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RESOURCE MANAGEMENT FOR VIRTUALIZED NETWORKS

Ahmad Quttoum

RÉSUMÉ

La virtualisation des ressources a émergé comme une approche prometteuse qui peut être em-

ployée pour améliorer l’efficacité des technologies de gestion des ressources dans un réseau.

Ainsi, dans ce travail, l’objectif est d’étudier comment automatiser la gestion de la bande pas-

sante dans un réseau, tout en utilisant un schéma de partitionnement virtuel des ressources.

Dans la littérature plusieurs travaux de recherche ont abordé la gestion des ressources dans le

contexte des réseaux virtuels privés, mais chacun a ses limites. Un partage non équitable des

ressources, une faible utilisation de la bande passante disponible, faibles profits, l’exagération,

et la collusion sont tous des exemples de ces limitations. En effet, l’absence des systèmes ca-

pables de garantir un partage équitable de la bande passante entre les utilisateurs, encourage

l’exagération en besoin des ressources. C’est-à-dire, un client peut monopoliser les ressources

qui sont censées servir les autres utilisateurs. Un partitionnement statique des ressources peut

limiter le problème d’exagération, toutefois il peut en résulter une mauvaise utilisation de la

bande passante, ce qui signifie des profits moindres pour les fournisseurs de services réseau

virtuel. Cependant, le déploiement d’une technologie de gestion de bande passante autonome

peut améliorer l’utilisation des ressources, et maximiser le taux de satisfaction des clients. Une

telle technologie peut fournit également aux clients une sorte de privilège qui peut être utiliser

pour tricher. Ainsi, des actions de tricherie comme la collusion et l’exagération peuvent être

adopter par certains clients. Résoudre des telles problèmes est aussi abordé dans ce travail.

Dans la première partie de cette thèse, nous nous proposons de résoudre les problèmes de

la mauvaise utilisation de la bande passante, des faibles profits pour les fournisseurs de ser-

vices et les taux de blocage élevés rencontré dans l’approche traditionnelle "Premier arrivé

premier servie " (FAFA) . La solution proposée est basée sur un mécanisme de gestion des

ressources Autonome (ARMM). Cette solution déploie un algorithme intelligent d’allocation

de la bande passante basé sur le mécanisme de vente aux enchères. Pour réduire la tendance

de l’exagération, nous proposons d’utiliser la technique Vickrey-Clarke-Groves (VCG), qui

consiste en un modèle de menace qui pénalise les clients qui exagèrent leurs besoins en bande

passante. La pénalité pour chaque client qui exagère son besoin en bande passante est calculée

en se basant sur les désagréments qu’il cause à autrui dans le système. Pour résister à la collu-

sion entre clients, nous proposons de calculer un prix fictif seuil dépendant de l’état du système

et en se basant sur la théorie de décision de Markov. En effet, nous calculons pour chaque état

du système un seuil de prix de vente pour chaque unité de la bande passante disponible dans

le réseau. Tout client offrant un prix de vente par unité de bande passante inférieure au seuil

calculé est automatiquement bloqué et ne peut utiliser les ressources du réseau.

Dans la deuxième partie de cette thèse, nous nous proposons de résoudre une version élargie

du problème d’allocation de la bande passant dans un réseau virtuel privé, et en utilisant une
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méthodologie différente. Le problème d’allocation de la bande passante est étendu à un prob-

lème de partitionnement. Une telle expansion permet de calculer la répartition optimale de

la bande passante de chacun des liens du réseau entre les différentes classes de service et de

fournir une meilleure utilisation des ressources du réseau. Afin de trouver les paramètres d’une

gestion optimale des ressources d’un réseau virtuel privé, le problème est résolu par les tech-

niques de la programmation linéaire (LP). Un schéma de partitionnement dynamique de bande

passante est également proposé pour surmonter les problèmes liés au partitionnement statique

des ressources telle que un faible taux d’utilisation de la bande passante disponible, qui peut

résulter en des partitions sous-utilisées. Ce modèle de partitionnement dynamique est déployé

d’une manière périodique. Un partitionnement périodique fournit une nouvelle façon de ré-

duire le raisonnement de l’exagération, par rapport au modèle basé sur la menace de payer une

pénalité relative au désagrément posé à autrui. Nous réduisons ainsi le coût lié au calcul de

cette pénalité.

Dans la troisième partie de cette thèse, nous proposons un système de gestion décentralisé

pour résoudre les problèmes mentionnés ci-dessus dans le contexte des réseaux virtuels privés

gérés par des opérateurs des réseaux (VNOs).Cette décentralisation permet le déploiement d’un

niveau supérieur de la gestion autonome des ressources du réseau, à travers lequel, les respon-

sabilités de gestion sont répartis sur les nuds du réseau, chacun étant responsable de la gestion

de ses liens sortants. Comparé aux architectures centralisées, une telle distribution permet une

plus grande fiabilité et un dimensionnement de la bande passante plus facile et plus efficace.

En outre, il crée un cadre de la concurrence à deux faces qui permet une double vente aux

enchères parmi les acteurs du réseau, les clients et les contrôleurs des nuds du réseau. Un tel

environnement de compétition offre une nouvelle façon de réduire l’exagération comparée au

modèle périodique basé sur la menace de payer une pénalité. Mieux encore, ce nouveau modèle

peut offrir des meilleurs taux d’utilisation, un taux de blocage moins élevé et par conséquent

des profits pour le fournisseur de service plus importants. Enfin, des simulations numériques

et des résultats empiriques sont présentés pour soutenir les solutions proposées, et fournir une

comparaison plus éclairée avec d’autres modèles qui ont été proposés dans la littérature.

Mot-clés: Réseaux Virtuels, de gestion autonome, partitionnement virtuel, gestion des ressources

de bande passante, la théorie des jeux, Mechanism Design, Théorie de la décision de Markov,

et de la Programmation Linéaire.



RESOURCE MANAGEMENT FOR VIRTUALIZED NETWORKS

Ahmad Quttoum

ABSTRACT

Network Virtualization has emerged as a promising approach that can be employed to effi-

ciently enhance the resource management technologies. In this work, the goal is to study

how to automate the bandwidth resource management, while deploying a virtual partitioning

scheme for the network bandwidth resources. Works that addressed the resource management

in Virtual Networks are many, however, each has some limitations. Resource overwhelming,

poor bandwidth utilization, low profits, exaggeration, and collusion are types of such sort of

limitations. Indeed, the lack of adequate bandwidth allocation schemes encourages resource

overwhelming, where one customer may overwhelm the resources that supposed to serve oth-

ers. Static resource partitioning can resist overwhelming but at the same time it may result

in poor bandwidth utilization, which means less profit rates for the Internet Service Providers

(ISPs). However, deploying the technology of autonomic management can enhance the re-

source utilization, and maximize the customers’ satisfaction rates. It also provides the cus-

tomers with a kind of privilege that should be somehow controlled as customers, always eager

to maximize their payoffs, can use such a privilege to cheat. Hence, cheating actions like ex-

aggeration and collusion can be expected. Solving the aforementioned limitations is addressed

in this work.

In the first part, the work deals with overcoming the problems of low profits, poor utilization,

and high blocking ratios of the traditional First Ask First Allocate (FAFA) algorithm. The

proposed solution is based on an Autonomic Resource Management Mechanism (ARMM).

This solution deploys a smarter allocation algorithm based on the auction mechanism. At this

level, to reduce the tendency of exaggeration, the Vickrey-Clarke-Groves (VCG) is proposed to

provide a threat model that penalizes the exaggerating customers, based on the inconvenience

they cause to others in the system. To resist the collusion, the state-dependent shadow price is

calculated, based on the Markov decision theory, to represent a selling price threshold for the

bandwidth units at a given state.

Part two of the work solves an expanded version of the bandwidth allocation problem, but

through a different methodology. In this part, the bandwidth allocation problem is expanded

to a bandwidth partitioning problem. Such expansion allows dividing the link’s bandwidth

resources based on the provided Quality of Service (QoS) classes, which provides better band-

width utilization. In order to find the optimal management metrics, the problem is solved

through Linear Programming (LP). A dynamic bandwidth partitioning scheme is also pro-

posed to overcome the problems related to the static partitioning schemes, such as the poor

bandwidth utilization, which can result in having under-utilized partitions. This dynamic par-

titioning model is deployed in a periodic manner. Periodic partitioning provides a new way to
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reduce the reasoning of exaggeration, when compared to the threat model, and eliminates the

need of the further computational overhead.

The third part of this work proposes a decentralized management scheme to solve aforemen-

tioned problems in the context of networks that are managed by Virtual Network Operators

(VNOs). Such decentralization allows deploying a higher level of autonomic management,

through which, the management responsibilities are distributed over the network nodes, each

responsible for managing its outgoing links. Compared to the centralized schemes, such dis-

tribution provides higher reliability and easier bandwidth dimensioning. Moreover, it creates a

form of two-sided competition framework that allows a double-auction environment among the

network players, both customers and node controllers. Such competing environment provides

a new way to reduce the exaggeration beside the periodic and threat models mentioned before.

More important, it can deliver better utilization rates, lower blocking, and consequently higher

profits.

Finally, numerical experiments and empirical results are presented to support the proposed

solutions, and to provide a comparison with other works from the literature.

Keywords: Virtualized Networks, Autonomic Management, Virtual Partitioning, Bandwidth

Resource Management, Game Theory, Mechanism Design, Markov Decision Theory, and Lin-

ear Programming.
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INTRODUCTION

Nowadays, the world is living through a huge Internet application explosion era that imposes a

great management challenge to the Internet Service Providers (ISPs). Indeed, ISPs are expected

to satisfy different levels of Quality of Service (QoS) requirements that may vary from one

customer to another. Handling such challenge requires new management techniques that can

ease the process of management at the ISPs’ side. Currently, most service management models

require direct intervention from the ISPs, Kim et al. (2005). This leads to slow response time

and high operational costs. More important, such models can deliver high rates of customers’

dissatisfaction, and increase the management cost at the providers’ side, which means less

profits.

Network management started to become a challenging and time-consuming business for human

network managers, however, the notion of Network Virtualization has emerged as a promising

method for efficient network management, Niebert et al. (2008). In the literature, it is defined

as the method of splitting the network physical resources into separate virtual (or logical)

portions, each of which can be assigned to a particular customer (or a group of customers),

Rixner (2008), Chowdhury and Boutaba (2010). These virtual portions can be managed by

the network customers in an autonomic way. Hence, a Virtualized Network (VN) is a network

where the available resources (e.g. the bandwidth) is logically divided among its customers.

Each customer is allocated a sufficient amount of resources that accommodate its needs and

satisfy its QoS requirements. In such VN, customers are responsible for self-manage and

control their allocated resources.

The virtual partitioning concept is not new. However, combining the virtual partitioning with

the autonomic management brought a new aspect to the theme of VNs, which promise to

provide an efficient methodology for the future management systems. Such an approach is

intended to provide an improved efficiency, satisfaction, and performance to the network ad-

ministrators. Moreover, it reduces the management complexity by distributing many tasks

among its customers.
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Figure 0.1 illustrates the scheme of bandwidth provisioning in VNs, and shows how the con-

cepts of virtual partitioning and autonomic management are applied. In the figure, the bottom

part shows an example of an IP network that consists of several nodes connected together

through a group of links with specific amount of bandwidth resources. The middle part repre-

sents an abstracted level of the underlying network that is called a root VN.

�

Figure 0.1 Provisioning in Virtualized Networks

The top part of the figure shows an example of how the virtual partitioning and autonomic

management are deployed. In the context of virtual partitioning, the bandwidth resources of

the root VN are partitioned among the three new Virtual Private Network (VPNs). A VPN

could be defined as a group of computer systems that are connected together through a public

network infrastructure as a private network, by deploying the concept of virtual partitioning,

Cohen and Kaempfer (2000). Hence, each VPN has a portion of resources over some network
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links, through which, it can serve its connection demands. In autonomic management, for each

VPN, the roots VN assigns a VPN manager that is responsible of self-manage and control the

underlying network using its virtual portion of resources.

0.1 Motivation

Since the last couple of decades, telecommunication needs among the business fields and others

passed through a huge era of globalization. Instead of simply dealing with local or regional

concerns, many started to think about global markets. Several companies have facilities that

spread around the world, and hence they all started to look for a way that maintains fast, secure,

and reliable communications wherever their offices are. Until fairly recently, this meant leasing

dedicated private lines to maintain private networks.

Dedicated leased lines provided companies with a way to expand their private networks beyond

its local geographic area. Such private networks have obvious advantages over the public

networks when it comes to reliability, performance, and security. However, maintaining such

networks, particularly when using dedicated physical lines, can be quite expensive and often

the cost becomes prohibitive for large distance between the offices.

As the popularity of the Internet grew, business people turned to using Internet in order to

extend their own private networks. First came Intranets, which are password-protected sites

designed to be used only by the company employees, Stenmark (2002). Nowadays, many

companies are leasing their own VPNs to accommodate the needs of remote employees and

distant offices.

As depicted in Figure 0.2, VPNs can be deployed to connect remote and geographically dis-

tributed sites and location to act as a single network. Usually, such VPNs are built on top

of a public network infrastructure (i.e. the Internet). Being a new technique to replace the

dedicated private networks, these VPNs must provide comparable services in terms of QoS,

security, reliability, and cost-effectiveness.
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In recent years, a substantial progress in the technologies of IP security has enabled the existing

VPNs to provide customers with sufficient levels of secure and private communication systems,

compared to that offered by the dedicated line technologies (Frame Relays, IPSec), Duffield

et al. (2002). The same progress had been achieved in the fields of routing and tunneling issues,

while much less attention has been made to the resource management fields in VPNs.

�

Figure 0.2 Virtual Private Network

According to such increased progress in security and the overwhelming success of IP network-

ing technologies, the number of VPNs’ users is growing rapidly, and it emerged as a leading

solution for multi-site enterprise communication demands. Therefore, there is a need to find

an efficient management scheme that can support such variety of VPNs’ users.

Deploying the concept of autonomic management for such VPNs brought a new dimension to

the desired management models that can attain greater degrees of scalability, and manage more

differentiated applications than in traditional networks.

VNs concept still requires solving many research issues and challenges. Hence, combining

the concepts of autonomic management and virtual partitioning need to be studied in order to

determine the right trade-off between such virtualized isolation and the desired performance.
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0.2 Problem Overview

To demonstrate the addressed problem better, let us consider the sharing of the network re-

sources among the three VPNs illustrated in Figure 0.1. In this context, the term resources

refer to the bandwidth allocated to the links, which is used to carry connections between the

network nodes. Obviously, there are many links shared between the three VPNs (i.e. the links

connecting the node couples 3-4, 4-6, and 3-6) and in such allocation scenarios the following

problems can be encountered:

0.2.1 Poor Bandwidth Utilization

Deploying the virtual partitioning concept means that these three VPNs have virtual portions of

the bandwidth resources over the considered links. Each VPN might have different traffic pat-

tern that changes in a time-dependent manner due to the varying types of the provided services,

types of customers, and the different business hours. Consequently, such virtual partitioning

of the network bandwidth resources should consider the dynamic (real-time) customers’ re-

quirement. From the ISPs’ perspective, relying on a static resource partitioning scheme is not

satisfying, since this may waste the network resources, and reduce their total profits. Indeed,

since static partitioning decisions do not take into account the varying traffic demands of the

network customers, some portions of resources might be overloaded while others underloaded,

resulting in poor utilization rates of the network resources and non-satisfying QoS guarantees.

0.2.2 Cheating Actions

Deploying the autonomic management concept gives the VPN operators a kind of privilege

that enables them to self-manage and control their network resources. Hence, the provisioning

process is done according to the revealed requirements of the VPN operators. From the ISPs’

perspective, giving the VPN operators such a privilege can provide better utilization of the

network resources, assuming that the VPN operators know their changing requirements better,

and accordingly they can acquire the required resources based on their actual needs. Natu-

rally, as long as the VPN operators behave according to their real needs, deploying such an
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approach can increase bandwidth utilization due to the statistical multiplexing, which results

in better satisfaction rates and higher profits at the same time. However, VPN operators may

try to maximize their own payoffs, by executing some cheating actions facilitated by the auto-

nomic management. As an example, VPN operators may tend to exaggerate their requirements

and ask for extra resources, such behavior can waste the network resources and increase the

blocking ratios for those non-exaggerating operators. Exaggeration can be motivated by many

reasons like the ones listed below:

• usually, more bandwidth means higher transmission quality. Therefore, VPN operators

might tend to obtain the largest possible amount of bandwidth resources for their trans-

missions, even if the resulting quality improvement is minimal;

• to cope with any sudden changes in the network state, VPN operators may tend to always

keep an extra amount of resources. This point is also motivated by the fact that the static

bandwidth partitioning does not provide QoS guarantees for unexpected traffic surges;

• the lack of resource utilization incentives can also motivate exaggeration. Having no

incentives, VPN operators are not expected to smartly route their connections. However,

they may rely on their ability to resend any delayed or lost connections using the extra

resources they have.

Moreover, deploying an auction mechanism for resource allocation may open the way for an-

other cheating action like collusion. In such case, auctioneers may collude together and bid

a single low price in order to force the seller (resource provider) to sell the resources at low

prices. Collusive bids can serve the auctioneers by maximizing their payoffs. On the other

hand, such actions may sharply minimize the providers’ profits.

0.3 Objectives

The main goal behind this work is to solve the problems discussed in the previous section.

Hence, the first main objective is to study and develop efficient resource utilization models that

enable the ISPs to attempt a dynamic bandwidth allocation mechanism instead of the static one.
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This dynamic model should allocate the network bandwidth resources based on the customers’

real-time requirements. Besides, such model should also satisfy the goals of maximizing the

ISPs’ profit, while maintaining the QoS guarantees of the VPN operators.

The second main objective is to study and develop models that motivate the VPN operators to

behave cooperatively, in a way that serves the whole network interest and therefore also avoids

cheating actions like exaggeration and collusion.

The resulting work should answer the following questions:

• How to provide better utilization of the network resources?

• How to motivate VPN operators not to exaggerate?

• How to suppress collusion actions that harm the allocation process?

• How to measure the optimal bandwidth division among QoS classes?

• How to decentralize the resource allocation mechanism?

These questions will be answered by developing different models using different theories and

working environments. However, achievements from the proposed models will be compared

to others provided in the literature.

0.4 Thesis Outline

The thesis is organized as follows: Chapter 1 is divided into two parts, Section 1.1 provides an

overview of the tools and theories employed to solve the aforementioned problems and satisfy

the work objectives. This overview targets the Game theory, Mechanism Design, Markov

decision theory, and the Linear programming theory. Section 1.2 presents a literature review

related to the addressed problem, and explains how the chosen tools and theories were deployed

in the previous works. Then Chapters 2, 3, and 4 show the contribution of this work.

Chapter 2 studies the problem of resource management, in which it mainly discusses the is-

sue of poor bandwidth allocation and the problems of users’ cheating actions. Here, the work
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addresses a problem that is limited to management of resources belonging to one link. Such

network link has some bandwidth resources to be allocated for different VPN operators. The

proposed solution deploys the concepts of auction mechanism, and autonomic management.

Deploying the auction mechanism presented in Section 2.4.3 provided a smart way to set up an

efficient bandwidth allocation model. Through the autonomic management, the system autho-

rizes the VPN operators to self-manage and control their allocated resources. However, in such

cases, cheating actions are profitable for users. In particular, having the privilege of autonomic

management, exaggeration is expected since users may ask for more resource than their real

needs, which wastes the network resources and minimizes the providers’ profits. To reduce

the motivations of exaggeration, in Section 2.5, the Vickrey-Clarke-Groves (VCG) mechanism

from the Game Theory is applied to enforce cooperation in such non-cooperative scenario. Us-

ing the VCG, the model penalizes the exaggerating users based on a threat model that measures

the inconvenience each user cause to the whole users in the network. Moreover, under such

auction scenarios, collusion is another possible way of cheating the users may follow to max-

imize their profits. To resist the collusion, in Section 2.6, from the Markov Decision Theory,

a minimum selling price value is calculated based on the state-dependent shadow price con-

cept. The calculation of this value is derived in Section 2.6.2. Hence, it represents a dynamic

selling price threshold that is used to define whether to accept or reject the users’ offered bids.

Compared to the First Ask First Allocate (FAFA) bandwidth allocation algorithm, results in

Sections 2.7 and 2.8 show that this work provides better use of the bandwidth resources, re-

sulting in higher profits and lower blocking ratios. Moreover, it delivers an efficient method to

reduce the effect of the exaggeration and collusion cheating actions.

Recalling the list of objectives presented in Section 0.3, the contribution of this part lies in

answering the following question:

• How to provide better utilization of the network resources?

• How to motivate VPN operators not to exaggerate?

• How to suppress collusion actions that harm the allocation process?
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In terms of novelty, deploying the threat model presented in Section 2.5 provides a novel way

to suppress exaggeration, and enforce fair resource allocations in VPNs. Moreover, although

the VCG truth-telling Mechanism Design was applied in the fields of wireless networks, in

this work, it is applied in the wired VPNs. The Markov Decision Process (MDP) was recently

deployed in the fields of Service Overlay Networks (SON) for capacity adaptation, however, in

this work it is deployed to find the optimal selling price threshold for the ISP, which is a novel

work.

Chapter 3 solves the same resource management problem, but for a different system. Compared

to the previous part of the work, the system is expanded from a single link to a full network

problem. Hence, this part adds the issue of path selection to the problem. The presented work

mainly deals with the problem of how to utilize the bandwidth resources better, and how to

provide optimal management metrics. To address the issue of different QoS requirements in

a better way, this part also considers bandwidth partitioning between different QoS classes.

In addition, Section 3.4.1.1 shows how this bandwidth partitioning scheme is deployed in a

dynamic manner, which provides a more efficient solution to the static scheme presented in

Section 3.4.2. Moreover, to reduce the exaggeration problem, the resource partitioning process

is executed dynamically in a periodic manner. Such periodic scenario provides a new way to

reduce the tendency of exaggeration, without the need of the threat model proposed in Chapter

2. As presented in Section 3.4.1.2, the problem here is solved using the Linear Programming

Theory that provides optimal metrics. Compared to other models in the literature, Section 3.6

shows how such optimal metrics result in better resource utilization, lower blocking ratios, and

higher profit rates.

From the list of Section 0.3, this part answers the following question:

• How to provide better utilization of the network resources?

• How to motivate VPN operators not to exaggerate?

• How to measure the optimal bandwidth division among QoS classes?
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The novelty of this part lies in deploying the Linear Programming to solve autonomic resource

management problems, with dynamic bandwidth allocation schemes for VPNs.

In Chapter 4, the work addresses the problem of resource management in networks that are

managed by Virtual Network Operators (VNOs). In this case the network leases its bandwidth

resources from different ISPs. Such network is managed by a VNO that represents a virtual

ISP, and it aims to utilize these bandwidth resources optimally in order to gain higher profits.

Compared to the previous two chapters, the solution in this chapter takes a different manage-

ment direction, where: (1) The model is developed to solve the resource management problem

in a decentralized way, in which, as shown in Section 4.4, the VNO distributes the manage-

ment load over special entities that manage the network nodes. These entities, named Node

Agents(NAs), are proposed to reduce the management load at the controller side according to

Algorithm 4.1. (2) The model deploys a higher level of autonomic management, where not only

the network users, but also the NAs are responsible to self-manage and control their resources.

So, the model here deploys a two-sided autonomic management scheme. At each side, if co-

operation with the network controller is guaranteed, such decentralization scheme can provide

higher reliability and easier network dimensioning. (3) To enforce cooperation, as depicted

in Figure 4.2, a double-auction framework is proposed to create a competition environment

between the NAs (resource sellers) from one side, and the users (buyers) from the other side.

In this way, NAs will be motivated to use their available resources better (this means better uti-

lization in the network) in order to offer competing selling prices to win the users’ bids (which

means lower blocking ratios in the network). On the contrary, network users will be competing

to offer higher bids (higher total profits from the network) to win the resource allocations from

the NAs. (4) Although this model is deployed in a periodic manner that reduces exaggeration,

still, the two-sided competing environment represents another way to reduce the exaggeration.

With such environment, exaggerating users will not be able to offer competing high bids, same

way, exaggerating (or monopolizing) NAs will not be able to offer low selling prices to attract

the buying users.
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This model is solved through Linear Programming. In a hierarchical manner, Section 4.4.3

shows the NAs’ model, which is solved by each NA in a decentralized way. In contrast, Section

4.4.2.3 shows the central model that is solved by network controller. Thus, results of the

decentralized functions provide the input of the central one.

Compared to other central management scenarios, this part of the work provided different

methodologies from that of the former parts to answer the first three objective questions. In-

deed, the decentralized management model along with the double-auction scenario provide

better resource utilization, which implicitly means higher profit and satisfaction ratios. Also,

the two-sided competing environment represents another new way to reduce the motivations of

exaggeration.

Thus, the achievements of this part answer the following:

• How to provide better utilization of the network resources?

• How to motivate VPN operators not to exaggerate?

• How to measure the optimal bandwidth division among QoS classes?

• How to decentralize the resource allocation mechanism?

In terms of novelty, deploying the Linear Programming theory to solve a decentralized dy-

namic resource management problems with double-auction framework in VPNs is a novel

work, where previous works addressed static centralized allocation schemes only.

