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A NONLINEAR COMPUTATIONAL AEROELASTICITY MODEL 
FOR AIRCRAFT WINGS 

Zhengkun Feng 

ABSTRACT 

The design of a large aircraft at high speeds is a challenge in the very active research on 
aeroelasticity. The computational aeroelasticity analysis in 3D for such a large system 
of nonlinear equations becomes available due to the recent highly developed computing 
technology. 

This thesis deals with the development of a CFD-based coupling code which is based 
on the equations of the structural motion and the Euler equations of inviscid compress­
ible transonic flows. The strategy of segregating such a complex multidisciplinary system 
gives the advantages of the software development in modularity and the reuse of the de­
veloped solvers of the subsystems. The non-matching of the grids on the fluid-structure 
interface due to the difference of the element sizes and types of the fluid and the structural 
models is resolved by adding the matcher module in the coupling algorithm. The infor­
mation transfers from one solver to another satisfy conservation of energy. The nonlinear 
aerodynamic model is described by the kinematic ALE description and discretized on the 
moving mesh which is updated by the mesh solver. The CSD-MAM model in which the 
modal superposition approach is based on the linear structural theories is used to reduce 
the computing time and the memory consumption. Another comparable CSD-FEM model 
based directly on the finite element discrete approach is also built for the extension to 
general structural dynamics. The nonlinearity is another source of the complexity of the 
aeroelasticity model although it is assumed only from the aerodynamics of the transonic 
flow and from the geometrie nonlinearities due to the mesh motion. The nonlinear GM­
RES algorithm with the ILUT preconditioner is implemented in the robust CFD solver 
where the SUPG numerical stabilization techniques and a shock captor are applied to the 
transonic flow dominated by convection. The second order Gear-Scheme is used for the 
time discretization. 

The components of this nonlinear computational aeroelasticity model are validated one by 
one with numerical experiments. The complete model is validated by the AGARD 445.6 
aeroelastic wing immersed in transonic flows with Mach number 0.96 which corresponds 
to the lowest point of the transonic dip. The flutter simulations have given satisfying 
results compared to experimental ones. 
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UN MODÈLE DE CALCUL NUMÉRIQUE DE L' AÉROELASTICITÉ 
NONLINÉARE POUR DES AILES D'AVIONS 

Zhengkun Feng 

SOMMAIRE 

Cette thèse présente le développement d'un code d'aéroélasticité nonlinéaire basé sur un 
solveur CFD robuste afin de l'appliquer aux ailes flexibles en écoulement transsonique. 
Le modèle mathématique complet est basé sur les équations du mouvement des structures 
et les équations d'Euler pour les écoulements transsoniques non-visqueux. La stratégie 
de traiter tel système complexe par un couplage étagé présente des avantages pour le 
développement d'un code modulaire et facile à faire évoluer. La non-correspondance entre 
les deux grilles de calcul à l'interface fluide-structure, due aux différences des tailles et des 
types des éléments utilisés par la résolution de l'écoulement et de la structure, est résolue 
par l'ajout d'un module spécifique. Les transferts des informations entre ces deux grilles 
satisfont la loi de la conservation de 1 'énergie. Le modèle nonlinéaire de la dynamique 
du fluide basé sur la description Euler-Lagrange est discrétisé dans le maillage mobile. 
Le modèle pour le calcul des structures est supposé linéaire dans lequel la méthode de 
superposition modale est appliquée pour réduire le temps de calcul et la dimension de la 
mémoire. Un autre modèle pour la structure basé directement sur la méthode des éléments 
finis est aussi développé. Il est également couplé dans le code pour prouver son extension 
future aux applications plus générales. La nonlinéarité est une autre source de complex­
ité du système bien que celle-ci est prévue uniquement dans le modèle aérodynamique. 
L'algorithme GMRES nonlinéaire avec le preconditioneur ILUT est implémenté dans le 
solveur CFD où un capteur de choc pour les écoulements transsoniques et la technique 
de stabilisation numérique SUPG pour des écoulements dominés par la convection sont 
appliqués. Un schéma du second ordre est utilisé pour la discrétisation temporelle. 

Les composants de ce code sont validés par des tests numériques. Le modèle complet est 
appliqué et validé sur l'aile aéroélastique AGARD 445.6 dans le cas du nombre de Mach 
0.96 qui est une valeur critique en flottement. Les simulations de flottement donnent des 
résultats numériques satisfaisants en comparaison avec ceux expérimentaux. 
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RÉSUMÉ 

La conception d'un avion en vol transsonique mène souvent aux ailes de grandes tailles 

et flexibles qui ont besoin d'être stables de point de vue aéroélastique. L'avancement 

des technologies du calcul scientifique permet de trouver des solutions numériques pour 

des systèmes complexes avec des équations nonlinéaires et de grandes tailles qui étaient 

nonaccessibles dans le passé. Pourtant, la simulation numérique reste encore difficile en 

aéroelasticité nonlinéaire. Cela à cause de deux volets de complexité dans l'analyse de 

l'aéroélasticité : la nonlinéarité des écoulements transsonique et l'interaction nonlinéaire 

entre le fluide et la structure. Premièrement, un modèle classique décrit par l'aéroélasticité 

linéaire n'est plus suffisant, car le choc et son mouvement ont besoin d'une description 

précise. Deuxièmement, l'aéroélasticité se traduit en interaction fluide-structure, où les 

déplacements d'une structure dans un écoulement affectent la configuration de celui-ci. 

En revanche, la variation d'efforts aérodynamiques induite par le changement de la config­

uration de l'écoulement provoque elle-même un impact aux déplacements de la structure. 

Donc, la modélisation de l'aéroélasticité de tel système conduit à établir des équations 

nonlinéaires par la dynamique de la structure et la dynamique du fluide. 

Historiquement, l'évolution du calcul en aéroélasticité de la théorie linéaire vers la théorie 

nonlinéaire est accompagnée par l'avancement de la technologie informatique. Lorsqu'un 

avion subsonique qui avait une vitesse moins élevée et la limite de puissance du calcul 

numérique était un obstacle, l'aéroélasticité linéaire était appliquée pour obtenir des résul­

tats accessibles. Au cours de l'augmentation de la vitesse d'avions, l'aéroélasticité linéaire 

appliquée aux écoulements transsoniques donne des résultats incohérents avec les résul-:-
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tats expérimentaux. Différentes méthodes basées sur l'aéroélasticité nonlinéaire sont pro­

posées pour tenter à franchir la surdimension des ailes d'avions dans la conception. Par 

exemple, la méthode basée sur les équations potentielles et sa variante TSD (une méth­

ode basée sur les équations potentielles aux petites perturbations transsoniques) pouvaient 

décrire l'aérodynamique transsonique en utilisant les outils informatiques disponibles. 

Évidemment, cela donne des résultats moins précis. Des solutions de haute précision 

nécessitent des modèles basés sur des hypothèses plus précises. 

Dans cette thèse, l'écoulement est supposé non-visqueux, compressible et rotationnel qui 

est traduit par les équations d'Euler. Ces équations aux dérivées partielles de l'ordre élevé 

possèdent une forte nonlinéarité. Malgré que la nonlinéarité peut aussi provenir de la struc­

ture, il est supposé que la structure est linéaire dans cette thèse. En effet, on s'intéresse à 

reproduire en premier lieu le phénomène de flottement en présence de petits déplacements 

de la structure (stabilité autour d'un point d'équilibre). 

La complexité de l'aéroélasticité est aussi caractérisée par sa multidisciplinarité. La sim­

ulation numérique par la résolution d'une série d'équations nécessite le développement 

d'un code efficace, robuste et susceptible de le faire évoluer. La stratégie de couplage 

fluide-structure suppose que le modèle numérique est constitué de deux solveurs de calcul 

fluide (CFD) et de calcul structural (CSD). Les solutions respectives doivent respecter les 

conditions aux limites à l'interface fluide-structure. Ainsi, les communications de don­

nées à l'interface sont réalisées par un autre module nommé "matcher". Celui-ci permet 

le transfert des déplacements de la structure du solveur CSD au solveur CFD et l'effort 

aérodynamique du solveur CFD au solveur CSD. Cette tâche peut être compliquée si les 

maillages des deux domaines ne coïncident pas. Il est, en général, impossible de trans­

férer l'information noeud à noeud entre les deux solveurs indépendants qui possèdent des 

maillages incompatibles, car les tailles et les types d'éléments de ces maillages sont dif­

férents. Par exemple, le maillage du solveur CFD est plus fin que celui du solveur CSD 

pour capturer le choc. Et surtout, dans le cas d'une structure mince qui est souvent dis-
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crétisée par des éléments de coque, il n'y a pas de noeuds sur la paroi de la structure et 

donc il n'existe pas de contact direct entre les deux plans où se trouvent les noeuds du 

fluide et de la structure. L'écart entre ces deux plans est supposé constant, puisque la loi 

de contraintes planes est appliquée et il est supposé qu'il n'y a pas de déformation dans 

la direction d'épaisseur pour des structures minces. En outre, le transfert de données doit 

satisfaire les lois physiques de conservation. 

L'aéroélasticité est aussi caractérisée par les frontières mobiles du domaine du fluide. Le 

maillage utilisé en description Euler n'est pas adéquat. La description cinématique ap­

pliquée est la description Euler-Lagrange. Elle permet l'utilisation d'un domaine de calcul 

mobile. Une méthode de mouvement de maillage est utilisé afin de diffuser le mouvement 

de la frontière mobile à l'intérieur du domaine tout en évitant une grande distorsion des 

éléments. Le solveur du maillage calcule le déplacement et la vitesse de chaque noeud du 

fluide. Enfin, le couplage se réalise entre les solveurs CSD, CFD, le solveur du maillage 

et le module matcher. Tous les modèles des sous systèmes sont discrétisés en espace par 

la méthode des éléments finis. Le modèle de l'aéroélasticité nonlinéaire appliquée dans 

cette thèse se représente ci-après : 

CSD modèle 

Meshmodèle 

CFDmodèle 
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Matcher module 

à l'interface fluide-structure 

s m 
u,t = u,t = u 

où U est le vecteur des variables conservatives, u~w u~t et us sont respectivement les 

vecteurs de l'accélération, de la vitesse et du déplacement de la structure, u est le vecteur 

de la vitesse du fluide, w est le vecteur de la vitesse du grille du fluide, Ms, Ds et Ks 

sont respectivement les matrices de masse, d'amortissement et de rigidité de la structure, 

Km est la matrice de la rigidité du maillage du fluide, Mf et Ki sont respectivement les 

matrices de masse et de rigidité du fluide, Fi et Fs sont respectivement les vecteurs de 

l'effort aérodynamique et de la source de la structure, um est le vecteur du déplacement 

nodal du fluide, F est le vecteur de solicitation qui représente les déplacements des fron­

tières mobiles, ufi est la contrainte de la structure, ns est le vecteur du normal unitaire à 

1 'interface fluide-structure , p est la pression du fluide. Dans le modèle CSD, le vecteur 

d'effort externe correspond aux forces nodales à l'interface fluide-structure. Dans le mod­

èle du maillage, les déplacements des noeuds à l'interface fluide-structure sont obtenus 

par le mouvement de la structure. Sur la frontière lointaine, les déplacements des noeuds 

sont imposés à zéro. Dans le module CFD, la vitesse du fluide normale à l'interface fluide­

structure est égale à la vitesse normale de la structure. Sur la frontière lointaine, la vitesse 

est imposée à la vitesse de l'écoulement de l'entrée. 

L'algorithme Newmark est utilisé pour la discrétisation en temps des équations d'élasto­

dynamique. Un premier solveur nommé CSD-MAM est développé en appliquant la méth­

ode d'analyse modale qui est compacte et économique pour un modèle linéaire. Dans un 
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autre solveur nommé CSD-FEM, les systèmes d'équations algébriques résultants de la dis­

crétisation spatio-temporelle sont résolus à l'aide des méthodes itératives où l'algorithme 

GMRES avec un preconditioneur ILUT est implémenté. Pour le solveur CFD, la méthode 

d'élément fini stabilisée SUPG est adopté. Le schéma de couplage fluide-structure utilise 

l'algorithme itératifGauss-Seidel. L'algorithme général se résume dans le processus suiv­

ant: 

Algorithme du couplage Gauss-Seide! : 

1. Allouer les tableaux de mémoires pour le module matcher, les solveurs CSD, 

CFD et le solveur du maillage. 

2. Identifier les noeuds du fluide sur sa frontière mobile. 

3. Identifier les éléments associés de la structure de chaque noeud du fluide sur 

l'interface fluide-structure par le module matcher. 

4. Initialiser le solveur CFD, calculer la pression nodale sur la frontière mobile 

du fluide et projeter cette pression sur son élément structurel associé. 

5. Initialiser le déplacement et la vitesse nodale de la structure à zéro et calculer 

l'accélération nodale à partir du déplacement initial, de la vitesse initiale et de 

la force externe. 

6. Boucle de temps dans le solveur CFD jusqu'à l'étape 16. 

7. Appliquer une perturbation structurelle ou une force distribuée sur la structure 

pendant le premier pas de calcul. 

8. Boucle itérative de couplage jusqu'à l'étape 15. 

9. Appeler le matcher module pour effectuer la projection de pression et calculer 

le déplacement structurel en appelant le solveur CSD. 

1 O. Calculer le déplacement nodal du fluide sur sa frontière mobile. 

11. Appeler le solveur du maillage pour calculer les déplacements nodals du fluide 

dans son domaine entier. 

12. Mise à jour des coordonnées des noeuds du fluide et calculer la vitesse de la gri­

lle du fluide. 
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13. Mise à jour de la normale de chaque élément du fluide sur sa frontière mobile et 

calculer la vitesse nodale sur cette frontière. 

14. Utiliser GMRES préconditioné par ILUT dans le calcul du solveur CFD et cal-

culer la pression nodale aérodynamique. 

15. Fin de boucle d'itération de couplage. 

16. Fin de boucle de temps. 

17. Fin de calcul. 

Le processus du couplage est appliqué pour la simulation de flottement. À l'étape 7, 

le système de l'aéroélasticité reçoit une perturbation sur la structure au premier pas de 

temps de calcul. L'oscillation du système aéroélastique est déclenchée. L'analyse de la 

stabilité se fait par l'observation de la réponse autour de la solution initiale. Cependant, 

si la réponse est une oscillation avec une amplitude croissante, le système est considéré 

instable. 

La validation du code global de l'aéroélasticité nonlinéaire commence par une validation 

rigoureuse de tous ses modules. D'abord les deux modules CSD-MAM et CSD-FEM 

sont comparés. La différence entre les résultats obtenus par ces deux solveurs n'est pas 

significative lorsque la réponse est dominée par les premiers modes. Par la suite, le cou­

plage est effectué entre le solveur CSD, le solveur du maillage et le module matcher sans 

intervention du solveur CFD. Une force de forme Dirac est appliquée sur un point de la 

structure pendant le premier pas du calcul. Le code est capable de diffuser le mouvement 

de la frontière du fluide dans le domaine entier du fluide sans avoir des distorsions trop 

grandes des éléments. Finalement, le couplage complet entre les solveurs CFD, CSD, le 

solveur du maillage et le module matcher est validé sur l'aile aéroélastique AGARD 445.6. 

D'abord, une solution est obtenue par le solveur CFD en considérant que la structure est 

rigide. Cette solution est prise comme une solution initiale pour déclencher la simulation 

du flottement de l'aile. A partir de ce moment, une force de forme Dirac est appliquée 

sur un point du bout d'aile. L'oscillation du mouvement de l'aile est déclenchée. Les 
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simulations donnent des résultats satisfaisants en comparaison avec ceux expérimentaux. 

Une analyse du phénomène de flottement est effectué dans le cas où le nombre de Mach 

est à 0.96. Dans ces conditions, la valeur critique de la pression dynamique est minimale 

et sa valeur expérimentale est à 61.3 lb/ sqft. Les différentes simulations effectuées sur 

un maillage relativement grossier montrent une valeur de pression dynamique critique à 

60.0 lb/ sqft qui est un résultat acceptable vue le maillage utilisé. 

Cette thèse à permis de contribuer à : 

• Développer deux codes de calcul de structures en élasto-dynamique : un basé sur la 

méthode d'analyse modale (CSD-MAM) et un autre basé directement sur la méth­

ode des éléments finis (CSD-FEM). 

• Développer un solveur du maillage pour assurer que le mouvement du maillage du 

fluide suit bien le mouvement de la structure à l'interface fluide-structure. 

• Développer un module pour effectuer 1' échange des informations à 1' interface fluide~ 

structure : transfert de l'effort aérodynamique du fluide vers la structure et celui du 

mouvement de la structure vers le fluide. 

• Adapter le solveur fluide CFD pour tenir compte du mouvement du maillage. Le 

solveur CFD solver a déjà été développé et validé par le laboratoire GRANIT. 

• Réaliser le couplage complet des tous les modules. Pour ce faire, un algorithme 

itératif de type Bloc-Gauss-Seidel-nonlinéaire est utilisé. 

• Valider le code de l'aéroélasticité nonlinéaire en l'appliquant au cas test expérimen­

tal de l'aile aéroélastique AGARD 445.6. 
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INTRODUCTION 

Aircrafts with more performance and safety are required to satisfy strong competition 

among airline companies, which make tremendous effort to attract customers with a safe, 

comfortable environment and less expensive services. In fact, customers' requirements 

always lead to new technological advances. Recently, the demand for faster airplanes has 

led to the construction of transonic airplanes at Mach number close to unity. In general, 

the challenge is to build stable and large wings with optimal design, which operate in 

transonic regime at a higher Mach number to satisfy these requirements. However, a 

large wing makes the structure more flexible and its operation in transonic regime yields 

complex phenomena, such as shock formation, moving shock waves and flow induced 

vibrations [ 1, 2]. 

A flexible structure in air:flow yields a two-way fluid-structure interaction. The structural 

motion induced by the aerodynamic loads alters the configuration of the fluid domain, 

which in tum, alters the aerodynamic loads on the structure. Aeroelasticity is a particular 

case of fluid-structure interaction, where the fluid is air. Instability is a substantial issue in 

aeroelasticity : a small perturbation from the opera ting point, such as manoeuvre of control 

surface of a wing or a small change of the oncoming wind, will produce an oscillation of 

structural motion. This oscillation decays and finally disappears completely if the system 

is dynamically stable. For an unstable system, the oscillation will increase until structural 

failure occurs. This phenomenon is known as flutter. The critical one between the two 

precedent cases, where the oscillation keeps a constant amplitude, is called critical flutter 

and the flow speed at this point is known as the flutter speed. 

Aeroelasticity in transonic regime is complex due to its nonlinearity. In the early days, 

commercial aircrafts operated at low Mach numbers, such as in low subsonic regime, 

where linear models were accurate enough to describe aerodynamics. Aeroelastic analy­

sis in this regime became relatively simple. As the Mach number increases from a lower 
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value to a higher value, particularly to a value close to unity, strong shock waves dom­

inate aeroelastic behavior. Linear aeroelastic theory is not able to give accurate flutter 

predictions and nonlinear aeroelasticity must be applied. 

Analysis of nonlinearity for large transonic aircraft wings can be performed with wind 

tunnel testing and numerical simulations. However, sorne limitations, such as time con­

sumption and testing costs, exist in the wind tunnel testing as the dimension of a wing 

increases [3, 4]. Numerical simulations have much more advantage than the wind tunnel 

testing. A computer or a cluster of computers cost less than a wind tunnel system. The cost 

of a numerical simulation is also much less than that of a wind tunnel testing. Numerical 

simulation which offers a way to partially replace the wind tunnel testing is able to give 

results much more quickly. Certainly, a mature computational code must be validated by 

the wind tunnel testing. Such validated computational software is able to guide the wind 

tunnel testing in order to minimize the costs during aircraft design. 

Although numerical simulation has many advantages, it was impossible to simulate com­

plex nonlinear aeroelastic systems when the computer technology was less developed. 

Recently remarkable growth in the supercomputer technology has made complex compu­

tations available in the aeroelasticity research as in other domains. The processors speed 

and the memory capacity increase quickly. Other strategies, such as parallel computa­

tions [5,6], have been investigated. These advantages ofthe computer technologies are of 

great benefit to the research of computational aeroelasticity, which is complex and multi­

disci p linary. 

This thesis be gins with this general introduction in the current chapter. In Chapter 1, a 

discussion of the background according to the literature will be presented. Then a general 

presentation of the methodology for aeroelasticity models will be stated. Chapter 2 deals 

with the theories on which our nonlinear aeroelasticity models are based. First, the linear 

structural dynamic model based on the shell structure theories will be presented. Sec-
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ondly, linear and nonlinear aerodynamics models will be discussed. A linear mesh model 

based on the fictitious elasticity is then presented. Thereafter, the boundary conditions on 

the fluid-structure interface will be discussed. Chapter 3 deals with the description of the 

sol vers of the subsystems presented in the precedent chapter. These sol vers are described 

by the goveming equations under discrete forms in space by the finite element method 

and intime by the finite difference method for the CFD (Computational fiuid Dynamics), 

the CSD (Computational Structural Dynamics) and the mesh solvers. The matcher mod­

ule presents the "pairing" between the fluid points and the structural elements, the surface 

tracking and the aerodynamic loads projection. In Chapter 4, the CFD-based coupling al­

gorithm of the nonlinear computational aeroelasticity sol ver will be presented. In Chapter 

5, numerical experiments of the validation ofthe CSD sol vers, the matcher module and the 

mesh sol ver will be presented. Th en numerical simulation results of nonlinear aeroelastic­

ity applied to the AGARD 446.5 aeroelastic wing will be presented. Finally, concluding 

remarks will be drawn. 
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CHAPTERl 

NONLINEAR COMPUTATIONAL AEROELASTICITY 

Aeroelasticity of aircraft wings is described by the mutual interaction between aerody­

namics and structural dynamics. Aeroelasticity models are based on physic hypotheses. 

When flight speed is in subsonic regime, the hypotheses of linear theories can be applied. 

However, as flight speed increases, the linear aeroelasticity theories become inaccurate 

in calculating the dynamic responses of aircrafts in transonic flow. The models must be 

refined to describe complex aeroelastic phenomena. In this chapter a literature review will 

be presented and the objective of this thesis will be stated. Then, its problematic will be 

described in detail. Finally, a general presentation of the methodology will be introduced. 

