
ECOLE DE TECHNOLOGIE SUPERIEURE
UNIVERSITE DU QUEBEC

THESIS PRESENTED TO
ECOLE DE TECHNOLOGIE SUPERIEURE

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR
THE DEGREE OF DOCTOR OF PHILOSOPHY

Ph.D.

BY
Kenza MERIDJI

ANALYSIS OF SOFTWARE ENGINEERING PRINCIPLES FROM
AN ENGINEERING PERSPECTIVE

MONTREAL, JANV 11, 2010

© Kenza Meridji, 2010

THIS THESIS HAS BEEN EVALUATED

BY THE FOLLOWING BOARD OF EXAMINERS

Mr. Alain Abran, PhD, Thesis Supervisor
Departement de genie logiciel et des TI Ecole de Technologic Superieure

Mr. Pierre Bourque, PhD, President of the Board of Examiners
Departement de genie logiciel et des TI Ecole de Technologie Superieure

Mr. Eric Lefevre, PhD, Examiner
Departement de genie logiciel et des TI Ecole de Technologie Superieure

Mr. Juan Garbajosa Sopena, PhD, External Examiner
Universidad Politecnica de Madrid (UPM), Spain

THIS THESIS WAS PRESENTED AND DEFENDED

BEFORE A BOARD OF EXAMINERS AND THE PUBLIC

DECEMBER 22, 2009

A L'ECOLE DE TECHNOLOGIE SUPERIEURE

ACKNOWLEDGMENTS

First and foremost I would like to express my gratitude to Professor Alain Abran, my thesis

supervisor at Ecole de technologie superieure for his continuous support, time, advice and

patience throughout this thesis. Without his patient guidance, this work would never have

been carried out.

I wish also to thank my examiners Dr. Pierre Bourque, Eric Lefevre and Juan Garbajosa

Sopena. Also, 1 would like to thank Dr. Normand Seguin for his input to the 34 candidate

principles to my thesis.

I would like to thank everyone in the Software Engineering Research Laboratory (GELOG),

the Department of Software Engineering and IT. Finally, I wish to express my thanks to my

family for their support and understanding throughout this long process.

ANALYSE DES PRINCIPES DU GENIE LOGICIEL DUN E
PERSPECTIVE D'INGENIERI E

Kenza MERIDJI

RESUME

L'ingenierie du logiciel a recemment emerge comme un nouveau domaine d'ingenierie et
continue d'evoluer. Le genie logiciel est une discipline dont I'objectif est la production de
logiciels de haute qualite, mais il manque de maturite par rapport aux autres domaines de
l'ingenierie traditionnelle. Les domaines traditionnels de l'ingenierie ont leurs propres
principes bases sur la physique, la chimie ou les mathematiques. Puisque le domaine du genie
logiciel n'est pas fonde sur les lois de la nature, il est plus difficile de comprendre I'ensemble
de ses principes.

Cette recherche sur I'ensemble des principes fondamentaux candidats contribuera a une
meilleure comprehension et, eventuellement, a I'enseignement des principes du genie
logiciel. En outre, elle aidera a ameliorer le contenu du Guide SWEBOK du point de vue du
genie.

Ce travail de recherche a permis d'etudier la question du genie logiciel comme une discipline
du genie en utilisant les categories de connaissances en genie de Vincenti, d'identifier des
principes fondamentaux a partir d'un ensemble de candidats, et enfin d'examiner I'absence de
description explicite et systematique de ces principes, et leur application, dans le Guide
SWEBOK.

Les deux principaux objectifs de cette etude sont 1'identification des principes fondamentaux
de l'ingenierie du genie logiciel a partir des 34 principes candidats et la description des
directives operationnelles pour ces principes en utilisant comme base le contenu du Guide
SWEBOK.

Pour atteindre ces objectifs, la methodologie suivante de recherches a ete utilisee. Les
principales phases de cette methodologie de recherche sont: I'analyse, d'un point de vue
d'ingenierie, de la question du genie logiciel et de I'ensemble des 34 principes fondamentaux
candidats, I'identification des principes de genie logiciel dans le contenu du Guide SWEBOK
- ISO TR 19759, la description des lignes directrices operationnelles sur la base du contenu du
Guide SWEBOK et aligne avec la norme IEEE 1362-1998 Concept of Operations (CONOPS)
Document.

Le resultat de cette these est I'identification d'un ensemble de neuf principes fondamentaux
du genie logiciel et la description de directives operationnelles pour ces principes.

Mots-cles: Principes de genie logiciel, principes fondamentaux, Vincenti, perspective de
l'ingenierie.

ANALYSIS OF SOFTWARE ENGINEERING PRINCIPLE S FRO M
AN ENGINEERING PERSPECTIV E

Kenza MERIDJI

ABSTRACT

Software engineering has recently emerged as a new engineering field in a continuing
evolution. Software engineering is a discipline whose aim is the production of high quality
software, but lacks maturity compared to other traditional engineering fields. Traditional
engineering fields have their own principles originating from physics, chemistry and
mathematics. However, since the software engineering discipline is not based on natural
laws, establishing a set of principles is more challenging.

This research on the set of candidate fundamental principles will contribute to a better
understanding and possibly, to the teaching of the principles of software engineering and it
will help improve the content of the software engineering body of knowledge (SWEBOK)
Guide from an engineering perspective.

This research work investigated the issue of software engineering as an engineering
discipline using Vincenti categories of engineering knowledge; identified engineering
fundamental principles from a set of candidates; and finally investigated the lack of explicit
and systematic descriptions of these principles and their application, as in the SWEBOK
Guide.

The two main research objectives are the identification of the fundamental principles of
software engineering from the 34 candidates principles; and the description of operational
guidelines for these principles, based on the content of the SWEBOK Guide.

To achieve these objectives, the following research methodology was used. The main phases
of this research methodology are: the analysis, from an engineering perspective, of software
engineering and the set of 34 ftandamental principles candidates; the identification of the
software engineering principles in the content of the SWEBOK Guide - ISO TR 19759; the
description of the operational guidelines on the basis of the content of the SWEBOK Guide
and aligned with the IEEE standard 1362-1998 Concept of Operations (ConOps) Document.

The main outcome of this research study is the identification of a set of nine software
engineering fundamental principles and the description of operational guidelines.

Keywords: Software engineering principles, candidate fundamental principles CFP,
Vincenti, engineering perspective.

TABLE OF CONTENTS

Page

INTRODUCTION 1

CHAPTER 1 SOFTWARE ENGINEERING PRINCIPLES IN THE LITERATURE 6

1.1 Introduction 6
1.2 Candidates principles of software engineering 6
1.3 The identification of engineering knowledge types and characteristics 17
1.4 Other related works 19
1.5 Summary 22

CHAPTER 2 RESEARCH OBJECTIVES AND METHODOLOGY 24

2.1 Introduction 24
2.2 Research goal 25
2.3 Research objectives 25
2.4 Research motivation 25
2.5 Users of research 26
2.6 Research inputs 26
2.7 Overview of the research methodology 26
2.8 Detailed research methodology 28

CHAPTER 3 ANALYSIS OF SOFTWARE ENGINEERING FROM AN ENGINEERING
PERSPECTIVE 32

3.1 Introduction 32
3.2 Vincenti's engineering viewpoint 33

3.2.1 Overview and context 33
3.2.2 Vincenti's categorization criteria & goals 34

3.3 Vincenti's classification of engineering knowledge types 40
3.3.1 Relationship between the various categories 40

3.4 Vincenti's classification of engineering knowledge-type models 41
3.4.1 Fundamental design concepts 41
3.4.2 Criteria and specifications 45
3.4.3 Theoretical tools 46
3.4.4 Quantitative data 47
3.4.1 Design instrumentalifies 49

3.5 The Design process • 51
3.5.1 The engineering design process in Vincenfi 51
3.5.2 The Engineering process in the SWEBOK 54
3.5.3 Design notion in the SWEBOK Guide 54
3.5.4 Design KA: mapping between Vincenti and the SWEBOK Guide 54

3.6 Mapping results for the Vincenfi classification of engineering knowledge 58

VII

3.6.1 Software requirements: Vincenti's viewpoint 65
3.6.2 Software design: Vincenfi view 65
3.6.3 Software construction: Vincenti view 66

3.7 Analysis using the Vincenfi classification of engineering knowledge 66
3.8 Summary 67

CHAPTER 4 SOFTWARE ENGINEERING PRINCIPLES: DO THEY MEET
ENGINEERING CRITERIA? 69

4.1 Introduction 69
4.2 Analysis methodology 70

4.2.1 Step 1: Identification of two sets of verification criteria 71
4.2.2 Step 2: Verification execution 72
4.2.3 Step 3: Analysis and selection 72
4.2.4 Step 4: Design and execution of an external verification 72

4.3 Identification of engineering criteria: step 1 73
4.3.1 Vincenfi 73
4.3.2 IEEE and ACM joint curriculum 74

4.4 Verification against the two sets of criteria: step 2 74
4.5 Analysis and consolidation using both sets of criteria: step 3 76

4.5.1 Analysis across each set of engineering criteria 76
4.5.2 Identification of a hierarchy 80

4.6 External verification: step 4 81
4.6.1 Design 81
4.6.2 Execution 82

4.7 Summary 83

CHAPTER 5 IDENTIFICATION OF SOFTWARE ENGINEERING PRINCIPLES
WITHIN THE CONTENT OF THE SWEBOK GUIDE 85

5.1 Introduction 85
5.2 Mapping the FP to the SWEBOK KAs 85
5.3 The FP in software requirements knowledge area 86
5.4 The FP in software quality knowledge area 89
5.5 Results in other KAs 91

5.5.1 Software design knowledge area 91
5.5.2 Software construction knowledge area 93
5.5.3 Software testing knowledge area 94
5.5.4 Software maintenance knowledge area 95
5.5.5 Software configuration management knowledge area 96
5.5.6 Software engineering management knowledge area 98
5.5.7 Software engineering process knowledge area 100

5.6 Analysis of the mapping results 101
5.7 Summary 103

VIII

CHAPTER 6 DESCRIPTION OF AN OPERATIONAL PERSPECTIVE OF THE
SOFTWARE ENGINEERING PRINCIPLES ON THE BASIS OF
THECONTENT OF THE SWEBOK GUIDE 105

6.1 Introduction 105
6.2 Proposed operational guidelines for the SWEBOK (Annex D) 106
6.3 Software requirements - description of an operafional perspective 107
6.4 Software design-description of an operafional perspective 114
6.5 Software construction- description of an operational perspective 120
6.6 Software testing- description of an operafional perspective 127
6.7 Software maintenance-description of an operafional perspecfive 138
6.8 Software configurafion management: operational perspective of the software

engineering FP 144
6.9 Software engineering process- descripfion of an operafional perspective 148
6.10 Software quality-description of an operational perspective 154
6.11 Summary 161

CHAPTER 7 DEVELOPMENT OF A CONSOLIDATED SWEBOK VIEW FOR
MEASUREMENT FP 162

7.1 Introducfion 162
7.2 Coverage of the measurement principle in the KAs of the SWEBOK guide 162
7.3 Consolidated view of measurement FP 164
7.4 Consolidated view model of the measurement FP 165
7.5 Measurement process: 165

7.5.1 Establish and sustain measurement commitment activity 165
7.5.2 Plan the measurement process 166
7.5.3 Perform the measurement process 166
7.5.4 Evaluate the measurement process 167

7.6 Summary 167

CHAPTER 8 ANALYSIS OF A SWEBOK KA FROM AN ENGINEERING
PERSPECTIVE WITH RESPECT TO THE ENGINEERING
FUNDAMENTAL PRINCIPLES 169

8.1 Introducfion 169
8.2 Identification of engineering concepts in the "Software requirements" KA with

respect to the FP and Vincenfi 170
8.2.1 Mapping 1: Vincenfi categories of engineering knowledge and software

requirements KA 170
8.2.2 Mapping 2: The list of FP to each of the SWEBOK KAs 170
8.2.3 Mapping 3: Vincenti's categories of engineering knowledge the "Software

requirements" with respect the FP 173

IX

8.3 Vincenfi's categories and FP in the requirements KA 174
8.4 Mapping results from Vincenfi's viewpoint 175
8.5 Mapping results from the FP viev^oint in the requirements KA 176
8.6 Summary 179

CHAPTER 9 DEVELOPING AN EVALUATION METHOD TO VERIFY THE
OPERATIONAL GUIDELINES IN THE SWEBOK GUIDE 181

9.1 Introduction 181
9.2 Evaluafion method for the operational guidelines 181

9.2.1 Phase 1: Design of an operafional model of operational guidelines 182
9.2.2 Phase 2: Conduct the evaluation procedure 184
9.2.3 Phase 3: Evaluation results 185

9.3 Summary 188

CONCLUSION 190

ANNEX I CLASSIFICATION OF THE KNOWLEDGE CONTAINED IN THE
SWEBOK GUIDE FOR THE 3 KAs 197

ANNEX II PRESENTATION OF THE KNOWLEDGE CONTAINED IN THE 3 KA
OF THE SWEBOK GUIDE 212

ANNEX III MAPPING RESULTS BETWEEN THE FP AND THE ENGINEERING
CRITERIA 216

ANNEX IV. DETAILED RESULTS FOR THE IDENTIFICATION OF THE
SOFTWARE ENGINEERING PRINCIPLES WITHIN SWEBOK
GUIDE CONTENT - ISO TR 19759 220

ANNEX V PROPOSED DRAFT: OPERATIONAL GUIDELINES OF THE NINE
FUNDAMENTAL PRINCIPLES OF SOFTWARE ENGINEERING
BASED ON THE SWEBOK GUIDE CONTENT - ISO TR 19759 223

ANNEX VI MAPPING SWEBOK KA WITH VINCENTI SIX CATEGORIES AND
THE NINE FUNDAMENTAL PRINCIPLES (9 FP) 260

ANNEX VII WORKSHOP INTERNATIONAL CONFERENCE ON ENGINEERING
EDUCATION - ICEE 2007- COIMBRA (PORTUGAL) 268

BIBLIOGRAPHY 271

LIST OF TABLES

Table 1.1

Table 1.2

Table 1.3

Table 1.4

Table 1.5

Table 3.1

Table 3.2

Table 3.3

Table 3.4

Table 3.5

Table 3.6

Table 3.7

Table 3.8

Table 4.1

Table 4.2

Table 4.3

Table 4.4

Table 4.5

Table 5.1

Table 5.2

Table 5.3

Table 5.4

Table 5.5

Page

List of candidate fundamental principles 10

Key characterisfics of publications of software engineering principles12

Classification of references (in alphabetic order) 13

Inventory of the candidate FP 15

Engineering criteria from the IEEE & ACM joint software engineering ..18

Vincenti's vocabulary relating to engineering terms and concepts 34

Vincenti: Engineering knowledge categories and concepts 36

Vincenti: Engineering knowledge categories and goals 39

Design according to Vincenti vs. design in the software engineering life

cycle 55

Mapping of the design process in engineering life cycle 57

Software requirements in the SWEBOK guide 60

Software design in the SWEBOK guide 61

Software construction in the SWEBOK guide 63

Engineering criteria identified in Vincenti 73

Identification of IEEE & ACM engineering criteria 74

Candidate FP that directly meets criteria from either sets of criteria 77

List of software engineering FP 79

Hierarchy of candidate FP 80

Summary mapping of the engineering FP in the '̂ Software requirements"

KA 87

Detailed mapping of the engineering FP in the "Software requirements"

KA 87

Summary mapping of the engineering FP in the "Software requirements"

KA 90

Detailed mapping of the engineering FP in the "Software quality" KA....90

Presence of engineering FP in the "Software design" KA 91

XI

Table 5.6

Table 5.7

Table 5.8

Table 5.9

Table 5.10

Table 5.11

Table 5.12

Table 5.13

Table 5.14

Table 5.15

Table 5.16

Table 5.17

Table 5.18

Table 7.1

Table 7.2

Table 8.1

Table 9.1

Detailed presence of engineering FP in the "Software design" KA 92

Presence of engineering FP in the "Software construction" KA 93

Detailed presence of engineering FP in the "Software construction" KA.93

Presence of engineering FP in the "Software testing" KA 94

Detailed presence of engineering FP in the "Software testing" KA 94

Presence of engineering FP in the "Software maintenance" KA 95

Detailed presence of engineering FP in the "Software maintenance" KA 96

Presence of engineering FP in the "Software configuration managemenf

KA 96

Detailed presence of engineering FP in "Software Configuration

Managemenf 97

Presence of engineering FP in the "Software engineering management"