Finally, the thesis ends by a conclusion that provides a summary of the addressed problem and

its proposed solutions. It also shows the achieved objectives, the work novelty, a proposition

for future works, and deliverable publications.
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0.5 Summary of Achievements and Novelty

The work of Chapter 2 provided better usage of the bandwidth resources, compared to the

FAFA bandwidth allocation algorithm. This resulted in higher profits and lower blocking ra-

tios. Moreover, it delivered efficient methods to reduce the effect of the exaggeration and

collusion cheating actions.

In Chapter 3, the work provided new techniques for optimal bandwidth partitioning. Such

techniques helped in utilizing the network bandwidth resource better, gain higher profits with

lower blocking ratios. Also, this part of the work provided different methodologies from that

of the former part to solve the problems of exaggeration and bandwidth utilization. Indeed, it

reduced the exaggeration motivations through the periodic auctions instead of the threat model

used in Chapter 2. For resource utilization, this part employed the Linear Programming to

solve an optimal dynamic resource partitioning model.

The decentralized model of Chapter 4 proposed a new model based on a higher level of auto-

nomic management, with a double-auction scenario. Through which, it provided higher band-

width utilization rates that implicitly means higher profit and satisfaction ratios. The double-

auction allowed internal competition within the NAs and the network customers. Among NAs,

this resulted in better utilization and lower blocking ratios, while it delivered higher total prof-

its from the competition among the network customers. Moreover, in addition to the reduction

of the exaggeration motivations due to the periodic allocations, in this part, the two-sided com-

peting environment represented another new way to reduce exaggeration.

In summary the main novelty of the proposed work consists of the following elements:

First

Suppressing exaggeration and enforcing fairness resource allocations in VPNs based on

a threat model.
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Second

VCG truth-telling Mechanism Design has never been applied in wired VPNs. However,

it is applied in the fields of wireless networks.

Third

Suppressing cheating and collusive behaviors in VPNs.

Forth

Markov Decision Process (MDP) was recently deployed in the fields of Service Overlay

Networks (SON) for capacity adaptation. In this work, it is deployed to find the optimal

selling-threshold price for ISP.

Fifth

The use of Linear Programming in autonomic resource management, with dynamic band-

width allocation schemes for VPNs.

Sixth

Deploying dynamic decentralized resource management with Linear Programming in

VPNs is a novel work. Previous works attempted static centralized schemes.





CHAPTER 1

METHODOLOGY TOOLS AND LITERATURE REVIEW

This Chapter provides a presentation to the tools and theories used to achieve the aforemen-

tioned objectives, and the related work in the literature. Hence, and to make this chapter self

contained, Section 1.1 discusses the theories and techniques employed to achieve the desired

objectives. In turn, Section 1.2 goes through the work done in the literature, such work that

generally deals with the addressed problem.

1.1 Methodology Tools

This section lists brief high-level definitions of the proposed tools and theories to be used in

this work.

1.1.1 Game Theory

The Game theory could be defined as a mathematical tool that analyzes the strategic inter-

actions among a group of rational decision makers, Myerson (1991). Through the last few

decades, Game theory shows the ability to provide satisfactory results in varying disciplines.

Those that include politics, management, economics, social science, psychology, and computer

science. To accomplish a game, there are three major components that must be clearly defined

in a strategic-form, Morris (1994), these components are: (1) The set of players. (2) The strat-

egy (i.e. action space) of each player. (3) The payoff function that measures the outcome of

the game for each player.

In Wang et al. (2008) and others, the authors present the Game theory as a powerful tool that

can be employed to study the interaction scenarios among multi-player decision problems.

These types of problems where players may have different objectives to satisfy, and hence,

having different strategies of behavior. Thus, competition and other interaction scenarios are
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expected. In this context, results may represent positive gains for some players, and negative

ones for others.

By breaking-down its definition, the following main characteristics are noticed:

• strategic: this implies the behavior of the game player, where each player has a set of

candidate behaviors to choose from. The chosen strategy affects the expected outcomes

of the game;

• interaction: represents the effect that a player’s strategy impose to the other players in

the game. Such interaction can affect one other player at least;

• group: it refers to the decision makers in the game, usually they are known as the game

players and referred to as a group;

• rational: the player who aims to maximize its own payoff is called rational player. Hence,

a rational player usually chooses its strategy based on the other players’ chosen strategies.

In Game theory, the strategic interaction among the players is modeled in a formalized incentive

structure. So, it not only provides models for efficient self-enforcing distributed design, but

also, derives well defined equilibrium criteria to study the optimality of the game outcomes

in various scenarios, i.e., static or repeated, cooperative or non-cooperative, Morris (1994).

Cooperative games are those where multi-players all cooperate together in order to achieve the

maximum possible payoffs for all, Barron (2007). On the other hand, non-cooperative games

are those where the game players compete with each other, and every player cares only about

its own payoff, Morris (1994). This is different from the selfish behavior, where the players

care only about maximizing their own goal, even if this causes problems to others, Wang et al.

(2008).

Usually, the outcome of a non-cooperative game is given by the Nash Equilibrium (NE) point,

Nash (1951). This NE could be defined as the set of strategies for all players, such that no player

can improve its own utility by unilaterally deviating from the equilibrium strategy, given that
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all other players adopt the equilibrium strategies. So, the NE indicates that no individual player

would have the incentive to choose a different strategy.

Static non-cooperative games are played only once, where the players are myopic and only

care about their current utility, Morris (1994). The competition between selfish players in static

games often results in an NE that is not system efficient. Therefore, stimulation of cooperation

among selfish players is very important in order to achieve social welfare. However, repeated

non-cooperative game models may capture better interactions in long-run scenarios, Wang

et al. (2007).

In repeated game modeling, the players play the similar static game many times, so their future

decisions are conditioned on other players’ past moves. In this way, one may expect that

cooperation can be enforced by establishing the threats of punishment, individual reputation,

mutual trust, and so on.

1.1.2 Mechanism Design

Mechanism Design could be considered as a sub-field of the Game theory and microeconomics,

Mas-Colell et al. (1995). By employing the Game theoretic tools and its strategic analysis,

with the Mechanism Design, one can achieve the desired goals. Hence, the Game theory can

be used to study and analyze the outcomes of the players’ expected behavior. On the contrary,

the Mechanism Design helps in defining rules based on a Social Choice Function (SCF) to

restrict the players’ behavior in a way that serves the whole interest, Wang et al. (2008). Fol-

lowing such rules, players can gain positive payoffs, otherwise they will be subjected to certain

consequences. The Mechanism Design has been successfully deployed in various disciplines

like resource allocation, auctions, electronic markets, computer science, and many others.

Being a mechanism that studies the solutions of private information games, the Mechanism De-

sign is employed to provide optimal system-wide solutions for distributed optimization prob-

lems, with self-interested players. In this context, the mechanism designers are allowed to

choose the game rules that, according to their SCF, govern social welfare for all. Thus, the
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designers are usually interested by the game’s outcome represented by the NE point. Rules

should be designed in a way that leads the players to follow the dominant strategy that delivers

the SCF.

1.1.2.1 Vickrey-Clarke-Groves Mechanism

Briefly, the Vickrey-Clarke-Groves (VCG) is a strategy-proof mechanism that has been pro-

posed by Vickrey (1961), Clarke (1971), and Groves (1973). VCG is considered as the only

allocation-efficient, and strategy proof mechanism amongst all direct revelation mechanisms.

As an example, VCG is used to solve the allocation problems based on auctions, where it fol-

lows the sealed-bid type of auctions. These auctions, in which, the players submit different

bids for different items. Having a social welfare decision, the system allocates the resources in

a way that maximizes the total utility of the system. In VCG, the mechanism ensures that for

each bidder, the dominant strategy is to truthfully reveal the real valuation of the item. This

results in maximizing the total valuations of the auction items, which represents gain maxi-

mization for the sellers.

1.1.3 Markov Decision Theory

The Markov decision theory could be defined as a tool that provides efficient decision making

frameworks based on mathematical modeling, Puterman (1994). Such theory has been success-

fully deployed in varying disciplines, including economics, computer science, inventory con-

trol, robotics, etc. The Markov decision theory is considered as an outgrowth of the Markov

process theory and the Dynamic programming, Dziong (1997). The Dynamic programming

concept was first introduced by Bellman (1957). Combining the Dynamic programming with

the Markov process theory was proposed by Howard (1960). This combination results in the

development of the policy-iteration algorithm that is used to calculate the optimal decision

policies. Hence, the Markov decision theory has emerged as a powerful tool that can analyze

probabilistic sequential decision processes with an infinite planning horizon, Dziong (1997).
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According to Dziong (1997), Markov processes, or Markov chains as usually called, are based

on two fundamental concepts: states and state transitions. In this context, the state can be con-

sidered as a random value that describes the system at a given time instant, e.g., the number

of connections over a network link. The state transition describes the dynamic changes in the

system state at a given time instant, in the given example, changes may occur by new con-

nection arrival, connection delivery, or connection drop. Generally, Markov processes can be

classified in either discrete or continuous time-spaces. This depends on the shape of the system

review instances, wether it happens at fixed or random times, respectively. These state transi-

tion instances can be controlled by the system controller, i.e., the ISP in the given example. In

such scenarios, the ISP can define what would be the optimal control decision, i.e., the optimal

shape of the state transition.

A prescription for the final decision in each time instance is called policy. Derived from the

Markov decision theory, the notation of shadow price can be used to calculate the optimal pol-

icy. In the given example, the state-dependent shadow price can represent the dynamic cost of

admitting a connection request over certain bandwidth unit, at a given state. This shadow-price

notation was developed for Call Admission Control (CAC) and routing in telecommunication

networks. As shown in Dziong (1997), the state-dependent shadow price can be calculated

using efficient methods like the policy-iteration algorithm, and the value-iteration algorithm.

It is worth to mention that the notion of average link shadow price was first introduced by

Kelly (1988) for optimization of adaptive load sharing. In Dziong et al. (1988), the authors

introduced the state-dependent link shadow price notion that was used for optimization of

state-dependent routing.

1.1.4 Linear Programming Theory

Linear Programming could be defined as a mathematical method that can be employed by the

means of achieving optimal outcomes. Usually, it finds the minimum or the maximum possi-

ble value for a problem modeled through mathematical linear relationships bounded by certain

constraints, Dantzig (1963), and Williams (1965). However, in this context, it is worth to
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mention that the word programming refers more to the word planning rather than its popular

indication. Linear Programming has successfully proved to deliver optimal metric in various

field that include economics, energy, manufacturing, routing, etc. In fact, Linear Program-

ming has emerged as powerful tool that can be deployed almost in everything, from airline

scheduling to simple pricing problems in trades and distribution.

According to Chinneck (2001), for constrained optimization problems, Linear Programming

could be considered as the most-widely applied optimization theory. Compared to the uncon-

strained problems, solving a constrained optimization problem is more challenging, where it

adds more restrictions to the desired optimality point. Hence, finding the optimal solution in a

constrained problem does not necessarily mean the points of the peak or the valley, it could be

at somewhere in between bounded by the objective functions’ constraints.

Building up a constrained optimization model, the following four element should be clearly

defined, Chinneck (2001).

• objective function: This element represents the problem to be optimized, either maxi-

mized or minimized. For example, the objective might be profit maximization, or capital-

cost minimization. Mathematically, it comes in the form of equation that combines the

model variables;

• constraints: These elements represent the limits of the possible outcome from the objec-

tive function, similarly they combine the variables that express the anticipated objective

of the model;

• decision variables: These variables are those optimized by the model, i.e., the decisions

that maximize or minimize the value of the objective function. Hence, their values are

not known at the beginning, but while solving the problem, they are continuously adapted

till the optimal value of the objective function is obtained;

• variable bounds: These represent the minimum and maximum values of the decision

variables, e.g., the value of the variable x must within 10 and 100.
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Solving such problems may impose high computational overhead, however, with the evolution

of Cloud Computing and computer power, it became possible to solve large Linear Programs

that might consist of millions of variables with thousands of constraints.

1.2 Literature Review

This section provides a critical analysis for the work in the literature that intersects with the

addressed problems, and the proposed methodology.

1.2.1 Management in Virtual Private Networks

Previously, till the end of 1990s, the leased-lines and dial-up telecommunication technologies

were almost dominant, Cohen and Kaempfer (2000). Fairly recently, the VPN technology

emerged as a new solution that can provide comparable services in terms of reliable, secure,

and cost-effective connections. VPNs came with the promise to reduce the expensive costs

of the leased-lines technology by avoiding the need of physically leasing the network links

from the ISPs. Instead, taking the advantages of the Resource Reservation Protocol - Traffic

Engineering (RSVP-TE), Awduche et al. (2001), with the Multi Protocol Label Switching

(MPLS), Davie and Rekhter (2000) technologies made it possible to provide QoS guarantees

over the IP based VPNs.

For QoS provisioning in VPNs, first came the pipe model in Duffield et al. (1999b) that at-

tempts buying (leasing) specific bandwidth-pipes between each source-destination couple in

the network. Consequently, each node in the VPN is connected by a point-to-point pipe to

any other node in the same network, such pipes have certain bandwidth capacities to hold the

connections between the considered nodes. This represents an emulation of the traditional

frame relay or leased-lines services (like virtual circuits), Duffield et al. (2002). Hence, the

ISPs would need to continuously provide static bandwidth amounts over each pipe that pro-

vides adequate QoS, and SLAs guarantees. Although such a model might provide satisfying

service guarantees, on the other hand, it has many limitations, mainly like: (1) It could waste

the network bandwidth resources, where resources available at one pipe can not be allocated to



22

another. (2) The VPN customers should have precise knowledge about their long-term traffic,

expected with the other VPN sites.

Later on, to provide better resource utilization (compared to that in the pipe model), in Duffield

et al. (1999b), the authors proposed a point-to-cloud model, namely, the hose model. In hose,

the model attempts aggregating the incoming/outgoing traffic of one end-point to all other end-

points in the network. Thus, by taking the advantage of the statistical multiplexing among the

customers’ pipes, the network resources can be utilized better. However, although this provides

an advantage over the pipe model, in hose, the problem of resource management became more

challenging. Indeed, expecting the temporal variations of the hose bandwidth capacities is a

challenging task, where there is a big uncertainty of the adequate bandwidth requirement of the

VPN end-points. Meeting the customers’ SLAs with such weak traffic matrix specifications is

not guaranteed. To solve this, in Duffield et al. (2002) the authors proposed a model that

attempts resizing the hose size in order to provide significant multiplexing gains.

The bandwidth efficiency of the hose model is studied in Juttner et al. (2003), where the over

provisioning factor of the model is evaluated in networks with various sizes and node densities.

The authors conclude that the hose model performs better over the pipe model in reducing

blocking probability, decreasing traffic loss, and ease of implementation.

In Gupta et al. (2003), the authors gave a randomized approximation algorithm for the general

VPN design problem that finds a set of paths between each source/destination couple, where

all valid traffic matrices can be routed using these paths. However, their proposed approach

has the following limitations:

• the proposed solution is not suitable for VPNs that may hold delay sensitive traffic (e.g.

multimedia), as the found set of the paths may not necessarily contain the optimal path;

• the chosen paths are not completely random, in which they may not perform well for

real network topologies, where traffic patterns and its desired destinations are changing

rapidly.
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The authors in Erlebach and Ruegg (2004) proposed a multi-path routing provisioning ap-

proach for the hose model. In their work, they ran 6200 series of experiments with small con-

nected random graphs of 3 to 5 nodes. The results indicate that a multi-path routing scheme

has a reduced reservation cost compared to that of a shared tree. Roughly the reduction was in

average of 20% of the instances with 3 nodes, 25% of the instances with 4 nodes, and 17% of

the instances with 5 nodes. In the cases where the multi-path routing had reduced reservation

cost compared to tree routing, the average cost reduction was 8.6%.

Accordingly, the authors viewed the results as an indication that multi-path routing has the

potential of offering bandwidth savings for VPN reservations in the hose model. However, as

discussed earlier, the target of this work is to find an efficient resource allocation model. To

achieve this target, multi-path routing may not suitable as it may waste the network resources

by transmitting duplicated traffic connections in different paths.

In Firestone et al. (2007), another work highlights the issue that studies on the hose model deal

only with bandwidth requirements, and do not consider providing end-to-end QoS guarantees

between VPN endpoints. In fact, this is an important metric especially for those VPNs that

carry delay sensitive connection such as multimedia applications.

Consequently, the authors in Ghobadi et al. (2007) proposed a ranking approach to enhance

the hose model. In their work, they propose guaranteeing the delay requirements between the

VPN endpoints while optimizing the provisioning cost. Further, in Ghobadi et al. (2008) the

same authors presented a new resource provisioning algorithm to enhance the hose model in

VPNs. Compared to their prior work, this algorithm provides more efficient results in terms of

time complexity, and provisioning cost.

The above studies on resource provisioning and QoS guarantees, of both pipe and hose models,

concerned only with finding the optimal provisioning tree, and the cost-effective bandwidth al-

locations, based on centralized resource management mechanisms. With the rapid growth

of VPNs users, such centralized resource management schemes are not satisfying anymore,

where the need is emerging to reduce the management load at the ISPs side. Virtualized net-
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works, more precisely the autonomic management, represents a promising technique that can

solve such a problem while providing comparable results in terms of bandwidth utilization,

customers’ satisfaction, and ISPs profit rates.

1.2.2 Management through the Virtualized Networks

The idea of autonomic resource management have been first introduced in Appleby (2001),

where the authors developed a prototype of a highly manageable infrastructure for the e-

business computing. Their aim was to develop a manageable and scalable computing in-

frastructure. Such infrastructures that consists of a farm of parallel packaged servers, inter-

connected by high-speed switched Local Area Networks (LANs). The concept of dynamic

resource allocation is mainly developed to accommodate both planned, and unplanned fluctu-

ation of the network state under the constraints of the contracted SLAs.

In HP-Laboratories (2003), and Graupner et al. (2003), the Hewlett-Packard (HP) vision for

the Adaptive Enterprise and the Microsoft Dynamic Systems initiative Microsoft-Corporation

(2004), which are related industry institutions, realize that autonomic management for the

computing components is critical for future Information Technology (IT) industry. Moreover,

they both gave emphasize to the importance role of the Virtualiztion concept of the networks’

resources. Consequently, it is clearly noticed that the previous work have mainly focused on

the autonomic management of computing resources for IT service delivery.

Works that deployed the autonomic management concept to network resources are many. In

Lai et al. (1998), and Mark et al. (2000), the authors proposed a Complete Sharing (CS) model.

This CS model proposes an autonomic management framework, where the network customers

are authorized to self-manage, and self-control their bandwidth resources. In CS, the network

bandwidth resources are all shared between the VPN operators to use, i.e., no virtual partition-

ing for the bandwidth resources. With no bandwidth divisions, in the CS model, all QoS classes

can share the network resources without discrimination. Through this, the model is supposed

to ensure the delivery of services according to predefined SLAs. From the ISP prospective, giv-

ing the VPN operators such a privilege can provide better utilization of the network resources,
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assuming that the VPN operators know their changing requirements better, and accordingly

they can acquire the required resources based on their actual needs. Naturally, as long as we

guarantee that VPN operators will behave cooperatively, deploying such an approach can help

to reduce the waste of any extra or un-used resources, which results in better satisfaction rates

and higher profits at the same time.

However, in reality cooperation between network customers (VPN operators) is not guaran-

teed, where for many reasons, customers may tend to be non-cooperative and exaggerate their

requirements by asking for extra resources. Accordingly, as long as there is no bandwidth di-

visions, one class may overwhelm all other classes. This creates several problems like: SLAs

violations, high blocking ratios, and low profit rates.

In Haung and Ho (2002), a Complete Partitioning (CP) model is proposed; another autonomic

management model, but with virtual partitioning. In the CP model, the scenario is somehow

different from that in the CS, in which resources are partitioned among the provided service

classes in a static way. Hence, it assumes a one-time bandwidth partition for the whole network

links. With such a static partitioning scheme, each class is allowed to exclusively use a special

portion of the provided resources. This can solve the resource overwhelming problem, but

still, it may lead to low bandwidth utilization as resources -of these static portions- might be

under-utilized.

A hybrid Virtual Partitioning (VP) approach is proposed by Borst and D.Mitra (1998), this VP

runs either as CS or CP depending on the actual network traffic load. Accordingly, it runs

as a CS at the light traffic case, while it is a CP and the extreme one. When it runs a CP

behavior, VP allows a manual resource sharing between the under-loaded and the over-loaded

links (or classes) in order to provide better resource utilization rates. This sounds cool, but the

problem here is that the lender links (originally under-loaded) have no guarantees that they can

return their resources back when they need it. This creates the problem of QoS violations, and

encourages malicious over-loading. Moreover, the resource sharing scheme in VP attempts a
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static design, in which, a pre-defined static configurations for the resource sharing process is

applied at all possible traffic load conditions.

In Farha and Leon-Garcia (2006), and Sup et al. (2005), the authors expanded the autonomic

view to include the computer telecommunication services. Cheng et al. (2006a) proposed an

Autonomic Service Architecture (ASA), which is a framework for automated management of

both Internet services and their underlying network resources. In this ASA, the authors pre-

sented a Bandwidth Borrowing (BR) technique to automate the resource sharing process, and

provide a solution for the static load-configuration scheme attempted by the VP approach.

While on the contrary, in the resource allocation side, the BR still attempts the same static

resource sharing scheme. Hence, although the BR scheme can partially solve the bandwidth

utilization problem, such solution is not optimal. Consider the case of having many under-

loaded links (or classes), with no overloaded ones, in such a case how would the BR help? On

the other hand, this static partitioning approach -by itself- has several limitations, like:

• deploying a static partitioning scheme means that we are not taking into account the

changes of the real-time traffic patterns, and the varying customers’ demands. This

model will certainly lead to a non-efficient resource partitioning;

• constructing one-time SLAs (based on the static partitioning) is not satisfying for both

(ISP, and customers), where market prices are changing dynamically. Increasing market

prices can impose profit loses for the ISP, while decreasing prices will reduce the users’

satisfaction rates. Competing market prices is a crucial point that is not considered by

the CP, VP, and the BR approaches. This issue contradicts with the main objective of

maximizing the ISP profits, and the customers satisfaction rates;

• static partitioning motivates the network customers to exaggerate their requirements at

the SLAs negotiation phase. Therefore, even if we deploy the BR scheme for better

bandwidth utilization, it will not work properly, since it totally depends on what the

users reveal. Basically, users may exaggerate their requirements in order to cope with

any sudden or unpredictable changes in the network state and link conditions, so they
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tend to keep a spare amount of resources that enables them to overcome and cope with

such situations.

Although the above studies proposed models that can provide autonomic management schemes,

non addressed the anticipated problems and management conflict resulting form such privilege.

Rational customers are always eager to maximize their payoffs, unless controlled, cheating is

the easiest way to do. In such scenarios, cheating can lead to lower ISP profits, and high

blocking ratios. This work proposes new models that can suppress such cheating actions, and

motivate the customers to behave truthfully even when they have the privilege of the autonomic

management.

1.2.3 Game Theory and Resource Management

Firstly, the concept of Game Theory could be generally defined as a tool that analyzes the con-

flict and cooperation among intelligent or rational decision makers of a certain system. Thus, it

is an excellent tool that could be used in delivering efficient autonomic resource management

models that can serve the VNs concept. Such models that rely on the ability to control and

adapt the network management strategies in a decentralized manner, without direct interven-

tions from the ISPs. Previous research did not consider the concept of Game Theory in the

areas of wired VNs, however, in the domain of wireless networks, Game Theory had been

widely applied.

In Etkin et al. (2007), and Wang et al. (2007), the authors investigated whether spectrum ef-

ficiency and fairness can be obtained by modeling the spectrum sharing as a repeated game.

Authors in Cao and Zheng (2005) proposed a local bargaining scheme to achieve distributed

conflict-free spectrum assignment that can adapt to network topology changes. In Han et al.

(2007), a no-regret learning algorithm using the correlated equilibrium concept to coordinate

the secondary spectrum access was considered.

Various auction and pricing approaches were proposed for efficient spectrum allocation, such

as: auction games for interference management, Huang et al. (2006), and Gandhi et al. (2007),
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the demand responsive pricing framework, Ileri et al. (2005), and pricing for bandwidth sharing

between the Worldwide Inter-operability for Microwave Access (WiMAX) networks, and the

Wireless Fidelity (WiFi) hot-spots, Niyato and Hossain (2007). A belief assisted distributive

double auction was proposed in Ji and Liu (2006) that maximized both primary and secondary

users’ revenues, and a game-theoretical overview for dynamic spectrum sharing was presented

in Ji and Liu (2007).

Although the approaches listed above have boosted the spectrum efficiency, most of them are

based on the assumption that the players (e.g., wireless users/devices) are honest and will not

cheat. Nevertheless, selfish players aim only to maximize their own interests if they believe that

it can gain further increase by cheating. Hence, selfish users will no longer behave honestly,

which usually results in poor outcomes from the spectrum sharing game.

Motivated by the preceding, Mechanism Design theory, Ji and Liu (2008), - whose founders:

L. Hurwicz, E. S. Maskin, and R. B. Myerson, have recently won the Nobel Prize in Economics

in 2007 - emerged as a powerful tool to implement an efficient solution for the decentralized

optimization problems, with self-interested players. By carefully setting up the structure of the

game, each player has an incentive to behave as the system designer intends, which results the

desired outcome.

