words, they describe the 

requirement for a ServiceGroup and the number of SU to be deployed. Furthermore, it is 

composed of ServiceTemp class that will describe the type of services the ServiceGroup will 

protect. More precisely, the ServiceTemp class specifies attributes about the level of service 

the SUs will be expected to provide. And finally, the InterfaceTemp class composing the 
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ServiceTemp class specifies attributes about the level of service the components of the SUs 

will be expected to provide. All of those template classes contain names that will be used by 

the generator for creating the entities of the configuration like the SGs, SIs, SUs, CSIs and 

components.  

 

3.2.4 Cluster Package 

This package encloses two classes specifying attributes about the nodes on which the 

software is actually deployed. The attributes of the Node class describe the capacity of the 

node plus how the middleware should react in case of failure at the node level. However, the 

Node classes are grouped by the NodeGroup class, which is associated with the 

ServiceGroupType class of the Components package. This association specifies on which 

group of nodes (NodeGroup) the components of a ServiceGroupType can be deployed.   

 

3.2.5 DataTypes Package 

The classes of this package help the user to better specify the information he wish to specify 

for the different class. Besides this, they are specific to the domain and mainly reflect the 

data types specified in the SAF specifications. An example of this is the enumeration that 

captures the redundancy models we can have in this domain.  

 

3.2.6 ComponentService Association Class 

This is an association class between the Component and the Interface. This class is also 

involved in the reflective association that captures the collocation dependency. However, the 

main responsibility of this class is to capture information about how the Component is 

capable of providing the given Interface with the CompCapabilityModel attribute. Also, the 

collocation dependency is captured by the reflective association of this class. 
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Figure 3.6 ECM Metamodel 
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3.3 The OCL Constraints from the SAF Domain 

The language semantic captured by the ECM metamodel covers the basis of the SAF domain 

where the Component entity is expected to provide and/or require some Component Service 

Instance entity. However, they do not capture all the constraints of the domain expressed 

informally in the very large SAF specifications (SAForum). In fact, one of the objectives of 

this work is the validation of the user input and therefore, the metamodel instances represent 

an input validated against the domain constraints. This is why the domain constraints hiding 

in the SAF specifications where deeply analyzed, extracted and expressed in the OCL 

constraint language. However, as explained in Sub-section 2.1.4, the authors of the ETF 

model have already designed OCL constraints for validation purpose. The OCL constraints 

defined for the ETF model (Salehi, 2012) were not directly reusable on our metamodel, 

hence we had to re-adapt them in this project to fit the ECM metamodel. By annotating the 

metamodel with such constraints, any of its instances can be validated against the domain 

constraints. Due to the lack of space, we will illustrate in details some important OCL 

constraints and leave out dozens of other constraints:  

 

In the SAF domain, the Component Types participating in a given Service Group Types with 

the N-Way redundancy model must support the X_active_and_Y_standby capability model as 

seen in Table 1. One way of expressing this constraint in OCL is by looking at all the 

Components associated to the ServiceGroupType and check in the association class 

ComponentService if the capability model is the correct one. The Figure 3.7 illustrates the 

OCL resulting from this constraint.  

 

 

Figure 3.7 OCL about the redundancy model 
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Since the validation is expected to cover all aspects of the domain, the OCL must also cover 

more intuitive domain constraints. One of those constraints is that a given Component must 

not provide and require the same Interface. The resulting OCL constraint is illustrated in 

Figure 3.8. 

 

 

Figure 3.8 OCL about the Component provide/require association 

 

The different specialisations of the Component class also have their own constraints. The 

user may know the basis of them, but being aware of such constraints requires deep 

knowledge about the SAF domain specifications. Those constraints can be considered as 

small details by the specification readers, but if they are not respected, the configuration will 

not be valid and consequently, the system will not provide the expected level of service.  