KA 98

Detailed presence of engineering FP in: "Software engineering

managemenf 99

Presence of engineering FP in the "Software engineering process" KA.IOO

Detailed presence of engineering FP in: Software engineering process.. 100

The measurement FP in the SWEBOK guide KA 163

Consolidated View of the measurement FP 164

Mapping Vincenti's categories to the FP in the "Software requirements"

KA 175

Evaluation results of the measurement FP in the SWEBOK KA 187

LISTE OF FIGURES

Page

Figure 1.1 Relationships between principles, standards and practices 8

Figure 1.2 Project steps of the study on fundamental principles 9

Figure 1.3 Knowledge areas (KA) of the SWEBOK guide 20

Figure 2.1 Research methodology - overview of phases 29

Figure 3.1 Vincenti's classification of engineering knowledge 40

Figure 3.2 Relationships between theoretical tools & quantitative data 41

Figure 3.3 Elements of a fundamental design concept 42

Figure 3.4 Project input 42

Figure 3.5 Designers initial knowledge 43

Figure 3.6 Design pyramid 43

Figure 3.7 Relationships between normal configurations, operational principles 44

Figure 3.8 Designer's goals 45

Figure 3.9 Problem definition level output 46

Figure 3.10 Theoretical tools model 47

Figure 3.11 Quantitative data model 48

Figure 3.12 Practical considerations model 50

Figure 3.13 Design instrumentalities model 51

Figure 3.14 Modeling of the levels of design hierarchy, as described in Vincenti 53

Figure 3.15 Design in Vincenti vs. design in the software engineering life cycle 57

Figure 4.1 The Four-steps verification process 70

Figure 4.2 Identification of Vincenti engineering criteria (Vincenti W. G. 1990) 71

Figure 4.3 Idenfification of the lEEE-ACM engineering criteria 71

Figure 4.4 Step 2: Verification process against engineering criteria 72

Figure 5.1 Frequency of engineering fundamental principles by knowledge area ...102

Figure 5.2 Frequency of engineering fundamental principles for SWEBOK KAs... 103

Figure 6.1 SWEBOK Guide: "Software requirements" knowledge area 107

Figure 6.2 Measurement process: Operational view -requirements KA 108

XIII

Figure 6.3 General view for applying "Build with and for reuse" in requirements.. 109

Figure 6.4 Requirements elicitation- operational view in requirement KA 111

Figure 6.5 SWEBOK guide: "Software design" knowledge area 114

Figure 6.6 SWEBOK guide: "Software construction" knowledge area 120

Figure 6.7 Measurement in the construction KA 121

Figure 6.8 Construction activities- operational view in construction KA 122

Figure 6.9 Construcfing for verification- operational view in construction KA 125

Figure 6.10 Standards- operational view in construction KA 125

Figure 6.11 SWEBOK guide: "Software testing" knowledge area 127

Figure 6.12 Evaluation of the program under test 129

Figure 6.13 Phases for the testing activities- Operational view in testing KA 134

Figure 6.14 Phases for the testing levels - operational view in testing KA 135

Figure 6.15 Testing techniques- operational view in testing KA 136

Figure 6.16 SWEBOK Guide: "Software maintenance" knowledge area 138

Figure 6.17 Maintenance activities- operational view in maintenance KA 142

Figure 6.18 SWEBOK guide: "Software configuration "management knowledge144

Figure 6.19 Software configuration status accounting- operational view in the

configuration management KA 146

Figure 6.20 SWEBOK guide: "Software engineering process" knowledge area 148

Figure 6.21 Related product measurements- operational view in the process KA 150

Figure 6.22 Software process management cycle- operational view in the process... 152

Figure 6.23 Process assessment models and operational view in the process KA 153

Figure 6.24 SWEBOK guide: "Software quality" knowledge area 154

Figure 6.25 Software management processes 156

Figure 6.26 Software quality assurance 157

Figure 6.27 Management reviews- operational view in the quality KA 158

Figure 6.28 Technical reviews - operational view in the quality KA 159

Figure 6.29 Inspections - operational view in the quality KA 160

Figure 7.1 Model of a consolidated SWEBOK view of the measurement FP 166

Figure 8.1 Mapping of the Vincent's engineering knowledge to the SWEBOK 171

XIV

Figure 8.2 Mapping the set of the FP to the SWEBOK guide 172

Figure 8.3 Mapping of the categories of engineering knowledge to the set of FP in

"Software requirements" KA 173

Figure 8.4 Vincenti's six categories & the FP frequencies in requirements KA 177

Figure 8.5 Frequency of fundamental principles for "Software requirements" 179

Figure 9.1 The three phases of the evaluation procedure of operational guidelines. 182

Figure 9.2 Operational model of operational guidelines 183

Figure 9.3 Generic evaluafion procedure 184

Figure 9.4 Evaluation procedure of operational guidelines 185

LIST OF ABBREVIATIONS

SWEBOK Software Engineering Body of Knowledge

KA Knowledge area

FP Fundamental principles

CFP Candidate fundamental principles

Engineering FP Engineering ftindamental principles

R&D Research and development

SCR Software change request

SE Software engineering

IT Information technology

INTRODUCTION

Software engineering is defined as "The application of a systematic, disciplined, quantitafive

approach to the development, operation and maintenance of software, the application of

engineering to software" (lEEE-Std 610.12 1990). Software engineering is somewhat

unusual as an engineering discipline because software does not exist in nature, unlike in

other traditional engineering fields where engineers observe natural laws and try to

understand them. Software engineers must observe software projects which are intellectual

products and not the products of nature. Figuring out the list of fundamental principles for

software engineering represents therefore a challenge.

"There are millions of software professionals worldwide, and software is a ubiquitous

presence in our society" (ISO-TR-19759, 2004). However, the recognition of software

engineering as an engineering discipline is still being challenged.

"Achieving consensus by the profession on a core body of knowledge is a key milestone in

all disciplines, and has been identified by the IEEE Computer Society as crucial for the

evolution of software engineering towards professional status" (ISO-TR-19759, 2004).

Software engineering, as a discipline, is certainly not yet as mature as other engineering

disciplines. As a new engineering discipline, in comparison to other engineering disciplines,

software engineering does not have yet a wide consensus on its engineering foundations.

This research aims to contribute to the maturation of the foundations of the software

engineering through: the analysis of the Software Engineering Body of Knowledge

(SWEBOK) (ISO-TR-19759 2004) from an engineering perspective; the analysis, from an

engineering perspective, of the set of the 34 candidate fundamental principles for software

engineering; and the implementation of operational guidelines of software engineering

fundamental principles, on the basis of the SWEBOK Guide.

Problem statemen t

Software engineering is not as mature as other engineering discipline, lacking well

recognized fundamental principles that contribute to the foundation of an engineering

discipline.

The research work in software engineering has focused on developing methods, techniques

and tools. Less work has been done on defining fundamental principles of software

engineering and much less R&D has been done to verify candidate fundamental principles.

Most of the authors who have proposed candidates for fundamental principles have proposed

individual opinions about these principles, and most have not carried out research to support

their proposals of candidate fundamental principles.

The content of each knowledge area (KA) in the SWEBOK Guide was developed by domain

experts and extensively reviewed by an international community of peers. This Delphi-type

approach, while very extensive and paralleled by national reviews at the ISO level, did not

specifically address the engineering perspective, nor did it provide a structured technique to

ensure the completeness and full coverage of fundamental engineering topics. Therefore, no

evidence was provided that had adequately tackled the identification and documentation of

the knowledge expected to be present in an engineering discipline.

An example of a structured research on the identification of software engineering principles

has been undertaken by Seguin who identified 34 candidate fundamental principles (Seguin

N. 2006). However, this set of candidate principles has not been analyzed from an

engineering perspective.

This thesis aims to analyse software engineering from an engineering perspective, analyse

the 34 candidates principles from an engineering perspective and provide an explicit and

systematic description of these engineering principles, and of their application, for example

in the SWEBOK Guide.

Thesis organizatio n

This thesis contains nine chapters and seven Armexes. The current introduction outlines the

problem statement and the organization of the thesis.

Chapter 1 presents an overview of the literature review done on the fundamental principles

of software engineering.

Chapter 2 presents the research project definition with its research goals, objectives and

users of the research results. Chapter 2 also presents the detailed methodology designed to

tackle the research objectives, including the research phases and the research inputs.

Chapter 3 presents the analysis of software engineering from an engineering perspective.

This chapter presents the analysis of Vincenti's categories of engineering knowledge, a

comparison between traditional design vs. software engineering design and the application

of Vincenti categories of engineering knowledge to some of the SWEBOK knowledge areas

Chapter 4 presents the process for identifying software engineering principles. This chapter

describes the identification of engineering criteria from Vincenti and IEEE & ACM, the

application of these criteria to the 34 candidate fundamental principles, the corresponding

analysis and selection of fundamental principles and, a design and execution of an external

verification.

Chapter 5 presents the coverage of the software engineering principles within the content of

the SWEBOK Guide (ISO-TR-19759 2004)

Chapter 6 presents a description, from an operational perspective, of the software

engineering principles on the basis of the content of the SWEBOK Guide (ISO-TR-19759

2004): in this chapter, the description of these operational perspective are aligned with the

IEEE 1362:1998 Guide for information technology- Concepts of Operations (ConOps)

(IEEE STD 1362-1998).

Chapter 7 presents a consolidated view of the engineering fundamental principle on software

measurement.

Chapter 8 presents the design of an evaluation procedure for the operational guidelines for

evaluation purposes and also presents the evaluation of the operational guidelines for the

engineering fundamental principle on software measurement, as documented in the

SWEBOK Guide.

Chapter 9 presents the analysis of the SWEBOK "Software requirements" KA from an

engineering perspective with respect to the engineering fundamental principles. Throughout

this chapter, the Vincenti's categories of engineering knowledge of the "Software

requirements" knowledge area are mapped to the engineering fundamental principles

The Conclusion chapter summarizes the results of this thesis, its contributions and

limitations, the expected impacts and suggestions future work.

Finally, this thesis contains seven Annexes.

Annex I presents the results of the mapping between the knowledge contained in the

SWEBOK Guide and the Vincenti's categories of engineering knowledge for the "Software

requirements", "Software design" and "Software construction" knowledge areas.

Annex II presents the new breakdown of the knowledge contained in the SWEBOK Guide

for the "Software requirements", "Software design" and "Software construction" knowledge

areas by categories of Vincenti's engineering knowledge.

Annex III presents the mapping results between the engineering fundamental principles and

Vincenti and the IEEE & ACM engineering criteria.

Annex IV presents the detailed results related to the mapping of the set of the nine

engineering principles into the related knowledge areas of the SWEBOK Guide.

Annex V presents the detailed operational guidelines of the principles of software

engineering aligned with the IEEE Std 1362-1998 IEEE Guide for Information Technology

System Definition. Concepts of Operations (ConOps) Document.

Armex VI presents the mapping between the Vincenti's categories of engineering knowledge

and the lists of engineering principles for the "Software requirements", "Software design"

and "Software construction" knowledge areas.

Annex VII presents the program of the workshop the "Engineering foundations of software

engineering".

CHAPTER 1

SOFTWATRE ENGINEERING PRINCIPLE S IN THE LITTERATUR E

1.1 Introductio n

Software engineering is a new emerging engineering discipline in comparison to traditional

engineering disciplines. Many authors have published on principles of software engineering,

Normand Seguin (Seguin N. 2006) has conducted a literature survey on the principles of

software engineering.

As an engineering discipline, software engineering should be analyzed from an engineering

viewpoint and should have a recognized set of principles: however, software engineering

does not have yet a set of recognized engineering principles and there is not yet agreement on

a well documented and established foundation from an engineering perspective.

This chapter presents the literature survey and is organized as follows: section 1.2 describes

related work undertaken on principles of software engineering that is, work published over

the last decade on the principles that have been proposed for software engineering. Section

1.3 introduces the identification of engineering knowledge types and characteristics. Section

1.4 presents other related works and finally section 1.5 presents a summary.

1.2 Candidate s principles of software engineerin g

Davis 199 5

(Davis A.M. 1995) published a book on "201 Principles of Software Development" which

contains the first published collection of principles of software development. Davis proposed

a definifion of the term "principle" and organized his 201 principles into categories; these

categories are composed of the different phases of software development in addition to

management, product assurance and evolufion. Davis provided a definition for each of the

201 principles. He identified his 15 most important principles of software engineering in an

article published in 1994 "Fifteen principles of software engineering" (Davis A.M. 1994).

Davis did not provide any criteria for their identification nor did he provide a methodology.

Jabir, Moore 1998

Jabir is a surname given to a group of experts who participated in a 1996 to a workshop at the

IEEE Forum on Software Engineering Standards Issues where eight candidate principles

were identified.

Jabir et al. published in 1998 "A search for fundamental principles of software engineering"

(Jabir et al. 1998). Jabir et al. explored the nature of software engineering as well as the

relationships between principles, standards and practices. Furthermore, Jabir et al. discussed

the characteristics and criteria for identifying fundamental principles and applied these

principles to the eight identified principles.

Dupuis et al. 1999, Bourque et al. 2002

In their paper "Fundamental principles of software engineering - a journey" published in

2002 (Bourque P.et al. 2002) identified a set of fundamental principles through a weJl

documented research methodology. Defining the relationships between principles, standards

and implemented best practices as illustrated in Figure 1.1.

Furthermore, the following seven criteria were identified to select a candidate fundamental

principle:

• Fundamental principles are less specific than methodologies and techniques;

• Fundamental principles are more enduring than methodologies and techniques;

• Fundamental principles are typically discovered or abstracted from practice and should

have some correspondence with best practices;

SWE Principles
are specific

cases of general
engineering
principles.

SWE Principles
organize,

explain and
validate the

practice
standards.

Practices are
deployed based
on the practice

standards.

Some SWE
Principles may
be generalized

to principles for
the engineering

of complex
systems.

SWE Principles
should be

"abstractions"
ofpractice
standards.

Practice
standards should
be recordings of

observed best
practices.

Figure 1.1 Relationships between principles, standards and practices
(Bourque P. et al. 2002)

• Software engineering ftindamental principles should not contradict more general

fundamental principles, but there may be tradeoffs in the application of principles;

• A fundamental principle should not conceal a tradeoff;

• A fundamental principle should be precise enough to be capable of support or

contradiction;

• A fundamental principle should relate to one or more underlying concepts.

The research methodology to identify their first set of candidate fundamental principles of

software engineering included two workshops, two Delphi studies composed respectively of

three and two rounds and a web based survey which was conducted over the internet among a

group of software engineering experts from the IEEE Technical Committee on Software

Engineering lEEE-TCSE - Figure 2.1

1996Dedsic3nofttielBBE
SdhAare Bicpneering Standards

Ccrrrrittee

RBoonmnendatiGn to identify
firdaniEntal principles of sofiv\are
ergneering

/

V

VVbrtehop-SE?96
(n/bntreEd, October 1996)

^

/
Criteria for identifying and ewalLEting
proposed prindples

Delphi I: international Sciftv\are
Bigneering Experts

Romdl :
- Sltrrission of 65 prapoeed prindples
- Synthesis irto 16 carddates

V : ,

16cardd3teflridannental prindples

Roird2:
Vbte on ttie inrportanoe of eadi

carddste

Mean feting for eadi canddate

RoindS:
Cbroirenoe vJiVn mean rating

Evaluated canddste ftrdarratal
principles by intemstional esxperts

VVbftehop-ISESS'97
(\/\iy nut OeeK CA, Jine 1997)

Inprcwed list of firdannental
principles vvith reoorrmercaions fia"

futixe steps

Delphi II: lESConpute r Societ y
Software Bigneering Experts

Roif id l :
Vfete on the irrportanoe of eadi

canddate

IVfedan rating for eadi cardd^e

RxfidZ:
Conoirence wth medan rating

Candd^eflrdaniental prindples
evaluated by I ^E CS experts

VVa>eased Survey: CS-TCSE IVbnt3ers

Sirvey \Mthn mentiershp of the
I^EHCSE

Candidate fuxiamEntal principles
evaluated by practitioners

() : Steps in vvhidiconmrerts are obtained

Figure 1.2 Project steps of the study on fundamental principle s in
(Bourque P. et al. 2002)

These studies resulted in a list of 15 candidate fundamental principles of software

engineering see Table 1.1.

file:///Mthn

Table 1.1 List of candidate fundamental principles

(Bourque P. et al. 2002)

10

Identification

(A)

(B)

(C)

(D)

(E)

(F)

(G)

(H)

(I)

(J)

(K)

(L)

(M)

(N)

(0)

Candidate fundamental principle s

Apply and use quantitative measurements in decision-making

Build with and for reuse

Control complexity with multiple perspectives and multiple levels of

abstraction

Define software artifacts rigorously

Establish a software process that provides flexibility

Implement a disciplined approach and improve it continuously

Invest in the understanding of the problem

Manage quality throughout the life cycle as formally as possible

Minimize software component interaction

Produce software in a stepwise fashion

Set quality objectives for each deliverable

Since change is inherent to software, plan for it and manage it

Since tradeoffs are inherent to software engineering, make them explicit and

document them

To improve design, study previous solutions to similar problems

Uncertainty is unavoidable in software engineering. Identify and manage it

11

Baskerville, Ramesh, Levine, Pries-Heje, Slaughter 2003

In the article "Is internet-speed software development different?" Baskerville et al. (2003)

developed practices and principles for Internet speed applications. The purpose of this study

was to clarify how and why internet speed application practices were different from

traditional engineering practices. The methodology used was based on a two- phased study.