In this work, the application of Game Theory is also quite possible, as it satisfies the main

game components: players, strategy, and utility functions (i.e. VPN operators, operates ideally

or selfishly, total profit and QoS guarantees), respectively.

1.2.4 Mechanism Design and Resource Management

Different mechanisms have been proposed in prior research to resolve competitive resource

allocation issues for wireless networks in a distributed and scalable manner, Kelly (1997a),

Semret et al. (2005), and Badia et al. (1997). In Kelly (1997a), a pricing mechanism is adopted

for resource allocation to ensure that the sum of users’ utilities is maximized. However, the

users are assumed to be "price takers" (i.e., they do not anticipate the impact of their actions
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on the network). In Semret et al. (2005), it has been shown that resource allocations such as

those proposed in Badia et al. (1997) suffer from an "efficiency loss" if the users exploit the

fact that their actions affect the network prices. In Semret et al. (2005), the auction mechanism

was deployed for resource allocation. The optimal auction strategies for the resource-buyers

are derived and the equilibrium is shown to exist. In Badia et al. (1997), pricing schemes are

introduced which could be deployed by a service provider to organize the network. However,

the relationship between the assigned resources and gained utility is not thoroughly studied.

In Jeffrey et al. (1994), authors proposed an approach that claimed to deliver economic effi-

ciency results. They presented a pricing model that achieves incentive-compatible state, where

for each served packet, the winner bidder pays a clearing price defined by the highest not-

accepted bid (bids of dropped packets). Although this approach might motivate selfish bidders

to reveal their truthful information, but on the other hand, it could be classified as not budget-

balanced approach, in which, ISPs might provide incentives more than what they actually gain.

Authors in Kelly (1997b) proposed an approach that claimed to deliver an efficient pricing

model. Their pricing model was built based on a combination of measured and declared traffic

characteristics, accordingly an appropriate traffic model is assumed, and corresponding pric-

ing plan is indexed to encourage the bidders to truthfully reveal their information. Although

this approach might enhance the resource management process and provide higher profit rates,

but it does not address the problem of calculating the optimal prices that bidders have to pay

according to the market state. Therefore, one can conclude that this approach does not provide

optimal pricing solution.

In Lazar and Semret (1999), a different auction mechanism is proposed to be applied in both

additive and arbitrarily divisible resource models. In there work, the proposed model does

not consider the QoS as a parameter, where they only assume selling network resources (i.e.

bandwidth). This mechanism defines bidders as having an explicit pricing scheme of offered

resources, where final selling prices are determined based on the Progressive Second Price

(PSP) auction mechanism. Briefly, in PSP, the bidders submit their bids in terms of (required

bandwidth and price). Based on the feedback received from the market, bidders reply to any
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arrival bid by manipulating their offers, either by increasing the price for the same bandwidth

amount or keeping the same price but asking for less bandwidth resources. This scenario runs

until higher offers raised. Consequently, each winner bidder gains the requested bandwidth

amount, and pays the social opportunity cost (second best price). However, such mechanism

might deliver non-fair allocations, as it could have more than one truthful-equilibrium point.

The authors of Mohamed et al. (2011) have used the mechanism design to motivate the selfish

nodes to cooperate and reveal truthfully their private information. Incentives are given to nodes

in the form of reputation where the reputation is calculated based on VCG. Nodes grant the

services according to their reputation, thus all nodes are motivated to cooperate and truthfully

reveal their information in order to increase their reputation value.

Authors of Dramitinos et al. (2007) proposed a mechanism that consists of simultaneous Multi-

unit Dutch Auctions (MIDAS) for auctioning bandwidth resources over a wide-bases network,

to users that will utilize the resources over the same period of time. Links’ price-units are

assumed to be asymmetric, reflecting the different demands over the various links. In their

work, the authors proposed an efficient price reduction policy called the Price Freezing (PF)

policy, in which the model deals with the bandwidth pricing problem according to the dynamic

bandwidth allocation demands over the considered links or (paths). They assumed that bidders

are truth-telling, presenting a payment rule of the VCG type that complements their proposed

mechanism, and enforces incentive-compatibility that results in truthful bidding. They also

proved that their mechanism provides a promising approach to hard problems, where it requires

a low computational complexity and is scalable for large number of units and network users.

Never the less, their attained social welfare is close to optimal in general. Moreover, in Nisan

and Ronen (1999), it has been used for solving least cost path, and task scheduling problems

using algorithmic mechanism design.

Previous works employed the Mechanism Design as an incentive mechanism, while in this

work, it is employed as a threat mechanism. Thus, it is motivating the players to reveal the

truthful information under the threat of punishment instead of incentives.
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1.2.5 Markov Decision Theory and Resource Management

Tran and Dziong (2010) deployed the Markov Decision Process theory (MDP) to propose a

decomposed model for bandwidth capacity adaptation in the context of Service Overlay Net-

work (SON). In their work, they intended to maximize the ISPs profit, while maintaining both:

the Quality and Grade of service guarantees. The authors depend on the integration of routing

and capacity adaptation concepts for maximizing the network profit, and utilizing the network

bandwidth resources efficiently. To do so, they followed the real-time measurements fed by

special algorithm, based on decentralized dynamic bandwidth allocations.

However, in the case of VPNs, the situation is some how different from that proposed in Tran

et al. (2007), Tran and Dziong (2010) for SONs. In the case of VPNs, each VPN operator

has a limited amount of leased resources (bandwidth over links) to provide the connectivity

services within its network according to certain Service Level Agreements (SLAs). On the

other hand, from the ISP side, managing the process of resource allocations between different

VPNs operators is a more challenging issue. Such a problem requires dealing with different

VPNs operators, each with different strategy and utility function. This increases the challenge

more and more. In SONs the situation is different, where operators have unlimited pool of

resources - changes upon demand - leased directly form the underlying public network (i.e. the

Internet), so any demands could be satisfied but with different price.

1.2.6 Linear Programming and Resource Management

In Kumar et al. (2001), and Kumar et al. (2002), the authors addressed the problem of pro-

visioning in VPNs in the hose model. In their work, they developed algorithms to compute

the optimal VPNs’ provisioning trees. These trees who require the lowest bandwidth amounts.

They assumed different scenarios for the hoses’ ingress/egress capacities, i.e., unlimited, equal,

and arbitrary. For the unlimited capacity case, they concluded that computing such a tree is NP-

hard problem. While in the equal capacity case, they proposed a Breadth-First Search (BFS)

algorithm. This algorithm provided the optimal tree with a time complexity of O(m,n), where

m and n represents the number of network links and nodes, respectively. However, in the case
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of having some capacity constraints, the problem became NP-hard, even if the ingree/egress

capacities are equal. For the arbitrary capacity case, they propose an integer programming for-

mulation to develop a primal-dual algorithm, but also its computational complexity was way

hard. However, compared to the work of Duffield et al. (1999b) who employed the Steiner

tree, and to the BFS algorithm, the proposed primal-dual algorithm provided the best results

represented by the lowest bandwidth requirements.

The author of Chou (2004) considered the problem of TE of MPLS-based VPNs that hold

different service classes in a centralized off-line mode. In his work, he focused on considering

a multi-objective TE problem that takes into account the resource usage, and links’ utilization

of Label Switched Paths (LSBs). However, the proposed TE optimization problem found to be

NP-complete that involves huge number of variables.

Authors of Juttner et al. (2003) presented a comparison between the hose and the pipe models

in terms of bandwidth requirements, in the context of the VPNs. Their goal was to compare

the requirements of the aforementioned two models with respect to the same network designs,

assuming a range of network sizes and topologies. To do so, they proposed deploying a linear

programming based evaluation model to calculate the bandwidth usage metrics.

The aforementioned works dealt only with models that do not provide the autonomic computing

concept. More important, they built their work based on the theme of static provisioning. On

the contrary, this work addresses the autonomic computing concept in a periodic and dynamic

bandwidth provisioning scenarios.

1.3 Summary

This Chapter discussed the tools and theories proposed to achieve the work objectives, along

with the related work in the literature. As a summary, Section 1.2 shows that the works done

in the field of bandwidth resource management in VPNs are many, however, non provided an

optimal solution. Pipe and hose model are the two main approaches proposed for QoS pro-

visioning in VPNs. Still, they did not consider the autonomic management concept, nor the
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dynamic bandwidth allocation scheme. CS, and CP models deployed the autonomic manage-

ment, but they have some imitations in terms of QoS violation and low bandwidth utilization.

The BR technique is supposed to solve the problem of poor utilization in CP, though, its pro-

vided solution is not optimal. Game theory and Mechanism Design have been widely deployed

in the areas of wireless networks. Yet, the Mechanism Design has mostly employed to enforce

cooperation based on incentives, not as a threat model. The Markov decision theory has been

deployed for resource management and capacity adaptation in SONs. In VPNs the scenario is

different, where compared to the SONs, the available bandwidth resources is somehow limited.

Linear programming theory was also deployed for solving optimal provisioning problems in

VPNs, however, neither the autonomic management nor the dynamic bandwidth provisioning

were addressed.
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2.1 Abstract

In this paper, we address the problem of autonomic resource management for Virtual Private

Networks (VPNs). Resources management is one of the important problems facing most In-

ternet Service Providers (ISPs). As a solution, the Autonomic Service Architecture (ASA) is

proposed in the literature to automate the resources management. Although, this model is able

to improve ISPs’ performance by automatically adjusting the resource allocation of each cus-

tomer, it still suffers from two main limitations. First, this model increases the ISPs’ revenue

in a suboptimal way. Second, this model has no mechanism to prevent customers’ exagger-

ation that can lead to a non-efficient resource utilization, and violate the contracted Service

Level Agreements’ (SLAs) terms. To guarantee their QoS classes; customers might exag-

gerate by asking for more resources during and after the SLA negotiation session, especially

in the case of multimedia streaming, and this can waste the available network resources. To

overcome the above limitations, we propose an Autonomic Resources Management Mecha-

nism that increases the ISPs’ revenue by allocating resources based on the auction mechanism,

where resources are granted to the best bidders. Additionally, we propose a threat model based

on Vickrey-Clarke-Groves (VCG) mechanism that is able to penalize exaggerating bidders ac-

cording to the created inconvenience. Since in our framework, customers are assumed to be
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rational, to avoid penalties that represents less profits, they may not ask for more unneeded

resources but collude with others to have the resources for less. Such a behavior can dramati-

cally minimize the ISP revenue while on the other hand it can maximize the customers’ utility.

To avoid this, we propose a collusion resistant model based on the Markov Decision theory

that allows the ISP to calculate the state dependent optimal cost-unit threshold based on the

shadow price concept. All bids that are greater than or equal this threshold are considered in

the auction. With this threshold, we can reduce the collusion behavior and with VCG we can

motivate the customers to not exaggerate. Simulation results show that the ARMM model is

able to efficiently utilize network resources, increase ISPs’ profit, and customers’ satisfaction

rates.

2.2 Introduction

Virtual Private Networks (VPNs) use the infrastructure of Internet Service Providers (ISPs) to

establish secure and reliable streams of services, Duffield et al. (1999a). ISPs are in need for

a flexible and efficient management model that is able to support a wide variety of customers

and satisfy their needs, in terms of secure and reliable connections with competitive prices.

Relying on the current management models that attempt direct interactions with ISPs is not

satisfying anymore, as they have many limitations that could be summarized as follows: (1)

Such models increase the management operation expenses. (2) They provide slow response

times. These limitations can lead to high rates of customers’ dissatisfaction. Consequently, the

need is emerging to find an alternative resource management models that overcome the cur-

rent limitations. Autonomic Service Architecture (ASA) is proposed in Cheng et al. (2006a)

to cope with the above limitations by creating a uniform framework for automated manage-

ment. ASA ensures services’ delivery based on a Service level Agreements (SLAs) that have

been conducted between customers and ISPs. The aim of the model is to propose an efficient

resource management scheme that can increase the revenue of ISPs while maintaining satisfac-

tory QoS guarantees. Although the ASA is able to automatically adjust the resource allocation

of the customers through deploying an autonomic bandwidth borrowing scheme, still it has the

following limitations:
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• it increases the ISP’s revenue in a suboptimal way by allocating resources based on

the First Ask First Allocate (FAFA) concept. This is due to the fact that resources can

be allocated to the non-optimal set of customers, and therefore ISPs’ profit will not be

maximized;

• customers (i.e. VPN operators) can exaggerate and ask for more resources than needed

during the SLA negotiation phase to guarantee their QoS in order to cope with the unpre-

dicted variations in the network state, especially in the case of multimedia transmissions.

Such a behavior can lead to an unfair resource allocation, and significantly decrease the

ISP’s revenue.

In this paper, we consider deploying an Auction Mechanism allocating the network bandwidth

resources among VPN customers. Although the auction mechanism optimizes the ISP’s profit,

it is unable to solve the problem of exaggeration. Therefore, we are also proposing a model that

governs revealing the truthful requirements under the threat of punishment. In this model, we

deploy the well known Vickery - Clark - Groves (VCG) truth-telling mechanism, Nisan and Ro-

nen (1999), to calculate the inconvenience that each VPN operator causes to the whole network

according to its required resources. This inconvenience is defined in terms of the utility drop

that is caused to the whole network. The resulting value is denoted by the "transfer", note that

this transfer value is always negative or zero representing the occurred inconvenience. Hence,

the transfer value will be added to the original charge of the leased resources, which may result

in smaller utility values for the exaggerating operators. Consequently, VPN operators will not

ask for more resources than their real needs, as they know that exaggeration will decrease their

utility. Collusion is another possible strategy that bidders can follow to maximize their utility

by having the resources for less. This strategy can dramatically minimize the ISP revenue. To

maximize the ISP profit and reduce collusion, an optimal cost-unit threshold is needed. We

propose a Markov Decision Process (MDP) based approach to calculate a state-dependent sell-

ing cost-unit threshold, where bids that are greater than or equal the threshold are accepted in

the auction. More specifically, we employ the concept of shadow price in order to help the ISP

to determine the optimal cost-unit at every state. By calculating such a threshold, we reduce
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collusion and by having VCG we reduce the exaggeration behavior.

In summary, our contribution is a model that is able to:

• efficiently utilize the available network bandwidth resources, since customers are moti-

vated to reveal their truthful needs;

• suppress exaggeration actions via a threat model;

• increase the customers’ satisfaction rates since resources are utilized efficiently;

• maximize the ISPs’ revenue by reducing the effect of collusion.

2.2.1 Paper Organization

The rest of this paper is organized as follows: Section 2.3 presents the problem statement.

Section 2.4 presents our resource allocation model and ARMM selection algorithm. Sections

2.5 and 2.6 respectively illustrate the ARMM threat and collusion-resistant models followed

by an illustrative example in Section 2.7. Section 2.8 presents empirical results. In Section 2.9,

we present the related work. Finally, Section 2.10 concludes the paper.

2.3 Problem Statement

The ASA model proposes an autonomic management framework that is able to ensure the de-

livery of services according to predefined SLAs. These SLAs are established after negotiation

between an ISP’s broker and customers. The objective of the ASA is to increase the ISP’s

revenue by providing an efficient resource management scheme. ASA is considered as a SLA

central management model that assumes the share of resources among all SLAs. To achieve

this, the model proposes an autonomic bandwidth borrowing scheme for efficient resource uti-

lization to ensure customers’ QoS.

The ASA has several limitations. First, resources in ASA are utilized through an inefficient way

by providing the resources in a First Ask First Allocate (FAFA) scheme. This model can lead to

a suboptimal increase in the ISP’s revenue. Second, the negotiation phase and the bandwidth
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borrowing scheme depend totally on what the customers reveal/ask, where customers might

exaggerate with their revealed requirements and thus some network resources can be wasted.

Customers exaggerate for different reasons such as in the case of multimedia transmission,

where:

a. the quality of the transmitting streams increases with the higher transmission rates, and

the more bandwidth resources allocated. Without having any threat mechanism, cus-

tomers will always try to obtain the largest possible amount of bandwidth resources over

network links, even if the resulting improvement in the transmitting quality is minimal;

b. in order to cope with any sudden and unpredictable changes in the network state and

link conditions, VPN operators tend to keep a spare amount of resources that enables

them to overcome and cope with such situations. Again, as there is no threat scheme,

VPN operators will tend to obtain as much as they can of bandwidth resources which can

block others;

c. if VPN operators are allowed to obtain more resources than required, they have no in-

centives to smartly utilize their allocated resources and use it efficiently. Instead, they

may rely on their ability to resend lost and delayed packets. This achieves a relatively

good transmission qualities while using their traditional transmission techniques.

To overcome the above limitations, we propose to allocate resources based on an auction man-

ner. This can improve resource utilization and increase the ISP’s revenue. To overcome the

exaggeration problem, we propose a new mechanism that urges VPN operators to truthfully re-

veal their requirements, and respect the SLAs’ terms. This mechanism adopts the well known

VCG truth-telling mechanism that is able to handle such a problem by motivating VPN op-

erators to truthfully reveal their requirements and respect the SLAs’ terms under the threat of

punishment. The threat is expressed in terms of a "transfer" value that is derived in Section

2.5.



40

Still, if exaggeration actions are controlled under the threat of punishment, VPN operators may

search for another behavior that can help to increase their utilities. One possible behavior can

be the collusion among the bidding operators, where VPN operators can act collusively against

the ISP in order to allocate the resources according to the price they revealed. More precisely,

a group of VPN operators may collude and offer the same low bid. According to the bid

rules, an ISP has no other choice than allocating the resources to the colluded bidders. Such a

collusive cheating behavior among system players poses serious threats to the ISPs’ revenue,

and to the whole resource allocation game outcomes. To reduce the effect of this problem,

we approximate the auction game by a Markov Process describing the system states by the

aggregated bandwidth requirements at each auction slot. Then using the shadow price concept

based on Markov decision theory, we define the optimal allocation cost-unit to be considered as

a threshold for accepting or not-accepting the received bids, where this threshold is not known

to the bidders. The model for calculating such shadow price values is presented in Section 2.6.

2.4 ARMM: Autonomic Resource Management Mechanism

In this section, we present the proposed ARMM model that improves the ASA model by al-

locating resources based on the auction mechanism, where resources are allocated to the best

bidders. To achieve this, bidders are asked to reveal their required QoS classes and their re-

spective prices. The revealed QoS information represent the required bandwidth resources to

be allocated to each bidder. An auction algorithm is presented in Algorithm 2.2 to illustrate the

allocation mechanism. Although auction mechanism can increase ISPs’ revenue by creating a

competition environment among the bidders, but it cannot prevent bidders’ exaggeration nor

collusion. To overcome the exaggeration problem, we propose a threat model that can punish

bidders according to the inconvenience they create to others. This inconvenience is calculated

based on the VCG mechanism. To reduce the collusion problem, we derive the optimal state

dependent threshold for accepting the bids during the auction process. This threshold is calcu-

lated based on the shadow price concept. Tables 2.5 and 2.6 in section 2.7 provide illustrative

examples to show how ARMM is able to penalize exaggerated bidders and reduce collusion

actions, respectively.
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2.4.1 The Model

The resource allocation problem can be modeled as a game where the VPN operators are the

players of the game. The players are assumed to be rational, and thus their aim is to maximize

their own utilities according to the revealed values of their required QoS and offered Prices.

The offered price value implicitly represents the anticipated utility-gain (ρ) that the player can

collect from this connection (the term connection refers to the allocated resources), and always

aims to maximize. Utility-gain maximization leads to higher utility rates, where the player’s

utility is represented as the aggregation of its utility-gain (ρ) and the system’s transfer value

(τ). This function is expressed as follows:

Utilityi = utility.gaini + trans f eri (2.1)

On the other hand, the objective of the system is to maximize the sum of bids while maintaining

the QoS guarantees for the whole network.

2.4.2 Bandwidth and Cost Measurement Model

The VPN operators have different service classes to choose their required connectivity QoS

levels. First, VPN operators submit their bids (price, QoS) to an ISP’s broker. Second, the ISP

broker calculates the required bandwidth allocations based on the information received. ITU-

T recommends to collect the operators’ QoS judgement classes using different scale levels,

ITUT-Rec-P800 (2000), as shown in Table 2.1.

Consequently, we adopted the ITU-T model to define the ISPs’ provided QoS classes. Such

class factors could be converted to the Mean Opinion Score (MOS) that provides a numerical

interpretation of the required connections’ quality ITUT-Rec-P800 (2000). Thus, with the op-

erators’ MOS values, the ISP broker can determine the codec required for encoding/decoding

the communicating packet streams. The bandwidth amount required by a VPN operator’s con-

nection is typically defined according to the size of headers and packet payloads, and the type
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of codecs. Therefore, the following formulas are used to calculate the bandwidth consumption

per allocation request:

Table 2.1 QoS Classes

Class Connections’ Quality of Service
5 Voice and Video (<100ms Latency and Jitter)

4 Controlled Load (Streaming Multimedia)

3 Excellent Load (Business Critical)

2 Standard (IP Packet Delivery)

1 Best Effort

• total packet size = headers + packet payload size;

• packets per second = codec bit rate / packet payload size;

• bandwidth = total packet size * packets per second.

Thus, operators reveal their (price, QoS) values, and then the ISP broker performs the men-

tioned calculations to determine the requirements of each VPN operator, and consequently

check the offered price if it is accepted or not as explained in the following subsection.

Based on the offered and required values of the VPN operators (prices, bandwidth), our model

measures the cost-unit based on the ratio of the offered prices to the required bandwidth

amounts, as follows:

ci =
pricei

bwi
(2.2)
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where:

• ci: represents the measured cost-unit;

• pricei: represents the price offered by VPN operator i;

• bwi: represents the the bandwidth needed for operator i to satisfy its required QoS class.

2.4.3 The ARMM Selection Algorithm

Based on the measured cost-units, the proposed model will select the VPN operators with

the most profitable cost-units that suppose to maximize the ISP’s profit, in accordance to the

contracted SLAs and bandwidth constraints. Algorithm 2.2 describes the selection algorithm.

Algorithm 2.2 Selection Algorithm

Selecting the Profitable VPNs Operators

1: VPN operator i submit (pricei, QoSi)→ ISP broker;

2: for each VPN operator i, do;

3: Convert QoSi class to its equivalent bwi value;

4: Calculate ci for each VPN operator i;
5: Sort the VPN operators in a descending order

according to their ci values ;

6: Find iopt , where;

∑iopt
i=1 (bwi ≤ bw) and ∑iopt+1

i=1 (bwi > bw)

7: Output (iopt) operators that fit within the available bw;

8: Charge the selected (iopt) operators according to their ci;

In the first step, VPN operators are asked to submit their offered price and QoS values to an ISP

broker in order to consider their requests. In step two, the ISP broker takes each VPN operator

(price and QoS values), and then computes the required bandwidth amount and the cost-unit,
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in steps three and four respectively. In the fifth step, the ISP broker sorts the VPN operators

according to their offered cost-units in a descending order. Then in steps six and seven, it

checks the available bandwidth amount and accordingly chose the optimal VPN operators iopt

according to their offered cost-unit values, where iopt is the index of the last VPN operator

(sorted in a descending order) that can fit within the available bandwidth resources. In step

eight, the ISP broker charges the selected iopt operators according to their costs. The charge is

calculated in the sequel section.

2.5 The ARMM Threat Model

In the current management models such as ASA, the absence of any incentive mechanism that

motivates VPN operators to reveal truthfully their requirements can motivate the operators to

exaggerate in their requirements if such a behavior can lead to even a minimal maximize in

their own utilities. Particularly, in congested networks, if a VPN operator lies or exaggerates

about its bandwidth requirements, the performance of the entire network can be effected neg-

atively. Hence, there is a need to develop a model that guarantees the integrity of bandwidth

resources and protect it from being wasted or misused. For this reason, we propose a model

that overcomes any exaggeration behavior and motivate VPN operators to truthfully reveal their

bandwidth requirements. As mentioned before, we adopted a mechanism from the subfield of

game theory which is known as the VCG mechanism, Nisan and Ronen (1999), to calculate

the transfer value, by which ISPs can enforce the VPN operators to cooperate under the threat

of punishment based on the inconvenience each VPN operator causes to the whole network.

To address the above challenge, in ARMM, we propose using the VCG truth-telling mechanism

to define an "optimal decision" T (θ ,G) that provides fair allocations of network bandwidth

resources among VPN operators, and also, defines the "transfer" value τ(θ ,G) that represents

the inconvenience each VPN operator will cause to the other competing operators. Where θ

represents the "profile type" for the VPN operators which includes: 1) The utility-gain per unit

time, and 2) The connection’s QoS class, while G represents the total amount of resources

available at the ISP’s premises. The transfer value should be added to the utility-gain value,
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together giving the total Utility value υ of this new VPN operator (i). Using the above notations,

Equation 2.1 can be rewritten as follows:

υi = ρi + τi (2.3)

Obviously, the objective of each VPN operator is to maximize its Utility function. On the other

hand, the objective of the ISP is to maximize whole system’s utility function which is:

Usys(T (θ ,G),θ) =
iopt

∑
i=1

ρi(ti,θi) (2.4)

where ti represents the amount of bandwidth allocated to VPN operator i according to the value

of θi. Consequently, the optimal decision should allocate the networks’ bandwidth resources

G among the competing VPN operators in a way that maximizes the aggregated utilities of all

VPN operators. Thus, the optimal decision is defined as follows:

T opt(θ ,G) = arg max Usys(T (θ ,G),θ) (2.5)

Hence, the transfer function for VPN operator i is computed as follows:

τi(θ ,G) = ∑
n�=i

ρn(tnopt ,θn)− MAX
T−i(θ−i,G)∑

n�=i
ρn(tn,θn) (2.6)

where, θ−i indicates the profile type of all VPN operators except operator i, i.e., θ1, θ2, θ3, ....,

θ−i, θ+i, ...., θM, and T−i(θ−i,G)) indicates the bandwidth allocations for all VPN operators

except operator i, i.e., t1, t2, t3, ...., ti−1, ti+1, ...., tM.