1.1 Background 

In classical aeroelastic theories where Mach number is less than about 0. 7, aerodynamic 

loads (lift and moment) are assumed to be linear functions of a structural motion (dis­

placement, velocity and acceleration) and vice versa. According to this hypothesis, the 

aeroelasticity analysis results in linear equations [1, 7, 8]. Although aerodynamic theory 

in such aeroelasticity analysis is based on the Navier-Stokes equations which describe 

completely aerodynamic behaviors, more hypotheses were used for the purpose of sim­

plification. Indeed, at low Mach number, airflow is considered inviscid and incompress­

ible [9]. Moreover, the flow is assumed irrotational [10, 11]. These hypotheses lead to 

the linear potential equation of the classical aerodynamics where solutions can be ob­

tained simply by linear superposition. For example, the most well-known Doublet Lattice 

method [12, 13] is widely applied in the linear aeroelastic analyses [14-16]. The commer­

cial software MSC/NASTRAN is based on this method [17]. Other methods are developed 

and applied in computational aerodynamics using linear potential flow theory, such as the 
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Vortex-Lattice method [18-20] and the panel method [21-25]. As the Mach number ofthe 

oncoming flow increases to more than about 0.7, airfiow is characterized by a transonic 

flow, where the flow becomes supersonic in sorne regions even though the Mach number 

of oncoming flow is still less than unity. The linear aerodynamic theories are no longer 

available since the flow can not be assumed incompressible [26]. A transonic dip [27-33] 

occurs in the flutter boundary which is unable to be captured by subsonic linear unsteady 

aerodynamic theories. This graduai dropping of flutter speed from the subsonic regime to 

a minimum in the transonic regime and then a rapid rising towards the supersonic regime 

is produced by complex transonic phenomena, such as the shock formation and the shock 

wave motion. In fact, the shock is the cause of the nonlinearity of a transonic flow which 

is not able to be captured by the linear aerodynamic theory [34]. Nonlinear aeroelasticity 

theories must be introduced to overcome this difficulty. The transonic small disturbance 

(TSD) equation method [28, 29, 34, 35] based on the full potential equation had been de­

veloped to obtain useful solutions when the computing technology was stillless advanced. 

The flow is linearized around the free stream by assuming a small disturbance away from 

the free stream. In fact, the goveming equations are dominated by nonlinearity which 

presents shock phenomena. The full potential equation which presents more completely 

the nonlinearity of a transonic flow gives improved solutions [36,37]. However, the flow is 

still assumed irrotational in both of the above methods. The accuracy is not affected when 

the shock is weak. For the purpose of capturing strong shocks, the Euler equations which 

represents rotational compressible flows are able to describe more accurately the nonlin­

earity of transonic flows [28, 38]. Certainly, calculations based on the Euler equations 

were not fast enough in the earl y days because of the limitation of the computer technol­

ogy. However, the recent increase in computer speed and the improved algorithms for the 

numerical solutions of aerodynamics lead to a more accurate computation of aerodynamic 

loads in computational aeroelasticity with increasing geometrical complexity [39]. 
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As the aeroelasticity model based on the Euler equations [ 40,41] has relatively high com­

putationalloads, the complete three-dimensional aeroelastic problem of transonic flow is 

difficult to analyze because it has mixed linear and non-linear operators, symmetric and 

asymmetric matrices, explicit and implicit coupling, and can become physically unsta­

ble [42]. Although the direct method [43], where the :fluid and the structural goveming 

equations are combined and treated as a single monolithic system of equations, has ad­

vantages on algorithm stability and accuracy, it is impractical to rewrite a completely new 

code for solving a complex aeroelastic system [ 44-46]. In fact, computational aeroelas­

ticity which is characterized by multiphysics is a particular case of fluid-structure inter­

action [ 47]. Its evolution is always accompanied by those of the CFD and CSD models 

which have different mathematical and numerical properties [2, 46]. Fluid dynamics is 

dominated by the Navier-Stokes/Euler equations while structural dynamics is dominated 

by the elasto-dynamics equations. Traditionally, due to the computation complexity and 

computer technology limitations, a complete aeroelasticity system was analyzed using 

CFD and CSD software separately by different working groups and then using data com­

munication between them. Such loosely coupled strategy becomes less effective for large 

structures with higher computational accuracy. The tight coupling strategy replaces the 

separating working groups through the CSD and CFD solvers and uses an information 

trans fer module for the communication between them [ 48]. This strategy facilitates the 

development of the complete software by developing CSD and CFD codes separately. 

The most interesting feature of this coupling strategy is the reutilization of the existing 

well-established CSD and CFD codes [ 49]. 

The strategy to segregate a complete computational aeroelastic model into a CSD model 

and a CFD model has much advantage in the software development. However, two prob­

lems should be solved : one is the time-varying fluid domain due to the moving fluid 

boundary which follows the structural motion, another one is the problem ofnon-matching 

between the fluid and the structural grids on the fluid-structure interface [50, 51]. 
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The change of the flow configuration caused by the structural motion yields limitation to 

apply the same spatial discretization for a complete computational aeroelasticity model. 

As the fluid-structure interface is in motion, the flow configuration is a time function [52]. 

The space near the fluid-structure interface will belong to a part of the fluid domain in 

one instant and another part of the structure domain in another instant. The fluid mesh 

should be repaired during the computation. The zonal grid technique [53] and the local 

remeshing [54] are techniques to avoid excessive element distortions of the fluid mesh 

near the moving structure. Another technique uses the interpolation of the speeds of the 

far-field boundaries and the moving fluid boundary to update the fluid grid speed [37]. In 

order to avoid strong distortions of the fluid mesh near the structure, an effective adaptive 

moving mesh is necessary. The Arbitrary-Eulerian-Lagrangian kinematic description [55, 

56] which is generally applied in fluid-structure interaction [57] has the most interest. 

This method which is improved for numerical simulations with moving boundaries [58] is 

popular for adaptive moving meshes. As a result, the coupling becomes CFD-CSD-mesh 

coupling after another solver known as the "mesh solver" has been added to adapt to the 

moving fluid boundaries [59]. 

An information transfer module is required to establish the communication between the 

CSD and the CFD codes due to the non-matching of the fluid and the structural grids 

on the fluid-structure interface [60]. Because these two codes are independent, the struc­

tural mesh and the fluid mesh are not necessarily compatible. Furthermore, they may 

have different element types. Even if they have the same element types, the fluid element 

size is always smaller than the structural element size for specifie purposes of computa­

tions [45, 61, 62]. It is required to transfer the displacement of the structural boundary 

nodes to the fluid boundary nodes and the aerodynamic loads of the fluid boundary nodes 

to the structural boundary nodes. For the sake of computational accuracy, the information 

transfer must satisfy conservation of energy [ 4 7, 63-66]. This information trans fer is sim­

ple if the fluid spatial discretizing points coïncide with structural discretizing points at the 



Reproduced with permission of the copyright owner.  Further reproduction prohibited without permission.

8 

fluid structure interface (same type and size for both CFD and CSD solvers). But usually, 

it is complex due to the non-matching of the two space discretizations at the fluid-structure 

interface. A special module known as matcher must be built for the purpose of information 

trans fer on this interface [51]. 

Using a modular approach makes a modification of any solver and its reutilization easier 

[59]. Two approaches are possible to couple the three-field computational disciplines. 

One is the loose coupling [49] which has a convergence problem [67]. Another one is the 

tight coup ling which has properties of numerical stability and accuracy close to the direct 

method. 

The transonic aeroelasticity with Mach number close to unity with a low angle of at­

tack is one key area of the aeroelasticity analysis [27]. The goal of this thesis is to 

provide contributions in developing a comprehensive software of computations of non­

linear aeroelasticity using coupling strategy with an application of a robust CFD solver 

[59,61,69,87,97, 100]. This CFD-based software will be able to provide accurate flutter 

predictions. 

1.2 Problematic and Methodology 

Aeroelasticity is the study of the interaction between inertial, elastic and aerodynamic 

forces. "The structural flexibility of the body and the interaction of this flexibility with the 

aerodynamic forces is the who le essence of aeroelasticity [70]." 

Structural flexibility is the source of aeroelasticity. If an airflow passes over a rigid struc­

ture, such as a wall, aeroelasticity does not exist. However, as an airflow passes over a 

thin flexible structure, such as a modem aircraft wing, the structural motion can not be ne­

glected. A simple example of aeroelasticity is a typical section of an airfoil in an airflow as 

shown in Figure 1. This airfoil section with chord c, semi-chord b, mass m and moment of 

inertia 1 is flexibly mounted on its elastic axis via a linear spring kz and a torsional spring 
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Figure 1 A typical section of airfoil in airflow 

k0 . AC, MC, EA and CG are respectively the aerodynamic center, the mass center, the 

elastic axis and the gravity center. The system is assumed to have the following two de­

grees of freedom : the vertical motion z and the torsional motion O. Using Lagrange's 

equation yields the following equations of motion : 

where bxa is the distance between the elastic axis and the gravity center, L is the aerody­

namic lift and Mea is the aerodynamic moment around the elastic axis. The right hand side 

of these equations represents the aerodynamic loads which are functions of the structural 
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motion. L and Mea can be described by the following two expressions : 

L = A1 (q, z, (), z, iJ, z, ë) (1.2) 

(1.3) 

where A1 and A2 are aerodynamic operators for the lift and moment. They may be 1inear or 

nonlinear. z, z, z, (), iJ, jj are respectively the vertical displacement, velocity, acceleration 

and the torsiona1 displacement, velocity, acceleration. q is the free steam dynamic pressure 

given by the following equation : 

pu2 
q=-

2 

where u is the component of the local flow velocity which is perpendicular to the lift. In 

general, the equations of the structural motion contain the following structural damping 

matrix: 

D = [ dz 0 ] 
0 do 

where dz is the structural defiection damping and do the structural torsion damping. Adding 

the structural damping into equations (1.1) yields the following system : 

Mp + Dp + Ep = F aero (1.4) 

with 

p= {;} 
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and 

Faero = { -L } 

Mea 

where p is the structural displacement vector; M, D, E denote respectively the structural 

inertial, damping and stiffness matrices; F aero is the aerodynamic loads vector wh ose en­

tries are functions of the structural motion and the aerodynamic pressure. 

In the classical elastic analysis as shown in the following equations, the right hand side of 

equations (1.4) is presented by the prescribed loads F: 

Mp+Dp+Ep=F (1.5) 

The stability of such a system is determined by the structural mass, damping and stiff­

ness matrices. However, for an aeroelasticity system, the aerodynamic loads F aero on the 

right hand side of equations (1.4) are functions of the dynamic pressure, the structural 

displacement, velocity and acceleration as expressed in equations (1.2) and (1.3). Asta­

ble structural dynamic system described by equations (1.5) of a classical elastic system 

may become an unstable system described by equations (1.4) of an aeroelastic system if 

an airflow passes over the structure. Using quasi-steady linearized aerodynamic theory, 

equations (1.2) and (1.3) will yield linear relation with the structural displacement, ve­

locity and acceleration. The aerodynamic loads can be written as below if the effect of 

structural acceleration is neglected [70] : 

Faero = Fo- q(Kp + Bp) (1.6) 

where F 0 is the static loads vector, which defines the equilibrium position. K and B are 

respectively the aerodynamic stiffness matrix and the aerodynamic damping matrix. They 



Reproduced with permission of the copyright owner.  Further reproduction prohibited without permission.

12 

are independent of the structural motion. The second term on the right hand side of the 

above equations represents the aerodynamic loads vector which depends on the structural 

motion. Combining the structural and the aerodynamic damping and stiffness yields : 

(1.7) 

with 

D =D+qB 

E=E+qK 

where fi is the aeroelastic damping matrix combining the structural damping with the 

aerodynamic damping, E is the aeroelastic stiffness matrix combining the structural stiff­

ness with the aerodynamic stiffness. These matrices which are functions of the dynamic 

pressure q determine the stability of the aeroelastic system. They can become negative 

defini te matrices if the dynamic pressure is too strong. 

Suppose that the static loads are harmonie functions, such as F 0 = A sin wt, the oscillating 

response of the structural displacements has the following form : 

p = a sin wt + b cos wt 

The rate of work W on the structure in one period can be described as [70] : 

where fis is the symmetrical part of fi, sk is the skew-symmetrical component of s = 

E-w2M. The stability of the system is infiuenced by aerodynamic loads since G depends 
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on the dynamic pressure q. If G is a positive defini te matrix, W is positive, the system is 

stable. The airfiow absorbs energy produced by the structure. Otherwise, the airflow feeds 

energy to the structure and the oscillation of the structural motion increases. As a result, 

the system becomes unstable [42]. 

In the frequency analysis, the matrices M, fi, E determine the eigenvalues of the system, 

which can have real or complex values. If the real parts of the eigenvalues are negative, 

the system is stable. Otherwise, it is unstable. For a step perturbation ofF0 , there are five 

possible responses of the structural motion as shown in Figure 2. In the first case, all of 

the eigenvalues are negative reals, therefore, the response decays and finally the system 

retums to its equilibrium position. Hence the system is stable. In the second case, sorne 

of the eigenvalues are complex eigenvalues, but the real parts of all complex eigenvalues 

are negative. The system has an oscillating response, which decays and finally the system 

retums to its equilibrium position as well, so the system is also stable. The third case 

is similar to the second case except that with at least one complex eigenvalue with zero 

real part, the response yields neutral oscillation. The system is in a critical stability. In the 

fourth case, all of the eigenvalues are real, but at least one eigenvalue is positive, therefore, 

the response increases exponentially. The system is unstable (divergence). In the fifth case, 

sorne of the eigenvalues are complex, but at least one real eigenvalue is positive or at least 

one complex eigenvalue has positive real part. The system has oscillating response, which 

will increase exponentially. Therefore, the system is also unstable (flutter). 
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The relation between the inertial, the elastic and the aerodynamic forces of a typical sec­

tion of an airfoil is expressed by equations (1.4) using linearized quasi-steady aerodynam­

ics. However, in the case of a three-dimensional flexible wing in a transonic ftight regime, 
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the aerodynamic forces can not be expressed by equations (1.6). Because of nonlinear 

effects, it is difficult or impossible to get a set of goveming equations similar to equa­

tions (1.7) by app1ying the quasi-steady aerodynamics theory. Unsteady aerodynamics is 

suggested to get an accurate solution. The equations of nonlinear aeroelasticity based on 

the fiuid-structure interaction is described by equations (1.4). The nonlinear aerodynamic 

load vector F aero can be obtained by the CFD sol ver. The accurate solution strategies of 

these equations by nonlinear computational aeroelasticity will be discussed in detail in the 

following chapters. 
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CHAPTER2 

GOVERNING EQUATIONS OF AEROELASTICITY SYSTEMS 

2.1 Introduction 

The proposed nonlinear aeroelasticity model is based on the coupling between the struc­

tural dynamics, the fiuid dynamics and the mesh models through an information transfer 

module (matcher). The nonlinearity is assumed only from the Euler equations oftransonic 

airfiow. For the structural nonlinearity, the reader is referred to Ref. [41, 72, 73]. The cou­

pling procedure performs the exchanges between the aerodynamic loads and the structural 

motion on the fiuid-structure interface. 

Theories on which each subsystem is relied will be presented in this chapter. First, the 

CSD models will be described. The CSD models are derived from shell theory of thin 

structures. Since the linear dynamic behavior of a structure is characterized by its modes, 

a modal superposition method can be used. If these modal parameters are available, it is 

possible to resolve the differentiai equations by the mode superposition approach which 

is much more economie than the direct finite element discrete approach. The nonlinear 

aerodynamic model is described by the nonlinear Euler equations in ALE kinematic de­

scription with moving mesh [55, 58]. Finally the information transfer "matcher" module 

will be presented. 

2.2 Structural dynamics model 

Structural dynamics describes the behavior of a moving structure as a function of time. 

Such behavior is usually expressed by partial differentiai equations in the Lagrangian de­

scription, where the motion ofparticles is observed. For simple problems, analytical solu­

tions ofthese partial differentiai equations can be found. But for problems with a complex 
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geometry, these equations are solved by numerical methods which give approximate solu­

tions at certain spatial points and at certain instants. 

2.2.1 Shell structures 

A real wing is a complicated structure which is composed of several components (Figure 

3). Wing structures [74] are usually modeled using finite elements, such as three dimen­

sional solid, bearn, plate and shell elements. A complete design of a wing-box modeled 

with beams, plates and other structural elements can be found in Ref. [75]. Since an air­

craft wing skin has usually small thickness compared to the other dimensions, they can 

be approximately modeled by shells. A shell structure is particularly a three-dimensional 

Truss ribs 
l 
! 

Rearspar 

Plate type ribs 

Figure 3 Wing-box configuration (sources from Ref. [76]) 

solid with a small thickness. It is bounded by two closely spaced curved surfaces. Another 

curved surface generated by the points on the half distance between these two curved sur­

faces is known as the middle surface. This surface characterizes the behavior of the shell. 

The deformation of the shell is determined completely by the displacement of the middle 
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surface. ln this thesis, the material is supposed isotropie and homogenous. The relation be­

tween the stress and the deformation is considered linear. Furthermore, the displacement in 

the thickness direction is assumed linear and small. It is assumed that any straight line nor­

mal to the middle surface stays straight after deformations. The hypothesis of plane stress 

is also applied to uncouple the effects between the membrane bending and the transversal 

strain. The structural dynamic model is based on the following shell theories [77]. Since 

our test case is the AGARD 445.6 aeroelastic wing which is an experimental wing with 

small thickness, we will consider only shell structural elements. 

2.2.1.1 Description of a middle surface 

The dynamic behaviors of a shell are characterized by its middle surface described in 

the 3D Cartesian coordinate system. However, any point on the middle surface can be 

determined by two independent curvilinear coordinates Ç and TJ. Suppose that pis a point 

on the middle surface (Figure 4), its position vector Xp can be written as : 

Xp = X(Ç, TJ)i + Y(Ç, TJ)j + Z(Ç, TJ)k (2.1) 

where i, j and k denote the orthogonal vectors in the Cartesian coordinate system with 

fixed global reference; X, Y, Z denote the Cartesian coordinates. 

The position differentiai vector dxp of point p is a function of dÇ and dr] : 

(2.2) 

where a1 and a2 are covariant base vectors which are tangent to the directions defined by 

Ç and TJ. In the Cartesian coordinate system, they are defined as : 
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(2.3) 

(2.4) 

where X,ç, Y';ç and Z,ç are the partial derivatives of X, Y and Z in Ç; X,TJ, y;"' and Z,TJ are 

the partial derivatives of X, Y and Z in TJ. A unit vector normal to plane (a1 , a2 ) can be 

obtained from a1 and a2 : 

n = .,------..,. 
la1 x a2l 

(2.5) 

Vectors a1 , a2 , n define a vector basic for the middle surface : 

The vector base a1 and a2 are not orthogonal. Renee, another useful orthogonal base t1 , t2 

and n is defined as : 

with 
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n 

z 

x 

Figure4 Description of a point on the middle surface 

2.2.1.2 Virtual displacement 

For a thin shell with constant thickness h and defined by middle surface A through the 

natural coordinates Ç and rJ (Figure 5), its coordinate z in the thickness direction is : 

h 
z=(2,with-1 :::;(:::; 1 

Suppose that a point q(Ç, ry, () is in the thin shell at the initial time and its corresponding 

point on the middle surface is defined by equation (2.1 ). So vector pq is normal to the 

middle surface at point p. The position vector of point q at the initial time is defined as : 
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h 
Xq(Ç, 77, () = Xp(Ç, 77) + ( 2n(Ç, 77) (2.6) 

After deformation, point p on the middle surface described by equation (2.1) has moved 

to position p* and point q has moved to position q* (Figure 5). The virtual displacement 

u; of point q is defined by the following equations : 

h 
u~(Ç, 77, () = u;(ç, 77) + ( 2(3*(Ç, 77) (2.7) 

with 

(3* · n = 0 

and 

where u; is the virtual displacement of point p, /3~ is the rotation of vector n in (n, t1) 

plane, /3~ is the rotation ofvector nin (n, t2 ) plane. 

2.2.1.3 Virtual deformations 

The virtual configuration C* is defined by the virtual position vector x; which results from 

the superposition of position vector Xq and any virtual displacement vector u; (Figure 5) : 

(2.8) 
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q 

Figure 5 Description of a point inside a shell 

The differentiai of the virtual position vector dx~ is : 

dx~ = dxq + du~ (2.9) 

The differentiais dxq and du~ can be written as : 

h 
dxq = Xq,€dÇ + Xq,ryd'r/ + 2nd( (2.1 0) 

(2.11) 

Equations (2.10) and (2.11) give the following relation between the differentiais of the 
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virtual displacement du~ and the real position vector dXq : 

with 

[L*] = [L(][Fç]-1 

h 
[Fç] = [xq.~:xq,77 : 2n] 

25 

(2.12) 

A curvilinear orthogonal base t1ç, t2ç and nç is defined on a tangent plane of point q: 

h 
with nç = -n 

2 

The Cartesian differentiais du~, dx~ and the curvilinear differentiais {du~ }t, { dxq }t are 

associated by [ Qç] : 

(2.13) 

(2.14) 

hence 

(2.15) 
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where the subscript t indicates the curvilinear coordinate system. Therefore from equa­

tions (2.12), (2.13), (2.14) and (2.15), one obtains the relation between the differentiai of 

the virtual displacement vector and the position vector : 

The virtuallinear strain tensor in the curvilinear coordinate system is defined by the fol­

lowing symmetrical tensor : 

with 

1 1 
é:* 

?};y * x ?}xz1 

[ê;] = 1 
E:* * y ?}yzl 

sym. c;~ 

where x, y are curvilinear coordinates in the orthogonal base t1(, t2( and D(. Although 

c;1 is not zero, its contribution to the virtual work principle is zero since its corresponding 

stress is zero according to hypothesis of plane stress. So c;1 can be considered zero in the 

following deformation vector : 

< ê; >=< < ê: > : < ,: > > 

where < ê: > and < r: > are respectively the deformation vectors due to membrane 

bending and the deformation of shear strain as follow : 

< ê* >=< é:* é:* 'Y* > s x y 1xy < "Ys* > = < "~* 1 "~* 1 > lxz lyz 
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2.2.1.4 Principle ofvirtual work (Mindlin theory) 

The hypothesis of the plane stress applied to models of thin shells can be written as : 

(J' z' = 0 

where z' is the direction defined by the unit vector nç . The components of stress repre­

sented in the local coordinate system are : 

(J'x (J'x y (J'x z1 

[(J' t] = (J'y (J' yz' 

sym. 0 

The stress is written in the following vector form : 

T 
CJyz' > 

Therefore, the internai virtual work represented in the local coordinate system can be 

written as : 

(2.16) 

where tr denotes the trace of a linear matrix. 

2.2.1.5 Relation between the stress and the deformation 

The hypotheses of linear and isotropie elastic material yield the following linear relation 

between the stress and the deformation : 
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where [Ht] is a matrix with constant components, {Ut} is the stress vector and {ct} is 

the deformation vector. The hypothesis of the uncoupling effects between the membrane 

bending and the shear stress gives the following components of matrix [Ht] with the neutral 

axis normal to the middle surface : 

[Ht] = [ [ H] 0 ] 
0 [G] 

Hn H12 H13 

[H] = H22 H23 

sym. H33 

The matrices [H] and [G] are symmetrical. Using the hypothesis of isotropie material, one 

obtains: 

1 v 0 

E 1 0 
[H] = 1- v2 

l-v 
sym. 

2 

[G] = ---:--E~ [ 1 0 ] 
2(1 +v) sym. 1 

where E and v are the elastic modulus and the Poisson coefficient. Renee, the internai 

work described by equation (2.16) becomes : 
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[ 
[H] 0 ] { ê s } dV 
0 [G] 'Ys 

It can be developed as : 

(2.17) 

where W m is the internai work due to the effect of the membrane bending, Wc is the 

internai work due to the shear stresses. 

The conservation of energy expresses that the internai virtual work is equal to the internai 

work for a structure in equilibrium : 

(2.18) 

where Wext is the external work. Suppose that the external forces are the inertial forces of 

a structure and a concentrating force on a point A, the external virtual work can be written 

as: 

(2.19) 

where FA is the concentrating force at point A, u;A is the displacement vector of node 

pA. The second term on the right hand side represents the external virtual work due to the 

inertial forces of the structure. 