In this study, one note that the traditional software development principles defined by

(Bourque P. et al. 2002) do not overlap with the internet speed development principles, and

that internet speed development practices are compatible with agile principles. However,

there was no definition for the terms practices, principles and metaprinciples. Also, there

was no difference documented between principles and metaprinciples (Baskerville R. et al.

2003).

Ghezzi et al. (2003)

Ghezzi et al. published in 2003 a software engineering textbook "Fundamentals of Software

Engineering". In their book, the authors described seven software engineering principles. The

authors also provided definifions and examples for each of their seven principles (rigor and

formality, separation of concerns, modularity, abstraction, anticipation of change, generality

and incrementality). The authors did not follow any methodology for the identification and

definition of these principles. The authors used their set of principles with examples to attain

the quality objectives for design, specification and the management of software engineering

(Ghezzi C. et al. 2003).

Abran, Seguin, Bourque, Dupuis (2004)

(Abran A. et al. 2004) published a literature survey "The search for software engineering

principles: An overview of results", where they reviewed the related research publicafions

from individual authors as well as collaborative work done on software engineering

principles.

12

Abran et al. came up with the key characteristics of the 1983-2002 publications on software

engineering principles. These key characteristics of the publications surveyed includes the

terms used by the authors, whether or not definitions were provided and the criteria for

identifying a principle, the number of proposed principles, the statement style and the source

of the proposed list of principles (expert opinions, literature, observation and historical data)

see Table 1.2

Table 1.2 Key characterisfics of publications on software engineering principles

(in alphabetical order of authors)

(Abran A. et al. 2004)

Reference

Boehm(1983)

Booch & Bryan
(1994)

Bourque al. (2002)
Buschman et dX.et

al. (1996)
Davis (1995)
Ghezzi et al.

(2003)

Lehman (1980)

Maibaum (2000)
Meyer (2001)
Mills (1980)
Royce(1970)

Wasserman (1996)

Wiegers(1996)

Terms

Principle

Principle

Principle
Principle/
Technique
Principle

Principle

Laws

Principle
Principle
Principle

Steps

Concept

Principle

Deflnition

None

None

Yes

None

Yes

Yes

None

None
Yes

None
None

None

None

Criteria

Yes (2)

No

Yes (8)

No

No

No

No

No
No
No
No

No

No

Number

7

7

15

10

201

7

5

3
13
4
5

8

14

Statement
style

Rules

Concept

Rules

Concept

Rules

Mix

Concept

Concept
Mix

Concept
Rules

Concept

Rules

Source J m
Historical data

analysis

Literature

Expert opinions

Literature

Literature
Literature,
opinion

Observation,
analysis
Opinion
Opinion
Opinion
Opinion
Opinion,
literature

Observation,
opinion

In addition, for each reference Abran et al. presented publication type, the basis for

discussion, an overview of the research methodology, supporting number of references and

the scope, as illustrated in Table 1.3.

13

Table 1.3 Classification of references (in alphabetic order)

(Abran A. et al. 2004)

Reference

Boehm(1983)

Booch & Bryan

(1994)

Bourque et al.

(2002)

Buschman et al.

(1996)

Davis (1995)

Ghezzi al. (2003)

Lehman (1980)

Maibaum (2000)

Meyer (2001)

Mills (1980)

Royce(1970)

Wasserman

(1996)

Wiegers(1996)

Publication

type

Paper

Book

Paper

Book

Book

Book

Paper

Paper

Paper

Paper

Paper

Paper

Book

Discussion

Empirical

Theoretical

Empirical

Theoretical

Theoretical

Theoretical

Empirical

Theoretical

Theoretical

Theoretical

Theoretical

Theoretical

Theoretical

Research

methodology

Implicit

Implicit

Explicit

-

Implicit/analytic

Implicit

Implicit/

observation

-

-

-

-

-

Experimentation

Supporting

number of

references

49

12

11

10

124

24

13

11

10

16

0

19

-

Scope

Life cycle

Construction

Life cycle

Architecture

Life cycle

Life cycle

Maintenance

General

Curriculum

General

Life cycle

General

Software

engineering

culture

A key finding of this study is that the research work published on the search fundamental

principles to software engineering had not been based on a research methodology, to the

exception of Bourque et al., but rather on personal observations and opinions.

14

Normand Seguin 2006

Subsequenfiy, (Abran A. et al. 2004), (Seguin N. 2006), (Seguin N. 2007) inventoried, from

the literature on software engineering principles, 308 principles proposed in the work of

individual authors - for instance: (Boehm B.W. 1983), (Davis A.M. 1995), (Wiegers K.E.

1996) - or in collaborative effort: (Bourque P. et al. 2002), (Buschmann F. et al. 1996),

(Ghezzi C. et al. 2003), (Dupuis R. et al. 1999), (Bourque P. and Dupuis R. 1997), (Dupuis

R. et al. 1997). To the exception of (Ghezzi C. et al. 2003), these authors have proposed only

nominative principles, without including either formal definitions or procedures for

implementing these principles.

To verify whether or not each of these 308 proposed principles was indeed a candidate

fundamental principle (CFPj, a two-step verification process was used in (Seguin N. 2006),

(Seguin N. 2007):

Step 1: Identification of verification criteria

A. Five individual criteria were identified in (Jabir et al 1998):

• A principle is a proposal formulated in a prescriptive way;

• A principle should not be directly associated with, or arise from, a technology, a method,

or a technique, or itself be an activity of software engineering;

• The principle should not dictate a compromise (or a proportioning) between two actions

or concepts;

• A principle of software engineering should include concepts connected to the engineering

discipline;

• It must be possible to test the formulation of a principle in practice, or to check its

consequences.

B. Two additional criteria across the full set of proposals were also identified in (Jabir et

al 1998):

• The principles should be independent, not deduced (Boehm B.W. 1983)

• A principle should not contradict another known principle (Bourque P. et al. 2002).

15

Step 2: Analytical verification of each of the proposed 308 principles surveyed against these

criteria. In (Seguin N., 2006) it is reported that only 34 out of the 308 proposals met the full

set of criteria to be recognized as CFP. Table 1.4 presents the list of these CFP from (Seguin

N., 2006), in alphabetical order. However this set of 34 CFP still has not been analyzed from

an engineering perspective.

Table 1.4 Inventory of the candidate FP

(Seguin N. 2006)

No.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

Candidate fundamental principle s - i n alphabetical order

Align incentives for developer and customer

Apply and use quantitative measurements in decision making

Build software so that it needs a short user manual

Build with and for reuse

Define software artifacts rigorously

Design for maintenance

Determine requirements now

Don't overstrain your hardware

Don't try to retrofit quality

Don't write your own test plans

Establish a software process that provides flexibility

Give product to customers early

Grow systems incrementally

Implement a disciplined approach and improve it continuously

Invest in the understanding of the problem

Involve the customer

Keep design under intellectual control

Maintain clear accountability for results

Produce software in a stepwise fashion

16

Table 1.4 Inventory of the candidate FP (continued)
(Seguin N. 2006)

i No .

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

Candidate fundamental principle s - i n alphabetical oiTIIPr^^ J

Fix requirement specification errors now

Quality is the top priority; long-term productivity is a natural consequence of high

quality

Rotate (high performer) people through product assurance

Since change is inherent to software, plan for it and manage it

Since tradeoffs are inherent to software engineering, make them explicit and

document them

Strive to have a peer, rather than a customer, find a defect

Tailor cost estimation methods

To improve design, study previous solutions to similar problems

Use better and fewer people

Use documentation standards

Write programs for people first

Know software engineering's techniques before using development tools

Select tests based on the likelihood that they will find faults

Choose a programming language to assure maintainability

In the face of unstructured code, rethink the module and redesign it from scratch

Yingxu Wang 2007

In his book "Software engineering foundations", Wang stated that "Software engineering is

an immature and fast growing discipline which depends on multidisciplinary foundations

such as philosophy, computation, mathematics, informatics, systems engineering

management, cognitive informatics, linguistics and engineering economics".

The author in his book tried to identify and explore the various knowledge and disciplines

that form the foundations of software engineering. The objective of his study was to define a

17

framework that integrates a set of software engineering principles. Wang inventoried the

principles of software engineering from different authors and among these, the work done by

Dupuis et al. 1999 (Dupuis R. et al. 1999). Wang inventoried a list of 55 principles of

software engineering from different authors. His methodology consisted next in the

eliminafion of the overlaps between these 55 principles: as a resuU, 31 principles remained.

Next, the author proposed what he referred to as a unified framework of software engineering

principles based on the mapping between each of the 31 proposed principles of software

engineering.

The fifty five principles inventoried from the literature and from which 31 principles were

derived were considered by Wang as engineering principles (Wang Y. 2007). But a key

question still remains: are these really engineering principles?

1.3 Th e identification o f engineering knowledge types and characteristics

Vincenti 199 0

In his book "What engineers know and how they know if, Vincenti described different types

of engineering knowledge based on his study of the epistemology of engineering. Vincenti

analyzed five case studies in aeronautical engineering over a period of fifty years and

proposed six categories of engineering knowledge. Vincenti stated that this classification can

be transposed to other engineering domains (Vincenti W. G. 1990). His engineering

knowledge types are:

• Fundamental design concepts: contains "the operational principle of the device";

• Criteria and specifications: allow the engineer to "translate general, quantitative goals

couched in concrete technical terms";

• Theoretical tools: to support engineers work. These include mathematical methods and

theories involved for the design calculation;

• Quantitative data: used by engineers. This data is obtained based on empirical

observation or calculated with mathematical models;

• Practical considerations: are activities without formal codification;

• Design instrumentalities: contain "the procedure, ways of thinking and judgmental skills

by which it is done".

IEEE & ACM joint curriculum 2004

The IEEE Computer Society (lEEE-CS) and the Association for Computing Machinery

(ACM) published in 2004 recommendations, for the software engineering curriculum (IEEE

and ACM, 2004).

The IEEE and ACM SE curriculum includes (in its chapter 2) a list of seven engineering

characterisfics. According to the IEEE and ACM, these seven characteristics are common to

all engineering disciplines. Table 1. describes these characteristics that can also apply to the

software engineering discipline.

Table 1.5 Engineering criteria
(IEEE and ACM, 2004)

ID.
1

2

n J

4

Engineering criteria
Engineers proceed by making a series of decisions, carefully evaluating options, and
choosing an approach at each decision point that is appropriate for the current task in
the current context. Appropriateness can be judged by tradeoff analysis, which balances
costs against benefits.

Engineers measure things, and, when appropriate, work quantitatively; they calibrate
and validate their measurements; and they use approximations based on experience and
empirical data.
Engineers emphasize the use of a disciplined process when creating a design and can
operate effectively as part of a team in doing so.

Engineers can have multiple roles: research, development, design, production, testing,
construction, operations, management, and others, such as sales, consulting, and
teaching.

19

Table 1.5 Engineering criteria (continued)
(IEEE and ACM, 2004)

ID.
5

6

7

Engineering criteria
Engineers use tools to apply processes systematically. Therefore, the choice and use of
appropriate tools is key to engineering.
Engineers, via their professional societies, advance by the development and validation
of principles, standards, and best practices.
Engineers reuse designs and design artefacts.

1.4 Othe r related works

SWEBOK guide 2004

The Guide to the Software Engineering Body of Knowledge (SWEBOK Guide), written

under the auspices of the IEEE Computer Society's Professional Practices Committee, was

initiated in 1998 to develop an international consensus in pursuing the following objectives:

• To characterize the content of the software engineering discipline;

• To promote a consistent view of software engineering worldwide;

• To provide access to the software engineering body of knowledge;

• To clarify the place, and set the boundary, of software engineering with respect to other

disciplines;

• To provide a foundation for curriculum development and individual certification

material.

In 2004, the IEEE Computer Society and ISO published a guide the software engineering

body of knowledge - the SWEBOK Guide (ISO-TR-19759 2004).

The SWEBOK Guide is subdivided into ten knowledge areas. Each knowledge area is

composed of topics and subtopics. Figure 1.3 illustrates the ten knowledge areas.

20

KAOl -

Requirements

KA02-

Design

KA03-

Construction

KA04-

Testing

KA05-

Maintenance

KA06 - Software Configuration {Management

KA07 - Software Engineerin g IManagement

KA08 - Software Engineerin g Process

KA09 - Software Engineerin g Tools and Metliods

KAIO - Software Quality

Figure 1.3 Knowledge areas (KA) of the SWEBOK guid e
(ISO-TR-19759 2004)

The content of each knowledge area (KA) in the SWEBOK Guide was developed by domain

experts and extensively reviewed by an international community of peers.

The content of the SWEBOK Guide has many objectives. However, these objectives do not

include the identification of software engineering fundamental principles nor of their

operational guidelines.

Robert, Abran, Bourque 2002

In 2002, Robert et al. published "A technical review of the software construction knowledge

area in the SWEBOK Guide". Robert et al. used (Vincenfi W. G. 1990) classificafion of

engineering knowledge to identify the types of engineering knowledge contained in the

"Software construction" knowledge area of the trial version of the SWEBOK Guide. The

goal of this analysis was the identification of the weaknesses in the "Software construction"

knowledge area.

In conclusion, a new breakdown was proposed by Robert et al. for the "Software

construction" KA. The use of Vincenti's classification helped in clarifying the missing parts

21

of engineering knowledge in the "Software construction" of the 2001 trial version of the

SWEBOK Guide (Robert F. et al. 2002).

Guay 2004

A comparative analysis was undertaken by (Guay et al. 2004) in "Comparative analysis

between the SWEBOK Guide and the fundamental principles of software engineering" to

evaluate the Software Engineering Body of Knowledge (SWEBOK) Guide with respect to its

coverage of the fifteen candidate fundamental principles identified by (Bourque et al.2002) in

"Fundamental principles of software engineering - a journey".

The methodology consisted of three steps. The first step was the analysis of the composition

of the CFP that is, whether each CFP forms one part or can be decomposed into two different

parts.

The second step was the identification in the trial version of the textual descriptions that

corresponded to each of the fifteen CFP, within the content of the ten knowledge areas and

their level of description.

Finally, the third step built a visualization of the breakdown for the correspondence of the

different CFP within the SWEBOK Guide (Guay B. 2004).

IEEE STD 1362-1998 Concept of Operations (ConOps) Document

This IEEE guide illustrates the format and contents of the concept of operations (ConOps)

document: "A ConOps is a user-oriented document that describes system characteristics of

the to-be-delivered system from the end user viewpoinf (IEEE STD 1362-1998).

22

It is used for "software-intensive systems: software-only or software/hardware/people

systems" (IEEE STD 1362-1998). This standard contains the set of elements that should be

present in all Concept Operational document described as follow:

The operational concepts "indicate the operational features that are to be provided without

specifying the design detail" (IEEE STD 1362-1998).

The operational scenario "is a step-by-step description of how the proposed system should

operate and interact with its users and its external interfaces under a given set of

circumstances" (IEEE STD 1362-1998).

The operational capabilities are the capabilities of the system provided by scenario.

The operational impact defines the "impacts of the proposed system on the users, the

developers, and the support and maintenance organizations" (IEEE STD 1362-1998).

The operational improvements provides "summary of the benefit to be provided by the

proposed system" (IEEE STD 1362-1998).

1.5 Summar y

The principles of software engineering surveyed in this chapter summarized the pioneer

pursuits of software engineering principles in the last 19 years. Many researchers have

published on principles of software engineering from 1994 to 2007; Normand Seguin's study

involved a range of authors covering a period of 33 years from 1970 to 2003. As a resuft, 308

principles were identified (among them the work done by (Bourque et al. 2002) from which

34 were identified as candidate principles (Seguin N. 2006). The selection process was

rigorous as each of the principles was analyzed through two steps with a number of

verification criteria.