46

In this Equation, the first term represents the sum of the aggregated utilities -in the presence

of operator i- of all other VPN operators given by the optimal bandwidth allocations except

VPN operator i under non-optimal allocation. The second term represents the maximum sum

of aggregated utilities that all VPN operators can obtain if VPN operator i does not participate

in the bandwidth allocation game. Clearly, the second term will be always greater than or equal

the first term, this means that the "transfer" value will always be negative or zero representing

the inconvenience (utility drop) caused to other VPN operators by operator i. Accordingly,

Equation 2.3 that gives the total utility value can be reformulated as:

υi(θi, ti) = ρi + τi

= ρi +∑
n�=i

ρn(tnopt ,θn)

− MAX
T−i(θ−i,G)∑

n�=i
ρn(tn,θn)

= [ρi +∑
n�=i

ρn(tnopt ,θn)]

− MAX
T−i(θ−i,G)∑

n�=i
ρn(tn,θn) (2.7)

By using Equation 2.7, VPN operators will not be motivated to exaggerate their bandwidth re-

quirements, but instead they will tend to reveal their truthful requirements in order to avoid any

extra expenses and charges paid according to the required amounts of bandwidth resources,

which may reduce their final revenue rates. However, it is worth to find the computational

complexity of the model. First, all bids have to be sorted in a descending order where the

complexity of this is O(n.log(n)). Then, best summation of bids is calculated where the com-

plexity is O(m), where m is the number of selected bids which is assumed to be less than n in

order to have a competition game. This will be repeated for m bidders so the complexity will

be O(m2). Thus the total computational complexity will be O(n.log(n)) + O(m2) which can be

approximated to O(n.log(n)) where n >> m.
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Although mechanism design can motivate the bidders to bid truthfully their requirements, how-

ever, rational VPN operators will keep looking for another behavior to maximize their utilities.

Collusion is one of the possible behaviors that may significantly effect the anticipated objec-

tives of the resource allocation game. More details about our proposed model for solving this

problem are given in section 2.6.

2.6 The ARMM Collusion-Resistance Model

In our framework, customers (VPN operators) are assumed to be rational, and therefore they

may tend to cheat whenever they believe that such a behavior can provide even a minimal in-

crease to their utilities. In the proposed auction model, exaggeration actions can be suppressed

by the threat model, but still, VPN operators might collude and bid the same value with the

incentive of obtaining lower allocation prices that maximize their utility functions. Such a

collusive action creates a great threat to the anticipated efficiency of the proposed resource al-

location model. Hence, the need is emerging to develop a collusion-resistant model that can

reduce the effect of such collusion actions, in order to provide a better resource allocation

model. In this section we propose such a model that is based on optimal cost-unit threshold

derived from the Markov decision theory.

2.6.1 Optimal Cost-Unit Threshold

We assume that for a given VPN, the links connecting its nodes are established by leasing

bandwidth from a public network infrastructure (i.e the Internet) through SLAs. For each link,

the SLA terms specify its assigned bandwidth, its QoS class, and its corresponding leasing cost

unit Co. Here, we assume that the SLA terms can be dynamically modified according to the

main provider’s network state.

Consequently, from the ISP perspective, the process of sub-leasing the available resources to

the VPN operators must be controlled in a way that provides profit maximization guarantees

and satisfactory services. Relying on the proposed auction mechanism for selecting the best

offered prices may enhance both profit and satisfaction rates for all (ISP and VPN operators).
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Deploying the VCG mechanism also provides an efficient threat model that eliminates ex-

aggeration actions. However, neither the auction mechanism nor the threat model can solve

the problem of collusion. Therefore, in this section, we are enhancing the proposed auction

mechanism by developing a model that promises to reduce the effect of the collusion problem

by dynamically calculating the optimal sub-leasing cost-unit threshold, which will be consid-

ered as a threshold for accepting/not-accepting the received allocation bids. Calculating this

cost-unit threshold is a function of the reward parameter, r, anticipated from each accepted

connection. The ISP’s utility objective is given by the following:

UtilityISP = Reward −Cost (2.8)

where the ISP utility function is represented by: the rewards collected from allocation requests

being granted, subtracted by the original cost of the system’s bandwidth resources.

In the considered model, the ith bidder is characterized by the following: offered cost-unit

ci, and required bandwidth amount bwi. We assume that at each periodic auction slot, each

admitted VPN connection i brings to the ISP a reward given by the parameter ri. Accordingly,

the utility (profit) that an ISP can collect at an auction slot in which the system is in state l, can

be expressed as follows:

UISP
l = Rl(bw)−Co(bw) =

iopt

∑
i=1

λ̄i(bwi)ri −Co(bw) (2.9)

where UISP
l represents the utility of the ISP, Rl is the link reward rate,λ̄i is the rate of admitted

allocation requests, and Co is the original leasing cost unit (the cost paid by the ISP for leasing

the bandwidth resources from its higher provider). In this context, we assume that the key

objectives for the ISP are: 1) Reduce the effect of collusion. 2) Provide better utilization of the

available bandwidth resources. 3) Maintain profit maximization; all with respect to the sub-

leasing cost units ci, being a function of the allocated bandwidth resources bw. This scenario
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could be considered as a classical bandwidth allocation problem formulation, however, in this

work we are solving such a problem by adapting the optimal allocation cost-unit threshold cthr

that is a function of the link state.

For cost-unit threshold calculations, we propose to use the notation of state-dependent shadow

price pl that represents the dynamic cost of admitting the allocation requests for each band-

width unit bw j, where ∑
j

bw j = bw, on the considered link in state l, (l ∈ X). The notion of

state-dependent shadow price is derived from the Markov decision theory and will be presented

in the next subsection including model for its calculation.

As already mentioned, once the shadow price is calculated, it is considered as the optimal

cost-unit threshold cthr for each bandwidth unit bw j. Therefore, the model assigns higher sub-

leasing costs (rewards required for granting the allocation) to those allocations whose band-

width requirements are costlier to the network.

Accordingly, the allocation criteria presented in Algorithm 2.2 is enhanced in Algorithm 2.3,

where in step 6, the process of accepting or not-accepting the received bids will be through

comparing the submitted cost-unit ci values with the cost-unit threshold cthr, calculated using

the state-dependent shadow price concept.

To illustrate the procedure, in Figure 2.1 we give an example of the offers received from the

VPN operators in terms of their submitted bids sorted in a descending order, and the measured

cost-unit threshold for each link state. The process of finding the lowest accepted bid value is to

find the crossing point between the resulting optimal cost-unit threshold (cthr) and the current

bids sorted in a descending order. Therefore, by using the optimal cost-unit threshold, the ISP

is able to reduce the effect of collusion actions in the sense that, no bid will be accepted unless

ci ≥ cthr, as:
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Algorithm 2.3 Selection Algorithm 2

Selecting the Profitable VPNs Operators for each bw j

1: For each auction round (new state), find cthr for each bandwidth

unit bw j over the assigned link;

2: VPN’s operator i submit (Pricei, QoSi)→ ISP broker;

3: for each VPN operator i, do;

4: Convert QoSi class to its equivalent bwi value;

5: Calculate ci / bw j provided by each VPN operator i;
6: if ci ≥ cthr, then accept for competition, else reject;

7: Sort the accepted VPN operators in a descending order

according to their ci values ;

8: Select the highest ci
9: end;

10: Output the selected operator i that won the allocation of bw j;

11: Charge the selected (ith) operator according to its ci;

c1 ≥ c2 ≥ ...≥ cthr−1 ≥ cthr ≥ cthr+1

Consequently, the value cthr acts as a successive threshold, where the lowest accepted bid must

exceed it. As an example, if we look at state 2 in Figure 2.1, we can clearly notice that all the

bids are accepted for competition as they are all higher than the measured cost-unit threshold,

where in state 3 two bids only (bids 1 and 2) are accepted as they are higher than the measured

threshold.

In this way, ISPs can minimize the effect of collusion actions on their utility functions and

revenue objectives. In the case where the ISP did not receive any higher bids that satisfy the

threshold constraints, it has no interest to lease any more resources as it is assumed that the

resources are leased from a third party which is the infrastructure provider.
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Figure 2.1 Cost-unit thresholds and offered bids

2.6.2 Resource Allocation based on Markov Decision Process

The resource allocation game proposed in the previous sections represents a dynamic system

whose evolution is described by a sequence of system states {xt , t = 0,1, ...} belonging to

a discrete state space X . The state here is described by the bandwidth amounts required to

satisfy the allocation demands at each time instant t. The time t corresponds to the system

review instances representing the auction slots that are held in equal time intervals. When the

system arrives at time t, it is classified into state l = xt ∈ X . Based on the system state, an

action is made defining the winning bids. Each action results in a certain reward, R,which

is given to the system once the decision is executed during the slot associated with the new

state. Accordingly, in the next time epoch, the system moves to the next state based on a new

action. It should be noted that the reward given to the system at the decision moment, can also

represent the expected reward collected until the next decision moment.

A prescription for the final decision in each time instance is called policy π . To find an optimal

policy for our system we use the concept of shadow price that was developed for Call Admis-

sion Control (CAC) and routing in telecommunication networks, which can be modeled as a

continuous time Markov process Dziong (1997). In this case the network is treated as Markov

Decision Process with infinite planning horizon.
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To simplify the problem, the network process is decomposed into a separable link Markov

processes that are assumed independent. In this case the optimal CAC and routing decision

is found by policy iteration algorithm that is based on the concept of net-gain, which is the

difference between the reward from the connection and the sum of state-dependent link shadow

prices over the links constituting the considered path. In this case, the path with maximum

positive net-gain is selected and if it is negative the connection is rejected. Note that in the

system considered in this paper each link auction is considered independently and therefore

the problem is reduced to a link problem. In such a case it is easy to show that the optimal

acceptance policy is defined by the values of link shadow prices. In particular, the connection

is accepted in given link state if the reward from connection is bigger than the shadow price for

this state.

As shown in Dziong (1997), the state dependent link shadow price can be calculated using

efficient value iteration algorithm. Moreover, in homogeneous bandwidth requirement cases,

a simple recurrence (over the states) solution can be used. In this paper we apply this model

to approximate the state-dependent prices in our system. For this case the calculation of state

dependent shadow prices is as follows:

First the values of the recurrences z( j), and w( j) are calculated as follows using the initial

values of z(0) = 1/λ (0,π), and w(0) = 0:

z( j) =
1+ jμz( j−1)

λ ( j,π)
, j = 1, ....,N −1 (2.10)

w( j) =
jμw( j−1)−q( j)

λ ( j,π)
, j = 1, ....,N −1 (2.11)

where N denotes the maximum number of allocations (available bandwidth-units) that can be

held over the link with the available bandwidth bw, and q( j) is the rate of reward defined as

q( j) = jμ.r where r is an average reward parameter.
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Then, the state-dependent link net-gains g j(π) and the average reward rate, R̄, can be calculated

as follows:

g j(π) = R̄(π)z( j)+w( j), j = 0, ...,N −1 (2.12)

the term g j refers to the network gain at state l, l ∈ X . The average reward R̄(π) is given by:

R̄(π) =
q(N)−Nμw(N −1)

1+Nμz(N −1)
(2.13)

Having the network state gain values g j for each state, we can find the state-dependent shadow

price value p j, for each bw j, as follows, [Dziong (1997)]:

p j(π) = r−g j(π) (2.14)

It is worth to mention that the notion of average link shadow price was introduced first by

Kelly (1988) for optimization of adaptive load sharing and in Dziong et al. (1988) the authors

introduced the state-dependent link shadow price notion that was used for optimization of state-

dependent routing.

2.7 Illustrative Example

In this section, we present an illustrative example that shows the computation of the transfer

and threshold values.

2.7.1 Impact of adopting the VCG truth-telling Mechanism

To assess the efficiency of the proposed transfer function in Equation 2.6 on the resource

allocation game, we illustrate an example of five different VPN operators competing for 600

Mbs of available network bandwidth resources at the ISPs’ premises. For the VPN operators,
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we compare the incurred transfer value of each VPN operator and the resulting revenues in

terms of the connections’ utility functions under two different scenarios: 1) All VPN operators

deploy their optimal strategies, and no operator is exaggerating its revealed type. 2) VPN 3

operator is exaggerating its type by asking for higher QoS class (more bandwidth allocation),

while the rest operators are revealing their truthful requirements.

The predefined QoS classes and their minimum accepted cost-unit parameters of the deployed

example are summarized in Table 2.4. Table 2.5 is showing the percentage of bandwidth re-

sources allocated to the various competing VPN operators, their required QoS classes, their an-

ticipated utility-gains (represented by the revealed price values), and the corresponding transfer

values for both scenarios. To improve the readability of the results, the difference in the result-

ing utility values between the two scenarios is also given based on Equation 2.7.

Table 2.4 Connections’ classes and corresponding rates

QoS Class Minimum cost-unit accepted

1.0 - 1.5 1.3 / time unit

1.6 - 1.9 1.8 / time unit

2.0 - 2.5 2.3 / time unit

2.6 - 2.9 2.8 / time unit

3.0 - 3.5 3.3 / time unit

3.6 - 3.9 3.8 / time unit

4.0 - 4.5 4.3 / time unit

4.6 - 5.0 4.8 / time unit

In Table 2.5, when VPN operators adopt their best strategies and reveal their truthful bandwidth

requirements, network resources are allocated in a manner that maximizes the whole network’s

utility providing an optimal allocations for all. However, when VPN operator 3 exaggerate, the

provided QoS is improved to class 3. On the other hand, the corresponding transfer value for

this operator is also increased from 10% to approximately 23% of the revealed utility-gain
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value. Hence, operator 3 earns QoS class 3, but paid around 9.5 unit more compared with the

regular charges, where instead of paying 7.326 it paid 16.785.

Table 2.5 Resource Allocation, Transfer and QoS for various VPN operators in two

scenarios (Scenario A: No VPN’s Operator Exaggerate, B: VPN 3 Operator is

Exaggerating and reveal selfish requirements)

VPN’s A: No VPN Operator Exaggerate B: VPN 3 Operator is Exaggerating Revenue Revenue
Operator % of Bandwidth QoS Cost Revealed Transfer % of Bandwidth QoS Cost Revealed Transfer gained in gained in

Resources Class Unit Utility-gain Value Resources Class Unit Utility-gain Value Scenario A Scenario B
1 11.10 1.13 1.3 14.43 -1.443 10.60 1.00 1.3 13.78 -1.378 12.987 12.402

2 15.10 1.65 1.8 27.18 -2.718 14.60 1.51 1.3 18.98 -1.898 24.462 17.082

3 17.20 2.00 2.3 39.56 -3.956 22.20 3.00 3.3 7.326 -16.785 35.604 56.475
4 25.20 3.70 3.8 95.76 -9.576 23.20 3.20 3.3 76.56 -7.656 86.184 68.904

5 31.40 5.00 4.8 150.72 -15.072 29.40 4.50 4.3 126.42 -12.642 135.648 113.778

The example also conclude that the exaggeration of operator 3 affects the performance of the

whole network customers, leading to a reduction in their provided QoS classes along with a

hard decrease in their revenue values. From this example, it is clear that applying the VCG

truth-telling mechanism is significantly decreasing the tendency of exaggeration by VPN op-

erators since VPN operators are rational and they care about their revenue. Thus, under the

threat of paying high transfer values, VPN operators will tend to reveal their truthful band-

width requirements and not to ask for extra un-needed resources. Moreover, this example also

shows that relying on the ASA model may result in a significantly worse performance, less

resource utilization, and lower profit rates especially when VPN operators start exaggerating

their requirements.

2.7.2 Impact of adopting the Collusion-Resistance Mechanism

To assess the efficiency of the collusion-resistance model proposed in Section 2.6, another ex-

ample is presented that illustrates the collusive behavior for a group of different VPN operators

that collude instead of competing with each others to be granted a connection over a single

link that can hold five bandwidth units. For this link, we compare the resulting reward earned

by an ISP in terms of the subleasing cost-units defined by the two scenarios: 1) According to

the highest bids received (Selection based on Algorithm 2.2). 2) According to the measured
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cthr value based on the state-dependent shadow price concept, that is dynamically measured

at every new state l ∈ X (Selection based on Algorithm 2.3). Through this, we show how the

proposed collusion-resistance mechanism is able to reduce the effect of such collusive actions

by dynamically adapting the subleasing cost-unit threshold according to the network state and

the SLAs cost variations. This example shows the behavior in which a group of VPN operators

collude with each others, where they bid with the same bid in order to enforce the ISP to offer

them the connections for less, with the incentive of maximizing their own utilities.

Table 2.6 Bandwidth Units Allocation, Offered and Eligible prices for various VPN

operators in two scenarios (Scenario A: No Collusion Resistance Mechanism, B: VPN 3

Collusion Resistance Mechanism Using the Measured, cthr, values)

Bandwidth No Collusion-Resistance Mechanism Applied Collusion-Resistance Mechanism is Applied Aggregated Aggregated
Unit Index Highest Offered Accept or Eligible Highest Offered State-Dependent Accept or Eligible reward in reward in

Cost-Unit Reject Cost-Unit Cost-Unit Shadow Price (cthr) Reject Cost-Unit Scenario A Scenario B
1 14.520 Accept 14.520 14.520 10.494 Accept 14.520 14.520 14.520

2 13.740 Accept 13.740 13.740 11.374 Accept 13.740 28.260 28.260

3 12.000 Accept 12.000 12.000 12.467 Reject 12.467 40.260 40.727

4 12.000 Accept 12.000 12.000 14.092 Reject 14.092 52.260 54.819

5 12.000 Accept 12.000 12.000 17.453 Reject 17.453 64.260 72.272

Table 2.6 is showing the link’s bandwidth units, bw j, that are offered to the VPN operators to

carry their connections, the highest bid (offered cost-unit) received for the assigned bandwidth-

unit, the decision that an ISP will take (accept/reject) depending on the adopted allocation

mechanism, the state-dependent shadow price value for each bw j (this is in the collusion-

resistance scenario only), and the eligible subleasing cost-unit. To improve the readability

of the results, the difference in the resulting aggregated reward values (anticipated value in

scenario B) between the two scenarios is also given.

The example in Table 2.6 shows the case where a group of VPN operators offered the same

collusive bid (cost-unit) with the value 12 (for bandwidth units 3, 4, and 5), and this value

was the maximum value received. In the case of no collusion-resistance mechanism applied,

as long as there is enough bandwidth resources available, the ISP will accept the offered bids

based to the selection criteria presented in Algorithm 2.2. Accordingly, such collusive bids

will be eligible, and therefore the resulting reward will be less. While in the second scenario,
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the state-dependent shadow price value, cthr, is computed for each bandwidth-unit producing

an acceptance condition that acts as a collusion-resistance threshold. In this case, bids below

the cost-unit threshold, cthr, will not be accepted, and so, as long as VPN operators know

that their collusive bids will not go throw, they will not tend to collude. Moreover, in the

case of no higher bids received (higher than the computed threshold), ISPs can return their

extra (un-leased) resources to their higher providers instead of sub-leasing them with such

non-satisfactory prices. Additionally, applying such a mechanism can efficiently increase the

reward compared to the first scenario, where in the example it is clearly shown that in the case

of collusion resistance an increase of 12.46% in the aggregated reward can be achieved.

2.8 Simulation results

In Matlab, we simulate the bandwidth resource allocation in an ISP network, from this network

we will study the bandwidth resource allocations over a certain link, utilizing a special pool of

600 Mb bandwidth resources. In this, we compare the resource allocation using both the Auc-

tion Mechanism (2.2) model and the FAFA queuing model. The models are simulated with 1 to

40 VPN operators competing for these limited bandwidth resources. For each VPN operator,

the model generates two values in terms of offered price (representing its utility-gain) and the

required QoS class, (Price, QoS), these values are generated through a random function, this

function provides values that simulate two options: 1) Honest (revealing truthful requirements)

and 2) Exaggerating (revealing exaggerated requirements), to emulate the operators’ options.

Traditionally, FAFA algorithm allows the first asking VPN operators that satisfy the system re-

quirements to reserve their required bandwidth resources until the resources’ pool reaches its

maximum limit. The auction mechanism proposes a smart selection process with a cost-unit

bases to select the cost-efficient operators among the competing VPN operators.

In ARMM, we are expecting to deliver a fair traffic control mechanism that provides better

services and higher satisfaction rates for the VPN operators. In addition, we are expecting

that such auction mechanism would enhance the allocation process performance using the pro-

posed selection algorithm. Moreover, comparing with the ASA FAFA model, we are expecting



58

to enhance the ISPs profit rates by providing them with higher profits resulting from better

utilization of their networks’ resources. Based on the above assumptions, we construct the

following analysis.

Figure 2.2 shows the percentage of satisfied VPN operators to the number of VPN operators

participating in the resource allocation game. In this figure, it is shown that VPN operators

from 1 to 10 are all satisfied by their provided services, both models have high participation

rates. However, as the number of VPN operators increases the required bandwidth resources

also increase, where beyond 10 participants, results show that deploying the auction mechanism

provides higher satisfaction rates compared with that provided by the FAFA mechanism.
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Figure 2.2 Percentage of Satisfied Operators

Figure 2.3 shows the total bandwidth utilization to the number of VPN operators over the con-

sidered link. In this figure, it is shown that on average, the auction mechanism provides better

usage of the bandwidth resources compared with that provided by the FAFA mechanism, where

in the first case winning operators are chosen according to a selective algorithm based on their
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offered cost-units.

Figure 2.4 shows the total ISP’s profit represented by the profit units collected from resources

being allocated to VPN operators. In this figure, it is shown that the auction mechanism pro-

vides higher profit rates compared to that provided by the FAFA mechanism. Such results pro-

vide for longer surviving in the market combined with higher profit rates, where with higher

satisfaction rates and better utilization of the available resources, ISPs will be able to provide

resources for more VPN operators with competitive prices, which will result in profit rates

maximization.
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2.9 Related Work

This section reviews the related work on autonomic resource management and mechanism

design applications.

2.9.1 Autonomic Resource Management

The idea of autonomic resource management have been first introduced in Appleby (2001)

where the authors developed a prototype of a highly manageable infrastructure for an e-business

computing. Their aim was to develop and design a manageable, scalable computing infrastruc-

ture that consists of a farm of massively parallel, and densely packaged servers interconnected

by high-speed, switched LANs. The concept of dynamic resource allocation was developed to

accommodate both planned and unplanned fluctuation of network state under the constraints

of the contracted SLAs. In HP-Laboratories (2003), Graupner et al. (2003), the vision for the

Adaptive Enterprise and the Microsoft Dynamic Systems initiative that are related industry in-

stitutions, realizes that autonomic management for the computing components is critical for

future Information Technology (IT) industry, Microsoft-Corporation (2004). Also, they both

gave emphasize to the importance role of the Virtualiztion concept of network resources. In
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Farha and Leon-Garcia (2006), and Sup et al. (2005), the authors expanded the autonomic view

to include the computer telecommunication services that consider both computing and net-

working resources. In their work, they proposed the Autonomic Service Architecture (ASA),

which is a framework for automated management of both Internet services and their underlying

network resources. For this framework, they design an Autonomic Resource Broker (ARB) to

serve as the autonomic manager, which is the key enabler of the ASA Farha and Leon-Garcia

(2006). The authors in Cheng et al. (2006a) proposed a bandwidth sharing scheme for uti-

lizing the available network resources. The bandwidth borrowing scheme provides a way to

adapt bandwidth resources that are already allocated for each SLA to be automatically adjusted

according to the network state, under defined policies’ control for better utilization and QoS

guarantees. Finally, in Belzarena et al. (2009) the authors addressed the problem of bandwidth

allocation via periodic auction. In this work the authors use the first bid auction to allocate the

resources where such an auction mechanism cannot eliminate exaggeration, which can affect

negatively the ISP revenue. The authors used MDP to determine the allocated optimal prices.

Our work differ from this work in the sense that we are using the second price auction (VCG)

that can punish exaggerated operators and MDP to avoid collusion.

Although the above studies proposed solutions that can provide an automatic management

scheme and dynamic resources allocation, we can note that all the proposed models suffer

from the same problem which is customers’ exaggeration. Customers’ might exaggerate and

ask for more unneeded resources whenever this behavior can increase their own revenue. Such

a behavior can lead to an inefficient resources allocation scheme and reduce ISP revenue since

less resources can be allocated to other customers.

2.9.2 Mechanism Design Applications

Game theory has been proposed in prior research to resolve competitive resource allocation

issues for wireless networks in a distributed and scalable manner Kelly (1997a), Semret et al.

(2005), Badia et al. (1997). In Kelly (1997a), a pricing mechanism is adopted for resource allo-

cation to ensure that the sum of users’ utilities is maximized. However, the users are assumed
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to be "price takers" (i.e., they do not anticipate the impact of their actions on the network).

