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FORMULATION OF MATHEMATICAL MODELS USING PARAMETER
ESTIMATION TECHNIQUES AND FLIGHT TEST DATA FOR THE BELL 427
HELICOPTER AND THE F/A-18

NADEAU BEAULIEU, Michel

ABSTRACT

In this thesis, three mathematical models are built from flight test data for different
aircraft design applications: a ground dynamics model for the Bell 427 helicopter, a
prediction model for the rotor and engine parameters for the same helicopter type and a
simulation model for the aeroelastic deflections of the F/A-18.

In the ground dynamics application, the model structure is derived from physics where
the normal force between the helicopter and the ground is modelled as a vertical spring
and the frictional force is modelled with static and dynamic friction coefficients. The
ground dynamics model coefficients are optimized to ensure that the model matches the
landing data within the FAA (Federal Aviation Administration) tolerance bands for a
level D tlight simulator.

In the rotor and engine application, rotors torques (main and tail). the engine torque and
main rotor speed are estimated using a state-space model. The model inputs are non-
linear terms derived from the pilot control inputs and the helicopter states. The model
parameters are identified using the subspace method and are further optimised with the
Levenberg-Marquardt minimisation algorithm. The model built with the subspace
method provides an excellent estimate of the outputs within the FAA tolerance bands.

The F/A-18 aeroelastic state-space model is built from flight test. The research
concerning this model is divided in two parts. Firstly, the deflection of a given structural
surface on the aircraft following a differential ailerons control input is represented by a
Multiple Inputs Single Outputs linear model whose inputs are the ailerons positions and
the structural surfaces deflections. Secondly, a single state-space model is used to
represent the deflection of the aircraft wings and trailing edge flaps following any
control input. In this case the model is made non-linear by multiplying model inputs into
higher order terms and using these terms as the inputs of the state-space equations. In
both cases, the identification method is the subspace method. Most fit coefficients
between the estimated and the measured signals are above 73% and most correlation
coefficient are higher than 90%.



FORMULATION D’UN MODELE MATHEMATIQUE PAR DES TECHNIQUES
D’ESTIMATION DE PARAMETRES A PARTIR DE DONNEES DE VOL POUR
L’HELICOPTERE BELL 427 ET L’AVION F/A-18 SERVANT A LA
RECHERCHES EN AEROSERVOELASTICITE

NADEAU BEAULIEU, Michel

RESUME

Cette recherche présente différents modeles mathématiques d aéronefs développés a
partir de données d’essais en vol pour trois modeles: la dynamique au sol pour
I"atterrissage de ['hélicoptere Bell 427, le comportement des rotors et des moteurs pour
le méme hélicoptere et la simulation des déflections aéroélastiques de I'avion militaire
F/A-18.

La structure du modele de dynamique au sol du B-427 est déduite par des lois de la
physique. dans lesquelles la force normale de contact avec le sol est modélisée par le
ressort vertical et la force de friction est modélisée par les coefficients statiques et
dynamiques. Les coefficients du modele sont optimisés afin que sa sortie corresponde
aux données d’atterrissage a l'intérieur des marges de tolérance définies par la FAA
(Federal Aviation Administration) pour un simulateur de vol de niveau D.

Les torques du rotor principal, du rotor de queue et des moteurs ainsi que la vitesse du
rotor principal sont estimés par un modele d’espace d’état. Les entrées non-linéaires du
modele sont construites a partir des commandes du pilote et des états de I’hélicoptere.
Les parametres du modele sont identifiés par la méthode subspace et optimisés par
["algorithme Levenberg-Marquardt. Le modele donne une excellente estimation des
sorties a l'intérieur des marges de tolérances de la FAA.

Le modele aéroélastique de 1'avion F/A-18 est représenté sous forme d’espace d’état, et
la recherche concernant ce modele est divisée en deux parties. Premiérement, la
déflection d'une partie de l'avion suite a une entrée d’ailerons différentiels est
représentée par un modele linéaire MISO (Multiple Inputs Single Outputs). Les entrées
du modele sont les positions des ailerons et les déflections des autres parties de I’avion.
Deuxiemement, un seul modele d’espace-état non-linéaire est utilisé pour calculer les
déflections aéroélastiques des ailes et des volets de bords de fuite. Les non-linéarités
sont introduites en multipliant les entrées entre elles avant de les utiliser dans les
matrices d’espace-¢tat. Dans les deux cas, les modeles sont identifiés par la méthode
subspace. D’excellents résultats ont été obtenus ou la plupart des coefficients de
correspondance et de corrélation sont respectivement au dessus de 73 % et 90%.
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Subscripts

100% 100 % main rotor speed (not in autorotation)

aero From aerodynamics

auto Autorotation

b Body axis coordinates system

4 Gravity center

damping From damping

e Earth axis coordinate system

em Modified Earth axis coordinates system

eq At equilibrium (at the end of the landing record)

¥ Future value

fight From aerodynamics, thrust and gravity

friction From friction

gravity From gravity

GD From ground dynamics

i i" element of the data vector

j Dummy index (see equation 2.5) orj’/' iteration (Paper 2)

k K" timestep prediction of noise effect (line k) on |” matrix or A"
frequency (paper 3 and 4)

L Left

Lever urm Lever arm between the touchdown point and the center of gravity

Limit Matrix used to estimate a limit parameter

m Number of inputs

n Number of states or order of the system
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INTRODUCTION

In the aerospace field, is often very important to generate mathematical models to
represent different dynamic phenomena. Such a mathematical model can be used in
many applications such as a flight simulator or a flight control system. In this thesis, four
mathematical models are built from flight test data to solve specific problems related to

aircraft design and operation.

Two approaches are used to generate a mathematical model: analytical and system
identification. The first model developed in this thesis uses a semi-analytical approach
where the model structure has been derived from first principles, but its coefficients are
optimised to match the flight test data. The second to fourth model structures and

coefficients were derived by the system identification approach.

The first model is a ground dynamics model for the Bell-427 helicopter in which the
forces and moments after touchdown are calculated for different landing cases. The
second model simulates the responses of some parameters related to the main rotor, tail
rotor and engine of the helicopter B-427 following control inputs from the pilot. The
third model computes the deflections of different structural surfaces of a modified F/A-
18 aircraft using a multiple inputs single output model (MISO) where the model inputs
are the differential aileron deflections and the known detlections of aircraft structural
surfaces. The fourth model is an improvement of the third model where all the structural
surface deflections of the F/A-18 are computed simultaneously in a multiple inputs

multiple outputs MIMO model.

In the analytical approach, a mathematical model is built from basic physics laws such
as Newton laws of motion, thermodynamics, etc. The main advantage of this approach is
that each aspect of the mathematical models is understood and related to the theory. The

validity of mathematical models derived from analysis is also well known and depends
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on the initial assumptions. Once these models are built, they provide a reasonable
solution for a wide range of conditions and, since each parameter in the model was
derived using physics laws, the model can be easily updated if the method to estimate a
given parameter is improved. The main drawback of using only an analytical model is
that it often represents an over-simplification of the true system dynamics. The first
cause of this over-simplification is that most of the equations from theory were derived
using assumptions which may have significant effect on the results. The other reason is
that most physical systems are extremely complex and have many components. The

characteristics and interactions between these components is not always known.

The system identification method consists of building a mathematical model directly
from experimental data. In this case. a model structure is defined and its parameters are
selected to ensure that the resulting model output matches the flight test data output for
specific inputs. The main advantage of system identification over analytical methods is
that since the mathematical model is derived from flight test data, it will capture any
complex features of the system which would not have been found otherwise. The
standard procedure used in any system identification processes is illustrated in figure

1.1:

Flight test on aircraft with
pre-selected control
inputs from the pilot

I

Data collection and
compatibility

I

Model structure
definition

Method of
identification

l

Model
validation

Figure 1.1  Basic procedure to follow in the system identification process
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As illustrated in figure 1.1, the first step of system identification consists in deciding
which control input should be used to generate an appropriate system response. The
choice of appropriate control input mostly depends on the intended model application,
which was pointed out by Jategaonkar (2006). These control inputs should generate a
response which contains as much information as possible about the system behaviour
within the intended application. These control inputs are applied on the aircraft during
the flight tests where the aircraft response is measured. The test engineer should be sure
of the data excellent quality and should know very well the sensors limitations and the
measurements errors corrections dependent on their locations. An extensive description
of these corrections was given by Crisan (2005). The user must verity the data
compatibility by a process called flight path reconstruction described by Jategaonkar
(2006) where accelerations measurements are integrated and compared to speeds

measurements.

The next methodology step is the definition of a model structure. According to
Jategaonkar (2006). the models found by use of system identification methods are
classified in three categories: white box models. black box models and grey hox models.
With the white box model, the identitied model is the closest to a pure analytical model.
In this case, an analytical set of equations describing the system is derived from first
principles, where some physical parameters are left unknown. These physical parameters
are identified using flight test data and the parameters values which match the data can
later be compared to these parameters estimated values found from analysis or other

sources such as wind tunnel testing.

At the other extreme, the black box model structures are identified by using input-
outputs matching algorithms without a priori information on the true system dynamics.
In these types of models. the structure can be a state-space model of arbitrary order or a
neural networks model. Another possible structure is the grey hox model. In this case,

the large scale behaviour of a physical system may be assumed. but there is no



knowledge on the interactions of its sub-systems. In this case, the global model
structure may be derived analytically and the subsystems may be modelled with hlack
box models. It is typically much easier to design a black box model than a white box
model due to the fact that there are systematic procedures to conceive a black box
model by use of only input and output data, while a white box model requires extensive
analytical efforts. On the other hand. the validation of a black box model is limited to the
number of flight conditions used to build it, whereas a white box model can be used with
more confidence outside these flight conditions if one knows the variation of its

parameters, and the type of assumptions to be made.

Once the model structure is determined, the next step is the parameters values
identification. If the model structure is a white box model. this identification can be done
by using priory values of the parameters and iterating by use of a minimization
algorithm until the error between the model output and the flight test data output is
minimum. This method is called an Qutput Error Method and is described by
Jategaonkar (2006). If the model is a black box. the initial values of the parameters may
either be random, as in neural networks algorithms, see Howard et al. (2006) or may be
estimated by use of the subspace method detailed by Ljung (1999) if the model structure

is under state space form.

The last step of the system identification process is the model validation. The best
method to validate a model is to simulate it using another data set. The control inputs
from another data set are inputs to the model and the model response is compared to the
data set. As stated by Jategaonkar (2006), this validation method is called the acid rest.
In some cases, a model may match very well with the data used to build it, but may fail
the acid test. This failure may indicate that the model is over-parameterised. which
means that fictitious parameters are attempting to model the system noise during the
identification process. A solution to this problem is to simplify the model until it gives

very good results with flight test data used in its identification. as well as with other
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separate data set for its validation. It is not always possible to set data aside for the acid
test due to the fact that the data quantity is limited. For this reason, is a good practice to
make a model as parsimonious as possible, and its parsimony can be tested with methods
which were initially developed by Akaike (1969). and very well explained by Ljung
(1999).

All journal papers presented in this thesis use the above described identification steps to
obtain a good mathematical model from flight test data. In the first paper presented in
this thesis, a ground dynamics model formulation is developed for the Bell-427
helicopter simulator from landing tests data. The Bell-427 is a two engines four blades
commercial helicopter which was first delivered in January 2000. The ground dynamics
model was developed and implemented in a level D full flight model developed in
collaboration with Bell Helicopter Textron and the Canadian National Research Council.
[t was validated for one engine inoperative landings (OEI) and autorotation landing. The
ground dynamics model was identified with a grey box model, in which the overall

system behaviours were derived from physics.

The second journal paper presented in this thesis was also realized by use of the Bell-
427 flight data, but, this time, the parameters related to the rotors and engine were
modelled. These parameters are the main rotor torque, tail rotor torque. engine torque
and main rotor speed. The model structure is a state space model of arbitrary order, and
is called a bhlack box model. Non-linearities are introduced in the model by combining
the inputs as higher order terms and using these terms as the inputs of the state-space
equations. The model parameters were identified by use of the subspace system
identification method implemented in MATLAB" by Ljung (1999). This method is a
non-iterative algorithm which finds the system parameters from the input and output
vectors by reconstructing an observability matrix. The performances of the subspace
identification method alone (without optimization) with respect to the subspace method

followed by an optimization are evaluated. The resulting mathematical model was



implemented as a simulation, for a flight simulator application and as a prediction for a

carefree manoecuvring flight control system application.

The third paper of this thesis illustrates how a state space model whose parameters are
identified by use of the subspace method can be used to simulate the structural
deformations of different parts of a F/A-18 aircraft. This aircraft was modified, as
described by NASA Dryden Fight Research Center website (2006) with additional
actuators on the leading edge flap to split it between inboard and outboard sections. The
wing was modified with thinner wing panels to render the wing more flexible and to
allow its tip to twist up 5. At high dynamic pressures. the F/A-18 control surfaces were
used as tabs that are deflected into the air stream to produce favourable wing twists. This
technology was able to use the air stream energy to twist the wings and thus to minimize

the control surfaces motions.

In this thesis, a mathematical model 1s built to identify the wing deflections and the
aircraft control surfaces following differential ailerons control inputs. Different Multiple
Inputs Single output (MISO) models are generated for the different aircraft structural
surfaces. For each of the aircraft structural surfaces, the inputs are the differential
ailerons and the deflections of the other aircraft structure surfaces. The fourth paper
represents an improvement of the third paper where the deflections of aircraft structural
surfaces are represented with one single Multiple Inputs Multiple Outputs MIMO

mathematical model.

This thesis is organized as follows: In Chapter 1, a literature review is presented for each
application journal paper exposed in this thesis. In Chapter 2. the theory applied for each
journal publication is summarized. The emphasis of Chapter 2 is the black-box system
identification method extensive explanation which is used in the second. third and fourth
papers. The first paper on the ground dynamics model is introduced in Chapter 3 and is

presented in Chapter 4. An introduction to the second paper is given in Chapter 5. and



the second paper on the identification of the helicopter rotor related parameters is
presented in Chapter 6. The first paper on the identification of the F/A-18 structural
detlections following a control input is introduced in Chapter 7 and is presented in
Chapter 8. The second paper on the F/A-18 is introduced in Chapter 9 and is presented
in Chapter 10. Finally, conclusions are presented and followed by future work

recommendations.



CHAPTER 1

LITERATURE REVIEW

This literature review is organized as follows: in the first section. the past research on
the ground dynamics of helicopters is presented followed in the second section by the
past research on the modelling and prediction of the main rotor, tail rotor and engine
related parameters. The third section presents the past research on the identification of
aircraft aeroelastic models. The last section is a brief description of the originality and

impact of this thesis with respect to the previous research.

1.1 Ground dynamics helicopters model

Two types of bibliographical research reviews are presented in Sections 1.1.1 and 1.1.2.
The first section reviews theoretical formulations of rigid body collisions and contacts
which can be applied to an helicopter impacting the ground. The second section reviews

the applications of these theories to the ground dynamics of a helicopter in the past.

1.1.1 Past research on rigid body collision

There are only a limited number of publications in the field of helicopter ground
dynamics. For this reason, it is necessary to refer to rigid body collision and contact
theories in order to find theoretical formulations of an impact between an object and the
ground. Three existing methods can be used in touchdown modeling and in the contact
forces calculations between the helicopter and the ground. and they are: the Impulse-

constraint method. the Impulse method and the Penalty method.

The impulse-constraint method was developed first by Baraff (1989, 1993). and uses an
instantaneous impulse to model the impact between a rigid body and the ground. The

magnitude of this impulse depends on the restitution coefficient values. Following



touchdown, when the body stays on the ground, the tangential constraint forces are

solved analytically which requires a high number of iterations.

The impulse method is a variant of the impulse-constraint method first developed by
Mirtish (1996). With this method, when the object is in contact with the ground. no
constraint forces are applied and the object motion is stopped by use of multiple
impulses. This method is easier to implement as it does not require iterations, but it is
less physically exact than the impulse-constraint method. The impulse method is
computationally expensive when the object has more than one contact point with the
ground and. therefore, is subjected to a high number of impulses. The method was
further improved by Guendelman al. (2003) by use of lateral impulses to calculate the

static and dynamic friction coefficients.

The third method. called the penalty method, as first implemented by Moore and
Wilhelms (1988) consists of modeling the ground as a spring pushing the object upward
as it penetrates into the ground. This method is less physically exact than the impulse
method. but unlike the impulse method, it does not need to evaluate the exact collision

time between an object and the ground.

1.1.2 Past research on helicopter ground dynamics

The penalty method was chosen by Johnson (1997) to model the ground dynamics of an
unmanned helicopter because the small ground penetration present in the penalty method

could be interpreted in this case as skid deformation.

In Johnson’s model, when the helicopter was on the ground, a dynamic friction force
was considered when the total force applied on any of the lateral springs exceeded the
maximum static friction force or when the lateral velocity of any of these springs was

non-zero.



Johnson did not specity how the stiffness and damping of each spring was selected. This

unmanned helicopter model was not validated by use of landing test data.

In this thesis, a ground dynamics model was developed and validated based on landing

data of a real helicopter. Use of this new approach has never been considered until now.

1.2 Identification and prediction of parameters related to the main rotor,
tail rotor and engine

A great deal of modeling effort has been made in the past decade to model the responses
of main rotor torque, main rotor speed and engine torque of helicopters, especially to
design envelope protection design control systems. Envelope protection control systems
ensure the remaining of the rotorcraft parameters within their prescribed design limits.
During helicopters operations, many parameters must be restricted between their
minimum and maximum limits. In this thesis, these parameters might be the main rotor
torque, main rotor speed or engine torque. If the operational limit of one parameter is
exceeded, it can have a detrimental effect on the helicopter fatigue life, its handling
qualities and safety. In order to prevent such a limit violation, it is necessary to know the
relationships between the future control inputs and the future value of the limit
parameters. Inverting this model provides the future control inputs which would result in
a limit violation. In 1995, Howitt used a simplified mathematical model to estimate the
engine torque and main rotor torque of the BO-105 helicopter following a collective step
input, and designed carefree control laws based on this simplified model. Much of the
research efforts that followed used Neural Networks to predict limit parameter future
values. The authors who made most of the research in this aspect are Menon et al.
(1996). McCool (1998), Horn and Prasad (1999). Yavrucuk et al. (2001 and 2002) and
Horn and Sahani (2002, 2004. 2005). More details on each author contribution is

available in chapter 6.
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As described in the previous literature review, most of the previous work involving
torque prediction concerned the use of Neural Networks to identify a proper model. In
this thesis, it is attempted to simulate and predict the future values of the helicopter
parameters by use of a non-linear state-space model identified with the subspace system
identification method. The subspace method is a relatively recent system identification
method that has the capability to identify the parameters of a system without requiring
any iterations. It is therefore a very efficient method which does not require a-priori
estimates of the system parameters. A detailed description and literature review of the

subspace method is presented in Chapter 2.

1.3 Identification of the structural deflections on an F/A-18 aircraft

The active aeroelastic wing research project requires the use of system identification
methods to identify the structural deformations of different structural part of an F/A-18
aircraft following a control input given by the pilot. There has been a growing interest in
the past decade in the identification of aeroelastic deformations of aircraft from flight

test data.

The Autoregressive Moving Average Method (ARMA) and the Neural Networks
theories were used by Sung et al. (2005) to identify the flutter behaviour of a transonic
wing. The flutter dynamics of a pitch-plunge system subjected to limit cycle oscillations
was modeled by Kukreja and Brenner (2006) with non-linear models. The non-linear
models used were the Nonlinear Autoregressive Moving Average Exogenous (NAMAX)
models. The dynamics of a flexible wing model was identified by Silva et al. (2006)
using the impulse response method. The Eigensystem Realisation Algorithm (ERA)
followed by an output-error minimisation method was performed based on a large

flexible aircraft by Le Garrec et al. (2001).

The subspace method was used by Brenner (1997) to identify the controls’ effects on the

rigid modes of the F/A-18 aircraft from flight flutter tests. In this method, the ailerons



were excited by use of Schroeder frequency sweeps, and the accelerations were filtered
using a wavelet transform, thus the aircraft roll response was identified in both time and

frequency domain.

The subspace identification method is used to identify the F/A-18 aircraft surfaces
structural positions from flight flutter tests following to the differential ailerons
Schroeder excitations. The focus of this research is on the identification of the flexible
mode oscillations of the F/A-18 aircraft rather than on its rigid modes, such as the roll

rate, studied by Brenner (1997).

1.4 Innovation and impact of this thesis

The research presented in this thesis represents an improvement over previous research
in many respect. The first paper. on ground dynamics, presents a new formulation based
on the penalty method used by Johnson (1997) in an autonomous helicopter. As it was
necessary to qualify the model for a level D flight simulator, it was necessary to derive a
much more elaborated model to match the FAA tolerance bands for many different
landing cases. Another challenge involved with this model was its integration with a
global flight model based on stability and control derivative to avoid instabilities in the
model output during the transition between the flight model above the ground and the

ground dynamics model.

In the second paper, as it was shown in the literature review, black box methods such
as Neural Networks were widely used to predict the future value limit parameters on
different rotorcrafts, but it was never done with a state-space model identified with the
subspace method. The subspace method has some very attractive advantages over the
Neural Networks method. The main advantages of the subspace method over Neural
Networks is the fact that it is non-iterative method and that it does not requires a-priori

estimate of the model parameters. This implies that in an identification process using the



subspace method, the model will never converge to a local minimum as it could happen
in an iterative method with poorly chosen initial parameter guess or minimisation

algorithm.

In the third and fourth papers, a State-Space model using the subspace method was used
to identify the aeroelastic deflections of different surfaces on an F/A-18 following an
excitation on its control surfaces. The application of identification methods to solve
aeroelastic problems is very recent in the literature. In most cases, identification methods
have been used to model simplified sub-systems such as a pitch-plunge system or a
flexible wing. This thesis presents the first research that was done on the structural
deflection of every surfaces on the F/A-18. The results from this research should
contribute to the development active control systems which could control the structural

deflections of an aircraft to improve its flying qualities, structural resistance and safety.



CHAPTER 2

BACKGROUND THEORY

This section will explain thoroughly theoretical concepts which are necessary for the

explanation of the following chapters.

2.1 Ground dynamics model theory

The ground dynamics model structure developed in this paper is based on the penalty
method as used by Johnson (1997), who modelled the impact between a model

helicopter and the ground with a vertical spring, as shown in the following equation:

Fop=-Ci-KAz (2.1)

where F.p is the vertical force between the ground and the helicopter from the ground
dynamics after the touchdown, A:- is the helicopter skids deformation. = is the vertical

velocity of the helicopter after the touchdown, K_ is the vertical stiffness and C. is the

vertical damping of the helicopter. In equation (2.1), the coordinate = is defined positive
when is downward oriented. From equation (2.1), when the helicopter touches the
ground, the skids deflection Az is positive and. since the helicopter center of gravity
has a downward velocity, the vertical velocity Z is positive. Since the stiffness and
damping coefficients are always positive, equation (2.1) gives a negative vertical force
pointing upwards. The equation describing the vertical force exerted on a helicopter at
touchdown is therefore the same as the force exerted by a spring and damper system.
When the helicopter touches the ground. it is subjected to three forces and three
moments which arise from the interactions between the ground and the helicopter. In the
ground dynamics model, expressions for forces and moments were derived from basic

principles given by equation (2.1).
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Each of these derived equations are written as function of coefticients needed to be
determined and will be discussed in the ground dynamics model theory. In equation

(2.1), these coefficients are the system stiffness coefficient K. and the system damping
coefficientC.. and are identified by minimizing the error between the simulated

response of the helicopter and its measured response. The ground dynamics model can
be described as a whire box model, see Jategaonkar (2006). In some cases, in order to
obtain a model which matches the landing data, it was required to formulate some of
these coefficients as function of other parameters without necessarily using physical
principles. the sub-models expressing these coefficients could therefore be thought as
black box sub-models. The overall ground dynamics model can therefore be described as
a grey box model because its overall structure was determined from physical principles
and some of its coefficients were functions of parameters which were not calculated

directly from physics.

The greatest challenge encountered in the ground dynamics model formulation was the
formulation of an appropriate model structure. The coefficients values were further

iterated to ensure that the model matched the landing data.

2.2 Theory related to the subspace identification algorithm used in the last
three papers

Both the second paper on the limit parameters identification on the B-427 helicopter and
the third and fourth papers on the structural deflections identification on the F/A-18 are
black box state-space models. The parameters describing these models were found by
use of the subspace system identification method. This section will explain in details the
theory behind the subspace method, which is an efficient non-iterative algorithm which

determines the model parameters directly from inputs and outputs data.

Before describing the subspace method, it is necessary to define the general formulation

of a state-space model.
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2.2.1 State-Space model definition

In general, a discrete state-space model can be expressed in the following equations:

[§)
8
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Where 7 is the time, Ar is the sample time of the simulation, «(r) represents the system
inputs where m is the number of inputs and y(r) represents the system output where o is
the number of outputs. The vector x(r) of length n represents the system states which

can be defined as a linear combination between past input and past outputs. This

equation also contains state noise vector w(s) representing the noise on the states (from

outside perturbations) and the measurement noise vector v(z) .

The A matrix is the state matrix whose rank is the equivalent to the order of the system.
The B matrix represents the effects of the inputs on each the state. The physical inputs of
the system depend on the application and will be described in the second and third paper
of this thesis. The C matrix relates the outputs to the states and represents the best linear
combination of the states that form the output. The D matrix relates directly the inputs to
the outputs without going through the state equation (2.2). A non-zero matrix D is
equivalent to a system where some inputs influence the output without any time delay.

In a state-space system, without the matrix D. the output y(7) is a function of the state

x(r) which is a function of the input and state at the previous timestep (see equation

[N

2).
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2.2.2 Overview of the subspace system identification method

In order to define a valid linear model. it is necessary to obtain a proper estimate for the
parameters in the matrices 4, B, C and D. Many different approaches can be used to
identify these parameters and it was decided to use a subspace method to perform this
identification. The main advantage of the subspace algorithm used in this paper, is that it
1s a non iterative algorithm. While classical parameter estimation methods require a
proper initial guess of the parameters in the [4,B,C, D] matrices and minimize the error
between the model and the data with a minimisation algorithm, the subspace
identification method does not require such an initial guess and finds the value of the
parameters using only the input and output data. The subspace identification method is
therefore much faster than an iterative technique and does not suffer to problems related
to optimisation such as possible convergence to local minimum. The subspace algorithm
was implemented in Matlab® System identification toolbox. For basic understanding of
the algorithm, the reader is invited to consult reference Ljung (1999) for the theory
behind the algorithm and the toolbox user guide written by Ljung (2006) for how the
algorithm was implemented in Matlab®. For further understanding, the reader can
consult a very good application paper by Galvao (2005) where the subspace method is
used in a fiber optic application and a good demonstration is done on some aspects of
the algorithm. Plenty of authors have developed different aspects of the algorithm and

they will be stated as these aspects are exposed.

The concept of the subspace method is to obtain the system observability matrix T,

defined in equation (2.4) from modern control theory. This matrix can be obtained using

only the system inputs «() and outputs y(r).

C
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In equation (2.4) » represents a forward prediction horizon. the significance of this

parameter will be explained in the next sections. Once this observability matrix I, is

known. it is possible to extract the state space matrices [A.B.C.D] using the input and
output vectors. The detailed procedure to obtain the observability matrix and the discrete
state space matrices now will be explained. The theory behind the subspace algorithm is
divided into five sections. The first section defines basic matrices and equations
necessary to the demonstration, sections 2 and 3 explain the two steps necessary to find
the observability matrix of equation (2.4). Section 4 explains how to obtain the discrete
state space matrices [A,B,C.D] from the observability matrix and, finally, section 5
explains how to obtain the state and noise vectors time histories (expressed in matrix

form) of equations (2.2) and (2.3).