23

Software engineering is defined by IEEE as an engineering discipline; however, it's lacks an

established foundation. Needing to be analyzed from an engineering perspective. Software

engineering lacks the description of the recognized principles. The candidate principles were

surveyed and analyzed by many authors; however, none of them tackled the issue of being

engineering principles or not. For these reasons, one should investigate the following

research issues:

• The lack of analysis of software engineering from an engineering discipline;

• Are these candidate principles indeed engineering principles or not ?

• The lack of the explicit and systematic description and the application of these software

engineering principles in the SWEBOK Guide

CHAPTER 2

RESEARCH OBJECTIVES AND METHODOLOG Y

2.1 Introductio n

The research methodology designed for this research work is qualitative. For the research

problem selected for this thesis, the problem addressed is not well understood: this can be

explained by a low level of maturity of the domain of study. And also, due to the originality

of the domain under investigation, there has been to date very little research work in the area

of describing principles of software engineering.

The research issues investigated in this thesis are defined as follow:

• Is software engineering an engineering discipline?

• Are these principles indeed engineering principles or not?

• The lack of explicit and systematic description of these engineering principles, and of

their application, for example in the SWEBOK Guide (ISO-TR-19759 2004).

To help structure the research topic, to approach the research problem and to carry out a

rigorous scientific investigation, an adaptation of the Basili's framework for experimental

research will be followed. The Basili's framework have proven efficient in software

engineering research (Basili V. et al. 1986).

This chapter describes the research project definition including: the research goal, the

research objectives, the users of research, as well as the research methodology and the

research inputs.

25

2.2 Researc h goal

Software engineering lacks maturity compared to other engineering disciplines. The research

goal of this thesis is to contribute to the software engineering discipline from an engineering

perspective, through the identificafion of software engineering fundamental principles

(engineering FP) and the description of operational guidelines for these engineering FP.

2.3 Researc h objective s

The following two research objectives have been selected:

• Identification of the engineering fundamental principles of software engineering from the

34 candidates identified by (Seguin N. 2006);

• Description of operational guidelines for the engineering ftindamental principles based on

the content of the SWEBOK Guide.

To achieve these research objectives from an engineering perspective, the following

approach was selected: analysis of Vincenti engineering knowledge and of the IEEE & ACM

engineering characteristics (IEEE and ACM, 2004), as well as the analysis of the content of

the SWEBOK Guide.

2.4 Researc h motivatio n

This research study on the set of candidate fundamental principles will contribute to a better

understanding and possibly, to the teaching of the principles of software engineering and will

help improve the content of the body of knowledge SWEBOK Guide (ISO-TR-19759 2004)

from an engineering perspective.

26

2.5 User s of research

The results of this research will be used mainly by the software engineering research

community and specifically by the people working on the foundation of software

engineering. It may also provide teachers with teaching material for software engineering

courses. In addition, there is interest in the IEEE Computer Society for the two objectives

selected in order to better understand the scope of its standards, and of their foundations, as

indicated by the chair of the Computer Society's Professional Practices Committee, Mr.

James W. Moore.

Ultimately, the result of this research will also provide help to all software engineers wanting

to develop software from an engineering approach.

2.6 Researc h input s

The key inputs to this research are:

• The Vincenti's classification of engineering knowledge based on five aeronautical case

studies (Vincenfi W. G. 1990);

• The 34 candidate fundamental principles identified in (Seguin N. 2006);

• SWEBOK Guide (2004): The generally accepted body of knowledge in software

engineering - the SWEBOK Guide - (ISO-TR-19759 2004);

• IEEE & ACM Software Engineering Curriculum (IEEE and ACM, 2004).

2.7 Overvie w of the research methodolog y

This section presents an overview of the research methodology designed to pursue the

research objectives. This research methodology consists of eight phases as seen in figure 2.1.

27

Phase 1 : Literature survey

Phase 1 of the research methodology consists of surveying the literature on topics linked to

the software engineering principles, engineering knowledge and the SWEBOK Guide from

an engineering perspective.

Phase 2: Analysis of software engineering from a n engineering perspectiv e

Phase 2 of the research methodology consists of analyzing the concept of engineering

"design" and comparing it with the "design" concept in the SWEBOK Guide using the

Vincenti categories of engineering knowledge.

Phase 3: Software engineering principles : Do they meet engineering criteria ?

Phase 3 of the research methodology identifies the engineering criteria and analysis of the

set of 34 CFP defined by Seguin from an engineering perspective.

Phase 4 : Identificatio n o f th e softwar e engineerin g principle s i n th e conten t o f th e

SWEBOK Guid e

The research methodology for phase 4 identifies the software engineering principles within

the knowledge areas of the SWEBOK Guide.

Phase 5: Identification o f the Operational Guidelines in the SWEBOK Guid e

The research methodology for phase 5 proposes operational guidelines for the engineering

ftindamental principles on the basis of the content of the SWEBOK Guide - (ISO-TR-19759

2004).

Phase 6 : Developmen t o f a consolidate d SWEBO K vie w fo r th e Measuremen t

fundamental principl e

The research methodology for phase 6 proposes a consolidated view for the measurement

fundamental principle.

28

Phase 7 : Analysi s o f 3 SWEBO K K A fro m a n engineerin g perspectiv e wit h respec t t o

the engineering fundamental principle s

The research methodology for phase 7 maps the Vincenti categories of engineering

knowledge to the "Software requirements", "Software design", "Software construction"

knowledge areas with regards to fundamental principles.

Phase 8: Evaluation of the operational guidelines in the SWEBOK Guid e

The research methodology for phase 8 consists of the design and execution of an evaluation

procedure for the operational guidelines within the SWEBOK Guide for evaluation purposes.

2.8 Detaile d research methodolog y

Phase 1 : Literature survey

It is noted from the literature survey in chapter 1 that software engineering still lacks the

analysis of software engineering principles from an engineering perspective.

Phase 2: Analysis of software engineering from a n engineering perspectiv e

This phase of the methodology consists of following three steps:

• Ste p 2.1 Analysis of Vincenti's categories of engineering knowledge

This step identifies and analyzes the six Vincenti's categories of engineering knowledge

(Vincenti W. G. 1990) to facilitate the understanding of these categories: fundamental

design concepts, criteria and specifications, theoretical tools, quantitative data, practical

considerations, and design instrumentalities.

• Ste p 2.2 Analysi s an d compariso n betwee n traditiona l desig n vs . design i n softwar e

engineering

This step consists of the mapping of the design concept in (Vincenfi W. G. 1990) with the

design concept in the SWEBOK Guide (ISO-TR-19759 2004) Figure 2.1.

29

Inputs Phases Outputs Outcomes
lEEE-SId 1362 -

199S

SWEBOK

Vincenti

IEEE & ACM
SE Curricuum
2000

34 CFP

Literature survey

Chapter 1

Literature survey elaborated

Analysis of software engineering from an
engineering perspective according to
Vincenti engineering knowledge

Chapter 3
Software engineering analyzed from an
engineering perspective

Identification of software engineering
principles

Chapter 4

Software engineering principles identified

Analysis ot I N
Software
Engineering from
An Engineering
Perspective,
European Journa l
for the Intormatics
Professional,
February ZOOfi

Appendix II I and VII u

Identification of the software engineering
principles in the content of the SWEBOK
Guide-ISO T R 19759

Chapter 5

Software engineerin g principles identified in
SWEBOK KA

Software Engineerin g
Principles: Do they
Meet Engineering

Criteria?

Chapter 6

Operational guideline s implemented for
SWEBOK Guide

Development of a consolidated SWEBOK
view for the Measurement fundamenta l
principle

Chapter 7

Consolidated view developed "Measurement
FP"

Analysis of a SWEBOK K A from an
engineering perspective with respect to the
engineering fundamental principles

Chapter 8

Vincenti and FPs mappe d to the SWEBOK
Guide

Evaluation of the operational guidelines in
the SWEBOK Guide

Chapter 9

Operational guidelines evaluated

Figure 2.1: Research methodology - overview of phases

30

• Ste p 2.3 The application o f Vincenti to some of the SWEBOK knowledg e areas.

This step consists in showing how Vincenti's categories of engineering knowledge are

addressed in some of the SWEBOK Guide by mapping the knowledge contained in the

SWEBOK KAs to the Vincenti six categories of engineering knowledge.

Phase 3: Software engineering principles : Do they meet engineering criteria ?

The second phase of the research methodology consists of the following steps:

• Ste p 3.1 Identification o f engineering criteria

Two sources were identified (Vincenfi W. G. 1990) and (IEEE and ACM, 2004).

• Ste p 3.2 Execution

The (Vincenti W. G. 1990) and (IEEE and ACM, 2004) engineering criteria are used as

inputs to this step to identify the CFP that map to engineering criteria;

• Ste p 3.3 Analysis and selection

The results of the previous mapping are used in this step and are analyzed to finally select

the CFP that map to engineering criteria;

• Ste p 3.4 Design of an external verificatio n

The design and execution of an external verification to verify the previous output that is,

the CFP identified as conforming to engineering criteria.

Phase 4 : Identificatio n o f th e softwar e engineerin g principle s i n th e conten t o f th e

SWEBOK Guide - IS O TR 19759

The fourth phase of this research methodology presents the coverage of the engineering FP

that were retained and validated in the previous phase within the content of the SWEBOK

KA (ISO-TR-19759 2004) and includes the following steps:

• Ste p 4.1 SWEBOK guid e

Analysis of the content of the SWEBOK Guide with respect of the selected engineering

FP;

• Ste p 4.2 Mapping FP

Mapping of each of the selected engineering FP to the content of the SWEBOK Guide

KA.

31

Phase 5: SWEBOK guide - operational guideline s

This phase proposes operafional guidelines for the SWEBOK Guide (ISO-TR-19759 2004).

This phase includes analysis of the content of the chapters of the SWEBOK Guide KA; and

description of the operational guidelines structured with (IEEE STD 1362-1998).

Phase 6 : Developmen t o f a consolidate d SWEBO K vie w fo r th e measuremen t

fundamental principl e

This phase consists of developing a consolidated view for the measurement fundamental

principles and designs a model for a consolidated view.

Phase 7 : Analysi s o f a SWEBOK K A fro m a n engineerin g perspectiv e wit h respec t t o

the engineering fundamental principle s

This phase consists in mapping between Vincenti's categories of engineering knowledge

(Vincenfi W. G. 1990), the lists of the engineering FP and SWEBOK KA (ISO-TR_19759

2004). Vincenti's categories of engineering knowledge are used as an analytical tool to map

each of the engineering principles that are present in the "Software requirements", "Software

design" and "Software construction" KA with respect to engineering fundamental principle.

Phase 8: Evaluation of the operational guidelines in the SWEBOK guid e

This phase consists of designing and executing a procedure to evaluate the operational

guidelines and is composed of design of an operational model and conduct the evaluation

procedure.

CHAPTER 3

ANALYSIS OF SOFTWARE ENGINEERING FRO M AN ENGINEERING
PERSPECTIVE

3.1 Introductio n

The SWEBOK Guide, also adopted as technical report TR 19759 by the (ISO-TR-19759

2004), has been selected to explore the following question: Is software engineering truly an

engineering discipline?

This chapter presents phase 2. An approach is proposed to investigate in a structured way the

content of the SWEBOK Guide to verify what engineering knowledge is included in this

Guide, and what could be missing. This approach is based on Vincenti's classification of

engineering knowledge (Vincenti W. G. 1990). However, since this classification of

engineering knowledge had not, at the time of this investigation, been used to analyze other

engineering disciplines, it was felt necessary to carry out some structuring and modeling of

the criteria embedded within Vincenti's work to render its use practical in the analysis of the

SWEBOK Guide (ISO-TR-19759 2004).

In particular, the engineering design concepts had to be probed further, since at first glance

there seemed to be a disconnect between the SWEBOK Guide concept of design and

Vincenti's description of engineering design. Finally, Vincenti's categories of engineering

knowledge (Vincenti W. G. 1990) are used to analyze a selecfion of three chapter's of the

SWEBOK Guide: "Software requirements", "Software design" and "Software construction"

KA.

This chapter is organized as follows: Section 3.2 introduces Vincenti's engineering

viewpoint. Section 3.3 presents Vincenfi's classification of engineering knowledge types.

Section 3.4 presents Vincenti's classification of engineering knowledge types models.

33

Section 3.5 introduces the design process. Section 3.6 presents the mapping results. Section

3.7 presents the analysis of the mapping results and in section 3.8 a summary is presented.

Annex I describes the mappings between the corresponding concepts for the classification of

engineering knowledge types and the related "Software requirements", "Software design"

and in "Software construction" KA.

Annex II presents the new breakdown of the "Software requirements", "Software design"

and in "Software construction" KAs based on the categories of engineering knowledge.

3.2 Vincenti' s engineering viewpoint

3.2.1 Overvie w an d context

As noted in chapter 1, (Vincenti W. G. 1990) in his book "What engineers know and how

they know it", classified categories of engineering knowledge. Furthermore, Vincenti stated

that this classification is not specific to the aeronautical engineering domain, but can be

transferred to other engineering domains. However, he did not provide documented evidence

of this applicability and generalization to other engineering disciplines. In addition, no author

could be identified as having attempted to do so either. In this chapter, one proposes some

pioneering work on the use of Vincenti's categorization of engineering knowledge as

constituting criteria for investigating software engineering from an engineering perspective.

The Vincenti categorization of knowledge (Vincenti W. G. 1990) was first used in a graduate

seminar in 2002 at the Ecole de technologie superieure, Universite du Quebec, as an

analytical tool to tackle this issue by analyzing each of the SWEBOK KAs (ISO-TR-19759

2004) separately. The initial purpose of this approach was to gain insights into their content

and structure which, by definition, were expected to be of an engineering knowledge type.

While it was easy for graduate students at the Master's degree and doctoral levels to use

Vincenti's criteria to analyze the SWEBOK design KA and to propose a mapping to the

Vincenti's categorization, this proved to be much more challenging for all the other KAs, to

34

the point where some of these students questioned the relevance of the applicability of

Vincenti's categorizafion to these other SWEBOK KAs and as a corollary to that, that these

other KAs did not necessarily constitute knowledge of an engineering type. The specific

vocabulary defined by Vincenti is presented in Table 3.1.

3.2.2 Vincenti' s categorization criteri a

Vincenti provides a categorization of engineering design knowledge and the activities that

generate it. However, the divisions are not entirely exclusive; some items of knowledge can

contain the knowledge of more than one category. From Vincenti's definitions of each

engineering knowledge-type category (ISO-TR-19759 2004), a number of categories were

identified and have been listed in Table 3.2. A short description of each category is provided

in Table 3.3.

Table 3.1 Vincenti's vocabulary relating to engineering terms and concepts

(Vincenfi W.G. 1990)

Engineering

vocabulary

Design

Normal

configuration

Normal

technology

Definitions
J

"Denotes both the content of a set of plans (e.g. in the design for a new

airplane) and the process by which those plans are produced".

"The general shape and arrangement commonly agreed upon to best embody

the operational principle".

According to Edward's constant that "what technological communities

usually do" comprises "the improvement of the accepted tradition or its

application under new or more stringent conditions."

35

Table 3.1 Vincenti's vocabulary relating to engineering terms and concepts

(Vincenfi W. G. 1990) (continued)

Engineerii^^

vocabulary

Normal

design

Operational

principle

Production

Operation

Radical

design

Engineering

knowledge

Descriptive

knowledge

Prescriptive

knowledge

"The design involved in normal technology".

"The engineer working with such a design knows at the outset how the

device in question works and what its customary features are, and that, if

properly designed along such lines, it has a good likelihood of

accomplishing the desired task".

"Normal design is evolutionary rather than revolutionary".

Defines the essential fundamental concept of a device,.

"How its characteristic parts... fulfill their special function in combination

to [sic] an overall operation which archives the purpose."

"Denotes the process by which these plans are translated into the concrete

artifice".

"Deals with the employment of the artifice in meeting the recognized
need".
"How the device should be arranged, or even how it works, is largely

unknown. The designer has never seen such a device before and cannot

presume that it will succeed".

"The knowledge used by engineers".

"Engineering knowledge has to do not only with design, but also with

production and operation".

"The knowledge of how things are".

"The knowledge of how things should be to attain a desired end".

36

Table 3.1 Vincenti's vocabulary relafing to engineering terms and concepts

(Vincenfi W. G. 1990) (continued)

Engineering

vocabulary

Device

Systems

Technologies

Concepts

Definitions
IS,

"Devices are single, relatively compact entities, such as airplanes, electric

generators, turret lathes, and so forth".

"Systems are assemblies of devices brought together for a collective

purpose. Examples are airlines, electric power systems and automobile

factories".

"Denote systems and devices taken together".