The integral equations (2.17) and (2.19) can be discretized in space using a numerical 

method, such as the fini te element method [78]. Finally, one can obtain the following 
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semi-discretized system of equations from equations (2.18) and (2.19) : 

Mü(t) + Ku(t) = F(t) (2.20) 

where u is the nodal displacement vector, M and K are the structural mass and stiffness 

matrices which are symmetrical and positive definite, F(t) represents the extemal nodal 

forces. 

2.2.2 Modal superposition approach 

Structural vibrations are usually dominated by fundamental frequencies. The displacement 

can be approached by the first few modes. Modal superposition of truncated modes is an 

economical way to obtain the structural responses. The following subsections describe 

the modal analysis method [79, 80]. This method is widely applied in linear structural 

dynamics [ 40, 81-84]. 

2.2.2.1 Eigenmodes and Natural Frequencies 

The matrix equations (2.20) for free vibrations without damping are characterized by their 

mode shapes and natural frequencies. Replacing the extemal force vector on the right hand 

side of these equations by zero yields the following natural vibration equations : 

Mü(t) + Ku(t) = 0 (2.21) 

For each node, the displacement vector u(t) is defined as: 
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where Ux, uy, Uz are the translation displacements in x, y, z directions and Byz, Bzx• Bxy 

are the rotational displacements around axes x, y, z. The displacement vector u(t) can be 

supposed as the following harmonie type : 

u(t) = p0a cos(wot- <Po) (2.22) 

where a, w0 and </Jo are respectively the referential amplitude, the frequency of motion 

and the phase. p0 is a constant vector; the subscript 0 indicates that the parameter is 

corresponding to vibration with no damping. 

Replacing respectively u(t) and its second derivative ü(t) in equations (2.21) by equations 

(2.22) and by its second derivative yields the following matrix equations : 

(2.23) 

where Ào = w6 represents the eigenvalue. These linear equations give n non-trivial solu-

tions Poi(i = 1, 2, ...... , n) which verify the following equations: 

(i=1,2, ...... ,n) (2.24) 

where Poi is the ith mode vector, Àoi is the ith eigenvalue, Woi is the ith natural frequency 

which is one root of the following al ge braie characteristic equation : 

det(K - w5M) = det(K - À0M) = 0 (2.25) 

Hence the n non-trivial solutions of equations (2.24) can be written as : 

(2.26) 
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The orthogonality of the modal vectors is a fundamental property which makes equations 

(2.21) uncoupled. For any two natural frequencies Woi and Woj with corresponding modal 

vector Poi and Poj• equations (2.24) give the following two equations : 

(2.27) 

(2.28) 

Multiplying equations (2.27) by p5'j, then transposing the left and right hand sides yields : 

TKT 2 TMT 
Poj Poi = WoïPoj Poi (2.29) 

Because M and K are symmetrical and positively de:fined, these equations can be written 

as: 

TK 2 TM Poi Poj = WoiPoi Poj (2.30) 

Similarly, multiplying equations (2.28) by P6: yields : 

TK 2 TM Poi Poj = Woj Poi Poj (2.31) 

Subtracting equations (2.30) from equations (2.31) yields : 

(2.32) 

If i #- j, then equations (2.31) and (2.32) give the following orthogonal property between 

modal vectors: P6: and P6j (i = 1, 2, ...... , n): 
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PfuMPoj = 0 

PfuKPoi = 0 

If i = j, equations (2.31) and (2.32) give : 

PfuMPoi = J-li 

PfuKPoi = r;;iw5i 

33 

where J-li and r;;i are two non-zero scales. Because multiplication of a modal vector by 

a scale gives the same modal vector, J-li and r;;i can be chosen as unity. Therefore, the 

normalization by the mass matrix gives the following general orthogonal property 

where oii is the Kronecker symbol. The n linear independent modal vectors Poi ( i 

1, 2, ...... , n) give the following modal matrix P0 : 

Po = [ Pm Po2 Po3 · · · · · · Pon ] 

Renee, the orthogonality can be expressed as : 

P~MP0 = 1 

P~KP0 =A 

where 1 is a unit matrix of order n, A is a diagonal matrix with square frequencies on the 

diagonal elements as : 

A= diag( w51 ······ w5n ) 
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2.2.2.2 Complete Modal Superposition 

The linear combina ti on of n modal vectors p0 ( n = 1, 2, 3, ...... , n) represents the temporal 

responses u(t) of the discrete partial differentiai equations of a structural system in a 

forced regime described by the following matrix equations : 

Mü(t) + Dù(t) + Ku(t) = F(t) (2.33) 

with its initial conditions : 

u(O) = uo 

ù(O) = ù0 

where D is the Rayleigh damping matrix which is given by the following equations : 

D=aM+,BK 

where a, ,8 denote respectively the coefficients proportional to the mass and stiffness ma­

trices M and K [80]. 

In equations (2.33), u(t) is the displacement vector normalized by the mass matrix which 

can be described as : 

n 

u(t) = L ZiPoi = Poz(t) (2.34) 
i=l 

where P0 is the mode matrix, z(t) is a generalized modal coordinates vector described as: 
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Replacing u( t) and its first and second derivatives in equation (2.33) by those of equation 

(2.34), then multiplying it by the transpose of mode matrix P~ and finally normalizing it 

by the mass matrix M yields : 

z(t) + D.oz(t) + Aoz = so(t) 

with the following initial conditions : 

z(O) = P~Mu0 

z(O) = P~Mu0 

(2.35) 

where 6.0 (6.0 = P~DP) and A0 (A0 = P~KP) are respectively the modal damping matrix 

and the modal stiffness matrix. s0 (t) (s0 (t) = P~F(t)) is the modal force vector. 

Because the matrices 6.0 and A0 are diagonal matrices in equations (2.35), the matrix 

equations (2.33) which are coupled among the n degrees of freedom can be transformed 

into n uncoupled equations described as below : 

with the following initial conditions : 

zi(O) = PfuMUo 

ii(O) = PfuMÜo 

(2.36) 

where 'TJi = 80d(2w0i) is the ith modal damping coefficient, soi(t) = pfuF(t) is the ith 

modal excitation. Each uncoupled equation can be explicitly integrated. The solution of 
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equation (2.36) can be written as : 

(2.37) 

J; soi(t- r)e-rliwo;T sinwirdr 
+----------------------

Wi 

where w 0i is the ith natural frequency and wi = Woi J 1 - r/7 is the ith structural frequency 

with damping. 

The general solution for forced regime described by matrix equation (2.33) can be obtained 

using the modal superposition approach with the first n modal responses described by 

equation (2.36) : 

u(t) = llso!icit(t) + Üinit(t) (2.38) 

with 

(2.39) 

(2.40) 

If the excitation is assumed as F(t) = g'!jJ(t), where g is a static solicitation which is 

independent of time and 'ljJ ( t) is a time scale function, the modal force can be written as : 
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soi(t) = PÔïg'ljl(t) 

Furtherrnore, if the structural system is initially immobile (u0 = 0 and u0 = 0), the general 

responses described by equations (2.38) become: 

(2.41) 

These responses show that the modes with high natural frequencies have less influence 

on the displacement than the fundamental natural frequencies because the responses are 

divided by the natural frequency wi and e-TJ;wo;t decays more quickly. 

2.2.2.3 Partial Modal Superposition 

Since the main contribution to the response is given by the fundamental modes, the modes 

can be limited to a certain number for the purpose of reducing the computation cost in 

the forced regime. If the first m(m < n) modes Poi(i = 1, 2, ...... , m) are used to get the 

responses, the time responses can be approximated by : 

m 

u(t) = L zi(t)Poi (2.42) 
i=l 

where zi is the ith generalized coordinate. Substituting the displacement vector described 

by equations (2.42) and its first and second derivatives into equations (2.33) yields : 

(i = 1, 2, ...... , m) (2.43) 
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For an initially immobile structure, if the excitation is in the form F(t) 

structure initially immobile, the responses can be written as : 

with 

38 

g'!j;(t) on a 

(2.44) 

where g is a vector which is independent of time, (}i is a temporal factor which depends on 

the structural spectrum and the time scalar function '!jJ ( t). 

2.3 Unsteady aerodynamics 

Aerodynamics is the study of the dynamic behavior of airflow which is usually viscous 

and compressible. This behavior can be described by mathematical equations under cer­

tain hypotheses. In the early days, in order to get accessible knowledge of aerodynamic 

behavior by the available computing technologies, different hypotheses for airflow behav­

ior were applied to simplify the aerodynamic description. For example, airflow at low 

speed is considered inviscid incompressible where linear theories can be applied. At high 

speed, where the elasticity characterized by sound, air speed must be considered, airflow 

far from solid boundaries can be still considered inviscid, but compressible. These hy­

potheses yield accurate approximate solutions outside the boundary layer. In this thesis, 

air is assumed inviscid compressible. More accurate solution can be achieved by consid­

ering air as a viscous compressible fluid which is beyond the scope of this the sis. 
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2.3.1 Linear aerodynamics for inviscid incompressible How 

Aerodynamic behaviors such as lift and moment acting on aircraft is very slightly affected 

by air elasticity at low flight speed [85] (for example, less than 400 km/h) which was the 

speed of aircraft in the earl y days. Since the airflow is assumed inviscid incompressible, 

the density and temperature are constant. Therefore, only the continuity of mass and the 

Newton 's law govem the flow be havi or. 

The continuity of mass leads to the following conservation equation which is described 

by the divergence of a steady flow at any point in the flow field. For a control volume the 

mass getting in is equal to the mass getting out, hence : 

divu = 0 

where u is the velocity of airflow at the point. 

The Newton's law yields the following equations ofmomentum conservation: 

Du 
p-=pg-Vp 

Dt 

(2.45) 

(2.46) 

where p defines the pressure at any point in the flow field, Du/ Dt defines particle accel­

eration, p defines the density of air and g defines the acceleration of gravity. 

The flow can be considered irrotational. An irrotational flow is characterized by its zero 

vorticity (w = 0 ) and can be described by a velocity potential. The velocity potential 

associates with flow velocity through the following equation : 

u ='lep 
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where cp is velocity potential. Equation (2.45) become the potential equation as : 

2.3.2 Linear aerodynamics for inviscid compressible flow 

Compressible flow is characterized by the Mach number which is the ratio of air speed 

to the sound speed. The density is no longer considered constant. The temperature has 

become a variable as well. As air can still be considered inviscid, potential flow is still 

available to describe its dynamic behavior. The equation of continuity for steady inviscid 

compressible flow is : 

div(pu) = 0 (2.47) 

lt can be described by the following velocity potential equation : 

(2.48) 

After development, it becomes : 

(2.49) 

If the variation of density is very small, the nonlinear term ( u · \7) p can be neglected 

compared to p\72 cp. Therefore, the goveming equation for inviscid compressible flow 

becomes: 

(2.50) 
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This is a linear equation similar to that of an inviscid incompressible flow. The neglected 

term (u · \l)p depends on air speed. When the air speed increases, the importance of this 

term increases, and the accuracy of the solutions decreases. Furthermore, at high air speed, 

ether phenomena such as shock formation will also affect the computational accuracy. 

2.3.3 Nonlinear aerodynamics for inviscid compressible flow 

Since the temperature changes in compressible flow, the mechanical energy is no longer 

conserved. The first law of thermodynamics must be applied. The equation of conserva­

tion of energy includes intrinsic energy which involves air temperature. The equations of 

states are also used to close the equations of conservation of mass, momentum and energy 

since two additional unknowns (the temperature and the density) are added to the system 

of equations. 

Air can be considered as perfect gas at a low temperature whose state can be described by 

the following equation: 

p=pRT (2.51) 

where R is air constant which depends on the molecular weight of gas, T is air tempera­

ture, p is the gas pressure. Evidently, only two of the three variables p, p and T determine 

the state of gas. Therefore, the intrinsic energy is only a function of temperature : 

(2.52) 

where e is the intrinsic energy, Cv is constant volume specifie heat. 
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The Bemoulli's equation can be written as: 

(2.53) 

with 

where '"Y is the specifie heat ratio, Cp is the constant pressure specifie heat. 

The following sound speed is the travel speed of small disturbance produced by a moving 

body in steady compressible fluid, it is a function of variation of pressure and density : 

a=~ 
For an isentropic flow, where pj p1 is constant, the sound speed can be written as : 

a=~ 
For perfect gas, a= v1RT, the sound speed depends only on temperature. 

Since airflow is no longer considered incompressible at high speed, air elasticity must be 

considered. Mach number ( M = V/ a) is used to describe the compressibility of air. In 

incompressible flow, the sound speed is infinite since the density is assumed to be constant. 

The disturbance caused by a moving body can propagate instantaneously at all points in 

the fluid. At low Mach number, the speed of moving body is much less than sound speed, 

the flow field can extend to infinity in all directions. In this case the flow can be still 

considered approximately as incompressible. 
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inviscid compressible flow can be described by the small perturbation theory. For a two­

dimensional steady compressible flow, the conservation of mass and momentum are rep­

resented by the following equations : 

au au 1 op 
u-+v-=---

ax ay p ax 

av av 1 op 
u-+v-= ---

ax ay p ay 

a(pu) a(pv) 
--+--=0 

ax {)y 

(2.54) 

(2.55) 

(2.56) 

Using the relation a2 = dpjdp and multiplying respectively equations (2.54) and (2.55) 

by u and v, one obtains: 

au au ua2 op 
u2-+uv-=---

8x {)y p ax 
(2.57) 

av av va2 op 
uv-+v2-=---

8x {)y p ax 
(2.58) 

Adding equations (2.57) and (2.58) yields : 

u2 -+uv-+uv-+v2-=-- u-+v-
au au av av a

2 
( op op) 

ax {)y ax {)y p ax ay 
(2.59) 

Equation (2.56) can be developed as: 

(2.60) 
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From equations (2.59) and (2.60), one obtains : 

(u
2 

) au uv (au av) (v2 
) av 

a2 -
1 ax + a2 ay + ax + a2 -

1 ay = 0 (2.61) 

U sing the properties of irrotational flow yields the following equation : 

(2.62) 

where cp is the velocity potential. For inviscid incompressible flow, the sound speed is 

infinite. Equation (2.62) becomes the linear Laplace equation. For inviscid compressible 

flow, equation (2.62) is nonlinear since the coefficients of the second partial derivatives 

a2 cpjax2 
, a2cpjaxay and a2cpjay2 are functions of velocity. However, in the case of 

inviscid compressible flow past a thin body at a small angle of attack, the disturbance to the 

flow is very small, therefore the small perturbation method can be applied. For example, 

for a uniform flow with velocity U 00 past a thin structure, the components of perturbation 

of velocity u' and v' can be considered as very small compared to the oncoming velocity 

u00 • The total velocity at any point of the flow field can be described by the following two 

components : 

a cp 
1 

U = U 00 + U = U 00 + ax (2.63) 

a cp 
v= v'=-a y 

(2.64) 

where cp is the perturbation velocity potential. The velocity potential in equation (2.62) 

can be replaced by perturbation velocity potential since the second partial derivates of the 
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potential of a uniform velocity are zero. Equation (2.62) yields the following equation 

after replacing u and v by equation (2.63) and (2.64) : 

------=----1 -+2 --+ --1 -=0 (u~ + 2u00U
1 

+ u'
2 

) 8
2

c/J (U00 V
1 

+ u'v') 8
2

cjJ (v'
2 

) 8
2

cjJ 

a 2 8x2 a 2 oxoy a 2 8y2 

(2.65) 

Neglecting the high order of perturbation, equation (2.65) becomes : 

(2.66) 

From the energy equation of an adiabatic flow, one obtains : 

(2.67) 

After u is replaced by ( U 00 +u')i+v'j and the high order terms of the perturbation velocity 

are neglected, equation (2.67) becomes: 

( a) 
2 

u' - = 1 - ('y - 1 )M!-
aoo Uoo 

(2.68) 
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Multiplying equation (2.67) by (a/ a00 )
2 yields the following full potential equation : 

(2.69) 

+ [('y- 1)M! ac/Y- 1] a2c/Y = o 
U 00 OX ay2 

For a thin structure, the term 2(M!c/Yy/uoo) can be neglected. If the flow is inviscid and 

incompressible, Moo = 0, equation (2.69) is stilllinear Laplace equation. In subsonic 

flow, M 00 is small, if: 

[
('y+ 1)M! ac/Y] 

abs Uoo ax « abs(M!- 1), 

the following condition : 

[
('y+ 1)M! ac/Y] 

abs -;:) « 1 
U00 uX 

will be also automatically satisfied, equation (2.69) becomes : 

(2.70) 

Therefore, in subsonic flow, a linear equation can still be applied. However, in transonic 

flow, even for thin structure, equation (2.69) is nonlinear, it becomes the following un-
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steady full potential equations : 

[ 

2 _ ('y+ 1)M! Bef;] B
2

cf; [('y- 1)M! Bef;_ ] B
2

cf; _ 
(Moo 1) + B B 2 + B 1 B 2 - 0 

U 00 X X U 00 X Y 
(2.71) 

2.3.4 Conservation equations in the ALE formulation 

The physical model of unsteady aerodynamics is usually described in space and in time 

by partial differentiai equations using conservation laws. Eulerian kinematic description is 

applied to obtain these partial differentiai equations where the domain is fixed. However, 

it is no longer available to aeroelasticity analysis due to moving boundaries. Arbitrary­

Lagrangian-Eulerian (ALE) kinematic description (see section 2.4.1) is used to overcome 

this restriction. In this section, the conservative equations in this description will be dis­

cussed. 

Suppose that a system occupies a control volume at initial time. This volume moves with 

arbitrary velocity w (Figure 6). It contains a material characterized by physical quantity 

B, which is related to its physical quantity per unit mass b by the following equation : 

where Dt is the domain of control volume at instant t, p is the fluid density. The variation 

of B from instant t0 to t is the difference of quantity between the quantity getting into 

the control volume and the quantity getting out of the control volume in addition to the 

variation of the quantity in the volume. Its derivative can be described by the following 

equation: 

DB D 1 Bvc(t)- Bvc(to) i 
- = - pbDDt = lim ~ + pb(u- w) · ndA 
Dt Dt flt ~t-->0 t St 

(2.72) 
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w 

at time t
0 

at time t 

Figure 6 Evolution of a physical quantity of control volume 

From the second term of the right hand si de of equation (2. 72), one can get the following 

integral formulation using Gauss theorem : 

1 pb(u- w) · ndA = f div(pb(u- w))dOt = f Jdiv(pb(u- w))d00 (2.73) 
Jrst Jnt Jno 

The first term on the right hand of equation (2. 72) can be written as : 

Bvc(t)- Bvc(to) In pbdOt- In pbdOo Ô 1 
lim = lim t 

0 = - pbdOt 
~t ..... o tlt ~t->o tlt ât nt 

(2.74) 

where 0 0 is the domain of control volume at time t0 • Using the relation of geometri­

cal transformation Ot = J00 , where J is the geometrie Jacobian transform coefficient, 

equation (2.74) becomes: 

a 1 a 1 1 a(pbJ) 
-a pbdOt = -

8 
pbJ dOo = 

8 
d00 

t nt t no no t 
(2.75) 
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Using the Piola-Kirchoffidentity 8J fat= Jdivw [86] (called also "geometrie conserva­

tion law"), equations (2.72), (2.73), (2.74), (2.75) yield the following conservative equa­

tions in ALE description : 

D 1 1 8(pb) D pbdSlt = [--~+ div(pbu)- wV'(pb)]dnt 
t Ot Ot ut 

(2.76) 

Ifw = u, the control volume moves with the same speed as the material particles, equation 

(2.76) represents the Lagrangian description. Ifw = 0, the control volume is immobile, 

equation (2.76) represents the Eulerian description. 

Ifb = 1, one obtains the following continuity equation according to the conservation law 

ofmass: 

~~ L, pbdfl, = L (: + div(pu) - w\1 p) dfl, = 0 (2.77) 

The equivalent partial differentiai equation is 

ap 
8t + div(pu)- w\7 p = 0 (2.78) 

If b = u, one obtains the following equations of momentum conservation : 

~ { pudSlt = { (a~u) + div(puu)- wV'(pu)) dSlt = { pfvdSlt + j f 8 dSt 
t lot lot t lot lst 

(2.79) 
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where fv denotes the volume force vector on the control volume Ot, f8 denotes the pressure 

and the shear stress denotes force vector on the surface St which represents the moving 

fluid boundary. §8 t f 8 dSt can be transformed into an integration on the volume Ot using 

the following Gauss theorem : 

where p denotes the pressure and u the viscous stress tensor on the surface St. Therefore 

equations (2.79) become 

1 (8(pu) ) 1 -
0
- + div(puu)- wV(pu) dOt= (pfv- grad(p) + divu)dOt (2.80) 

Ot t Ot 

The equivalent partial differentiai equations of equations (2.80) are : 

8(pu) 
---ai+ div(puu)- wV(pu) = pfv- grad(p) + divu (2.81) 

with the Stokes law : 

u = À(divu)I + 2tLD 

where IL denotes the dynamic viscosity and À denotes the second coefficient of viscosity, 

D denotes the rate of the strain deformation tensor : 
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If b = et, one can obtain the following energy conservation equation : 

(2.82) 

= fnt (pfv · u + div(u · u)- divq)dOt 

where et denotes the total specifie kinetic energy, n denotes the normal on the surface St 

of the control volume nt, q denotes the heat flux described by Fourier law (q = -k'\JT), 

where T denotes the temperature and k denotes the conductivity. Therefore, the partial 

differentiai equation for total specifie kinetic energy becomes : 

o(pet) 
ot + div(petu)- w · V(pet) = pfv · u + div(u · u)- V· (kVT) (2.83) 

Equations (2.78), (2.81) and (2.83) are the Navier-Stokes equations described in the ALE 

kinematic description. For inviscid compressible flow, where no stress tensor exists, the 

Navier-Stokes equations reduce to the Euler equations. 

Remark: The Navier-Stokes equations for unsteady viscous compressible flow model 

described by equations (2.78), (2.81) and (2.83) in the ALE kinematic description can be 

written in following compact form [87] : 

(2.84) 
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where U denotes the conservative variables vector [61], U =< p pu pe >r, Ffdv, 

Ftif f denote respectively the convective flux and the diffusive flux in the ith-space direction 

as follow: 

Ffdv =< pui puui (pe + p)ui >T 

Ftiff =< 0 -u -u · u- À VT >T 

The pressure and the temperature are two additional unknowns which need two more equa­

tions to close the equations. The following two equations of states for ideal gas adapted to 

compressible air are used to close the system of equations due to the additional unknowns 

pand T: 

E 1 u 12 
T=----

p 2p2 

where E ( E = pet) denotes the total energy per unit mass, Cv denotes the constant volume 

specifie heat. 