2.2.3 Basic definition of input and output matrices

In order to understand the subspace algorithm. it is necessary to define some important
matrices. The input data which occur after a reference time ¢ can be arranged into a

Hankel matrix as follows:

ult], ulr+ A ult+2N], ult+(j=1) A,y
v, di ult + A ult+20] 4y ult +3M),, ult+j N (2.3)
u[r+(r—1)AI]m\1 ult +ri] u[!+(r+1)At]m\l u[t+(r+>/'—2)At]m\l

mx N

In this matrix, the subscript f stands for future inputs because only the inputs occurring
after the time ¢ are included into the matrix. The subscript r. the forward prediction
horizon used by the algorithm is the number of time steps used to build the hankel

matrix U, . This prediction horizon is chosen by the user and. according to Ljung (1999)

the only requirement is that its value must be greater than the desired system order .

The subscript N represents the length of the measured output vector and the index j is a
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dummy index with a value adjusted to insure that all data available in the identification

are included on each line of the U, matrix. Notice that if the expression in the brackets

[] of the matrix element « has a value greater than N, the value of «[] is zero. This is a
property common to any Hankel matrix. Similar Hankel matrices can be constructed

with the output vectors as follows:

Ml Me+) Me+28),0 - e+ N
. wd I o . Wr+2N) . Me+3A),,, Mo+ A, (2.6)
L = 2
Me+(r=1)A), o Mr+ra, o Mr+(r+1)A, Hr+(r+j-2)Ar, -
The future state vector can be defined by use of the following matrix:
Xy =[Mlidyy Me+Alygy o Xe+(-Datd0] (2.7)
It is also necessary to define an extended controllability matrix as follows:
r-1 r=2 S
=|{. A B , o,
o [(4 B)n\I ( )n\l (AB)"\I Bn\l}n\r ( 8)

and. finally, the impulse response matrix given by:

C D, ., 0 0 0 0 |
CBowm Doxm O 0
H,— = C“‘Boxm CBO\m DO\m 0 (29)
CA By CATBy o CATB o Dyl |



[t is also important to describe the effect of noise on the furure output of the system. This

noise effect defined with the Hankel matrix 1"

I'l[l]o\l l’l[[+1]0\1 Il[ ]ﬂ\l I'l[[*'./'_l]oxl
[,J;I l'2["+'1]0\1 ll][’+2]ox] I [[+3]o\1 lv}["h/]oxl (210)
Vele+r=1]g1 Velt+rloy Felt+r+1o¢q oo Filt+r+j=2]0 4 _—

where the value of the term 1 is defined with equation (2.11):
I, = CAA'_ZH'(I)+ CAA'*}M'(I + 1)+...+Cw(t +k —2)+ 1'([ +k —1) (2.11)

In the subspace algorithm, the furure value of the output is related to the future value of

the states and input by use of the following equations:

Y, =T, X, +HU, +V (2.12a)

Xp=A'X,+AU, (2.13b)

It is straightforward to show that equation (2.12) was derived from basic state-space
equations (2.2) and (2.3). For example, with the maximum prediction horizon set to » =

2 and simplifying the system to a single input single output (SISO) system, the

prediction equation (2.12a) can be simplified to the following equation:

C | v e+
)I~{,¥'[f+l] 1f[+7:l { }\’[T X[t+l]]+

B
D 0 uft] u[1+l] \[ ] ‘,[1+1] (2.13)
CB Dilu[t+]] ult+2] Cn [r]+\[,+]] C“'[I+l]+v[1+2]



From equation (2.13). each term of the ¥, matrix can be expressed as:

Y, (LD = y[r] = Cx[t]+ Du[t] +v[1] (2.14a)
Yo(L2)= [t +1]= Cx[r + 1]+ Dufr +1]++[t +1] (2.14b)
Y, (2.0 =yt +1] = CAx[t] + CBut]+ Duft + 1]+ Cwlt]+v{r +1]  (2.14¢)

Y (2.2) = 31+ 2] = Cx[t + 2]+ Duft + 2] + {1 + 2] (2.14d)

It can be shown that equations (2.14a). (2.14b) and (2.14d) are the same as equation
(2.3). equation (2.14¢) is found by inserting equation (2.2) into equation (2.3). This step
described the basic matrices used in the identification algorithm. These matrices will be

used in the next two sections to obtain the observability matrix I',. The next section will
show how to remove the influence of future outputs matrix ¢/, and the noise matrix I’

on equation (2.12a) in order to isolate the observability matrix.

2.2.4 Determination of the states contribution to the output variables

Referring to equation (2.12a). the future value of the output ¥, is a function of the state

and input vectors:

Yy =T,\, +HU, +I (2.12a)

From the input and output data, it is possible to isolate the term TI,.\, in equation

(2.12a). this will be done to obtain the observability matrix I',. The algorithm used to

perform this separation is called instrumental variables approach and is thoroughly
explained by Ljung (1999) and Viberg et al. (1995,1997). The following step will show

how on orthogonal projection approach can be used to remove the U, contribution to

the output of equation 2.12a.
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2.2.4.1 Orthogonal projection to remove Uy contribution

The first step for removing the input matrix contribution is to use a geometric

interpretation of this equation as shown in figure 2.1 also explained by Galvao (2005).

HU /N

Figure 2.1 Perpendicular projection of the future outputs perpendicular to the
Suture inputs

If one interpret equation (2.12a) as a vector, the first step to isolate the observability

matrix I, is to project the output vector ¥, perpendicular to the input contribution H,U, .

This can be done with the following projection matrix:

(9
p—
n
~

[nﬁ,}Nm‘:/—u_f(u,ui')_lu, (2.

Where the superscript 7" means transpose. A detailed proof concerning this orthogonal
projection matrix is available in the Galvao paper (2005). If this perpendicular projection

operator is applied on U, it is equivalent to find the projection of H,U, perpendicular
to U, which, logically, is zero. Mathematically, it can be shown by use of equation

(2.16):

- |
U T =U,=U UG (UUT) Uy =Up -Ufl =0 (2.16)
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Post-multiplying both sides of equation (2.12a) by the projection operator 11;,, yields:
-l ¢ il L . -l sl
(g ] =rx ks mu s s <[y s el ] 27

The input contribution has now been removed from the prediction equation. The next

step is to remove the noise contribution by using an instrument variable.

2.2.4.2 Removal of the noise contribution by use of an instrument variable

It is now necessary to exclude the noise term 17117, . This can be done by post-

multiplying equation (2.17) with suitable matrix @ that is not correlated to the noise

matrix. Let's define the ® matrix as follows:
O =[p, (1) @+ .. @ (+j-Dl N (2.18)

where ¢, are vectors that are uncorrelated with the noise. The number of lines s of this

matrix may have any value, but it has to be higher than the desired order » of the
dynamic system. This variable is called an instrument variable as defined by Ljung
(1999) and Viberg (1997) and it is used to reduce the noise term of equation (2.17) to
zero. Let us post-multiply equation (2.17) by the transpose of ® and normalize with the

number of sample in the data as follows:

def g . _def
[G]roxs - _l_y/ HIL/’ o = %r"‘\',/ HIL/’ 4 +%,'nﬁl o' = [r,-T,V 10\5 +[F.\'1

2
- (2.19)

oOXSs

In equation (2.19). the subscript N implies that the value of 7, and F. are approximated

for a data record containing N data points. In order to cancel out the noise term without



affecting the term dependant on the future states 7,, the requirement for a proper

instrument matrix @ is that it must be correlated to the future states.\", . but uncorrelated

with the noise term, mathematically, it can be expressed by the following equations:

|m]EV:nm_Lrnh¢J=o (2.20)

Now N—oo

Hm7}=“mlmnﬂh¢T:T (2.21)

N No«

In equation (2.21). the parameter 7 is equivalent to the estimation of 7, with an infinite
number of data points. Equation (2.20) implies that as the number of samples N goes to
infinity. the noise matrix and the instrument matrix @ must cancel each other.
Intuitively. one can think that at each time step. the product of I"and @’ will be either
positive of negative and the sign of this product will vary in a random manner as these
matrices are uncorrelated. For an infinitely large number of data points, the value of

F, will converge to zero. Equation (2.19) can therefore be summarized as:

G="Lym

/

Lol =T, T+E, {2.22)

g

where
Ey=T,(Ty -T)+F, (2.23)

Ey,—>0as N-ow

In these equations, the term £, is a measure of the estimation error of the model due the

finite number of measured samples in the data set. This error goes to zero as the number

of number of points in the data set goes to infinity.
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The remaining step of the above demonstration is to find an appropriate instrument
matrix ® . As it was stated before. the first requirement for the instrument matrix d is
that it must be correlated with the future states. which are unknown at this point. Even
though these states are unknown, their value is dependant on the past inputs and outputs.
these past inputs and outputs are therefore a possible choice. The second requirement is
that the matrix ® must be uncorrelated with the noise. This is always the case when the
system inputs are properly selected. This is because the noise can be seen as the error
between the model and the data and, for a good model. this error is completely random.
The past input and outputs are therefore a logical choice for the instrument matrix. In
this paper. the instrument matrix used is described in equation (2.24) which was taken

from Ljung (1999).

[ a{e-11,4, Vel o W+, o e+ -2
."[I "2]0\ 1 )'[f - l]o\ 1 .“[,]o\ 1 ."[[ + j _310 v
v vit=hloxr Mr=h+1ly¢y Me=h+2]41 = ¥r+h+j-1]x,y
® :{Up} = (2.24)
PldssnNo Lufe =11, ult] 1 ult+1), o ult+ =214
“[[ - 2]m x| Il[f - l]m\ 1 “[[]m x 1 “[, + ‘/'_3]111 v
ult—hl, o ult=h+1], ult=h+2],., ult +h+j-1] -

In this equation, the subscript p stands for past input and outputs and the parameter / is
the number of past inputs and outputs used by the algorithm. The number of past inputs
h is a parameter chosen by the user. A higher value of /2 will lead to a better fit, but
choosing very high number of past inputs cannot be done in practice because limitations
in the length of the data set. Ljung (1999) proposed to limit the value of /2 to the optimal
prediction horizon that would be used if the model was identified with an ARX
structure. This optimum choice is made based on Akaike Information Criterion defined

by Akaike (1974). This criterion is widely used to compromise between the quality of a



fit and the complexity of a model. The parameter / used in this paper was chosen based

on the above method.

Once a proper instrument matrix has been found, assuming there is enough data points in

the record to bring the error due to noise £, to 0. equation (2.22) reduces to:

[G]roxs :[r"]ro\n[T]n\s (225)

And. using equation (2.19), equation (2.25) becomes:

lynto =trynte (2.26)
N N
At this point, every term of the left hand side of equation (2.26) are known. The next

step will be to extract the observability matrix I, from equation (2.26). This can be done

by performing a Singular Value Decomposition (SDV’). More details on this procedure

will be explained in section 3.

2.2.5 Determination of the observability matrix from singular value
decomposition

Once the matrix G is known from equation (2.25). it is possible to decompose it into
three sub-matrices using a well known linear algebra theorem called Singular 1alue
Decomposition. This theorem is explained in through details in reference by Patel et al.

(1993). This decomposition is expressed as follows:

Grone =T, X 1L, 0T = U, .S, . (2.27)
N N

roxs roxro*~roxs sxs



In equation (2.27), the matrix S is made of the singular values of G. These singular

values are the positive square root of the eigenvalues of (G’G). these eigenvalues are

sorted in descending order form the first row to the last row of matrix S. As it will be
illustrated later on. the goal of doing a singular value decomposition is to separate the
contribution of the observability matrix from the contribution of the states to the term G.

Equation (2.27) may also be read as:

(o, 0 0 0 |
0 o, 0
0 0 o,
G _U o 278
roxs roxro O 0 O_.\ SXS ( )
0 0 0
LO 0 0 0 Jroxs

In equation (2.28). the parameters o, represent the singular values of the matrix G. The
matrices U/ and | are called singular vectors. They are respectively the orthonormal

eigenvectors of (GG") and of (G"G). Since these eigenvectors are orthonormal, they

agree with the following equations:

T
U”U:[roxro (229)
"/l’ = sts

where the matrix / is the identity matrix. The following demonstration will show how
the new matrices defined by the Singular Value Decomposition can be used to obtain an
extended observability matrix I', that relates properly the inputs to the outputs. The
singular value decomposition of equation (2.27) applies for a dynamic system of any

order. If the desired order n of the dynamic system is known. a proper procedure
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separate the first » singular values and singular vectors of the system from the other

singular values and vectors. Equation (2.27) therefore becomes:

Grn xs T [(’/l |

Here, equation (2.30) is equivalent to equation (2.27). but is separated into different

components. The U, matrix is now an ro x n matrix, the matrix S, is a #» X 7 matrix and
the matrix 1} is a s x # matrix. The approximation of G matrix for a system with a

certain order n therefore becomes:

G _approx,,  =US}} =T,T = %r,,\’, e (2.31)

roxs

where G new 1s the new approximated matrix G. Notice that G has the same size as
before, however, the size of U, is ro x n, the size of S, is # x n and the size of 1} is s x
n.  When this approximation is performed, a certain number of singular values and
singular vectors are dropped. Since the singular values and vectors of equation (2.27)
were placed in a descending order. only the ones with a smaller value are dropped. The
singular values that were kept represent the true dynamic of the system and the small
singular values that are not taken into account represents errors due to noise. If the order
of the system » is chosen to be too low. the model will not match the data properly
because some significant dynamic will be lost. If the selected order is too high, this may
lead to the problem of overfirting as described by Ljung (1999) and many other authors.
Overfitting is what happens when the order of the equations representing a dynamic
system are higher than the true order of the system. In this case, the system identification

algorithm attempts to match the noise contribution with the remaining free parameters of



the linear equations (2.2) and (2.3). This usually results in a model that gives good

results on the data used to create it. but poor results on validation data.

Once the new matrix G _approx has been determined. it is possible to obtain a proper
estimate of the observability matrix I',. Notice that many different combinations of

observability matrix and 7 matrix can lead to a set of parameters value that insures a

proper match. By inspection of equation (2.31), we notice that the size of the matrix v,
is the same as the size of matrixT',, we also observe that the size of the matrix 17" is the

same as the size of the matrix 7. This can be summarised in the following equation

il

=10/

G_approxm\s_L’l(rO\n)Sl(n\n)(ll ) o
(nxs) ( i

§9)
(%}
[§®]
S

G _approx,, =T, 7

roxnj) (nxs)

According to reference Ljung (1999), it follows that possible values of the observability

matrix I’ may be:

r(rxn)

r,=U, (2.33)

It is also possible to add weight functions to the matrix G obtained from equation (2.27)

before performing singular value decomposition as follows:

Giyy = G, (2.34)

The reason for adding weight matrices is to remove any residual error due to noise ( £,

term. see equation (2.23)) in the variable G. These weight matrices are made of

parameters that are uncorrelated with the projected noise matrix £,.. In the absence of
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(F'S)
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noise, adding a weight matrix has no effect on the identification results, but it improves

the results when the identification is done on noisy data.

After a weight matrix is selected, the new observability matrix is found by use of the

following equation:

r, ="', (2.

()

(0%

N
~

Where the matrices U, has been found by performing a singular value decomposition on
G,, found in equation (2.33). Many authors have proposed expressions for different

weight matrices and they have an influence on the results of the identification. A good
summary on the work of different authors on these weight matrices formulations has
been done by Viberg (1997) where different expressions for weight matrices are derived
using the same mathematical approach. For original work on the different weight
matrices. the reader is invited to consult the papers written by Verhaegen (1994). Van
Overschee (1994). Viberg (1995) and Larimore (1990). In this thesis, the weight
matrices defined by Larimore (1990) give excellent results. Since there is not much
noise in the data related to this project, the algorithm is not very sensitive to the selected
weight and it wasn’t necessary to try other weight formulations to obtain good results.

The weights as defined by Larimore are defined by use of the following equation:

-1/2

W=l =yt | = ot of
N RV

At this point the observability matrix I',have been determined from equation (2.35).

This observability matrix can now be used to obtain the value of the matrices [4. B, C,

D]. The procedure to do it will be shown in the next section.



2.2.6 Determination of the matrices describing the model by using the
observability matrix I', and estimation of a state sequence

This section will first explain how to find the system matrices .{ and C defined in
equation (2.2) and (2.3) by using the observability matrix T',. The matrices related to the
system’s inputs B and D will then be found by use of a linear regression. Finally. the
system matrices will be used to obtain the system’s state vector x . This state vector will

be used later to find the noise vector v and .

2:2:6:1 Estimating 4 and C matrices from the observability matrix T,

Once the observability matrix is known, it is quite easy to obtain the estimates of the .4
and (' matrices. If we refer to equation (2.4) as it was defined at the beginning of the
theory section:

C

oxn

L/U’ C'.lﬂ Xn ( o) 4 )

-
CA™!
’ oXM Jroxn

The estimate matrix C is obtained by taking the following terms of the observability

matrix:

(Lo,ln) (237)

Where the hat =" means that it is an estimate. Equation (2.37) simply means that we
have to extract the first o lines and » columns of the observability matrix. The matrix .{
can be found from the observability matrix by solving the following equation:

r ) :r(ln(r—l),ln)A (238)

(o+lroln
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(O8]
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In this equation, the left hand side represents the observability matrix with the first sub-
matrix ¢ removed and the right hand side represents the observability matrix with the

last sub-matrix 4" removed. This is equivalent to the following equation:

CAO Xn Co Xn
v CAy

c4™! A

oxXn Jir-l)oxn OXT J(r-1)oxn

In this equation. the only unknown is the state matrix 4. If the moditied observability

matrices T',.,,,, ., and T, of equation (2.38) were both square matrices. it would

be easy to find 4, , by just pre-multiplying both side of the equation by the inverse of
[ o1 - Since these matrices are not necessarily square. equation (2.38) can be solved

by use of the following equation:

C CA

oxn oxn

g CA xXn C”:
Avn = v (2.40)

CA™ o g

nx(r-1)o OND d(r-1)ox n

In equation (2.40). the superscript ~+~ denotes the Moore-Penrose pseudo-inverse
described by Viberg (1995). This is a more general type of inversion which does not
require the matrices to be square. The pseudo-inverse can be computed by singular value
decomposition and reader is invited to consult references from Patel (1993) and Klema

(1980) for more details on this operation.
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2.2.6.2 Estimating B and D matrices from linear regression

Once the system matrices 4 and C are known, it is possible to estimate the 8and D
matrices by use of a linear regression technique. At this point, the output y can be related
to the input » by converting equations (2.2) and (2.3) into a discrete transfer function.

Using the following discrete operator =:

() =x(t+ A (2.41)

=) = x(t - A

Equation (2.2) becomes:
:.\'(t) = .:1.\‘(1)+ Bu(l)+ W) = x(1) = (:l - ‘21)_I Bu(f)+(:l - ,-l)_l n'(l) (2.42)

Inserting equation (2.42) into equation (2.3) and neglecting the noise

contributionw(s)and v(r) yields:
#(118.0)=C(=1-1)" Bu(r)+ Du() (2.43)

where 1(7] B,D) means the estimated y conditional to B and D. A very efficient way to

find the unknown parameters B and D of equation (2.44) is to use a linear regression
method. From linear regression theory. as explained by Ljung (1999) the estimated

output y(r) may be expressed by the following equation:

) - Fec(B
,\’(f)o\ 1 - ,7(,)9 = ”(l)o\(nmmm) {]'CZED))} (245)
(nm+om) x 1



In equation (2.45). the matrix »(r) is made of the past and presents inputs «(r) of the

system the procedure to construct this matrix will be explained later on. The single
column vector & represents all the unknown parameters to be found. these unknown
parameters are all the elements of the matrices B and D. The operator ““I'ec” builds a
column vector from a matrix by stacking its columns on top of each other. Recall that
the index o represents the number of outputs, # is the order of the system and the number

of states and m is the number of inputs to the system.

The estimated parametersé equation (2.45) can be found be formulating it as a least

square problem as follows:

Where J(6) is the error between the model output and the output from the flight test

data and N is the total number of samples of inputs and outputs. The minimum error can
be found without iteration by use of the following equation from linear regression theory

as described by Ljung (1999):
. N . | N
Ox ={Zﬂ(f)f?’ (’)} 2 ()i (o) (2.47)

In equation (2.47). 6, represents the best estimate of the parameter vector using N
samples of inputs and outputs. What remains to be done is to define the matrixn(z). the
best way to illustrate how to construct the matrix 7(7) is with an example. Suppose that

we have a second order 2 inputs and 1 output state space system. equation (2.43) reduces

to:
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#(11B.0)=C(=1-3) " Bu(r)+ Duft)=C(=1- i) {Z‘ Zﬂ{ﬂ{aﬁ 90]{:;} (2.48)

Before solving the least square problem, it is necessary to convert equation (2.48) into

the format used in equation (2.45), this is illustrated in equation (2.49):

6
. - 1 1 0
"‘([)U\l=U(I)H:{’B{0}ul ﬂ[ﬂul [{0}113 ,BL}:: u, u::! (2.49)
Os

where
B=C(z1-4) (2.30}

Once the parameters 6, have been determined, it is possible to reconstruct the matrices
B and D using these parameters. At this point, the system matrices have all been
determined. Once the system matrices .4,B8,C'D are known, it is also possible to
determine the measurement noise v(s) and state noise w(s) vector from input and output
data and a noise covariance matrix describing the relationship between the output noise

and the state noise. This will be explained in the following section.

2.2.7 Estimation of the state and noise matrices

Once the state space matrices [.4. B, C, D] have been determined. it can be useful to
obtain information about the state noise v and output noise v matrices which are defined
in equations (2.2) and (2.3). In order to obtain these matrices, is necessary to estimate
the state vectorx. The following section will describe the procedure to estimate the

state vector. the output noise vector and the state noise vector.



2.2.7.1 Estimating the state vector by singular value decomposition

In equation (2.51), as in equation (2.26) after the input and noise contributions were
removed from the output. the system output and states vector were related by the

following equation:

1

G=Lym, o =
Pt

—T X I, @ (2.51)
N :

And recall that the matrices that are used in this equation have the following size:

1
I

v .T7i .
f[rox N]’I_I(,J [NxNJ?

[m\s];

)

[S\N]: r[m\N]:‘\][n\N]:

The states matrix .\, represents the system states at any given time where »n is the

number of states and N is the number of time samples of the data record. In order to find
this matrix. is necessary to remove the term I'I,ll,,(D”’ of equation (2.51), which is done

by post-multiplyving it by use of following weights on G matrix:

Gy, = WGW, (252}

where
Wo=1

iy =(ont, o' ) o

Inserting equation (2.52) into equation (2.31) yields:

1 o r Lo\ 1 £ r 3l
G”A[:Nl},l"l(f,d) (@11, @) d)zﬁll“r‘\/ﬂ#d)’((bﬂf,,d)’) (2

19
N
(O8]
S



This equation can be simplified as follows:

Gy, =, 115, @ (@15, @) & =T, (2.54)

From this equation. the state matrix can be found by performing a singular value

decomposition of the matrix G, as shown in the following equation:

G, =X, =USV! (2.

[9
n
N

where U). S) and I} were defined in equation (2.32). From equation (2.54). the state

sequence matrix .\", may be found with the following equation:

X, =517 (2.56)

!

This also confirms equation (2.33) in section 2.2.5 which is shown below:

il
Il
19
|'S]
(JJ

The state sequence matrix has now been properly determined.

2.2.7.2 Estimation of the noise vector in time

At this point, every term of equation (2.2) and (2.3) have been determined. It can also be
interesting to estimate the system noise vector in time. which is done by simply

rearranging equations (2.2) and (2.3) into the following equations:

w(r) = x(r+At)— Ax(r)— Bu(t) {2.57}

v(t) =y (1) - Cx(t)-Du(r) (2.58)
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where the only unknowns are the noise terms on the left hand side. The state noise (1)

and the output noise v(7) are related by the following equation:

w(t) = Kv(t) (

[§®)]
N

9)

Where K is called the noise covariance matrix and can be estimated by a least square

procedure.



CHAPTER 3

INTRODUCTION TO THE FIRST PAPER

The following paper. as explained in the previous chapters, shows the formulation of a
ground dynamics model for a B-427 helicopter. The structure of this model can be said
to be a grey hox model and most of challenges related to this paper were to determine a

proper model structure.

This model was successtully implemented in a level D complete flight model and passed
the Proof of Mutch validation process as defined by the FAA advisory circular AC-120-

63 for a helicopter simulator qualification.
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CHAPTER 4

GROUND DYNAMICS MODEL VALIDATION BY USE OF LANDING
FLIGHT TEST

Nadeau Beaulieu M., Botez R.M.', Hiliuta A"

! Laboratory of Active Control, Avionics and Aeroservoelasticity, Ecole de technologie
supérieure, 1100, rue Notre-Dame Ouest, Montréal, Québec, Canada, H3C 1K3

4.1 Abstract

In this paper, a new formulation for a ground dynamics model of a commercial two-
engine helicopter is validated after touchdown. The inputs of the ground dynamics
model are the velocities and angles at touchdown. and its outputs are the forces and
moments produced by the ground on the helicopter. Expressions for forces and
moments, which depend on the ground contact force, the friction coefficient between the
skids and the ground, and the system stiffness and damping are determined. The system
stiffness and damping are defined between the touchdown point and the center of gravity
in each of the helicopter’s degree of freedom. Expressions for the stiffness, damping and
friction coefficients are validated for two kinds of landing situations: one-engine
inoperative and autorotation. The ground dynamics of the Bell-427 helicopter model are

then used to build and certify a level-D flight simulator.

4.2 Introduction

4.2.1 Objectives

The research presented in this paper is part of a broader project, Development of Global
Model Parameter Estimation Technology. In this project, a global flight dynamics
helicopter model is developed and implemented in a Level D flight simulator and is

validated by use of flight test data.



This paper presents the ground dynamics part of the helicopter flight simulator model.
The ground dynamics model describes the helicopter motion after touchdown. At
touchdown, the impact of the helicopter’s skids with the ground introduces forces and
moments. The moments are calculated between the helicopter’s center of mass and the
touchdown point on the skids and arise from the oscillations of the helicopter structure
and the friction forces between the helicopter skids and the ground. The aim of this
mathematical model is the calculation of the linear and angular accelerations felt by the
pilot in the cockpit, rather than all of the details of the physical interactions between the
ground, the helicopter skids and its fuselage. The helicopter model validation was
realized by comparing the helicopter’s orientation angles and ground speeds time
histories with the landing data time histories. The FAA (Federal Aviation
Administration) tolerances for One Engine Inoperative (OEI) landing and autorotation
landing cases were respected in both cases. An autorotation landing occurs when the
helicopter's engines are inoperative. In this case. the main rotor rpm and thrust are
maintained by the airflow oriented upwards when the helicopter descends. Our general
mathematical model will improve understanding of the helicopter’s behaviour during
touchdown and the principles it uses could be used to study the landing of another

helicopter.

4.2.2 Literature Review

~

Two types of bibliographical research reviews are presented in Sections 4.2.2 and 4.2.3.

4.2.2.1 Collision and contact rigid body theories

There are only a limited number of publications in the field of helicopter ground
dynamics. For this reason, it i1s necessary to refer to rigid body collision and contact
theories in order to find theoretical formulations of an impact between an object and the

ground. Three existing methods can be used in touchdown modeling and in the contact
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forces calculations between the helicopter and the ground. and they are: the /mpulse-

constraint method. the Impulse method and the Penalty method.

The impulse-constraint method was developed first by Baraff (1989). and it uses an
instantaneous impulse to model the impact between a rigid body and the ground. The
magnitude of this impulse depends on the restitution coefficient values. The relative
normal velocity of an object u,.,y colliding with the ground can be expressed with

equation (4.1):
Ugery = —EUgesy (4.1)

where g, 1s the relative normal velocity after touchdown. 1, . is the relative

normal velocity before touchdown and ¢1is the restitution coefficient.