"May exist explicitly only in the designer's mind. They are unstated givens

for the project, having been absorbed by osmosis, so to speak, by the

engineer in the course of his development, perhaps even before entering

formal engineering training. They had to be learned deliberately by the

engineering community at some time, however, and form an essential part

of design knowledge".

Table 3.2 Vincenti engineering knowledge categories and corresponding concepts

(Vincenfi W.G. 1990)

Engineering

knowledge

category

Fundamental

design concept s

Corresponding concept s

• About the design
• Designers must know the operational principle of the device.
• How the device works
• Normal configuration
• Normal design

37

Table 3.2 Vincenti engineering knowledge categories and corresponding concepts

(Vincenti W. G. 1990) (confinued)

Engineering
knowledge
category

Criteria and
specifications

Theoretical
tools

Quantitative
data

Corresponding concept s

• Specific requirements of an operational principle

• General qualitative goals

• Specific quantitative goals laid out in concrete technical terms

• The design problem must be "well defined".

• Unknown or partially understood criteria
• This task takes place at the project definition level in the design

hierarchy.

• Definition of technical specifications

• Mathematical methods and theories for making design
calculations

• Intellectual concepts for thinking about the design.
• Precise and codifiable

• They come mostly from deliberate research.
• They are not sufficient by themselves.

• Specify manufacturing processes for production

• Display the detail for the device

• Data essential for design

• Obtained empirically

• Calculated theoretically

• Represented in tables or graphs

• Precise and codifiable

• They come mostly from deliberate research.

• They are not sufficient by themselves.

38

Table 3.2 Vincenfi engineering knowledge categories and corresponding concepts (Vincenti

W.G. 1990) (continued)

Engineering

knowledge

category

Practical

considerations

Design

instrumenta-

lities

Corresponding concept s

• Theoretical tools and quantitative data are not sufficient.

Designers also need practical considerations derived from

experience.

• Practical considerations are learned on the job, and not in school

or from books.

• Practical considerations are rarely documented.

• Practical considerations are also derived from production and

operation.

• This knowledge is difficult to define.

• This knowledge defies codification

• A prototype must often be built to check the designer's work.

• The practical consideration learned from operation is judgment.

• Rules of thumb.

• The practices from which these rules derive include not only

design, but production and operation as well.

• Knowing how

• Procedural knowledge

• Ways of thinking

• Skills based on judgment

• Knowledge on how to carry out tasks

• Must be part of any anatomy of engineering knowledge

Table 3.3 Vincenti: engineering knowledge categories and description

(Vincenfi W.G. 1990)

39

Engineering

knowledge

category

Description

Fundamental

design concepts

Designers embarking on any normal design bring with them

fundamental concepts about the device in question.

Criteria and

specification

To design a device embodying a given operational principle and normal

configuration, the designer must have, at some point, specific

requirements in terms of hardware.

Theoretical tool s

To carry out their design function, engineers use a wide range of

theoretical tools. These include intellectual concepts as well as

mathematical methods.

Quantitative data

Even with fundamental concepts and technical specifications at hand,

mathematical tools are of little use without data for the physical

properties or other quantities required in the formulas. Other kinds of

data may also be needed to lay out details of the device or to specify

manufacturing processes for production.

Practical

considerations

To complement the theoretical tools and quantitative data, which are not

sufficient. Designers also need less sharply defined considerations

derived from experience.

Design

instrumentalities

Besides the analytical tools, quantitative data and practical

considerations required for their tasks, designers need to know how to

carry out those tasks.

How to employ procedures productively constitutes an essential part of

design knowledge.

40

3.3 Vincenti' s classification o f engineering knowledge types

3.3.1 Relationshi p between the various categorie s

Since the categories are not mutually exclusive, it is important to understand the relationships

between them. An initial modehng of Vincenti's categories of engineering knowledge

(Vincenti W. G. 1990) is presented in Figure 3.1. This figure illustrates that, in seeking a

design solution, designers move up and down within categories, as well as back and forth

from one category to another.

It can also be noted that three categories (theoretical tools, quantitative data and design

instrumentalities) are related in the following manner: theoretical tools guide and structure

the data, while quantitative data suggest and push the development of tools for their

presentation and application - see Figure 3.2. Furthermore, both theoretical tools and

quantitafive data serve as inputs for design instrumentalities, while appropriate theoretical

tools and quantitative data are needed for technical specifications.

P u r id a m e n t a l O ^ s J g n C o n c e p t s

B a c K anc J R o r t h

C r i t e r i a s n d S p e c i f i c a t i o n

" T h t e o r e t i c a l t o o l s

O u a n t i t a t i v e D a t a

R r a c t i c a l O o n s t c J e r a t i o n

O e s i g n I n s t r u m e n t a l i t J e s

Figure 3.1 Vincenti's classification o f engineering knowledg e

41

Theoretical Tools

de Structure Pus h

t
Suggest the
development

of tools

Qualitative Data

Feeds

>
Feeds

Design Instrumentalities

Figure 3.2 Relationships between theoretical tools and quantitative data

3.4 Vincenti' s classification o f engineering knowledge-type model s

This section presents a detailed description of Vincenti's six categories of engineering

knowledge (Vincenti W. G. 1990) and the related models for each. Vincenti stated that these

categorizations of engineering knowledge are not exclusive, since some concepts of

knowledge can be found in more than one category.

3.4.1 Fundamenta l design concept s

The goal of "fundamental design concepts", according to (Vincenti W. G. 1990), is as

follows: "designers setting out on any normal design bring with them fundamental concepts

about the device in question" which means the definition of fundamental concepts related to

the device by the designer. Fundamental design concepts are composed of four elements in

Figure 3.3: operational principles, normal configuration, normal technology and concepts in

people's minds. At first, these concepts exist only in the designer's mind - Figure 3.4.

42

Concepts i n
peaples min d

Figure 3.3 Elements of a fundamental desig n concept

Concepts in people's minds are inputs to the project - Figure 3.4

GivensT

Figure 3.4 Project inputs

Operational principle s define the essential fundamental concept of a device: "How its

characteristic parts... fulfill their special functions in combination to [sic] an overall

operation..." (Vincenti W. G. 1990). The operational principles must be known by the

designers first - Figure 3.5 - and constitute the basic components for the design, whereas

operational principles are abstract, and the design moves from abstract concepts to precise

concepts - Figure 3.6.

43

Designers -Must know- Operational principle s

Figure 3.5 Designers initial knowledge

Basis

A

/ \ ^

/ Desig n \

/ \

, / Operationa l principles \ i
" / \

Precise

Abstract
r

Figure 3.6 Design pyrami d

Normal configuratio n is "the general shape and arrangement that are commonly agreed to

best embody the operational principle" (Vincenti W. G. 1990) .

Normal technolog y is "the improvement of the accepted tradition or its application under

new or more stringent conditions" (Vincenti W. G. 1990). Design, in Vincenti, "denotes both

the content of a set of plans (as in the design for a new airplane) and the process by which

those plans are produced" (Vincenfi W. G. 1990). There are two types of design: normal

design and radical design. The latter is a kind of design that is unknown to the designer, and

where the designer is not familiar with the device itself The designer does not know how the

device should be arranged, or even how it works. The former is a traditional design, where

the designer knows how the device works. The designer also knows the traditional features of

the device. This type of design is also the design involved in normal technology, which was

44

mentioned earlier. In conclusion, "normal design is evolutionary rather than revolutionary"

(Vincenti W. G. 1990). Finally, a normal configuration and operational principles together

provide a framework for normal design - Figure 3.7.

In Vincenti, a normal technology, or design, is part of a normal configuration and of related

operational principles.

Operational principle s

Normal configuratio n

— - P r o v i d e — •

f
Framework

for normal design

^

Figure 3.7 Relationships between normal configurations, operationa l
Principles and normal design

45

3.4.2 Criteri a and specification s

The goal for "criteria and specifications" can be expressed as follows: "To design a device

embodying a given operational principle and normal configuration, the designer must have,

at some point, specific requirements in terms of hardware" (Vincenti W. G. 1990). The

designer designs a device meeting specific requirements which include a given operational

principle as well as a normal configuration. At first, the design problem must be well defined.

Then, the designer translates general qualitative goals into specific quantitative goals -

Figure 3.8: the designer assigns values or limits to the characteristics of the device which are

crucial for engineering design allowing the designer to provide the details and dimensions of

the device that will be given to the builder. Furthermore, the output at the problem definition

level is used, in turn, as input to the remaining design activities that follow -

Figure 3.9. These specifications are more important where safety is involved, as in the case

of aeronautical devices. The criteria on which the specifications are based become part of the

accumulating body of knowledge about how things are done in engineering.

Finally, "criteria and specifications" exist as a category of knowledge only in engineering

and not in science. In science, the aim is to understand: scientists do not need to have highly

specified or concrete objectives. In engineering, by contrast, to design a device, criteria and

specified goals are crucial.

Figure 3.8 Designer's goals

46

Assigned values or
limits to criteria

Concrete design activitie s tliat folllow

Technical \
specifications \

Figure 3.9 Problem definition leve l output

3.4.3 Theoretica l tool s

Theoretical tools are used by engineers to carry out their design. The goal of the "theoretical

tools" category is expressed by Vincenti as follows: "To carry out their design funcfion,

engineers use a wide range of theoretical tools. These include intellectual concepts as well as

mathematical methods" (Vincenti W. G. 1990). Figure 3.10 illustrates intellectual concepts

(such as design concepts, mathematical methods and theories) for making design

calculations. Both design concepts and methods are part of science.

In the first class of theoretical tools are mathematical methods and theories composed of

formulas, either simple or complex, which are useful for quantitative analysis and design.

This scientific knowledge must be reformulated to make it applicable to engineering.

The second class of theoretical tools are intellectual concepts which represent the language

expressing those thoughts in people's minds. These concepts are employed first in the

qualitative conceptualization and reasoning that engineers have to perform before they carry

out the quantitative analysis and design calculations.

47

Theoretical tool s

<lnclude>

Mathematical method s -Employed In-
Quantitative analysi s an d

design

Intellectual concepts

<Derive>

Mathematical theorie s

Physical reasonin g

Mathematical theohes
and

Physical reasonin g

Provide
language fo r Thoughts i n people's mind s

<Employed ln >

Quantitative analysi s an d
design

Qualitative conceptualizin g
and reasonin g

Figure 3.10 Theoretical tools model

3.4.4 Quantitativ e data

The goal of "quantitative data" is to lay down "the physical properties or other quantities

required in the formulas. Other kinds of data may also be needed to lay out details of the

device or to specify manufacturing processes for production" (Vincenti W. G. 1990). Besides

fundamental concepts and technical specifications, the designers also need quantitative data

to lay out the details of the device. These data can be obtained empirically, or in some cases

they can be obtained theoretically and can be represented in tables or graphs.

These data are divided into two types of knowledge: prescriptive and descriptive. Descriptive

knowledge is "knowledge of how things are" (Vincenfi W. G. 1990) and includes physical

constants, properties of substances and physical processes. In some situations, descriptive

data refers to operational conditions in the physical world. Descriptive data can also include

48

measurement of performance. Prescriptive knowledge is "knowledge of how things should be

to attain a desired end" (Vincenfi W. G. 1990). An example might be: "In order to

accomplish this or organize this, arrange things this way".

Operational principles, normal configuration and technical specifications are prescriptive

knowledge because they prescribe how a device should satisfy its objective - Figure 3.11.

Quantitative data

Prescriptive knowledge —Includes-

Descriptive knowledg e

<lncludes>

Physical constant

Properties of substance

Physical processes

Operational conditions

Measurement of
performance

Normal configuration

Technical specification

Operational principles

Figure 3.11 Quantitative data model

49

3.4.5 Practica l consideration s

According to Vincenti, the goal of "practical considerations" is "to complement the role of

theoretical tools and quantitative data which are not sufficient. Designers also need for their

work less sharply defined considerations derived from experience" (Vincenti W. G. 1990).

This kind of knowledge is prescriptive in the way that it shows the designers how to proceed

with the design to achieve their goal.

Vincenti refers to practical considerations as constituting non codifiable knowledge derived

from experience, unlike theoretical tools and quantitative data which are very precise and

codifiable because theoretical tools and quantitative data are derived from intentional

research.

This category of engineering knowledge is needed by designers as a complement to

theoretical tools and quantitative data. These practical considerations are learned on the job,

rather than at school or from books. They are not to be formalized or programmed.

Practical considerations are derived from design, as well as from production and operation.

The practical considerations derived from productions are not easy to define and cannot be

codified, and a prototype is highly recommended to check the designer's work. An example

of a practical consideration from operation is the judgment that comes from the feedback

resulting from use - Figure 3.12.

3.4.6 Desig n instrumentalitie s

The goal of "design instrumentalities" in the engineering design process required for the

engineer's tasks is "to know how to carry out those tasks. How to employ procedure

producfively consfitutes an essential part of design knowledge" (Vincenfi W. G. 1990).

Having the analytical tools, quantitative data and practical considerations at hand, designers

also need procedural knowledge to carry out their tasks, as well as to know how to employ

these procedures.

Difficult t o define

Cannot b e codified

Need a prototype

50

Practical
considerations

Are
Less sharply define d

considerations

< Derived
from>

Design

Production

<Knov\/ledge
confiing from>

Operation

<Example>

Judgment

<Come from >

Feedback fro m use

Learned-

\
Derived from

on a job

<Are not>

Experience i n practic e

Theory

Tabulation

Programming

Figure 3.12 Practical considerations mode l

Design instrumentalities contain instrumentalities of the process, the procedures, judgment

and ways of thinking. The latter are less tangible than procedures and more tangible than

51

judgment; an example of ways of thinking is "thinking by analogy" (Vincenti W. G. 1990).

Judgment is needed to seek out design solutions and make design decisions - Figure 3.13.

Design instrumentalitie s

Instrumentalities o f the
process

The procedure s

Ways o f thinkin g

Judgmental skill s b y whic h
it is don e

Figure 3.13: Design instrumentalities mode l

3.5 Th e Design process

3.5.1 Th e engineering design process in Vincenti

According to Vincenti, the engineering "design" concept "denotes both the content of a set of

plans (as in the design for a new airplane) and the process by which those plans are

52

produced" (Vincenti W. G. 1990). In Vincenfi's view, design is an iterative and complex

process which consists of plans for the production of a single entity, such as an airplane

(device), how these plans are produced, and, finally, the release of these plans for production.

Vincenti mentions that there are two types of design in engineering, normal and radical. In

the former, the designer knows how the device works, how it should be arranged and what its

features are. In the latter, the device is new to the engineer who is encountering it for the first

time. Therefore, the engineer does not know how it works or how it should be organized.

Vincenti also mentions that design is a multilevel and hierarchical process. The designer

starts by taking the problem as input. The design hierarchies start from the project definition

level, located at the upper level of the hierarchy where problems are abstracted and

unstructured. At the overall design level, the layout and the proportions of the device are set

to meet the project definition. At level 3, the project is divided into its major components.

At level 4, each component is subdivided. At level 5, the subcomponents from level 4 are

further divided into specific problems.

At the lower levels, problems are well defined and structured. The design process is iterative,

both up and down and horizontally throughout the hierarchy. Vincenti's view of the levels of

design is modeled in

Figure 3.14. At each level of the hierarchy, a design can be either normal or radical.

53

Up
Project Definition

Overall design

Major component design Major component design

Down

Subdivision of
component

design

Subdivision of
component

design

Subdivision of
component

design

Subdivision of
component

design

X Z

Level 1

Level 2

Level 3

Level 4

Level 5

Figure 3.14: Modeling of the levels of the design hierarchy, as described i n Vincenti

54

3.5.2 Th e Engineering Process in the SWEBOK

The SWEBOK Guide is composed of ten KAs as referred in chapter 1. Each KA is

represented by one chapter in the SWEBOK Guide.

3.5.3 Desig n notion in the SWEBOK Guid e

Software design is defined in (ISO-TR-19759 2004) as both "the process of defining the

architecture, components, interfaces, and other characteristics of a system or component" and

"the result of [that] process". Software design in the software engineering life cycle is an

activity in which a software specification document is taken as input into the software design

phase. "Software requirements express the needs and constraints placed on a software

product that contribute to the solution of some real-world problem" (Kotonya G. and

Sommerville I. 2000).

The result will be the description of the software architecture, its decomposition into different

components and the description of the interfaces between those components. Also described

will be the internal structure of each component and the related details.

3.5.4 Desig n KA: mappin g between Vincenti and the SWEBOK Guid e

The analysis of the term "design" in both (Vincenti W. G. 1990) and the SWEBOK Guide

(ISO-TR-19759 2004) is presented in Table 3.4. One observes that it is defined significantly

differently in the two documents. Is there a direct and unique mapping of this "design" term

used in both the SWEBOK Guide (ISO-TR-19759 2004) and Vincenti's categorizafion of

engineering knowledge (Vincenti W. G. 1990)?