 

An example of a constraint that can easily be missed is the one illustrated in the Figure 3.9. It 

is checking that a pre-instantiable ProxiedComponent is not sharing the same SUT than its 

ProxyComponent. However, this constraint is complicated to check in the ECM metamodel 

because this is how the Interfaces are provided that determines if the Component is pre-

instantiable or not. More precisely, this information is featured by the ComponentService 

association class (see Sub-section 3.2.6). Another detail that make the constraint hard to 

check is that the ECM metamodel does not have SUT for abstraction purpose. The SUTs will 

be generated based on the collocation dependency and therefore, the OCL constraint must 

first check if the ProxiedComponent is pre-instantiable and then, check if its 

ProxyComponent is among the collocated Components, if any.  
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Figure 3.9 OCL about the ProxiedComponent pre-instantiable attribute 

 

In the specification it is explained that the Component cannot be both proxied and contained 

at the same time. Concretely, in the ECM metamodel it means that a ProxiedComponent 

cannot require and/or provide a ContainerInterface. Figure 3.10 illustrates this constrains 

with two different OCLs.  

 

 

Figure 3.10 OCL about the ProxiedComponent interfaces 

 

3.4 ETF Generation Based on Model Transformation 

The ECM language explained in Sub-section 3.1 abstracts the complexity of the domain 

when defining the middleware configuration because the entities that can be inferred are 

explicitly expressed using the language. They can be inferred based on the dependency 
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between the entities of the ECM model (i.e. an instance of the ECM metamodel). 

Furthermore, the missing entities are generated based on three model-to-model 

transformations (Sendall & Kozaczynski, 2003). Since the target was to extend the previous 

approach for generating the middleware configuration, the outputs of this generation process 

is the ETF file expressed in XML and the HA requirements (i.e. the templates).  

 

 

Figure 3.11 Transformation steps of the algorithm 

 

In the first transformation, an instance of the ETF domain model is generated. As illustrated 

by Figure 3.11, from a validated ECM model the first steps are the generation of the entities 

that have a one-to-one mapping: the Components, Interfaces, Software bundles, Attributes 

and Healthchecks. They will be respectively transformed into Component types, Component 
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service types, Software bundles, CST Attributes and Healthcheck of the ETF domain model. 

However, at this stage it is not possible to fill all the association because some entities are not 

yet created. Therefore, a mapping between the ECM entity and the created ETF entity type is 

saved for further completion of the associations in a further step.  

 

The second step is to generate the types that are not included in the ECM metamodel. This is 

where the missing entities are inferred based on the dependency in the instance of the ECM 

metamodel (i.e. the ECM model). The Colocation Dependency in the ECM metamodel is not 

only mapped into the Component type dependency that is specified in ETF domain model, 

but it also indicates that the sponsor and the dependent must be grouped in the same Service 

unit type. Therefore, this is based on this information that the Service unit type is generated. 

Figure 3.12 illustrates the algorithm used for creating the SUT.  

 

 

Figure 3.12 Service Unit Type creation algorithm 

 

Actually, the findAllCollocatedComp recursive function will build a list of Components 

related together by navigating through all the Components of the Collocation Dependency 

association. The Components found by the function, along with the starting Component, will 

be grouped in the newly created SUT.  

 

Once the SUT is created, the SvcT is generated based on the same information. However, the 

SvcT is not directly associated with CTs but rather with its CSTs. Figure 3.13 illustrates the 
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algorithm used for creating the SvcT and finding the corresponding CSTs based on the 

Components grouped by the SUT.  