The magnitude of the impulse applied on the helicopter depends on its mass, inertia and
restitution coefficient values. Following touchdown, when the helicopter stays on the
ground, the analytical constraint forces are tangential to the ground and these forces are
solved analytically. This method is computationally expensive as a high number of

iterations are necessary to obtain the constraint forces.

The impulse method is a variant of the impulse-constraint method. The touchdown of an
object with the ground is modeled by an impulse; however. when the object is in contact
with the ground, no constraint forces are applied and the object motion is stopped by use
of multiple impulses. The magnitudes of the impulses are chosen so that the ground
restitution coefficient is zero. This method is easier to implement as it does not require
iterations, but it is less physically exact than the impulse-constraint method. However.
the impulse method is computationally expensive when the object has more than one

contact point with the ground and. therefore, is subjected to a high number of impulses.
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The method was further improved by Guendelman (2003) with the use of lateral

impulses to calculate the static and dynamic friction coefficients.

The third method, called the penalry method, is, by far. the simplest to implement. This
method consists of modeling the ground as a spring and letting the object penetrate into
the ground. At the moment when the object penetrates into the ground, a vertical force
pushes this object back upwards. This force is proportional to the distance with which
the object traveled into the ground. For collision studies, this method is less physically
exact than the impulse method. However, the impulse method must evaluate the exact
collision time between an object and the ground in order to be accurate. while the
penalty method does not require this type of evaluation. The first two methods have

never been applied to helicopters.

4.2.2.2 Application to an unmanned helicopter

The penalty method was used by Johnson (1997) to model the ground dynamics of an
unmanned helicopter. Johnson used the penalty method because the small ground
penetration present in the penalty method can be interpreted in this case as skid
deformation. The helicopter was modeled by use of three-dimensional springs at each

helicopter touchdown point.

In Johnson’s model, when the helicopter was on the ground, a dynamic friction force
was considered in cases when the total force applied on any on the lateral springs
exceeds the maximum static friction force or the lateral velocity of any of these springs
was non-zero.

Johnson did not specify how the stiffness and damping of each spring was selected. This

unmanned helicopter model was not validated by use of landing test data.
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4.3 Methodology

4.3.1 Coordinates system definitions

In the Earth-axis coordinate system, the x-axis points toward the North. the y-axis points
toward the East and the z-axis points downwards (towards the Earth’s center). The body-

axis coordinate system is attached to the helicopter and is defined in figure 4.1

Figure 4.1 Body-axis system of a helicopter where x,y,; are the axes, u,v,w are the
linear velocities, p,q,r are the angular velocities, ¢.0.y are the Euler

angles, FFF; are the forces and L,M,N are the rolling, pitching and
yawing moments.

In the ground dynamics model, a modified Earth axis coordinates system was used. In
this coordinate system. the z-axis points down with respect to the earth and the x and v
axes are parallel to the ground however, the axes are allowed to rotate with the
helicopter in yaw. This implies that the helicopter x-axis points to the longitudinal
direction of the helicopter motion with respect to the ground and the y-axis points
toward the lateral direction of the helicopter motion with respect to the ground. This
coordinate system definition is the most convenient one since the normal force between
the ground and the helicopter is in the vertical direction and the friction forces are
exerted in the x and y directions in the path of the helicopter motion with respect to the

ground. This coordinate system also insures that the rolling and pitching moments on the
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helicopter after the touchdown are not coupled with the yaw angle. These forces and

moments are then converted into the body-axis coordinate system because this set of
coordinates is used in the global simulation. The position [.\‘ v :]i‘ of a point on the
helicopter in the body-axis coordinate system can be converted to the modified Earth-

axis coordinate system [.\‘ ¥ :f, by use of the following transformation.

:[T]mh yV (4.2)

¥

em h

where [T] ., 1s the transformation matrix from the body’s to the modified Earth’s

coordinates system and is defined by successive rotations of the body axes coordinates
system in roll and pitch direction to bring the x and y axes parallel to the earth. This is

represented by the following rotation matrix:

cosf singsind cosgsiné
[T] . =| 0 cos¢ —sing (4.3)

emb

—sinf singcos cosgcosd

This transformation matrix [T] 1s a function of the helicopter’s roll and pitch angles

emb

angles[¢ 0].

The rates of change in time of the Euler angles l¢5.9.(/)J are further calculated as a

function of the angular rates (p,¢,r) in the body axis as defined in many textbooks such

as Nelson (1998):
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¢ 1 singtané
0i=|0 cos¢
W 0 —singsecd

Global Model Simulation Structure

47

—cosgtanf | p
—sing q (4.4)
cosgsecl | r

The implementation of the ground dynamics model in the global simulation model is

diagrammed in figure 4.2.
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Figure 4.2  Implementation of the ground dynamics model in the global simulation

As shown in figure 4.2, the global model for force and moment calculations in time uses

inputs related to the helicopter flight conditions. and produces the forces and moments

applied on the helicopter. These forces and moments are then inputs to the 6 degree-of-

freedom helicopter equations of motion and the rates of change in its dynamic conditions

(velocities, angular velocities, Euler angles and altitudes) are obtained. These rates are

used to update the linear and angular velocities, the Euler angles and the altitudes for the

next time step (# + 7). The last input in figure 4.2 is a logical touchdown flag that is

used to activate the ground dynamics model. This logical flag depends on the altitude of

the lowest point on the helicopter skids (see Section 4.3.3). The global forces and
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moments model includes two calculation parts: (1) for the helicopter’s aerodynamic.
thrust and gravity forces and moments, and (2) for the helicopter’s forces and moments
on the helicopter from ground reaction. friction, and oscillation stiffness and damping

(known as the ground dynamics model).

When the helicopter tlies above the ground, the forces and moments from the ground
dynamics model are zero and the forces and moments from aerodynamics. gravity and
thrust are computed by use of a flight model based on stability and control derivatives
that are based on flight test data and validated by parameter estimation techniques. At
the touchdown point, this type of flight model is no longer valid due to the helicopter’s
high oscillations at touchdown and should be replaced by a simpler Thrust and Weight
model in order to fit the landing data and, at the same time. to ensure the stability of the
computer program for any landing conditions. The forces and moments obtained from
the simpler Thrust and Weight model are added to the forces and moments calculated

from ground dynamics to obtain the global forces and moments.

4.3.3 Touchdown detection

During the helicopter’s simulation, it is necessary to detect when the touchdown occurs
in order to activate the ground dynamics model. The touchdown point is determined by
computing the vertical distance between the ground and the lowest point on the
helicopter skids in the moditfied Earth-axis coordinate system. The altitude of the lowest

point on the helicopter is computed with equation (4.5):

f“’lmresr_pl = A[[CG — Ze.lowest (45)

where . Altjonest pe 15 the unknown altitude of the lowest point on the skids. The altitude

Alr,. . is the altitude of the helicopter’s center of gravity. This altitude is calculated

during the simulation, from the A/r.  at the previous time step. In the landing data. this
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altitude is given by the altimeter reading. corrected to ensure that the altitude equals the
vertical C'G position z. when the helicopter is on the ground. The distance z,,,., is
calculated from the skid geometry and the helicopter Euler angles. The relationship

between the altitude of the helicopter’s lowest point and the center of gravity altitude is

illustrated in figure 4.3:

5—3 —————— — v‘\/l "'\l-\;‘l /"
&3 Gl 2 T“W\\.\\)
> 1 i
-l ] R B
\\\gze. fowe a‘Ath G
—
Ak fowestpoimnt

Figure 4.3  Definition of the altitude of the lowest altitude point on the helicopter
The coordinates of the skid’s extremities with respect to the center of gravity of the
helicopter in the body-axis coordinate system may be found. These coordinates are
converted from the body-axis into the modified Earth-axis coordinate system and the
vertical distance between the lowest skid point and the center of gravity is denoted as
Zelowest- ONCE Z¢ fowess 18 calculated. we can then calculate A/tjpyes pr. Details of the skid
geometry and calculation of the coordinates of the skids’ extremity in the body-axis are

found in the BHT Customer Operation Manual (see figure 4.4 and equation 4.6).

__\ Jj){]?

Reference line

STA80
N Centerline
N
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‘ XKskid fwd
: Xcs
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Figure 4.4  Measurements of the distance between the skids extremities and
helicopter’s CG (2 views)
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From figure 4.4, the coordinates [.vh..x'h.:,,] of each skid extremity with respect to the

center of gravity in the body-axis coordinate system can be found using equations (4.6.1)
to (4.6.4).

At right skid extremity

'\.h = '\‘( G x.\ku/,ajl

Yo = Voa — VoG (4.6.1)
ShTS06
Aft left skid extremity
Y =X 6. 7 Yokd ann
Yo ="Yuui — Yco (462)
T 06
Forward right skid extremity
Xp = X6 ™ Youd, fwd
Yo = Voia = Veg (4.6.3)
S EE .
Forward left skid extremity
Xp = Xe G ™ Vakwd, puud
Yo =" Vaa — Ve (4.6.4)
=<0 G

The coordinates of each skid extremity [x y :L correspond to the distances between

the skids’ extremities and the center of gravity C.G. in the body-axis system and are
shown in figure 4.4. For example, in equation 4.6.1, the longitudinal distance x; of the
aft-right skid extremity is the difference between the longitudinal position (with respect

to a reference line) of the center of gravity x ., and the position of the point on the
skids x ,,, ., - This distance is negative as the aft of the skid is behind the center of gravity

C.G. and the longitudinal axis x points forward. The coordinates found with equations
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(+.6.1) to (4.6.4) will further be converted from the body-axis coordinate system into the
modified Earth-axis coordinate system by use of the transition matrix [7'], given in
cquations (4.2) and (4.3). The vertical distance between the helicopter’s lowest point and

the center of gravity,z_, . 1s found by computing the vertical distance = at each skid

extremity. and then choosing the largest value. Equation (4.5) is further used to obtain
the altitude at the lowest point Alljpyes p Since both the C.G. altitude A/r., and the
distance z, joesr are known. A logical flag (which is related to the altitude value) can be
used to activate the ground dynamics model and to switch from a flight model based on
stability and control derivatives to a simplified thrust and weight model, which is
explained in the next section. This switch is necessary because the stability derivatives
valid for flight are no longer valid when the helicopter touches the ground. A flight
model based on stability and control derivatives estimates the forces and moments on the
helicopter following small perturbation velocities from the trim condition. Upon
touchdown, the helicopter is subjected to high linear and angular accelerations that cause
high and rapidly changing perturbation velocities from the previous trim condition. If
these high perturbation velocities are used in the stability and control matrices, then
unreasonably large and non-valid forces and moments will be obtained which would

lead to the non-convergence of the program.

4.3.4 Simplified Thrust and Weight Model

From the moment of touchdown to the end of the landing, the following assumptions are
made for the aerodynamic, thrust and gravity forces and moments calculated in the

body-axis coordinate system:

1. The aerodynamic moments acting on the rotor and the fuselage are negligible with
respect to the moments resulting from the ground contact and the structural moments
from the fuselage oscillations. Therefore, the moments from the stability derivatives

are neglected and the aerodynamic moments from the controls derivatives are



progressively reduced as the main rotor thrust is decreased and the normal force

between the ground and the helicopter increases.

[§%]

. The aerodvnamic drag forces are negligible in comparison with the ground friction

forces.

['S]

. The resultant gravity and thrust forces in the x and y directions are zero.

Following these assumptions, the only significant resultant force F. after touchdown is
oriented in the z-direction and is calculated from the thrust 7 and gross weight G. W.

forces. This force is expressed in equation (4.7):

¥

g =GV cosOcosg—T 4.7)
In equation 4.7, the force given by the gross weight G. V. is positive and the thrust force
T is negative because in the body-axis system. the z-axis is positive when oriented
downwards as shown in figure 4.5. The gravity forces act in the modified Earth axis

coordinate system and so the additional termcosécos¢, multiplying the gross weight

G. 1", appears.

-
o
r“\

G.W.

Figure 4.5  Free-body diagrams of the forces in the z-direction of the simplified
Sflight dynamics model
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The helicopter thrust 7 is calculated from Prouty (1986) by use of equation (4.8):

5

T = pAC,(QR) (4.8)
where p is the air density, .4 is the main rotor disk area. €2 is the rotor blade rotational
velocity and R is the radius of the main rotor. The term C7 is the thrust coefficient, a
non-dimensional coefficient that is mainly a function of the collective position when the
helicopter is on the ground. An expression to compute the helicopter’s thrust coefficient
as a function of the collective position when the helicopter is close to the ground (In
Ground Effect) has been derived by use of hovering flight test data by Nadeau Beaulieu
(2005). This expression is valid for normal and one-engine inoperative (the helicopter
has two engines) landings when the collective position is close to the trim position. For
autorotation. since the main rotor rotational speed Q decays very quickly following

touchdown. the thrust 7 of the helicopter is estimated by use of the following equation:

T = (Q—) GII'. (4.9)

QIOO%

. . : Q : : .
where G.W. is the helicopter gross weight and (—L’j is the ratio of the main rotor

1007,
rotational speed over its rotational speed when the helicopter is not in autorotation. This
ratio is between 0 and 1. For this equation. it is assumed that when the helicopter lands
in autorotation, the thrust is equal to the gross weight until the main rotor rpm starts to

decay.
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4.3.5 Normal force between the ground and the helicopter after touchdown

Following touchdown, the normal force between the ground and the helicopter is exerted
in the z-direction in the modified Earth-axis coordinate system. When the helicopter
touches down. the ground reaction is represented by the penalty method where a spring
that pushes the helicopter upwards when the helicopter has the tendency to descend
below the ground, and so we can represent the helicopter’s vertical motion by the
equation-of-motion of a spring-mass system. Recall that the general equation of a

spring-mass system in one dimension is:

M:+Cz2+KAz=F,,, +F + F

SxHeEe o, gravity = Thrust (4 1 O)
The terms on the right of equation (+.10) are the aerodynamic. thrust and gravity forces

in the z-direction. Then, equation (4.10) may be written as follows:

+ F

=, Thrust

ZF;,resullanl =ME = F‘_-‘AU,A” + F

z,Gravity

—C.2-K.A (4.11)

where Z F

el 18 the total force acting on the helicopter in the z-direction. With a
three-dimensional body such as a helicopter, the vertical acceleration Z includes the
coupling terms for a three dimensional body. The effects of the coupling terms will be
taken into account in the rigid body 6 degree-of-freedom equations later in the
helicopter’s simulation. From equation (4.11). since the vertical forces calculated from
aerodynamics, gravity and thrust are known, the vertical force equation for the ground

dynamics model reduces to:
F:'.(il) = _C:‘é_K:A: (412)

This model assumes that the skid deflections of a flexible helicopter into a rigid ground

is equivalent to the penetration of a rigid helicopter into the ground, so that the
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deflection Az after touchdown is equal to the negative of the altitude of the helicopter’s

lowest point — /1 For example. if the altitude of the lowest point on the helicopter

lowest pt *
skids as computed by equation (4.5) is minus one inch, it means that the actual altitude

of the helicopter’s lowest point is 0 and the skid deflection is 1 inch.

In equation (4.12), A and C. are linear functions of the skids’ deflection as shown in

the following equations:

K =KK,Az

C. = K,K,Az (4.13)

where K, are constants optimized to match the landing data. Multiplying the stiffness
and damping by 4z insures that the vertical forces are applied progressively on the
helicopter skids as they deform. The variable K, is a correction factor with respect to
the pitch angle of the helicopter. This correction factor is necessary because when the
pitch angle of the helicopter is high and only the rear part of the skid touches the ground

(see figure 4.8). the skids deflect more than when the helicopter is low and the skids

touch the ground completely (see figure 4.9). The evolution of the A’, correction factor

is represented in figure 4.6:

Ke,,

Ky

K3 =

! |

Beq T T )

Figure 4.6 :  Value of the K, correction factor as a function of the pitch angle 6.
The parameter 0, is the equilibrium pitch angle of the helicopter.
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In the above figure, the term 6, is the pitch angle of the helicopter when is at

equilibrium on the ground. This pitch angle is close to zero. Note that the correction

factor A, would have a similar evolution if the initial pitch angle was negative.

4.3.6 Friction forces

The friction forces are produced by the friction between the ground and the helicopter’s
skids, and they decompose in the x and y directions. The magnitudes of the friction

forces are expressed in the following equation:

i

friction = —l’F;,GD (4 14)
This equation is only applied when the helicopter touches the ground. The friction force
direction is opposite to the resultant tangential velocity direction as illustrated in figure

4.7.

Figure 4.7  Friction force Fgiqion opposite to the resultant tangential velocity at
touchdown
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The forces acting in the x-directions can be expressed in figure 4.7 using the following

equation:

E

,GD _ friction =

—F

friction

cosA=—vF., cosi

(4.15)

where the angle A is defined in figure 4.7 and calculated with following equation:

cos/lz(;l%”] and siniz[%ij
tan tan

where

tan om em

Therefore. we replace equations (4.14). (4.16) and (4.17) into equation (4.15

following expression for the friction force in the x-direction is obtained:

U
— e cm
F\',(iD_ friction ! E,(il) = =
llL'/H ‘cm

The friction forces in the y-direction are found with the following equation:

3 v
= _ em
Fl‘,( D fricton T _F;,(il) sSInA = _VF‘:,(,']) [ 5 5 ]
U

2 gyl

om em
where

v=F,+(F, = F)em

(4.16)

(4.17)

). and the

(4.18)

(4.19)

(4.20)



The friction coefficient v increases with the decreasing helicopter velocity 17, =~ given

by equation (4.17) and is expressed as suggested by Sareen (1998) by equation (4.20).
The friction coefficient 1 approaches the static friction coefficient Fs when the
helicopter is at rest. Equation (4.20) for the friction coefficient v is validated for a
number of 7 autorotation landing cases. This validation is realized by comparing the

time histories of the ground tangential velocity I of the helicopter model with the time

histories of the ground tangential velocity of the landing records.

The validation studies give the values of static friction coefficient F equal to 0.4 and are
situated within the range corresponding to concrete and steel (0.30-0.70) found in the
literature from Beer and Johnston (2003). The kinetic friction coefficient F, and the
exponential decay coefficient S at touchdown are dependent upon the magnitudes of
the helicopter’s oscillations in roll and in pitch at the time of the touchdown. The

parameter . roughly proportional to the amplitude of these oscillations at touchdown. is

defined from landing data as follows:

A=K § +K0 +K (¢-9,)+ K, (0-6,,) (4.21)

ey

where ¢, and 6, are the roll and pitch angles at rest on the ground (at the end of the

landing record) and the coefficients K, with i= [3, 4. 5, 6] are constants found by
optimization to match the autorotation landing tests. This parameter A4 is computed at the
time of the touchdown. The rate of change of the angles must be taken into account
because if, at the time of touchdown, the helicopter has low roll or pitch angle. but a
high roll or pitch rate. it means that it oscillates with high amplitude and it is necessary

for the simulation to evaluate the angular rate in order to detect it.

The relationship between the kinetic friction coefficient Fy in equation (4.20) and the

parameter 4 given by equation (4.21) can be expressed by the following equations:
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F. =K, + K" ) g<k (+.22

10

F.=K,+K, . A>K,,

where the constants A, with i = [7, 8, 9, 10] are optimized to match the landing data for 7
autorotation cases. Equation (4.22) indicates that if the helicopter does not oscillate in

roll or pitch at touchdown. the term Fy is low. If the initial oscillation amplitude is

increased. then the term Fj increases up to a maximum value of (K, +Aj). An

exponential term insures a progressive transition between the cases with and without

oscillations at touchdown.

[t was found that the exponential decay coefficient £ varied linearly with the kinetic

friction coefficient Fy as shown in equation (4.23):
p= KllF/\' + K12 (4.23)

where the constants K, with i= [11, 12] were found by optimization to match the
autorotation landing data. If the helicopter velocity with respect to the ground is zero,
the static friction force is applied. The static friction is equal and opposite to any other
force applied on the helicopter unless this force is higher than the friction force defined
with the static friction coefficient. In this case, the helicopter starts moving and the

dynamic friction equations are applied.

4.3.7 Rolling and pitching moments from ground dynamics after touchdown

When the helicopter touches down, the lowest part of the helicopter skids touches the

ground as shown in figure 4.8. At this moment. there is an offset between the contact
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normal force F.;, given by the equation (+.12). the friction force in the x-direction (sce

equation (4.18)) and the helicopter’s center of gravity.

This offset acts as a lever arm on the normal contact force which creates a rolling and a
pitching moment. These moments reduce the helicopter angles until the skids completely
touch the ground and are called « Pivor» moments. When the helicopter skids are
completely on the ground, the helicopter keeps oscillating depending on the tyvpe of
ground impact as illustrated in figure 4.9. At this time, the moments provided by the
ground dynamics model are determined by the skids’ stiffness and damping and are
referred to as « Oscillation » moments. A logical flag is used in the computer programs
to progressively switch between « Pivot» moments and « oscillation » moments

depending on the angles values.

-~
n

m

Figure 4.8  Rolling and pitching pivot moments calculated from the friction and
initial ground contact forces at the helicopter touchdown point. These

moments are called Lpi,o for rolling moment and Mpi, for pitching
moment.
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Figure 4.9  Helicopter roll and pitch oscillations following the skids’ touchdown on
the ground. The moments are called L oscinaion for rolling moment and
M oscittation for pitching moment.

4.3.8 Rolling moments L during initial “Pivot” phase

The “Pivot " rolling moments L . on the helicopter at touchdown can be represented

pivol

by the following equation:

L. ..=F.

_ ; 11,
pivot AW ’yluvcr_arm CL,[)I\’()I¢ (4‘-4)

where F is the vertical force in the z-direction times the lateral distance

zoround .1 '/cver _arm
between the skid touching the ground and the center of gravity of the helicopter.

C ¢ is a damping term where ¢ is the rate of change of the helicopter roll angle.

L.pwot

and C is a damping coefficient. The lateral distance between the touchdown point

L, pvot

and the center of gravity y,.,, ., IS defined using equations (+.25):

)"’lever_arm = (-u\‘klal + ng)COS¢ ¢ > ¢eq (4251 )

Yiever _arm = _(}YSklu' - —vcg ) cos ¢ ¢ < ¢uq (4’25 2)



The angle ¢, is the equilibrium roll angle of the helicopter, and therefore, the sign of the

term v, .. will change depending on which side the helicopter rolls with respect to

_arm

the equilibrium angle. When the roll angle of the helicopter is equal to the roll angle at
equilibrium, the “oscillation™ rolling moment equation is used. The damping coefficient

i is described by the following equation:

L,pivot

( =K, +K,4° (4.26)

'
L, pivot

The constants K; with i= [13. 14] are empirical constants adjusted so that the model
matches the landing data. Note that the roll-damping coefficient is limited to a maximum

value.

4.3.9 Pitching moment during initial “Pivot” phase

The Pivot pitching moment M can be determined by use of equation (4.27):

Pivot

M, =—KsF, opX +K, F 0 (4.27)

lever _arm 167 x,GI)*=e

Pivot - C/\/ ,pivot

where the term —F represents the product between the force in the :z-

X
z,ground " lever _arm

direction and the longitudinal distance x,, ,, between the touchdown point and the

helicopter center of gravity. This term is negative because, as shown in figure 4.8, a

negative contact force F. ., (pointing up) in a negative x-coordinate (aft of the c.g.) will

Pwort *

give a negative (nose down) pitching moment M

Note that the distance ., ,, 1S the same as the longitudinal position of the skid

extremity in modified earth axes coordinates system.
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The term £, z, in equation (4.27) represents the product between the friction force in

the x-direction and the vertical distance between the touchdown point and the center of
gravity. This term is positive because a friction force will point aft of the c.g. and give a

negative value of the force F, ;, (defined as positive when the force points forward of
the c.g.). A negative force F, _;, will cause a negative (nose-down) pitching

moment A/

Pwot *

The third term, —-C @, is a damping term where C is the damping coefficient

M, pivot M pivot

and @ is the rate of change of the helicopter pitch angle. This term is negative because it
opposes the helicopter angular velocity. It was found that the damping coefficient which
best fits the landing data is proportional to the square of the rate of change in pitch

angle, which can be expressed by the following equation.

C

M, pivor — K|7 + Klgéz (4.28)
The constants K, with i = [17, 18] are empirical constants adjusted so that the model
matches the landing data. Note that the pitch-damping coefficient is limited to a

maximum value.

If the helicopter touches down with a positive pitch angle and a positive pitch rate, the
touchdown point penetrates into the ground much faster for the same rate of descent than
if the helicopter had no positive pitch rate. When this situation occurs, a large negative
moment is applied for a very short time between the ground and the helicopter and the
helicopter starts pitching down much faster than if it had landed with no positive pitch
rate. The pitching moment equation from the ground dynamics model requires an

additional term to capture this effect properly. Equation (4.27) therefore becomes:
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M F —C 0  (4.29)

—_ BT L . g = 1
Pivor — AIS (] + l\plh/mlru ) :_(i/)'\/u\'cr‘ arm + AI()F\',GI)“U M pivot

where the term A in equation (4.29) is an additional correction factor added to the

pichrate
pitching moment equation at touchdown. This correction factor is necessary to model the
large magnitude short duration moment that occurs when the helicopter lands with a

positive pitch angle and a positive pitch rate. The term K is represented by the

pitchrate

following equation:

K = KIQKB,/u/d:qO (4.30)

pitchrate

where ¢, is the initial positive pitch rate at touchdown and K Is a correction factor

6, pitch

that progressively reduces the value of K to zero as the pitch angle starts to

pitchrate
decrease after touchdown. Equation (4.30) implies that the additional pitching moment
at the instant of touchdown is proportional to the initial positive pitch rate. The value of

the correction factor K is represented in figure 4.10 where the term 8/6, is the

8, pitch

ratio of the helicopter pitch angle over its initial pitch angle at the instant of touchdown.

Kll,pmh

|
07 1008,

Figure 4.10  Value of the correction factor K with respect to the ratio between

0, pitch
the helicopter pitch angle and the pitch angle at touchdown.
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The term K, ,, represented in figure 4.10 insures that the correction factor K of

pitchrate

equation (4.29) changes the pitching moment only for a brief time and that this effect

decreases as the helicopter starts rotating toward its equilibrium pitch angle.

4.3.10 Rolling and pitching moments during the oscillation phase

Once the helicopter skids completely touch the ground, the helicopter oscillates around

its equilibrium pitch and roll angles 6, and ¢, as shown in figure 4.9. The moments

due to these oscillations are found by use of equations:

Loitanon = =K, (¢ - ¢u/ )_ C, (¢ - ¢q) (4.31)
Al()m/lunon = —KM (9 - euq )— C,\I (9 - 9uq ) (432)

We emphasize here that in these equations, no specific stiffness or damping components
are represented, but the overall rolling and pitching motion resistance is represented in

these equations when the helicopter is on the ground.

4.3.11 Roll stiffness and damping

The roll stiffness was adjusted to match the frequency of the roll oscillations after
touchdown. The autorotation cases were used to adjust the stiffness because these
landings contain more roll oscillations. This study determined that the roll stiffness that
insured a good match with the landing data could be represented by a constant. The
value of this constant doubles when its skids are completely on the ground after the

initial rotation of the helicopter.
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From autorotation landing cases, it was found that the roll oscillations damped
frequency and amplitude decay. which both depend on the roll damping C, ., vary with
the helicopter’s tangential velocity. The roll damping increases with a decreasing
tangential velocity to fit the landing autorotation data. The roll damping C; is modeled

by use of equations (4.33):

Oy = Ky # Ky o (4.33)

where the constants A, with / = [20, 22] are adjusted to match the landing test data. From

equations (33). is noticed the lower limit of the damping coefficient C; is A,; when the
tangential velocity is high and its upper limit is ( K, + K, ) when the tangential velocity

1S zero.