In Semret et al. (2005), it has been shown that resource allocations such as those proposed in

Badia et al. (1997) suffer from an "efficiency loss" if the users exploit the fact that their actions

affect the network prices. In Semret et al. (2005), the auction mechanism was deployed for

resource allocation. The optimal auction strategies for the resource-buyers are derived and the

equilibrium is shown to exist. In Badia et al. (1997), pricing schemes are introduced which

could be deployed by a service provider to organize the network. However, the relationship

between the assigned resources and gained utility is not thoroughly studied.

In Jeffrey et al. (1994), authors proposed an approach that claimed to deliver economic effi-

ciency results. They presented a pricing model that achieves incentive-compatible state, where

for each served packet the winner bidder pays a clearing price defined by the highest not-

accepted bid (bids of dropped packets). Although this approach might motivate selfish bidders

to reveal their truthful information, but on the other hand, it could be classified as not budget-

balanced approach, in which, ISPs might provide incentives more than what they actually gain.

Authors in Kelly (1997b) proposed an approach that claimed to deliver an efficient pricing

model. Their pricing model was built based on a combination of measured and declared traffic

characteristics, accordingly an appropriate traffic model is assumed, and corresponding pricing

plan is indexed to encourage the bidders to truthfully reveal their information. Although this

approach might enhance the resource management process, provide higher profit rates, but it

does not address the problem of calculating the optimal prices that bidders have to pay accord-

ing to the market state. Therefore, we can conclude that this approach does not provide optimal

pricing solution.

In Lazar and Semret (1999), a different auction mechanism is proposed to be applied in both

additive and arbitrarily divisible resource models. In this work, the proposed model does not

consider the QoS as a parameter, where they only assume selling network resources (i.e. band-

width). This mechanism defines bidders as having an explicit pricing scheme of offered re-

sources, final selling prices are determined based on the Progressive Second Price (PSP) auc-

tion mechanism. Briefly, in PSP bidders submit their bids in terms of (required bandwidth and
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price), then based on the feedback received from the market, bidders reply to any rival bid

by manipulating their offers either by increasing the price for the same bandwidth amount or

keep the same price but asking for less bandwidth resources, this scenario keeps running until

higher offers raised. Consequently, each winner bidder gains the requested bandwidth amount

and pays the social opportunity cost (second best price). However, we see that such a mech-

anism might deliver non-fair allocations, as it could have more than one truthful-equilibrium

point.

The authors of Mohamed et al. (2011) have used mechanism design to motivate the selfish

nodes to cooperate and reveal truthfully their private information. Incentives are given to nodes

in the form of reputation where the reputation is calculated based on VCG. Nodes are granted

services according to their reputation thus all nodes are now motivated to cooperate and reveal

truthfully their information in order to increase their reputation value.

The authors in Dramitinos et al. (2007) proposed a mechanism that consists of simultaneous

Multi-unit Dutch Auctions (MIDAS) for auctioning bandwidth resources over a wide-bases

network, to users that will utilize the resources over the same period of time. Links’ price-

units are assumed to be asymmetric, reflecting the different demands over the various links. In

their work, authors proposed an efficient price reduction policy called the Price Freezing (PF)

policy, in which the model deals with the bandwidth pricing problem according to the dynamic

bandwidth allocation demands over the considered links or (paths). They assumed that bidders

are truth-telling; presenting a payment rule of the VCG type that complements their proposed

mechanism and enforces incentive-compatibility and thus truthful bidding. They also proved

that their mechanism provides a promising approach to a hard problem, where it requires a low

computational complexity and is scalable for large number of units and network users. Never

the less, their attained social welfare is close to optimal in general.

In all the above work, mechanism design was used as an incentive mechanism while in our

work we have used mechanism design as a threat mechanism. Thus, we are motivating the

players to reveal the truthful information under the threat of punishment while in the other
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work players are motivated by giving them some incentives. Our paper is an extension of

Quttoum et al. (2010a) where we presented the secure resource allocation without considering

customers’ collusion. One drawback of the model presented there is that customers could

collude with each others to get the resources for less price. Such a behavior can affect ISP

profit. This raises the needs for a collusion resistant model that can grant the ISP profit. In this

paper, we present such a model based on the MDP and shadow price concepts.

2.10 Conclusion

ASA is an interesting model that was proposed in order to have an autonomic resource utiliza-

tion scheme. However, this model has different limitations such as the non-optimal increase of

the ISPs’ revenue and the lack of an incentive scheme that can cope with customers’ exagger-

ation, especially in the case of multimedia networks. To optimally increase the ISPs’ revenue

and to avoid customers’ exaggeration, we proposed to utilize resources through the auction

scheme and to eliminate exaggeration behavior by the use of mechanism design. Here, we

modeled a threat mechanism based on VCG that penalizes customers according to the amount

of inconvenience created. Our example showed how exaggerated customers are charged high

transfer rates that affect negatively their revenue rates. We assumed that customers are rational,

therefore they will avoid such type of behavior but at the same time they are always motivated

to cheat if such a behavior can increase their benefits. Collusion is one of the tactics that VPN

operators can use to have the resources with less prices. This can maximizes customers’ pay-

off and reduces ISP revenue. To overcome such a problem, an optimal price threshold was

modeled based on the MDP and shadow price concept. The shadow price concept was used to

calculate the optimal cost-unit at every new state, where bids that are greater than the threshold

are considered during the auction game. Such a threshold is able to eliminate the effect of col-

lusion on ISP profit and the VCG model is able to eliminate the VPN operators’ exaggeration.

Our results showed that our model is able to increase ISPs’ revenue, satisfy more customers

and utilize efficiently the network resources.
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3.1 Abstract

In this paper, we consider the problem of optimizing the Internet Service Provider (ISP) profit

by providing a periodic Dynamic Partitioning (DP) model for utilizing network resources in

the context of Virtual Private Networks (VPN). In literature, Complete Sharing (CS), Complete

Partitioning (CP), and Bandwidth Borrowing (BR) techniques have been proposed for resource

allocation where the following limitations can be noticed: VPN operators can exaggerate about

their required resources, resources might be underutilized, and optimal bandwidth utilization

is not guaranteed. To overcome the above limitations, we propose to dynamically partition the

resources over different QoS classes through periodic auctions that can reduce the reasoning

of exaggeration and maximize the ISP profit. Thus, we formulate our problem based on the

Integer Linear Programming (ILP) that allows us to maximize the ISP profit and provides

the optimal: (1) set of profitable VPN connections, (2) bandwidth division of each network

link among QoS classes, and (3) routing scheme for the accepted demand. Furthermore, the

proposed ILP model allows us to study the sensitivity of the ISP profit to a targeted revenue

objective.
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3.2 Introduction

We are witnessing an unprecedented demand for Internet Service Providers (ISPs) to support a

wide variety of Virtual Private Networks (VPNs). These VPNs use the ISPs’ public infrastruc-

ture to establish secure and reliable services according to contracted Service Level Agreements

(SLA), Duffield et al. (1999a). Resource management is one of the main challenges facing

ISPs, where each VPN may have different requirements and required Quality of Service (QoS)

guarantees. The growing demands for such VPN services with certain QoS satisfaction con-

ditions necessitate the ISPs to efficiently utilize their bandwidth resources. Models to provide

an efficient and effective resource allocation schemes are extremely important. Relying on

the current management models that attempt direct interactions with the ISPs is not satisfying

anymore, as they have many limitations that can be summarized as follows: 1) These models

increase the management operation expenses. 2) They provide slow response times. Such lim-

itations can lead to high rates of users’ dissatisfaction. Consequently, the need is emerging to

find an alternative resource management models that overcome the current limitations. Com-

plete Sharing (CS), Lai et al. (1998); Mark et al. (2000), and Complete Partitioning (CP), Lai

et al. (1998); Haung and Ho (2002); Cheng et al. (2005), models are proposed in the literature

to cope with the above management problem by creating a framework for automated manage-

ment. In CS, network resources are shared over all classes without any division. While, in

CP, resources are statically divided among QoS classes where each class uses its own allocated

resources. Such approaches are able to automate the resources allocation, while at the same

time they create several problems that can be summarized as follows:

• in CS approach, resources are allocated in a First Ask First Allocate (FAFA) scheme,

where one QoS class can overwhelm all other classes in a way that reduces the ISP

profit;

• in CP approach, resources can be underutilized which reduces ISPs profits;

• due to the long-term SLA agreement, VPN operators might exaggerate about their re-

quired resources to guarantee their QoS and to cope with any unpredicted variations in
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the network state. Such a behavior can affect the ISP profit, and maximize the VPN

demands blocking rates. Indeed, when demand for the resources exceeds the capacity,

avoiding exaggeration allows to admit more VPN connections (using the same amount

of bandwidth resources), which can reduce the blocking rates while collecting the same

profits.

To overcome the problem of underutilization in CP, the Bandwidth Borrowing (BR) technique

has been proposed, Sup et al. (2005), Cheng et al. (2006a), to enable the ISPs to provide better

resource utilization that guarantees the QoS for all VPNs. According to the dynamicity of the

traffic, the BR technique allows the ISP to borrow the extra resources of the underloaded links

and reallocate them to the overloaded ones. While yet, as long as the CP attempts a static

partitioning scheme, BR cannot provide an optimal bandwidth utilization solution, where we

may have many underloaded links with no overloaded ones, in such a case how the BR would

work?

To overcome the above limitations, we propose deploying a periodic-dynamic resource parti-

tioning model (DP) for allocating the network bandwidth resources to VPN operators. In DP,

the dynamic class division process will take place in a periodic auction manner, where VPN

operators will be competing to win the resource allocations through their submitted prices and

connections’ demands. The network planning time is divided into a set of periods in order to

reduce the reasoning of exaggeration and to eliminate the needs for any borrowing technique.

The length of the re-optimization period depends on the provided service duration. Demands

with different service durations can be divided into groups, each with certain period length. At

each new period, the profitable VPN connections are selected through an auction mechanism

in order to maximize the ISP profit. Therefore, we develop and implement an Integer Linear

Program (ILP) solved using the ILOG CPLEX concert technology environment. The Proposed

ILP maximizes the ISP profit and comes-up with:

• the optimal set of the profitable VPN connections;

• the optimal bandwidth division of each network link among different QoS classes;



68

• the optimal routing scheme of the accepted VPN connections, with respect to their QoS

specifications.

Furthermore, the proposed ILP allows us to study the sensitivity of the ISP profit to a targeted

revenue objective represented by the Profit Percentage Parameter (PPP). Through PPP, we are

able to find the optimal tradeoff setting that maximizes the ISP profit while not breaking the

demands blocking constraint. Consequently, our contribution is a model that is able to:

• efficiently utilize the network bandwidth resources, where through the dynamic parti-

tioning we are able to consider the changes of traffic demands;

• increase the VPN operators’ satisfaction rates, since resources are utilized efficiently and

the allocation prices are market competing;

• minimize the SLAs violations as exaggeration motivations are reduced.

3.2.1 Paper Organization

The rest of the paper is organized as follows: Section 3.3 presents the problem statement.

Section 3.4 illustrates our dynamic resource partitioning model and the proposed selection al-

gorithm. Section 3.5 lists the proposed performance metrics, followed by the computational

results in Section 3.6. In Section 3.7, we present the related work. Finally, Section 3.8 con-

cludes the paper.

3.3 Problem Statement

The Complete Sharing (CS) approach proposes an autonomic management framework, where

the whole network resources are shared between all VPN operators, so each of them can use

any bandwidth available at any given moment. With no link bandwidth division, in the CS ap-

proach, all QoS classes can share the network resources without discrimination. Through this,

the model is supposed to ensure the delivery of services according to predefined SLAs. These

SLAs are constructed after negotiations between the ISP and the VPN operators. From the ISP
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prospective, giving the VPN operators such a privilege can provide better utilization of the net-

work resources, assuming that the VPN operators know well their changing requirements, and

accordingly they can acquire the required resources based on their actual needs. Naturally, as

long as the VPN operators behave according to their declarations, deploying such an approach

can increase bandwidth utilization due to the statistical multiplexing, which results in better

satisfaction rates and higher profits at the same time. However, in reality, VPNs can exceed

their declarations as long as there is no link bandwidth division, and one class may overwhelm

all other classes which creates several problems like SLAs violations, high blocking ratios, and

low profit rates.

In the Complete Partitioning (CP) approach, the scenario is somehow different. Here the re-

sources are partitioned among the provided service classes in a static way, based on a one-time

bandwidth partition for all network links. With such a static scheme, each class is allowed

to exclusively use its portion of the provided resources. This can solve the SLAs violation

problem, but it may lead to low bandwidth utilization as resources might be underutilized.

Exaggeration is considered as a common drawback of both CS and CP, where VPN operators

might exaggerate their requirements in order to cope with any sudden or unpredictable changes

in the network state and link conditions, so they tend to keep a spare amount of resources that

enables them to overcome and cope with such situations. This is due to the long-term SLA

that does not allow users to change their resource requirements according to their needs. Such

a problem can be solved either through a short term resource sharing model that reduces the

reasoning of exaggeration or through a penalization model that penalizes any exaggeration

behavior,

Quttoum et al. (2010a), and Quttoum et al. (2010b).

To overcome the problem of resource underutilization, the Bandwidth Borrowing (BR) tech-

nique has been proposed, Cheng et al. (2006a). The BR attempts the idea of borrowing the

resources from the underloaded links and allocating them to the overloaded ones. Accordingly,

the BR scheme can provide better utilization of the network bandwidth resources, and better
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SLAs guarantees. However, resources are utilized in a non-optimal way that can reduce ISP

profit. Also, such behavior can entail a high management load to cope up with the changes of

traffic load and utilize the unused resources in realtime state.

3.4 Dynamic Resource Partitioning Approach

In this section, we present our Dynamic Partitioning (DP) approach that improves the CS and

CP techniques, and overcomes their limitations by virtually partitioning the network bandwidth

resources in an efficient way based on periodic auctions, where resources are allocated to the

best bidders providing profit maximization. In this context, we propose a resource management

approach based on short-term SLAs that takes into account the desired ISP objectives over the

time. To achieve this, VPN operators are asked to reveal their connection demands in terms of:

source-destination nodes, required QoS classes, and their offered prices (bids). Accordingly,

Algorithm 3.1 is deployed to provide an optimal allocation mechanism in the DP model.

3.4.1 DP Approach

3.4.1.1 The DP Algorithm

In our DP approach, resources are allocated based on dynamic auctions that are held in a

periodic manner, with the aim of selecting the best set of VPN operators from a competing

environment. VPN operators’ requests are represented in terms of connection demands. The

term connection here is defined as a secure network tunnel that is layered on top of a public

network, such tunnel has some QoS parameters (i.e. bandwidth capacity, maximum number of

hops), and it is used to send data from a source node sk to another destination node dk. The

process of selecting the winning set of VPN connections for resource allocations deploy an

optimal selection procedure presented in Algorithm 3.1. In which, at each auction period t,

the ISP broker firstly collects the new connection demands received in the period of (t − 1, t]

and form a new demand matrix, then from each demand matrix it chooses the most profitable

set of connections to accept. To do so, using the Linear Programming Theory we developed

an Integer Linear Program (ILP) to formulate the bandwidth allocation problem. By solving
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this ILP, we are showing how it can choose the optimal set of bidding VPN operators, and pro-

vide the optimal bandwidth utilization rates. The ILP checks the offered bids of the competing

VPN operators if it is larger than or equal certain selling-price thresholds, where such thresh-

olds depend on the ISP broker profit objectives, the corresponding QoS classes, and demand

blocking constraints. Demand blocking is mainly related to the number of offered bids, and

the bandwidth availability over the assigned candidate paths.

Algorithm 3.1 DP Selection Algorithm

Selecting the Winning VPN operators in DP

1: Input: At each auction round t, the ISP broker do;

2: Collect the VPN operators connection demands K
(pk, QoSk,sk,dk) received through time (t −1, t];

3: Formulate the problem as an ILP;

4: Solve the ILP, and find the optimal set of VPN

connections;

5: Output: the VPN connections that won the resource

allocations and the profit collected from these

connections;

To overcome the problem of exaggeration, we propose performing a dynamic partitions of

resources over different QoS classes through short periods of time comparing with that of the

static scenarios. This can reduce the motivations of exaggeration actions, where bidding VPN

operators will not be motivated anymore to ask for more resources, as they do not have to care

about their future connections or the sudden changes in the network state, at least at this stage,

since current allocations are only valid for a short period of time, comparatively.
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3.4.1.2 Mathematical Modeling

We modelize the DP appraoch as an ILP model. Through this model, we study the case where

we assume having a number of VPN operators N competing for bandwidth allocations over a

network that is managed through an ISP broker. Bandwidth allocation requests are modeled

through connection demands K, where each VPN operator i, i ∈ N, has a set of connection

demands k belonging to a set of service classes J. Logically, VPN operators are assumed to

be rational, and thus their aim is to have their connection demands admitted with the lowest

possible prices, and at the same time acquire satisfactory QoS levels. On the other side, the

ISP broker aims to utilize its network bandwidth resources better, and maximize its profit by

accepting the maximum number of VPN operators while providing them with satisfactory QoS

levels by competing prices. Accordingly; the ISP broker profit PB function can be expressed

as:

PB = max

( |K|
∑
k=1

pk − ∑
k∈K

ck

)
(3.1)

where the PB equals the sum of bids pk collected from connection demands being admitted

for allocation, reduced by the total cost of the bandwidth resources required to satisfy each

connection demand ck. Accordingly, to maximize the PB, the ISP broker has to choose the

best set of VPN operators’ connections that maximizes the first term of the function, and also,

deploy an efficient bandwidth utilization scheme in order to minimize the second term.

Choosing the best set of VPN operators’ connections is typically done in accordance to their

offered bids, where higher bids increases the chance for their corresponding demands to be

accepted. To create a form of competition between the bidding VPN operators, we assume

that the amount of bandwidth resources required to satisfy the received connection demands

exceeds the available network capacity. Connection demands are also classified into set of dif-

ferent QoS classes summarized in Table 3.2, where for each auction period t, the model receives

a different set of connection demands’ patterns reflecting the diversity of the required services
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at the different auction periods. Periods can vary between day and night times, weekdays, and

weekends.

Table 3.2 QoS Classes’ Map

QoS Connections Quality of Bandwidth per Max.

Class Service Connection of Hops

5 Golden Load (<100ms Latency) 5Mbps 2 Hops

4 Excellent Load (Business Critical) 4Mbps 3 Hops

3 Controlled Load (Streaming Video) 3Mbps 4 Hops

2 Standard (IP Packet Delivery) 2Mbps 5 Hops

1 Best Effort 1Mbps 6 Hops

Model Parameters:

The ISP network is basically defined as a set of nodes V , connected by a set of bidirectional

links L, where each physical link offers certain bandwidth capacity bl . The requests of the VPN

operators N form the shape of the demands matrix K, where K represents all the connection

demands submitted by the bidding VPN operators, each demand consists of a VPN operator ID

i, connection source node sk, destination node dk, and a class of service j, j ∈ J. Henceforth,

a connection demand k of class j, consumes a bandwidth amount of b j. Dividing the links’

bandwidth capacities among the set of connection demands K and their corresponding service

classes J highly depends on the period’s traffic pattern. β l
j denotes the percentage of bandwidth

capacity allocated to a connection of class j over the network link l, where β l
j ≤ bl .

Model Variables:

To facilitate the process of measuring the ISP broker utility presented in Equation 3.1, we refer

to the admitted/rejected connections using the variable zk, where:
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zk =

⎧⎪⎨
⎪⎩

1 if connection demand k is admitted

0 otherwise

(3.2)

and we also refer to the selected path that holds the considered connection using the variable

xπ
k , where:

xπ
k =

⎧⎪⎨
⎪⎩

1 if connection demand k uses path π

0 otherwise

(3.3)

Objective Function:

According to the parameters and variables defined above, the objective function of Equation

3.1 can be reformulated as:

PB = ∑
k∈K

(
pkzk − ∑

π∈πk

xπ
k ∑

l∈π
cl

k

)
(3.4)

Model Constraints:

For this objective function presented in Equation 3.4, we have the following constraints:

• Link Capacity: For each link l, the available bandwidth for the admitted connection

demands k of class j cannot exceed the total link capacity reserved for this class.

∑
k∈Kj

∑
π∈πk

ηπ
l xπ

k b j ≤ β l
jbl ; l ∈ L, j ∈ J (3.5)
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where the variable ηπ
l refers to:

ηπ
l =

⎧⎪⎨
⎪⎩

1 if path π uses link l

0 otherwise

(3.6)

and Kj refers to the set connections belonging to QoS class j .

• Link bandwidth Division among QoS classes: The summation of the defined class divi-

sions over the network links must not exceed the total link capacity.

∑
j∈J

β l
j = 1 ; β l

j ∈ [0,1], l ∈ L (3.7)

• Minimum Selling-Price Threshold: To be considered as a competing connection demand

for the allocation process, the minimum offered bid pk for a connection demand k of QoS

class j must at least be higher than or equal to a certain threshold. The calculation of this

threshold is derived in subsection 3.4.1.4.

pk ≥ ∑
π∈πk

xπ
k ∑

l∈π
pl

th, j ;k ∈ Kj, j ∈ J (3.8)

• Routing Path Assignment: Only one routing path can be assigned to carry each connec-

tion.

∑
π∈πk

xπ
k ≤ 1 ; xπ

k ∈ {0,1}, k ∈ K (3.9)

• Linking decision variables: Finding a path for the connection demand does not guarantee

final acceptance.

zk ≤ ∑
π∈πk

xπ
k ; zk ∈ {0,1}, k ∈ K (3.10)
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• Routing Path Length: The length of the assigned path lπ for a connection demand k of

QoS class j cannot exceed Hj hops, one hop represents one physical link.

lπ ≤ Hj ; π ∈ πk, j ∈ J (3.11)

ILP Complexity:

However, it is worth to find the computational complexity of the model. This can be measured

through the number of model variables and constraints, as follows:

• Number of variables:

| K |+ | K | × | πK |+ | L | × | J |

which can be simplified as:

| K | × | πK |+ | L | × | J |

• Number of constraints:

| L | × | J |+3 | K |+ | K | × | πK |

which can be simplified as:

| L | × | J |+ | K | × | πK |

From this, we can conclude that the number of variables equals the number of constraints,

which is in the order of O(n2). Moreover, to deal with the complexity issues, if exist, in

such a problem we can use the technology of Cloud Computing that is considered as an

efficient solution to deal with high combinatorial problems.
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3.4.1.3 Link Bandwidth Division Scheme

To assign the VPN operators’ demands to the most profitable paths, the ILP do the following:

• in accordance to the offered bid rates and the network links capacities, it generates a

class division map that shows the percentages of bandwidth capacities reserved for each

QoS class over the network links;

• based on this map, the model assigns different candidate paths, Epstein (1994), to carry

each source-destination connection demand;

• in one-shot scheme, the model chooses the most profitable combinations of the VPN

operators’ demands to be carried over the network links, and consequently assign them

to their routing paths.

To create a form of competition, the assigned candidate paths might be shared between various

connection demands having the same source-destination nodes, where the sum of bandwidth

amounts over these candidate paths is less than or equal to that required to satisfy the whole

connections with the same source-destination couples.

The link bandwidth division among QoS classes scheme mainly depends on the demands’

diversity, where such diversity reflects the different VPN operators requirements from time to

time. Differences may appear between the day times (i.e. mornings, afternoons, evenings,

and nights), weekdays (i.e. workings days, and weekends), or even it might be affected by the

different time-zones. Consequently, for each period of time we assume having the following

demand matrix partition:

• γ1% connection demands of QoS 1;

• γ2% connection demands of QoS 2;

• γ3% connection demands of QoS 3;

• γ4% connection demands of QoS 4;

• γ5% connection demands of QoS 5.
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3.4.1.4 Profit Percentage Parameter

For each VPN connection k belonging to QoS class j, we calculate the set of candidate paths

πk. Then, if at least one path π , π ∈ πk, uses the link l, then we add the VPN connection k to

the set of candidate VPN connections that use the class of service j over link l. We denote by

Kl the set of candidate VPN connections to use the link l:

Kl = ∑
j∈J

K j
l (3.12)

where K j
l is the set of VPN connections belonging to QoS class j, candidates to use the link l.

Accordingly, for each link l, we can define ratio β l
j of bandwidth allocated to the use of class j

VPN connections by:

β l
j =

b j|K j
l |

bl
(3.13)

Having the allocation percentage β l
j and the original cost-unit cl of link l, we can define thresh-

old pl
thr, j as:

pl
th, j = b jcl +b jcl(aβ l

j) (3.14)

where cl is the bandwidth original cost-unit over the link l, and the parameter a refers to the

profit percentage parameter (PPP). This PPP reflects a tradeoff relationship between the ISP

broker profit objective and the demand blocking ratios. Consequently, as long as the demand

blocking ratio BK is less than the blocking constraint Bc
K , BK < Bc

K , optimal ISP broker profit

can be achieved by assigning higher a values. Additionally we assumed in equation (3.14) that

the profit is proportional to percentage β l
j . That means that the value of the threshold is larger

for the QoS classes that use more bandwidth. The motivation behind this scheme is as follows:
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• it reduces the likelihood of exaggeration. Indeed, with such a scheme, the VPN users will

be motivated to use the lowest amount of bandwidth resources that satisfy their needs,

especially is the QoS class that use a lot of resources;

• it limits situations where one QoS class overwhelms the others. This provides a kind of

fairness between the classes.