 

 

Figure 3.13 Service Type creation algorithm 

 

With both the SUTs and SvcTs created, the association class between them is created. The 

corresponding SUT of a given SvcT was saved into a map as seen in Figure 3.13 in order to 

enable the creation of the association class in a separate step. This separation is needed 

because all SUTs and SvcTs need to be created before setting the require association of the 

association class. They need to be created first because if the association class was created at 

the same time of the SUT or the SvcT, it would be possible that a require association points to 

an instance that has not been created yet. This association represents a dependency that is 

mapped to the normal require association of the ECM metamodel and the middleware needs 

this association to be specified in order to manage the dependency between SvcTs. Figure 

3.14 illustrates the algorithm for the creation of the SvcTSut association class.  
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Figure 3.14 Service Type Service Unit Type association class creation algorithm 

 

In the last step, the Service group type is created based on the Service group type of the ECM 

model. This is almost a one-to-one mapping but, in the ECM metamodel the SGT is grouping 

CTs and in the ETF model it is grouping SUTs. Therefore, based on the map pairing the 

Component of the ECM model and its corresponding CT of the ETF model, the algorithm is 

going to find the SUT in which the corresponding CT was grouped. After the creation of the 

SGTs, for each of them an Application Type will be created with default value since this 

entity does not capture essential information. Then, the association class between the proxy 

and its proxied component is created and finally, the association class between the contained 

and its container component is also created.  

 

After the transformation of the ECM model into an instance of the ETF model, the generator 

will perform the second transformation where the ETF model will be transformed in an 

instance of the ETF schema (SAI-AIS-SMF-XSD) which is the ETF file expressed in XML. 
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This transformation is straightforward because the ETF model captures the same information 

than the ETF schema. Nevertheless, there are some associations that are expressed differently 

and therefore, this is not a one-to-one mapping. Moreover, the generation of this file is 

always a valid instance of the ETF schema and is also always valid against the constraints of 

the domain because the input is validated before the generation with the OCL as explained in 

the Sub-section 3.3.  

 

The last transformation is where the Template model instance is created. In this 

transformation there are three entities concerned; the ServiceTemp, InterfaceTemp and 

ServiceGroupTemp and they are transformed in this order. This is a one-to-one mapping 

except for one association, the one between the ServiceTemp and the ScvT. This association 

is not present in the ECM metamodel and therefore, the generator algorithm must look in 

which SvcT are grouped the CSTs associated with the grouped InterfaceTemp. After this last 

step, the generation of the ETF file and the HA requirements (i.e. the templates) is done and 

they can be used by the current approach for generating the complete middleware 

configuration.  

 

3.5 Assumptions and Discussion 

The process of generating the configuration targets the generation of an ETF file and the high 

level HA requirements. However, only the main scenario of generating a new file has been 

considered because the stakeholders (i.e. the software providers or the configuration 

designers), due to the nature of the ETF file, are likely to generate a new file each time they 

need one. The software providers may need to update a given ETF file in the case of a new 

version of existing software but, mainly they will create a new one. Furthermore, using this 

approach, they can persistently save the ECM model representing given software for future 

modifications. However, this is why in the ECM metamodel there is some information that 

has not been captured intentionally. As a result, if an instance of the ETF model were 

transformed in an instance of the ECM metamodel, information would be lost. Nevertheless, 

loss of information would be minimal and would not affect the overall level of availability 
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because this information regards the Application Type and the SGTs it groups. Indeed, the 

only attributes of this entity is its name, its version and the SGTs it is grouping. Therefore, 

this information was considered as not relevant for the main purpose of this language that is, 

moving to a higher level of abstraction for simplifying the domain complexity.  

 

The fact that the stakeholders no longer need to be expert in the domain does not mean that 

there is not a minimum knowledge required by the approach. More precisely, the user needs 

to be aware of the basic concepts of the domain. For example, the user needs to know that 

there is a separation about the service and the service provider and it enables the management 

of the high availability for the middleware. Also, the middleware support the notion of proxy 

and thus, allowing the use of a larger range of software resources. However, if the user is 

aware of those elementary details, he can easily use this new approach for generating the type 

description file and furthermore, generating the middleware configuration without having 

deep knowledge in the HA and SAF domain.  

 



 

CHAPTER 4  
 
 

THE ET-AM TOOL CHAIN 

In this chapter, we discuss the details of our prototype implementation. Our prototype fully 

implements the ECM language, the ECM metamodel and all its annotated OCL constraints. It 

can perform a full transformation resulting in the ETF file and the HA requirements. 