The damping coetficient C;, may be lower at higher tangential speeds due to the fact that
as the helicopter oscillates in roll. the friction force increases alternatively on each skid,
which produces a certain transfer of energy that excites the helicopter’s rolling motion.
The value of the constant K, is lower if the helicopter has a high positive pitch angle
(using the “pivot™ pitching moment equation) than if it sits completely on its skids

(using the “oscillation” pitching moment equation).

4.3.12 Relationship between rolling motion and sideward acceleration of the
helicopter

After touchdown, since the roll center of the helicopter is not necessarily at the same
position as the center of gravity, when the helicopter oscillates in roll. the pilot feels a
sideward acceleration. This acceleration is reproduced in the model by an oscillating
sideward force in phase with the helicopter roll angle oscillation, and is represented by

the following equation:
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F

Vv,GDoscillation

= K,.[

“Osaillatton (434)
where K3 is a constant adjusted to match the lateral acceleration in the data. This force
is added to the friction force in the y-direction from equation (4.19). There was no such
relationship observed with the force in the x-direction and, in this direction, the force
only comes from the friction with the ground. Therefore, the total force in the x and »-

directions becomes:

E

x,GGD

= F

x,GD _ friction

F op=F + KoL

/ 3
v,GD v,GD _ friction (4-) 5)

(scillation

This effect is most noticeable in autorotation landing cases where the helicopter roll

oscillation is high.

4.3.13 Pitch stiffness and damping

4.3.13.1 Influence of the pitch angle 6 on the pitch stiffness

From the flight test landing data, we concluded that the pitch stiffness is a non-linear

function of the pitch angle & as shown in figure 4.11:

Figure 4.11  Variation of pitch stiffness Ky, with the helicopter pitch angle 0
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In figure 4.11, it is known that if the pitch angle is aboved, the pitch stiffness

weshold °

increases with the pitch angle. Equations (4.36.1) and (4.36.2) were selected because in
the data, the oscillation pitch angle € never exceeds Gpresnold regardless of the landing

test type.

K :K24;(‘9’<]0

Threshold )

_ e
K‘\I,l - A24 + 1\35

9 - 9’1‘/"«.\}14:/1/ ‘ "('9‘ - ‘9

Threshold )

where the constants K, with i= [24, 25] are empirical constants found by optimization to

match the landing test data.

4.3.13.2  Influence of the angular velocity 6 on the pitch damping

[t was found from landing test data that the helicopter’s pitch oscillations decayed very
quickly. but the helicopter kept oscillating at low amplitudes and low angular velocities
until its forward velocity on the ground was zero. A very good method to model these
steady oscillations is to increase the helicopter pitch damping coefficient with the square
of the pitch angular velocity @; therefore, when the square of the angular pitch velocity
€ is low, the damping is low and the helicopter has a steady oscillation, which is

expressed with the equation (4.37):
Cys =K26+K1792 +f(I'/-L,,,) (4.37)

where the constants K; with i= [26, 27] are empirical constants found after optimization

to match the landing test data. The rate of change of the pitch angle is squared because
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Tan

this formulation gave a better match with the landing data. The term f(V),,) is a

function of the forward velocity, which will be explained in the following section.

4.3.13.3  Influence of the forward velocity

As noted above, it was observed that pitch oscillations last until the forward velocity of
the helicopter is zero. This means that the helicopter oscillates longer (6 to 20 seconds)
during autorotation landings when the forward velocity at touchdown is high than for
one-engine landings (less than 2 seconds) when the forward velocity at touchdown is

very low.

These situations were modeled by a damping that increases exponentially with
decreasing ground tangential velocity V7, (forward velocity). An inverse exponential
dependence of the pitch damping Cy,on the helicopter tangential velocity I7,, models

this effect very well and so equation (4.37) becomes:

Cy =Ky + ](:27‘9.2 + K:s"_l\.:"””" (+.38)

The exponential decay term K,.e *''™ is chosen to obtain an additional damping of
p 30 pmg

zero at high velocity, and a constant additional damping at low velocity. A general
expression for pitch stiffness Kj; and pitch damping C, can be obtained by a

combination of equations (4.36), (4.37) and (4.38):

Ky =K, QH‘ < ‘9‘ (4.39.1)

Threshold )

Ky2 =Ky + Ky (JGI 2 ’(9 (4.39.2)

Threshold )

6 - 97'hru.\hu[d

Cy = Ky + K,,07 + Ko o (4.39.3)
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4.3.14 Yawing moment from yaw damping term Nep_damping

When the helicopter touches down. the only yawing moment .\' from the ground is a
damping term Cy due to friction, which reduces the heading angle rate of change of the
helicopter 7 following touchdown. The yawing moment N can therefore be expressed
by use of equation (4.40):

N

GD _damping = —C,’\" (// (440)
Contrary to the roll and pitch equations, there is no heading equilibrium position and
therefore, there is no stiffness term. As for the roll and pitch damping terms, the
damping is negative because it opposes the yaw motionys . The general expression for
the vaw damping varies with the normal force between the helicopter and the ground

and the helicopter pitch angle. There are two different expressions for the yaw damping

coefticients:

CN,pl\w/ = _K30F‘:‘(}[)

Cl\/_n.\u/[almn\' = _K3] F‘:v(’il) (44 1)
where €, is the yaw damping when the helicopter lands with a positive pitch angle

and rotates with only the rear part of its skids touching the ground (see figure 4.8). and

By is the yaw damping when the skids are completely on the ground and the

N ,oscillation

helicopter pitch angle is small (see figure 4.9). It is important to remember that the

normal force F.,, is defined negative when in upward direction. therefore, after

touchdown, a normal force from the ground pointing up gives a negative value of F_ .

The slopes K33 and K3, are very high at the beginning of the touchdown and are lower
when the weight on the skids is more than a certain threshold. This is illustrated in figure

4.12:
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Cn 2

/
CN,OspiIIations
/
/

/
1/

CN,Pivot

|
T
K34 “Iz,GD

and C

value of the normal force between the ground and the helicopter
(defined as negative up).

Figure 4.12  Variation of the damping terms C vs. the negative

N, pivot N oscillation

The arrows and the dotted line on figure 4.12 show a typical evolution of the yaw
damping coefficient during a landing. Point O represents the initial contact with the
ground when there is no yaw damping because there is no force between the ground and
the helicopter. From point 0 to point 1, the helicopter pitch angle is positive, meaning
that only the rear part of the landing gear touches the ground and the C

N, pivot danlplng

curve is used. Regardless of the landing record, the damping increases rapidly to point 1
(within a fraction of a second) as more weight is added to the skids. The position of
point 1 will be different for each landing record depending on the normal force between
the ground and the helicopter, which, in turn, depends on the helicopter thrust and
weight. The yaw damping will be nearly constant while the helicopter rotates to its

equilibrium pitch angle.

From point 1 to point 2. the helicopter pitch angle goes progressively to the equilibrium

pitch angle @, . and the damping coefficient is progressively changed to The

N oscillations *

final position of point 3 will also be different for each landing record. Note that the



normal force between the ground and the helicopter is almost always higher than A’
which is the intersection between the two slopes. It would have been possible to match
the data using only the slopes when the normal force is higher than A’33 and defining an
initial value of the yaw damping above zero, but it would not have been physically
correct because the yaw damping coefficient must be zero at the initial contact between

the helicopter and the ground.

4.3.15 Yawing moment from roll coupling Ngp ron

The second component of the yawing moment is from a coupling between the roll and
yvaw motion of the helicopter. This coupling produces oscillations in yaw that are in
phase with the oscillations in roll. This is calculated by use of following equation:

N

N6p ron = KL (4.42)

Oscillation

This coupling is only present after the helicopter has done its roll rotation and is
oscillating in roll. Using the damping and coupling terms. the yawing moment on the

helicopter from the ground dynamics model is described by use of equation (4.43):

Ngp =N + N(';[)Jn// (4.43)

GD _damping

4.4 Results

The ground dynamics model has been validated for the following 14 landing cases, but

results obtained with this model were presented for 8 landing cases:

« One engine inoperative (4 cases)

e Autorotation landing (4 cases)



Four cases of each category are shown in this paper. For the helicopter model validation.

the initial conditions of the simulation were taken from the measured data.

For the ground dynamics model validation, we use the attitudes calculated from flight
test data as initial conditions for the ground dynamics simulation. In figures 4.13 and
4.14, the model output is represented by a full line and the dotted line represents the
FAA (Federal Aviation Administration) tolerance bands. The FAA tolerance bands are
the values obtained from the landing data plus or minus the allowable errors of the
simulation model as defined by the FAA regulations. For example, if the tolerance band
is £1.5 ., the upper dotted line represents the value from the landing data plus 1.5
degrees and the lower dotted line represents this value minus 1.5 degree. A simulation
model is considered acceptable and certifiable by the FAA if it remains between these

two dotted lines. The FAA tolerances bands are:

e One engine inoperative landings: ¢:*1.5 ;0:+1.5 ;i :+2 and the tangential

velocity V7., =+ 3 knots.

e Autorotation landings: ¢:+2":6:+2 ;i : £5 and there is no FAA tolerance band

on tangential velocity V7.

4.4.1 Results for One-Engine Inoperative OEI cases

Figure 4.13 shows the time histories of the roll angles ¢, pitch angles 6, yaw angles
and velocity Vg, for the 4 OEI (One Engine Inoperative) landing cases. The other
landing cases are quite similar in form and for this reason, are not shown here. Please
note that no numbers are shown on the x and y axes for proprietary reasons. From figure
4.13, it is clear that the ground dynamics model outputs are within the FAA tolerance

bands. In these cases, the simplified thrust and weight model was applied just before
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touchdown. but when the helicopter touches down, then the « pivor » rolling L and the
pitching .M/ moments (given by equations (4.24) and (4.29)) return the helicopter slowly
to its equilibrium position. The equations for the « oscillation » moments L and M are
also used  (equations (4.31) and (4.32)). It can also be observed that the tangential
velocity 177, decreases slowly to zero due to the friction. In the other cases. the
tangential velocity was already zero and remained at this value. The rate of change of
the yaw angle slowly decays due to yaw damping. Notice that for a simulator
qualification, it is required to demonstrate the simulator that the simulator match the
landing data for three OEI landing cases: one category A landing, one category B
landing and one landing following a rejected take-oft. In the ground dynamics model. a
good match was achieved for seven OEI landing cases, which is more than sufticient to

qualify it the model for a level D flight simulator.
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4.4.2 Results for autorotation cases

Results for 4 out of the 7 autorotation cases that were used to validate the model are
shown in figure 4.14. The values on the x- and y-axis have been removed for
confidentiality reasons. In this figure, in order to improve the readability of the results,
the time length of the velocity plot is three times longer than the timescale on the angles
plot. The time length is represented by the variable x in figure 4.14. The time length of
the angles plot is x and the time length of the velocity plot is 3x (three times longer). In
these autorotation cases, the results are within the FAA tolerance bands. The results for
the other five cases were not displayed, but they were very similar to the results
displayed in figure 4.14. It can be observed that the model is mostly driven by the
helicopter oscillations once its skids completely touch the ground. The tangential
velocity to the ground is initially higher in these autorotation cases than for one-engine
cases. Notice that for a simulator qualification. it is required to demonstrate the
simulator that the simulator match the landing data for only one autorotation landing
cases. In the ground dynamics model. a good match was achieved for seven autorotation
landing cases, which is more than sufficient to qualify it the model for a level D flight

simulator.
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Figure 4.14  Results for four autorotation landing cases
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4.5 Conclusions

A new formulation for the helicopter ground dynamics was developed based on the
available landing data. This model was successfully validated with landing data from
one-engine inoperative and autorotation landings. For this validation. the initial

conditions of the simulation were taken from the measured data before touchdown.

On this model. a spring with stiffness and damping was used to calculate the normal
forces on the helicopter at touchdown. Friction equations were used to model the speed
decay of the helicopter following touchdown while the friction coefficient was a

tunction of the helicopter oscillations and its velocity.

For rolling moments (L) and pitching moments (/) calculation, two different models are

used:

1-A model for the rolling and pitching moment is applied before the skids are

completely on the ground (see figure 4.8). which rotates the helicopter.

2-A model based on the torsional stiffness and damping of the fuselage is applied once

the skids are completely on the ground (see figure 4.9).

The yawing moment at touchdown is computed with a damping term that varies with the

normal force between the ground and the helicopter.

The results show a good agreement between the ground dynamics model and the landing
data. For the one-engine landing cases, as shown in figure 4.13, the absolute values of
the roll and pitch angles of the helicopter decreases slowly to their equilibrium positions.
The yaw angle rate of change also decrease until the yaw angle does not change and the

tangential velocity decreases slowly to zero. In the autorotation cases (see figure 4.12),
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the roll angle of the helicopter oscillates with larger amplitude than for one-engine cases
and the oscillation decays to the equilibrium position. A smaller oscillation is also
present in the pitching motion. The rate of change of the yaw angle and the tangential

velocity decays to zero due to the ground friction.
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CHAPTER 5

INTRODUCTION TO THE SECOND PAPER

The second paper of this thesis deals with parameter estimation methods applied to the
B-427 helicopter. This time. a hlack hox model is used to simulate the main rotor torque.
tail rotor torque. engine torque and main rotor speed. These parameters are calculated in
time with state-space models which use non-linear inputs. The parameters describing
these state-space models have been identified with the subspace system identification
method described in Chapter 3. These parameters were further optimized with the
Levenberg Marquardt minimization algorithm. The model was implemented as a
simulation and as a prediction. and could be used in the following applications:

-A mathematical model of a flight simulator

-A health monitoring system on a helicopter

-A control system to limit these parameters below their maximum value during

helicopters operation
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CHAPTER 6

SIMULATION AND PREDICTION OF THE HELICOPTER MAIN ROTOR,
TAIL ROTOR AND ENGINE PARAMETERS BY USE OF SUBSPACE
SYSTEM IDENTIFICATION METHOD

Nadeau Beaulieu M., Botez R. M.

Laboratoire avancé de recherche en commande, avionique et aéroservoélasticité, Ecole
de Technologie Supérieure, 1100, Notre-Dame West, Montréal, Québec, Canada, H3C
1K3

6.1 Abstract

In the framework of this research project, the main rotor torque, tail rotor torque, engine
torque and main rotor speed of a helicopter in forward flight are estimated by using a
state space model from flight tests data. The state space model inputs are non-linear
terms made of combinations of pilot controls and helicopter states. The model simulates
the helicopter outputs while knowing the states and controls at all times. It was also
implemented as a prediction tool, for possible use in an envelope protection flight
control system in which the states, controls and outputs are known at the present time,
and predict the future helicopter states and controls following to pilot controls time
history. The state space model parameters are identified by using the subspace
identification method, a relatively recent non-iterative algorithm which constructs an
observability matrix from input and output data and uses this matrix to obtain the state-
space matrices. The obtained parameters are then optimized with the Levenberg-
Marquardt output-error method. A comparison of the results with and without
optimization is also conducted. The results show that the subspace method provides a
good estimate of the outputs within the FAA tolerance bands and that these results can

further be improved by use of the minimization algorithm. The generated model using



the subspace method is found to be very good for prediction applications, which makes

it a promising model for flight control simulator applications.

6.2 Introduction

In order to ensure the safe and efficient operation of a rotorcraft, it is very important to
understand the relationships between the parameters related to the aerodynamics and
controls of rotors and engines, such as the main rotor torque, the pilot inputs and the
helicopter states. The focus of this paper is the generation of mathematical model for the

main rotor torque, tail rotor torque, engine torque and main rotor speed of a helicopter.

The model uses as inputs the rotorcraft states and the pilot controls. Different
implementations of such a mathematical model can be used in different applications

such as flight simulators and envelope protection control systems.

In a flight simulator application, the rotorcraft states are given by the flight simulator
model, which uses these parameters in conjunction with the pilot control inputs to
estimate the main rotor torque and displays its value in the cockpit. It is very important
for the pilot safety to learn how his manoeuvres affect the rotors and the engines,
because of the fact that when these parameters exceed certain limits, they can have a

detrimental effect on the helicopter’s fatigue life and its handling qualities safety.

Such a mathematical model can also be used in envelope protection control systems. In
this case, it is necessary to ensure that some values remain within their prescribed limits.
In this paper, the limit parameters are the model outputs as defined previously. In order
to prevent such a limit violation, it is necessary to know the relationship between the
future control inputs and the future values of the limit parameters. This relationship can
be found by constructing a predictive model which uses the states and outputs current
values from flight test data to predict the future values of the outputs based on assumed

futures values of the pilot inputs. Inverting this model provides the future control inputs
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that would result in a limit violation. Once these relationships are known, according to
Jeram et al. (2005) there are two possible options: autonomous restraint, aural and

visual limit cues and carefree manoeuvring control systems.

In the first option, the control system can override the pilot and change the control inputs
in order to avoid reaching the limit, which is suitable whenever a violation of the limit
can lead to a catastrophic accident. Examples of such limits are the rotorcraft stall and
airspeed limits. The main advantage of this option is that the pilot workload is greatly
reduced. However, such systems de-emphasize pilot judgement in critical decisions. In
the second option, the system only warns the pilot of approaching limits without
overriding his actions. This method is the opposite of the first one in the sense that the
pilot has full authority over the aircraft, but a greater workload. Whenever the pilot
needs to perform very aggressive manoeuvres, it may also lead him to be over cautious

to avoid violating the limit, which leads to a decreased aircraft performance.

There is also a third option which is a compromise between the first two options. In this
case, a progressive resistance 1s implemented on the helicopter controls as the limit is
approached. The pilot does not need to monitor his controls to know how far the limit is
because he knows it intuitively from the resistance exerted on the controls. If he wants to
perform an aggressive manoeuvre, the pilot can chose to follow the force cue and allow
it to guide him along the helicopter limit or he can chose to override it if he requires a
greater vehicle performance regardless of the risk (for example, to avoid an obstacle).
This option is suitable when a limit violation (e.g. main rotor torque or main rotor speed)
can be detrimental, but not necessarily catastrophic. According to a survey of 70 UK
military helicopter pilots done by Massey et al. (1988), 75 % of the pilots estimated that
having to monitor the torque limit had a significant impact on mission performance, 60

% of them also believed the same true for rotor speed limits.



In this paper. a predictive model that could be used in such a control system is
generated. The model structure used in this paper so as to estimate the limit parameters
is a state space model with non-linear inputs. This state space model was constructed
with B-427 helicopter flight test data. In order to obtain the torque response to a broad
range of motions, 2311 manoeuvres described by Jategaonkar (2006) were performed
on each helicopter control at different true airspeeds, altitudes. gross weights and center
of gravity positions. The parameters in the state space matrices were identified by means
of the subspace identification method. The MATLAB" implementation of the subspace
system identification method explained in details by Ljung (1999, 2006) is an efficient
non-iterative algorithm which uses inputs and outputs data to obtain directly the system
observability matrix. This matrix is further used to obtain the 4,B,C,D state space
matrices. Because it is non-iterative, the subspace identification method is much faster
than alternative methods which require optimization. Furthermore, it is not affected by
iterations, such as the possible convergence of the solution toward the local minimum
instead of the global minimum and does not require a-priori knowledge of the
parameters values. Following the application of the subspace method to obtain the initial
guesses for the parameter values in the state space matrices, an output error method
based on the past Levenberg-Marquardt minimization algorithm was used to refine the
results. The applications of these methods in the Aerospace Industry will be detailed

next.

In 1995, Howitt used a simplified mathematical model to estimate the engine torque and
main rotor torque of the BO-105 helicopter following a collective step input and
designed carefree control laws based on this simplified model. Many of the research
efforts that followed used Neural Networks to predict the limit parameters’ future value.
Menon et al. (1996) were able to predict the main rotor speed of a helicopter at one
sample time instant in the future with an adaptive linear neural network model. In this
algorithm, the neural networks” weights were adjusted on-line using the prediction error

and showed one case with a low prediction error (less than 0.25 %). Neural networks
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were also used to predict the main rotor hub moments for a load monitoring technology
application on the SH-60 helicopter by McCool (1998). In 1999, Horn and Prasad used
offline trained Neural Networks to predict the control inputs that would result in a
violation of the torque. load factor or angle of attack limits on the V-22 aircraft in
dynamic trim. The dynamic trim was defined as the condition for which the fast aircraft
states (angular rates, etc.) have reached steady state and the slow states (Euler angles,
TAS. etc.) continued to vary in time. However, they did not worry about the limited
parameters’ peak value following a control input. Yavrucuk (2001, 2002) also estimated
the dynamic trim limited parameter of the rotorcraft, but used an approximate linear
model corrected by an on-line trained adaptive neural network. Sahasrabudhe, Horn and
Sahani (2002, 2004, 2005) also used a neural network to estimate the value of a limited

parameter dynamic trim and added an approximate linear model to obtain its peak value.

In the methodology section provided below, we will explain the flight conditions
covered by the model as well as the manoeuvres used in its identification. Then, the
implementation of the model in the simulation and the details on the subspace
identification algorithm will be given. The method to use the model as a prediction tool

for an envelope protection control system application will further be presented.

6.3 Methodology
6.3.1 Flight conditions and manoeuvres used in the model identification and
validation

Different state space models were identified for flight tests conditions expressed by
different altitudes, gross weights and center of gravity positions in forward flight, see
Table 6-1. For each flight test condition, a number of different forward flight records
(see column 6 in Table 6-1) was used to identify the models. The other records were
used to validate them. One record consists of a flight time history which starts when the
helicopter is at trim, then the pilot performs a manoeuvre and records the effects of his

manoeuvre on the helicopter states and controls. The manoeuvres are here called 2311
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because they consist of 4 step inputs lasting respectively 2, 3, 1 and 1 seconds. Such

manoeuvres are used because they excite both the short and long period frequencies of

the helicopter motion.

Table 6.1

Flight tests conditions used to identify and validate the proposed model in forward flight

Flight Gross Center of Altitude True Number | Number of
test Weight gravity Range airspeed | of records records
condition position range used to used to
identify | validate the
the model
model
Light or Forward, *1000 ft | knots
Heavy Mid or Aft
1 Heavy Aft 4-8 60-160 42 12
2 Heavy Aft 8-12 50-160 49 20
3 Light Aft 3-6 40-110 28 12
4 Light Aft 6-8 35-130 69 22
5 Light Aft 8-10 50-70 32 12
6 Heavy Mid 5-8 30-130 2] 4
7 Heavy Fwd 0-4.5 40-140 33 12
8 Heavy Fwd 4.5-7 30-130 30 8
9 Heavy Fwd 7-10 30-130 56 20
10 Light Fwd 4-9 30-130 49 16
Total 409 138

For each record, a 2311 manoeuvre was performed on one of the helicopter’s controls

(collective, longitudinal cyclic, lateral cyclic and pedal).

Figure 6.1 shows an example of these 2311 manoeuvres:
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Figure 6.1  Sample time history of a control position during a 2311 manoeuvre

In the following section, the model inputs and outputs will be described.

6.3.2 State Space model inputs and outputs

In this paper, the main rotor torque, tail rotor torque, engine torque and main rotor speed

are modeled by using state-space models. Figure 6.2 shows the structure of the

mathematical model for the estimation of these parameters:

Control inputs and rate
of change of control
inputs from the pilot
from flight test data:

-Collective
-Longitudinal Cyclic Estimated Helicopter
-Lateral Cyclic arameters:
; Polynomial combination of L ;
-Pedal input -
— states, control inputs and rate of ——» S{:TBE EPSC)E — _QA;;%?J?:;?(E:‘?

change of control inputs ;
9 P -Engine torque

-Main rotor speed

Rotorcraft States from
flight test data —

(u,v,w,p,q,r)

Figure 6.2  State space model architecture for the identification of the main rotor

torque
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In figure 6.2, the mathematical model inputs are the helicopter states, the pilot control
inputs and their control inputs” rates of changes. The helicopter states are the linear
velocities », v, w and angular velocities p, ¢, r in the body axis coordinate system. The
helicopter states were measured on the helicopter during the flight test program. If the
model was implemented in a flight simulator, the states could be provided from the
simulator flight model. and should have very close values to the states values from the
flight test data if the helicopter flight model would be properly designed. The actual state
space model inputs are the previously mentioned inputs and higher order terms made of
products of different inputs. For example, for the main rotor torque. the state space

model inputs are:

I deol )
coll.long.lat. ped, ol LV, Pif s
coll’ ,coll - deoll scoll-q,coll -u,u- deoll .
]”purs‘\laml(uhrrTorquc = CI[ Ci’ (61 )
dcoll  dcoll , dcoll "
v .q- ,coll™ - .coll” -u,
dt dt dt
_wz,r w, ped” .1 ped i

where coll is the collective position, long is the longitudinal cyclic position, /at is the
lateral cyclic position and ped is the pedal position. Notice that even though state space
models usually represent linear models, this model is highly non-linear because the
state-space model inputs are non-linear. The same model structure was used for the tail
rotor torque, the engine torque and the main rotor speed. but with different higher order
terms. The higher order terms were selected by trial and error and each non-linear term
was kept only if it improved the results for the records used for the identification and for

the records set aside for the validation.



90

6.3.3 Subspace identification method

The State Space matrices parameters (see figure 6.2) were obtained by using the
subspace system identification algorithm, which is briefly described in this section.
Generally. a discrete linear model is defined by the following equations (6.2.1) and

(6.2.2):

x(t+AT)  =x(1+AT)  + K, V(0,4 (6.2.1)

nxl nxl

(), =), e (6.2.2)

where 7 is the time and AT is the time increment equal to the record sampling rate. In
equation (6.2.2). the vector v(7) represents the system’s measured outputs from flight test

data, y(r) represents the system’'s estimated outputs and V(1) represents the error

between the flight tests and the estimated outputs which is a white noise if the system
matrices are properly estimated. If the system is properly identified, the vector ¢ is a
white Gaussian noise vector with a zero mean value. The index o is the system’s number
of outputs. In equation (6.2.1). the vector x(f) of length » represents the system’s true

states expressed as linear combinations between previous inputs and previous outputs.

The system’s estimated states are represented by the vector x(s)and the matrix AL called

the noise disturbance matrix, represents the effect of the measurement noise on the state

noise. The estimated states x(r) are used to find the estimated outputs vectors i(¢) as

shown in the widely known state space system of equations (6.3.1) and (6.3.2):

{(’ +AT)H‘ | "ln \n'{‘(,)n\ 1 * anmu(’)m\ 1 (631 )

F(0), = Connd(0),  +Dygu(r), (6.3.2)
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where u(7) represents the system’s inputs assembled in a vector of size m. The A matrix
is the state matrix whose rank is equal to the system order. The B matrix represents the
effect on the states of each input defined in equation (6.1). The €' matrix relates the
outputs to the system’s states. The D matrix relates the outputs to the system’s inputs.
The non-zero D matrix is equivalent to a system in which the inputs influence the
outputs with no time delay. Since the system identified in this paper is a dynamic
system, there is always a time delay between the inputs and outputs. therefore the D

matrix is a nu/l matrix. When the D matrix is null, the outputs y(r) are only functions of
the state vectorsx(r), which are written as functions of the inputs and states at the

previous time step. see equation (6.3.2). If the model should be used for a flight
simulation, the model error is unknown because no flight test measurement is available
and only equations (6.3.1) and (6.3.2) are used to simulate the outputs. In other words, it

1S not necessary to take the noise covariance matrix K into account.

The 4. B. C. D and K matrices terms are usually estimated by means of various
parameter estimation methods. Most classical parameter estimation methods start with a
set of first guesses, which can be based on physical insight of the system and iterate
from these guesses to minimize the error between the model and the given data with a
minimization algorithm. If the initial parameter guesses are far from their true values,
the minimization algorithm may converge towards a local minimum, which is a

disadvantage of this method.