If there were such a direct mapping, would this mean that only the Design KA in the

SWEBOK (ISO-TR-19759 2004) could be mapped to Vincenti's engineering knowledge

(Vincenfi W. G. 1990)? Or, alternafively. is the notion of design defined by (Vincenfi W. G.

55

1990) different from the design concept in software engineering as defined in the SWEBOK

Guide (ISO-TR-19759 2004)? And, if so, what is its scope within the SWEBOK Guide?

The definitions and descriptions of this term in both Vincenti and the SWEBOK Guide are

presented in Table 3.4. One can note that it is defined significantly differently in the two

documents; that is, design in engineering according to Vincenti is not limited to design as

described in the SWEBOK Guide. In Vincenti, it goes far beyond the scope of the SWEBOK.

Being composed of the whole of the software engineering life cycle, as illustrated in Figure

3.15, whereas all the activities of software life cycle, like the requirements phase, the design

phase, the construction phase and the testing phase map to a single phase in the engineering

cycle, that is, design. These activities do not necessarily take place in the same order. Testing

in engineering starts right at the beginning, at the problem definition level, and goes on until

the final release of the plans for production, while in the software engineering life cycle, as

defined generically in the SWEBOK Guide, testing starts after the construction phase.

The detailed mapping between the different design levels in engineering and in the software

engineering life cycle is presented in Table 3.5

Table 3.4 Design according to Vincenti vs. design in the software engineering life cycle

Design definition for engineering according

to Vincenti

Design, as defined by Vincenti:

"The content of a set of plans (as in the design

for a new airplane)" and "the process by

which those plans are produced."

Design definition fo r software ^

engineering fll

Design is defined in (ISO-TR-19759 2004)

as both:

"The process of defining the architecture,

components, interfaces, and other

characteristics of a system or component"

and "the result of [that] process."

56

Table 3.4 Design according to Vincenfi vs. design in the software engineering life cycle

(continued)

Design definition fo r engineering accordin g

to Vincenti

Design definition for softwar e

engineering

Design, in the engineering life cycle is a

process which starts by taking as input the

problem, following a set of hierarchical levels.

This process moves from problem definition

to the production of a device as output.

Software design in the software engineering

life cycle is an activity in which software

requirements is taken as input to the

software design phase for analysis. The

result will be a precise description of the

internal structure of the program.

57

Requirement
Specification Design Construction Testing Malntanance

1

Sofware developmen t
life cycl e

Design

Engineering cycl e

Figure 3.15 Design according to Vincenti vs. design in the software engineering lif e
cycle

Table 3.5 Mapping of the design process in engineering vs. the software engineering life

cycle

Levels

1

2

3

4

Description of the design process in

engineering

Project definition

Overall design - component layout of the airplane

to meet the project definition.

Major component design - division of project into

wing design, fuselage design, landing gear design,

electrical system design, etc.

Subdivision of areas of component design from

level 3 according to the engineering discipline

required (e.g. aerodynamic wing design, structural

wing design, mechanical wing design)

Software engineering lif e

cycle 1

Requirements

Specification

Architecture of the system

Detailed design

58

Table 3.5 Mapping of the design process in engineering vs. the software engineering life

cycle (continued)

Levels

5

Description of the design process in

engineering

Further division of the level 4 categories into

highly specific problems

Software engineering life m

cycle 1

Construction

3.6 Mappin g results for the Vincenti classification o f engineering knowledg e

This section presents the related results for the analysis of the "Software requirements" KA,

the "Software design" and the "Software construction" knowledge areas of the SWEBOK

Guide from an engineering perspective.

To analyze the breakdown related to these knowledge areas, the Vincenti classification of

engineering knowledge is used to gain further insights on the level of maturity of this KA

from an engineering viewpoint.

This analysis is based on the models of engineering knowledge described earlier. These

models give one a descriptive analysis of the various key elements contained in each of the

corresponding software engineering knowledge areas.

This analysis allows one to make an appropriate mapping among the different categories of

the engineering knowledge and the knowledge areas related to the SWEBOK Guide. As a

result, this analysis looks into these KA from an engineering perspective.

The different mapping between the categories of engineering knowledge and the 3 SWEBOK

KAs are presented in Annex I.

As a result of this mapping a new breakdown is proposed for the "Software requirements",

"Software design" and in "Software construction" KAs based on the Vincenti categories of

engineering knowledge types - see Annex II.

59

Next is presented an analysis of the engineering content within the first three KAs of the

SWEBOK Guide using Vincenti categories of engineering knowledge, that is: "Software

requirements" in table 3.6, "Software design" in table 3.7 and "Software construction" in

table 3.8.

o

3
O

O
m

cr

>

o

o e

'iZ

"SD
s

o

U

e

I3£
S

O
CQ

CZ3

o

B

B
u
"3
w

I
O

V

BT B

Q 3
k.

• ^ ^

a

en
S _ _ o

••C ^
« -P
k.

o
U

w

u
>
.w C4
*rf
.^rf

3
C

c«
w

• * - >

eo
re

JS
H

T3
B
a
rt

it
er

l a

U

R

:« Q

en

T
oo

B
0
*^
rt u

ci
fi

<u a
w

B
M)

3

B

k.

os;

o

^

-
Sy

st
em

so

ft
w

ar
e

^ ^

re
qu

ir
em

e
-F

un
ct

io
n

na
l

0

N
on

-f
un

ct
 r

-
E

m
er

ge

pr
op

er
ti

es

i2 T 3

= S
(U < U ra

P t- :

c
o

•-i^ S ? r <- >
•E ^ u
<U O 13 - : _

c
c« I D
<u E
o u
O h

o

B

B

' 3

c

C£5

CZ5

B

B
T3
B
3

S E S
3 « o
izi S B «
c« 2 « Ul C c/)
D « (U
o c o

Oi "^ l i

O

o

B

'3
a*
Oi

Vi
en

O

a.

^ U C Q O ii J

o <u

U J < u

C/5
• « — »

c
u E (U
u«
3

R
eq

rc
es

3
0
00

^
• - ^ .

CS
3
o-
1/5

« <U
0
;-D-

• * — '

C
0)
E 4)
> 0
u
n. E

. 1 •

^

B

B5

s o

"a*

P

' 3
cr
<u

o

3
D .
il>
o
3
O U

SO

4>

O

(l>
E
(1)
k.
3
a-a> Cci

.X
• * - »

0
in
C/3
C«
W
0

3 ^ c =

"5 '^ '^ =

B <fi

3 a

O ^ Q td f S

^

T3
1)

_g
*^—»
CI
O o
<u

o
o
PQ
W

lU

e

ui
re

CT
<U

Di
u
:-• a ^

of
t

C/D
V O

r^
<U

cn

o
C

3 ifi
V3

•^rf
B
01

s
k.
3

<U

OS

0£

O
B

^B
'Z

<U
ii
B

'51)
B

U o
ISX)

U
B

B

Ml
S

O

o
cz)

B
01

k.

o
tn

o
.'SP
o>

Q

B

s
3
k.
en
B

^-»

ir
em

en

3
O "
<D

1

^
<U

re
vi

C/l
(L»
+.*
(U
CJ

pt
an

0)
o
o
<

1

60
c

ty
pi

o
o

1

_ _ o

CLi a
o
U

o>
>

3

£ o
® U

"2 a S .2

. t : • «

^

<u

M
od

c
o

va
li

da
t

:
'

M

J

C/5 C/ 1

5 .2 5 .2
_ . 2 < i > _ i u a _ < u o
^ c 3 oi g.-5 a> 3 ' 5
(/5 (4- 1 O rr i S ^ flj t « V

c o

>, J J o > , u </ } u u

8 B - w

s M) a

^ Q g
B
3

I 2

e
B
a> k<

S
<u OS

io
n

•w :«
u
c:

ec
i

n tK

lU
GO

J2

o

+-»
c lU

GO
C
c3
S

D
U l
3

w c
u
>
w

1

UJ
s:
U-,

o

c <u
fc <L)

3
cr
^

c/l

<U
O
o
a.

c/l
C
a*
E 1)

-)

R
eq

 nn c

b

hf)
C

3
t«

!>
S

s (U

b
(U

3
cr
L.

-<—»

m
en

eq

u

a:

CO

(U
4—»

3 . D

A
tt

r

e
V
B
<u
k.

"3
cr
<u

05

o

>

s

1 I
Qj 'e «

C
O u

CZJ ^ W C Q o ii i O ; D ^ Q u

-a
'S
O

O
PQ
W

<u

c
'1/3.

Q

o

IS

o>
bti

"I
o

_g
'C

a
'5i)
e

V3

'u o
I5£

R U

u

ej)

o
oa

s
o

a
0>

Q
k.
C3

o

e
•Sf
'w3

k.

o
C/5

a b£

D
es

i

• w

R
.«.< B
V

ru
m

• * ^

en B
N ^

y

-A
rc

hi
te

ct
ur

a
st

yl
e

(M
ac

ro

ar
ch

ite
ct

ur
al

em

s
pa

tt

C3 R
U k .

U 7 3
tA

H ^ GO 0)
. ^ ^ -4— »

Q ^
1

0
r }

^

03
^ 3
t >
(L>

j : :
0
Ul a

trt

B (U
4—*

0 ,

(U
>

. fc'
R

. fc'

.*.)
B
3 a

R
U

•tmt

eo
re

.B
H

•o
B
«
R

ite
r

k.
U

R
•«..»

C4
0

en

To
o

B
0

.fcd

cs u

ci
fi

V
a.
tn

00

2>

.2 " a

" a s s = ^
„ . . • = -2 S -S g > S § 2 ' 5

o

.9 "5

C C t/ j O u • " u n - g '3 c - o 6B u

S 2 >
O - S (U
C C V -
O O o O U

8 fc J 2

c
o

= '5
0 K

Q.
S
Q

..4.A4Jfr^«-..-...•...,

R
•4-<
oi B

-go
3

ti

c
.S?
en
<U •a i 2 _ o .

o " u o • " t i ^5

B
b£

V

<u
k.
R

o

•* ->

B

B

.B - 3

1 - T 3 C ' r " r ^ t . ^ ^
U t ! fc o C i i 5 0 i i fc ^ o

g j

en
V
3

en

>- .

B

'1/5
a

V
k.
C3

o

= u . b

2 ^ t s

^ S 1 3

° iT ! n H - . U t.0 2 1) c
U - ' -

2 .2 i 1 • ? - g 2 a M
{/I > e d c 3 H — c d a

U. <

73
B
R

k.

4>
k.

k. «
3 u

.^ 1 3 - ^
o

, B

en C S

!/3 ^ ti c : O ^ O 2 Q ti (N

T3
(U

c
C o o

-^
'3
a
o m w
en

c
GO

Q
0)
S-i
03

O
GO

03

H

b£
T3

1
o

V
V
B

' 5 3 D
B

o

B
u
B

bX)
B

o
03
ti

O
. k .

B

u

I
o

B

Q
k.
CI

o

*-t

« • w
B B

D
es

ig

ru
m

e

** V3
B

1—(

w
'*" c

i . i ^ O C/ 5
; c s • - D
i « 3 c r

il
it

y
ev

al

ch
ni

' r , 1, 1
! 3 - O * i
IP'S

_
CO

3

; 3
i i s

1

c
o
*->
o.
c/5

a> X)

ew
)

>
CO

C/)

^
o
>

.£3

cu
1

c
o
D.
t>
c/l

• 3

^ U

>
u
F=
CO
c

R C «
U k .

•2 a > u ^
^ B

cu 5 U

s
an

d
io

ns

ue
s

.t: > . 3 c
CO W c O " §
3 S > U

Q ^ C O 0) + S
1

CO

<L>
c

-G
e

\

1 "c O

-G
en

er

c/l
<U

00
<U
m

St
r

gi
es

St

ra
te

T- l

n-
or

ie
nt

e

o
•*-»

U

-F
ur

c o

-F
un

ct
i

c

re
d

de
si

g

3
3
u
C/5

or
ie

n

•3

or
ie

nt
e

o
<i>

O
1

ur
ed

st

ru
ct

c
0 0

T 5

• n
(U

t
or

ie
nt

-O

bj
ec

uc

tu
re

••-<
CO
CO

-D
at

c

de
si

g
d

de
si

gn

H)

te
r

1
-c

en

tr
uc

tu
re

-D

at
as

•3

ne
nt

 b
as

e

o D.

-C
om

c

ed
 d

es
ig

-c

en
te

r

c
C/J

1) -a

on
en

t
-C

om
p

t

de
si

gn

ba
se

c

Q
ua

nt
it

at
iv

e
D

at
a

T
he

or
et

ic
al

T

oo
ls

C

ri
te

ri
a

an
d

sp
ec

if
ic

at
io

n

•

-M
ea

su
re

s
-Q

ua
li

ty

an
al

ys
is

 a
nd

ev

al
ua

ti
on

s
te

ch
ni

qu
es

-Q
ua

li
ty

at

tr
ib

ut
es

-M

ea
su

re
s

c > c >
„ . 2 S ^ .2 .a
2 D . > . 2 D , E
^ '5 -y I 5 §
3 (u i S < u u -rt ^
fc -3 0 0 oa -3 s

^

• 3

C (U 01)

CO

.y c " 3
- 3

_ .S i C - 3 C
^ ? ? 2 ^ 3 = * - = fe B - H " = tj M o o p c 1 ^ .S 2 ? • « . « • «

CJ T 3
2 - 3

o

<u c o
D.
B o
u

I .S f

3
ti

B
• o
B
C3

i« . 2
• a

U B

o : = tn e s
3

B
_o
_3

B

• o
V

u

o
C/5

B
O

O
B

J
B
UD
CA
41

•o
OJ

tw
ar

<« o
1/3

• a
B
n
4>

eg
i

k.
-^.1
W)

Vi
•o
o

et
h

E

CZ5 ^ ti C Q O ^ O 2 Q ti

d
o
O
d
! - i

C/i
d o U
OJ
S-i
03

o
oo
rn

03

u
&X)

•w
V

^
o
J
bX)
a • p ^

k.

V
a • p ^

bX)

a 4>

O
en

k.
O
bX)
V
* * c«
U
, p ^

-^-t

a

in
ce

>

in
g

en
3

; ^

o tt
ti

(/3

ro
m

K

A
f

a
o

3
ka
en

a
o

U
u
k.

ftw
a

o
CZ!

_^

A
• * *

S. s bX) V
•S S

IXl

a

o
mm - ^
C« C 4
U k .

2 ' 1
0. 5 U

4>
>

• i M

CS c 8

** . 3 .̂ .̂ R

3
O

^^
C3

'•tt -
u g

H

"« a
S 2
C« c «

• - «

^ £ -

M M

c«

3
ti

a
2i - 2
« w ^
B 2 ^
d •* - *

U

U l

o tw
bO -

.S O

3 ? 5
c/5 r d
c ^ o «
u >

1

_c

T3
I-I
CO

• o
3
CO

cr
1

UO
I

o
3

a o o

d
o
o
R ^ — 1

m
d

-C
o

GO
d
^ ^
"1
DH

d
o
Ci
d
.*—• m
d

-C
o

en
D

T3
O

s

in
g

-̂» o 3
<-•
CO

d o
1

o <+H

d o
• y 03
O

ri
fi

(U
>

'

_d
CO

T3
U l

'O
d

1

d
C/3

n3

nd
ar

03

c/p

io
n

-̂> o
2 tn
d
O
o

io
n

ns
tr

uc
t

o
o

GO
d

^ — 1 m

ti
ci

p

d
<

an
ge

J 3
o

d ! ^ d o g o d o
o
2 4—1
t/3
d o

U

<i>
Ul
3
n3
1)

a

o
3
Ul 4-»
C/3
d o

U

tn
lU n-t
O
B

o
3
U l 4—»
t/3
d o

U

00
d

d
o

tr
uc

ti

tn d o
U

1

0)
GO
03 G O
3 d

^1
c3 © - U

d
o

4—»

(>

St
ru

d
o

U

1

Gfl
d

1>
4 - *

d
o

+-1
t>

St
ru

c r>
U

1

> .
1 1

c3
3
CT

d
o
o

0. 2
(L) +- ; c/l C O
3 d
(U o

Oi U
1 1

d
o • ^ H

o =3

•d ' ^
— d 3 o

1

' * — »

^!',i.