2.4 Dynamic mesh model 

Since the fluid-structure interface moves, adaptation for fluid mesh is necessary during 

flow computations. The Eulerian description which is applied to a :fixed fluid mesh is no 

longer valid. As well, the Lagrangian description which is applied to moving domains 

in structural dynamics, cannot be directly applied. The Arbitrary-Lagrangian-Eulerian 

(ALE) kinematic description is used for the purpose of adapting the fluid moving bound­

aries and providing a moving fluid grid without large distortions. Application can be 

found in other fluid-structure interaction computations and in hydrodynamics with free 

surfaces (58, 88]. 
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The dynamic mesh is represented by a fictitious linear elastic model. The structural motion 

is transmitted to the moving fiuid boundaries through the fiuid-structure interface. Then 

the motion of the fiuid boundaries is distributed into the who le fiuid domain by the mesh 

model. 

2.4.1 ALE description 

The fiuid domain (Figure 7) will be represented by a fictitious linear elastic material for 

the purpose of establishing the dynamic mesh model which is a purely mathematical one, 

where the density, elastic modulus and Poisson coefficient have no physical interpretation. 

The domain closed by r 2 represents a structure. The domain closed by r 1 and r 2 repre­

sents the fiuid domain. The fiuid boundary r 2 is a moving boundary due to the structural 

motion. The fiuid boundary r 1 is imposed fixed because it is far away from the moving 

structure. The points near the moving structure will have stronger displacements than the 

points inside the fiuid domain. 

fluid structure 

Figure 7 Fluid domain and boundaries conditions 
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The mathematical equations in 2D or 3D which describe the fluid domain motion can be 

written as: 

1 ~ i ~ 3, 1 ~ j ~ 3 (2.85) 

with the following boundary conditions : 

(2.86) 

um b= ut (x, y, z, t) (2.87) 

and 

aum aut (x, y, z, t) 
Tt \r2 = at (2.88) 

where ut is the displacement of the moving fluid-structure interface, um is the displace­

ment vector of the mesh, um is the stress tensor of the fictitious elastic material. The body 

forces of the fictitious elastic material are assumed zero. The properties of linear elastic 

material give : 

(2.89) 

with 
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1- vm vm vm 0 0 0 

vm 1- vm vm 0 0 0 

vm vm 1- vm 0 0 0 
Em 

[H]m = 1-2vm 
(1 + vm)(1- 2vm) 0 0 0 -- 0 0 

2 

1-2vm 
0 0 0 0 -- 0 

2 

1- 2vm 
0 0 0 0 0 

2 

where gm is the strain of the material, [H]m is the matrix of elastic behavior, Em is the 

elastic modulus, vm is the Poisson coefficient. They are fictitious parameters. In this 

thesis, vm and Em are respectively chosen as zero and 2(1 + volume- 1 ), where volume 

is the volume of each :fluid element. 

The strain vector for small structural motion is defined as : 

aum 
x 

a x 
aum 

y 

8y 
aum 

z 

{êm} = az (2.90) aum aum 
y x 

-+-ax 8y 
aum 

x 
aum 

z -+-az ax 
aum aum 

z y -+-
8y az 
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Therefore from equations (2.89) and (2.90) one obtains the following stress tensor: 

aum aum aum 
x y z 

Hu--+ H12-- + H13--ax ay az 
aum aum aum x y z 

H21--+ H22--+ H23--ax ay az 
aum aum aum 

x y z 
H31-- + H32-- + H33--ax ay az 

(
au; aur;) 

H44 --+--
8x 8y 

(
aur; aur;) 

H55 --+-­az ax 

(
aur; au;) 

H66 --+-­ay az 

56 

(2.91) 

Using the finite element method in the Galerkin formulation (see section 3.3.1), one ob­

tains the following discrete formulation: 

(2.92) 

where Bm denotes the deformation matrix associated to the interpolations of displace­

ments, um,e denotes the vector of nodal displacement, Fm,e denotes the element loads 

vector which represents the contribution of the condition of the moving boundary. The so­

lution of this matrix equation represents the fiuid nodal displacement vector. The stiffness 

of the element depends on the matrix Hm which is determined by the Young's modulus Em 

and the Poisson coefficient vm. Since the elements near the moving boundary are much 

smaller, the stiffness of the fictitious material must not be homogenous. If the fictitious 

material for the mesh is too soft, the elements near the moving boundary will produce a 
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negative Jaco bian determinant. The stiffness is assumed to vary in a manner proportional 

inversely to the element volume : 

1 
H!'! rv ---

t] volumee 

where H[j is the entry of the elasticity matrix corresponding to ith row and jth column. 

Therefore, the elements near the moving boundary are more rigid and their deformations 

are smaller which keeps the Jacobian determinant of all elements positive. 

2.5 Compatibility conditions at the fluid-structure interface 

In the previous sections, the structural dynamic, fluid dynamic and mesh models in aeroe­

lasticity computation were described. The fluid-structure interaction occurs only on the 

moving fluid boundary and the wet structural surface. The coupling between these models 

are performed by an information transfer through the boundary conditions. The fluid loads 

are transferred from the fluid domain to the structural domain. The structural motion is 

transferred from the structural domain to the fluid domain. On the fluid-structure interface, 

each structural point (wet point) corresponds to a fluid point. The compatibility for CSD 

model and CFD model of Euler flow at any point on the interface can be described by the 

following compatibility conditions : 

• kinematic conditions : 
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• dynamic compatibility conditions : 

Us· n = -pn (2.93) 

where xf, xm and X8 denote respectively the fluid, mesh and structural positions, u, um 

and U 8 denote respectively the fluid velocity, the mesh and the structural displacements, 

0' 8 denotes the structural stress tensors, p denotes the fluid pressure of the fluid flow, n 

denotes the normal ofmoving fluid boundary. The displacement ofthe fluid pointis equal 

to the displacement on the corresponding wet structural point. The load on a structural 

wet point is equal to the load on its corresponding fluid point. 

2.6 Summary 

Since aeroelasticity consists of structural dynamics and fluid dynamics, information trans­

fer must be performed between the two different physical domains. Furthermore, fluid 

mesh adaptation is required due to moving fluid boundaries which follow the structural 

motion. In this chapter, linear structural dynamics applied to thin structure is described. 

Linear and nonlinear aerodynamics is discussed according to air speed. The conservation 

equations which describe inviscid fluid flow are written in the framework of the ALE kine­

matic description. A linear dynamic mesh model for fluid mesh adaptation is introduced. 
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CHAPTER3 

DISCRETE FORM OF THE GOVERNING EQUATIONS 

3.1 Introduction 

The structural dynamics and fluid dynamics goveming equations stated in chapter 2 are 

usually solved by numerical methods. The structural dynamic equations are solved using 

the fini te element method. The partial differentiai equations of fluid dynamics are usually 

solved by the finite difference method [9, 89], the finite volume method [90] or the finite 

element method [50, 55, 56, 78]. In this research, the CFD solver is based on the finite 

element method. A CSD solver based directly on finite element method (CSD-FEM) is 

implanted in one coupling solver. Another CSD solver with the modal analysis method 

(CSD-MAM) which is essentially based on the finite element method for the discretization 

in space is implanted in another coupling solver. Therefore, two numerical computational 

aeroelasticity solvers are developed. The difference between the two coupling solvers is 

in the CSD solvers. 

The matcher module, CSD, CFD and mesh solvers will be described in this chapter. The 

algebraic equations generated from the discretization of the finite element method will be 

presented. The strategies of time discretizations of these linear or nonlinear equations will 

be stated. 

3.2 Discretization of partial differentiai equations 

Numerical solutions for partial differentiai equations are based on discrete points in space 

and in time. In the finite element method, a complex space domain can be divided into 

a number of simple subdomains known as elements. The approximate solutions in these 
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elements are expressed through the shape functions : 

(x, y, z) E ne (3.1) 

where uh is supposed an approximation of the exact solution. Ni(x, y, z) are the shape 

functions, Ui is the nodal solution at the discrete point i ( known as node i ), ne is the 

elementary domain. Suppose that a partial differentiai equation is represented by the fol­

lowing equation : 

L(u) = 0 (3.2) 

where Lis an operator. Replacing the unknown in this partial differentiai equation with 

its approximation of equation (3 .1 ), th en multiplying this equation by a weight function, 

followed by integrating this equation in its elementary domain ne' the partial differentiai 

equation (3 .2) is transformed into the following approxima te integral equation : 

(3.3) 

where 8uh* is the weight function. If it is approximated on the same basis as uh, this 

equation represents the Galerkin fini te element method. The summation of all the elements 

gives the following assembled equation : 

(3.4) 
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where n is the total number of elements. Finally, the space discretization equation (3.4) 

gives the following first or second order ordinary differentiai eqùations in the form : 

Cu+Ku = o (3.5) 

or in the form : 

Mü+Du+Ku=O (3.6) 

Equations (3.5) and (3.6) can be discretized intime by explicit or implicit schemes. Ex­

plicit schemes are limited in time step [27]. The following implicit second order Gear­

Scheme [93, 94] is suitable to approximate the time derivative ofu : 

du(t) 3u(t + .6.t)- 4u(t) + u(t- .6.t) 
__ rv _____ --:------

dt 2.6.t 

After time discretization, equations (3.5) and (3.6) become the following equations: 

(3.7) 

or 

(3.8) 

For nonlinear problems, the matrix A depends on the unknowns. This matrix has large 

dimensions, especially for three-dimensional problems. To solve equation (3.7) or (3.8), 

we use the GMRES algorithm preconditioned by the ILUT matrix factorization. For more 

details, we refer to [69]. 
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3.3 CSD solver 

The CSD sol ver in this thesis deals with the linear structural dynamics of thin shells. If 

both the angle of attack and the displacement are small, linear structural dynamics can be 

applied. Two approaches are investigated in developing CSD solvers. The first one is the 

finite element discrete method which is commonly used in structural dynamic computa­

tions. The second one which uses the modal analysis method is particularly applied to 

linear structural dynamics dominated by low fundamental natural frequencies. 

3.3.1 CSD solver modeled by finite element method with shell elements 

Both CSD-MAM and CSD-FEM solvers are developed using the finite element method. 

In section 2.2, the characteristics of thin shell has been described and finally the following 

mathematical equation in the continuous medium has been obtained using the principle of 

virtual work : 

where V is the volume of the structure. After space discretization by the finite element 

method, equation (3.9) becomes the following algebraic equations (for more details see 

Appendix): 

Mü(t) + Ku(t) = F (3.10) 

where u is the nodal displacement vector, M and K are mass and stiffness matrices which 

are symmetrical and positively defined. ln this thesis, equations (3.1 0) are obtained by 

the finite element method with shell elements Q4--y24 [77] which are three-dimensional 

degenerated elements with constant thicknesses, four nodes and six degrees of freedom 
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per node (Figure 58). Equations (3.10) represent the elastodynamics equations without 

structural damping. Generally, the structural dynamics with structural damping matrix D 

is described by the following equations : 

Mü+Dù+Ku =F (3.11) 

with the following initial conditions for the displacements and the velocities : 

u(O) =no (3.12) 

ù(O) = Ùo (3.13) 

where u0 and ù0 are respectively the initial displacement and velocity vectors. The fol­

lowing initial acceleration can be obtained from equations (3.11) and the above initial 

conditions. 

Mü(O) = F(O)- Dù(O)- Ku(O) (3.14) 

The displacement, velocity and acceleration vectors at different instants can be obtained 

using a direct time discretization scheme, such as the popular Newmark's algorithm [95] : 

(3.15) 

(3.16) 

where ~t denotes time step, uk-1, ùk-1 and ük-1 denote respectively the displacement, ve­

locity and acceleration at instant tk-1, uk, ùk and ük denote respectively the displacement, 

velocity and acceleration at instant tk, 'Y and (3 are two arbitrary constants. If 'Y = 0.5 and 
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f3 = 0, the algorithm represents an explicit scheme which corresponds to a central finite 

differentiai scheme. This scheme is stable only if the time step is small enough. In this 

thesis, 'Y and f3 are chosen respectively as 0.5 and 0.25 which represent an implicit scheme 

which is unconditionally stable. Substituting equations (3.15) and (3.16) into equations 

(3 .11) yields : 

(3.17) 

With 

- 4 2 
K = K + (D.t)2M + D.tD (3.18) 

(3.19) 

The implicit Newmark algorithm is represented by the following algorithm: 

Implicit Newmark algorithm: 

1. Initialize displacement u(O) and velocity ù(O) from equations (3.12) and (3.13) 

2. Compute mass matrix M 

3. Compute initial acceleration ü ( 0) from equation (3 .14) 

4. Do k = 1, ....... , n ( loop between step 4 and step 10) 

5. Compute Rk from equations (3.19) 

6. Compute matrix Kk from equations (3.18) 

7. Solve equations (3.17) using linear GMRES algorithm with ILUT preconditioner 
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8. Compute acceleration using equations (3.15) which yields the following equations 

4 4 
ük = (~t) 2 (uk _ uk-1) + ~t-uk-1 _ ük-1 

9. Compute velocity ük using equations (3.16) 

10. Go to step 4 

3.3.2 Newmark algorithm with superposition oflimited modes 

Since the motion of linear structures is usually dominated by the first natural frequen­

cies, the resolution of CSD model by the modal analysis method is more economical 

than the direct finite element discrete method. The dynamic response of a linear structure 

in forced regime can be approached by the superposition of the first m modes Poi ( i = 

1,2,3, ...... ,m): 

m 

u(t) = LPoiz (3.20) 
i=1 

where the generalized coordinate vector z is the solution of the following uncoupled equa­

tion: 

(i = 1, 2, ...... , m) 

with the following initial conditions : 

zi(O) = pl:Muo 

zi(O) = pl:Müo 

(3.21) 
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where Woi is the ith natural frequency, f/i is the ith modal damping coefficient, soi(t) 

(soi(t) = p&ïr(t)) is the ith component ofthe load force projected on the modal basis, u0 

and ü0 are respectively the initial displacement and the initial velocity. 

The analytical solution for the generalized displacement vector z by time integration is 

limited in the case where soi(t) is a simple mathematical function. It is interesting to 

solve equation (3.21) by the finite difference method. First, the initial displacement vector 

llo and the initial velocity vector ü0 are projected in the base generated by the m modal 

vectors Poi (i = 1, 2, 3, ...... , m) which are extracted during the modal analysis: 

(3.22) 

·0 . (0) TM· zi = Zi = Poi llo (3.23) 

where Mis the mass matrix ofthe structure. From equations (3.21), (3.22) and (3.23), one 

obtains the following initial acceleration : 

(i = 1, 2, ...... , m) (3.24) 

where s~i = soi(O) . The solution at current instant tk is determined by the solution ofthe 

precedent instant tk-1 using the Taylor expansion [80] : 

(3.25) 

(3.26) 

where j3 and 1 are two arbitrary constants, zf, if, .Zf are respectively the generalized 

displacement, velocity and acceleration of mode i at instant tk, zf-I, if- 1
, .Zf-1 are re-
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spectively the generalized displacement, velocity and acceleration of mode i at instant 

tk-1. 

The following acceleration at instant tk is obtained using the above algorithm and equation 

(3.21). 

(3.27) 

where s~i is modal loads at instant tk which depends on the :fluid loads transferred from 

the CFD solver. Substituting zf and if of equations (3.25) and (3.26) into equation (3.27) 

yields: 

1 
z~=------------~~--~ 

% 1 + 27]iWo("Yl'J.t + w5ïf3(L'J.t) 2 

(3.28) 

.Zf is used to calculate zf and if in equation (3 .25) and (3 .26) during the next step. Equa­

tions (3.22) to (3.28) gives the Newmark algorithm. This algorithm is implicit if both {3 

and 'Y are not zero. 

The structural displacement, velocity and acceleration at instant tk can be calculated by 

the modal superposition of the first m modes : 

m 

u(tk) = L z~(t)Poi 
i=l 
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m 

u(tk) = L z~(t)Poi 
i=l 

m 

ü(tk) = L z~(t)Poi 
i=l 

For the stability of the Newmark algorithm, the values for (3 and 'Y are suggested to be 

chosen in the following stable zone [80] : 

1/2 ~'Y~ 3/4 

3.4 Equations of ftuid ftow discretized by the finite element method 

The CFD solver used for the computational aeroelasticity solvers is a code developed in 

the GRANIT laboratory. This code has already been applied in other research [58, 61, 

68] with varieties according to the flow feature. In this thesis, the CFD solver is based 

on an unsteady flow model for inviscid compressible fluid described by nonlinear partial 

differentiai equations. The flow is in transonic regime characterized by shock wave and 

other phenomena. The shock wave is the main issue analyzed in this thesis. Nonlinearity, 

particularly introduced by shock wave, produces also numerical instabilities. Techniques 

for stabilizing the numerical solution, such as SUPG [96] and improved SUPG [93] are 

implemented. 

Navier-Stokes equations defined in a domain with moving boundaries are described in 

section 2.3 .4. These equations in compact form are rewritten as : 

(3.29) 
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where U ( U =< p pu E > ) denotes the conservation variables [93], Ffdv, Ffi!! 

denote respectively the convective flux and the diffusive flux in the ith-space direction, F s 

is the source vector, u is the conservation variables vector, w is the grid velocity, the lower 

corners denote the partial differentiai and the repeated index indicates a summation. Ffdv, 

Ftif f can be written in the following quasi-linear form : 

&F':dv 
t 

A·=--
t &U 

The following equations of state for ideal gas provide additional equations to close the 

Euler equations : 

1 u 12 
p = ('y- l)p(E- -) 

2 

where Cv is the constant volume specifie heat, 1 is the specifie heat ratio. 

When equations (3.29) are multiplied by the weight functions W and integrated over do­

main n, then, applying the Gauss integral theorem yields the following variational formu­

lation: 

(3.30) 

+ f W .. F~if f dO - f W · F~if f ndf = 0 Jo. ,t t Jr t 
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The following residual vector is written as : 

(3.31) 

This residual is similar to the residual of partial differentiai equations in Euler kinematic 

description [62] except for an additional convective term ( -wi U,i). 

The fluid domain is discretized by linear tetrahedral elements [78, 98] which are simple 

and commonly used while the geometry of the domain is complex. A real element (Figure 

8a) can be transformed into a referential element (Figure 8b) which has the following 

shape functions : 

The vector of unknown variables is approximated by these shape functions : 

4 

u = L Nk(Ç, 'f), ()Uk (3.32) 
k=l 
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The Galerkin method uses the same shape functions to approximate the following weight 

functions: 

4 

W= LNk(Ç,7J,()Wk (3.33) 
k=l 

The Galerkin finite element formulation often leads to serious numerical instability where 

the solutions are corrupted by oscillations if the flow is dominated by convection [88]. The 

SUPG formulation [93, 99] introduces an integral term into the Galerkin variational for­

mulation where the stability inside elements is reinforced by adding the following integral 

term into equations (3.30) : 

where Tisa matrix oftime scale which depends on the element size. For one-dimensional 

scalar advection dominated flow, one has : 
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h 
r=-

2a 

where h is the element length, a is the flow velocity. For multidimensional flow, the 

following expression [93] is employed: 

A shock capture which depends also on the discrete residual R(u) is added. The shock 

capture is given by the following expression : 

Me= Cklhmin(llrR(U)II, llull)/2 (3.34) 

where Ck1 denotes a tuning parameter. The shock capture adds more dissipation in the 

vicinity of shocks where the residual R(u) is higher than in smooth zones. After adding 

the shock capture and the influence term of the far-field boundary conditions, the stabilized 

variational formulation reads : 

1 djf 1 - W·F/ ndf- W·Au(U-Uoo)df 
re re 

(3.35) 

+ L 1 /-le VW · VU dO + L 1 (Ai - wJ)tW,i · T • R(U)dO = 0 
e !1e e !1e 

where the third integral term is the influence of the far-field boundary conditions. The 

forth integral term represents the shock capture. The model is completed by adding the 
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following no-slip boundary conditions for inviscid compressible airflow on the moving 

fiuid boundary : 

u·n=w·n 

where w is the grid velocity of any node on the moving boundaries, n is the normal aver­

aged over all elements attached to this node. 

The grid velocity for any node is obtained using Gear-Scheme [93, 94] as : 

aum 3xn+l - 4xn + xn-1 

w = -a-t = ---2-L1:--t __ _ 

where xn+I, xn and xn- 1 are respectively the coordinates of this node at instants tn+t, tn 

and tn-l, L1t is the time step. 

Replacing U and Win equation (3.35) by equations (3.32) and (3.33) for each element 

and applying integration over the element yields the following first order semi-discrete 

equations: 

e 

Using time discretization and assembling technique yields a nonlinear system of algebraic 

equations for the solution of the nodal conservative variables. This nonlinear system is 

solved at each time step using a matrix-free GMRES algorithm preconditioned by an ILUT 

factorization [69]. The pressure at each node on the fiuid-structure interface is computed 

using the equations of state. This pressure is transferred to the CSD sol ver as its prescribed 

solicitation at the current instant. 
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3.5 Discrete form of the mesh governing equations 

Mesh updating is required in computational aeroelasticity due to the moving boundaries. 

Moving mesh (see section 2.4.1) is a strategy to distribute the structural motion into the 

who le fluid domain without large distortion of any fluid element who se connectivity keeps 

no change during the computation. Only the coordinates of the nodes need to be updated. 

The fluid domain is considered as a solid with a fictitious elastic material. The displace­

ment of the interior nodes is arbitrary. But the displacements of the far-field nodes are 

imposed to zero and the nodes on the moving boundaries are imposed to follow the struc­

tural motion (see section 3.6.2). The only solicitation is the motion of the moving bound­

ary. Only the displacement and velocity have physical signification since it is a fictitious 

structural dynamic model. 

In the fluid dynamics, the strong gradients of variables, such as pressure, density and 

velocity are in the zones close to the structure, small elements are required in these zones 

to obtain the computational accuracy. Since the elements in these zones are close to the 

moving boundaries, they are more at risk to get crashed. As the elements of the fluid mesh 

have different sizes, the fictitious material should not have the same stiffness, a small 

element which should suffer less deformation should be stiffer than the large elements. 

The mesh motion is defined by the following elasto-static equations [87] : 

divu = 0 (3.36) 

where u is fictitious stress tensor. The body forces and the fictitious density are assumed 

zero. The displacements of the nodes on the far-field boundaries conditions are imposed 

to zero. The displacement of the moving fluid boundary conditions which follows the 

structural motion is computed by the matcher module. The relation between the stress 

tensor and the strain tensor is assumed linear since the displacement of the structure is 

supposed small. Hook's law gives the following relation between the stress tensor and the 
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strain tensor e : 

{ u} = [H]{ e} (3.37) 

[H] is defined as functions inversely proportional to the element volume : 

2 0 0 0 0 0 

0 2 0 0 0 0 

1 0 0 2 0 0 0 
[H]m-

1 +volume 0 0 0 1 0 0 

0 0 0 0 1 0 

0 0 0 0 0 1 

where volume is the element volume. His different from one element to another. The 

virtual internai work for an element is given as : 

(3.38) 

where Wi~t is the internai work of an element. e denotes the virtual shear strain. Linear 

tetrahedral elements are used for the fluid mesh in this thesis. Using the same shape 

functions for the virtual shear strain and the real shear strain yields the following Galerkin 

formulation : 

(3.39) 
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According to the conservation law of energy, one obtains the following set of assembled 

algebraic equations : 

Ku=F (3.40) 

where u is the solution vector which represents the global nodal displacement, K is the 

symmetric stiffness matrix stored in vector form, F is the solicitation vector which rep­

resents the displacements of the moving boundaries. Using the linear GMRES algorithm 

with preconditioner ILUT, where the criterion of the convergence of GMRES resolution 

is chosen as 1.0-8 for the purpose of guaranteeing good accuracy of the mesh motion, 

the approximate solution of the displacement of the fl.uid nodes can be obtained. These 

displacements are used to update the coordinates of fl.uid nodes and to compute the grid 

velocities. 