In the framework of our study, we choose to use the subspace identification algorithm.
[ts main advantage resides in the fact that it is a non-iterative algorithm. which does not
require any initial guess of the terms in the matrices [4. B, C, D, K], and therefore finds
the matrices parameters solely from the known inputs and outputs. For this reason, the
subspace identification method is much faster than the classical estimation methods and
has no problem related to optimization, such as the possible convergence of the solution

towards the local minimum instead of the global minimum. Furthermore, this method



does not require any a-priori knowledge of the system. The subspace identification
algorithm is implemented with the MATLAB" System Identification Toolbox. The basic
theory behind this algorithm is described in by Ljung (1999) and the manner in which
the algorithm is implemented in MATLAB" is presented by Ljung (2006). The subspace
system identification method has been successfully used in recent literature for different
applications such as fiber optic research by Galvao (2005) and the identification of

aeroelastic instabilities on an F/A-18 aircraft by Brenner (1997).

The main concept behind the subspace method is the definition of the system
observability matrix I, in equation (6.4) from modern control theories. where the
forward prediction horizon is represented by r (Ljung. 1999). This matrix can be

obtained from the system'’s inputs «(¢) and outputs 1(7) and its expression is as follows:

C ]
def | CA
(6.4)

Once this observability matrix I', is known, the state space matrices [4, B, C, D, K] can
be obtained. When the subspace method is used, the order of the state space system can
be defined by the user so as to obtain better results. In general. a higher order system
will give a better match for the data records used during the model identification
process. However. choosing a too high order can lead to a loss of generality which may
result into a degradation of the results on the records set aside for the validation process.
The model orders which offer the best compromise are: 3 for the Main rotor torque, 4 for

the Tail rotor torque, 2 for the Engine torque and 2 for the Main rotor speed model.



6.3.4 Refinement of the subspace identification method by use of the
Levenberg-Marquardt minimization algorithm

Following the application of the subspace method. the parameter values in the state
space matrices are further refined by using the Levenberg-Marquardt minimization
algorithm which is widely known and is described by Jategaonkar (2006) with the
parameters found by using the subspace method as the first guesses. The identification
results are obtained and further compared with and without this minimization method.
The cost function to be minimized is the output error which is defined by the following

equation (6.5):

é)} 6.5)

In equation (6.5). J(Q) 1s the cost function, y(#,) represents the outputs from the flight

test data at time 7,. _f'(l, 0) represents the estimated outputs at time 7, which depends on

the model’s estimated parameter values 0. In this equation, the error between the
estimated outputs and outputs from flight test data is summed over the length of the
record where N correspond to the number of data points in the data vector. This cost

function represents the least square error between the estimated outputs (such as the

main rotor torque) and the outputs from flight test for a given value of the vector§ of

estimated parameters.

In order to minimize the cost function defined in equation (6.5), it was decided to use the
Levenberg-Marquardt minimization algorithm. This algorithm was chosen because it
combines the advantages of two well known algorithms: the Gradient Descent algorithm

and the Gauss Newton algorithm. In both the Gradient Descent and the Gauss-Newton

algorithms, the 6 parameter estimate is updated at each iteration by using the following

equation:
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0., =0 +A0, (6.6)

Where the j index is the iteration number and A€ is an increment vector for each

A

parameter € in the state-space matrices. The optimization algorithm determines these

increments’ value. For both algorithms, this increment is proportional to the cost

function 1(9) values, which means that as the algorithm converges towards a minimum.

the A@ increments are reduced. Both algorithms are now explained:

6.3.4.1 Gradient Descent Algorithm

In the Gradient Descent algorithm, the gradient of the J(Q) cost function is determined

and the parameters are updated in the negative direction of this gradient. as expressed in

the following equation:

01 =0, ~—> (6.7)

The second term on the right hand side of equation (6.7) is obtained by differentiating

the term given by equation (6.5) with respect to é/ as follows:

) =—Z; [.\v(r,)—_f’(1,|é/)]=(} (6.8)

In equation (6.8). G represents the gradient and each parameter in the é; vector at the /'

iteration. The parameter update can be derived from equations (6.7) and (6.8) by using

the following equation:



6,)]--¢ (6.9)

This algorithm is known to be fairly robust. but may require a significant number of
iterations to reach a minimum. The Gauss-Newton algorithm which usually converges

faster than the Gradient Descent algorithm, and for this reason, is described below:

6.3.4.2 Gauss Newton Algorithm

The Gauss-Newton algorithm is derived from the postulate that at a minimum, the cost

function gradient is zero as shown in equation (6.10):

a7(6,)
20

/

=0 (6.10)

The value of the cost function gradient at iteration j+1 can be calculated by a Taylor

series expansion of its value at iteration j, as shown in the following equation:

aJ(é) ) aJ(é) . a{J(é) N o
o0 o0 06" '

T J J

We set the gradient at iteration j+1 to zero in equation (6.11) and we isolate the term

AO yields to the following equation:



96

(6.12)

The double derivative in equation (6.12) may be evaluated from equation (6.9) in the

following manner:

I (9,) &l av(ul6)| a(ul6)) a1, é,)”
7 -2 —; R ()=3(116,)] ©13)

In case when equation (6.13) was used to complete this second derivative, this method
would be referred to as the Newton method. However, in the Gauss-Newton method, the

second term is neglected for two reasons:

1. It requires a lot of calculations to obtain the output’s second derivative

2. [t tends to zero as the optimization algorithm converges since the term

|:,1'([, ) —j’(t,|63/ )J tends to zero.

Equation (6.13) therefore becomes:

N
233 - = (6.14)

Insertion of equations (6.8) and (6.14) into equation (6.12), gives the following equation
for the parameter increment in the Gauss-Newton algorithm, where F represents the

second derivative:
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FAG=-G (6.13)

The Gauss-Newton algorithm is known to converge faster than the Gradient Descent
algorithm, however it is very sensitive to the initial conditions and may converge
towards a local minimum. A good optimization approach consists in the combination of
the advantages of the Gradient Descent algorithm and the Gauss-Newton algorithm of
the Levenberg-Marquardt method used in the framework of this research. The parameter
vector increment in the Levenberg-Marquardt algorithm is defined by the following

equation:
(F+A1)A0 =G (6.16)

From equations (6.9) and (6.15), it clearly appears that the Levenberg-Marquardt
method is a linear combination of the Gradient Descent and the Gauss-Newton methods.
The A coefficient is called the Levenberg-Marquardt parameter. If its value is zero. then
the algorithm is a pure Gauss-Newton algorithm: if its value is infinite, then the
algorithm is a pure Gradient Descent algorithm. This parameter varies as the

optimization is carried on so as to ensure the fastest possible convergence rate.

The subspace method was used to obtain the initial guesses of the state-space models
parameters. The Levenberg-Marquardt method was further used to refine these
parameters’ values. The results will show the model error with and without this
optimization. The implementation method presented in figure 6.2 is valid for the
model’s implementation in a flight simulator. As discussed previously, these limits
parameter models could also be used in a carefree envelope protection control system.
In this case. the model implementation would be different than the one presented in

figure 6.2 - and will be discussed in the following section.
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6.3.5 Implementation of the prediction model

In the case of a carefree envelope protection control system, it is necessary to limit the
future value of limit parameters. Let us recall that in this paper, the limit parameters are
the main rotor torque. tail rotor torque, engine torque or main rotor speed. During the
helicopter’s flight, the limit parameter’s current value, as well as the helicopter states
and control inputs are known from flight tests (measurements). In order to prevent any
limit violation, it is necessary to predict the future values of the helicopter’s limit
parameters for a prediction horizon. According to Jeram (2002), the required prediction
horizons for a cueing application lie between 0.25 and 0.5 seconds. When the prediction
horizon increases, the model error is also increased, however, a cueing system has more
time to warn the pilot of the incoming limits. The appropriate prediction horizon should
ultimately be determined by the pilot during a flight test program. The model used to

predict the future values of limit parameters is illustrated in figure 6.3:

Current states at
time ¢from flight test data

Future states
time history from
(u,v,w,p,q,r) Astates, Bstates, time ttime t+At

Polynomial functions of

Future controls
CSlatesﬂ DSlales

Future controls time and states
history from
time ¢ to time t+4t S{ta;es-nsn?gtceesr:;:del
measured from flight test g 7
data (coll, long, lat, ped)
T LR Future limit parameter
___—’ H
qurgnt measured ErgB] frqm time tto
limit parameter — time t + At
at time tfrom flight test
data State-Space model

to estimate limit parameter

Figure 6.3  Model structure used for the prediction of the future value of a limit
parameter (main rotor torque, tail rotor torque, engine torque or main
rotor speed).



99

As shown in figure 6.3, two state space models are necessary to predict the future value
of the helicopter’s limit parameters. The first state space model uses the current states
from flight test data and an assumed time history of the control inputs to predict the
future time histories of the helicopter states [« .v, w. p, ¢, r] within a given prediction
horizon. In practice, according to Jeram (2002) the assumed future value of the pilot
control inputs can be either a worse case scenario or more commonly. similar to the
control inputs used to train the model. In this paper. in order to accurately measure the
model’s performance, it was decided to assume that the future controls were the same as
in the flight test data. Further research will be conducted in the future so as to identity a
reasonable procedure to estimate the future control time history. The future states™ time
history is combined with the future value of the pilot’s control inputs in a polynomial
equation to construct the inputs of the limit parameter models (such as the main rotor
torque models) as in equation (6.1). The second state-space model in figure 6.3 is used
to predict the future time history of a given limit parameter. This second state-space
model is actually the same as the one presented in figure 6.2. The next sections deal with
the inputs and outputs of the first state-space model presented in figure 6.3. Finally, we
discuss the method to be used for the prediction of a future outputs time history by
means of a state-space model and the current outputs from flight test using a Kalman

recursion (Kalman. 1960) also detailed by Rugh (1993).

6.3.6 State-space model to predict the future helicopter states

The state space model used to estimate the future helicopter states (the first state-space
model presented in figure 6.3 is shown in the following system of equations obtained

from equations (6.3.1) and (6.3.2):
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11([+At) 1?(1)
1+ Ar) 0 coll (1) |
v+ At v(r / t
w(r+ ) _— () B, | (1) 6.17.1)
p(r+Ar) p(r)y| lat (1)
g(r+Ar) q(r) | ped (1) |
e IEEREG]
—1}(r)_ _f(l)_
(1) v(1) coll (1)
(1) ~Cy.. Y +p, |8 (v) (6.17.2)
p(r) p(r) lat (1)
q(1) q(1) | ped (1)
~f-(r)_ _;’(r)_

In equations (6.17.1) and (6.17.2), the states which are the helicopter’s linear and
angular velocities in body axes, are estimated with an approximate linear state-space
system. The term At represents the simulation’s sample time. Since the outputs and the
matrix is a

states are the same, the C matrix is the identity matrix, while the D

States Ntates
null matrix. Even though this linear model is very approximate to estimate the future
helicopter states, it has been found to be accurate enough in the overall model to provide
a proper prediction of the limit parameter’s future values within a given prediction

horizon.

6.3.7 Future outputs prediction based on the current outputs from flight test
data and a state-space model

In this section, we will implement a state space model which jointly uses the outputs
from flight test data and the future inputs time history to predict the future outputs time

history. This procedure was first developed by Kalman [21] and is widely used in
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control theory [20]. We first demonstrate the one time step prediction, and then the

multiple time step prediction.

6.3.7.1 One time step ahead prediction

In this case. the output’s current value is obtained from the flight test data. By knowing

the flight test outputs 1(7) and the estimated outputs 7(¢). is possible to determine the

measurement error with the following equation derived from equation (6.2.2). where the

D matrix can be neglected since is a null matrix:
v()=y(0)-3(1)=r(r)-Cx(1) (6.18)

This error should correspond to an uncorrelated perturbation with the inputs. From
equations (6.18), (6.3.1) and (6.2.1). 1s possible to obtain a new state space equation as

follows:
X(r+Ar)=A3(r)+ Bu(r)+ K[_r(z)—C.{-(t)} (6.19)

Equation (6.19) is known as the Kalman state observation equation (Kalman, 1960). By
rearranging equation (6.19) and adding equation (6.3.2). while neglecting the D matrix.

we obtain the following equation:

Hr+ ) =[4-KC5(e)+[K B][x(r) u(0)] (6.20)
¥(1)=Cx(1)

where y(¢) represents the outputs from flight test and 7(r) represents the estimated

outputs. Equation (6.20) applies when the outputs need to be predicted one time step in
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advance or, in other words, with a prediction horizon of one time step. Note that the

length of one time step is equal to the flight test data sampling rate.

6.3.7.2 Prediction with a higher horizon than one time step

[t 1s possible to predict the outputs further in time by using a larger prediction horizon.
In this case, a pure simulation model such as the one described in equation (6.3) is run
using the last prediction found by equation (6.20) and the time length of the simulation’s
correspond to the prediction horizon. This scheme is best illustrated by an example or by
a 2 time step prediction. If one wants to predict the value of the outputs at time 3,
knowing only the flight test states x and inputs « at time 2 when time step is equal to 1.

is recommended to use equation (6.3) as follows:

#(3)=Cx(3) (6.21.1)

where x(3) = Ax(2)+ Bu(2) (6.21.2)

In these equations, the numbers in parentheses correspond to the time samples.

Equations (6.21.1) and (6.21.2) may be combined to give:

1(3) = C[4x(2)+ Bu(2)] = CAx(2) + CBu(2) (6.22)

The state x(2) is unknown, but can be estimated by use of equation (6.20) where ¢ + Ar =

2. as follows:
v(2)=[4-KC]x(1)+[K B][x(1) u(1)] (6.23)
where (1) are the outputs from flight test data 2 steps ahead the prediction, (1) is the

system input’s initial value and x(1) is the initial state. The same reasoning may be

extended to any prediction horizon. The general equation used to predict the value of the



outputs y(r) using the outputs measured from flight test y(s-r) (prediction horizon of

F) 1s:

u(t—r+1)
Mi)=[cB cap . o e () (6.24)
u(r)

Where the last term x( — » + 1) is found with the following equation:
X(t=r+1)=[4-KC]x(t-r)+[K B][_\‘(I —r) u(r—r)J (6.25)

These equations are simply the extensions of Equations (6.21) and (6.22) for a r
prediction horizon. The limit case of a prediction is found when the horizon tends to

infinity. In this case, the prediction outputs are the same as the simulation outputs.

6.4 Results

The results obtained for the model simulation and prediction are now presented in
following two sub-sections. In the first sub-section, we present the time histories of the
outputs measured from light test and estimated outputs for a typical simulation case. In
the second sub-section, quantitative results are presented and the performances of the
simulation and the predictions for different prediction horizons are compared. In this
section we compare the results obtained by use of the Subspace system identification
method only to those obtained by use of the same identification method improved with

the Levenberg-Marquardt optimization algorithm.

6.4.1 Typical simulation model outputs for different manoeuvres

The results presented in figures 6.4 — 6.7 were obtained from the model simulation (see

figure 6.2) where the u,v.w,p.g.r rotorcraft states are available from flight tests and the
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estimated outputs are simulated at each time step. In other words. in the following
figures, the prediction horizon is infinite. In each figure, the lines in the middle
correspond to the model outputs and the lines around it correspond to the tolerance band

around the value from flight test data.

The tolerance band is set to 3% of the maximum torque and was selected according to
the guidelines of the FAA flight simulator qualification advisory circular (1994). Since
the FAA does not specify the tolerance band neither for the Engine Torque nor the Tail
Rotor Torque, a tolerance band of 3% is used in this paper for these quantities. For the
Main Rotor speed, the FAA usually specifies a tolerance band of 1.5%., but since the
error between the model outputs and the data outputs is minor, the tolerance band for the

Main Rotor speed was set to 0.5% in the following figures.

Figures 6.4 — 6.7 present the results for collective input excitations, while figures 6.8 -
6.11 present the results for (ii) Longitudinal cyclic excitation. figures 6.12 — 6.15 present
results for lateral cyclic excitation and figures 6.16 — 6.19 show results for pedal
excitation. For each excitation, the time histories of the main rotor torque, tail rotor

torque, engine torque and main rotor speed are displayed.

The results shown in the following figures are obtained from a model identified with the
Subspace System identification method and further optimized with the Levenberg-
Marquardt minimization algorithm. These results are obtained for the second flight
condition characterized by 49 records used to generate the model and 20 records used to
validate it (as seen in Table 6.1). In this section, we show results obtained for a number

of 4 records out of 20 records used for validation.

Figures 6.4 — 6.7 show the outputs time histories following a 2311 multi-step input

collective control for the next flight condition:



Mean Altitude = 9323 ft
Gross Weight GW = Heavy
Center of Gravity CG position = Aft
Mean True Airspeed TAS = 113 knots
Rate of Climb ROC =-728 ft/min.
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Larger error may appear here

if the model is slightly out of

phase

Figure 6.4  Main rotor torque time history following a collective 2311 input

(3% tolerance band)
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Figure 6.5  Tail rotor torque time history following a collective 2311 input

(3% tolerance band)
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Figure 6.6  Engines I and 2 torques time histories following a collective 2311 input

(3% tolerance band)

Figure 6.7  Main rotor speed time history following a collective 2311 input (0.5%
tolerance band)

Figures 6.4 — 6.7 clearly show that the simulated outputs lay within the FAA tolerance
bands for a simulation. One can also see that following a collective step input, the main
rotor torque reaches a peak at certain value (see figure 6.4) and oscillates towards an

equilibrium position.

In some cases, a larger error may appear for a few hundredths of a second if the model
outputs are slightly out of phase with respect to the flight tests data. Figures 6.8 — 6.11
display the same types of outputs following a longitudinal cyclic 2311 multi-step input

for the following flight tests condition:

Mean Altitude = 9167 ft
Gross Weight GW = Heavy
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Center of Gravity CG position = Aft
Mean True Airspeed TAS = 79 knots
Rate of Climb ROC = 367 ft/min.
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Figure 6.8  Main rotor torque time history following a longitudinal cyclic 2311
input (3% tolerance band)
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Figure 6.9  Tail rotor torque time history following a longitudinal cyclic 2311 input
(3% tolerance band)
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Figure 6.10 Engine torque time history following a longitudinal cyclic 2311 input
(3% tolerance band)
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Figure 6.11 Main rotor speed time history following a longitudinal cyclic 2311 input
(0.5 % tolerance band)

Figures 6.8 — 6.11 clearly show that the model is within the tolerance bands. Figures
6.12 — 6.15 show the outputs following a lateral cyclic 2311 input for the next flight

condition:

Mean Altitude = 9581 ft

Gross Weight GW = Heavy

Center of Gravity CG position = Aft
Mean True Airspeed TAS = 71 knots
Rate of Climb ROC =915 ft/min
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Figure 6.12 Main rotor torque time history following a lateral cyclic 2311 input
(3% tolerance band)
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Figure 6.13  Tail rotor torque time history following a lateral cyclic 2311 input

(3% tolerance band)
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Figure 6.14 Engine torque time history following a lateral cyclic 2311 input
(3% tolerance band)
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Figure 6.15  Main rotor speed time history following a lateral cyclic 2311 input
(0.5% tolerance band)

Finally. the outputs following a pedal 2311 input are shown in figures 6.16 — 6.19 for the

following flight condition:
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Mean Altitude = 9011 ft

Gross Weight GW = Heavy

Center of Gravity CG position = Aft
Mean True Airspeed TAS = 81 knots
Rate of Climb ROC = 277 ft/min
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Figure 6.16 Main rotor torque time history following a pedal 2311 input
(3% tolerance band)
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Figure 6.17 Tail rotor torque time history following a pedal 2311 input
(3% tolerance band)
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Figure 6.18 Engine torque time history following a pedal 2311 input
(3% tolerance band)

Figure 6.19 Main rotor speed time history following a pedal 2311 input
(3% tolerance band)

As shown in figures 6.16 — 6.19, the pedal inputs have influences on each of the outputs,
particularly on the tail rotor torque. All results displayed so far are found within the
FAA tolerance bands. The results represented in the previous figures are representative
only to four (4) validation time records. In the framework of our research, we did
however validate the model by using 138 validation records. The quantitative results of
these records. as well as the effects of using different prediction horizons are discussed

in details in the following section.

6.4.2 Quantitative simulation model performance

This section summarizes the results obtained for the 138 validation records time

histories. Figures 6.20 — 6.23 show the results for a pure simulation that was
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implemented according to the architecture presented in figure 6.2. The data provided in
the graphs represent the percentage of time for which the sum of errors between the
simulated outputs and the measured outputs from flight test is greater than a percentage
on the x-axis. This percentage is calculated on the basis of the cumulated recorded time
of every validation cases, for example, for a value of 3% on the x-axis, the
corresponding value on the y-axis will be the total percentage of time when the errors is

higher than 3% over the total amount of time represented in every records.

The dashed line represents the results obtained with the subspace system identification
method only. while the full line represents the results obtained with the subspace method
followed by the Levenberg-Marquardt optimization method. Each figure also displays

the mean (average) error and the maximum (worse) error for every validation record.
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Figure 6.20 Results for a pure simulation of the main rotor torque output
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Figure 6.21 Results for a pure simulation of the tail rotor torque output
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Figure 6.23  Results for a pure simulation of the main rotor speed output

The two lines in figure 6.20 clearly show that even though the results are reasonable
when using the subspace system identification method. they can further be improved by
refining the resulting parameters with an optimization. In both cases, the mean error is
minor (1.22 % when using the subspace method only and 0.85 % when refining it with
an optimization). According to the FAA guidelines, a simulation model is satisfactory if

it lies within a 3% tolerance band.

Figure 6.20 shows that the model is out of tolerance 8.11 % of the time when the
subspace method is used. However it is out of tolerance only 2.8 % of the time when the
optimization is added. Following an analysis of the lines in figure 6.20, it also clearly
appears that most of the time, the model does not exceed the FAA's tolerance bands; the
error exceeds 5 % only 0.33 % of the time when the subspace method is used together
with an optimization, which means that even though the maximum error seems to be

high, it only occurs for a very short period of time.

According to our observations, the maximum error usually occurs during the collective

input time history (see figure 6.20)) that is. when high frequency oscillations in the main



rotor torque occur. If the model output becomes slightly out of phase with the data, a
large error may appear for a few hundredths of a second during the oscillation. One
conclusion that can be drawn from these results is that for the FAA certification, it is
preferable to apply both the subspace method and an optimization algorithm in order to
obtain a sufficiently good model. However, using the subspace method provides a good

starting point.

The first observation that can be drawn from figures 6.21 to 6.23 is that the maximum
and mean errors decrease (or improve) constantly which is probably due to the fact that
the dynamic system to model is more complex for the main rotor torque (figurg 6.4) than
for the other outputs because it has high frequencies oscillations and a damping varying

with time.

The tail rotor torque and engine torque outputs are shown in figures 6.21 — 6.23. where a
tolerance band of 3% is assumed, and we found that there is no difference between out
of tolerance records percentage when using the subspace method only and out of
tolerance record percentage when also resorting to an optimization. The same remark is
true for the main rotor speed (figure 6.23)) where, in this case, the FAA tolerance band
i1s 1.5%. which means that the subspace method is probably suftficient to model these
outputs. It can also be observed from figures 6.20 to 6.23 that the full line and the
dashed line are separated at the left of the plots and converge to the right of the plots.
This means that if the tolerance band was set very tight (for example, 1%), there would
be more significant benefit in term of the amount of time the model spends out of
tolerance in improving the estimates of the parameters with an optimization algorithm
than if the tolerance band was higher. Therefore, combination of an optimisation to the
subspace method allows the improvement (minimization) of the error mainly when is
already low and the optimisation has a lesser influence upon the parts of the records with
a larger error. In the following section, we will analyse the performance of the above-

discussed system when a prediction method is used.
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6.4.3 Quantitative prediction model performances

Figures 6.24 — 6.27 (each figure has two parts: upper and lower), are drawn for the same
flight conditions as the ones for figures 6.20 — 6.23, and show the model’s performance
when implemented as a prediction tool. For each helicopter output, the mean error
(upper part) and the overall percentage (lower part) of the records time histories for
which the error is greater than 3% are plotted with respect to the prediction horizon. The
model’s performance was evaluated for prediction horizons of 0.12, 0.26 and 0.5
seconds, which are all multiples of the data sampling rate. The results of a pure
simulation are also presented in each figure so as to compare them with the prediction

results.
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Figure 6.24 Mean error prediction for the main rotor torque and percentage of
records with an error rate greater than 3 % with respect to the
prediction horizon
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Figure 6.25 Mean error prediction for the tail rotor torque and percentage of
records with an error rate greater than 3% with respect to the

prediction horizon

Mean error vs prediction honzon

04
Result for simulation
Subspace method only: 0.79 % i
. 03~ Ssubspace method and optimization: 0.60 % -
5
e 0.2
T
L3
=0l
Subspace Method
o Subspace with Optimization
01 015 0.2 025 03 0.35 04 0.45 05
Prediction honzon
Overall of time with more than 3 % error
008

Result for simulation
Subspace method only 0 19 %
Subspace method and optimization: 0 10 %

® 8

Percentage of time
o o
o
5]

P=t=]

015 02 025 03 035 04 045 05
Prediction honzon

Figure 6.26 Mean error prediction for the engine torque and percentage of records
with an error rate greater than 3% with respect to the prediction
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Figure 6.27 Mean error prediction for the main rotor speed

Several observations can be drawn from the previous figures. In each case, as
anticipated, the mean error decreases when the prediction horizon is decreased. Since a
simulation is mathematically equivalent to a prediction with an infinite horizon, all the
prediction results are better than the simulation results. For example, the main rotor
torque model identified with the subspace method and further refined with an
optimization has a mean simulation error of 2.81 % (figure 6.24). but when the state-
space model is used to give a prediction of 0.5 seconds ahead from known flight test
data, the mean error drops to 0.39 %. The mean error reduction is due to the fact that any
prediction error in the model will last a maximum of half a second before its correction
by the measurements (from flight tests). whereas in a simulation, a modelling error can
affect the outputs for a long period of time. For the same reason. the mean error
decreases when the prediction horizon decreases. Figures 6.24 to 6.27 also clearly show
that the mean prediction error is always very small and never exceeds 0.5 % for any

prediction horizon.

The second curve in each figure (except for figure 6.27 in which the error is zero)
represents the percentage of time for which the model error is greater than 3 %. This
percentage was chosen because it was used in the discussion above on simulation
application of the model. For control system applications, there is however no fixed
tolerance. The evaluation is rather based on the overall control system’s performance.

which is assessed by the pilot. Figures 6.24 to 6.26 reveal that a decreasing prediction
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horizon results into a lower percentage of the model outputs with an error greater than 3
%. There is no such curve in figure 6.27 because the model error is always below this
tolerance. In figures 6.24 — 6.27. the worse results pertain to the main rotor torque whose
prediction is out of the tolerances during 1.2 % of the time when the prediction horizon
is 0.5 seconds and during 0.6 % of the time when the prediction horizon is 0.12 seconds

(figure 6.24).

Finally, each figure shows that both the models identified with the subspace method
only and with the subspace method followed by an optimization, give excellent results.
In the case of the main rotor torque outputs, there is almost no difference between the
models identitied with these two methods. Recall that for a pure simulation (see figure
6.20)), a significant model performance gain is realized by use of an optimization. For
the tail rotor torque outputs (see figure 6.25)), resorting to an optimization allows to
slightly reduce the model’s mean error, but oddly, it is out of tolerance a little longer
than with the sole use of the subspace method, when the prediction horizon is high. The
error also slightly increases when a 0.12 seconds prediction horizon is used. with respect

to the error calculated with a 0.26 seconds prediction horizon (figure 6.27).