Obviously, in general, one can substitute β l
j in (3.14) by another function of system parameters

(being one in the simplest case) to realize particular objectives of given ISP.

Results in Subsection 3.6.2 show the tradeoff relationship between both blocking ratios and ISP

broker profits for different values of the PPP a. Accordingly, Equation 3.4 can be reformulated

as:

PB = ∑
j∈J

∑
k∈Kj

(
pkzk − ∑

π∈πk

xπ
k ∑

l∈π
pl

th, j

)
(3.15)

where bids accepted for the competition must be larger than or equal the candidate path mini-

mum price threshold.

3.4.2 Benchmark Models

In DP, the dynamic class division process will take place in a periodic auction manner, where

VPN operators will be competing to win the resource allocations through their submitted prices

and connections’ demands. The network planning time is divided into a set of periods in order

to reduce the reasoning of exaggeration and to eliminate the needs for any borrowing technique.

Thus, there is no need for such a BR technique since there is no underloaded links as result of

exaggeration. To evaluate our model, we selected to adapt the CS Cheng et al. (2006a) and CP

Lai et al. (1998) models to run periodically.
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3.4.2.1 CS Model

In this technique, in addition to the poor QoS guarantees, the VPN connections selection is non-

efficient since the process of allocating the network bandwidth resources is done according to

a First Ask First Allocate (FAFA) scenario. Accordingly, new VPN operators can guarantee

the resources for their connection demands as long as: 1) Their offered bids p are larger than

or equal certain selling cost thresholds. 2) At their arrival time, there exist enough bandwidth

resources to hold their connection demands over the considered paths. Algorithm 3.3 illustrates

the allocation mechanism in the CS model.

Algorithm 3.3 CS Selection Algorithm

Selecting the Winning VPN connections in CS

1: Input: VPN operator submit its connection demand

k → ISP broker where, for each k
we have (pk, QoSk,sk,dk) , QoSk=(bk, Hk);

2: Sort the connection demands k according to their arrival
sequence;

3: for each demand k, do;

3.1: Find the set of candidate paths πk to hold its

connection where each π ∈ πk, uses less than Hk
hops (i.e., links);

3.2: For each π , π ∈ πk check if:

∀l ∈ π , bk ≤ bl(residuel) ;

pk ≥ ∑l∈π pl
th,QoSk

;

3.3: If πk �=∅, then :

3.4: Choose one random path π to hold the connection k ;

3.5: else, reject;

4: Output: the set of VPN connections that won the resource

allocations and the ISP profit collected from these

these connections;
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In the first step, for each connection demand k, the corresponding VPN operator is asked to

submit its offered bid pk, required QoSk commitments, i.e., bandwidth bk and maximum num-

ber of hops Hk, and source-destination nodes (sk,dk) to an ISP broker in order to consider its

requests. In step two, the ISP broker sorts the connection demands according to their arrival

sequence. In step three, for each connection demand k, the ISP broker finds the set of candi-

date paths πk to hold the connection (shortest paths), checks their bandwidth availability and

the corresponding offered bid price. Next, the ISP broker verifies that there exists at least one

candidate path to hold the connection. Once the bandwidth availability and the bid price con-

ditions are satisfied, the broker choose randomly, Cheng et al. (2006a), one path from the set

πk and assign it to hold the connection of the corresponding VPN operator. Last, in step four,

the ISP broker calculates the profit collected from the admitted VPN connections according to

their offered bid prices.

Consequently, in CS, the ISPs broker profit function PB can be represented by:

PB =
kmax

∑
k=1

(pk −∑
π

∑
l∈π

cl
π) (3.16)

where it equals the sum of bids collected from the accepted VPN operators’ connection de-

mands k, (k = 1,2, , ....,kmax), given that kmax is the index of the last admitted demand (sorted

in a FAFA order) that can fit within the available network bandwidth resources, reduced by the

cost of resources cl
π used on the assigned routing paths. Also each of the accepted bids has to

fulfil the following requirements: 1) The chosen path to hold the VPN operator connection k

must at least meet the QoSk commitments, in terms of the allocated bandwidth bk and the max-

imum number of hops Hk. 2) Total bandwidth amounts allocated to the accepted connections

cannot exceed the sum of physical bandwidth capacities of the network links. 3) Accepted bids

must at least be larger than or equal certain selling-price threshold, associated with the required

QoSk class at the chosen path π to hold the connection.
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3.4.2.2 CP Model

The process of selecting the winning set of VPN connections for resource allocations follows

the selection scheme presented in Algorithm 3.3 except we add the following modifications.

As aforementioned previously, the link bandwidth division among QoS classes is done at the

beginning of the network planning (period 0) based on the shortest path algorithm, and the

traffic pattern statistics. In other words, we fix the variables β l
j to the resulting value calculated

at period 0. The resulting link partitioning among QoS classes is used for the rest of planning

periods.

3.5 Performance Metrics

As mentioned in the previous section we propose to use CS and CP as benchmark models to

evaluate the performance of the DP approach. For each model we are measuring the following

metrics:

3.5.1 ISP Broker’s Profit

The ISP broker’s profit, Equation 3.4, is measured based on the bids collected from the admitted

connection demands, reduced by the cost-unit of the carrier network links. The bids and the

cost-units are expressed in terms of $X , which represents the price of 1Mb of bandwidth. This

metric represents the profits collected from the whole bandwidth resources allocated over the

network links.

3.5.2 ISP Broker’s Profit-Unit

The profit-unit value represents the gains collected per 1Mb of bandwidth, which is measured

as the ratio between the ISP borker profit, calculated in Equation 3.4, and the amount of band-

width over the whole network links, as:
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Pu
B =

PB

∑
l∈L

bl
(3.17)

3.5.3 Demands’ Blocking Ratio

Demands’ blocking ratio represents the VPN operators’ satisfaction rates, where it is measured

as the ratio between the number of admitted connection demands to the number of the whole

demands participated in the allocation auction, as

BK =

∑
k∈K

zk

|K| (3.18)

3.5.4 Bandwidth Utilization

Bandwidth Utilization is measured as the ratio between the used and the total bandwidth

amounts, as:

Ub =

∑
j∈J

∑
k∈Kj

b jzk

∑
l∈L

bl
(3.19)

3.5.5 Routing Scheme Efficiency

To evaluate the routing scheme efficiency of the above mentioned scenarios, we proposed mea-

suring the following parameters:

3.5.5.1 End-to-End Delay

The average end-to-end delay per admitted connection demand is measured through the av-

erage number of hops used to form a routing path, which is given by the ratio between the

number of hops counted in composing the whole routing scheme to the number of admitted
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demands. Only routing paths of the admitted connection demands are counted. This can be

formulated as:

H =

∑
k∈K

∑
π∈πk

xπ
k lπ

∑
k∈K

zk
(3.20)

3.5.5.2 Number of Used Network Links

In this we measured the number of links used to form the whole routing scheme in the assigned

period of time.

3.6 Computational Results

To assess the efficiency of this work, in this section, we illustrate an example of a network

that consists of 10 nodes, connected by 40 bidirectional links, for which we assume that each

link holds a 25Mb of bandwidth resources. For this network we assume receiving 100 VPN

operators’ connection demands per period of time, and the network planning time is divided

into 12 periods per week in a way that shows the main periods of a 24−hour day, Thompson

et al. (1997), representing a new allocation auction every 6 hours. However, the length of the

re-optimization period depends on the provided service duration.

Demands with different sevice durations can be divided into groups, each with certain period

length. In this work, we assume that the ISP broker is selling certain service packages that

stands for 6 hours of time, where there is no dependency between any two consecutive periods

and each period starts by a new auction. Such service packages can vary between a VoIP call,

chat session, an IPTV connection, an on-line game, video streaming or even a movie show.

Table 3.4 below shows the periods’ division map. Through this network, we will study the

behavior of the above mentioned three scenarios (DP, CP, and the CS FAFA).
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Table 3.4 Periods’ Division Map

Period Index Corresponding Time Period

1 Monday to Friday: Morning

2 Monday to Friday: Afternoon

3 Monday to Friday: Evening

4 Monday to Friday: Night

5 Saturday: Morning

6 Saturday: Afternoon

7 Saturday: Evening

8 Saturday: Night

9 Sunday: Morning

10 Sunday: Afternoon

11 Sunday: Evening

12 Sunday: Night

3.6.1 Numerical Results

In the studied scenarios, different bandwidth division schemes are followed. As mentioned

before, the CS model follows a FAFA allocation scheme, where there is no link bandwidth

division among QoS classes at all. In CP, the model uses a static bandwidth division scheme.

At period 0, the ISP broker attempts a heuristic link partitioning based on the shortest path

algorithm and the traffic pattern statistics. The resulting divion of link bandwidth among QoS

classes is used for the rest of planning periods. On the contrary, in DP approach a dynamic

link bandwidth division process is performed at each period, and it is handled by the ILP in

the Optimal manner. The provided QoS classes, their reserved bandwidth amounts, and their

corresponding profits at three different periods are presented in Tables 3.5, 3.6, and 3.7. To

improve the readability of the results, the resulting profit-units of both CP and DP are also

given. Through the presented tables, we are showing the effect of the different link bandwidth

division schemes used by the three studied scenarios. At each case, we compare the resulting

total profits and the corresponding profit-units.

For better comparison and to show how our model can deal with different traffic patterns, in

each table, we present the results of the afternoon period at the Working weekdays, Saturdays,
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Table 3.5 Bandwidth Class Division, Bandwidth Amounts Allocated and corresponding

Total and Per-Unit Profits in three scenarios

(Scenario A: Complete Sharing, B: Complete Partitioning, C: Dynamic Partitioning)

(Profit Percentage Parameter a = 1.3, Period = 2)

QoS CS: Complete Sharing CP: Complete Partitioning DP: Dynamic Partitioning Profit Profit
Class Bandwidth amount Total Bandwidth amount Total Bandwidth amount Total unit unit

Allocated Profit in ($X) Allocated Profit in ($X) Allocated Profit in ($X) in CP in DP
1 No Division 157 252 248 251 248 0.98 0.98
2 No Division 260 231 351 228 481 1.51 2.10
3 No Division 391 321 661 262 850 2.05 3.24
4 No Division 98 48 119 25 163 2.47 6.52
5 No Division 267 117 213 226 570 1.82 2.52

and Sundays. Table 3.5 shows the results of period 2 (Monday to Friday Afternoons). By

aggregating the resulting total profits of the different scenarios, and assuming $X = $1 we

collect: $1173 from the CS FAFA, $1592 from the CP, and $2312 from the DP. Results reflect

the impact of the deployed link bandwidth division scheme on the final profits, where the CS

FAFA provides the worst rates, followed by the CP providing an increase of 35%. DP provides

the best results, showing an increase of 97% and 45% to that provided by the CS FAFA and the

CP, respectively.

Table 3.6 Bandwidth Class Division, Bandwidth Amounts Allocated and corresponding

Total and Per-Unit Profits in three scenarios

(Scenario A: Complete Sharing, B: Complete Partitioning, C: Dynamic Partitioning)

(Profit Percentage Parameter a = 1.3, Period = 6)

QoS CS: Complete Sharing CP: Complete Partitioning DP: Dynamic Partitioning Profit Profit
Class Bandwidth amount Total Bandwidth amount Total Bandwidth amount Total unit unit

Allocated Profit in ($X) Allocated Profit in ($X) Allocated Profit in ($X) in CP in DP
1 No Division 86 105 125 110 134 1.19 1.21
2 No Division 80 127 138 130 211 1.08 1.62
3 No Division 388 456 935 320 1088 2.05 3.40
4 No Division 224 63 112 98 204 1.77 2.08
5 No Division 752 221 558 336 1244 2.52 3.70

The same conclusions can be drawn from Tables 3.6 and 3.7 where at the period 6 (Saturday

Afternoon) results in Table 3.6 show a $1530 collected from the CS FAFA, $1868 from the CP,
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and $2881 from the DP by an increase of 88% and 54% to both CS FAFA and the CP, respec-

tively. However, in some cases we see that the CS FAFA may provide higher instant profits

like that for QoS classes 4 and 5 in Table 3.6. This results from the random allocation of the

resources which might be profitable in some cases. Though, what concerns the ISP is the final

profit rates, and experiments show that the resulting total profits of the CS FAFA are always

much lower than that provided by the DP schemes. Records of Table 3.7 are also showing that

the DP scheme delivers the highest profit rates, providing an increase of 95% and 30% to both

CS FAFA and the CP schemes, respectively.

Table 3.7 Bandwidth Class Division, Bandwidth Amounts Allocated and corresponding

Total and Per-Unit Profits in three scenarios

(Scenario A: Complete Sharing, B: Complete Partitioning, C: Dynamic

Partitioning)(Profit Percentage Parameter a = 1.3, Period = 10)

QoS CS: Complete Sharing CP: Complete Partitioning DP: Dynamic Partitioning Profit Profit
Class Bandwidth amount Total Bandwidth amount Total Bandwidth amount Total unit unit

Allocated Profit in ($X) Allocated Profit in ($X) Allocated Profit in ($X) in CP in DP
1 No Division 86 105 125 117 134 1.19 1.14
2 No Division 89 110 133 115 184 1.20 1.60
3 No Division 383 491 1002 420 1209 2.04 2.87
4 No Division 692 219 680 280 975 3.10 3.48
5 No Division 122 52 121 50 180 2.32 3.60

Comparing the three different scenarios shows that the DP scheme always provide the best

results in terms of efficient bandwidth division and final profit rates, followed by the CP and

lastly the CS FAFA scheme. It is worth to mention that the DP scheme also provides the lowest

demand blocking ratio, while it is much bigger for the CS FAFA scheme.

3.6.2 Performance Results

Through this subsection, using the CPLEX optimizer, we studied the behaviour of our proposed

DP model compared to both CS and CP in terms of: 1) Bandwidth efficiency. 2) ISP broker

total profits. 3) Demand blocking ratios. 4) ISP broker profit-unit, and 5) Routing efficiency in

terms of average end-to-end delay, and number of used links. Moreover, we are also presenting
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some results that show the tradeoff relation between the PPP a, and some other parameters like

ISP broker profits and demand blocking ratios. In DP, we are expecting to deliver an efficient

resource utilization model that provides higher ISP profits and lower blocking ratios. In addi-

tion, we are expecting that our DP model can provide an efficient routing scheme. Comparing

with the CS FAFA, our model can also deliver a wider room for the tradeoff relation between

the demand blocking ratios, and the resulting ISP broker profits. Based on the above assump-

tions, we derive the following analysis:

�

Figure 3.1 Bandwidth Utilization Ub

Figure 3.1 shows the percentage of bandwidth utilization (usage patterns) to the allocation time

periods. In this figure, the DP scheme provides an average utilization of 75% of the networks’

bandwidth resources through the periods 1 to 12. The CS FAFA used an average of 45%, while

it is around the average of 40% for the CP case. Figure 3.2 shows the demand blocking ratios

to the allocation time periods. Similarly, the DP provided the lowest blocking ratios, followed

by the CP providing an average scheme comparing with the CS FAFA that shows the highest

blocking ratios. In this figure, we are showing the demand blocking ratio constraint Bc
K , which

we assumed to be 15% on average.
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�

Figure 3.2 Demands’ Blocking Ratio BK

�

Figure 3.3 ISP Broker Total Profit PB
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Figure 3.3 shows the resulting ISP broker total profits to the allocation time periods. In this

figure, it is shown that the DP provides the highest profits, followed by the CP and lastly the CS

FAFA providing the lowest rates. Figure 3.4 shows the resulting ISP broker profit-units with

respect to the allocation time periods. Clearly, we can remark that the highest profit-units are

always provided by the DP scheme, giving an average of $4.5 profit-unit compared with $2.5

and $1.5 provided by the CP and the CS FAFA, respectively. Accordingly, the DP provides an

average of 3 times to what the CS FAFA provides.

�

Figure 3.4 ISP Broker Profit-Unit Pu
B

Analyzing the previous figures, we can clearly notice the following: 1) The DP scheme used the

largest amount of bandwidth resources, and at the same time, provided the highest profits and

the best satisfaction rates represented by the lowest blocking ratios. 2) The CP scheme used the

lowest amount of resources, but on the contrary, it provided higher profits and better satisfaction

rates compared to that provided by the CS FAFA. 3) The CS FAFA scheme used more resources

compared to that used by the CP, but still, it provided the lowest profits along with the highest

blocking ratios. Consequently, we can conclude that the conducted experiments showed that
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the DP provides the best utilization rates of bandwidth resources. Figures 3.5, and 3.6 show

results of the routing efficiency of the different partitioning schemes. In Figure 3.5, results

represent the average number of hops per path used to route the admitted connection demands

at the different time periods from 1 to 12, in which we can notice that the DP used the lowest

average number of hops, which reflects the routing scheme efficiency. Figure 3.6 gives the

number of links used to construct the routing paths for the admitted connection demands at

each period. The conducted results show that the DP used the minimum number of network

links, despite the fact that it served around 55% more connections compared with that served

by the CS FAFA, and 30% more to what the CP served. Additionally, we can also state that

experiments showed that the DP provides the most efficient routing scheme.

�

Figure 3.5 Average Number of Used Hops
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�

Figure 3.6 Number of Used Links

Figures 3.7.a, 3.7.b, and 3.7.c present the relationship between the Profit Percentage Parameter

(PPP) a, Equation (3.14), and the corresponding ISP broker total profit, ISP broker profit-

unit, and the demand blocking ratios, respectively. Hence, we studied the effect of different

values of a (a = 0.1,0.3,0.5,0.7,1.0,1.3,1.5), and presented the results in terms of the three

partitioning scenarios. As expected, results show that the DP provided the best outcomes in

terms of both profits and blocking ratios. On the contrary, the CS FAFA provided the worst

outcomes which reflects the weakness of the deployed resource allocation scheme. However,

in the three figures, we can clearly notice a direct relationship between the PPP a and the

studied performance metrics, where as the value of parameter a increases, both profits and

blocking ratio increase. Accordingly, based on the demand blocking ratio constraint Bc
K or the

ISP broker profit objective we can find the optimal PPP a.
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�

(a) ISP Broker Profit vs. PPP a

�

(b) ISP Broker Profit-Unit vs. PPP a

�

(c) Blocking Ratio vs. PPP a

Figure 3.7 Relationship with the PPP
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To do so, for the given different values of a, in Figure 3.8, we present the tradeoff relationship

between the ISP broker profit and the demand blocking ratios. Consequently, for a PPP of

(a = 1.3) we have the following: 1) With the DP, results in Figure 3.8.a show a $2500 of total

profit, and a 15% of demand blocking ratio. 2) With the CP, results in Figure 3.8.b show a

$1750 of total profit, and a 35% of demand blocking ratio. 3) With the CS FAFA, results in

Figure 3.8.c show a $1250 of total profit, and a 43% of demand blocking ratio.

3.7 Related Work

The CS model has been proposed in prior research to resolve the issue of autonomic resource

management, by enabling the network users to self-manage, self-control, self-heal, and self-

protect their network resources Lai et al. (1998); Mark et al. (2000). In their work, authors

claimed that CS can provide a solution to the challenging management loads at the ISPs side,

and deliver a satisfying resource utilization rates. Although it provides good utilization rates,

but on the contrary it proved that it can lead to SLA violations. In Lai et al. (1998), the authors

presented a comparison between both CS and CP models, where they show that the CP model

can provide better QoS satisfaction rates, but on the other hand it provides less utilization.

Same in Haung and Ho (2002); Cheng et al. (2005), authors proved that the CP model can

provide higher QoS compliance rates compared to that of the CS model.

To overcome the resource utilization problem of the CP, authors in Borst and D.Mitra (1998),

Blake et al. (1998), and Bouillte et al. (2002) proposed a hybrid approach that takes the advan-

tages and overcomes the problems of both CS and CP models. Such hybrid approach is known

by the Virtual Partitioning (VP) approach. Depending on the actual network traffic load, VP

behaves either as CS or CP. Accordingly, it behaves as a CS at the light traffic case, while it

is a CP at the extreme one Cheng et al. (2006b). The VP allows a heuristic resource sharing

between the underloaded and the overloaded links in order to provide better resource utiliza-

tion rates. Moreover, in the wireless networks domain, other authors proposed using the same

hybrid VP approach. Where in Yao et al. (2004), an approximate analytical formulation of the

VP is proposed to handle multiclass services with grand channel in a cellular system. In this
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work, the authors investigated a resource allocation model with preemptions for the provided

service classes, to do so, they proposed using a balancing scheme that combines the open shar-

ing and the static allocation properties of the CS and CP models, respectively. Accordingly, in

heavy-load situations, resources are allocated the same way in CP, but underutilized resources

are borrowed from the underloaded classes to the overloaded ones. While in the light-loaded

situations, overloaded classes can use the nominal resources of all other classes. Similarly, in

El-Kadi et al. (2002), Malla et al. (2003) the authors proposed a fair resource allocation proto-

col for multimedia wireless networks, which uses a combination of bandwidth reservation and

bandwidth sharing models to provide higher utilization rates and QoS guarantees.

Such a hybrid approach sounds good, but the problem here is that the lender links (origi-

nally under-loaded) have no guarantees that they can return their resources back when they are

needed. This encourages malicious over-loading. What is more, the resource sharing scheme

in VP attempts a static design, in which, a pre-defined static configurations for the resource

sharing process is applied at all possible traffic load conditions.

To solve this, the Bandwidth Borrowing (BR) technique is proposed to automate the resource

sharing process Sup et al. (2005), and provide a solution for the static load-configurations at-

tempted by the VP approach Farha and Leon-Garcia (2006), Cheng et al. (2006a). Accordingly,

the BR technique may partially solve the bandwidth utilization problem of the CP. While yet, as

long as the CP attempts a static partitioning scheme, BR cannot provide an optimal bandwidth

utilization solution, where we may have many underloaded links with no overloaded ones, in

such a case how the BR would work?

However, none of the above mentioned work addresses the problem of exaggeration. In fact,

especially in such autonomic allocation environments, addressing the problem of exaggeration

is a necessity. In our work, we are allocating the bandwidth resources based on a dynamic

auction mechanism. To win the auction, auctioneers (VPN operators) should avoid any extra

payments in order to submit a competing bid. This can be considered as the first motivation

to prevent exaggeration. Secondly, deploying such periodic dynamic allocations will motivate
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the VPN operators not to exaggerate, since current allocations are valid for short times only,

and so, there is no need to care about the future network changes.

It is worth to mention that in our previous works Quttoum et al. (2010a), Quttoum et al.

(2010b), we proposed an efficient model that reduces the tendency of exaggeration, where

we developed a threat model based on the Vickrey-Clarke-Groves (VCG) mechanism Nisan

and Ronen (2007). Accordingly, exaggeration actions are reduced by charging the exaggerat-

ing users according to the inconvenience they cause to the whole system. However, the work

targeted the case of autonomic resource allocation over a single network link for specific con-

nection periods. In this work, we are dealing with the exaggeration problem in a different way,

while we are targeting a full network case with multi-links and paths.

3.8 Conclusion

Based on the Linear Programming theory, we optimized the ISP profit by providing a periodic

Dynamic Partitioning (DP) model for utilizing network resources. The resources are dynam-

ically partitioned over different QoS classes through a periodic auction which can reduce the

reasoning of exaggeration and maximize the ISP profit by finding the optimal set of profitable

VPN connections. Such a model will eliminate the need for any borrowing technique. The

advantage of our model lies in its ability of finding the optimal bandwidth division of each

network link among QoS classes, and the optimal routing scheme that can guarantee the QoS

commitments for the accepted VPN connections. Numerical results were conducted based on

CPLEX environment where it showed that the DP model performed better than the other mod-

els. On average, the ISP profit is increased by 57%, the VPN connections blocking ratio is

reduced by 64%, and network resources utilization is increased by 72%. Finally, we showed

that through the proposed ILP model and the profit percentage parameter, we were able to

quantify and study the tradeoff between maximizing the ISP profit and minimizing the VPN

connections blocking ratio.
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4.1 Abstract

In this work, we study the issue of bandwidth management and profit maximization in a virtual

network that is managed by a Virtual Network Operator (VNO). This VNO controls a set of

network nodes that are connected through bandwidth resources leased from different Internet

Service Providers (ISPs). In general, VNOs provide connectivity services in the form of Vir-

tual Private Networks (VPNs). Resource management has a great impact on profit, especially

for such VNOs where their bandwidth resources are all leased from others. The notion of

autonomic management has emerged as a promising approach for efficient resource manage-

ment. Such an approach can be deployed for different options: (1) To authorize the network

users to self-manage their bandwidth resources, e.g., the models of Complete Sharing (CS)

and Complete Partitioning (CP). (2) To create a competition environment among the network

users based on auctions. A VNO can manage its VPNs either in centralized or decentralized

schemes. Though, a decentralized scheme may reduce the management load at the VNO side,

and provide higher reliability with easier network dimensioning. Autonomic management can

be also applied to allow a decentralized management. Consequently, we propose a Decentral-

ized Dynamic Resource Partitioning (DDRP) model that attempts partitioning the bandwidth

resources over different QoS classes through periodic auctions. Hence, allocations among the
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competing VPN operators go through an auction scenario. The management load in DDRP

is distributed over Node Agents (NAs) that are spread over all network nodes representing the

leasing ISPs. This creates another form of competition between the NAs to win the VPN con-

nections, which allows a second auction scenario. Under such distributed interaction and the

two auction scenarios, the allocation problem is modeled through a double-auction mechanism.