3.6 Matcher module for information transfer 

In the computational aeroelasticity, information is exchanged on the fluid-structure inter­

face through the boundary conditions. The CFD solver receives the displacement trans­

ferred from the CSD sol ver, which is used to update the coordinates of the moving fl.uid 

boundary. On the other hand, the CFD grid on the fl.uid-structure interface must follow the 

structural motion. The CSD solver receives aerodynamic loads which are used as struc­

tural prescribed forces on the fluid-structure interface. The conservation law of energy 

must be satisfied during these transfers which are performed through matcher module. If 

the structural and the fluid meshes have exactly the same grids on the fl.uid-structure in­

terface, these transfers will be simply performed between fluid nodes and structure nodes. 

However, the two meshes do not necessarily match on the fl.uid-structure interface since 

the two models are usually discretized by different types and sizes of elements. The types 

of elements are chosen according to the computational criteria and the complexity of the 
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problems. For example, the structural element may be a quadrilateral and the fiuid ele­

ment may be a triangle. The fiuid element size is usually smaller than that of the structural 

element for the purpose of computational performance, such as for the shock capture. In 

Figure 9, the CFD mesh on the fiuid boundary is composed oftriangular elements gener­

ated from CFD tetrahedral elements. But the structural mesh is composed of quadrilateral 

shell elements degenerated from 3D cubic elements. Not only do the nodes not coïncide, 

but also there is a gap between the two grids. Since the fiuid and structural nodes on the 

fiuid-structure interface usually do not coïncide, the information transfers can not be per­

formed from node to node or from element to element on the fiuid-structure interface. A 

specifie technique is required to perform the information trans fers. In fact, instead of point 

to point searching, a search for the associated element of a fiuid node is performed since 

any fiuid node on the fiuid-structure interface must be associated with a structural ele­

ment. This procedure offinding the associated structural element of a fiuid node is known 

as pairing. A procedure of surface tracking performs the displacement transfer from the 

structural mesh to the fiuid mesh. Another procedure known as loads projection performs 

the transfer of aerodynamic loads from the fiuid mesh to the structural mesh. 

3.6.1 Pairing 

Pairing is used to find the corresponding structural element of any fiuid node on the fiuid.:. 

structure interface. Although any node of one grid can be projected on one element of 

another grid, it is better to perform information transfers between fiuid nodes of one grid 

and structural elements of another grid for non-matching grids. As the fiuid element size is 

usually smaller than the structural element size, if the structural nodes are projected on the 

fiuid grid, sorne fiuid elements may receive no structural projected node. Therefore, the 

pairing procedure of finding the associated element of a fiuid node is performed between 

one fiuid node and one structural element which associates with one or more than one fiuid 

nodes (Figure 1 0). 



Reproduced with permission of the copyright owner.  Further reproduction prohibited without permission.

78 

Figure 9 Non-matching grids between fluid and structural meshes 

Figure 10 Relation between fluid nodes and structural elements 

For a thin structure such as an aircraft wing, where shell element is used, there is only one 

element in the thickness direction and the shell element nodes are on the middle surface 

(see section 2.2.1.1). A gap always exists between the structural middle surface and the 

moving fluid boundary (Figure 11). The distance between each fluid node and its associ-
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ated structural element is unchanged during the structural motion, since it is supposed that 

there is no deformation in the thickness direction (Figure 12). 

fluid mesh 

structural mesh 

Figure 11 Projecting fluid nodes on the associated structural element 

Figure 12 Fluid grid with thin structural elements 

A structural quadrilateral can be divided into two triangles (Figure 13). Any point in 

the global coordinate system can be transformed into a local coordinate system using 

the following transform matrix. Figure 14 shows an example of a triangular structural 
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element and a fluid node q which is outside the plane of the triangular element. They can 

be respectively represented in the global coordinate system and in the local coordinate 

system. 

N~ IL----------------~ N21 
N! 

Figure 13 Quadrilateral element split into two triangular elements for 
pairing 

In Figure 14, the coordinates in upper-case letters represent the coordinates in global co;. 

ordinate system and the coordinates in lower-case letters represent the coordinates in the 

local coordinate system. The coordinates of point q and the vertexes of the triangle in the 

local coordinate system can be described as : 

Z· ~ 

= [T] (i = i,j, k, q) 

z. 
~ 

where T denotes the transform matrix : 

(3.41) 
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z 

J 

x 

Figure 14 A triangular element and a :fluid node in global and local 
coordinate systems 

a1 b1 c1 

[T] = a2 b2 c2 

tl tl 
a1 = M·i b1 = M·j 

t2 t2 
a2 = llt21i. i b2=M·j 

n n 
a3 = w·i b3 = w·j 

tl 
c1 = M·k 

t2 
c2 = llt2ll . k 

n 
C3 = w·k 

where t1 denotes the unit vector between node i and node j : 
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another unit vector t30 can be obtained from node i and node k. : 

The vectorial product oft1 and t30 yields a unit normal vector n which is perpendicular to 

tl : 

(3.42) 

the vector t2 which is perpendicular to t 1 and n can be obtained from the vector product of 

these two vectors : 

(3.43) 

In fact, t1, t2 and n represent the directions of x, y, z in the local coordinate system. Af­

ter the geometrie transformation, the triangular element in the local system is in parallel 

with the xoy plane. The three vertexes of the triangle have the same z coordinate in the 

local coordinate system. The triangle described in 3D in the global coordinate system is 

transformed into 2D in the local coordinate system since all points on the triangle have 

the same value in z direction. Because the distance between the fluid node and its associ-

ated structural element is assumed unchanged during the structural motion, the projected 

point of any fluid node on the triangle is unique. The coordinates (x9 , y9 ) of node q in 

the local coordinate system can be obtained by the above transformation from the fluid 

node q(X9 , Yg, Z9 ). If the fluid pointis associated with one triangular element, the pro­

jected point must be inside this triangular element. The condition for point g(x9 , y9 ) to be 

associated with this triangular element is : 

(n = i,j, k) (3.44) 
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where Ni(x9 , y9 ), Ni(x9 , y9 ), Nk(x9 , y9 ) are the values of the corresponding shape func­

tions at point ( x9 , y9 ). 

The values of the shape functions of a structural element at the projected point can be 

computed by the following two steps. First, the point ( Ç, rJ) in the referential bilinear 

element which corresponds to the projected point can be obtained by solving the following 

equations: 

(3.45) 

(3.46) 

Then, the structural shape functions are obtained by replacing Ç and rJ in the following 

structural shape functions by the solutions of equations (3.45) and (3.46) : 

N1 = (1- Ç)(1- TJ)/4 

N2 = (1 + Ç)(1- TJ)/4 

N3 = (1 + Ç)(1 + TJ)/4 

N4 = (1- Ç)(1- TJ)/4 

(3.47) 

(3.48) 

(3.49) 

(3.50) 

The pairing procedure performs a loop over ali structural elements to find the associated 

structural element. If the fl.uid node is not inside this element, the pairing procedure tests 

the next structural element. If the fl.uid node is inside the element, the associated element 

of this fl.uid node is found and the pairing continues to find the associated structural ele­

ment for another fl.uid node. Finally a matrix pairi(m, 6) can be constructed. The row of 

this matrix indicates the local number of the fl.uid nodes. The first column indicates the 

global number of the fl.uid node. The second column indicates the number ofits associated 
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structural element. The other four columns indicate the values of the four structural shape 

functions at the projected point of the corresponding fluid node. 

3.6.2 Surface tracking 

The surface tracking ensures the fluid boundary on the fluid-structure interface to follow 

the structural motion exactly. Since the test case that will be studied is the AGARD 445.6 

wing which is a thin shell, only one shell element is needed in the thickness direction. The 

nodes of a shell element are on the middle surface (see section 2.2.1.1), therefore, there 

is no contact between the structural nodes and the fluid elements, but a gap between them 

(Figure 15). Since the wing structure satisfies Reissner/Mindlin hypothesis, a straight line 

fiuidnode 

;/ 

p 

\ 
\ 

\ 
plàte/shell 

element 

Figure 15 Gap between fluid nodes and structural elements 

keeps straight during structural motion. It is supposed that there is no deformation in the 

thickness direction. The initial distance between a fluid node and its associated structural 

element is given by : 



Reproduced with permission of the copyright owner.  Further reproduction prohibited without permission.

85 

where n is the average normal of the structural element, (xl -x9 ) is the position difference 

vector between the position of one of the structural nodes and the :fluid node. As the 

structural surface moves and deforms, this vector rotates and translates. lt rotates in the 

same way as the normal vector of the structural surface. Since it is assumed that the 

length of this vector never changes during the structural motion, the distance between the 

:fluid node and the structural element keeps constant. Since the :fluid and the structural 

grids are separated with a constant distance, the :fluid node position vector can be obtained 

from the summation of its projected point position vector and a vector which has the same 

direction of the normal vector of the structural element and has the magnitude of the initial 

distance between the :fluid node and the structural element. Therefore, the updated :fluid 

node position vector is given by : 

where xt is the projected point position vector of the :fluid node, uf is the displacement of 

the :fluid node. xl is also given by the following equation : 

x1 = x'(O) + uf 

Since 

xf (0) = x~ (0) + l0n 

one obtains 
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n is given by the following relation : 

4 4 

n = L Nindll L Ninilb 
i=l i=l 

where ni(i = 1, 2, 3, 4) is the normal vector of structural node i (Figure 16). They are 

obtained by the following equations : 

n1 = (x2- x1)(x3- x1)/l!(x2- x1)(x3- x1)lb 

n2 = (x3- x1)(x4- xi)/II(x3- x1)(x4- x1)ll2 

D3 = (x3- x2)(x4- x2)/ll(x3- x2)(x4- x2)lb 

n4 = (x4- x2)(x1- x2)/ll (x4- x2)(x1- x2) ll2 

Figure 16 Normal vector of a structural element and its nodal normal 

Since the displacement of the fluid pointis equal to the displacement ofits projected point, 

the displacement of the projected point of a fluid node can be obtained using the following 

interpolation of the nodal displacement vectors of its associated structural element : 

m=ms 

u; = us(x9 , y9 ) = L N:n(x9 , y9 )u:n (3.51) 
m=l 
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where u~ is the displacement of the projected point of fluid node n, N:n(x9 , y9 ) is the 

structural shape function of structural node m at projected point (x9 , y9 ) and ms is the 

total nodes of the structural element. The coordinates of the fluid node can be obtained by 

adding the distance of the gap which is the unchanged initial distance between the fluid 

node and its associated structural element. 

3.6.3 Loads projection 

The loads projection is performed according to the conservation law of energy which 

transfers from fluid domain to the structural domain through the fluid-structure interface. 

The aerodynamic loads induced to the structure by the fluid flow are computed using a 

fluid dynamic model with loads projection procedure. The displacement of the projected 

point ofthe fluid node n is given by equation (3.51). The displacement of any point in the 

fluid element is interpolated by the shape functions of fluid elements [ 45] : 

n=nf 

uf = L N~ (x9 , Y9 )Ufn (3.52) 
n=l 

where uf is the displacement of a point of the fluid element. Nt denotes the nth shape 

function of the fluid element. n1 denotes the total nodes of the fluid element. The work of 

the fluid tractions on the fluid si de r 1 of the fluid-structure interface can be written as : 

m=ms n=nf 

c)Wf = 1 ( -pn+uf ·n) ·uf ds = L ( L (1 ( -pn+uf ·n)N~ds))N:n ·u:n (3.53) 
rf m=l n=l rf 

The work done by the structural forces of one element on the fluid-structure interface r 1 

can be written as: 

m=ms 

6W8 = L r . u:n (3.54) 
m=l 
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The nodal forces vector of a structural element which is given by the following equation 

can be considered as the interpolation of the fluid force of each node associated with this 

structural element. 

n=nf 
rs = L c/JnN:n (3.55) 

n=l 

where c/Jn denotes the numerical aerodynamic load flux [ 45] : 

The main point of this procedure is to calculate this numerical force flux. The following 

section presents the calculation of this term. For simplicity, zero stress tensor is supposed 

which corresponds to the inviscid compressible flow described by Euler equations and 

triangular elements are chosen for both fluid and structural meshes. 

The numerical force on the surface is always supposed in the inverse direction of the 

external normal of the fluid element. The magnitude of the numerical force acting on the 

node j in the local coordinate system (Figure 17) can be described as : 

(3.56) 

where N~ is the shape function associatedofnode j. Ae denotes the surface ofthe element. 

p is the pressure on the element which is interpolated linearly as : 
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where Pi, pj and Pk are the normal pressure at nodes i, j, k. Therefore, the nodal force in 

equation (3.56) can be written as : 

(3.57) 

Since the three nodes have the same coordinate in the z direction in the local coordinate 

system, the integration on a surface in 3D in the global coordinate system becomes an 

integration on the same surface represented in 2D in the local coordinate system. 

y 

i~ 
J 

k 

----..,0+----------. x 

(a) 

0 

3 

11=1- ç 

1 2 

(b) 

Figure 17 One real element transformed into one reference element 

U sing the geometrical transformation from a real element to a standard referential element, 

nodes i, j, k of a real element can be transformed into nodes 1, 2, 3 in a referential element 

(Figure 17). The integration JAe Nf NJ ds can be written as: 

where N! ( Ç, fJ), N { ( Ç, rJ) are respectively the values of the shape functions of nodes 1 and 

2 at point ( Ç, fJ) in the referential element. det ( J) is the J acobian determinant. The shape 
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functions and the Jacobian determinant are expressed as follow : 

N{(Ç,,ry) = 1-Ç -ry 

N{(Ç,,ry) = Ç 

Nf (Ç, rJ) = rJ 

where Ais the area of the triangle, xi, Yi, Xj, yj, xk. Yk are the coordinates ofnodes in the 

local coordinate system. The above integration becomes : 

and the two other integration terms for <Pj in equation (3 .57) can be written as : 

Similarly, one can obtain </Ji and </Jk which correspond to the numerical force flux on the 

nodes i and k. Finally, the nodal force in the local coordinate system can be written as : 

2 1 1 

(3.58) 
e 

1 1 2 

All of the three nodal numerical force flux are normal to the element surface which is in the 

z direction of the local coordinate system. They are represented in the global coordinate 
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system as tPi = </Jini, tPi = <Pini, tPk = <Pknk, where ni> ni and nk are respectively the 

normal of the fiuid nodes i, j and k. 

3.7 Summary 

Coupling nonlinear aeroelasticity solvers are based on the CSD, CFD and mesh solvers. 

The coupling is performed between these three solvers through the matcher module. Two 

computational solvers are detailed in this chapter. The first one is based on a CSD solver 

with the direct finite element discrete method. The second one is based on the modal 

analysis method with superposition by limited modes. It is supposed that the nonlinearity 

of the model is only from the transonic airfiow. Therefore, only the CFD sol ver is based 

on a nonlinear model. The two CSD solvers are linear models. The mesh solver is also 

based on a linear model with the hypothesis of modera te grid displacement. The matcher 

module plays the role oftransferring information between the CSD and CFD solver on the 

fiuid-structure interface through the boundary conditions. 
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CHAPTER4 

FLUID-STRUCTURE COUPLING ALGORITHMS 

4.1 Introduction 

The discrete forms of the goveming equations for each component of the aeroelasticity 

models are described in the previous chapter. The concept of aeroelasticity sol vers deals 

with the implementation of the strategies of coupling these components which can be 

considered as independent solvers or modules. In this chapter, the coupling algorithm of 

the nonlinear computational aeroelasticity solver will be presented. 

4.2 Coupling strategies 

Aeroelasticity represents the mutual interaction of aerodynamic forces with elastic forces 

and inertial forces, where airflow passes over flexible structures. The structural deforma­

tion plays an important role in determining the extemalloads on the structure and the fluid 

flow plays an important role in determining its configuration. Naturally, an aeroelastic sys­

tem can be considered as a unique system where the goveming equations are formulated 

into only one set of equations. This approach leads to the writing of a whole new code 

which will become tedious to be modified in the future. For the purpose of developing 

a comprehensive and efficient code, another approach, which is usually used in model­

ing of multidisciplinary problems, deals with segregation of a complex system into sorne 

subsystems. This approach can reuse the existing solvers with minimal modifications. 

Although the fluid dynamics and the structural dynamics in aeroelasticity cannot be con­

sidered independent but coupled, the goveming equations can be solved in a segregated 

way at each time instant. Such strategy handles the dependence between the CFD and the 

CSD solvers in an iterative manner. In the aeroelasticity computation, the aerodynamic 
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loads and the structural motion are computed using respectively the CFD and the CSD 

solvers at each time step. Because of the moving fluid boundary and the non-matching 

between the fluid and the structural grids on the fluid-structure interface, the mesh solver 

and the matcher module are added in the CFD-CSD coupling (Figure 18). In this figure, 

the arrows represent the direction of information trans fers. The double arrows indicate that 

the matcher module pilots these information transfers. Aerodynamic loads which trans­

fer from the CFD solver to the CSD solver are piloted by the matcher module through the 

loads projection. Structural displacements which transfer from the CSD sol ver to the mesh 

solver are piloted by the matcher module through the surface tracking. The mesh solver, in 

its tum, provides updated coordinates and velocities of the fluid mesh to the CFD sol ver. 

grid coordinates and velocities 

structural displacement 

matcher module 

aerodynarnic loads 

Figure 18 Coupling between CFD, CSD and Mesh Solvers 

4.3 A recapitulation of the nonlinear computational aeroelasticity model 

The aeroelasticity solvers result from the coupling of the CSD, CFD which are respectively 

developed for fluid and structural computations. The fluid and structural meshes are cho-
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sen by the nature of the models. For example, the structural mesh uses shell elements while 

the fluid mesh uses tetrahedral elements. The boundary nodes and the interior nodes of the 

subdomains are two distinct nodes of the structural and fluid meshes. The computational 

aeroelasticity gives the solutions of the fluid and structural variables inside subdomains 

and on the boundaries. The CSD solver is in charge of computing the structural motion. 

The CFD solver is in charge of computing the fluid flow field. The variables are updated 

altematively by CFD and CSD solvers. The coupling is performed through the boundary 

conditions by exchanging information between the CSD and CFD solvers. The models 

which consist of the nonlinear computational aeroelasticity model in space discretizaton 

are represented as follows : 

CSD model: 

(4.1) 

with initial and boundary conditions 

Meshmodel: 

(4.2) 

CFD model: 

(4.3) 

with initial and boundary conditions 
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Matcher module : 

at the fluid-structure interface : 

(4.4) 

s m 
u,t = u,t = u (4.5) 

(4.6) 

where U denotes the conservative variables, usw ust and us denote respectively the struc-, , 

tural acceleration, velocity and displacement vectors, u denotes the flow velocity vector, 

Ms, ns and Ks denote respectively the structural mass, damping and stiffness matrices, 

Km denotes the fictitious stiffness matrix of mesh, Mf and Kf denote respectively the 

structural mass and stiffness matrices of the fluid, F1 and Fs denote respectively the aero­

dynamic loads vector and the sources vector, um denotes the mesh displacement vector, 

F is the solicitation vector which represents the displacements of the moving boundaries, 

uii denotes the structural Cauchy stress tensor, ns denotes the unit normal vector of the 

fluid-structure interface, p denotes the pressure of the fluid. In the CSD model, the extemal 

loads vector con tains non-zero en tries which correspond to the forces of the nodes on the 

fluid-structure interface. ln the mesh model, the grid displacement on the fluid-structure 

interface is the interpolation of displacement obtained by a surface tracking procedure in 

the matcher module. In the CFD model, the fluid velocity is obtained using slip boundary 

conditions for Euler equations which represent inviscid compressible flow. The velocity 

in the direction normal to the boundary is supposed to be equal to the structural normal 

velocity. On the far-field boundary, the fluid velocity is imposed to be equal to the velocity 

of the oncoming flow. 
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The nonlinear aeroelasticity model resulting from the coup ling of the models described by 

equations from ( 4.1) to ( 4.5) can be presented in the following form : 

(4.7) 

where Y is the set offiuid and mesh variables which consist ofvectors U1 and um, Z is 

the set of structural variables. R1 and R1 are respectively the nonlinear functions of the 

fiuid, mesh and structural variables. This system of nonlinear equations can be linearized 

into the following system of equations : 

(4.8) 

where Kr is the tangent matrix as : 

[Kr]= [ ~ ~] 
The solution for equations ( 4.8) are still difficult to be obtained due to the complexity of the 

sub-matrices C and D which are difficult to express analytically. Therefore, approximate 

methods are applied through iterative procedures of the segregated approaches. 

4.4 Gauss-Seidel coupling algorithm 

This coupling algorithm is one of the iterative procedures. Other procedures, such as 

Jacobi and Schur-complement procedures, can be found in Reference [104]. Gauss-Seidel 

coup ling algorithm is a tight implicit algorithm, where the solution of the CFD sol ver at 

instant tn+l is based on the assumption that the solution of the CSD solver at the same 
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step is already known and vice versa, for the solution of the CSD sol ver. The procedure of 

the resolution is performed by resolving iteratively equations ( 4.8) with the replacement 

of matrix KT by the following matrix : 

Since the CFD solver applied has ready used an implicit algorithm, it is used to pilot the 

coupling procedure. The coupling procedure is represented by the following algorithm 

and the following flow chart (Figure 19) : 

Gauss-Seide! coupling Algorithm : 

1. Allocate tables for the matcher module, CSD, CFD and mesh solvers 

2. Identify the fluid nodes on the fluid-structure interface 

3. Identify the associated structural element of each fluid node on this interface 

by the matcher module 

4. Initialize the CFD solver and compute the pressure on the fluid elements of 

the moving boundary and project these pressures on the associated structural 

elements 

5. Initialize the structural nodal displacements and nodal velocities and compute 

the nodal accelerations according to the initial displacements, velocities and 

the extemal forces on the structural nodes 

6. Do the time loop in CFD solver until step 16 

7. Apply a structural perturbation or a force distribution on the structure during 

a time period 

8. Do the coupling iterative loop until step 15 

9. Call matcher module to perform loads projection and compute structural 

displacement by calling the CSD solver 
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1 O. Compute the displacement of each fluid node on the fluid moving boundary 

by surface tracking 

11. Call mesh sol ver to compute the nodal displacement of the fluid mesh 

12. Update the fluid nodal coordinates and compute the fluid grid velocity using 

its displacement 

13. Update the normal ofthe triangular fluid elements on the moving boundary 

and compute the fluid nodal velocities on the moving boundary 

14. Compute fluid pressure using GMRES algorithm with ILUT preconditioner 

15. End the coupling iterative loop 

16. End the time loop 

17. Stop 

98 

This coup ling algorithm is a pp lied to flutter simulations. At step 7, the aeroelasticity 

system receives a perturbed force on the structure at the first time step. 
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Initialization 

Identify fluid nodes on the wet 
structural boundary 

Identify the associated structural 
elements of the above fluid nodes 

Initialize CFD solver 

Initialize CSD solver 

Apply perturbation 

Pressure projection 

Compute structural displacements 
by CSD sol ver 

Surfa ce trac king 

Update fluid mesh by mesh solver 

Compute fluid pressure 
by CFD sol ver 

no 

no 

Coupling flow chart 
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4.5 Variant of the Gauss-Seidel coupling algorithm 

This coupling algorithm can yield different staggered coupling procedures. The conven­

tional sequential segregated procedure using one coupling iteration (Figure 20) is briefly 

described as follows. First, the variables of the structure sol ver, the mesh sol ver and CFD 

solver are initialized, then the initial pressure is sent to the CSD solver by the matcher 

module and a perturbation is applied on the structure, the CSD solver computes the dis­

placements of the structure and transfers the boundary velocity to the mesh solver by the 

matcher module. The moving mesh sol ver computes the velocity of each node of the mesh 

(grid velocity) using the boundary conditions of the moving boundary obtained from the 

interpolation of the structural motion, theo the mesh solver computes the grid velocity 

and transfers it to the CFD solver which in its turn computes fluid pressure according to 

the updated mesh coordinates. The fluid pressure is transferred to the CSD solver by the 

matcher module. 

fluid 

1 

structure 
+ mesh q n 

xn 

Figure 20 

4 
V n+l 

qn+l 

n+l x 

Sequential coupling procedure 

yn+2 

For a better coupling, more coupling iterations can be used during each time step (Figure 

21). There are sorne sub-iterations in which the information is transferred between the 

sol vers. 