The use of an optimisation slightly improves the main error between the model and the
data for the engine torque and main rotor speed outputs however it may affect the

percentage of records with an error greater than 3 %.



Discussion

The results allow us to draw the conclusions:

6.5.1

(%)

9

9]

For the model simulation implementation (see figure 6.2)

All the simulation results, especially the main rotor torque outputs, were
improved when the subspace identification method was combined with an
optimization. For the main rotor torque outputs which are the worse result, 2.81%
(smaller than 3%) of the simulated outputs were out of tolerance instead of

8.11% when the subspace method alone was used.

The addition of an optimization to the subspace method may reduce the mean
error, however the benefits of an optimization decrease when the subspace

method error is already small, which is especially true for the main rotor speed.

For the model prediction implementation (see figure 6.3)

The mean error and the percentage of time when the error is greater than 3% are
very low for a prediction. Furthermore, as could be expected, the prediction error

decreases when the prediction horizon decreases.

The parameters’ values are refined by the subspace method with an optimization,
and therefore allow the improvement of the results. The errors are already found
to be very low by use only of the subspace method, which is the reason for which

optimization is not needed.



6.6 Conclusions

In summary, it can be concluded that the dynamics of the main rotor torque, tail rotor
torque. engine torque and main rotor speed can be properly estimated by using a state-
space model. The subspace system identification method is an efficient non iterative
method that can provide a reasonably good estimation of these helicopter parameters
without requiring any initial guess or any prior knowledge of the system’s dynamics.
The model identified with the subspace method can also be successfully refined with a

Levenberg-Marquardt minimization algorithm.

The results were assessed according to the mean error and the percentage of times that
the model error was greater than a certain tolerance. For a flight simulation certification.
the FAA’s tolerance band is 3% for the main rotor torque and 1.5 % for the main rotor
speed. Since there currently is no specified tail rotor torque tolerance, nor any specified
engine torque tolerance, we decided to use a 3 % tolerance band. The results show that
for the tail rotor torque, the engine torque and the main rotor speed, the modelling error
is very small when the subspace identification method is used alone. The results for the
main rotor torque are reasonable. except for 8.11 % of the records which have an error
greater than 3%. This percentage was successfully reduced to 2.81 % with an
optimization. Notice that the simulation results shown in this paper are for the records
set aside for the validation, the results for records used for the identification are
generally slightly better with mean errors up to 25 % lower. This is not surprising since

these records were used to generate the model.

The model was also tested for a prediction implementation. In each case, the modelling
error was very low and was reduced as the prediction horizon length was shortened.
Using an optimization allowed to slightly improve the results achieved with the

subspace method, but the benefit of adding an optimization was minor since the models
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identitied with the subspace method were already excellent. The prediction results that
are discussed in this paper also applies apply for the records set aside for the validation.
The mean errors for the records used in the identification are usually about the same or

slightly better (up to 5 %).

In conclusion, the subspace method is a promising method to estimate helicopter’s

physical parameters, by means of flight test data, for simulation and control applications.
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CHAPTER 7

INTRODUCTION TO THE THIRD PAPER

In this paper. the subspace system identification method was used, but, this time, to
generate linear models to identify the structural deflections on different surfaces of the
F/A-18 aircraft. During the flight tests, which took place at NASA DFRC laboratories.
differential ailerons Schroeder frequency sweep control input was performed to excite
the aircraft elastic modes of oscillations. The flight flutter tests used to generate the
model were performed in steady level flight with Schroeder frequency excitations
induced on the aircraft ailerons by an on-board excitation system (OBES) which was
activated by the pilot. The F/A-18 linear model was conceived as nine Multiple Inputs
Single Output models of third order. Each model of its own had nine inputs and one
output. The nine inputs are the differential ailerons deflections and the deflections of all
the other aircraft structural surfaces. The output of each model was the structural

deflection of a given aircraft structure.
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CHAPTER 8

IDENTIFICATION OF STRUCTURAL SURFACES POSITIONS ON AN F/A-18
FROM FLIGHT FLUTTER TEST USING THE SUBSPACE IDENTIFICATION
METHOD

by

Michel Nadeau Beaulieu, Sandrine De Jesus Mota, Ruxandra Mihaela Botez
Ecole de technologie supérieure
1100 rue Notre-Dame ouest
Montréal, Québec, Canada, H3C 1K3

8.1 Abstract

In this paper, we present a linear state-space mathematical model, identified from flight
flutter tests to simulate the aeroelastic deflections of specific structural parts of the NASA
F/A-18 aircraft. The flight flutter tests were performed in steady level flight with Schroeder
frequency excitation induced on the aircraft ailerons by an on-board excitation system
(OBES) which was activated by the pilot. We used the results of the flight flutter tests to
generate an aeroelastic model in which the deflections of the specific aircraft surfaces are
functions of the control inputs combined with the deflections of other aircraft surfaces. The
F/A-18 linear model is conceived as nine Multiple Inputs Single Output models of third
order. Each model of its own has nine inputs and one output. The nine inputs are the
differential ailerons deflection and the deflections of all the other parts of the aircraft. The
output of each model is the structural deflection of a given aircraft structure. The model’s
parameters are estimated with the subspace system identification algorithm, an efficient non-
iterative algorithm that computes the system matrices directly from the inputs and outputs
data. The model’s quality is evaluated by calculating the fit and correlation coefficients
between the model’s outputs and the outputs from flight flutter test data. While the fit
coefficient results are very good, between 89% and 99%, the correlation coefficient method
gave the best results (nearly 100%). Finally, re-sampled inputs were used to validate the F/A-

18 model robustness. The model’s aircraft structure was validated for flutter flight tests at
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different Mach numbers and altitudes. The estimated linear model fits very well the flight
flutter tests data. The subspace method is therefore very convenient for model identification

from flight flutter tests.

8.2 Introduction

This project uses flight flutter test data obtained from the F/A-18 aircraft. The details of the
modifications performed on the F/A-18 aircraft in the Active Aeroelastic Wing AAW Flight
Research Program were explained by Lind et al. (1999) and Voracek et al. (2003).

This paper determines a model for the structural oscillations of the flexible F/A-18. The
model is build by use of the subspace parameter estimation methods from flight flutter tests.
The next sections present a literature review on aeroelasticity where system identification
methods and mainly the subspace method are used for model identification from flight flutter

tests.

The Autoregressive Moving Average Method (ARMA) and neural networks theory were
used by Sung (2005) to identify the flutter behaviour of a transonic wing. The flutter
dynamics of a pitch-plunge system subjected to limit cycle oscillations was later modeled by
Kukreja (2006) with non-linear models. In previous paper, the type of non-linear models
used was the Nonlinear Autoregressive Moving Average Exogenous (NAMAX). The
dynamics of a flexible wing model has also been identified by Silva and Vartio
(2006) using the impulse response method and the Eigensystem Realisation Algorithm
(ERA). Also, an output-error minimisation method was performed based on a large flexible

aircraft by LeGarrec (2001).

The subspace method has already been applied in other fields such as fibre optics research by
Galvao (2005). In Aerospace, the subspace method has been used to identify the effects of
the aircraft’s control surfaces motion on the rigid modes of the F/A-18 from flight flutter

tests by Brenner (1997). In this previous method, the ailerons were excited by the use of
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Schroeder frequency sweeps. The accelerations of the aircraft were filtered using a wavelet
transform and the aircraft’s roll response was identified in both time and frequency domains.
In the present study. the subspace identification method is used to identify the structural

detlections of the F/A-18 aircraft’s surfaces from flight flutter tests.

8.3 Methodology

The methodology section of this paper is divided into three sections. The first section
presents the flight flutter tests data for the F/A-18 aircraft. The second section presents the
structure of the linear model with its inputs and outputs. The last section explains the details
of the subspace identification algorithm that is used to obtain the parameters of the linear

model.

8.3.1 Flight Flutter Tests Data and their Filtering

In order to obtain the recorded flight flutter tests data, the flight control computer (FCC) for
the F/A-18 aircraft was modified by adding a Research Flight Control System (RFCS) to
generate the Schroeder frequency sweep control inputs. The RFCS processor was engaged by
the pilot from the activation of a cockpit switch. The actuator commands therefore resulted

from the RFCS added to the commands from the aircraft's baseline flight control computer.

The software used by the RECS to control the actuators was called the On Board Excitation
System (OBES). The input activated by the OBES was a Schroeder frequency sweep, which
is a large number of harmonics, equally spaced in frequency domain. An example of OBES

controls is shown in figure 8.1.
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OBES Command

Time [sec]

Figure 8.1  OBES control inputs versus time

The OBES Schroeder excitation signal is defined in equation (8.1):
OBES(I)z(Z.4,‘sin(2:rf,(t+¢,() (8.1)

where f; is the ¥ measurement frequency, ¢ is the ¥ phase and .4 is the " amplitude of the
OBES Schroeder signal. Details on the theory of Schroeder signals are given by Schroeder
(1970). The OBES generated Schroeder signal is sent to the aircraft actuators to generate the
F/A-18 control surface oscillations. Records of structural surfaces accelerations were
obtained at 30-seconds intervals by accelerometers. These tests were performed for a

combination of Mach numbers from 0.85 to 1.20 and for altitudes from 5000 ft to 25000 ft.

In this paper, we use firstly with the accelerations from flight flutter test data measured by
NASA DRFC laboratories. The flight test data accelerations on the structural surfaces are
very noisy. We remove the noise in order to identify the F/A-18 model by performing a
double integration on the surface accelerations to obtain the surface deflections. Since the
noise is a random process with a mean zero value, then the integration removes any noise

contribution to the data. Therefore, no additional filter is required. Figure 8.2 shows the



schematic of the flight flutter test data pre-processing. The filtering effect of the acceleration
double integration is shown in figure 8.2 where speeds and deflections time histories are

presented for the left wing surface.

Pilot ) ; | Surface : Surface N Doublc , Surface
Manoeuvers ————) OBES commands ———) Accelerations ——— I ———4 Positions
‘ ntegrations z
|(see Figure 46) (see Figure 3)

Figure 8.2 :  Flight flutter tests data pre-processing scheme
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Figure 8.3 : Left wing accelerations and their integrations with time, which gives the

deflection speed and the deflection with time

In figure 8.3, only the structural surface deflection acceleration for the /leff wing is shown to

illustrate the way in which the integrations operation removes the unwanted noise.



8.3.2

8.3.3 Linear Models

The deflections of the following nine structural surfaces are considered in this paper:

WING, IWINGg Left and right wing

o TEF;, TEFR Left and right trailing edge flap
e ['ERT;, VERTR Left and right rudder

e STB;, STBi Left and right stabilizer

o [STBy Left stabilizer lateral

We assume that each structural surface deflection is a function of the left and right ailerons
inputs and of the deflection of the other nine aircraft surfaces. The right and left aileron

positions are considered the control inputs, and their notations are below given:

L4 :”LL
L4 xULR

Left aileron position

Right aileron position

Nine Multiple Input Single Output (MISO) models are considered in this study, therefore,
there are nine estimated outputs. Figure 8.4 shows the MISO scheme, where in this case, the
estimated output is the left wing deflection WING;. Same type of scheme is applied to the

other estimated outputs.

8 structural deflection |
inputs Wesm_____+it

——» STATE SPACE linear model
(A, B, C,D)

1 estimated output
“WING"

— >
2 aileron excitation S
inputs

Figure 8.4  MISO model with the left wing output



In this study, there are always 10 inputs associated to the MISO model: 9 structural surfaces
(as above mentioned) minus one which is the estimated output (in this case the left wing)
plus both right and left ailerons positions. The other 8 MISO models are used to obtain the
remaining 8 structural surface deflections versus time in a similar manner as the one above

explained.

8.3.4 Subspace system identification algorithm

The state space matrices parameters (figure 8.4) are obtained by the subspace system
identification algorithm, which is described in this section. Generally, a discrete linear model

is defined with the following equations (8.2) and (8.3):

.\'(I+AT)n g™ A~1n\n.\'(1)n\| + Bn\mu(t)m L i (8.2)

'\'(’)0\1 = Co,\'n'\'(t)n\ ] + DO\IH”(’)]}')\] +“(’[)0\l (83)

where 7 is the time, AT is the sample time, u(¢) represents the model inputs, y(7) represents the
model outputs. m is the number of inputs and o is the number of outputs. In equations (8.2)
and (8.3), the vector x(¢r) of length »n represents the system states expressed as linear
combinations between previous inputs and previous outputs, 1w(/) represents the state noise
vector and v(7) is the measurement noise vector. The matrices 4, B, C' and D are well known

in the modern control theory.

The terms of the 4, B, C' and D matrices terms are usually estimated by use of various
parameter estimation methods. Most of these methods start with a set of initial guesses found
from physical knowledge of the system. A minimization algorithm is further used to reduce
the error between the model output and the given flight test data. Unfortunately. with these
methods, if the initial parameter guesses are far from their true values, the minimization

algorithm may converge towards a local minimum. The main advantage of the subspace



identification algorithm used in this paper is that is non-iterative and does not require an
initial guess of the terms in the matrices [4. B, C, D]. The only information required by the
subspace method is the input and output data vectors.

The subspace identification algorithm is implemented with the Matlab Syvstem Identification
Toolbox. The basic theory of this algorithm is described by Ljung (1999) and the manner in
which the algorithm is implemented in Matlab® is given by Ljung (2006). The main concept
of the subspace method is the definition of the system observability matrix [, in equation
(8.4) from modern control theory, where r represents a forward prediction horizon. This
matrix can be obtained from the system inputs (/) and outputs 1(/) and its expression is the
following:

C

oXxn

def| CA
(8.4)

=1
_CA oxn

-roxn

Once this observability matrix '+ is known, then the state space matrices [, B, C, D] are

obtained by the use of the input and output vectors.

The detailed procedure to obtain the observability matrix and the discrete state space
matrices will now be explained. The theory behind the subspace algorithm is divided into
four sections. Section (8.3.3.1) describes the basic matrices and equations necessary to the
demonstration. sections (8.3.3.2) and (8.3.3.3) explain the two steps necessary to compute the
observability matrix of equation (8.4) while the last section (8.3.3.4) explains the obtention
of the discrete state space matrices /4, B,C,D/ from the observability matrix. Finally. section

(8.3.3.5) discusses the selection of an appropriate mathematical model order.



8.3.4.1 Basic definitions of input and output matrices

In order to understand the subspace algorithm. is necessary to define a number of important
matrices. The input data given later than the reference time r can be arranged into a Hankel

matrix as follows:

ult] ¢ ult + A1 ult+2M], ¢ ult+(j=1) A«
v, ";’ ult+A1] ult +2AM0 ], ult +3M1], ult+jN] (8.5)
Wt +(r=1)Ar), o ult+rAr], u[t+(r+])A1]m\, ult +(r+7-2)Ar), ¢

mx N

In this matrix. the subscript f stands for future inputs due to the fact that only the inputs given
later than at time ¢ are included into the matrix. The subscript N represents the length of the
output vector from ftlight flutter test and the index j is a dummy variable adjusted such that all

data available in the identification are included on each line of the U, matrix. Please note

that if the expression in the brackets of the matrix element « has a value greater than V. the
value of Uy is zero. Similar Hankel matrices can be constructed with the output vectors and

defined as 1, . The future state vector can be defined by the use of the following matrix:
Xpo=[wltey Me+Ady e MH(-1)A G ] (8.6)
[s also necessary to define the extended controllability matrix:

A,Z[(,M;'JB)HXI (,1'%:8)"“ (AB)nxl Bn\l}n” (87)

and finally the impulse response matrix is given by:



Dy 0 0 0
(-‘Boxm Doxm
Hr = CABU\m CBU\m Du\m 0 (88)
5 j =0 r-3 r—4
(CA By CA7 By CA™Boin o Dovmn | onm

It is also important to describe the noise effect of noise on the furure output of the syvstem.

This noise effect is defined by use of the Hankel matrix }"

Fi ]y 5 1 B[+ At . [t +241), v Ble+(J-1) A,
l_d;r IS[e+Ar), ¢ Vole+2A1], by[e+3Ar], 5[+ jAL], (8.9)
Pole+(r=1)A o Vilt+rarly oy Vile+(r+1)ar, Vle+(r+j=2)Ag 0 |
where the value of the term 1, is defined with equation (8.10):
e =CA () + CA (e 4+ 1) + o+ Ow (e +k=2) +v(t+k-1) (8.10)

In the subspace algorithm, the future value of the output is related to the future value of the

states and input by use of the following equations:

X, = AN, 48U, (8.11.1)

Y, =T\, +HU;+V (8.11.2)

Equations (8.11.1 and 8.11.2) were then derived from state-space equations (8.2) and (8.3).

The next section will show how the observability term I',.\', can be isolated from equation

(8.11.2).



8.3.4.2 Removal of input and noise contribution to the outputs

The first step to obtain the observability matrix TI',is to isolate the term dependant on the

states I',.\', in equation (8.11.2). This procedure can be divided into two steps: 1. an
orthogonal projection done to remove the input contribution #,U, and 2. An instrument

variable done to remove the noise contribution I'. The algorithm used to perform this
procedure is called instrumental variables approach and is thoroughly explained in
references by Viberg et al. (1995, 1997) and Ljung (1999). while here is shortly described in

following sections A) and B).

A) Orthogonal projection to remove the input contribution

To remove the input contribution #,U, . first a geometric interpretation of equation (8.11.2)

needs to be used as shown in figure 8.5 and also explained in by Galvao (2005).

HU, /N

Figure 8.5  Perpendicular projection of the future outputs perpendicular to the future
inputs

If one interprets equation (8.11.2) as a vector, the output contribution can be removed by

projecting the output vector ¥, perpendicular to the input contribution #,U, which can be

achieved with the following projection matrix:

[nf,,}N\Ne1—U}'§'(L’,U§')7'u, (8.12)



where the superscript 7" means transpose. A detailed proof concerning this orthogonal
projection matrix is available in Galvao's paper (2005). If this perpendicular projection

operator is applied on U, . it is equivalent to find the projection of #,U, perpendicular to U,

which, logically, is zero. Mathematically. it can be shown by use of equation (8.13):
U, T, ‘:U,—U,U'ﬁ'(u,uj')_'u, U, -U,[=0 (8.13)
Post-multiplying both sides of equation (8.11.2) by the projection operator 1", yields:
[0 ] =T L + HU T 41T =y ] +pme ] (8.14)

The input contribution has now been removed from the prediction equation.

B) Instrument variable to remove the noise contribution

It is now necessary to exclude the noise term 1}, of equation (8.14). This can be done by

post-multiplying equation (8.14) with a suitable matrix @ that is not correlated to the noise

matrix I . Let’s define the matrix @ as follows:
q):[(ﬂ\([) (p\(,+l) (/)\(’+,/—I)L\N (815)

where ¢, are vectors that are uncorrelated with the noise. The number of lines s of this matrix

may have any value, but it has to be higher than the desired order » of the dynamic system.
This variable is called an instrument variable as defined by Viberg (1997) and Ljung (1999)
and it is used to reduce the noise term of equation (8.14) to zero. Let’s post-multiply equation
(8.14) by the transpose of ®and normalize with the number of sample (by dividing the

equation by N) in the data as follows:



def ] 1

) ) def
[G]... = T)j,n({,qﬂ =—TI,.X, "o +%l'ﬂf,<b’ =07 ], +Fv L., (8.16)

N
In equation (8.16). the subscript \ implies that the value of 7, and £, are approximated for a

data record containing \\" data points. In order to cancel out the noise term without affecting

the term dependant on the future states 7, . the requirement for a proper instrument matrix ®

is that it must be correlated to the future states.\, . but uncorrelated with the noise term.

mathematically. it can be expressed by the following equations:

lim F,, = lim i,l'nl%,cp"eo (8.17)

Nox Nox |

lim 7,, = lim l.\'_,.n,{,cb" =T (8.18)

N—o=x N—omn |

In equation (8.18). the parameter 7 is equivalent to the estimation of 7. with an infinite

number of data points. Equation (8.17) implies that as the number of samples N goes to

infinity. the noise matrix and the instrument matrix ® must cancel each other and £, goes to

zero. The equation (8.16) can therefore be summarized as:

|
G=W)',nﬁ,q>fzr,r (8.19)

The remaining step of the above demonstration is to find an appropriate instrument matrix @ .
As it was stated before. the first requirement for the instrument matrix @ is that it must be
correlated with the future states, which are unknown at this point. Even though these states
are unknown, their value is dependant on the past inputs and outputs. these past inputs and
outputs are therefore a possible choice. The second requirement is that the matrix ® must be
uncorrelated with the noise. This is always the case when the system inputs are properly
selected. This is because the noise can be seen as the error between the model and the data

and, for a good model, this error is completely random. The past input and outputs are
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therefore a logical choice for the instrument matrix. In this paper. the instrument matrix used

is described in equation (8.20) which was taken from Ljung (1999).

.‘l[[—l]o\' 1 ."[,]o\ 1 .‘v[[+j_2](y\ 1

{)l/'} Me=hlyoy Me=h+1]y, - Me-h+j-1],,
sYN

O = . =Sl sssoswe (8.20)
g ult =11, 1 Wty o ult+j-2]0 4
Lult=hly o ult=hA+1],¢1 - u[t—h+j—l]m\]d5\N

In this equation, the subscript p stands for past input and outputs and the parameter / is the
number of past inputs and outputs used by the algorithm. Once a proper instrument matrix
has been found, the output equation can be described with equation (8.19). Combining

equations (8.16) and equation (8.19) yields:

%)y’,nl D' = %F,,X,FIIL,CD[ (8.21)

ot

At this point, every term of the left hand side of equation (8.21) are known. The next step
will be to extract the observability matrix I',. This can be done by performing a Singular

Value Decomposition (SDI’). More details on this procedure will be explained in section

8.3.3.3.

8.3.4.3 Determination of the Observability matrix from Singular Value
Decomposition

Once the matrix G is known from equation (8.19), it is possible to decompose it into three
sub-matrices using a well known linear algebra theorem called Singular Value
Decomposition. This theorem is explained in through details in reference by Patel et al.

(1993). This decomposition is expressed as follows:
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G ..=U s v (8.22)

roxs roxro~roxs’ sxs

In equation (8.22), the matrix S is made of the singular values of G. These singular values are

the positive square root of the eigenvalues of (G'G), these eigenvalues are sorted in
q g g

descending order from the first row to the last row of matrix S. The matrices U and } are

called singular vectors. They are respectively the orthonormal eigenvectors of (GG") and of
(G"(}). The following demonstration will show how the new matrices defined by the

Singular V'alue Decomposition can be used to obtain an extended observability matrix I,

that relates properly the inputs to the outputs. The singular value decomposition provides a
possible combination of matrices whose product gives the matrix G. Of these two matrices,
the first one is a possible observability matrix and the second one is a possible state vector.
The singular value decomposition of equation (8.22) applies for a dynamic system of any
order. If the desired order » of the dynamic system is known, a proper procedure separate the
first » singular values and singular vectors of the system from the other singular values and
vectors. In practice, when performing singular value decomposition, only the system
significant singular value and their corresponding singular vectors must be kept. The number
of singular values considered corresponds to the assumed order of the model. The singular
values that are kept should represent the true dynamic of the system and the small singular
values that are not taken into account should correspond to errors due to noise. Once the
singular value decomposition is done, it is possible to obtain a proper estimate of the
observability matrix T',. Notice that many different combinations of observability matrix and
7 matrix can lead to a set of parameters value that insures a proper match. According to
reference Ljung (1999). it follows that the value of the observability matrix may be expressed

with the following equation:

!
Il
2

(8.23)
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It is also possible to add weight functions to the matrix G obtained from equation (8.23)
before performing singular value decomposition as follows:
Gy =W,Gh; (8.24)

eight

The reason for adding weight matrices is to remove any residual error due to noise in the
variable . These weight matrices are made of parameters that are uncorrelated with the

projected noise matrix ... In the absence of noise, adding a weight matrix has no effect on

the identification results. but it improves the results when the identification is done on noisy

data.

After a weight matrix is selected, the new observability matrix is found by use of the

following equation:

r,=n"'vu (8.25)

Many authors have proposed expressions for different weight matrices and they have an
influence on the results of the identification. A good summary on the work of different
authors on these weight matrices formulations has been done by Viberg (1997) where
different expressions for weight matrices are derived using the same mathematical approach.
For original work on the different weight matrices. the reader is invited to consult the papers
written by Verhaegen (1994). Van Overschee (1994). Viberg (1995) and Larimore (1990). In
this paper. the weight matrices defined by Larimore (1990) were tried and gave excellent
results. Since there is not much noise in the data related to this project. the algorithm is not
very sensitive to the selected weight and it wasn’t necessary to try other weight formulations
to obtain good results. The weights as defined by Larimore are defined by use of the

following equation:


file:///ariable

4 =[lm%
N u

-1/2 =l

)"] ;1 =(lcbn%,cb’J (8.26)
g N [/

At this point the observability matrix I', have been determined from equation (8.25). This

observability matrix can now be used to obtain the value of the matrices [, B, . D]. The

procedure to do it will be shown in the next section.

8.3.44 Determination of the system matrices [A,B,C,D] from the observability
matrix

A) Estimating 4 and C

Once the observability matrix is known. it is quite easy to obtain the estimates of the 4 and C
matrices. [f we refer to equation (8.4) as it was defined at the beginning of the theory section.

the estimate matrix C is obtained by taking the following terms of the observability matrix:

C=Tprm) (8.27)

Where the hat =" means that it is an estimate. Equation (8.27) simply means that we have to
extract the first o lines and »# columns of the observability matrix. The matrix .4 can be found

from the observability matrix by solving the following equation:

r(u+1ru,ln) = r(]u(r—lLln)A (828)

In this equation, the left hand side represents the observability matrix with the first sub-
matrix C removed and the right hand side represents the observability matrix with the last

sub-matrix C4"' removed. This is equivalent to the following equation:
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CAy ., Coxn
C‘*l: - C‘A«» Xn
oxn - ' A‘n\n (829)
v qr=1 r-2
cd OXM J(r-1)oxn A OxMi(r-hoxn

In this equation. the only unknown is the state matrix 4. If the modified observability

matrices I and T, of equation (8.29) were both square matrices, it would be

(o+l:rol.n)
easy to find 4 . by just pre-multiplying both side of the equation by the inverse of

o1 - Since these matrices are not necessarily square. equation (8.29) can be solved by

use of the following equation:

Coxn ! Conn
& CAO\H C4: Xn
3. = ' o (8.30)
CA™, ., e

nx(r-1)0 oOXN Jir-1)oxn

In equation (8.30), the superscript ~+ ™ denotes the Moore-Penrose pseudo-inverse described
by Viberg (1995). This is a more general type of inversion which does not require the
matrices to be square. The pseudo-inverse can be computed by singular value decomposition
and reader is invited to consult references from Patel (1993) and Klema (1980) for more

details on this operation.

B) Estimating B and D

Once the system matrices 4 and C are known, it is possible to estimate the B and D matrices
by use of a linear regression technique. The discrete state-space model of equation (8.2) and
(8.3) can be converted into a discrete transfer function by using the discrete operator z

defined with the following equation:

ox(t) = x(t+ At)

='x(t) = x(1 - Ar) (8.31)



which leads to the following transfer function:
# Ayl
¥(t1B.D)=C(=1=4) Bu(r)+ Dul(r) (8.32)

where 3(7]B,D) means the estimated output which depends on the values of the matrices B

and D. A very efficient way to find the unknown parameters B and D of equation (8.32) is to

use a linear regression method. The estimated output 1(r) may be expressed by the following

equation:

. ~ I'ec(B r
(1), ., :’7(’)92'7(’)0\(nm+0m{ e )} (8.33)
(nm+om) x 1

Vec(D)

In equation (8.33). the matrix 75(s) is made of the past and presents inputsu(z). The single

column vector @ represents all the estimated parameters to be found by the regression, these
unknown parameters are all the elements of the matrices B and D. The operator **I'e¢ " builds

a column vector from a matrix by stacking its columns on top of each other.