This can resist exaggeration, provide better resource utilization, and higher profits. Based on

the Linear Programming theory, we solved our model. The numerical results show the gain in

performance when compared with other centralized schemes.

4.2 Introduction

Virtual Network Operators (VNOs) are providers of telecommunication services that own

network nodes but use bandwidth resources that are leased from different Internet Service

Providers (ISPs), Carapinha and Jimenez (2009). These ISPs do not have any management

role in such networks as they are only resource suppliers for the VNOs. A VNO can be con-

sidered as a virtual ISP that provides connectivity services to a wide variety of customers. The

most common form of such services are Virtual Private Networks (VPNs). Resource man-

agement has a great impact on profit, especially in such networks where the resources are all

leased from other providers. Hence, to attain the desired profit objectives, VNOs should em-

ploy efficient resource management models. In the context of VPNs, resource management

can be quite challenging to the VNOs, where VPN operators may ask for varying service re-

quirements with different Quality of Service (QoS) levels. Connectivity services in VPNs are

provided through predefined Service Level Agreements (SLAs) between the service provider -

the VNO in the addressed system - and the VPN operator. Using the service provider’s network

infrastructure, VPN operators can provide secure and reliable connections through their virtual

networks. The growing demands for such VPN services with varying QoS requirements neces-

sitate the VNOs to efficiently utilize their leased bandwidth resources. Relying on the current

management models that attempt direct interactions with the VNOs is not satisfying anymore,

as they have many limitations that can be summarized as follows: (1) These models increase

the management operation expenses. (2) They provide slow response times. Such limitations
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can lead to high rates of users’ dissatisfaction. Complete Sharing (CS), Lai et al. (1998); Mark

et al. (2000), and Complete Partitioning (CP), Lai et al. (1998); Haung and Ho (2002); Cheng

et al. (2005), models are proposed in the literature to cope with similar management problems

by creating a framework for autonomic management. In CS, network resources are shared

over all classes without any division, while in CP, resources are statically divided among the

QoS classes (or the network links), where each class (or link) uses its own allocated resources.

Such approaches can be used to automate the resources allocation but at the same time they

create several problems that can be summarized as follows:(1) In the CS model, resources are

allocated in a First Ask First Allocate (FAFA) scheme. Also, there is no bandwidth divisions

between the allocated connection classes, thus one QoS class can overwhelm all other classes

in a way that reduces the ISP profit, and poses high blocking ratios. (2) In CP, resources can

be under-utilized, which wastes the network resources and reduces the ISPs profits. (3) Due to

the long-term SLA agreement, VPN operators might exaggerate about their required resources

to guarantee their QoS in spite of unpredicted variations in the network state. Such a behav-

ior can affect the ISP profit, and increase the blocking ratios. To overcome the problem of

under-utilization in CP, the Bandwidth Borrowing (BR) technique has been proposed in Sup

et al. (2005); Cheng et al. (2006a), to enable the ISPs to provide better resource utilization.

According to the dynamicity of the traffic, the BR technique, and through assigned broker en-

tities, allows the ISP to borrow the extra resources of the underloaded classes (or links) and

reallocate them to the overloaded ones. However, due to the fact that such BR technique is

originally built over a model that attempts a static partitioning scheme, BR can not guarantee

an optimal utilization for the network resources. Simply, consider the case of having many

underloaded links with no overloaded ones! How the BR technique can help? In such a case,

the extra resources of the underloaded links will be wasted. Instead, these resources could be

utilized somewhere else, i.e., the network provider can allocate them to other new demands or

other networks.

In Quttoum et al. (2010a,b), to reduce the reasoning of exaggeration, a threat model is pro-

posed to penalize the exaggerating users according to the inconvenience they cause to all other
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users in the network. Although this model provided good results in terms of exaggeration re-

duction, but for large networks with huge number of users, such model may impose additional

computational overhead.

To solve the aforementioned limitations of the static partitioning models and the problem of

exaggeration, we propose a Dynamic Resource Partitioning (DRP) model that attempts dy-

namic partitioning of the network resources among the provided QoS classes. Such DRP can

be deployed in both, a centralized and a decentralized schemes. However, by employing the

concept of autonomic management to create a competition environment among the network

players, the latter can reduce the management load at the VNO side, and deliver higher relia-

bility with easier network dimensioning.

In the addressed allocation problem, deploying the centralized DRP scheme means that the

VNO is responsible for the management tasks in the whole network. This includes: (1) receiv-

ing the allocation demands from the bidding VPN operators, (2) finding the set of candidate

paths for each source-destination couple, (3) dividing the ISPs links’ resources among the pro-

vided QoS classes, (4) calculating the selling price thresholds for each link over the network

(per QoS class), (5) routing the initially-accepted demands through the network links. On the

contrary, under the Decentralized Dynamic Resource Partitioning (DDRP) scheme, the man-

agement responsibilities are less centralized, where they are distributed over special agents that

are spread over all network nodes, as depicted in Figure 4.1. In DDRP, the network nodes are

managed by Node Agents (NAs), where each NA represents the ISPs who provide the band-

width resources to the assigned node. Consequently, each node is managed by NA that is

responsible for leasing the bandwidth resources from the ISPs, and for any connection passing

through the assigned node. All these NAs are connected to Management Agent (MA) entity

that represents a broker for the VNO. Each NA, based on the expected traffic to pass through,

is responsible for: (1) the division of the node’s outgoing links’ resources among the provided

QoS classes, (2) the calculation of the desired price thresholds according to the VNO profit

objectives, (3) broadcasting these metrics to the MA, and all other NAs. Thus, another com-

petition environment is expected between the NAs. Indeed, in order to offer competing selling



103

price thresholds to win the bidding VPN connections, NAs should search for those ISPs who

lease their bandwidth resources by the lowest possible prices. In this context, the MA entity

will be responsible for the rest light management tasks in the network, which includes the map-

ping issues between the resource sellers (NAs) and buyers (VPN operators). With the objective

of maximizing the VNO profit, this MA is modeled to play an auction driven mechanism for

resource allocation. Clearly, such distributed interaction and the double role of the MA entity

- as resource buyer to the NAs and a seller to the VPN operators - introduces a double-auction

framework. Consequently, this will create a form of competition between the NAs from one

side, and between the bidding VPN operators from the other side. In this context, the NAs will

be motivated to ask for competing selling-prices to win the received bids, while the VPN oper-

ators will be competing to reveal their highest possible bids. This makes lower price thresholds

eligible, along with higher buying bids. Hence, both acceptance ratios, and the final profit rates

can increase. Also, this can contribute in reducing the tendency of exaggeration, and resisting

the monopolism actions.

To reduce the tendency of exaggeration without imposing any additional computational over-

head, in DDRP, we propose allocating the resources based on periodic auctions. These periods

may vary in length from few hours to several days, depending on the services provided. In

such allocation scheme, the VPN operators are not expected to exaggerate their bandwidth re-

quirements since they know that such allocations are only valid for the given period, which

means that they do not have to care about future changes in the network state. Moreover, the

double-auction mechanism represents another methodology to reduce the exaggeration through

the internal competitions among the network players, both NAs and VPN operators.

Consequently, our contribution is a model that is able to:

• deploy a higher level of autonomic management, where network nodes will have higher

responsibilities in self-managing their resources. This reduces the management load at

the VNO side;
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• provide better resource utilization than that provided by the centralized models, where

decentralization allows deploying a double-auction scenario that crates competition among

the network players;

• increase the satisfaction rates of the VPN operators, where bandwidth resources are al-

located based on a dynamic partitioning model. This enables considering the online

changes of the traffic demands;

• maximize the network profit through a two-sided competition environment;

• reduce the motivations of exaggeration in two ways, first through the periodic alloca-

tions, and second through the double-auction scenario, both without any additional com-

putation eddenoverhead.

This model is solved through Linear Programming (LP) in a hierarchical manner. Section 4.4.3

shows the NAs’ model, which is solved by each NA in a decentralized way. In contrast, Section

4.4.2.3 shows the central model that is solved by the VNO. Thus, results of the decentralized

functions provide the input of the central one.

The proposed LPs provide:

• the optimal set of the profitable VPN demands;

• the optimal bandwidth division of each network link among different QoS classes;

• the optimal routing scheme of the accepted VPN demands, with respect to their QoS

specifications.

Compared to other centralized models like CP, and the heuristic model of Quttoum et al.

(2010a), Quttoum et al. (2010b), the numerical results show that the DDRP model performed

better in terms of profit, blocking ratios, and network resource utilization.

The rest of the paper is organized as follows: Section 4.3 presents the problem statement. Sec-

tion 4.4 illustrates our decentralized dynamic resource partitioning model and the proposed



105

selection algorithm. Section 4.5 lists the proposed performance metrics, followed by the com-

putational results in Section 4.6. In Section 4.7, we present the related work. Finally, Section

4.8 concludes the paper.

4.3 Problem Statement

The Complete Sharing (CS) model proposes an autonomic management framework, where the

network resources are shared between all VPN operators, so each of them can use the available

bandwidth at any given moment. With no link bandwidth division, in the CS approach, all

QoS classes can share the network resources without discrimination. Through this, the model

is supposed to ensure the delivery of services according to predefined SLAs. From the ISP

prospective, giving the VPN operators such a privilege can provide better utilization of the net-

work resources, assuming that they know their changing requirements better and accordingly

utilize the available resources based on their actual needs. Naturally, as long as the VPN op-

erators behave according to their revealed usage declarations, deploying such an approach can

increase bandwidth utilization due to the use of statistical multiplexing that results in better

satisfaction rates and higher profits at the same time. However, in reality, and as long as there

is no link bandwidth division, VPN operators may deviate from their declarations and one class

may overwhelm all other classes, which creates several problems like SLAs violations, high

blocking ratios, and low profit rates.

In the Complete Partitioning (CP) model, the resources are partitioned among the provided

service classes in a static way, based on a one-time bandwidth partition for all network links.

With such static scheme, each class is allowed to exclusively use its portion of the provided

resources. This can solve the SLAs violation problem, but on the other hand lead to low

bandwidth utilization as resources might be under-utilized.

Exaggeration is considered as a common drawback of both CS and CP, where users might

exaggerate their requirements in order to cope with any sudden or unpredictable future changes

in the network state and link conditions, so they tend to keep a spare amount of resources that
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enables them to overcome and cope with such situations. This is due to the long term SLAs

that do not allow users to change their resource requirements according to their needs.

To overcome the problem of resource under-utilization in CP, the Bandwidth Borrowing (BR)

Cheng et al. (2006a) technique has been proposed. In the BR, the resource are borrowed from

the underloaded classes (or links) and then allocated to the overloaded ones. Accordingly,

the BR scheme can provide better utilization of the network bandwidth resources, and better

SLAs guarantees. However, knowing that the BR technique was originally built over a model

that attempts a static partitioning scheme, resources will not be utilized in an optimal way.

Consider the case of having underloaded classes (or links) without any overloaded ones, in

such a case the network resources will be wasted and the providers’ profits will be reduced.

Instead, with better resource utilization models, the network provider can exploit such extra

resources to serve other demands. Consequently, the question arises how can we solve the

issue of non-optimal utilization resulting from such static partitioning scheme?

To solve the problem of exaggeration, and based on the Vickrey-Clarke-Groves (VCG) mech-

anism, a threat model has been proposed in Quttoum et al. (2010b) to reduce the tendency

for exaggeration and motivate truth-telling of the required resources. This approach provided

good results, but may require additional computational overhead if applied for large networks.

Therefore, one can ask: is there any other way to reduce exaggeration rather than VCG?

Although all of the aforementioned work deployed the concept of autonomic management to

reduce the management load at the VNOs side, yet they are still responsible for certain high

level management tasks. While this can be considered as a light load, in large networks with

large number of users, such load can be intense. So, how to reduce such management load? and

how to employ such autonomic management to create a form of competition? These questions

and other mentioned before should find answers in the future management models.
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4.4 The Decentralized Dynamic Resource Partitioning Model

In this section, we present our Decentralized Dynamic Resource Partitioning (DDRP) model

that overcomes the problems of the aforementioned models, and provides higher profits and

lower blocking ratios. In DDRP, as depicted in Figure 4.1, the resource allocation process is

distributed through a competing NAs that are distributed over the network nodes. These NAs

are connected to a central MA that represents the VNO and manages NAs from the higher

level.

�

Figure 4.1 The decentralized management scheme

Each NA is responsible of its outgoing links in terms of:

• leasing the bandwidth resources form the different ISPs;

• the periodic bandwidth divisions of the links’ resources among the candidate connections

to pass through (division based on the QoS class);
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• the calculations of the corresponding selling price threshold for each QoS class per link;

• broadcasting these division and threshold information to the MA and all other NAs.

In this context, the two main management tasks (the division, and the threshold calculations)

are carried by the NAs.

�

Figure 4.2 The double-auction competition scheme

Hence, as depicted in Figure 4.2, the MA responsibilities will be limited to:

• receiving the incoming bids from the competing VPN operators (demand matrix);

• receiving the links’ division decisions from the competing NAs, and their corresponding

selling price thresholds;

• initial acceptance/rejection of the offered bids based on the revealed information from

both: NAs and VPN operators;

• routing the accepted connection demands over the winning NAs’ resources.
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Intuitively, in such a scenario, the MA will play a double role of being a resource buyer from

the NAs and a resource seller to the VPN operators. This creates a form of competition be-

tween the NAs from one side, and between the bidding VPN operators from the other side.

Accordingly, both parties will have internal competition that motivates them to reveal com-

peting offers in order to win the auction. This can guarantee revealing lower threshold prices

(NAs), and higher buying bids (VPN operators). Consequently, the acceptance ratios will be

increased, and so the final profit rates. Moreover, such competing scenario can reduce the ten-

dency of exaggeration, and resist monopolism actions.

4.4.1 DDRP Allocation Algorithm

In DDRP, resources are allocated based on two consecutive dynamic auctions that are held in

a periodic manner, one for the selection of the VPN operators and the other for selection of

the NAs. Through such competing environments, the DDRP selects the best set from the VPN

operators and the NAs, and also helps in reducing the motivations for exaggeration. VPN oper-

ators’ requests are represented in terms of connection demands, where the NAs prices to serve

these connection demands represent the tariff for their resources. Here the term connection k

is defined as a secure network tunnel that is layered on top of a public network, such tunnel

has some QoS parameters (i.e. bandwidth capacity, maximum number of hops), and is used to

send data from a source node sk to another destination node dk. The resource tariff for each

NA is calculated based on the link’s original cost-unit of the allocated resources, multiplied by

certain profit parameter defined according to the desired profit objective of the NA. The process

of selecting the winning set of VPN connections for resource allocations follows an optimal

selection algorithm that is presented in Algorithm 4.1.

Consequently, at each auction period t, the MA collects the new connection demands received

in the period of (t − 1, t] and form a new demand matrix K. Firstly, it broadcasts this matrix

K to all NAs in the whole network, where each NA solves an ILP to measure the adequate

QoS class divisions of its outgoing links, and calculate their corresponding price thresholds.
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Once defined, each NA broadcasts its information to the MA and all other NAs. Based on that,

and for each demand of the matrix K, the MA checks the offered bid and compares it with the

corresponding lowest price threshold among the demand’s candidate paths. For these demands

that pass the previous step, the MA solves an Integer Linear Program (ILP) that is developed to

choose the optimal set of VPN operators’ demands and map it through the network resources

in a way that provides optimal profit and bandwidth utilization rates.

Hence, comparing with the centralized models presented before, the proposed decentralized

model reduces the management load at the VNO side (Algorithm 4.1: steps 2.1, 2.2, and 2.3),

and creates a form of competition between the network’s NAs, which positively delivers higher

profits and lower blocking ratios. Moreover, comparing to the static partitioning models, de-

ploying the technique of periodic dynamic partitioning for the network resources reduces the

reasoning of exaggeration, as the bidding VPN operators will consider that such allocations

stand only for the service period, and future connections will be through new auctions.

Algorithm 4.1 DDRP Selection Algorithm

Selecting the Winning VPN operators in DDRP

0: Input: collect the VPN operators’ demands K (pk , QoSk ,sk ,dk);

1: At each auction round t, the MA do;

1.1: broadcast K to all NAs;

2: Every NA, and for each link of its outgoing links, solve an ILP that do;

2.1: choose the adequate QoS class division

2.2: calculate the threshold-prices for each QoS class;

2.3: broadcast its division and threshold decisions to the MA and all NAs;

3: Based on that, the MA do;

3.1: for each demand k, compare its bid pk with the lowest path-threshold

among its candidate paths;

3.2: for these demands that passed step 3.1, solve an ILP that finds;

3.2.1: the optimal set of VPN connections;

3.2.2: the optimal routing scheme;

4: Output: the VPN connections that won the resource allocation,

and the MA profit collected from these connections;
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4.4.2 The ILP Formulation

Through linear programming, we study the case of having a number of VPN operators, N,

competing for bandwidth allocations over a network that is managed by a MA and a number of

NAs, W , distributed over the network nodes. Each NA aims to sell its resources and maximize

its gain. On the contrary, the MA is assumed to act on behalf of the VNO for the whole network

(collection of the NAs’ links), and it is responsible for dealing with the connection demand ma-

trices and map them over the NAs according to predefined roles. Bandwidth allocation requests

are modeled through connection demands, where each VPN operator i, i ∈ N, has a set of con-

nection demands k belonging to varying sets of service classes j, j ∈ J. Logically, both VPN

operators and NAs are assumed to be rational. Thus, VPN operators will aim to have their

connection demands admitted with the lowest possible prices, while the NAs aims to sell their

resources with the highest possible prices. On the other side, the MA aims to utilize its net-

work bandwidth resources better, and maximizes its profit by accepting the maximum number

of VPN operators while providing them with satisfactory QoS levels by competing prices (low

NAs threshold prices).

Accordingly, the MA profit P function is expressed as:

P
MA

= max

( |K|
∑
k=1

pk − ∑
k∈K

ck

)
(4.1)

where the P
MA

is the sum of bids pk collected from connection demands being admitted for

allocation, reduced by the total cost of the bandwidth resources required to satisfy each con-

nection demand ck . For the MA, these ck values are the price thresholds revealed by the NAs.

Accordingly, maximizing the value of P
MA

is achieved by maximizing the first term of the

function and reducing the second term.
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Hence, to maximize the first term, the MA should choose the best set of connection demands

based on their bids. While choosing the set of NAs according to their selling costs, and deploy-

ing an efficient bandwidth utilization scheme to minimize the second term.

Table 4.2 QoS Classes

QoS Connections Quality of Bandwidth per Max. Number

Class Service Connection of Hops

5 Golden Load (<100ms Latency) 8Mbps 2 Hops

4 Excellent Load (Business Critical) 6Mbps 2 Hops

3 Controlled Load (Streaming Video) 4Mbps 3 Hops

2 Standard (IP Packet Delivery) 2Mbps 4 Hops

1 Best Effort 1Mbps 5 Hops

Choosing the best set of VPN operators’ connections is typically done in accordance to their

offered bids, where higher bids increases the chance for their corresponding demands to be

accepted. To create a form of competition between the bidding VPN operators, we assume

that the amount of bandwidth resources required to satisfy the received connection demands

exceeds the available network capacity. From the NAs perspective, lower selling costs increase

their chances to win more demands to be routed through their links.

Connection demands are also classified into set of different QoS classes summarized in Table

4.2, where for each auction period t, the model receives a different set of connection demands’

patterns reflecting the diversity of the required services at the different auction periods. Periods

can vary between day and night times, weekdays, and weekends.
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4.4.2.1 Model Parameters

The studied network is defined as a set of nodes V , connected by a set of bidirectional links

L, where each physical link offers certain bandwidth capacity bl . The requests of the VPN

operators N form the shape of the demands matrix K, where K represents all the connection

demands submitted by the bidding VPN operators. Each demand consists of a VPN operator

ID i, connection source node sk , destination node dk , a class of service j, j ∈ J, and a bid

value pk . Henceforth, a connection demand k of class j, consumes a bandwidth amount of

b j. Dividing the links’ bandwidth capacities among the set of connection demands K and their

corresponding service classes J, highly depends on the period’s traffic pattern. α l
j denotes the

percentage of bandwidth capacity allocated to a connection of class j over the network link l,

where α l
j ≤ bl .

4.4.2.2 Model Variables

To facilitate the process of measuring the MA utility presented in Equation 4.1, we refer to the

admitted/rejected connections using the variable zk , where:

zk =

⎧⎪⎨
⎪⎩

1 if connection demand k is admitted

0 otherwise

(4.2)

and we also refer to the selected path that holds the considered connection using the variable

xπ
k

, where:

xπ
k
=

⎧⎪⎨
⎪⎩

1 if connection demand k uses path π

0 otherwise

(4.3)
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4.4.2.3 Objective Function

According to the parameters and variables defined above, the objective function of Equation

4.1 can be reformulated as:

P
MA

= ∑
k∈K

(
pkzk − ∑

π∈πk

xπ
k ∑

l∈π
cl

k

)
(4.4)

Indeed, the chosen paths are constructed of different links belong to different NAs, NAs ∈W .

Thus, for the MA, the original costs of the used resources are measured based on the cost-units

revealed by the NAs, each for its outgoing links.

4.4.2.4 Model Constraints

For the objective function presented in Equation 4.4, we have the following constraints:

• Link Capacity: For each link l, the available bandwidth for the admitted connection

demands k of class j cannot exceed the total link capacity reserved for this class.

∑
k∈Kj

∑
π∈πk

ηπ
l xπ

k
b j ≤ α l

jbl ; l ∈ L, j ∈ J (4.5)

where the variable ηπ
l refers to:

ηπ
l =

⎧⎪⎨
⎪⎩

1 if path π uses link l

0 otherwise

(4.6)
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and Kj refers to the set connections belonging to QoS class j .

• Link bandwidth Division among QoS classes: The summation of the defined class divi-

sions over any link l, l ∈ L, must not exceed the total link capacity.

∑
j∈J

α l
j = 1 ; α l

j ∈ [0, α̂ l
j], l ∈ L (4.7)

where for each class j, the percentage α l
j is bounded by the division value received from

the NA managing the considered link α̂ l
j. Hence, for each link, such value represents an

upper-bound for the MA’s division decision.

• Acceptance Threshold-price: To be considered as a competing connection demand for

the allocation process, the minimum offered bid pk for a connection demand k of QoS

class j must at least be higher than or equal to a certain threshold. The calculation of

this threshold depends on the revenue objectives of each NA, which is out of the scope

of this work.

pk ≥ ∑
π∈πk

xπ
k ∑

l∈π
pl

th, j ;k ∈ Kj, j ∈ J (4.8)

• Routing Path Assignment: Only one routing path can be assigned to carry each admitted

connection.

∑
π∈πk

xπ
k ≤ 1 ; xπ

k ∈ {0,1}, k ∈ K (4.9)
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• Linking decision variables: Finding a path for the connection demand does not guaran-

tee final acceptance, the offered bid pk must also satisfy the constraint represented in

Equation 4.8.

zk ≤ ∑
π∈πk

xπ
k

; zk ∈ {0,1}, k ∈ K (4.10)

• Routing Path Length: The length of the assigned path lπ for a connection demand k of

QoS class j cannot exceed Hj hops, one hop represents one physical link.

lπ ≤ Hj ; π ∈ πk , j ∈ J (4.11)

4.4.2.5 Model Complexity

The computational complexity of the model can be measured through the number of model

variables and constraints, as follows:

• Number of variables:

| K |+ | K | × | πK |+ | L | × | J |

which can be simplified as:

| K | × | πK |+ | L | × | J |

• Number of constraints:

| L | × | J |+ 3 | K |+ | K | × | πK |
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which can be simplified as:

| L | × | J |+ | K | × | πK |

From this, we can conclude that the number of variables equals the number of constraints,

which is in the order of O(n2). Moreover, to deal with the complexity issues, if exist, we can

use the technology of Cloud Computing that is considered as an efficient solution to deal with

high combinatorial problems.

4.4.3 The Link Bandwidth Division Model

To assign the VPN operators’ connection demands to the most profitable paths, the DDRP

model executes the following steps:

• at each allocation period t, and in accordance to the received demand matrix and the

links’ capacities, each NA solves an ILP that generates a class division map. This map

shows the percentages of bandwidth capacities it reserved for each QoS class over each

link of its outgoing links;

• based on the NAs’ division maps and their revealed price thresholds, for each demand k,

the MA finds the set of candidate paths Epstein (1994) to carry its connection;

• the MA’s ILP chooses the most profitable combinations of the VPN operators’ demands

to be carried over the network links, and consequently assign them to their routing paths.

As an input to the MA’s ILP, in a decentralized way, each NA solves the following ILP that

represents the NA’s utility function:

P
NA

= Max ∑
k∈K

(
ṕkzk − ∑

π∈πk

xπ
k ∑

ĺ∈π
cĺ

k

)
(4.12)
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where each NA aims to maximize its profit P
NA

by: (1) maximizing the sum of bids to be

collected from the demand connections to pass through. The term ṕk refers to the percentage of

bid it would earn for its resources from the total bid of the whole connection. (2) minimizing the

sum of resources’ original costs by allocating (utilizing) its network resources efficiently, sure

based on efficient division metrics. Such resource utilization is motivated by the competing

environment between the NAs, where through the auction scenario, they will be competing

to offer their links’ resources by lower prices to win more connection demands. To afford

this, rational NAs should keep the usage of their available resources efficient (use the lowest

possible bandwidth amounts). This will enable them to offer lower prices, see Figure 4.3 for

the assumed pricing scheme. The assumption of such approximate pricing curve is used to

emulate the case of having limited amounts of bandwidth resources at the main providers’

side. Thus, to motivate using lower amounts of resources, the providers follow an inverse

relationship between the selling prices, and the residual bandwidth resources. Hence, rational

VPN operators who aim to maximize their profits will try to use the lowest possible amounts

of bandwidth resources to avoid higher bandwidth costs.