'\

d
o

4—•
o 3
Ul
CO
d
o U
1

d
GO
CO
(U

T3

-M
in

im
iz

in
g

co
m

pl
ex

ity

-S
ta

nd
ar

ds
 in

co

ns
tr

uc
tio

n

So
ftw

ar
e

co
ns

tr
uc

tio
n

fu
nd

am
en

ta
ls

-C
on

st
ru

ct
io

n
pl

ar
m

in
g

-C
on

st
ru

ct
io

n
m

od
el

s
M

an
ag

in
g

co
ns

tr
uc

tio
n

-C
on

st
ru

ct
io

n
de

si
gn

-I

nt
eg

ra
ti

on

Pr
ac

tic
al

co
ns

id
er

at
io

n

« / 2 ^ a C Q O ^ O ^ Q t i < ^

65

3.6.1 Softwar e requirements : Vincenti's view point

Table 3.6 presents the mapping between the "Software requirements" KA and the Vincenti

categories of engineering knowledge types. From table 3.6 one observes that:

• Some of the "Software requirements fundamentals", "Process" and "Analysis" topics

map with "Fundamental design concepts" category of engineering knowledge.

• Some of the "Software requirements fundamentals", "Process", "Analysis",

"Specification" and "Practical considerations" topics map with "Criteria and

specification" category of engineering knowledge.

• Some of "Requirements analysis" and "Validation" topics map with "Theoretical tools"

category of engineering knowledge.

• Some of "Requirement elicitation", "Analysis", and "Practical considerations" topics

map with "Practical considerations" category of engineering knowledge.

• Some of "Requirements process", "Validation" and "Practical considerations" topics map

with "Design instrumentalities" category of engineering knowledge.

3.6.2 Softwar e design : Vincenti view

Table 3.7 presents the mapping between the "Software design" KA and the Vincenti

categories of engineering knowledge types:

• Some of the "Software design fundamentals", "Key issues in software design" and

"Software structure and architecture" topics map with Vincenti "Fundamental design

concepts" category of engineering knowledge.

• Some parts of "Key issues in software design" topics map with "Criteria and

specification" and "Theoretical tools" categories of engineering knowledge.

• Some parts of "Software structure and architecture" topics map with "Practical

considerations" and "Design instrumentalities".

• "Software design quality analysis and evaluation" topics map with all Vincenti categories

of engineering knowledge except for the "Fundamental design concepts" and

"Quantitative data".

66

• "Software design notations" map with "Theoretical tools" and "Design instrumentalities"

categories of engineering knowledge.

• "Software design strategies and methods" map with "Criteria and specification",

"Practical considerations" and "Design instrumentalities".

3.6.3 Softwar e construction : Vincenti view

Table 3.8 presents the mapping between the "Software construction" KA and the Vincenti

categories of engineering knowledge types:

• Some of the "Software construction fundamentals" map with all categories of

engineering knowledge except for "Quantitative data".

• Some of "Managing construction" subarea map with "Fundamental design concepts",

"Theoretical tools" and "Design instrumentalities" Vincenti categories of engineering

knowledge.

• Some of "Practical considerations" topics in "Software construction" KA map with

"Fundamental design concepts", "Theoretical tools", "Practical considerations" and

"Design instrumentalities" Vincenti category of engineering knowledge.

3.7 Analysi s using the Vincenti classification o f engineering knowledg e

This section presents the analysis of the related results presented earlier for the three

knowledge areas. This analysis can provide useful insights from an engineering perspective

into these KAs and helps categorize the knowledge contained in the "Software

requirements", "Software design" and "Software construction" KAs of the SWEBOK Guide,

for instance, covering all the categories of engineering knowledge from an engineering

viewpoint, and does not mean that this results analysis are complete and inclusive as

follows:

• Most of the "Software requirements" engineering knowledge is concentrated in

"Fundamental design concepts" and "Criteria and specifications" categories of

engineering knowledge. The other parts of the "Software requirements" knowledge are in

67

"Practical considerations" and "Design instrumentalities" categories of engineering

knowledge.

• The "Software requirements" knowledge is still lacking engineering knowledge from the

"Theoretical tools" and "Quantitative data" categories.

• The "Software design" KA topics map with all Vincenti categories except "Quantitative

data" where some data collected from design measurements are lacking.

• The "Software construction" KA in the SWEBOK has a full mapping with "Fundamental

design concepts", "Theoretical tools", and "Design instrumentalities".

3.8 Summar y

The SWEBOK Guide (ISO-TR-19759 2004) documents an international consensus on ten

software engineering KAs within what is referred to as an engineering discipline. Software

engineering, as a discipline, is certainly not yet as mature as other engineering disciplines,

and some authors have even challenged the notion that software engineering is indeed

engineering. The work presented in this chapter has involved investigating this engineering

perspective, first by analyzing the Vincenti classification of engineering knowledge, and

second by comparing the design concept in Vincenti vs. the design concept in the SWEBOK

Guide.

The result of this analysis shows that the design issue in Vincenti is not limited to the design

issue in the SWEBOK Guide. Design in engineering according to Vincenti is not limited to

design as described in the SWEBOK Guide, going beyond, in that it is composed of the

whole of the software engineering life cycle.

Finally, the SWEBOK "Software requirements", "Software design" and "Software

construction" KA were used as examples and analyzed using Vincenti categories from an

engineering perspective.

68

This analysis has shown that almost all the categories of engineering knowledge described by

Vincenti are present in these KAs of the SWEBOK addressing the full coverage of almost all

related engineering-type knowledge.

CHAPTER 4

SOFTWARE ENGINEERING PRINCIPLES : DO THEY MEET ENGINEERIN G
CRITERIA?

4.1 Introductio n

As mentioned in a literature review covering the previous 19 years on exploring the

candidate fundamental principles of software engineering, 308 distinct proposals of

fundamental principles were identified (Seguin N. 2006). These 308 distinct proposals were

then analyzed against a set of criteria related to the specific concept of "principle", following

which only 34 were recognized as bona fide CFP (Seguin N. 2006). This study did not,

however, include within its research scope, an analysis of these candidates from an

engineering perspective.

This chapter presents phase 3: an analysis of these 34 CFP from an engineering perspective.

One of the challenges of this research phase, of course, was to figure out what criteria should

be verified from an engineering perspective since, in the traditional engineering literature,

such criteria are not explicitly described. This chapter documents the approach selected to

identify these verification criteria, as well as what was found when these criteria were

applied to the set of 34 CFP.

This chapter is organized as follows: Section 4.2 presents the analysis methodology selected.

Section 4.3 identifies the engineering criteria. Section 4.4 presents the verification against the

two sets of criteria. Section 4.5 presents an analysis and consolidation using both sets of

criteria. Section 4.6 presents the external verification. Finally, section 4.7 presents a

discussion and future research directions.

70

4.2 Analysi s methodolog y

The scope of the criteria used in (Seguin N. 2006) was limhed to the concept of "principles"

and did not include the specificities of engineering concepts themselves.

The list of 34 CFP (Seguin N. 2006) constitutes the input to the analysis process required to

verify whether or not they are indeed bona fide engineering principles. More specifically, the

research issue addressed in this chapter is: which of these 34 CFP are indeed software

engineering fundamental principles (hereinafter referred to as the FPj?

To conduct such a verification, engineering criteria must be available, but no related work

could be identified. The first challenge was then to determine verification criteria from an

engineering perspective. To tackle this issue, it was necessary first to study the epistemology

of engineering. For that purpose, two sources, Vincenti, the author of the book, "What

engineers know and how they know i f (Vincenti W. G. 1990) and the joint IEEE-ACM

software engineering curriculum (IEEE and ACM, 2004) were selected:

• (Vincenti W. G. 1990) has identified a number of engineering knowledge types as key to

the engineering disciplines and from which engineering criteria can be derived.

• The (IEEE and ACM, 2004) have documented a set of topics within their joint software

engineering curriculum and from which engineering criteria can be derived.

The approach designed for identifying relevant criteria and applying them to the set of 34

CFP (Seguin N. 2006) consists of four steps - see Figure 4.1:

step 1
Identification o f 2 set s o f
verif ication criteri a f ro m

Vincenti an d IEEES.AC M

r\
; U'

step 2
Verification agains t th e tw o

sets o f criteri a
K

; 1 /

step 3
Comparat ive analysi s o f th e

two set s o f verificatio n
outcomes an d synthesi s

^ 7

Step 4
Design an d executio n o f a n externa l verificatio n

Figure 4.1 The Four-steps verification proces s

71

4.2.1 Ste p 1: Identification o f two sets of verification criteria .

This step consists of the identification of criteria which would be relevant to any engineering

discipline. Such criteria could have been taken either 'as is', when identified and defined

expressively, or derived, when documented only in an implicit manner. The inputs to this

step are the two sources of information identified from the literature work and the outputs

are: the two sets of criteria derived from (Vincenti W. G. 1990) and from the (IEEE and

ACM, 2004) joint software engineering curriculum. The criteria identification phase based

on (Vincenti W. G. 1990) is summarized in Figure 4.2 which shows its inputs and its outputs.

Analysis to identify
engineering

criteria

1-Problem
2-Criteria
3-Techniques
4-Quality
5-Schema of quality
6-Measurement
7-Assessment ^ — " ^ ~~~--~ ^

Figure 4.2 Identification o f Vincenti engineering criteria (Vincenti W. G. 1990)

The criteria identification phase based on the (IEEE and ACM, 2004) criteria is summarized

in Figure 4.3 which shows its inputs and its outputs.

lEEE&ACM Softwar e

curriculum

Analysis t o identif y
engineering

criteria

1-Decision makin g
2-Measurements
3-Disciplined proces s
4-Engineer's role s
5-Use o f Tool s
6-Development an d validatio n
7-Reuse desig n

Figure 4.3 Identification o f the lEEE-ACM engineering criteria
(IEEE and ACM, 2004)

72

4.2.2 Ste p 2: Verification executio n

The 34 candidate FP are taken as inputs in the second step and analyzed next

with respect to the two sets of engineering criteria identified in step 1.

The output will be the FP that have at least one direct mapping and those that have only an

indirect mapping to either (Vincenti W. G. 1990) or to the (IEEE and ACM, 2004)

engineering criteria. This second step is illustrated in Figure 4.4.

Sets of
Engineering

criteria: ^
- Vincenti

-lEEE&ACIVI

Mapping of candidate FPt o
each set of criteria

^
w

List of the mappings agains t
sets of engineering criteri a

^

Figure 4.4: Step 2: Verification proces s against engineering criteria

4.2.3 Ste p 3: Analysis and selection

Step 3 carried out the analysis across each set of engineering criteria.

This step identifies those candidate FP that meet engineering criteria from both sets of

criteria, and those that do not. For instance, the candidate FP that meet only the Vincenti

criteria (Vincenti W. G. 1990) and the candidate FP that only meet the lEEE-ACM criteria

(IEEE and ACM, 2004) are analyzed to check whether or not they can be identified from the

FP that are recognized as engineering FP.

4.2.4 Ste p 4: Design and execution of an external verificatio n

Step 4 carried out the design and execution of an external verification to verify the output

provided by step 3, that is, the selected set of engineering FP.

73

4.3 Identificatio n o f engineering criteria: step 1

4.3.1 Vincent i

(Vincenti W. G. 1990) has distinguished seven elements for engineering which he referred to

as "interactive elements" and which he selected prior to categories of engineering knowledge

types. These elements show the "epistemological structure of the engineering learning

process" (Vincenti W. G. 1990) based on the analysis of the five aeronautical case studies.

These seven elements represent, in Vincenti's opinion, a necessary set of different elements

that interact with each other for the completion of an engineering activity.

These seven interactive elements are referred to here as the Vincenti engineering criteria and

are listed in Table 4.1. The abbreviations that were selected to represent each of these criteria

are listed in the right-hand column of Table 4.1.

Table 4.1 Engineering criteria identified in Vincenti

ID.

1

2

3

4

5

6

7

Vincenti engineering criteria ^^^^HMH i

Recognition of a problem

Identification of concepts and criteria

Development of instruments and techniques

Growth and refinement of opinions regarding desirable

qualities

Combination of partial results from 2, 3 and 4 into practical

schema for research

Measurement of characteristics

Assessment of results and data

I^VAbbreviation 1

Problem

Criteria

Techniques

Quality

Testing

Measurement

Assessment

74

4.3.2 IEE E and ACM joint curriculum

The IEEE Computer Society (lEEE-CS) and the Association for Computing Machinery

(ACM) (IEEE and ACM, 2004) describe the characteristics of an engineering discipline (see

Table 4.2). These characteristics are adopted here as engineering verification criteria. The

abbreviations selected to represent each of these criteria are listed in the right-hand column of

Table 4.2.

4.4 Verificatio n agains t the two sets of criteria: step 2

The set of the 34 candidate FP is next mapped to the two sets of engineering criteria: each

candidate FP is taken as input and analyzed using each of Vincenti's (Vincenti W. G. 1990)

seven criteria and, again, each of the seven (IEEE and ACM, 2004) software engineering

criteria.

Table 4.2 Identification of IEEE & ACM engineering criteria

ID.

1

2

3

Engineering criteria identifie d

Engineers proceed by making a series of decisions, carefully

evaluating options, and choosing an approach at each decision

point that is appropriate for the current task in the current context.

Appropriateness can be judged by tradeoff analysis, which

balances costs against benefits.

Engineers measure things, and, when appropriate, work

quantitatively. They calibrate and validate their measurements

and they use approximations based on experience and empirical

data.

Engineers emphasize the use of a disciplined process when

creating a design and can operate effecfively as part of a team in

doing so.

Abbreviation

Decision makin g

Measurements

Disciplined

process

75

Table 4.2 Identification of IEEE & ACM engineering criteria (continued)

ID.

4

5

6

7

Engineering criteria identifie d

Engineers can have multiple roles: research, development, design,

production, testing, construction, operations, management and

others, such as sales, consulting, and teaching.

Engineers use tools to apply processes systematically. Therefore,

the choice and use of appropriate tools is key to engineering.

Engineers, via their professional societies, advance by the

development and validation of principles, standards, and best

practices.

Engineers reuse designs and design artifacts.

Abbreviation |

Engineer's role s

Use of Tools

Development an d

validation

Reuse design

The detailed output of the mapping to Vincenti's engineering criteria is presented in Annex

III-l, where the letter D represents a direct mapping, and the letter I, an indirect mapping.

For instance, in Annex III-l :

• Candidate FP #2 on measurement maps directly to Vincenti criteria #6 (Measurement)

and it maps indirectly to Vincenti's criteria #4 (Quality);

• Candidate FP #31 (Know software engineering's techniques before using development

tools) has only an indirect mapping to criteria #3 (Techniques) and to #7 (Assessment);

• Finally, there are candidates FP with no mapping to any engineering criteria: for instance,

candidate FP #13 (Give product to customers early).

This first verification against the Vincenti criteria leads to (see in Armex 1II-3 these color-

coded groupings):

• 12 candidates FP have at least one direct mapping to a Vincenti engineering criteria.

• 21 candidates FP have only indirect mappings to a Vincenti engineering criteria.

• One candidate FP has no direct or indirect mapping to a Vincenti engineering criteria.

76

Annex C-2 presents the full set of mappings to the seven IEEE & ACM engineering criteria.

For instance, in Annex III-2:

• Candidate FP #2 (Apply and use quantitative measurements...) has only a direct mapping

to criteria #1 (Decision making) and to #2 (Measurements).

• Candidate FP #16 (Invest in the understanding of the problem) is mapped indirectly to

criteria #1 (Decision making) and to #3 (Disciplined process).

• Candidate FP #4 (Build with and for reuse) is mapped directly and indirectly to criteria

#7 (Reuse) and to #3 (Disciplined process).

• Finally, candidate FP #13 (Give products to customers early) is not related to any

engineering criteria.

This second verification against the IEEE and ACM criteria leads to (see Annex III-4 for

these color-coded groupings):

• 15 candidates FP with at least one direct mapping to an lEEE-ACM engineering criteria;

• 16 candidates FP have only indirect mappings to an lEEE-ACM engineering criteria.

• 3 candidates FP have neither direct nor indirect mapping to an lEEE-ACM engineering

criteria.

4.5 Analysi s and consolidation usin g both sets of criteria: step 3

4.5.1 Analysi s across each set of engineering criteria

The candidate FP with a direct mapping to either Vincenti or lEEE-ACM criteria are listed in

Table 4.3. From a comparison of both columns in Table 4.3, the candidate FP with direct

mappings can then be grouped into three sets:

• Candidate FP with Vincenti mapping similar to the lEEE-ACM mapping (gray shading

Table 4.3);

• Candidate FP with Vincenti mapping with no equivalent IEEE-ACM mapping;

• Candidate FP with lEEE-ACM mapping with no equivalent Vincenti mapping.