8.3.4.5 Selection of the mathematical model order

The aircraft model structure should be defined with enough number of parameters to obtain
good results, but should be parsimonious due to the fact that a model with too many
parameters may overfit the data. The Akaike (1969) information criterion was used to
compute a modified cost function J which takes into account the number of parameters dy;

used to define the model. This criterion is defined as follows:

I+d, |1 & "
J:j{ﬁZ[)’(’)—-‘(’)] } (8.34)

M 1=l



146

Where the cost function J decreases when the mean square error between the model and the
data decreases. but increases with the number of model parameters i, The best model is the
optimal compromise between a low mean square error and a model with a small number of
parameters and will actually have the lowest possible cost function. In Table 8.1, the cost
functions .J are calculated with equation (8.34) for the second, third and fourth order models
for all nine MISO models. The minimum value of J is found with the third model order

which is therefore chosen to be the optimal model order.

Table 8.1

Model order selection based on cost function J values

(US)

I

(%)

Model order Order 2 Order 3 Order 4
Cost function J 6.2591x10° 2.2699%x10° 3.9055x107°
8.4 Results

This section of this paper is divided into the following three parts:
B An example of the goodness of the match between the model output and the
flight test data is shown graphically for the flight condition characterized by the
Mach number = 0.85 and the altitude of 5,000 ft.

2 The criterions used to evaluate the model for all flight conditions are explained.
3 The results for every flight conditions in terms of these criterions are explained.
8.4.1 Results for the flight condition characterized by one Mach number = (.85

and altitude of 5,000 feet

Figure 8.6 shows the nine structural deflections on different parts of the aircraft with respect
to time. The results presented in figure 8.6 are given for a tlight test condition at 5,000 ft at a
constant Mach number of 0.85. The model’s estimation results are represented by full lines,

and the stars represent the flight flutter tests data.
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Figure 8.6  State-space model estimation of structural surface deflections (full line) and
their measurements (or flight tests data) with respect to time.
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From figure 8.6. the estimated surface deflections follow the same dvnamics as the surface

deflection from flight flutter tests.

8.4.2 Criterions used to evaluate the results

Three methods are used to evaluate the model’s accuracy of these results: The correlation
coefticient, the fit coefficicnt and the robustness test. These methods are explained in this

section.

8.4.2.1 Correlation Coefficient

The concept of correlation coefficient may be illustrated by plotting the results from flight
flutter test data versus the estimated (calculated) results expressed in terms of structural

surfaces deflections as shown in figure 8.7:

Desired output

Estimated output

Figure 8.7 Visual interpretations of the estimated structural surfaces deflection outputs
versus the output from flight flutter test data.

The correlation coefficient R is defined as a measure of the scatter in the graph shown in
figure 8.7 between the output from flight flutter test data and the calculated (estimated)

output. Mathematically, its expression is given by the following equation:
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Cov(y.y)

\/I ar(y)lar(y)

R =

where Cov 1s the covariance, I'ar is the variance, y is the output from flight flutter test data

and V' is the estimated output. The value of the correlation coefficient R is situated between
-1 and 1. The correlation coefficient R equal to one (R = 1) denotes perfect linear
dependency (no scatter) between the outputs from flight flutter test data with respect to
the calculated or estimated outputs. A correlation coefticient equal to minus one (R = -1)
denotes inverse linear dependency between the estimated output and the output from flight
flutter test data. A correlation coefficient of zero (R = 0) denotes the /inear independency
between the estimated outputs and the output from flight flutter test. The correlation
coefficient computes the goodness of the model in a statistical sense, but provides little
information about the model error. More information can be obtained by the second method:

the /it coefticient.

8.4.2.2 Fit Coefficient

The fit coefticient is defined as 100 % multiplied by the ratio between the L,-norm of the
error between the data and the model over the L--norm of the error between the data and its

mean value. The fir coefficient is expressed by equation (8.36):

T =100 1-— 2=

Hy = mean(y)H (8.36)

Where the term in (”“‘H) is the Ly-norm of the error. The L,-norm is defined with equation

(8.37):
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v =y

Equation (8.36) therefore becomes:

FIT =100 1— |— (8.38)

Z(y = mean(y))2

1

In equation (8.38). the term under the square root represents the ratio between two residuals:
the residual between the model and the data and the residual between the data and their mean
value. Intuitively. the fit coefficient explains the percentage of data variation that is explained
by the model. The main advantage of using the fir coefficient is that it takes into account how
the data varies about its mean in order to evaluate the model quality. For example. even if a
model has an output very close to the data output, it will have a poor fit coefficient if there

are much more small oscillations in the data than in the model.

8.4.3 Robustness test

In order to test our estimated model robustness from flight tests data, we consider re-sampled
signals that use one point over one hundred (100). The signals are further re-sampled, as
there is the need to use the same sampling rate as that used in the model implementation (7, =

0.01). see figure 8.8.



Signal 1 from the flight

tests L <., one point over hundred | N el 4
3000 points [ i 30 points = R o
Ts = 0.01s To =4 3000 points

' Ts=0.01s
3 — | =y

Signal 3 slightly

Sjial # compased by | perturbed from original

Resampling at 100 times
the original sample rate

Figure 8.8  Robustness test methodology

The schematic shown in figure 8.8 is equivalent to a procedure that makes perturbations on

the model inputs and outputs in order to check its robustness. The reconstructed inputs are

further used in the initial model. This is equivalent to adding many small perturbations to the

inputs signals, in order to measure the sensitivity of the model to these perturbations. In

figure 8.8 the initial signals from flight test is very close to the re-sampled signals.

Positions [deg]

ce

Surfa

Comparison between the signal used for building
the model and the one for the robustness test

— Measured signal

% : - : —— Resampled signal

Time [sec]

Figure 8.8:

Initial flight flutter test data versus re-sampled signals

If the model is robust, the model output from the re-sampled input should be similar to the

model output when using the initial input.



8.44 Results for all flight flutter tests conditions

In order to summarize the results obtained by the identification and the robustness test, we
plot on the same figure the average correlation and fit coefficients for all flight conditions
and for each surface deflection in the upper and lower parts of figure 8.9. In this figure. the
full bars represent the results by the identification and the dashed bars represent the results of
the robustness test. The black lines represent the standard deviation of each coefficient for all

flight conditions.
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Figure 8.9  Correlation and fit factors mean and standard deviation

Sfor all flight conditions
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Firstly. we observe that the fit coefficients are very good for the identification part (model
construction) due to the fact that the average fit coefticient is found to be higher than 97% for
each surface, which shows that our calculated model validates the real aircraft system (from

flight tests).

We can also note that for the robustness tests we obtained fit and correlation coefficients of
almost the same magnitude as those obtained in the identification tests. The differences
between the two sets of results are 1% to 2%. We therefore conclude that our estimated

model is robust.

8.5 Conclusions

Nine third order linear state space models MISO were used in this study to estimate the
structural surfaces positions given by the F/A-18 differential ailerons control inputs for flight
conditions characterized by different Mach numbers and altitudes. A number of 19 flight
tests with different combinations of Mach numbers and altitudes were considered in this
study. The subspace method was used for the model identification from flight flutter tests.
Two methods were used to estimate this model performance: the first uses the correlation

coefficients definitions and the second uses the fit coefficients definitions.

The correlation coefficients are close to 100% and the fit coefficients also have high values,
with the worse values of 89%. Therefore, the estimated linear model fits very well the flight

flutter tests data.

The advantage of the subspace identification method is its small computation time and also
the estimation of a very good model from the knowledge of the flight tests’ inputs and
outputs without a-priori knowledge about the model dynamics. The estimated model was

found to be robust by the re-sampling technique application. We further conclude from the



obtained results that the subspace method is very convenient for model identification from

flight flutter tests.
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CHAPTER 9

INTRODUCTION TO THE FOURTH PAPER

The aim of this paper was to determine the mathematical relationship (model) between
control deflections and structural deflections of the F/A-18 aircraft. This paper
represented an improvement with respect to the third one. In the third paper, different
MISO models were used to simulate the detlections of the different structural surfaces of
the F/A-18 following a differential ailerons deflection. In this paper. a single Multiple
Inputs Single Outputs (MIMO) model was used to estimate simultaneously the structural
deflections of the four following surfaces: the left wing, the right wing. the left training

edge flap and the right trailing edge flap.

The model was built using five different Schroeder excitations: differential ailerons,
collective ailerons, collective stabilizers, differential stabilizers, and rudders. In the same
manner as in the third paper, the mathematical model was represented by a state-space
model, but, this time, non-lineal inputs were added to the linear inputs to improve the
match between the model and the flight test data. The models were done for the same
flight conditions as in the third paper. These flight test Mach numbers varying tfrom 0.85
to 1.30 and altitudes varying from 5000 ft. to 25 000 ft. Very good results are obtained
with fits between the estimated and the measured signals and correlation coefficients

higher than 90%.
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CHAPTER 10

STRUCTURAL DEFLECTIONS ON A F/A-18 AIRCRAFT STRUCTURE
FOLLOWING FLIGHT FLUTTER TESTS EXPRESSED WITH A MIMO
STATE-SPACE MODEL CONSTRUCTED USING THE SUBSPACE
IDENTIFICATION METHOD

S. De Jesus Mota ', M. Nadeau-Beaulieu” and R. Botez’
Ecole de technologie supérieure, Montréal, Québec, Canada, H3C 1K3

M. Brenner *
NASA Dryden Flight Research Center, Edwards, CA

10.1 Abstract

The aim of this paper is to determine the mathematical relationship (model) between
control deflections and structural deflections of the F/A-18 modified aircraft. Five sets of
signals from flight flutter tests corresponding to the excited sources were measured by
NASA DFRC (Dryden Flight Research Center). These excitations are: differential
ailerons, collective ailerons, collective stabilizers, differential stabilizers, and rudders.
The signals to be used by the model are of 2 types: control deflections time histories and
their corresponding structural deflections. We choose to use the subspace identification
method in order to identify the MIMO (Multi Input, Multi Output) system. Nonlinear
inputs are used to fit the outputs signals. We apply this method for a number of sixteen
flight conditions for which the Mach number varies from 0.85 to 1.30 and the altitudes

vary from 5,000 ft to 25,000 ft. Very good results are obtained with a fit between the
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estimated and the measured signals above 73% and a correlation coetticient higher than

90% for most cases.

10.2 Introduction

The work presented in this paper uses flight flutter test data from NASA DFRC (Dryden
Flight Research Center). For more details on these data, the reader is invited to consult
Lind et al. (1999) and Voracek et al. (2003). In this paper, a model is presented which
computes the structural deflection of the flexible F/A-18 following a given control input.
The model is build using the subspace parameter estimation methods from flight flutter
tests. The subspace identification algorithm, a very efficient non-iterative system
identification technique. is used for the mathematical model identification and is
explained extensively by Ljung (1999). The next sections present a literature review on
system identification methods, and in particular, on the subspace method used in

acroelasticity applications.

The Autoregressive Moving Average Method (ARMA) and the Neural Networks Theory
were used by Sung et al. (2005) to identify the flutter behaviour of a transonic wing.
Kukreja and Brenner (2006) later used the Non-Linear Autoregressive Moving Average
EXogenous (NAMAX) model to study the flutter dynamics of a pitch-plunge system
subjected to limit cycle oscillations. The dynamics of a flexible wing model has also
been modelled by Silva and Vartio (2006) by use of the impulse response method and
the Eigensystem Realisation Algorithm (ERA). An output-error minimisation method

was performed based on a large flexible aircraft by LeGarrec et al. (2001).

The subspace method was already applied in many other fields such as fibre optics
research by Galvao et al. (2005). In the aerospace field, the subspace method has been
used to identify the effects of the aircraft’s control surfaces motion on the rigid modes of
the F/A-18 from flight flutter tests by Brenner et al. (1997). In this method. the ailerons

were excited by use of Schroeder frequency sweeps. The accelerations of the aircraft
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were filtered using a wavelet transform and the aircraft’s roll responses were both

identified in time and frequency domains.

In the present study, the subspace identification method is used to identify the structural

deflections of the F/A-18 aircraft’s surfaces from flight flutter tests.

10.3 Methodology

The methodology part of this paper has three distinct sections:

10.2.1: Description of the Schroeder excitation inputs signals and data pre-
processing

10.2.2: Description of the architecture of the state-space models

10.2.3z Extended description of the subspace system identification method.

10.3.1 Flight Flutter test data preprocessing

In order to obtain the recorded flight flutter tests data, the flight control computer (FCC)
for the F/A-18 aircraft was modified by adding a Research Flight Control System
(RFCS) to generate the Schroeder frequency sweep control inputs. The software used by
the RFCS to control the actuators was called the On Board Excitation System (OBES).
The Schroeder frequency sweep generated by the OBES is a large number of harmonics,
equally spaced in the frequency domain. An example of the OBES control inputs time

history is shown in figure 10.1.
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Figure 10.1 OBES control inputs versus time
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The OBES Schroeder excitation signal is defined in equation (10.1):
OBES(I‘)zi.4ksin(2,‘rfkt+¢k) (10.1)

where f; is the ¥ measurement frequency, ¢ is the ¥ phase and A is the " amplitude
of the Schroeder signal. Details on the theory of Schroeder signals are given by
Schroeder (1970). The OBES generated Schroeder signal is sent to the aircraft actuators
to generate the F/A-18 control surfaces oscillations. For each flight test record, the
excited control surfaces may be one of the following: differential aileron, collective
aileron. collective stabilizer. differential stabilizer or rudders. The outputs of the
mathematical model are the structural deflections of both wings and trailing edge flaps.
The tests were performed for a combination of Mach numbers from 0.85 to 1.30 and for
altitudes from 5,000 ft to 25,000 ft. At each flight condition, characterized by an altitude
and a Mach number, all the five different manoeuvres above mentioned were performed
to generate different records with a time length of 30 seconds. In order to capture all the
system dynamics when building the mathematical model, each manoeuvre
corresponding to a given altitude and Mach number was concatenated to generate a

single long time record.



In this paper, we use firstly the measured accelerations provided by NASA DFRC
laboratories. The measured accelerations on the structural surfaces are very noisy. We
remove the noise in order to identify the F/A-18 model by performing a double
integration on the surface accelerations to obtain the surface deflections. Since the noise
is a random process with a mean zero value, then the integration removes any noise
contribution to the data. Therefore, no additional filter is required. The filtering effect of
the accelerations double integration is shown in figure 10.2, where speeds and positions

time histories are represented for the left wing surface.
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Figure 10.2  Left wing accelerations and their single and double integrations with
time, which give the speeds and the deflections with time

In figure 10.2, only the structural surface deflection acceleration for the leff wing is

shown to illustrate the way in which integrations operations remove the unwanted noise.
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10.3.2 State-space model architecture description

The linear MIMO (Multiple Input Multiple Output) model representing the system is

presented in figure 10.3.

LINEAR INPUTS : =g

5 e | STATE SPACE 5 v oeileed
NONLINEAR INPUTS: — > _WINGg
> (A,B,C,D) = o IER
AIL*AIL, L T TEF,
STB.*STB, |
STBR*STBR
VERT.*VERT,

AIL *VERT,_
AIL_*VERTR
AlLR*STB,_
STB_*VERT_
STB_*VERTR

Figure 10.3 MIMO model with nonlinear inputs

In figure 10.3, the model’s linear inputs, represented by the upper left block of figure
10.3, are the left and right aileron positions AIL| and AlLg, the stabilizer positions STB;
and STBr and the vertical tail VERT. and VERTR positions. These inputs are also
combined with non-linear inputs of second degree in order to improve the match
between the model and the data. The outputs are the wings deflections WING and
WINGgr and the trailing edge flaps TEF, and TEFR deflections. The state-space matrices
A, B, C and D are identified with the subspace method which will be explained in the

following section.

10.3.3 Description of the subspace system identification algorithm

Generally. a discrete linear model is defined with the following equations (10.2) and

(10.3):
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.\'(I+AT)MI = A“n.\'(t)“\ L+ Bn\.mu(t)m\I +3w(l) 4 (10.2)
"‘([)o\l = CO\“'Y(I)n\ 1 ¥ Doxmu(l)mxl +\‘(1)0\l (103)

The 4. B, C and D matrices terms are usually estimated by use of various parameter
estimation methods. Most of these methods start with a set of initial guesses found from
physical knowledge of the system. A minimization algorithm is further used to reduce
the error between the model output and the given flight test data. Unfortunately. with
these methods, if the initial parameter guesses are far from their true values, the

minimization algorithm may converge towards a local minimum.

The main advantage of the subspace identification algorithm used in this paper is that is
non-iterative and does not require an initial guess of the parameters inside the state-
space matrices [4. B, C, D]. The only information required by the subspace method is

the input and the output data vectors.

The subspace identification algorithm is implemented in the Matlab System
Identification Toolbox. The basic theory of this algorithm is described by Ljung (1999)
and the manner in which the algorithm is implemented in Matlab” is given by Ljung
(2006). The main concept of the subspace method is the definition of the system
observability matrix I'; in the following equation (10.4) from modern control theory,
where r represents a forward prediction horizon. This matrix can be obtained from the

system inputs () and outputs (/) and its expression is the following:

G

df | C4) ¢y
(10.4)
A

L OXN _frgxn
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Once this observability matrix I, is known, the state space matrices [4, B, C, D] are
obtained by use of the input and output vectors. The detailed procedure to obtain the
observability matrix and the discrete state space matrices will further be explained. The
theory regarding the subspace algorithm is divided into five sections. The first section
(10.2.3.1) defines basic description of matrices and equations necessary to its
demonstration, sections (10.2.3.2) and (10.2.3.3) explain the two steps necessary to
calculate the observability matrix given in equation (10.4) while the fourth section
(10.2.3.4) explains the obtention of the discrete state space matrices [4,B,C,D] from the
observability matrix. Finally, the fifth section (10.2.3.5) discuss the model order

selection.

10.3.3.1 Basic description of input and output matrices

In order to understand the subspace algorithm, is necessary to define a number of
important matrices. The input data obtained later than the reference time ¢ can be

arranged into a Hankel matrix as follows:

ult], ut+ A0, ult +2A1] u[tJr(j—l)At]mxl
def | ut+ A, ult +2A1],, ult +3M0], ult + Al
U/= [ ] %1 [ ] Xl [ x 1 [ ./ ] x1 (105)
u[t+(r—1)A1]mxl ult +rat] u[t+(r+l)At]mx] . u[r+(r+j—2)At]mxl

mx N

In this matrix, the subscript /' stands for future inputs due to the fact that only the inputs
given later than at time ¢ are included into the matrix. The subscript N represents the
length of the measured output vector and the index ; is a dummy variable adjusted such

that all data available in the identification are included on each line of the U, matrix.

Please note that if the expression in the brackets of the matrix element « has a value

greater than N, the value of Uyis zero. Similar Hankel matrices can be constructed with
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the output vectors and defined as ¥, . The future state vector is defined by the use of the

following matrix:

Xp=[Mtle Mt+Aflig oo Ar+(-DAGe 0] (10.6)
Is also necessary to define the extended following controllability matrix:

Arz[(A"]B)MI (4728) . (4B),, BM,]““ (10.7)

and finally the impulse response matrix is given by:

Doxm 0 0 0
CBoxm Doxm
H,': CABoxm CBoxm Doxm 0 (108)
r=2 =3 r—4
(CA™B,,,, CA™B,,, CA™ B0 o Dyyml| .

It is also important to describe the noise effect on the furure output of the system. This

noise effect is defined by use of the Hankel matrix V:

Vl[l]oxl Vl[[+AI]o\I Irl[t+2A[]0xl lrl["*'(j—l)At]o,\']
def Ve + At Vot +2Ar], Vile+3At], W[+ jAar, :
V= _[ ]o 1 ‘_[ ]0. 1 2[ ] x 1 _[ J ] %1 (10.9)
Vit +(r=1)8tlyy Vilt#ratlyy Vilt+(r+) Aty oo Vle+(r+=2)A |

where the value of the term ¥, is defined with equation (10.10):

3

Ve =CA* 2 w(t)+ CA w(t+ 1)+ o+ Ow(r+k =2) +v(t+k -1) (10.10)
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In the subspace algorithm, the future value of the outputs is related to the future value of

the states and input by use of the following equations:

N, = AN, AU, (10.11.1)

Y= X, +HU +I' (10.11.2)

Equations (10.11.1) and (10.11.2) were then derived from a state-space equations (10.2)

and (10.3). The next section will show how the observability term I',.\', can be isolated

from equation (10.11.2).

10.3.3.2 Removal of input and noise contribution to the outputs

The first step to obtain the observability matrix I',is to isolate the term I',.\', in

equation (10.11.2). This procedure can be divided into two steps: 1. An orthogonal

projection done to remove the input contribution #,U, and 2. An instrument variable

approach to remove the noise contribution /. The algorithm used to perform this
procedure is called instrumental variables approach and is thoroughly explained by
Ljung (1999) and Viberg et al. (1995, 1997). This part of the algorithm is described in

following sections A) and B).

A) Orthogonal projection to remove the input contribution

In order to remove the inputs contributions #,U,, a geometric interpretation of

equation (10.11.2) is used as shown in figure 10.4 and also explained by Galvao et

al.(2005).



169

H,U,

Figure 10.4 : Perpendicular projection of the future outputs perpendicular

to the future inputs

If one interprets equation (10.11.2) as a vector, the output contribution can be

removed by projecting the output vector 1}, perpendicular to the input

contribution #,U, . which may be achieved with the following projection matrix:

L }NxN‘:1—Uj‘(UV,U}')_'U, (10.12)

1
A detailed proof concerning this orthogonal projection matrix is available from Galvao
paper (2005). If this perpendicular projection operator is applied on U, . it is equivalent

to find the projection of H,U, perpendicular to U, which. logically, is zero.

Mathematically, it can be shown by use of equation (10.13):
U, =u, -U,U (U, Uy )_l Uy=U,-U,1=0 (10.13)
Post-multiplying both sides of equation (10.11a) by the projection operator IT", yields:

(v ] =T+ HU I+ =[0I | e[ ] (10.14)
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The input contribution has now been removed from the prediction equation.

B) Instrumental variable to remove the noise contribution

[t is now necessary to exclude the noise termI'T1,, of equation (10.14). This can be done

by post-multiplying equation (10.14) with a suitable matrix @ that is not correlated to

the noise matrix 1. Let’s define the matrix @ as follows:

O=[p(1) o (+l) .. @ (+j-D) n (10.15)

where ¢, are vectors that are uncorrelated with the noise. The number of lines s of this
matrix may have any value, but it has to be higher than the desired order » of the
dynamic system. This variable is called an instrument variable as defined by Ljung
(1999) and Viberg (1997) and it is used to reduce the noise term of equation (10.14) to
zero. Let’s post-multiply equation (10.14) by the transpose of @ and normalize with the

number of sample (by dividing the equation by N) in the data as follows:

W1, er S IR
O, = M =T M@ ity 0 = [11y ], 4R, (1016)
In equation (10.16), the subscript N implies that the value of 7,and F, are

approximated for a data record containing N data points. In order to cancel out the noise

term without affecting the term dependant on the future states 7., the requirement for a

proper instrument matrix® 1s that it must be correlated to the future states .\, . but

uncorrelated with the noise term, mathematically. it can be expressed by the following

equations:

lim Fy = lim %I'H;,CDT =0 (10.17)

N—o» N-ox
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lim 7, = lim L‘\’,ﬂf.,CDT:T (10.18)

N—=» N>

In equation (10.18), the parameter 7 is equivalent to the estimation of 7, with an

infinite number of data points. Equation (10.17) implies that as the number of samples N
goes to infinity, the noise matrix and the instrument matrix ® must cancel each other

and F, goes to zero. The equation (10.16) can therefore be summarized as:
c;=7‘v_y,.n,ﬁ7q>" a7 (10.19)

The remaining step of the above demonstration is to find an appropriate instrument
matrix ® . As it was stated before, the first requirement for the instrument matrix @ is
that it must be correlated with the future states, which are unknown at this point. Even
though these states are unknown, their value is dependant on the past inputs and outputs.
these past inputs and outputs are therefore a possible choice. The second requirement is
that the matrix ® must be uncorrelated with the noise. This is always the case when the
system inputs are properly selected. This is because the noise can be seen as the error
between the model and the data and, for a good model, this error is completely random.
The past input and outputs are therefore a logical choice for the instrument matrix. In
this paper, the instrument matrix used is described in equation (10.20) which was taken

from Ljung (1999).

",[[ - l]ox 1 .1'[[10\ | I ."[t + ./_ 2]0\ 1
y We—-hlx1 Y=+, o YiE=h+j=1]xq
o - "] . (10.20)
P lsxN ult =10 ultly ey o ult+7-2) 4
_u[l =hlacy UE=h¥1], .1 ult—h+j-1], ., I
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In this equation, the subscript p stands for past input and outputs and the parameter /4 is
the number of past inputs and outputs used by the algorithm. Once a proper instrument
matrix has been found, the output equation can be described with equation (10.19).

Inserting equation (10.16) into equation (10.19) yields:

| - -1
—_),H;L,,CDI =_r
N N

F,,X/l_lf,,CD' (10.21)
At this point, every term of the left hand side of equation (10.21) are known. The next

step will be to extract the observability matrix [, . This can be done by performing a

Singular Value Decomposition (SDI"). More details on this procedure will be explained

in section 10.2.3.3.

10.3.3.3 Determination of the Observability matrix from Singular Value
Decomposition

Once the matrix G is known from equation (10.19). it is possible to decompose it into
three sub-matrices using a well known linear algebra theorem called Singular 1alue
Decomposition. This theorem is explained in through details in reference by Patel et al.

(1993) and is expressed as follows:

GrO\s =Ur0\r0‘groxsl’s,l;s (1022)
In equation (10.22), the matrix S is made of the singular values of G. These singular
values are the positive square root of the eigenvalues of(GTG). these eigenvalues are
sorted in descending order from the first row to the last row of matrix S. The matrices U
and | are called singular vectors. They are respectively the orthonormal eigenvectors of

(GG") and of (G’G). The following demonstration will show how the new matrices
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defined by the Singular Value Decomposition can be used to obtain an extended

observability matrix I', that relates properly the inputs to the outputs. The singular value

decomposition provides a possible combination of matrices whose product gives the
matrix G. Of these two matrices. the first one is a possible observability matrix and the
second one is a possible state vector. The singular value decomposition of equation
(10.22) applies for a dynamic system of any order. It the desired order » of the dynamic
system is known, a proper procedure separate the first » singular values and singular
vectors of the system from the other singular values and vectors. In practice. when
performing singular value decomposition, only the system significant singular value and
their corresponding singular vectors must be kept. The number of singular values
considered corresponds to the assumed order of the model. The singular value that is
kept should represent the true dynamic of the system and the small singular value that
are not taken into account should correspond to errors due to noise. Once the singular
value decomposition is done, it is possible to obtain a proper estimate of the
observability matrix I', . Notice that many different combinations of observability matrix
and 7 matrix can lead to a set of parameters value that insures a proper match.
According to reference Ljung (1999). it follows that the value of the observability matrix

may be expressed with the following equation:

r =u (10.23)

It is also possible to add weight functions to the matrix G obtained from equation

(10.23) before performing singular value decomposition as follows:

Gll'clghl = ”/IG”/Z (1 024)

The reason for adding weight matrices is to remove any residual error due to noise in the
variable G. These weight matrices are made of parameters that are uncorrelated with the

projected noise matrix £, . In the absence of noise, adding a weight matrix has no effect
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on the identification results. but it improves the results when the identification is done on

noisy data.