Furthermore, it also implements the previous approach in order to better illustrate the 

completeness of the combination of both the new and the previous approach. Figure 4.1 

illustrates the workflow of the prototype.  

 

 

Figure 4.1 Workflow of the prototype tool 

 

The workflow strongly reflects the approach as seen in Figure 3.2. Indeed, all the steps of the 

approach are implemented from the user input to the deployment of the configuration with 

the upgrade campaign into the middleware. More precisely, the step one is where the user 

designs the middleware configuration by specifying the systems components with the ECM 

language. In the second step, the user triggers the validation using the implementation of the 

OCL designed for the ECM metamodel. It is worth noting that designing the HA 
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configuration in the first step will result in an instance of the ECM metamodel. If the 

validation fails, the user must update the incorrect design of the system following the 

instruction received after the validation. Then, having a valid design of the system, the third 

step is to trigger the automatic generations. In this step, there are five generators concerned; 

(1) the generator that will transform the instance of the ECM metamodel into an instance of 

the ETF model, (2) the generator that will transform the instance of the ETF model into an 

XML file (i.e. the ETF file), (3) the generator that will create an instance of the Template 

model from the ECM model, (4) the generator that will create the actual middleware 

configuration by taking as input an ETF file and an instance of the Template (i.e. the HA 

requirements) model and finally, (5) the generator that will create an upgrade campaign 

based on the generated middleware configuration. In the fourth step of the workflow, the user 

can deploy the generated configuration by using the generated upgrade campaign. 

Furthermore, the tool features an upgrade campaign monitor that informs the user of the state 

of the upgrade campaign and also implements its main commands (e.g. start, stop, commit 

and rollback) as seen in Sub-section 4.3.3. This way, the user can deploy the configuration 

without using the administration tools of the middleware that are accessible only by 

command line.  

 

4.1 Architecture and Technologies 

In the architecture of the ET-AM tool chain, the Graphical Definition module implements the 

concrete syntax of the ECM language. It is based on the Eclipse’s Graphical Modeling 

Framework (GMF). Since the ECM language is an extension of the UML component 

diagram as explained in Sub-section 3.1, its look and feel is very similar. Moreover, this 

module uses the modeling infrastructure which is the implementation of the ECM metamodel 

and the OCL constraints. Any design action of the user in this module will update the ECM 

model and at this step, only the semantic based on the entities associations are automatically 

validated. However, this is the Input/output Module that ensures the serialization of the input 

into an ECM model.  
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The validation against the OCL constraints is the responsibility of the Model Validator 

module. The OCL constraints have been implemented with the OCLinEcore editor 

(OCLinEcore) from the OCL Eclipse project in the Modeling Infrastructure. The module 

validates the instance of the ECM metamodel with the OCL constraints and outputs the 

validation errors, if any, to the user by message dialogs with a code. If the user wishes more 

detail about validation errors, he can get detailed information in the documentation based on 

the error code.  

 

The Input Generator module implements the three model-to-model transformers needed for 

generating the Configuration requirements (i.e. HA requirements) and the ETF XML file. 

They use the model implementations in the Modeling Infrastructure and since those 

implementations are in Java, the transformers are also implemented in Java. The Input 

Module de-serializes the ECM model and makes the content available to the ECM-to-CR and 

ECM-to-ETF Transformer. Furthermore, the Output Module features the serialization of the 

HA requirements and the ETF XML content in respectively the Configuration requirements 

and the ETF file.  

 

The Modeling Infrastructure is implemented in Java but, the models of the prototype have 

been designed using the Eclipse Modeling Framework (Steinberg, Budinsky, Merks, & 

Paternostro, 2008). Therefore, the models are expressed in an Ecore file. Those files, using 

EMF, are used for generating the Java implementation of the models of this domain. The 

OCLinEcore editor allows the definition of OCL constraints directly into the Ecore file and 

furthermore, the OCL will be implemented with the model when it will be generated in Java. 