Reproduced with permission of the copyright owner.  Further reproduction prohibited without permission.

101 

vn 4 
vn+1,i 

g 
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strudure 2 

+ rnesh qn 

xn 

Figure 21 

6 
........... .................. 

q n+ l, i q n+l, i+l qn+l 

x n+l 

Sequential procedure of Gauss-Seidel algorithm with sub­
iterations 

The pressure used for the computation of the structural displacement can be chosen as the 

pressure at the current step. 

4.6 Summary 

The nonlinear aeroelasticity models are composed of the nonlinear CFD, the linear CSD, 

mesh solvers and the matcher module. The coupling nonlinear computational aeroelas­

ticity solvers are based on the independent CSD, CFD and mesh solvers. The coupling 

strategy is based on the segregated procedure using the iterative approximate approach 

where a time staggering is possible during the computation. 
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CHAPTER5 

NUMERICAL RESULTS 

5.1 Introduction 

In the previous chapters, the models of the subsystems and the coup ling algorithms for the 

nonlinear computational aeroelasticity have been described. The corresponding solvers 

of these subsystems are either reused or developed using appropriate computational tech­

niques. The validation of these subsystems sol vers are required except for the CFD sol ver. 

Since this solver has already been applied to various research projects in our laboratory, 

it is ready to be coupled with sorne moderate modifications to adapt to the moving :fluid 

boundaries. In this chapter, first, numerical experiments are performed on the validation 

of the CSD-FEM and CSD-MAM solvers. Secondly, the validation will be performed 

on the coupled solvers between the CSD and mesh solvers through the matcher module 

to ensure the coupling without the CFD solver. Then, it is focused on the validation of 

the complete coupled nonlinear computational aeroelasticity solvers based on the solvers 

of these subsystems. Finally, the coupled solvers will be applied on the AGARD 445.6 

aeroelastic wing for :flutter simulation. 

5.2 Validation of the CSD solvers 

In this test, the two CSD solvers are respectively coupled in nonlinear computational 

aeroelasticity solvers. The CSD-FEM solver uses the general finite element discrete ap­

proach while the CSD-MAM solver benefits from the linear structural properties for saving 

the computing time and reducing the memory requirement. For the CSD-MAM solver, the 

modal parameters are extracted from ANSYS software since it is a commercial software 

commonly used in research and industries. The unsteady solution from the CSD-MAM 
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solver is compared to those obtained from ANSYS software while both of them use the 

same modal parameters. The second comparison is performed between our developed 

CSD-MAM and CSD-FEM solvers. 

5.2.1 Extraction of natural frequencies and eigenmodes 

The natural frequencies and mode vectors can be analytically obtained from the free vi­

bration equations (2.21 ). For large discrete systems, these modal parameters can be ex­

tracted using ANSYS software. They can also be obtained using MATLAB after extract­

ing mass and stiffness matrices from the CSD-FEM solver. The validation of the CSD­

FEM model is performed through its comparison with the CSD-MAM model. Suppose 

that a square plate is clamped on its left side (Figure 24). This plate has a dimension of 

10 cm x 10 cm, a thickness of 0.135 cm with a density of 2710 kg/ m3, a Young's mod­

ulus of7.728 x 1010 N/m2 and a Poisson coefficient of0.33. As the thickness is small, 

the deformation in the thickness direction is assumed negligible. The plate is discretized 

respectively by one and 25 shell elements (Figure 24 and Figure 25). The natural frequen­

cies are represented in table I and table III. Table II and table IV show the deflections of 

the first mode in the thickness direction. These results indicate that the CSD-FEM model 

approaches the CSD-MAM model when the mesh is refined. 

Table I 

Natural frequencies obtained with a mesh of one element 

mode ANSYS (Hz) CSD-FEM (Hz) 
1 114.15 116.86 
2 306.16 281.17 
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Table II 

Deflections of the first mode obtained with a mesh of one element 

node ANSYS (rn) CSD-FEM (rn) 
3 -9.78 -9.05 
4 -9.78 -9.05 

Table III 

Natural frequencies obtained with a mesh of25 elements 

mode ANSYS (Hz) CSD-FEM (Hz) 
1 121.5 122.2 
2 296.8 297.6 
3 747.1 808.3 
4 952.2 1011.5 
5 1089.1 1161.6 

Table IV 

Deflections of the first mode obtained with a mesh of25 elements 

node ANSYS (rn) CSD-FEM (rn) 
31 -10.34 -10.38 
32 -10.49 -10.52 
33 -10.58 -10.60 
34 -10.58 -10.60 
35 -10.49 -10.52 
36 -10.34 -10.38 
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5.2.2 Initial acceleration 

Since the initial displacement and velocity are imposed to zero, knowledge of the effect 

of the initial acceleration is important in the computation of the structural displacement. 

Numerical experiments show that the number of modes used for the superposition affects 

the initial acceleration. Increasing the number of modes used in the CSD-MAM solver 

decreases the difference between the initial accelerations obtained by the CSD-MAM and 

CSD-FEM sol vers. Figure 26 shows the initial accelerations of points of one side of the 

plate under a static force of one Newton in the thickness direction on the upper corner 

(Figure 24). The difference between the values obtained by the CSD-MAM and CSD­

FEM decreases with the increasing of the number of the modes used in the CSD-MAM 

solver. However, when the mesh is refined, more modes are required to get an initial 

acceleration close to that obtained by the CSD-FEM solver. Figure 27 shows the initial 

accelerations of the points on the same side of the plate. The results in Figures 26 and 27 

are obtained using respectively a mesh with 25 elements (Figure 25) and another refined 

mesh with 100 elements which have less difference in natural frequencies (Table V) than 

that in table III. This numerical test shows that the difference of the accelerations can also 

be reduced by refining the mesh. This reduction can also be obtained by increasing the 

number of modes used in the modal superposition approach where the contribution of the 

higher frequencies is significant in the responses. 

5.2.3 Validation of the CSD-MAM and CSD-FEM solvers 

The CSD-MAM solver implements the modal analysis approach where the mode vectors 

and the natural frequencies can be extracted from any structural analysis software, such 

as the ANSYS software. The validation of this solver is performed by comparing its 

solutions with those obtained by the ANSYS software. These two CSD models are applied 

to the example in Reference [80] (Figure 28) which is used as reference in this test case. 

The plate has a dimension of 50 cm x 50 cm, a thickness of 0.5 cm with a density of 
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Table V 

Natural frequencies obtained by discretization with 100 elements 

mode ANSYS (Hz) CSD-FEM (Hz) 
1 121.5 121.6 
2 294.6 294.5 
3 742.7 757.0 
4 950.9 964.8 
5 1078.9 1093.8 

7850 kg/m3
, a Young's modulus of2.1 x 1011 N/m2

, a Poisson coefficient of0.3 and 

a correction factor of shear stress of 0.833. The plate is discretized by 64 shell elements 

(Figure 29). Each element has four nodes with 6 degrees of freedom per node (three 

translations and three rotations) in the models of the CSD-MAM and the ANSYS software, 

but 9 nodes (three degrees of freedom per node : the translation normal to the plate and 

the two rotations respectively around x and y axes) in the model of Reference [80]. The 

translations of the 4 sides are imposed to zero as boundary conditions. Figures 30 shows 

the natural frequencies of the first six modes compared to those from the ANS YS software 

and tho se in the reference. Figures 31 to 33 show the vertical nodal displacements of mode 

1, 3 and 5 of nodes 38, 39, 40, 41 (Figure 29). For simplicity, only the first three odd 

mode vectors are illustrated in these figures. A refined mesh shows also the same effect 

of the refined mesh as in the previous section, that the modal parameters extracted from 

the CSD-FEM solver approache those of the reference and those extracted from ANSYS 

software when the mesh is refined. For the dynamic analysis, a step force of 1000 Newtons 

exerts at point p on the middle surface of the plate which has the following coordinates 

: x = 12.5 cm and y = 30 cm. The displacements in the thickness direction of this 

point are represented in the figures from 34 to 38. In Figure 34, these displacements are 

respectively computed by the CSD-MAM solver and the ANSYS software. Both tests 

use the same modal parameters extracted from the ANSYS software. The differences 
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between the displacements obtained by the two solvers are very small. The two curves are 

nearly superposed in this figure and are very close to the result in the reference. 1t shows 

that the CSD-MAM 'solver gets nearly the same results as those from the commercial 

ANSYS software and those in the reference when the modal parameters are extracted 

from the ANSYS software. The modal parameters can be also exacted from the CSD­

FEM solver. The natural frequencies and modes vectors are computed by MATLAB using 

the mass and stiffness matrices obtained directly from the CSD-FEM solver. There is 

more difference between the displacements when the modal parameters extracted from 

the ANSYS software and those extracted from the CSD-FEM solver are used respectively 

in the CSD-MAM solver (Figure 35). This difference is due to the difference of the modal 

parameters obtained by different approaches. However, it decreases (Figure 36) when 

the mesh is refined by a mesh of 256 elements. The results from the CSD-FEM solver, 

where the finite element discrete method is applied directly, have the same effect as the 

refined mesh: the displacements in the thickness direction obtained by the CSD-FEM will 

approach those in Reference [80] and those obtained through the ANSYS software when 

the mesh is refined (Figures 37 and 38). 

Finally, the validation of the CSD solvers is applied to the weakened model3 of AGARD 

445.6 aeroelastic wing [33]. The wing is made with laminated-mahogany and has a mass 

of0.1276 slug (1.86227 kg), a Young's modulus of 4.7072x 105 psi (3.2455x 109 N/m2), 

a Poisson coefficient of0.31, a density of0.8088 slugf ft 3 (416.86 kgfm3 ). The wing has 

a quarter-chord sweepback of 45 degrees and is fixed through its root. lts geometry is 

shown in Figure 39. The airfoil section is the symmetrical airfoil NACA 65A004 (Figure 

40) with its nondimensional coordinates shown in table VI. Since the thickness of the wing 

is very small, the deformation in the thickness direction is also assumed negligible. The 

wing is discretized by 1176 quadrilateral shell elements with varying thickness (Figure 

41 ). First, the modal analysis using the ANS YS software yields the modal parameters. 

The mode vectors provided by the ANSYS software are presented in Figure 42 compared 
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to those of Reference [102] which is used as the reference in this test. The difference 

of the modal parameters is also very small, especially for the first mode. Secondly, the 

natural frequencies and the modal vectors are extracted from the CSD-FEM solver. The 

comparison ofthese natural frequencies is shown in table VII. Since the CSD-FEM solver 

deals only with constant thickness shell elements, the computations of mass and stiffness 

matrices are performed using an average value of the four nodal thicknesses which yields 

more difference compared to the natural frequencies in the reference. Figure 43 shows 

the displacement in the thickness direction of one node (node 1250 in Figure 41) which 

is located on the point of the intersection between the tip and the 1eading edge, on which 

a Dirac force of 100 Newtons is exerted during the first one millisecond. The wing is 

initialized with zero displacement and zero velocity. The difference ofthese displacements 

obtained by the CSD-MAM sol ver using respectively the modal parameters extracted from 

ANSYS software and those obtained from the CSD-FEM solver are less than 5% which is 

from the difference of the models. 

Remark 1 : The modal parameters and the initial acceleration are affected by the element 

size. The results obtained by the CSD solvers agree better if the mesh is refined. The 

CSD-MAM solver can give excellent results compared to those of the references when the 

same modal parameters are used. The results are still satisfying when this CSD sol ver uses 

the modal parameters extracted from the CSD-FEM solver. The results from CSD-MAM 

solver agree with those from the CSD-FEM solver when the mesh is refined. 

Remark 2 : Modal analysis gives good results and high computing performance when the 

first few modes dominate the structural dynamic behavior. However, when high frequency 

modes play a non-negligible role, then a direct finite element analysis is required, such as 

the case of structural vibrations induced by a separated flow. 
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5.3 Coupling validation between the CSD and mesh solvers through the matcher 

Before the validation of the complete coup ling model between the CSD, CFD and mesh 

sol vers through the matcher module, the next step is to validate the coup ling of these com-:­

ponents without the intervention of the CFD sol ver. This validation is performed through 

the following example where a fiuid flow passes over a panel which is clamped at both 

ends (Figure 44). The fiuid domain has dimensions of 0.1 mx 0.5 mx 1.5 m. The panel 

has a length of 0.5 m, a width of 0.1 m, a uniform thickness of 1.35 x 10-3 m, a 

Young modulus of 7.728 x 1010 N/m2
, a Poisson coefficient of0.33 and a density of 

2710 kgjm3
• Since the thickness of the panel is also very small, the deformation in the 

thickness direction is negligible, so shell elements are used for the structural model. The 

plate is discretized by a mesh of 500 quadrilateral shell elements with 561 nodes (11 rows 

and 51 columns ). The natural frequencies and mode vectors (Figure 45) are extracted from 

the ANSYS software. The plate is initialized in a horizontal position with zero displace­

ment and zero velocity. The fiuid boundaries are imposed to be fixed, except the boundary 

in contact with the plate where the displacement is interpolated by the displacement of 

the plate through the matcher module. The structural damping is supposed to be 0.02. A 

concentrated force of 1000 Newtons applied on the center of the plate during the first one 

millisecond triggers the structural motion and the system starts the oscillation. The fiuid 

mesh gets the same oscillating motion, and finally after 3 seconds the oscillating motion 

disappears. Figure 46 shows the position of the deformed plate at an instant after the ap­

plication of an external force and its initial position. The results show that the fiuid mesh 

(triangular elements in green color) on the interface follows exactly the structural motion 

(motion of the quadrilateral elements in red color). Figures 47 and 48 show respectively 

the mesh motion at its initial position and at another position after 0.15 seconds. The mo­

tion of the moving fiuid boundary diffuses smoothly into the who le fiuid domain towards 

its far-field boundaries. 
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Remark : Describing the mesh as an elastic media helps distributing interface displace­

ment into the interior domain. 

5.4 Validation of the nonlinear computational aeroelasticity solver 

As the CFD solver has been a solver already validated in our laboratory and all the other 

solvers and the matcher module are validated in the previous sections, the complete non­

linear computational aeroelasticity solver can be validated. This validation is performed 

on the AGARD 445.6 aeroelastic wing which is mounted by its root (see Section 5.2.3) 

with zero angle of attack, zero initial displacement and velocity. 

The wing is immersed in a fluid domain which is ·discretized by a coarse mesh composed 

of 177042 linear tetrahedral elements with 37965 nodes. The wing has the same struc­

tural mesh of AGARD 445.6 wing in section 5.2.3. Since the strongest variation of the 

fluid variables occurs around the wing, the mesh near the wing is much finer thau in the 

rest of the fluid domain. There are 12921 fluid nodes of25684 triangular elements on the 

wet surface of the wing on which slip boundary conditions are applied. The uniform on­

coming flow which is a high transonic flow with a prescribed Mach number is applied on 

the entrance boundary. The boundary conditions on the far-field boundaries are imposed 

with the oncoming flow. The fluid variables are initialized with a solution of the CFD 

solver while the wing is considered as a rigid structure. The corresponding fluid config­

uration is considered as the initial state of the mesh for the unsteady simulation. From 

this state, the nonlinear computational aeroelasticity model receives a structural or load 

perturbation during a short period. The application of different types of perturbation is for 

the purpose of investi ga ting the performance of the sol vers. This perturbation triggers the 

fluid-structure interaction which results in wing vibrations. This deformation alters the 

fluid configuration. The change of the fluid configuration, in its turn, perturbs the dynamic 

pressure on the wing. The Mach number of the oncoming flow is chosen as 0.96 in order 

to simulate the critical point of the transonic dip. The effects of the time step and the 
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number of the coupling iteration are investigated in arder to build a robust and efficient 

solver with large time step and small number of coupling iterations. 

5.4.1 Responses of the aeroelasticity solver coupled with CSD-MAM/CSD-FEM 

The CSD-MAM and the CSD-FEM solvers give structural displacements with little dif­

ference when a prescribed forces is applied on the wing. ln the numerical experiments of 

this section, the wing is immersed in an airflow with Mach number of0.96 and a reference 

aerodynamic pressure of 62 lb/ sqft. A perturbation of a structural deformation of 0.5% 

of the wing's :first mode is applied on the wing during a period, then this perturbation is 

released. Under this structural perturbation, the wing starts oscillation. These experiments 

are performed using respectively the CSD-MAM and the CSD-FEM solvers in the cou­

pling algori}hm. Figure 50 shows the lifts in these two cases. The difference of the results 

obtained by the two sol vers with the two different coup led CSD solvers is very small. This 

difference is produced by the elimination of the mode vectors with high natural frequen­

cies in the modal approach. This shows that the complete aeroelasticity solver where the 

linear CSD-MAM solver is coupled is able to represent the nonlinear aeroealasticity sys­

tem while the structure is assumed linear. The coupling performed respectively with the 

two CSD sol vers has proved the reutilization of the developed sol vers. 

5.4.2 Effects of the time step and the number of coupling iterations 

The time step and the number of coupling iterations affect the computing time. A code 

with less coupling iterations and large time step provides a software with a higher perfor­

mance. In the following numerical experiments to investi gate the effects of the time step 

and the number of coup ling iteration, a load perturbation is applied instead of a structural 

perturbation. A Dirac force of 100 Newtons is applied on the point at the intersection 

between the tip and the leading edge (node 1250 in Figure 41) as in section 5.2.3. This 

perturbation is exerted for a small period oftime (during the first step of the computation). 
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The aerodynamic pressure on the wing skin is taken from the current pressure. Since the 

coup ling iterations are the feedback of the communicated information between the CSD 

and CFD sol vers, the time history of the generalized displacement of the first two modes 

in Figure 51 shows that with one coupling iteration (without feedback of information) 

the model provides an unstable solution. However, the solution is stable when the code 

uses 3 coup ling iterations. Figures 52 and 53 show the time histories of the lift and the 

generalized displacements of the :first two modes in the thickness direction with different 

time step and number of coupling iterations which characterize the performance of the 

codes. Only the generalized displacements of the :first two modes are illustrated since the 

solutions are dominated by the :first two modes, the contributions to the responses from 

the other modes are nearly negligible after a short period from the start of the tests. With 

3 coupling iterations, the simulations provide the same critical flutter responses until the 

nondimensional time step increases to 0.3. However, as nondimensional time step keeps 

increasing, it is difficult to capture correctly the behavior of the modes. When the nondi­

mensional time step increases to 0.3, the model yields flutter results with one coupling 

iteration and damping results with 3 coupling iterations which do not represent the real 

behavior of the system. 

Remark: The CSD-MAM solver is able to represent the structural behaviors while the 

structure is assumed linear. The nonlinear computational aeroelasticity solver is capable 

of performing simulations using nondimensional time of 0.2 with 3 coup ling iterations. 

5.5 Applications to the AGARD 445.6 aeroelastic wing 

In all of the previous sections, the :first-order Euler-Scheme for the time discretization is 

used in the code. For the purpose of improving the performance of the code, this scheme 

which limits the accuracy of a time dependent solution is replaced by the second-order 

Gear-Scheme (see section 3.2). The simulations are performed on the AGARD 445.6 

aeroelastic wing with the similar conditions of the previous section : the wing with zero 
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angle of attack which is immersed in an airfiow of Mach number of 0.96 receives a pertur­

bation of a Dirac force during the first time step. Different aerodynamic pressures of the 

oncoming flow are investigated to capture the critical flutter point and different time steps 

are used to get a higher performance of the code. 

First, for the purpose to capture of the critical flutter point with a good accuracy, a rel­

atively small nondimensional time step of 0.1 which corresponds to a real time step of 

2.01 x 10-4 seconds is used in the numerical simulations. At the aerodynamic pressure 

of60 lb/ sqft of the oncoming flow, the responses of the lift and the generalized displace­

ments of the first two modes which dominate the responses of the structural displacements 

have nearly constant amplitudes and the critical flutter is considered captured (Figure 54). 

Wh en the aerodynamic pressure of the oncoming flow increases to 61.3 lb j sq ft, the re­

sponses of the wing get increasing amplitudes which are beyond the flutter point (Figure 

54). Secondly, for the purpose of reducing the computing time, the simulations with the 

same aerodynamic pressures, but with a nondimensional time step of 0.3 are performed 

and the results are shown in Figure 55 which give the same conclusion. The computed fre­

quencies !d and the damping coefficients ( of the responses of the lift and the generalized 

displacements of the first two modes are given by the following equations : 

with 

1 ( x(t) ) 
8=~ln x(t+7t) 
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1t =nT 

where T is the period of the oscillation, n is the number of the periods taken in the cal­

culation to increase the accuracy, x(t) and x(t + nT) are respectively the first and last 

peaks of the responses. The damping coefficients and the frequencies of the oscillation of 

the lift and the generalized dis placements of the first two modes are summarized in Figure 

22. The computed frequency of about 13.6 Hz (85.45 radians/ sec) at aerodynamic pres­

sure of 61.3 lb/ sqjt with Mach number of 0.96 is very close to the experimental one of 

13.9 Hz (87.3 radians/ sec) of the weak model3 in Ref. [33] in Figure 23. In simulation 

1 and 3 where the aerodynamic pressure of the oncoming flow is 60 lb/ sqjt, the damping 

coefficients are very small positive or negative values. In these cases with nearly zero 

damping and equal oscilla ting frequencies of the first two modes (Figure 56), it is consid­

ered that the wing has reached the critical flutter. In simulation 2 and simulation 4 where 

the aerodynamic pressure has increased to 61.3 lbfsqft, the responses ofthe generalized 

displacements of the first two modes of the wing begin to get increasing amplitudes and 

the difference of the frequencies of the oscillation begins to increase. Even though they 

are still small, the increasing oscillations of the responses of the wing have moved away 

from those of the cri ti cal flutter point. This can be seen from the increased values of the 

damping coefficients of the lift, the generalized displacements of the two first modes and 

from the slight increasing oscillations of the responses in Figure 57. 