After a weight matrix is selected, the new observability matrix is found by use of the

following equation:
r,=h"'u (10.25)

Many authors have proposed expressions for different weight matrices and they have an
influence on the results of the identification. A good summary on the work of different
authors on these weight matrices formulations is available from Viberg et al. (1997)
where different expressions for weight matrices are derived using the same mathematical
approach. For original work on the different weight matrices, the reader is invited to
consult the papers written by Verhaegen (1994), Van Overschee (1994). Viberg (1995)
and Larimore (1990). In this paper. the weight matrices defined by Larimore (1990)
were tried and gave proper results. Since there is not much noise in the data related to
this project. the algorithm is not very sensitive to the selected weight and it wasn’t
necessary to try other weight formulations to obtain good results. The weights as defined

by Larimore are defined by use of the following equation:

=1/2
W, :(%m,{; }'7'] B :[%(;DH,L.,CD/) (10.26)
N

At this point the observability matrix I', has been determined from equation (10.23).

This observability matrix can now be used to obtain the value of the matrices [4, B, C

D]. The procedure to do it will be shown in the next section.



10.3.3.4 Determination of the system matrices [A, B, C, D] from the observability
matrix

A) Estimating 4 and C

Once the observability matrix is known, it is quite easy to obtain the estimates of the .4
and C matrices. If we refer to equation (10.4) as it was defined at the beginning of the
theory section, the estimate matrix C is obtained by taking the following terms of the

observability matrix:
CA:FUUV,”) (10.27)

Equation (10.27) simply means that we have to extract the first o lines and » columns of
the observability matrix. The matrix 4 can be found from the observability matrix by
solving the following equation:

=T

I (Iu(r—l)‘]u)‘“’ (1028)

(o+lro,ln)

In this equation, the left hand side represents the observability matrix with the first sub-

matrix ¢ removed and the right hand side represents the observability matrix with the

r-1

last sub-matrix ¢4 removed. This is equivalent to the following equation:

CAO\n CO\n
C/{z . C‘4(v‘
oxn _ L Ao (1029)
-1 r=2
CA” oxn Jir-l)oxn CA OND d(r-1)ox n

In this equation, the only unknown is the state matrix 4. If the modified observability

matrices [(,,1,01,, and Ty, of equation (10.29) were both square matrices. it would

be easy to find A4, by just pre-multiplying both side of the equation by the inverse of

nxn



176

Cioooam - Since these matrices are not necessarily square, equation (10.29) can be

solved by use of the following equation:

B} + y
CO\n C‘.{ﬂ\n
. CA, CA
Ao =l (10.30)
CA"‘ZM | iyl

oxXn
nx(r-1)o h (r-Doxn

In equation (10.30). the superscript “+ denotes the Moore-Penrose pseudo-inverse
described by Viberg (1995). This is a more general type of inversion which does not
require the matrices to be square. The pseudo-inverse can be computed by singular value
decomposition and reader is invited to consult references from Patel (1993) and Klema

(1980) for more details.

B) Estimating B and D

Once the system matrices 4 and C are known. it is possible to estimate the B and D
matrices by use of a linear regression technique. The discrete state-space model of
equation (10.2) and (10.3) can be converted into a discrete transfer function by using the

discrete operator z defined with the following equation:

=x(t) = x(1 + Ar) (10.31)
=) = - A |

Which leads to the following transfer function:

_{v(z|B,D):é(:/—,})_l Bu()+ Du(t) (10.32)
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Where j(¢|B.D) means the estimated output which depends on the values of the

matrices B and D. A very efficient way to find the unknown parameters B and D of

equation (10.32) is to use a linear regression method. The estimated output 7(r) may be

expressed by the following equation:

Vec(B)

'{‘(1)0\ 1T f](f)é - ’l(l)oxtnmmm) {’PL'(D) (1033)

(nm+om) x 1

In equation (10.33). the matrix »(s) is made of the past and presents inputs u(r). The

single column vector & represents all the estimated parameters to be found by the
regression, these unknown parameters are all the elements of the matrices B and D. The
operator ~I’ec” builds a column vector from a matrix by stacking its columns on top of

each other.

10.3.3.5 Selection of the mathematical model order

The subspace method explained above applies for a state-space model of any order.
Recall that the order of a State-Space model is defined by the rank of matix .{ defined in
equation 10.2 and this order must be carefully selected in order to obtain an appropriate
model. The order should be high enough to insure that the model represents all the
important dynamics of the system, however, choosing an order that is too high may lead
to an overfitting problem. Overfitting occurs when the match between the model’s
outputs and the flight flutter test data is very good for data used by the identification
algorithm, but is poor for fresh data set aside for the validation process. A good
approach for model order selection is therefore to insure that for a given order, the
model performance is optimal for both the identification test data and another data set
aside for the validation process. In this paper, there was no validation flight test data to
evaluate the model’s generality. To solve this problem, robustness test data were

generated by slightly perturbing the initial identification flight test data using a re-
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sampling technique. These robustness test data were used as validation data. The method
used to generate these robustness test data is explained in details in section 10.4.1.3
below. Ditferent model orders were tried and for each order. the model performance on
the identification flight test data and the robustness test data were evaluated. It was

found that the optimal model order was eleven (11).

10.4 Results

This section explains the way in which the non-linear state-space mathematical models
obtained from the subspace system identification method are evaluated. The accuracy of

the mathematical model i1s demonstrated with four different criterions:

10.4.1 The criterions used to evaluate the model

10.4.2 The match between the model output and the output from the flight test
data shown graphically for one flight condition.

10.4.3 The summary of results obtained for all flight conditions.

10.4.4 The graphical representation of the worse results

The results section is divided into four parts: the first part explains the criterion used to
evaluate the model. These criterions are the correlation and the fit coefficients. and the
robustness test. The second part shows graphically the match between the model outputs
and the input data for a given flight condition. The third part summarizes the results for
all flight conditions by use of the average correlation coefficients and fit coefficients.

The last part shows graphically the worse obtained results.
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10.4.1 Criterion used to evaluate the model

10.4.1.1 Correlation coefficient

The first method used to validate the model is the correlation coefficient. The correlation
coefficient R can be interpreted as a measure of the scatter in the graph shown in Figure

10.510.5 between the measured output and the calculated (estimated) output.

Desired output ;

Estimated output

Figure 10.5 Visual interpretation of the measured versus the estimated structural

surface deflection outputs

Mathematically. R (which has values between -1 and 1) is given by the following

equation:

Cov(y.p)

R=
JFar () Var (3)

(10.34)

where Cov is the covariance, I'ar is the variance, y is the measured output and J' is the

estimated output. The correlation coefficient R equal to one (R = 1) denotes perfect
linear dependency (no scatter) between the measured and the calculated or estimated
outputs. A correlation coefficient equal to minus one (R = -1) denotes inverse linear
dependency between the measured and the estimated outputs. A correlation coefficient

of zero (R = 0) denotes the linear independency between the measured and the estimated
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outputs. The correlation coefticient computes the goodness of the model in a statistical
sense, but provides little information about the model error. More information can be

obtained by the second method: the fir coefficient.

10.4.1.2  Fit coefficient

The fit coefficient is defined as 100 % multiplied by the ratio between the L,-norm of
the error between the data and the model over the L--norm of the error between the data

and its mean value. The fir coefficient is expressed by equation (10.35):

Fir =100 1=l (10.35)
“ v —mean( ))”

Where the term in (|y-7[) is the Ly-norm of the error. The Lo-norm is defined with

equation (10.36):

1 N2
o d(yv-1) (10.36)

Equation (10.35) therefore becomes:

n

> (v-3)

FIT =100[ 1 - |— (10.37)

Z(y - mean(}’))2

1

In equation (10.37). the term under the square root represents the ratio between two

residuals: the residual between the model and the data and the residual between the data
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and their mean value. Intuitively, the fit coefficient represents the data variation
percentage explained by the model. The main advantage of using the fir coefficient is
that it takes into account the data variation about its mean in order to evaluate the model
quality. For example, even if a model has an output very close to the data output, it will
have a poor fit coetficient if there are much more small oscillations in the data than in

the model.

10.4.1.3  Robustness test

Normally. the best manner to test the performance of a model would be its use in a
simulation with a set of input data which was not used in the parameter identification
process. The resulting model output is then compared to the flight test data outputs
corresponding. This comparison can be done by using the correlation and fit coefficients
and this test is called cross-validation or acid test. Unfortunately. in this paper, it was not
possible to set data aside for the validation because there was only one set of data
records available for each given input excitation, altitude or Mach number. For this
reason, we decided to evaluate the robustness of our estimated model by considering the
model’s output resulting from a simulation with slightly perturbed input signals. The
purpose of this test was to evaluate the effect on the model’s output of negligible input
signals perturbations. If the model is not sensitive to very small perturbation of its
inputs, it indicates that the model is robust and would more likely become an acid rest.
The difference between a perturbed input signal and the initial input signal is illustrated

in figure 10.6.
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Comparison between the signal used to build the model
and the signal used to validate its robustness

Signal used to build the model A\ . !
------- Resampled signal used to test the robustness| \ ! {|

Surface positions [deg]

Time [sec]

Figure 10.6 Perturbed signal used for the robustness test

The perturbed input signal shown in figure 10.6 was generated by performing the

following operations:
-Resample the signal by keeping only one point for a given number b of points.

-Reconstruct the signal from these points by performing interpolations in order to obtain

the initial sampling rate.

This procedure is illustrated in figure 10.7 where A is the sampling rate.
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Signal 1 from the flight ' Signal 2 composed by Signal 3 slightly

tests ' . jone point over b points | perturbesciigfr:;::'n1 original
15000 points ; i
poi 15000/b points 15000 points

At =0.01 seconds At =0.01 x b seconds

At = 0.01 seconds
e )

Resampling at b times |
the original sample rate |

Figure 10.7 Input data modification for the robustness test

Thus, if the model is robust, must react well to small perturbations of the input signals.
This means that there is neither divergence nor oscillations on the output signals and the

output fit parameters must be similar to the fit of the signal used in the identification.

The robustness test was used to select the most appropriate non-linear inputs to be used
and to build the models. These modified data sets were also used to select the most
appropriate model order. Recall from figure 10.3 that the model’s inputs are the different
control surfaces deflections and linear combinations of these deflections. The use of a
high number of non-linear inputs may cause the model to overfir the data. When this
situation occurs. there is a small model error compared to the data set used to build it,

but the model performs poorly on these new data sets.

Since we do not have a separate data set to use in the cross-validation. we decided to use
the modified input data for the robustness test above described as added non-linear input
would likely cause an over fitting problem. We chose to add only the non-linear inputs
which improved the model performance on both the original data and the modified data
used in the robustness test. In each case, the model performance was calculated in term

of correlation and fit coetticients.

The following section will demonstrate qualitatively the model performance by showing

the time history of the model output with respect to the time history of the flight test data
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for a given flight condition. The following section shows the mean results of the fit and

correlation coefficients for all flight conditions considered in this paper.

10.4.2 Qualitative results for one flight condition

The following figure shows the results obtained for the model identification by use of
the subspace method for both sets of data used in the identification and in the robustness
test. These results are for a Mach number of 0.85 and an altitude of 5,000 ft. In figure
10.8. the full line represents the measured output from the flight test data and the stars

represent the model outputs.
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Figure 10.8 MIMO model identification and robustness test
Sfor M =0.85 and H = 5,000 ft

From a visual inspection, is clear that each model outputs match very well the flight test
data for both the original data and the data modified for the robustness test for the

aircraft different surfaces. Table 10.1 shows the correlation coefficients between the

estimated and the measured outputs.
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Table 10.10

Correlation coefficients for the initial signals and re-sampled robustness
test signals for A/=0.85 and H = 5,000 ft

WING, WINGr TEF, TEFg
[dentification data. % 92.09 99.28 9961 99.37
Modified Data for Robustness test %  90.88 98.23 9926 99.18

Table 10.2

Fit coefficients for the initial signals and resampled robustness test signals for
M=0.85and H = 5,000 ft

WING, WINGr TEF, TEFr
Identification data, % 57.56 87.11 91.13 88.73
Moditied Data for Robustness test % 54.04 80.66 87.33 87.17

It can be observed that the correlation coefficients, for the flight conditions 1/ = 0.85 and
H = 5000 ft are very good. as they are all higher than 90%. Most of the fit coefficient
results are also very good except for the left wing deflection which has a fit coefficient
of 57.56 % for the data used in the identification and a fit of 54.04 % on the data used
for the robustness test. Even though these fit coefficients are low, the left wing
deflection time history graphs for estimated and measured results are still close, as seen
on figure 10.8. Another observation which can be made is that there is not a high
difference between the model accuracy on the data used in the identification with respect

to the modified data for the robustness test.

10.4.3 Results summary for all flight conditions

The results above shown in Tables 10.1 and 10.2 are given for a single flight condition

characterized by a Mach number of 0.85 and an altitude of 5000 ft. In this paper, F/A-18
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aircraft model with different set of parameters were identified for a number of 16

different combinations of Mach numbers and altitudes, as seen on Table 10.3.

Table 10.3

Fits and Correlation coefficients for all 16 flight test conditions

Flight Test Conditions Outputs Ident‘mcatlon - Va.lldatlon .
Correlation Fit Correlation Fit
WING_ 92.09 57.56 90.88 54.04
A =085, H =5000ft WINGg 99.28 87.91 98.23 80.66
TEF. 99,61 91.13 99.26 87.33
TEFr 99.37 88.73 99.18 87.17
WING, 97.45 76.41 97.23 75.43
TEF;, 99.53 90.28 98.68 84.42
TEFg 99.77 93.20 99.33 88.67
WING, 98.64 80.56 97.68 77.98
V=085 H =15000ft WINGr 97.20 75.12 96.59 66.89
TEF. 99.62 91.23 99.09 86.47
TEFr 99.33 88.39 99.07 86.51
WING, 95.39 68.36 95.25 61.15
A =090. H =5000ft WINGr 99.60 91.04 99.55 90.17
TEF_ 99.88 94.15 99.61 87.95
TEFR 99.37 88.79 99.09 86.63
WING, 96.97 73.63 97.41 75.62
V=090, H =10000ft WINGRr 98.4% 81.2?7 97.16 75.34
TEF: 99.65 91.56 99.11 86.55
TEFR 99.46 89.04 98.72 82.33
WING, 91.54 54.12 77.45 30.36
2 J 5.15 .
\/=0.90. H =15000ft WINGg 99.28 87.83 95.1 68 9?
TEF, 99.69 92.06 97.76 77.35
TEFR 99.84 94.27 95.89 71.58
WING, 99.23 87.21 98.85 84.20
WINGRr 99.43 89.34 99.16 87.19
M =1.10, =10000ft
=18, o TEF,_ 99.70 92.21 99.17 86.41
TEFR 99.54 90.32 99.38 88.56




Fits and Correlation coefficients for all 16 flight test conditions

Table 10.3 (suite)
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WING, 98.29 81.04 97.81 72.94

TEF, 99.58 90.90 98.90 86.26

TEFr 99.90 95.46 99.60 86.91

WING, 99.27 87.89 99.12 86.33

M =110, H =20000ft WINGg 99.55 90.49 99.33 87.96
TEF, 99.66 91.80 99.40 89.15

TEFr 99.75 92.95 99.68 91.57

WING, 99.13 86.00 99.01 84.88

M=110. H=25000ft |VINGr 99.80 93.60 99.69 91.75
TEF, 99.30 88.24 98.89 84.81

TEFR 99.80 93.57 99.47 88.90

WING, 99.82 93.92 99.60 91.11

M =120, H =10000ft WINGg 98.90 85.09 98.91 85.15
TEF, 99.84 94.16 99.46 89.30

TEFgr 99 41 89.12 98.63 83.13

WING, 98.44 80.77 97.13 73.98

M =120, H =15000ft WINGg 99.76 92.95 98.62 82.70
TEF, 99.70 92.04 97.68 76.95

TEFg 98.51 82.14 97.70 7175

WING, 99.53 89.81 99.12 85.99

M =120, H =20000ft WINGg 99.87 94.58 99.81 93.30
TEF,_ 99.37 88.71 99.07 86.27

TEFr 99.77 93.16 99.36 88.15

WING, 99.11 86.12 99.21 87.16

WINGg 99.74 92.80 99.66 91.69

=1. =25000ft

=100, M=% TEF, 99.65 91.57 99.49 89.70
TEFr 99.81 93.80 99.55 90.31

WING, 98.80 84.35 98.51 82.23

WINGg 98.62 82.54 98.41 78.19

=50, &=l TEFL, 99.69 92.09 99.46 89.77
TEFr 98.65 83.49 97.70 78.29

WING, 98.33 77.49 97.99 74.95

WINGr 99.35 88.55 99.14 85.62

= b 2

M =130, H =25000ft TEF,. 98.24 77.94 97.68 74.85
TEFgr 99.78 93.38 98.39 81.14
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The results in bold in table 10.3 are the worse results. The following observations can be

made from these results:

1-The correlation coefficient between the model output and the flight test data output is
always near 100 % and re-sampling the data for the robustness test has a very small
effect on the correlation coefficient.

2-The fit coefticient is higher than 80 % for every structural surface except the left wing
which is slightly lower and modifying the data for the robustness test also has a small

effect.

These good results for the correlation and the fit coefficients indicate that the model is
accurate. There is a very small degradation of the fit and correlation coefficients when
the inputs re-sampled inputs for the robustness test are used, which indicates that the
model is robust and does not over-fit the data. Please note that the model is slightly less

accurate in the left wing deflection prediction.

10.4.4 Worse results

From the table 10.3 above. we notice that three flight conditions do not well satisfy the
previous conclusions and they are: M = 0.85, H = 5000 ft; M = 0.90. / = 5000 ft and M/
= 0.90, H = 15000 ft. The estimated and measured outputs related to the worse flight

conditions cases are shown in figure 10.9.
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Figure 10.9 : The three worse cases for the left wing deflections outputs
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For each flight condition represented in figure 10.9, the left wing deflection from the
model is shown with respect to the deflection from the flight test data. In each case, the
deflection model output was found by use of the inputs from the original data and the
modified input from the robustness test. We observe that there exist oscillations of the
identified signal in figure 10.9. Yet, we can say that the trends of the measured signals
are respected by the estimated ones. The oscillations do not generate instabilities or
divergences of the output signals. Therefore, we noted that the worse results affect only
the first output of the system which is the left wing position (WING,). For the robustness
test signals, there are oscillations too but they are less marked. The robustness test

signals have the same trends as the measured signals. which is very positive.

10.5 Conclusions

A nonlinear state space MIMO model was used in this study to estimate surface
positions given by the F/A-18 control inputs for sixteen flight conditions characterized
by different Mach number and altitudes. The subspace identification method was used
for the model identification from flight flutter tests. Two methods were used to calculate
the differences between data and model-identified outputs: the correlation coefficients,
and the fit coefficient. Except for the three worse left wing cases. good results were
found for all flight conditions and were characterized by correlation coefficients higher
than 96% and fit coefficients higher than 73%. Then, resampled signals were used to test
the robustness of the identified model. The same order of magnitude, for the correlation

and fit coefficients, was found.

The advantage of the subspace identification method applied to our model is its small
computing time and also the estimation of a very good model only from flight tests
inputs and outputs. The estimated model was found to be robust by application of the re-
sampling technique. We conclude from the obtained results. that the subspace approach

method is very convenient for model identification from flight flutter tests.
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CONCLUSION

In this thesis. two distinct class of methods were used to model the behaviour of a flight
vehicle: the Grey Box semi analytical method and the Black Box subspace system
identification method. The main contribution of this thesis consisted in the application of
these approaches in solving different problems related to flight vehicles system
identification. This section first summarises the results found using these two different
approaches before exposing a more general conclusion on the choice of a method

depending on the problems characteristics.

11.1 Grey Box semi-analytical method

The semi analytical model was applied in Chapter 4 of this thesis to develop a ground
dynamics model for the B-427 helicopter. In this model, a spring defined with stiffness
and damping coefficients was used to calculate the normal forces on the helicopter at
touchdown. Friction equations were used to model the speed decay of the helicopter
following touchdown while the friction coefficient was a function of the helicopter
oscillations and its speed. The rolling moments (L) and pitching moments (/) were
calculated by multiplying a lever arm to the force in z-direction until the skids were
completely on the ground. a torsional spring was further used to model the oscillations
of the helicopter in roll and pitch at the end of the landing record. The yawing moment
at touchdown was computed with a damping term which varied with the normal force
between the ground and the helicopter. This ground dynamics model was validated with
landing flight test data for one engine inoperative landings and autorotation landings.
The model was successfully implemented in a level D global flight model and the

model’s outputs lie within the FAA tolerance bands for a helicopter simulator

qualification.
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11.2 Black Box subspace system identification method

Different state-space models whose parameters were identified by use of the subspace
system identification method were used to model the flight vehicles behaviour in two

different applications:

For the first application the helicopter B-427 a state-space model with non-linear inputs
was used to model the main rotor torque. tail rotor torque, engine torque and main rotor
speed with time. During each flight test record. the pilot applied 2311 multi-step control
inputs to excite all modes of the helicopter’s motion. The resulting outputs along with
the pilot’s control inputs were recorded in time, and these records were used to build and

validate the model.

There were four types of pilot control inputs: collective. longitudinal cyclic, lateral
cyclic and pedal. The model was identified with the subspace method and refined with a
Levenberg-Marquardt minimization algorithm. This model was implemented as a

simulation and as a prediction.

In the simulation implementation, the model inputs, measured from flight test data, were
the control inputs from the pilot and the helicopter’s linear and angular velocities. In the
prediction implementation, the same type of inputs were used along with the currently

measured value of the output in order to predict the future value of the output within a

given prediction horizon.

In the simulation implementation, the model’s outputs were found to be within the FAA
tolerance bands more than 97 % for each output when the subspace method was refined
with the Levenberg-Marquardt minimization algorithm. 1In the prediction

implementation, the model error was even lower. and decreased when the prediction

horizon was shortened.
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On the second application, concerning the F/A-18 Active Aeroelastic Wing research
aircraft (Chapter 8 and 10). the deflections of different structural surfaces of the aircraft
were determined following an harmonic control input applied on the aircraft control
surfaces by the Flight Control Computer. These harmonic inputs may be represented

mathematically by Schroeder frequency sweeps.

In the first paper on the F/A-18 aircraft (Chapter 8), nine third order linear state space
models MISO were used to estimate the structural surfaces deflections given by the F/A-
18 differential ailerons control inputs. The deflections of each structural surface were

represented by a separate MISO model.

The inputs of each model were the ailerons control inputs and the deflections of the
other structural surfaces. The model was identified with the subspace system
identification method and validated for 19 different combinations Mach numbers and
altitudes and gave very good values of correlation coefficients and fit coefficients. The

estimated model was also found to be robust by the re-sampling technique application.

The second paper concerning the F/A-18 (Chapter 10) represents an improvement with
respect to the third one. In this paper, a single Multiple Inputs Single Outputs (MIMO)
model was used to estimate simultaneously the structural deflections of the four
following surfaces: the left wing. the right wing, the left training edge flap and the right
trailing edge flap. The model was built using five different Schroeder excitations:
differential ailerons, collective ailerons, collective stabilizers, differential stabilizers, and
rudders. As in the previous paper, the mathematical model was represented by a state-
space model, but, this time, non-linear inputs were added to the linear inputs to improve
the match between the model and the flight test data. The models were conceived for the
same flight conditions as the one given in the third paper with Mach numbers that varies

from 0.85 to 1.30 and altitudes varying from 5000 ft to 25 000 ft. Very good results were
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obtained with a fit between the estimated and the measured signals and correlation

coefticients higher than 90%.

11.3 General conclusions

In this thesis, it was shown that a semi-analytical grey box approach or a black box
approach could both be used in the successful identification of mathematical models
representing flight vehicle behaviour. This research also confirmed the advantages and
drawbacks of each method. In the ground dynamics model, this research presented the

following aspects:

- There was an a-priori knowledge of the helicopter behaviour at touchdown. The
penalty method used to model the helicopter skids as a spring with a stiftness and
damping coefficients had already been used in the literature by Johnson (1997).
All other forces and moments on the helicopter were also derived based on the
system physics.

- There were only very few landing cases available for the identification.

- A general model was ensured to give reasonable results for other landing

conditions not covered by the available landing data.

For all these reasons. a grey box semi-analytical model was more suitable than a black
hox model in order to model the ground dynamics of the B-427 helicopter at touchdown.
Recall from the introduction that an analytical model, contrary to a black box model,
was predictable outside the flight conditions used in the training. and was required in the

ground dynamics model.

In the second paper, where it was required to estimate the B-427 main rotor torque, tail

rotor torque, engine torque and main rotor speed, the problem presented the following

aspects:
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- There was not enough knowledge available on the physical behaviour of this very
complex system.
- There were many time history data available for the identification and validation

(409 records for the identification and 138 for the validation).

In this case. it was more appropriate to use a black box model because there was a lack
of information about the system's physics. and many flight test records at different flight

conditions were available to provide a general model.

In the third and fourth papers, it was required to model the aeroelastic structural
deflections of the F/A-18 research aircraft. In this case. there was also very little
knowledge on the aeroelastic behaviour of this specific aircraft as no structural
information necessary to calculate its aeroelastic behaviour analytically was available. It
was therefore necessary to use a hlack box system identification method. Unfortunately.
there was only one time history data available and it was not possible to perform an acid
test to validate the model. An alternative validation was done by re-sampling the data
and performing a robustness test (see Chapters 8 and 10). From all these observations, it
could be concluded that both the semi-analytical method and the Black box subspace
identification methods were very efficient methods which could be used to solve

different problems related to flight vehicle identification.

Therefore. the most important contributions in this thesis were underlined in the
presented papers as follows: in the first paper. a new ground dynamics helicopter model
was analytically developed and validated with flight tests data, in the second paper. the
subspace method was used for the first time for main rotor torque prediction for a
helicopter by use of flight tests data and in the third and fourth paper. the subspace
method was used for the first time for modeling aircraft flexible deflections from flight
flutter tests data. The main challenge in this thesis was the aircraft and helicopter model

identification by use of real flight test data and flight flutter test data.
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RECOMMANDATIONS

The research presented in this thesis could be improved in many ways or be used as a
starting point to undertake many other research projects. This section will list some

possible future research directions based on this thesis:

12.1 Ground Dynamics Model

1- The ground dynamics model implemented in this paper was already certified with
respect to the FAA tolerance bands requirements and implemented in a global level
D flight simulator model. The next step of the simulator certification would be the
installation of the mathematical model in a real flight simulator hardware and ask a
pilot to land the helicopter simulator using the ground dynamics model developed in
this thesis. The pilot would further qualitatively assess the accuracy of the model in

reproducing his feelings in the cockpit in a real landing.

2- The ground dynamics model could be further generalized by use of new landing cases
which were not available in this research. These cases could include landing on wet

runway, grass, slopes, etc.

3- The same model structure could be modified and validated on different helicopters

such as helicopters with welled landing gears.

12.2 Model for the simulation and prediction of the main rotor torque, tail
rotor torque, engine torque and main rotor speed (Chapter 6)

|-This model was built based on forward flight records with 2311 multi-step inputs

excitations. It could be further generalized by use of records representing other flight

conditions and pilot’s manoeuvres.
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2-The model could be identified using other black box methods such as Neural Networks

or Fuzzy Logic, and results obtained by these methods could be compared.

3-The model could be used to design an envelope protection flight control system in

order to limit the maximum and minimum values of the model outputs.

12.3 Models for the identification of the F/A-18 structural surface
deflections
1-It would be suitable to perform a higher number of flight flutter tests with the aim of

model generalization.

2-Another black box system identification method, such as Neural Networks. should be
used and its performance should be compared to the performance of the subspace

method application.

3-The identified model could be used to design a controller to minimize the structural

surfaces deflections.
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