Figure 4.2 illustrates an architectural view of the prototype and it is worth nothing that the 

tool prototype is an Eclipse plugin in order to let the user manipulate freely the editors of the 

tool for the Ecore instance file, the XML files and the ECM model file. However, the 

prototype integrates the feature issued from the prototype developed for the previous 

approach and presented in this paper (Gherbi et al., 2009). Overall, the prototype can perform 

all the featured functionality of the new approach presented in CHAPTER 3 plus the feature 



64 

of the previous approach presented in Sub-section 2.1. The four main resulting features of the 

prototype are explained in Sub-section 4.2. 

  

 

Figure 4.2 Tool architectural view 

 

4.2 Features of the Tool 

In this Sub-section, the features of the tools are shown in details with different use cases 

showing how to perform the generations of the ETF file, the HA requirements, the AMF 

configuration and the Upgrade Campaign.  
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4.2.1 Generating the ETF File and the High Availability Requirements 

Using the ET-AM tool prototype, it is possible to generate only the ETF file. In order to 

generated this file, the generator need to take as input a complete type description of the 

application. More precisely, the user only needs to design the application graphically, then 

trigger the validation and once the design is valid, trigger the generation.  

 

 

Figure 4.3 Adding a Component with the ECM language 

 

Figure 4.3 is a snapshot of the ET-AM tool illustrating how the user can create a component 

by selecting the Component icon from the right hand side palette, and then drawing the 

component in the editor area. The palette includes the elements defined in the ECM model. 

The user can enter the attribute values of the component using the properties panel. This is a 

contextual panel and always shows the attributes of the selected element of the editor area. 

Therefore, in the context of this current selection the properties of a Non-Proxied, Non-SA-

Aware component are shown. However, for generating a complete ETF file, the transformer 

needs a complete input in order to be able to generate the missing entities. More precisely, 

the generator needs to know what type of service the Component is providing and 
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furthermore, in what kind of redundancy the component can operate. Figure 4.4 is a snapshot 

where the design has been completed by adding the minimum needed entities for generating 

the ETF file. Those entities are the regular interface, the service group type and the software 

bundle. The contextual properties panel is showing the attributes of the selected regular 

interface.  

 

 

Figure 4.4 Complete design of an application with the ECM language 

 

If the user did a mistake during the design of the application with the ECM language, the 

validation part of the prototype can always point out the errors as illustrated by Figure 4.5. In 

this particular case, the validation was triggered before the component was associated to a 

software bundle. Plus, the NPNSA_CT1 constraint is violated. This constraint checks that a 

Non-Proxied, Non-SA-Aware component (the one shown in Figure 4.3 and Figure 4.4) is 

only providing interfaces with the capability model COMP_NON_PRE_INSTANTIABLE.  
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Figure 4.5 Validation of the input design 

 

Once the design is validated, the user can trigger the generation of the ETF file. As illustrated 

by Figure 4.6, the user must specify the path to the ECM model (i.e. the serialized file), the 

path for saving the instance of the ETF model and also the path for the actual ETF XML file. 

When those options are set, the user can click the start button and by this, triggering the 

generation.  

 

 

Figure 4.6 Generations window 

 

When the generation is over, the user space of the eclipse project will be updated with both 

the ETF file and also the serialized instance of the ETF model.  
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The feature of generating only the ETF file exists because the tool can be used by the 

software vendor and therefore, shall be able to produce only the description file. However, 

another scenario is taken in consideration. This is the scenario of producing both the ETF file 

and the HA requirements. This enables the combined usage of this prototype and the tool 

from the previous approach. In order to generate the HA requirements, the user must defines 

the needs in term of availability with the templates of the ECM language. Figure 4.7 

illustrates the design of the application including the template information plus the 

deployment information. The templates entities are at the right of the edition area. The 

selected entity is the SG-requirement and the properties panel is showing its attributes. 