Remark : The second-order scheme for the time discretization has better performance 

than the first-order scheme. The flutter at Mach number of0.96 is captured at the aerody­

namic pressure of 60 lb/ sqft of the oncoming flow with a nondimensional time step of 

0.1. Higher performance which reduces the computing time is reached with a nondimen­

sional time step of0.3. 
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5.6 Summary 

ln this chapter, the validation of the coupled solvers is described by steps from the vali­

dation of the CSD solver to the who le coup led sol vers. First, the validation of the CSD 

solvers shows good results compared to those in the references. Then, the validation of 

the coup led system without the intervention of the CSD sol ver has ensured that the mesh 

solver and the matcher module work well. Finally, the complete nonlinear computational 

aeroelasticity coupling solvers are validated and numerical simulations give satisfying re­

sults compared to the experimental data in the references. 
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Table VI 

Nondimensional coordinates of airfoil NACA 65A004 

x y 
0.0 0.0 

0.005 0.00304 
0.0075 0.00368 
0.0125 0.00469 
0.025 0.00647 
0.05 0.00875 

0.075 0.01059 
0.1 0.01213 

0.15 0.01459 
0.2 0.01645 

0.25 0.01788 
0.3 0.01892 

0.35 0.01962 
0.4 0.01997 

0.45 0.01996 
0.5 0.01954 

0.55 0.01868 
0.6 0.01743 

0.65 0.01586 
0.7 0.01402 

0.75 0.01195 
0.8 0.00967 

0.85 0.00729 
0.9 0.0025 

0.95 0.0049 
1.0 0.00009 
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Table VII 

Natural frequencies (Hz) for AGARD 445.6 from ANSYS software 

Mode Values from ANSYS software Values from CSD-FEM Values ofYate 
1 9.6001 9.7601 9.5990 
2 39.4191 45.4378 38.1650 
3 49.6013 71.5621 48.3482 
4 96.0949 112.7300 91.5448 
5 126.2996 174.4325 118.1130 

Nondimensional time step P _ref = 60 lb/sqft P _ref = 61.3 lb/sqft 
No. oftest 

damping 
Freq (Hz) 

0.1 state 
No. of simulation 

damping 
Freq(Hz) 

0.3 state 

Figure 22 

simulation 1 simulation 2 
lift mode 1 mode2 lift mode 1 mode2 

0.00063 0.00063 0.00065 -0.0054 -0.00477 -0.00375 
13.51 13.53 13.53 13.75 13.6 13.63 

calculated flutter point flutter with a small increasing amplitude 
simulation 3 simulation 4 

lift mode 1 mode2 lift mode 1 mode2 
-0.0002 -0.00017 -0.00025 -0.00537 -0.00475 -0.00667 
13.52 13.52 13.52 13.58 13.58 13.6 

calculated flutter point flutter with a small increasing amplitude 

Frequencies and damping coefficients of the oscillations of 
wing AGARD 445.6 
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Figure23 Flutter data measured in air (extracted from Ref. [33]) 
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Figure 24 Plate discretized by one element 
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2.5 ft (0.762 rn) 

Figure 39 Geometry ofWing AGARD445.6 

Figure 40 Profile of airfoil NACA 65A004 
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node 50 

node 1 

Figure 41 
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node 1201 

Structural mesh ofWing AGARD445.6 discretized by shell 
elements 
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Mode vectors of wing AGARD 445.6 extracted from AN­
SYS 
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Figure 43 Dis placement in thickness directions of the point at the in­
tersection between the leading edge and the tip obtained 
from CSD-MAM using respectively m. p. (modal parame­
ters) from CSD-FEM and ANSYS 
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Figure 44 Geometry of ftuid domain with a panel 
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First Mode (bending: 9.6192 Hz) 

Second Mode (bending: 26.5096 Hz) 

Third Mode (torsion: 31.4264 Hz) 

lt Ill 
Fourth Mode (bending: 52.1072 Hz) 

Fifth Mode (combination ofbending and torsion: 65.0327 Hz) 

Figure45 Mode shapes and natural frequencies of the panel 
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Figure46 Movement of the ftuid-structural interface 

Figure 47 Initial ftuid mesh (red zone represents the panel) 
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Figure48 Fluid mesh at 0.15 second 

wing 

Figure 49 Wing AGARD445.6 in ftuid domain 
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Time history of the generalized displacements of the first 
mode for the case Mach= 0.96, angle of attack = 0, nondi­
mensional time step = 0.2, reference pressure = 62 lb/sqft 
with one (blue color) and 3 (green color) coupling iterations 
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Time history of lift and generalized displacements for the 
case Mach= 0.96, angle of attack = 0, nondimensional time 
step = 0.1 (blue color), 0.2 (red color) and 0.3 (lemon color), 
reference pressure = 62 lb/sqft with one coupling iteration 
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Time history of lift and generalized displacements of the 
first two modes for the case Mach = 0.96, angle of attack 
= 0, nondimensional time step = 0.1 (green color), 0.2 (red 
color) and 0.3 (lemon color), reference pressure= 62 lb/sqft 
with 3 coupling iterations 
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Time history of lifts on the wing AGARD 445.6 and gen­
eralized displacements of the first two modes under a load 
perturbation with nondimensional time step of 0.1 at aero­
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CONCLUSIONS 

The development of a comprehensive three-dimensional nonlinear computational aeroe­

lasticity code for analysis of nonlinearity behaviors of inviscid compressible fiows in tran­

sonic regime is the main objective of this thesis. The coup ling strategy which is based on 

the idea of making the software development of multidisciplinary problems easier favors 

the software development in modularity and the reuse of the developed sol vers. It allows 

us to use the robust validated nonlinear CFD solver of our laboratory in the CFD-based 

aeroelasticity code. However, the CSD, the mesh solvers and the matcher module are re­

quired to be developed due to the limitation of the accessibility of the CSD solvers, the 

time varying fiuid domain and the non-matching grids on the fiuid-structure interface. 

Since the CFD model is assumed as the only nonlinear model of the aeroelasticity system, 

the CSD models are based on the linear structural theories. The modal superposition ap­

proach is used in the CSD-MAM solver for the benefit of the linear structural properties 

which can be used to save computing time and memory consumption, especially for fiutter 

simulation of large structures with dynamic structural responses dominated by low natural 

frequencies. The CSD-FEM solver based directly on the finite element discrete approach 

has the generality in the applications of the structural dynamic mode ling where high fre­

quencies cannot be negligible, such as structural vibrations induced by separated fiows. It 

can be extended to a nonlinear structural model. 

For the purpose of adapting the fiuid moving boundaries induced by the structural motion, 

the fiuid mesh is updated by the mesh model which is a fictitious model composed oflinear 

elasto material. This update is performed when it is necessary during the computation in 

order to keep the fiuid elements from damage caused by the dilation or compression of its 

neighbor elements. As a result, the structural motion is diffused smoothly into the fiuid 

domain from the moving fiuid boundaries to the far-field boundaries. 
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The matcher module interprets, in the coupling aeroelasticity solver, the fluid-structure 

interaction on the interface where non-matching structural and fluid grids presents due to 

the difference of element sizes and types. For the computational accuracy, the transfers of 

aerodynamic loads and the structural displacements on this interface satisfy the conserva­

tion of energy. 

In the CFD solver, the goveming Euler equations for transonic flows is discretized on 

the moving fluid mesh which is updated by the mesh solver when it is necessary during 

the computation. The CFD sol ver takes into account the contribution of the velocity of 

the moving grid in the fluid convection. The nonlinear GMRES algorithm with ILUT 

preconditioner and the SUPG numerical stabilization technique with a shock capture are 

implemented in this CFD solver. 

The complete nonlinear aeroelasticity solver adopts the Gauss-Seidel coupling algorithm 

which is piloted by the CFD solver. This implicit algorithm is a staggered one where the 

computational results are limited by the number of coupling iterations and the time step. 

The solver coupled respectively with the CSD-MAM and CSD-FEM solvers demonstrates 

the reuse of the developed sol vers of the subsystems. 

The numerical experiments for the validation of each solver and module before the com­

plete coupling validation ensure the performance of each component of the code. The 

structural responses obtained respectively by the the CSD-MAM and CSD-FEM solvers 

have no significant difference and agree with those of the references. The validation of the 

mesh solver has proved that the model is able to distribute the structural motion into the 

fluid domain without element damage. The validation of the matcher module shows that 

the fluid moving boundaries follow the structural motion. This module is also successfully 

applied to a vibro-acoustic code [103]. 

The results of the flutter simulation applied to the AGARD 445.6 aeroelastic wing in 

transonic flows at Mach number 0.96 with zero angle of attack agree with those in the 
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references. The critica1 flutter pressure was obtained at q = 60 lb/ sqft compared to 

q = 61.3 lb/ sqft reported in the experimental study [33] and the computed frequency 

was about 13.6 Hz compared to 13.9 Hz [33]. This thesis provides a the methodology 

for computational aeroelasticity based on CSD and CFD solvers. Such models have also 

been reused to produce a parallel aeroelasticity solver [6, 100, 104]. Although this code 

is developed for the nonlinear aeroelasticity systems, other research of multidisciplinary 

models can benefit from this methodology of the reuse of existing solvers through the 

coupling strategy. 

The main contributions of this project are stated as follows : 

• Development oftwo CSD solvers : CSD-MAM and CSD-FEM which are compara­

ble in applications oflinear structures; 

• Development of a mesh solver to adapt to the fluid mesh due to moving fluid bound­

aries which is able to diffuse correctly the motion of a moving fluid boundary into 

the fluid domain; 

• Development of a matcher module for information transfer on the fluid-structure 

interface, where the aerodynamic loads project from the fluid grid to the structural 

grid and the moving fluid boundaries follows exactly the structural motion; 

• Adaptation of the CFD solver to enable moving meshes. The ALE kinematic for­

mulation is implemented in this modified CFD solver; 

• Perform CFD-CSD-mesh coupling through the "matcher" module; 

• Creation of a sequential coupling algorithm between the CSD, the CFD and the 

mesh solvers; 

• Investigation of the reutilization of codes by applying respectively the CSD-MAM 

and the CSD-FEM solvers in the coupling. The CSD-FEM sovler can be extended 

to nonlinear structure; 
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• Investigation of the impact of the coup ling iterations and the time step to the sys­

tem's responses in the coupling algorithm. 

• Validation of the software on the well-documented aeroelastic test case with the 

aeroelastic wing AGARD 445.6 and capture the flutter point at the transonic dip. 

The refinement of the fluid mesh, the extensions of this code to other algorithms for the 

coupling between nonlinear CSD solvers and nonlinear CFD solvers described by Navier­

Stokes equations for viscous flow with flow separation remain the principal improvements 

to this code in the future. 
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APPENDIX 

SHELL ELEMENT Q4y24 
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The shell element Q4-y24 has four nodes on the middle surface. Any point q of the element 

can be described by its corresponding point p on the middle surface whose coordinates can 

be interpolated by the coordinates of the four nodal coordinates of a bilinear element. The 

model is based on the shell displacement which is based on the covariant base Fz. The 

position vector of any point on the middle surface of the element in the local coordinate 

system is represented by the following equations : 

with 

4 

Xp = L Ni(Ç, 17)Xi 
i=l 

(1) 

where xi, Yi, zi denote Cartesian coordinates of node i (i = 1, 2, 3, 4), Ni(Ç, 17) are shape 

functions of the following bilinear referential element : 

N =< (1- Ç)(1 -17) (1 + Ç)(1 -17) (1 + Ç)(1 + 17) (1- Ç)(1 + 17) > 
4 4 4 4 

where Ç, 17 are the referential coordinates ( -1 ~ Ç ~ 1, -1 ~ 17 ~ 1). 

The derivatives of the se shape functions are given by the following equations : 

1 
N,ç = 4 < -(1 -17) (1 -17) (1 + 17) -(1+ 17) > 

1 
N,11 = 4 < -(1- Ç) -(1 + Ç) (1 + Ç) (1- Ç) > 
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3 

Figure 58 Linear shell element Q4,24 

These derivatives are used to interpolate the following orthogonal basic vector described 

by equations (2.3) and (2.4) : 

4 

a1 = 2:: Ni,€(Ç, 17)xi 
i=l 

4 

a2 = 2:: Ni,11 (Ç, 17)xi 
i=l 

The unit normal vector of point p on its tangent plane becomes : 

a1 x a2 
n= .,--~ 

la1 x a2l 

The position vector of any point q(z =!= 0) of the shell element is defined as : 

Xq = Xp +zn 
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with z = (h/2, where his constant. The covariant base is: 

[F z] is linear in thickness direction (z direction). It is composed of the covariant base of 

the middle surface and the base of the derivative of its normal vector : 

with 

The determinant of the Jacobian matrix J is: 

det(J) = det(Fz) = f.-l(z) det(J0 ) 

where f.-l( z) = 1 sin ce the four nodes of Q4')'24 element are assumed coplanar. 

The local coordinate system for any point on the middle surface of the element is trans­

formed from the global coordinate system by an orthogonal base : 

where t 1 = adla1 1, t 2 = n1 x t 1 . The normal vector of the middle surface is interpolated 

by the four nodal normal vectors. 

4 

n,ç = L Ni,çni 
i=l 
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4 

D,ry = L Ni,ryDi 
i=l 

where ni is the unit normal vector at node i. 

148 

The local coordinate system for any node of the element is transformed from the global 

coordinate system by the following orthogonal base : 

where Qi is obtained in the sirnilar way as Q. 

The shell element Q4')'24 for the displacernent rnodel has five degrees of freedorn in the 

local coordinate system (three translations and two rotations). The displacernent of point 

q is the surn of the displacernent of point p and the vector pq after its rotation. The virtual 

displacernent described by equation (2.6) gives : 

4 4 

x~= x;+ z{3* = L Niu;i + z L Ni( -t2ie;i- t1ie;i) 
i=l i=l 

where f)~i is the rotation in the plane t2i, n, f)~i is the rotation in the plane t1i, n. In the 

global coordinate system, the virtual displacernent is defined as : 

U* q 

V* q 

W* q 

U* 

V* 

W* 

+z -fJ* 1 

where u;, Vq*, w; are the displacernents of point q in the global coordinate system. The 

virtual and the real displacernent vectors of point q can be interpolated by the shape func­

tions of this shell element : 

{ u~} = [N ( Ç, 17, z)] { u~} 
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where N is a matrix with dimension (3 x 20) composed of the shape functions of the shell 

element which is based on the shape functions of its corresponding bilinear element : 

1 
:Ni 0 0 :2(Ni <V x>: 

[:N] = 1 
:o Ni 0 :2(Ni < Vv >: ... i = 1, ... ,4 

1 
:o 0 Ni :2(Ni < Vz >: 

where Ni is the bilinear shape fun etions and V x, V v, V z are expressed as : 

Vx =< -t2xi f1xi > 

Vv=< -t2yi t1yi > 

Vz=< -t2zi f1zi > 

u~ and Un are respectively the virtual and real nodal displacements which can be expressed 

as: 

{un}=< u1 Vi W1 On (}21 U2 V2 W2 (}12 822 

u3 V3 w3 (}13 (}23 u4 V4 w4 (}14 (}24 >T 

{u~} =< u: V,* 1 W* 1 e;1 e;1 U.* 2 V:* 2 W.* 2 e;2 e;2 

U.* 3 V* 3 W* 3 e;3 e;3 u: Vt* w: e;4 (}* >T 24 

The virtual displacement is associated with the following virtual deformation due to the 

effect of the membrane bending : 
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The elementary virtual displacement gradient is given as: 

where [JL] = [1] for a Q4')'24 element with four coplanar nodes. L; can be developed as : 

(2) 

where L;0 is the deformation of the middle surface, L;,a is the deformation due to the 

rotation around the normal of point p on the middle surface. L;0 and L;,a are given as: 

with 

Therefore, the virtual deformation due to the effect of the membrane bending becomes : 

(3) 

with 
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(j = 0, 1) 

U sing the shape functions, the virtual deformation ê; can be represented by the nodal dis­

placement vector u~ : 

with 

< ê: >= ([Bo] + z[B1]) < u~ > 

[Bo] = 

0 0 0 

0 0 0 

:o o: 

C1i = Ni,€cp1 + Ni, 11 cg1 

C2i = Ni,€CPz + Ni, 11Cgz 

: < Vli > C1i: 

: < V2i > C2i: 

i = 1, ... ,4 

i = 1,4 

For the Galerkin formulation, the real deformation can be written as: 

(4) 

(5) 

In equation (3.9), the internai work due to the deformation of the effect of the membrane 

bending can be written as : 

(6) 
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The real shear strain can be obtained in the same way described above. Similar to equa­

tions ( 5), the real shear strain at any point q of the shell element is given as : 

with 

and 

where {ïl} =< "fxz "(yz >T, {ïo} =< "fx "(y >T, {ïaJ =< "(ç "frt >T 

The covariant components 'Yç and 'Yrt for any element are given by the following functions 

which are defined at the middle point of each si de of the bilinear element : 

where A1, A2 , Bt, B2 are the middle points of the four sides of a bilinear element which 

represent the middle surface of the shell element (Figure 59). "ft1
, "ft2

, 1:1 , 1:2 can be 

expressed by the nodal displacements Un· Using the following function: 

One obtains : 
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1f1 = ({3 · a1 + up,ç · n)ç=o, ry=-1 

1f2 = ({3 · a1 + Up,ç · n)ç=o, ry=l 

1~1 = ({3 · a2 + uP,"' · n)ç=-1, ry=O 

1~2 = ({3 · a2 + up,ry · n)ç=l, ry=O 

2 

3 

Figure 59 Description of shear strain of a bilinear element 
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Therefore, the vector {'Y a} can be expressed by the following nodal displacement vectors 

as: 

(7) 
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[Bee] is a matrix of 2 x 20 as : 

[ 

-<nAl> 

- < nBl > 

with 

< AStAl >: < nAl > 

< AStBl >: - < nB2 > 

< AS2A1 > : < nA2 > 

< ASl B2 > : < nB2 > 

1-ry 
< nAl >= --nA1 

4 
1+ry 

< nA2 >= --nA2 

4 
1-Ç 

< nBl >= --nB1 

4 

1+Ç 
< nB2 >= --nB2 

4 

< AS2A2 > : - < nA2 > 

< AS2B2 > : < nBl > 

1-ry 
< ASlAl >= -4- < -aAl. t~l):aAl. til) > 

1+ry 
< AS1A2 >= -4- < -aA2. t~4):aA2 . ti4) > 

1-Ç 
< ASl El >= -4- < -a El. t~l):asl. til) > 

1+Ç 
< AS1B2 >= -4- < -aB2. ~2):aB2. t?) > 

1-ry 
< AS2Al >= -4- < -aAl. t~2):aAl. ti2) > 

1+ry 
< AS2A2 >= -- < -aA2. t~3):aA2. ti3) > 4 . 

1-Ç 
< AS2Bl >= -4- < -aBl. t~4):aBl . ti4) > 

154 

< AStA2 > l 
< AS2Bl > 
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where nA1 ,nA2 ,nB1 and nB2 are the unit normal vectors at point Al, A2, Bl and B2 : 

n1 + n2 
nA 1 = .,.---__.....,. 

ln1 + n2l 

n3 +n4 
8A2=---

\n3 + n41 

n1 +n4 
nB 1 = .,.---__.....,. 

ln1 + n41 

n2 +n3 
n B2 = .,.---__.....,. 

ln2 + n3l 

1 
aA1 = at1 = -(X2- X1) 

2 

1 
aA2 = at2 = -(X3 - X4) 

2 

1 
aBl = afl =-(~-Xl) 

2 

1 
aB2 = af2 = -(X3- X2) 

2 

t ( i) - t . . t( i) - t . 
1 - h ' 2 - 2~ (i=l,2,3,4) 

The real shear strain is written as : 

where 

155 

(8) 
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The virtual shear strain is : 

(9) 

The internai work due to shear strain is given by : 

(10) 

Adding equations ( 6) and (1 0) yields the internai work of one element : 

(11) 

As dV = dzdA, using equations (4), (5) and (6) yields the internai work due to the effect 

of membrane bending : 

(12) 

where 

and using equations (8), (9) and (1 0) yields the internai work due to the shear strain : 

(13) 

with 
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Equations (11), (12) and (13) give the following stiffness matrix: 

(14) 

The elementary internai work which is the potential energy is given : 

(15) 

The extemal work due to inertial forces and concentrating forces is : 

(16) 

where F is the nodal solicitation vector which represents the aerodynamic loads transferred 

from the CFD solver (see section 3.4), Me is the elementary mass matrix which is given 

by the following equation : 

According to the conservation law of energy, equations (15) and (16) yield the following 

equations of motion for any element : 

(17) 

The elementary displacement vector is composed of 20 degrees of freedom which corre­

sponds to the total degrees of freedom of the four nodes with five degrees of freedom per 

node (three translations and two rotations). 
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The variables (}1i and (}2i of node i are defined different! y according to the local coordinate 

system of each element since the elements attached to a node have different orthogonal 

base matrix Qi at this point. They must be expressed by the global Cartesian coordinate 

system. Suppose the rotation vector () is expressed by (h, (}2 , (}3 in the local coordinate 

system and by (}x, (}y, (} z in the global coordinate system, it can be expressed as : 

(}1 

9 = \ t1 t2 n ) e2 
(}3 

The rotation ofthe normal (see section 2.2.1.2) does not change by adding the component 

of(} in the normal direction since : 

Therefore, a small work which is negligible compared to the total energy of the system 

can be added to the internai work of each element for the purpose of transforming the 

coordinate system : 

with 

where E is the material elastic modulus. a is a small coefficient which depends on the 

computer precision (between l.OE- 4 and l.OE -7). Kz is a matrix with dimension 4 x 4 

which corresponds to the rotation around the normal of the four nodes. The matrix K~ in 

equation (15) is expressed by a matrix of dimension 24 x 24 after adding matrix Kz [77] 
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After the transformation of the coordinate system, the virtual and real displacements be-

come: 

{un}=< ul Vi W1 Ox1 OYl Oz1 Uz V2 Wz Oxz Ovz Ozz 

u3 V3 w3 Ox3 OY3 0z3 u4 V4 w4 Ox4 OY4 Oz4 >T 

{u~} =< u; V,* 1 Wi Oh Oh Oh u; Y;* W.* 2 Oxz O}rz Oh 

u; v;* w; Ox3 Oh Ob U,i V:* 4 W* 4 Ox4 Oy4 0* >T Z4 

After assembling all elementary matrices, one obtains the following global equations : 

Mü+Ku=F (18) 

where u is the global nodal displacement vector. M and K are global mass and stiffness 

matrices which are symmetrical and positively defined. Fis the global solicitation vector 

which represents aerodynamic loads on the structural nodes. 



Reproduced with permission of the copyright owner.  Further reproduction prohibited without permission.

BIBLIOGRAPHY 

[1] Dowell, E. H. (1995). A Modem course in aeroelasticity (3rd rev. and enlarged ed.). 
Dordrecht, Pays-Bas: Kluwer Academie. 