�

Figure 4.3 Approximate Pricing Curve
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To create a form of competition, the assigned candidate paths might be shared between various

connection demands having the same source-destination nodes, where the sum of bandwidth

amounts over these candidate paths is less than or equal to that required to satisfy the whole

connections with the same source-destination couples. In this context, it is worth to mention

that the link bandwidth division among the different QoS classes depends mainly on the de-

mands’ diversity, where such diversity reflects the different VPN operators requirements from

time to time. Differences may appear according to the day time (i.e. morning, afternoon,

evening, and night), the weekday (i.e. working days, and weekends), or even it could be also

affected by the different time-zones.

However, in this work we are presenting two different scenarios of link bandwidth division

among QoS classes. In the first scenario, we are showing the case of CP, where the network

resources are statically partitioned based on statistics fed to the model in a heuristic way. In the

second scenario, the ILP model solves the whole resource allocation problem (centralized and

decentralized) and automatically generates the optimal link bandwidth division map among

QoS classes. Empirical results in Subsections 4.6.1 and 4.6.2 show comparison between the

aforementioned scenarios, in terms of total profits, bandwidth utilization, demand blocking,

end-to-end delays and routing schemes efficiency.

4.4.4 Benchmark Models

To judge our DDRP mode, we proposed to compare it with the CP mode that attempts a static-

partitioning scheme. Moreover, we also provide a comparison with the centralized dynamic

allocation model presented in Quttoum et al. (2010b), but with few modifications explained

below. This modified centralized model is named by the Centralized Dynamic Resource Parti-

tioning (CDRP) model. It is worth to mention that we did not choose to compare DDRP with

the CS model, since we believe that this does not provide a fair comparison. This follows from

the fact that the CS attempts a FAFA admission control scheme for resource allocation, which

does not consider the profit objectives we are considering in this work.
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4.4.4.1 The CDRP Model

In the modified centralized model:(1) the allocation process is applied in a dynamic-periodic

manner, (2) the links bandwidth resources are divided between the QoS classes through a

central entity, and (3) the model is solved through linear programming. So, the dynamic class

division process will take place in a periodic auction manner, exactly the same as in DDRP,

while the division and threshold calculations are done by the VNO (represented by the MA).

Hence, the model will follow the same allocation process that is presented in Algorithm 4.1,

except steps 3, 4, and 5 which are processed by the centralized entity instead of the NAs.

4.4.4.2 The CP Model

In CP, the model follows a static division map for the network links. Division takes place only

once at the start of the network planning period, and follows a heuristic scheme based on the

shortest path algorithm. For fair comparison, we limit the differences between the compared

models to the allocation process and division schemes. Thus, we solved the CP model through

linear programming as well. The allocation process of the CP is depicted in Algorithm 4.3.

Algorithm 4.3 CP Selection Algorithm

Selecting the Winning VPN operators in CP

1: Input: Collect the VPN connections K (pk, QoSk,sk,dk) received

through time (t −1, t];
2: At each auction round t, the VNO do;

2.1: Based on the shortest path algorithm, find the adequate QoS class

divisions for the network links;

2.2: Based on 2.1, formulate the problem as an ILP;

2.3: Solve the ILP, and find the optimal set of VPN connections;

3: Output: the VPN connections that won the resource allocations, and

the profits collected from these VPN connections;
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4.5 Performance Metrics

To evaluate our DDRP model we make comparison with CDRP and CP models discussed in

the previous section. For each model we are calculating the following metrics:

4.5.1 The Network Total Profit

The profit P is measured based on the bids collected from the admitted connection demands,

reduced by the cost of the network links. Both bids and costs are expressed in terms of $X .

4.5.2 The Network Profit-Unit

The profit-unit value represents the gain collected per 1Mb of bandwidth, which is measured

as the ratio between the total profit measured in Subsection 4.5.1, to the amount of bandwidth

of all links:

Pu =
P

∑
l∈L

bl
(4.13)

4.5.3 Demands’ Blocking Ratio

Demands’ blocking ratio represents the VPN operators’ satisfaction rates, and is measured as

the ratio between the number of admitted connection demands to the number of all demands

participated in the allocation auction:

BK =

∑
k∈K

zk

|K| (4.14)

4.5.4 Bandwidth Utilization

Bandwidth Utilization is measured as the ratio between the used and the total bandwidth

amounts:
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Ub =

∑
j∈J

∑
k∈Kj

b jzk

∑
l∈L

bl
(4.15)

4.5.5 Routing Scheme Efficiency

To evaluate the routing scheme efficiency of the above mentioned scenarios, we proposed mea-

suring the following parameters:

4.5.5.1 End-to-End Delay

The average end-to-end delay for admitted connection demands is measured through the aver-

age number of hops used to form the routing paths:

H =

∑
k∈K

∑
π∈πk

xπ
k

lπ

∑
k∈K

zk

(4.16)

4.5.5.2 Number of Used Network Links

The number of links, Lu, that is used to form all paths in the assigned period of time.

4.6 Computational Experiments

To illustrate the efficiency of this work, under the CPLEX environment, we illustrate an ex-

ample of a network that consists of 6 nodes, connected by 14 bidirectional links, for which

we assume that each link holds a 60Mb of bandwidth resources. For this network, we assume

receiving 100 VPN operators’ connection demands per period of time, distributed as 20% for

QoS1, 30% for QoS2, 15% for QoS3, 15% for QoS4, and 20% for QoS5. In this scenario,

we assume dividing the week planning time into 12 classes, each stands for 6 hours of time

Thompson et al. (1997). This represents a new allocation auction every 6 hours. However, the

period between such auctions may vary according to the offered services and their durations.
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Demands with different service durations can be divided into groups, each follows certain pe-

riod length. In this example, we are assuming selling certain service packages that stand for

6 hours of time (e.g. online games, video conferencing, etc). Table 4.4 below shows the pe-

riods’ division map. Through this network scenario, we will study the behavior of the above

mentioned three models (DDRP, CDRP, and the CP).

Table 4.4 Periods’ Division Map

Period Index Corresponding Time Period

1 Monday to Friday: Morning

2 Monday to Friday: Afternoon

3 Monday to Friday: Evening

4 Monday to Friday: Night

5 Saturday: Morning

6 Saturday: Afternoon

7 Saturday: Evening

8 Saturday: Night

9 Sunday: Morning

10 Sunday: Afternoon

11 Sunday: Evening

12 Sunday: Night

4.6.1 Bandwidth Division Efficiency

In the studied models, different bandwidth division schemes are followed. As mentioned be-

fore, the CP model attempts a heuristic bandwidth division scheme that is handled directly

by the VNO or its broker (i.e. based on the shortest path algorithm). On the contrary, such

a bandwidth division process is handled in a dynamic way through ILPs in both CDRP and

DDRP models. In CDRP, such a process is solved within a centralized entity, usually the VNO

or its broker. While in DDRP, it is distributed through the NAs that are spread over the net-

work nodes; each NA is responsible for dividing the resource of its outgoing links. For these
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three scenarios, Tables 4.5, 4.6, and 4.7 are showing the provided QoS classes, their accep-

tance ratios, their bandwidth usage amounts, and their corresponding profits at three different

periods. For better comparison, in each table, we present the results of different periods that

vary between weekdays, Saturdays, and Sundays.

Table 4.5 DRRP performance

QoS Week-Day: from 6 am to 12 pm Saturday: from 6 pm to 12 am Sunday: from 6 pm to 12 am
Class Acceptance Bandwidth Total Acceptance Bandwidth Total Acceptance Bandwidth Total

Ratio Usage Profit Ratio Usage Profit Ratio Usage Profit
1 100% 30 530 100% 30 652 100% 30 579

2 90% 124 993 100% 124 1185 97% 116 1028

3 100% 96 950 94% 96 1134 100% 100 1198

4 67% 132 585 73% 132 789 73% 132 723

5 80% 200 1088 75% 200 1240 65% 176 1020

The week-day period in the tables shows that under the DDRP model we accepted around

88% of the connection demands, compared to 68% and 54% in the CDRP and CP models,

respectively. Through the same period, the DDRP model shows utilization of 582Mb of the

available bandwidth, while it is 406Mb in the CDRP, and 273Mb in CP. Resulting profits are

showing that the DDRP provides a value of $4146, representing an increase of 35% and 72%

to that provided by the CDRP and CP models, respectively.

Table 4.6 CDRP performance

QoS Week-Day: from 6 am to 12 pm Saturday: from 6 pm to 12 am Sunday: from 6 pm to 12 am
Class Acceptance Bandwidth Total Acceptance Bandwidth Total Acceptance Bandwidth Total

Ratio Usage Profit Ratio Usage Profit Ratio Usage Profit
1 100% 30 480 100% 30 602 85% 25 522

2 73% 88 866 77% 92 1065 77% 92 884

3 80% 76 758 67% 64 918 67% 60 954

4 47% 84 348 53% 96 495 47% 84 390

5 40% 128 616 45% 136 792 45% 136 724

In the Sunday period, we can see that the DDRP model accepted around 87% of the received

demands, compared to that of 65% and 54% in CDRP and CP, respectively. In the bandwidth

usage, the DDRP also shows a utilization of 554Mb of the available resources, where it is
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397Mb in the CDRP and 291Mb in CP. Concerning the profit, the DDRP provides a $4548,

showing an increase of 30% and 72% to that provided by the CDRP and CP, respectively. Same

conclusions are noticed from records concerning the Saturday period.

Table 4.7 CP performance

QoS Week-Day: from 6 am to 12 pm Saturday: from 6 pm to 12 am Sunday: from 6 pm to 12 am
Class Acceptance Bandwidth Total Acceptance Bandwidth Total Acceptance Bandwidth Total

Ratio Usage Profit Ratio Usage Profit Ratio Usage Profit
1 95% 29 478 95% 28 595 80% 23 516

2 70% 84 855 80% 98 1062 77% 96 840

3 66% 68 634 66% 68 768 73% 80 812

4 20% 36 171 20% 36 189 20% 36 171

5 20% 56 268 20% 56 336 20% 56 308

In summary the comparison the three different scenarios shows that the DDRP model always

provide the best results in terms of: acceptance ratios, efficient bandwidth utilization and fi-

nal profit rates, followed by the CDRP and lastly the CP. This reflects the efficiency of the

bandwidth division scheme attempted by the DDRP.

4.6.2 General Performance and Routing Scheme Efficiency

Section 4.6.1 provided sample numerical results of the DDRP model compared to the CDRP

and CP models. In this section, we are providing a wider range of comparison through the al-

location periods from 1 to 12 between the aforementioned models in terms of: (1) Customers’

satisfaction represented by the blocking ratios. (2) Bandwidth utilization, which represents

how the bandwidth resources were used. (3) Total profits resulting from the previous two met-

rics. (4) Profit-units. (5) Routing efficiency in terms of the average end-to-end delay (average

number of used hops), and the number of used links.

Figure 4.4 shows the percentage of the demands’ blocking for different allocation periods. In

this figure, the DDRP model provides an average of 86.5% acceptance ratio through the periods

1 to 12. While it is on the average of 66.75% in the CDRP, and around 57.75% in CP. Figure

4.5 presents the percentage of bandwidth utilization (usage patterns) to the allocation periods.
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�

Figure 4.4 Demands’ Blocking Ratio Bk

�

Figure 4.5 Bandwidth Utilization (usage)Ub
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On average, through the periods 1 to 12, the DDRP shows a 66.5% utilization of the network

bandwidth resources. On the contrary, it is 46.6% in the CDRP and 33.6% in the CP. In

Figure 4.6, we are showing the resulting total profits to the allocation periods. Accordingly,

it is shown that the DDRP provides the highest profits with the average of $3757, showing an

average increase of 36.3% to the CDRP and 72.5% to the CP. This reflects the result of having

better utilization rates of the bandwidth resources in the DDRP, which enables the model to

accept more connection demands, and hence higher profits.

�

Figure 4.6 Total Profit Ratio P

Based on the above we can draw the following conclusions: (1) The DDRP model used the

largest amount of bandwidth resources, but in an efficient way. At the same time, it provided

the highest profit rates, and the best satisfaction represented by the lowest blocking ratios. (2)

The CDRP model showed an average performance compared to the DDRP and CP models. (3)

The CP model used less resources compared to that used by the DDRP and CDRP, provided

the lowest profits, and the highest blocking ratios.
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Figure 4.7 shows the resulting profit-units with respect to the allocation periods. Although,

we can remark that the highest profit-units are always provided by the CP model, this does

not necessarily mean higher total profits. Having such high blocking ratio (see Figure 4.4) in

the CP case, with low bandwidth usage (Figure 4.5), and comparatively high profit (Figure

4.6) will definitely result in high profit-units. One possible explanation is that the CP model

chooses only the demands with the high bids for allocation, without considering the blocking

ratios, and the other management metrics. However, what concern more is the total final profit.

As shown from the results, the DDRP is always leading in terms of total profits.

�

Figure 4.7 Profit-Unit

Figures 4.8, and 4.9 show the efficiency of the routing algorithm, from which we can conclude

that although the DDRP model used approximately the same number of hops and links used

in CP, it was able to use the available paths more efficiently and deliver higher satisfaction and

profit ratios. In terms of demands’ satisfaction, on average, the DDRP served 30% and 50%

more connections to that served by the CDRP and CP, respectively.



129

�

Figure 4.8 Average No. of Hops

�

Figure 4.9 No. of Used Links
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4.7 Related Work

The CS model has been proposed in prior research to resolve the issue of autonomic resource

management, by enabling the network users to self-manage, self-control, self-heal, and self-

protect their network resources Lai et al. (1998); Mark et al. (2000). In their work, authors

claimed that CS can provide a solution to the challenging management loads at the ISPs side,

and deliver a satisfying resource utilization rates. Although it provides good utilization rates,

but on the contrary it proved that it can lead to SLA violations. In Lai et al. (1998), the authors

presented a comparison between both CS and CP models, where they show that the CP model

can provide better QoS satisfaction rates, but on the other hand it provides less utilization.

Same in Haung and Ho (2002); Cheng et al. (2005), authors proved that the CP model can

provide higher QoS compliance rates compared to that of the CS model.

To overcome the resource utilization problem of the CP, authors in Borst and D.Mitra (1998),

Blake et al. (1998), Bouillte et al. (2002) proposed a hybrid approach that takes the advantages

and overcomes the problems of both CS and CP models. Such hybrid approach is known by the

Virtual Partitioning (VP) approach. Depending on the actual network traffic load, VP behaves

either as CS or CP. Accordingly, it behaves as a CS at the light traffic case, while it is a CP

at the extreme one Cheng et al. (2006b). The VP allows a heuristic resource sharing between

the underloaded and the overloaded links in order to provide better resource utilization rates.

Moreover, in the wireless networks domain, other authors proposed using the same hybrid VP

approach. Where in Yao et al. (2004), an approximate analytical formulation of the VP is

proposed to handle multiclass services with grand channel in a cellular system. In this work,

the authors investigated a resource allocation model with preemptions for the provided service

classes, to do so, they proposed using a balancing scheme that combines the open sharing

and the static allocation properties of the CS and CP models, respectively. Accordingly, in

heavy-load situations, resources are allocated the same way in CP, but underutilized resources

are borrowed from the underloaded classes to the overloaded ones. While in the light-loaded

situations, overloaded classes can use the nominal resources of all other classes. Similarly,

in El-Kadi et al. (2002); Malla et al. (2003) the authors proposed a fair resource allocation



131

protocol for multimedia wireless networks, which uses a combination of bandwidth reservation

and bandwidth sharing models to provide higher utilization rates and QoS guarantees. Such a

hybrid approach sounds good, but the problem here is that the lender links (originally under-

loaded) have no guarantees that they can return their resources back when they are needed.

This encourages malicious over-loading. What is more, the resource sharing scheme in VP

attempts a static design, in which, a pre-defined static configurations for the resource sharing

process is applied at all possible traffic load conditions.

To solve this, the Bandwidth Borrowing (BR) technique is proposed to automate the resource

sharing process Sup et al. (2005), and provide a solution for the static load-configurations at-

tempted by the VP approach Farha and Leon-Garcia (2006); Cheng et al. (2006a). Accordingly,

the BR technique may partially solve the bandwidth utilization problem of the CP. While yet, as

long as the CP attempts a static partitioning scheme, BR cannot provide an optimal bandwidth

utilization solution, where we may have many underloaded links with no overloaded ones, in

such a case how the BR would work?

However, none of the above mentioned work addresses the problem of exaggeration. In fact,

especially in such autonomic allocation environments, addressing the problem of exaggeration

is a necessity. In our work, we are allocating the bandwidth resources based on a dynamic

auction mechanism. To win the auction, auctioneers (VPN operators) should avoid any extra

payments in order to submit a competing bid. This can be considered as the first motivation

to prevent exaggeration. Secondly, deploying such periodic dynamic allocations will motivate

the VPN operators not to exaggerate, since current allocations are valid for short times only,

and so, there is no need to care about the future network changes. It is worth to mention that in

our previous works Quttoum et al. (2010a,b), we proposed an efficient model that reduces the

tendency of exaggeration, where we developed a threat model based on the Vickrey-Clarke-

Groves (VCG) mechanism Nisan and Ronen (2007). Accordingly, exaggeration actions are

reduced by charging the exaggerating users according to the inconvenience they cause to the

whole system. However, the work targeted the case of autonomic resource allocation over

a single network link for specific connection periods. In this work, we are dealing with the
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exaggeration problem in a different way, while we are targeting a full network case with multi-

links and paths.

4.8 Conclusion

Based on the Linear Programming and the double-auction mechanism, we optimized the VNO

profit by providing a periodic decentralized dynamic partitioning model for utilizing the net-

work resources. The resources are dynamically partitioned over different QoS classes through

two periodic auctions, which can reduce the reasoning of exaggeration, and maximize the net-

work profit by finding the optimal set of profitable VPN connections with price competing

resources. Distributing the bandwidth division processes over the network nodes can provide

more reliable management systems, and easier network dimensioning. Compared to the CDRP,

deploying the decentralized model allows a double-auction competing environment. This can

deliver better resource utilization, higher profits, and better satisfaction ratios. The advantage

of our model lies in its ability to find the optimal bandwidth division of each network link

among QoS classes, finding the optimal routing scheme that can guarantee the QoS commit-

ments for the accepted VPN connections. Another major contribution is the reduction of the

management load at the VNO side. Numerical results were conducted based on CPLEX en-

vironment, and it showed that the DDRP model performed better than the other models. On

average, the profit is increased by 73%, the VPN connections blocking ratio is reduced by 68%,

and network resources utilization is increased by 98% when compared to the static partitioning

model (CP).



CONCLUSION

Network virtualization combines the concepts of virtual partitioning and autonomic manage-

ment. While complete autonomic management systems have not been delivered yet, this work

provides a considerable progress toward that goal. Previously, as presented in Section 1.2,

network resource allocation for VPNs was mostly manual, requiring direct intervention from

the ISPs. Later on, the concept of autonomic management started to be employed, but with

no virtual partitioning. While these models provided better resource utilization and reduced

management load at the ISPs side, still selfish actions like resource overwhelming and exag-

geration were not addressed. Next, the autonomic management with virtual partitioning was

deployed in order to solve the problems of exaggeration and resource overwhelming. In this

case, the network bandwidth resources were virtually partitioned among the network customers

in a static way. This solves the problem of resource overwhelming, but does not solve the prob-

lem of exaggeration that might happen at the SLA contracting stage. In addition, it results in

non optimal resource utilization due to the static virtual partitioning. To overcome this, other

techniques were also proposed to adapt the static resource allocations by borrowing the extra

resources from the underloaded partitions, and allocate it to the overloaded ones. Although this

enhances the utilization rates, but still, its outcomes are not optimal.

The work of this thesis was proposed to overcome such problems and limitations. To achieve

better resource utilization, Chapter 2 presents how the concepts of auction mechanism, and

autonomic management can be deployed. The idea of deploying the auction mechanism pro-

vides a smart way to choose the profitable set of customers that are able to choose the adequate

amount of bandwidth resources to satisfy their needs. Derived from the Game theory, the VCG

mechanism is applied to reduce the tendency of exaggeration that is expected to result from

the autonomic management privilege. The VCG mechanism provides a powerful tool to en-

force cooperation in such non-cooperative scenarios. Also, from the Markov Decision theory, a

minimum selling price value is calculated based on the state-dependent shadow price concept.

This value represents the minimum selling-threshold that is used to define whether to accept or
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reject the customers’ offered bids. This protects against the harmful collusion actions that can

be expected in the context of auction environments.

In Chapter 3, the resource allocation problem is expanded from a link problem to a full network

that includes bandwidth partitioning among the carried QoS classes. Linear Programming the-

ory is applied to provide the optimal management metrics for such a problem. Different from

the exaggeration resistant model presented in Chapter 2, in this part, the resource partition-

ing process was executed dynamically in a periodic way. Such periodic scenario showed an

efficient way to reduce the exaggeration motivations, without the need of the threat model. Pe-

riodicity allowed convincing the customers that exaggerating their bandwidth requirements is

not beneficial any more, since comparing to the previous allocation scenarios, current alloca-

tions are only valid for short periods of time.

In Chapter 4, the work addressed the problem of resource management in networks that are

managed by Virtual Network Operators (VNOs). This considered the case in which VNOs

lease their network bandwidth resources from different ISPs. Compared to the previous propo-

sitions in Chapters 2 and 3, a new model is developed to solve the resource management prob-

lem in a decentralized way, in which, the VNO became able to distribute the management load

over special entities that are employed to manage the network nodes. Namely, these entities

are called Node Agents (NAs). This allowed the VNOs to employ a higher level of auto-

nomic management, where not only the network customers, but also the NAs are responsible to

self-manage and control their resources. Indeed, such a model deploys a two-sided autonomic

management scheme that allowed a double-auction framework. This creates a competing en-

vironment between the NAs (resource sellers) from one side, and the customers (buyers) from

the other side. Consequently, this helps in keeping the NAs motivated to use their available

resources better in order to offer competing selling prices and win the customers’ bids. The

same applies for the network customers, where they compete to offer higher bids to win the

resource allocations from the NAs. The solution is sloved hierarchically through the Linear

Programming theory.
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Achieved Objectives

The work presented in Chapter 2 provided better usage of the bandwidth resources, which

resulted in higher profits and lower blocking ratios when compared to the FAFA bandwidth

allocation algorithm,. Moreover, it delivered efficient methods to reduce the effect of the exag-

geration and collusion cheating actions. Hence, this part of the work answered the following

questions (presented in the objective list in Section 0.3):

• How to provide better utilization of the network resources?

• How to motivate VPN operators not to exaggerate?

• How to suppress collusion actions that harm the allocation process?

In Chapter 3, the work provided new techniques for optimal bandwidth partitioning. Such tech-

niques helped in utilizing the network bandwidth resource better, gain higher profits with lower

blocking ratios. Compared to the previous part, this chapter provided different methodologies

to answer the first two objective questions. Indeed, it reduced the exaggeration motivations

through the periodic auctions instead of the threat model used in Chapter 2. Same for the re-

source utilization, the Linear Programming has been employed to solve an optimal dynamic

resource partitioning model. From the list of Section 0.3, this part of the work answered the

following questions:

• How to provide better utilization of the network resources?

• How to motivate VPN operators not to exaggerate?

• How to measure the optimal bandwidth division among QoS classes?

Thus, this part of the work The decentralized model of Chapter 4 proposed a new model based

on a higher level of autonomic management, with a double-auction scenario. Through which, it

provided higher bandwidth utilization rates, which implicitly means higher profit and satisfac-

tion ratios. The double-auction allowed internal competition within the NAs and the network
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customers. Within NAs, this resulted in better utilization and lower blocking ratios, while it

delivered higher total profits from the competition among the network customers. Moreover,

in addition to the reduction of the exaggeration motivations due to the periodic allocations, in

this part, the two-sided competing environment represented another new way to reduce exag-

geration. Thus, the achievements of this part answered the following questions:

• How to provide better utilization of the network resources?

• How to motivate VPN operators not to exaggerate?

• How to measure the optimal bandwidth division among QoS classes?

• How to decentralize the resource allocation mechanism?

It is worth to mention that compared to the work of Chapter 3, and concerning objective of "the

optimal bandwidth division among the QoS classes", the decentralized theme applied in this

part provided a more optimal division scheme among the QoS classes. This resulted from the

fact that the division in this part was handseled by the NAs, where each NA was responsible for

it outgoing links, and so, know better how to divide their resources according to their real-time

needs.
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Future Work

As a future work, the following can be considered:

• In the decentralized partitioning model, the work can be extended to address a pricing

scheme. Through such pricing scheme, the cooperative NAs can be rewarded either by

additional incentives, or provisioning price reduction.

• To resist collusion among the NAs in the decentralized partitioning model, i.e., all NAs

may collude and offer high selling prices, the network controller may calculate a higher

sell-threshold.
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