Furthermore, this entity is associated with the service-requirement entity and this later one is 

associated with the interface-requirement. Those three entities are capturing information 

about the level of availability the application should reach as explained in Sub-section 2.1.1 

and 3.1.5.  

 

 

Figure 4.7 Complete design with HA requirements and deployments entities 



69 

4.2.2 Generating the AMF Configuration 

The ET-AM tool also generates the AMF configuration if the output is specified. This feature 

is provided by the previous tool (Gherbi et al., 2009) and since the implementation was 

available, it has been integrated into the prototype. Hence, the user can generate both the ETF 

file and the AMF configuration with the same tool. The user triggers this generation with the 

window illustrated by Figure 4.6 by filling the corresponding field with a valid path. More 

precisely, if the user specified the needed entities for generating the ETF file and the HA 

requirements, the tool will also generate the AMF configuration if an output file is specified.  

 

4.2.3 Generating the Upgrade Campaign 

In this work (Kohzadi, 2009), the authors are presenting a tool for generating the upgrade 

campaign. The source code of this project was available and therefore, it was added into the 

prototype under a plugging that work independently of the main plugging. Figure 4.8 

illustrates the window where the user can trigger the generation.  

 

 

Figure 4.8 Upgrade Campaign generation window 

 

This module takes as input the serialized instance of the AMF model and generates as output 

the XML upgrade campaign file. This XML file contains the instructions the middleware 

needs in order to migrate from a given configuration to a new one with minimum service 

outages as explained in Sub-section 1.4 and 2.1.3. It is possible to include paths to scripts that 
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can install the software automatically in the Software Bundle (see myStreamerApp in Figure 

4.4). However, if there is no scripts for the installation of the software, the user needs to 

manually deploy the software into the cluster before deploying the configuration.  

 

4.3 Verification of the Produced Artefacts  

In this Sub-section, the methods for verifying the output files are discussed. More precisely, 

the different outputs of the prototype were verified in order to make sure they were valid. 

However, tools have been used in some cases in order to verify that the file was valid.  

 

4.3.1 Verification of the ETF File 

The ETF XML file generated by the prototype is assumed to be a valid ETF file as discussed 

in CHAPTER 3. In order to verify that it was the case, two strategies have been used. (1) A 

mature XML editor (XMLSpy) was used in order to check the structure of the ETF file 

against its XML Schema. It is worth nothing that the XML Schema is very complete and also 

includes its own sets of constraints. (2) The tool chain from the previous approach was used 

with an ETF file generated from the ET-AM tools and the generated middleware 

configuration was successfully used in a real cluster.  

 

4.3.2 Deploying a New AMF Configuration on a Cluster 

For testing the middleware configuration generated by the ET-AM prototype, the scenario of 

adding a new application into a cluster of two nodes was used. Without using the upgrade 

campaign, it is possible to merge the current configuration with another one in the case of 

adding a new application. The OpenSAF implementation of the middleware features a tool 

for merging such configuration and thus, it was possible to verify that the middleware accept 

the generation middleware configuration. This method requires shutting down the entire 

cluster before merging the two configurations and therefore, in order to avoid such outage the 

upgrade campaign must be used (see Sub-section 1.4 and 2.1.3). However, like the ETF file 
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the AMF configuration also have a XML schema and using the XMLSpy XML editor, the 

configuration was validated against its complete and mature schema.  

 

The OpenSAF implementation also offer a tool for verifying a given configuration file. This 

tool features helping functionalities telling the user what is wrong with its file. For example, 

if a name reference contains an error, the tool will point which entity is concerned and what 

is the error (e.g. the referred entity is impossible to find or the format of a given attribute is 

not valid). For this reason, this tool was used in order to know in detail what was the error 

during the development of the prototype. However, now the prototype is producing a valid 

middleware configuration file.  

 

4.3.3 Live Integration of New AMF Configuration Using the Upgrade Campaign 

The same kind of environment used for testing the AMF configuration was reused in the 

verification of the upgrade campaign generator. In fact, an upgrade campaign was generated 

for adding a new application in a cluster of two nodes with two applications already running. 