[2] Rifai, S. M., Johan, Z., Wang, W. P., Grisval, J. P., Hughes, T. J. R., & Ferencz, 
R. M. (1999). Multiphysics simulation of fiow-induced vibrations and aeroelastic­
ity on parallel computing platforms. Computer Methods in Applied Mechanics and 
Engineering, 174(3-4), 393-417. 

[3] Cobun, P. (1987). New Approaches Speed X-33 Support at Marshall Center. MAR­
SHALL STAR, Vol. 38 1 Num. 8, October 22, 1997, NASA, Marshall Space Flight 
Center, Alabama. 

[4] Kumar, A., Drummond, J. P., McClinton, C., R., & Hunt, J. L. (2001). Research in 
Hypersonic Airbreathing Propulsion at the NASA Langley Research Center. ISABE-
2001 : lnvited Lecture 4, NASA Langley Research Center. 

[5] Farhat, C., Geuzaine, P., & Brown, G. (2003). Application of a three-field nonlinear 
fluid-structure formulation to the prediction of the aeroelastic parameters of an F -16 
fighter. Computers & Fluids, 32(1), 3-29. 

[6] Soulaïmani, A., BenElHajAli, A., & Feng, Z. (2004). A Parallel-Distributed Ap­
proach for Multi-Physic Problems with Application to Computational Nonlinear 
Aeroelasticity. the Canadian Aeronautics and Space Journal, 50(4), p. 221-235. 

[7] Bisplinghoff, R. L., Ashley, H. (1962). Principles of Aeroelesticity. John Wiley and 
Sons, Inc. 

[8] Fung, Y. C. (1969). An Introduction to the Theory of Aeroelasticity. Dover publica­
tions. 

[9] Martin, E. D. (1974). A Generalized-Capacity-Matrix Technique for Computing 
Aerodynamic Flows. Computers and Fluids, Vol. 2, pp. 79-97. 

[10] Bakhle, M. A., Mahajan, A. J., keith, T. G., & Stefko, G. L. (1991). Cascade Flutter 
Analysis with Transient Response Aerodynamics. Computers and Structures, Vol. 
41, No. 5, pp. 1073-1085. 

[11] Laporte, R. (1980). Lift improvement of an aerofoil by periodic deformations. Inter­
national Journal of Engineering Science, 18(7), 957-970. 



Reproduced with permission of the copyright owner.  Further reproduction prohibited without permission.

161 

[12] Albano, E., & Rodden, W. P. (1969). Doublet-lattice method for calculating lift dis­
tributions on oscillating surfaces in subsonic flows. AIAA Journal, 7(2), 279-285. 

[13] Rodden, W. P., Giesing, J. P., Kalman, T. P. (1971). New developments and appli­
cations of the subsonic Doublet-Lattice method for nonplanar configurations. sym­
posium on Unsteady Aerodynamicsfor Aeroelastic in interfering Surfaces, AGARD 
C0-80-71, part Il, 1971. 

[14] Chipman, R. R., & Rauch, F. J. (1975). Analytical and experimental study of the ef­
fects of wing-body aerodynamic interaction on space shuttle subsonic flutter. NASA 
Contractor Reports. 

[15] Mykytow, W. J., Noll, T. E., Huttsell, L. J., & Shirk, M. H. (1972). Investigations 
conceming the coupled wing-fuselage-tail flutter phenomenon. Journal of Aircraft, 
9(1 ), 48-54. 

[16] Kalman, T. P., Rodden, W. P., & Giesing, J. P. (1971). Application of the Doublet­
Lattice Method to nonplanar configurations in subsonic flow. Journal of Aircraft, 
8(6), 406-413. 

[17] The MacNeal-Schwendler Corporation. (1994). MSCINASTRAN Aeroelastic Ana/y­
sis User's Guide. Version 68, October, 1994. 

[18] James, R. M. (1972). On the remarkable accuracy ofthe vortex lattice method. Com.,. 
puter Methods in Applied Mechanics and Engineering, 1(1), 59-79. 

[19] Kida, T., & Take, T. (1983). A vortex-lattice method in the linear theory on a two­
dimensional supercavitating flat plate foil. Computer Methods in Applied Mechanics 
and Engineering, 36(2), 191-205. 

[20] Mook, D. T., & Nayfeh, A. H. (1990). Numerical simulations of dy­
namic/aerodynamic interactions. Computing Systems in Engineering 1(2-4), 461-
482. 

[21] Bristow, D. R., & Hawk, J. D. (1982). Subsonic panel method for the efficient anal­
ysis of multiple geometry perturbations. NASA Contractor Reports. 

[22] Johnston, C.E., Youngren, H. H., & Sikora, J. S. (1985). Engineering applications of 
an advanced low-order panel method. Paper presented at the Aerospace Technology 
Conference & Exposition., Long Beach, CA, USA. 

[23] Ojha, S. K., Shevare, G. R. (1985). Exact solution forwind tunnel interference using 
the panel method. Computers & Fluids, 13(1), 1-14. 



Reproduced with permission of the copyright owner.  Further reproduction prohibited without permission.

162 

[24] Petrie, J. A. H. (1978). Surface source and vorticity panel method. Aeronautical 
Quarter/y, 29(pt 4), 251-269. 

[25] Schippers, H. (1982). Application of multigrid methods for integral equations to two 
problems from fluid dynamics. Journal ofComputational Physics, 48(3), 441-461. 

[26] Marshall J. G., & Imregun M. (1996). A review ofaeroelasticity methods with em­
phasis on turbomachinery applications. Journal ofFluids and Structures, 10(3), 237-
267. 

[27] Edwards, J. W., & Malone, J. B. (1992). Current status of computational methods for 
transonic unsteady aerodynamics and aeroelastic applications. Computing Systems 
in Engineering, 3(5), 545-569. 

[28] Goorjian, P. M., & Guruswamy, G. P. (1988). Transonic unsteady aerodynamic and 
aeroelastic calculations about airfoils and wings. Computers & Structures, 30(4), 
929-936. 

[29] Wissink, A. M., Lyrintzis, A. S., & Chronopoulos, A. T. (1996). Efficient Itera­
tive Methods Applied to the Solution of Transonic Flows. Journal of Computational 
Physics, 123(2), 379-393. 

[30] Isogai, K. (1979). On the transonic-dip mechanism of flutter of a sweptback wing. 
AIAA Journal, 17(7), 793-795. 

[31] Iso gai, K. (1981 ). Transonic dip mechanism of flutter of a sweptback wing -2. AIAA 
Journal, 19(9), 1240-1242. 

[32] Lee-Rausch, E. M., & Batina, J. T. (1993). Calculation of AGARD Wing 445.6 Flut­
ter Using Navier-Stokes Aerodynamics. AIAA Paper No.93-3476. 

[33] Yates, E. C., Land, N. S., & Foughner, J. T. (1963). Measure and calculated subsonic 
and transonic flutter characteristics of a 45° sweptback wing planform in air and in 
Freon-12 in the Langley transonic dynamic tunnel. NASA Technical note, D-1616, 
March 1963. 

[34] Whitlow, J., W., Hafez, M. M., & Osher, S. J. (1987). An entropy correction method 
for unsteady full potential flows with strong shocks. Journal ofFluids and Structures, 
1(4), 401-414. 

[35] Batina, J. T., Bennett, R. M., Seidel, D. A., Cunningham, H. J., & Bland, S. R. 
(1988). Recent advances in transonic computational aeroelasticity. Computers & 
Structures, 30(1-2), 29-37. 



Reproduced with permission of the copyright owner.  Further reproduction prohibited without permission.

163 

[36] Holst, T. L. (2000). Transonic flow computations using nonlinear potential methods. 
Progress in Aerospace Sciences, 36(1), 1-61. 

[37] Shankar, V., & Ide, H. (1988). Aeroelastic computations offlexible configurations. 
Computers & Structures, 30(1-2), 15-28. 

[38] Guruswamy, G. P. (1988). Interaction offluids and structures for aircraft applications. 
Computers & Structures, 30(1-2), 1-13. 

[39] Morgan, K., Peraire, J., Peiro, J., & Hassan, O. (1991). The computation of three­
dimensional flows using unstructured grids. Computer Methods in Applied Mechan­
ics and Engineering, 87(2-3), 335-352. 

[40] Mortchelewicz, G. D. (2000). Flutter simulations. Aerospace Science and Technol­
ogy, 4(1), 33-40. 

[ 41] Kousen, K. A. (1989). Nonlinear phenomena in computational transonic aeroelastic­
ity. Ph.D. Thesis, University Microfilms International, Ann Arbor, Mich. 

[42] Pipemo, S., Farhat, C., & Larrouturou, B. (1995). Partitioned procedures for the 
transient solution of coupled aroelastic problems Part 1 : Model problem, theory and 
two-dimensional application. Computer Methods in Applied Mechanics and Engi­
neering, 124(1-2), 79-112. 

[43] Leger, T. J., Wolff, J. M., & Beran, P. S. (1999). lmproved determination of aeroe­
lastic stability properties using a direct method. Mathematical and Computer Mod­
elling, 30(11-12), 95-110. 

[ 44] Beckert, A. (2000). Coupling fluid (CFD) and structural (FE) models using finite 
interpolation elements. Aerospace Science and Technology, 4(1), 13-22. 

[ 45] Farhat, C., Lesoinne, M., & Le Tallec, P. (1998). Load and motion transfer algorithms 
for fluidlstructure interaction problems with non-matching discrete interfaces : Mo­
mentum and energy conservation, optimal discretization and application to aeroelas­
ticity. Computer Methods in Applied Mechanics and Engineering, 157(1-2), 95-114. 

[ 46] Farhat, C., & Lesoinne, M. (2000). Two efficient staggered algorithms for the seriai 
and parallel solution of three-dimensional nonlinear transient aeroelastic problems. 
Computer Methods in Applied Mechanics and Engineering, 182(3-4), 499-515. 

[ 4 7] Farhat, C. (1995). High performance simulation of coup led nonlinear transient aeroe­
lastic problems. AGARD Report R-807, Special Course on Parallel Computing in 
CFD, NATO, october 1995. 



Reproduced with permission of the copyright owner.  Further reproduction prohibited without permission.

164 

[ 48] Farhat, C., Lesoinne, M., & Maman, N. (1995). Mixed explicit/implicit time integra­
tion of coupled aeroelastic problems : Three-field formulation, geometrie conserva­
tion and distributed solution. International Journal for Numerical Methods in Fluids, 
21(10), 807-835. 

[49] Cebral, J. R., & Lohner, R. (1997). Fluid-Structure Coupling : Extensions and Im­
provements. AIAA-97-0858. 

[50] Lohner, R. (1988). An adaptive finite element solver for transient problems with 
moving bodies. Computers & Structures, 30(1-2), 303-317. 

[51] Maman, N., & Farhat, C. (1995). Matching fluid and structure meshes for aeroelastic 
computations : A parallel approach. Computers & Structures, 54( 4), 779-785. 

[52] Hassan, 0., Probert, E. J., Morgan, K., & Weatherill, N. P. (2000). Unsteady flow 
simulation using unstructured meshes. Computer Methods in Applied Mechanics and 
Engineering, 189(4), 1247-1275. 

[53] Guruswamy, G. P. (1990). Ensaero-A multidisciplinary program for fluid/structural 
interaction studies ofaerospace vehicles. Computing Systems in Engineering, 1(2-4), 
237-256. 

[54] Formaggia, L., Peraire, J., & Morgan, K. (1988). Simulation of a store separation 
using the finite element method. Applied Mathematical Modelling, 12(2), 175-181. 

[55] Donea, J., Giuliani, S., & Halleux, J. P. (1982). An arbitrary lagrangian-eulerian 
finite element method for transient dynamic fluid-structure interactions. Computer 
Methods in Applied Mechanics and Engineering, 33(1-3), 689-723. 

[56] Hughes, T. J. R., Liu, W. K., & Zimmermann, T. K. (1981). Lagrangian-Eulerian 
finite element formulation for incompressible viscous flows. Computer Methods in 
Applied Mechanics and Engineering, 29(3), 329-349. 

[57] Takashi Nomura, & Hughes, T. J. R. (1992). An arbitrary Lagrangian-Eulerian fi­
nite element method for interaction of fluid and a rigid body. Computer Methods in 
Applied Mechanics and Engineering, 95(1), 115-138. 

[58] Soulaimani, A.,& Saad, Y. (1998). An arbitrary lagrangian Eulerian finite element 
formulation for solving three-dimensional free surface flows. Comput. Maths. Appl. 
Mech. Engrg, 162, 79-106. 

[59] Soulaïmani, A., Forest, A., Feng, Z., BenElhadj, A., & Azami, A. (2001). A dis­
tributed Computing-based Methodology for Computational Nonlinear Aeroelastic­
ity. Proceeding, 8th Aerodynamics Symposium, Toronto, Canada, 2001, 123-135. 



Reproduced with permission of the copyright owner.  Further reproduction prohibited without permission.

165 

[ 60] Farhat, C., Lesoinne, M., & Le Tallec, P. (1998). Load and motion trans fer algorithms 
for fluid/structure interaction problems with non-matching discrete interfaces : Mo­
mentum and energy conservation, optimal discretization and application to aeroelas­
ticity. Computer Methods in Applied Mechanics and Engineering, 157(1-2), 95-114. 

[61] Elkadri E, N. E., Soulaimani, A., & Deschenes, C. (2000). A finite element formu­
lation of compressible flows using various sets of independent variables. Computer 
Methods in Applied Mechanics and Engineering, 181(1-3), 161-189. 

[62] Elkadri E, N. E. (1995). Une Méthode d'Éléments Finis pour la Dynamique des Gaz 
et Conception Orientée Objet du Code de Calcul. Ph. D thèse, Département de Génie 
Mécanique, Faculté des sciences et de génie, Université Laval, Québec. 

[63] Farhat, C., & Lesoinne, M. (1996). On the accuracy, stability, and performance ofthe 
solution ofthree-dimensional nonlinear transient aeroelastic problems by partitioned 
procedures. AIAA-96-1388. 

[64] Lesoinne, M., & Farhat, C. (1996). Geometrie conservation laws for flow problems 
with moving boundaries and deformable meshes, and their impact on aeroelastic 
computations. Computer Methods in Applied Mechanics and Engineering, 134(1-2), 
71-90. 

[65] Farhat, C., Lesoinne, M., Stem, P., & Lanteri, S. (1997). High performance solution 
of three-dimensional nonlinear aeroelastic problems via parallel partitioned algo­
rithms : methodology and preliminary results. Advances in Engineering Software, 
28(1), 43-61. 

[66] Koobus, B., & Farhat, C. (1999). Second-order time-accurate and geometrically con­
servative implicit schemes for flow computations on unstructured dynamic meshes. 
Computer Methods in Applied Mechanics and Engineering, 170(1-2), 103-129. 

[67] Lepage, C. Y., & Habashi, W. G. (2000). Conservative Interpolation of Aerodynamic 
Loads for Aeroelastic Computations. AIAA 2000-1449, Atlanta. 

[68] Salah, N.B., Soulaimani, A., & Habashi, W. G. (1999). A full-coupled finite element 
method for the solution of the 3D MHD equations with a GMRES-based algorithm. 
AIAApaper No. 99-3322. 

[69] Soulaïmani, A., Ben Salah, N., & Saad, Y. (2002). Enhanced GMRES acceleration 
techniques for sorne CFD problems. International Journal of Computational Fluid 
Dynamics, 16(1), pp. 1-20. 

[70] Priee, S. J. (1999). Aeroelasticity. Course notes, Mcgill University, Montreal. 



Reproduced with permission of the copyright owner.  Further reproduction prohibited without permission.

166 

[71] Bendiksen, O. O. (2004). Nonlinear mode interactions and period-tripling flutter in 
transonic flow. Journal ofFluids and Structures, 19(5), 591-606. 

[72] Priee, S. J., Lee, B. H. K., & Alighanbari, H. (1993). Analysis of the post-instability 
behaviour of a two-dimensional airfoil with a structural nonlinearity. Paper presented 
at the 34th AIAA/ ASME/ ASCE/ AHS/ ASC Structures, Structural Dynamics and Ma­
terials Conference, Apr 19-22 1993, La Jolla, CA, USA. 

[73] Priee, S. J., & C.Mardsen. (2001). An Evaluation of Aeroelastic Parameter Identi­
fication Using Sine-Sweep Excitation. Proceeding, 8th Aerodynamics Symposium, 
Toronto, Canada, 111-120. 

[74] Rothwell, A. (1991). Multi-level optimization of aircraft shell structures. Thin­
Walled Structures, 11(1-2), 85-103. 

[75] Pipemi, P., Abdo, M., & Kafyeke, F. (2003). The Building Blocks of A Multi­
Disciplinary Wing Design Method. Paper presented at the CASI 50th Conference, 
Montreal. 

[76] Fielding, P. J. (1999). Introduction to Aircraft Design. Cambridge University Press. 

[77] Batoz, J.-L., & Dhatt, G. (1992). Modélisation des structures par éléments finis (Vol. 
3). Sainte-Foy Paris : Presses de l'Université Laval, Hermès. 

[78] Dhatt, G., & Touzot, G. (1981). Une présentation de la méthode des éléments finis. 
Sainte-Foy Paris : Presses de l'Université Laval, Maloine. 

[79] Lê, N. V. (2000). Éléments finis en applications. Notes de cours, Département Génie 
Mécanique, École Technologie Supérieure, Université du Québec, Montréal. 

[80] Gmür, T. (1997). Dynamique des structures analyse modale numérique. Lausanne, 
Suisse : Presses polytechniques et universitaires romandes. 

[81] Liu, F., Cai, J., & Zhu, Y. (2001). Calculation ofWing Flutter by a Coupled Fluid­
Structure Method. Journal of Aircraft, Vol. 38(No. 2), 334-342. 

[82] Sato,T., Obayashi, S., & Nakahashi, K. (2000). Aerodynamic and Aeroe1astic Simu­
lation ofUnsteady Flows over Wings. 8th Annual Conference of the CFD, Montreal, 
Canada, vol.2, 643-650. 

[83] Faucher, V., & Combescure, A. (2003). A time and space mortar method for coupling 
linear modal subdomains and non-linear subdomains in explicit structural dynamics. 
Computer Methods in Applied Mechanics and Engineering, 192(5-6), 509-533. 



Reproduced with permission of the copyright owner.  Further reproduction prohibited without permission.

167 

[84] Guruswamy, G. P. (2002). A review ofnumerical :fluids/structures interface methods 
for computations using high-:fidelity equations. Computers & Structures, 80(1 ), 31-
41. 

[85] Kuethe, A. M., & Chow, C.-Y. (1986). Foundations ofaerodynamics: bases ofaero­
dynamic design (4th ed.). New York, N.Y. : J. Wiley and Sons. 

[86] Warsi, Z. U. A. (1999). Fluid dynamics: theoretical and computational approaches 
(2nd ed.). Boca Raton, Flor.: CRC Press. 

[87] Soulaïmani, A., BenElHajAli, A., & Feng, Z. (2002). Nonlinear Computational 
Aeroelasticity : Formulations and Solution Algorithms. NATO-AVT, Meeting Pro­
ceedings RTO-MP-089, pp. 45-01 to 45-13. 

[88] Soulaimani, A., Fortin, M., Dhatt, G., & Ouellet, Y. (1991). Finite element simula­
tion of two- and three-dimensional free surface fiows. Computer Methods in Applied 
Mechanics and Engineering, 86(3), 265-296. 

[89] Holt, M., & Meade, J., A. J. (1992). Flight vehicle aerodynamics calculated by a 
Galerkin finite element/finite difference method. Computing Systems in Engineering, 
3(1-4), 413-421. 

[90] Farhat, C., Lesoinne, M., & Maman, N. (1995). Mixed explicit/implicit time integra­
tion of coupled aeroelastic problems : Three-field formulation, geometrie conserva­
tion and distributed solution. International Journal for Numerical Methods in Fluids, 
21(10), 807-835. 

[91] Saad, Y. (1996). Iterative methods for sparse linear systems. Boston, Mass. : PWS 
Publishing. 

[92] Saad, Y., & Schultz, M. H. (1986). GMRES : a generalized minimal residual al­
gorithm for solving nonsymmetric linear systems. SIAM Journal on Scientific and 
Statistical Computing, 7(3), 856-869. 

[93] Soulaimani, A., & Fortin, M. (1994). Finite element solution of compressible viscous 
fiows using conservative variables. Computer Methods in Applied Mechanics and 
Engineering, 118(3-4), 319-350. 

[94] Ben Salah, N., Soulaimani, A., & Habashi, W. G. (2001 ). Afinite element method for 
magnetohydrodynamics. Computer Methods in Applied Mechanics and Engineering, 
190(43-44), 5867-5892. 

[95] Batoz, J.-L., & Dhatt, G. (1990). Modélisation des structures par éléments finis (Vol. 
1). Sainte-Foy Paris: Presses de l'Université Laval, Hermès. 



Reproduced with permission of the copyright owner.  Further reproduction prohibited without permission.

168 

[96] Hughes, T. J. R.,& Brooks, A. (1979). A multidimensioal upwind scheme with no 
crosswind diffusion. Finite element methods for convection dominated fiows, (ed. 
T.J.R. Hughes) AMD Vol. 34, Amer. Soc. ofMech. Eng., New York, 19-35. 

[97] Soulaimani, A., Saad, Y., & Rebaine, A. (2001). An edge based stabilized finite 
element method for solving compressible flows : formulation and parallel imple­
mentation. Computer Methods in Applied Mechanics and Engineering, 190( 49-50), 
6735-6761. 

[98] Soulaimani, A., Fortin, M., Ouellet, Y., Dhatt, G., & Bertrand, F. (1987). Simple 
continuous pressure elements for two- and three-dimensional incompressible flows. 
Computer Methods in Applied Mechanics and Engineering, 62(1), 47-69. 

[99] Brooks, A. N., & Hughes, T. J. R. (1982). Streamline upwind/Petrov-Galerkin for­
mulations for convection dominated flows with particular emphasis on the incom­
pressible Navier-Stokes equations. Computer Methods in Applied Mechanics and 
Engineering, 32(1-3), 199-259. 

[100] Soulaïmani, A., BenElhajAli, A., & Feng, Z. (2002). A distributed Computing­
based Methodology for Nonlinear Aeroelasticity. Paper AIAA 2002-0868, 40th 
Aerospace sciences, Meeting & Exhibit, January 2002, Reno, NV. 

[101] Farhat, C., Geuzaine, P., & Grandmont, C. (2001). The Discrete Geometrie Con­
servation Law and the Nonlinear Stability of ALE Schemes for the Solution of Flow 
Problems on Moving Grids. Journal ofComputational Physics, 174(2), 669-694. 

[102] Yates, E. C. (1987). AGARD Standard Aeroelastic Configuration for Dynamics 
Response. Candidat Configuration 1.-Wing 445.6. NASA TM 100492. 

[103] Bouchra, Y. (2003). Contribution au développement et à la validation d'un code 
d'éléments finis pour des problèmes d'élasto-acoustique. Mémoire de Maîtrise, Dé­
partement de Génie Mécanique, Université du Québec à Montréal. 

[104] Soulaïmani, A., Feng, Z., & Ben Haj Ali, A. (2005). Solution techniques for multi­
physics problems with application to computational nonlinear aeroelasticity. Nonlin­
ear Analysis, In Press. 