The two applications were protected with a redundancy model of 2N (i.e. one active and one 

standby). The generated upgrade campaign executes successfully in the middleware and the 

added application will be highly available as soon as the campaign is executed.  

 

In order to monitor the state of the campaign, a feature was added into the prototype. This 

feature allows the user to trigger an upgrade campaign from the generated file and monitor 

the execution of the campaign. Figure 4.9 illustrates the window of the upgrade campaign 

monitor. The user can perform the main operations with the window like the Create, Execute, 

Rollback and Commit.  
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Figure 4.9 Upgrade Campaign monitor



 

CONCLUSION 

 

1) Research Contributions  

In this thesis, we presented an approach for automating the design and generation of the types 

description files (i.e. the ETF file in the OpenSAF domain) and the HA requirements from a 

graphical input. This approach naturally completes the previous approach and by using it, 

both the software provides and the configurations designer can generate the types description 

file and/or the middleware configuration from a graphical input. This input is expressed using 

a graphical language based on the well-known UML Component Diagram and it is named 

ECM (ETF Component Model). Because of its inherited semantic and look and feel from the 

UML Component Diagram, this ECM language is easy to understand and manipulate for 

software developers. In order to capture the information expressed by the graphical language 

in a formal manner, a metamodel as been created and it takes its name from the ECM 

language; the ECM metamodel. This metamodel is enriched by OCL based on constraints 

carefully extracted from the domain specifications and thus, making any input expressed with 

the ECM language a valid input against the domain constraints. The problem solved by this 

approach lies as much in the amount of constraints as in the number of entities and especially 

since someone needs to go through the thousands of specification pages in order to master 

them. This learning process is not affordable for most software and service providers of the 

domain and therefore, the complexity needed to be abstracted by an automated approach.  

 

The approach is based on three model-to-model transformations; (1) the first model-to-model 

transformer will take as input an instance of the ECM metamodel, and then it will infer the 

abstracted entities based on the semantic and dependency and then it will create an instance 

of the ETF model as an output. (2) The second transformer will take as input an instance of 

the ETF model and will create an instance of the ETF Schema which is the ETF XML file. 

(3) The last transformer will take as input an instance of the ECM metamodel and will extract 

from it the HA requirements, if any.  
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In order to verify the work done in this research we have developed an Eclipse-based 

prototype tool that can be used by configuration designers. This prototype implements all 

artefacts of the new approach. In other words, it implements the graphical language, the 

ECM metamodel, the transformers and also the validation based on the OCL constraints. In 

addition, the prototype includes the features developed in the prototype resulting from the 

previous approach and therefore, can generate and integrate the middleware configuration 

from the only input of the ECM graphical language.  

 

2) Future Work 

One of the targets of this research is to create an approach that can be used in more than one 

HA domain. Our approach targets the generation of the type description file however, in 

other system like Linux Pacemaker (Pacemaker), such file may not be needed. Therefore, the 

approach shall be adapted in order to target the needed artefacts for such middleware. The 

adaptation of the approach should not differ dramatically from our approach since the 

concepts used in this domain are mainly the same than the one used in the SAForum domain 

(i.e. the redundancy management, the escalation policies, etc…). Furthermore, we believe 

that the configuration of any similar middleware could be automatically generated from an 

approach derived from the one presented in this thesis (see CHAPTER 3).  

 

3) Closing Remarks 

The need for highly available systems is constantly on the rise, especially with the high costs 

of unplanned outages. Therefore the use of HA middleware to manage the system availability 

is in high demand. Using the SAForum middleware to manage the HA of the system can be 

challenging especially since the previous approaches for automatically generating the 

middleware configuration did not provide the means to automatically generate the ETF XML 

file. Writing this XML file manually can be a tedious and error prone task. Consequently, the 

contribution of this research is freeing the user from the very complicated technical aspect of 

the types description files and allows him/her to focus on the availability of the system 

without being a domain expert.  
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