77

Table 4.3 Candidate FP that directly meets criteria from either set of criteria

2

4

7
9

11

14
15

m
16

21

•

23

1
27

1 Vincent i mapping

Apply and use quantitative
measurements in decision making
Build with and for reuse

Determine requirements now
Don't try to retrofit quality

Establish a software process that
provides flexibility

Grow systems incrementally
Implement a disciplined approach
and improve it continuously
Invest in the understanding of the
problem

Quality is the top priority; long term
productivity is a natural consequence
of high quality

Since change is inherent to software,
plan for it and manage it
Since tradeoffs are inherent to
software engineering, make them
explicit and document it

To improve design, study previous
solutions to similar problems

2

4
5
6

10

12

15

18
21

22

24

25

26
27

31

lEEE-ACM m a p p i n ^ ^ B

Apply and use quantitative measurements
in decision making 1
Build with and for reuse
Define software artifact rigorously
Design for maintenance

Don't write your own test plans

Fix requirements specification error now

Implement a disciplined approach and
improve it continuously

Keep design under intellectual control
Quality is the top priority; long term
productivity is a natural consequence of
high quality
Rotate (high performer) people through
product assurance

Since tradeoffs are inherent to software
engineering, make them explicit and
document it
Strive to have a peer, rather than a
customer, find a defect
Tailor cost estimation methods
To improve design, study previous'
solutions to similar problems

Know software engineering's techniques
before using development tools

78

Set A:

From Table 4.3 one observes that six candidates FP (#2, #4, #15, #21, #24, #27) are present

in both columns (the highlighted ones) and therefore satisfy at least one engineering criteria

in each set of criteria (Vincenti and IEEE-ACM): these six could reasonably be considered as

FP that conform to engineering.

SetB:

From Table 4.3 there are 6 candidate FP (#7, #9, #11, #14, #16, #23) that meet the Vincenfi

criteria, bu t no lEEE-ACM criteria. Can these still be considered as FP, or are they mere

instances of more fundamental principles?

To answer the above question, one could be reasonably argue from the Vincenti subset that:

• Candidate FP #7 (Determine requirements now) can be deduced from candidate FP #16

(Invest in the understanding of the problem);

• Candidate FP #9 (Don't try to retrofit quality) can be deduced from candidate FP #21

(Quality is the top priority; long-term productivity is a natural consequence of high

quality);

• Candidate FP #11 (Establish a software process that provides flexibility) can be deduced

from FP #9 (Don't try to retrofit quality).

This would then eliminate candidate FP #7, #9 and #11 from the list of FP, since they

represent specific instantiations of more general FP, while principles #16 #14 and #23 would

be retained on the FP list.

SetC:

From Table 4.3 there remain 9 candidate FP #5, #6, #10, #12, #18, #22, #25, #26 and #31

that meet lEEE-ACM criteria, but no Vincenti criteria without a corresponding direct

mapping to the Vincenti criteria: it could be reasonably argued that these 9 can be deduced

from those with direct Vincenti mappings: for instance, FP #18 (Keep design under

intellectual control), and FP #31 (Know software engineering techniques before using

79

development tools) can be deduced from FP #15 (Implement a disciplined approach and

improve it confinuously).

This would then eliminate candidate FP #5, #6, #10, #12, #18, #22, #25, #26 and #31 from

the list of FP (see Table 4.5) since they represent specific instantiations of more general FP.

Finally, a subset of only 9 (see Table 4.4) from the list of 34 candidates identified in Seguin

2006 are recognized as software engineering FP, the remaining 25 being specific

instantiations of those 9. In Table 4.4, these FP are sequenced from 1 to 9, together with their

original sequence number (right-hand column) assigned when the initial list of 34 candidates

was compiled.

Table 4.4 List of software engineering FP

Numbering

I

2

3

4

5

6

7

8

9

List of software engineering FP

Apply and use quantitative measurements in decision making

Build with and for reuse

Grow systems incrementally

Implement a disciplined approach and improve it
continuously

Invest in the understanding of the problem

Quality is the top priority; long term productivity is a natural
consequence of high quality

Since change is inherent to software, plan for it and manage it

Since tradeoffs are inherent to software engineering, make
tiem explicit and document it
To improve design, study previous solutions to similar
problems

Initial

numbering

(Seguin N.

2006)

2

4

14

15

16

21

23

24

27

80

4.5.2 Identificatio n o f a hierarchy

Table 4. presents next the outcome of the analysis of the 25 remaining candidate FP as

instantiafions of the 9 FP idenfified in Table 4.5

Table 4.5 Hierarchy of candidate FP

1

2

3

4

5

6

Direct mapping to Vincenti criteria

Apply and use quantitative measurements

in decision making

Build with and for reuse

Grow systems incrementally

Implement a disciplined approach and

improve it continuously

Invest in the understanding of the problem

Quality is the top priority; long term

productivity is a natural consequence of

high quality

Derived instantiatio n (= Indirec t mapping)

With the numbering in (Seguin N., 2006)

26 Tailor cost estimation methods
8 Don't overstrain your hardware

5 Define software artefacts rigorously
20 Produce software in a stepwise fashion

1 Align incentives for developer and customer
10 Don't write your own test plans
17 Involve the customer
18 Keep design under intellectual control
20 Produce software in a stepwise fashion
31 Know software engineering's techniques

before using development tools
19 Maintain clear accountability for results
29 Use documentation standards
10 Don't write your own test plans

7 Determine requirements now
12 Fix requirements specification error now

17 Involve the customer

9 Don't try to retrofit quality
22 Rotate (high performer) people through

product assurance
25 Strive to have a peer, rather than a
customer, find a defect
30 Write programs for people first
3 Build software so that it needs a short user

manual
11 Establish a software process that provides

flexibility
28 Use better and fewer people

81

Table 4.5 Hierarchy of candidate FP (continued)

7

8

9

HBirect mappin g to Vincenti criteria

Since change is inherent to software, plan

for it and manage it

Since tradeoffs are inherent to software

engineering, make them explicit and

document it

To improve design, study previous

solutions to similar problems

Derived instantiatio n (= Indirect mapping) ^

With the numbering in (Seguin N., 2006)

6 Design for maintenance

33 Choose a programming language to assure

maintainability

32 Select tests based on the likelihood that they

will find fauhs

34 In face of unstructured code, rethink the

module and redesign it from scratch.

4.6 Externa l verification: step 4

4.6.1 Desig n

A proposal for an external verification was prepared and submitted to the International

Conference on Engineering Education - ICEE 2007 Coimbra (Portugal) 2007. This proposal

was accepted and included in the ICEE conference program (see Armex VII). As a

consequence, of the acceptance of the proposal, a half day session workshop on "The

Engineering Foundations of Software Engineering" was planned. The plan included three

parts:

82

A- Familiarizatio n

To familiarize researchers with the topic of "The Engineering Foundations of Software

Engineering" a number of presentations were planned, to be followed by a discussion

session:

• "Delphi Studies on Fundamental Principles of Software Engineering";

• "The literature on software engineering principles + identification of criteria for selecting

candidate fundamental principles";

• "Vincenti engineering knowledge types and their mapping to software engineering

concepts";

• "The core set of fundamental principles selected using Vincenti and ACM-IEEE 2000

curriculum criteria".

B- Participatio n on site at the workshop

The discussion session was to consist in asking participants:

• To verify the output related to the results of the mappings in Annex III C-1 and Annex III

C-2 between the mapping of the 34 CFP and both the Vincenti and lEEE&ACM

engineering criteria;

• To verify the list of nine software engineering FP see Table 4.4;

• To verify the hierarchy of candidate FP see Table 4.5.

C- Post-worksho p follow-u p

If not all topics in B- could be addressed by the participants within the workshop timeframe,

they were to be asked for a further post-workshop follow-up through email.

4.6.2 Executio n

A- Familiarizatio n

Familiarization was conducted for the participants who attended the workshop.

83

B- Participatio n on site

Because of the limited time allocated to the discussion session and to the new approach not

familiar to the participants in the workshop on the fundamental principles of software

engineering; the discussion session took a long time. Therefore, participants were just asked,

to verify the list of nine software engineering FP (see Table 4.4).

As a result of this verification, feedback regarding the nine engineering FP were collected.

The participants agreed on the nine engineering FP presented to them.

C- Follow-u p

Additional feedbacks from two participants about the verification of the following output

were received subsequently by email.

• Result of mapping of the candidate FP to Vincenti engineering criteria Annex III C-1;

• Result of mapping of candidate FP to IEEE & ACM engineering criteria Annex III C-2;

• Result of nine software engineering FP see- Table 4.4;

• Result of the hierarchy of candidate FP see- Table 4.5;

For more detail (see Annex-VII).

4.7 Summary

This chapter has taken as input, or as its object of study, the set of 34 statements idenfified in

(Seguin N. 2006) as being candidate FP of software engineering. This set has been analyzed

from an engineering perspective using the engineering criteria identified by either Vincenti or

the lEEE-ACM joint effort on developing a software engineering curriculum.

The 34 candidate FP were divided into three categories: A) candidate FP that are directly

linked to engineering, B) candidate FP that are indirectly linked to engineering, and C)

candidate FP that have no specific link to engineering.

84

In the next step, candidate FP from both lists were analyzed and compared. In the final step,

the set of the proposed nine engineering FP was verified at a workshop organized during the

International Conference on Engineering Education - ICEE 2007 Coimbra (Portugal) 2007.

Software engineering, as a discipline, is certainly not yet as mature as other engineering

disciplines and, while a number of authors have proposed over 308 distinct FP, a consensus

on a set of well-recognized FP has been lacking. The proposed reduced list of 9 FP, from an

engineering perspective, now needs to be further discussed by the software engineering

community.

Of course, this list depends on the methodology used, and is being proposed to the

engineering community for discussion and scrutiny with the aim of improvement and

development of a consensus over time.

There is no claim that this list is exhaustive or that it covers the whole software engineering

discipline. Even though the inputs to this analysis were derived from an extensive literature

review, no guarantee is given that those authors have indeed provided full coverage of the

software engineering discipline.

Similarly, the hierarchy proposed in Table 4. is derived from the engineering criteria used in

this analytical approach. Further research should be carried out to verify the completeness of

the criteria used

CHAPTER 5

IDENTIFICATION O F THE SOFTWARE ENGINEERING PRINCIPLE S WITHI N
THE CONTENT OF THE SWEBOK GUIDE - IS O TR 19759

5.1 Introductio n

This chapter takes as input the result achieved from the previous chapter that is, the list of the

nine FP that were verified from an engineering perspective.

This chapter presents the analysis of the content of the SWEBOK Guide knowledge areas

(ISO-TR-19759 2004) with respect to its coverage for these nine FP. These KAs were

analyzed to identify whether the nine FP were present in the SWEBOK Guide.

This chapter also presents phase 4 and is organized as follows: Section 2 describes the

mapping of the FP to the content of the SWEBOK Guide. Section 3 presents the FP in

"Software requirements" knowledge area. Section 4 presents the FP in "Software quality"

knowledge area. Section 5 presents the results in the other KAs. Section 6 presents the

analysis of the mapping results and finally a summary is presented in section 7. Annex IV

presents the detailed results related to the mapping of the set of the nine engineering

principles to the related knowledge areas of the SWEBOK Guide.

5.2 Mappin g the FP to the SWEBOK KAs

In the SWEBOK Guide (ISO-TR-19759 2004) each of the ten knowledge areas is composed

of subareas and topics. To identify the coverage of the nine FP in the SWEBOK Guide, these

ten knowledge areas were analyzed to check if there is any mapping between the content of

the SWEBOK Guide and the nine FP.

86

This analysis consisted of verifying if each of the nine FP were present first at the subarea

level and, second, at the topics level.

This section presents the mapping results between the different SWEBOK Guide knowledge

areas and the nine FP.

Also, each of these mapping results is described in a different table. These tables describe the

presence of the 9 engineering fundamental principles within the knowledge areas of the

SWEBOK Guide. The tables in this chapter are organized as follows: for each of the

knowledge areas of the SWEBOK Guide, the subsequent columns for subareas, topics and

finally the engineering fundamental principles are described. These engineering fundamental

principles are numbered from #1 to #9. As one can see in these tables, the presence is

mentioned for each topic where one can find the identification number related to each FP.

The next sections present two examples for "Software requirements" and "Software quality"

knowledge areas with their detailed results. The "Software requirements" in section 5.3

corresponds to the knowledge area the most covered by the FP and the "Software quality" in

section 5.4 corresponds to the knowledge area the least covered by the FP.

5.3 Th e FP in software requirement s knowledge area

Table 5.1 and Table 5.2 describe the engineering fundamental principle coverage for the

"Software requirement" knowledge area. For instance, the topic "Elicitations techniques"

under subarea "Requirements elicitation" covers the following engineering principles:

(3) Grow systems incrementally;

(4) Implement a disciplined approach and improve it continuously;

(5) Invest in the understanding of the problem.

87

Table 5.1 describes the summary of the mapping between the FP and the "Software

requirements" subareas. Table 5.2 describes the detailed mapping of the overall topics

between the FP and the "Software requirements".

Table 5.1 Summary mapping of the engineering FP in the "Software requirements" KA

Software requirement s subareas
Software requirement s fundamental s
Requirements proces s
Requirements elicitatio n
Requirements analysi s
Requirements specificatio n
Requirements validation
Practical consideratio n

Engineering fundamental principle s |

#1

#6

#3, #4,#5

#2, #3, #4,#5,#8

#3, #4

#2,#3,#4, #6

#1,#7

Table 5.2 Detailed mapping of the engineering FP in the "Software requirements" KA

Software

requirements

subareas

Software

requirements

fundamentals

Software requirements topics

Definition of a software requirement

Product and process requirements

Functional & nonfunctional requirement

Emergent properties

Quantifiable requirements

System requirements and software

requirements

^ H Engineerin g

fundamental

principles

#1

88

Table 5.2 Detailed mapping of the engineering FP in the "Software requirements" KA

(continued)

»oiivf5P^equTremenis

Wk- subarea s

Requirements proces s

Requirements elicitatio n

Requirements analysi s

Requirements

specification

Requirements validatio n

Practical consideratio n

Software requirements topics

Process models

Process actors

Process support and management

Process quality and improvement

Requirements sources

Elicitations techniques

Requirements classification

Conceptual modeling

Architectural design requirements allocation

Requirement negotiation

System definition document

Systems requirement specification

Software requirement specification

Requirement reviews

Prototyping

Model validation

Acceptance test

Iterative nature of the requirement process

Change management

Requirement attributes

Requirements tracing

Measuring requirement

FP ,j

#6

#3, #4,#5

#3, #4,#5

#3, #4,#5

#2,#3, #4,#5

#2,#3, #4

#3, #4,#5,#8

#3, #4

#3, #4

#3, #4

#3. #4, #6

#3, #4, #6

#3, #4, #6

#2,#3,#4, #6

#7,

#7,

#7.

#7,

#1,

89

The following eight FP were identified as being present in the "Software requirements" KA:

(1) Apply and use quantitative measurements in decision making;

(2) Build with and for reuse;

(3) Grow systems incrementally;

(4) Implement a disciplined approach and improve it continuously;

(5) Invest in the understanding of the problem;

(6) Quality is the top priority; long term productivity is a natural consequence of high

quality;

(7) Since change is inherent to software, plan for it and manage it;

(8) Since tradeoffs are inherent to software engineering, make them explicit and document it;

The "Software requirement" knowledge area did not cover the following FP:

(9) To improve design, study previous solutions to similar problems.

5.4 Th e FP in software quality knowledge area

Table 5.3 and Table 5.4 describe the engineering fundamental principles coverage for the

"Software quality" knowledge area. For instance, the topic "Software quality measurement"

under the subarea "Practical considerations" covers the following engineering principle:

(1) Apply and use quantitative measurements in decision making.

Table 5.3 describes the summary mapping between the FP and the "Software quality"

subareas and Table 5.4 describes the detailed mapping of the overall topics between the FP

and the "Software Quality".

90

Table 5.3 Summary mapping of the engineering FP in the "Software quality" KA

^ ^ i | g | | ^ r e qualit y subareas

Software qualit y fundamental s

Software qualit y management processe s

Practical consideration s

Engineering fundamental principle s 1

#4

#4

#1

Table 5.4 Detailed mapping of the engineering FP in the "Software quality" KA

Software qualit y

subareas

Software qualit y

fundamentals

Software qualit y

management processe s

Practical

considerations

Software quality topics

Software engineering culture and ethics

Value and costs of quality

Quality models and characteristics

Quality improvement

Software quality assurance

Verification and validation

Reviews and audits

Application quality requirements

Defect characterization

Software quality management techniques

Software quality measurement

Engineering

FP M

#4

#4

#4

#4

#1

The following two FP were identified as being present in the "Software quality" KA:

(1) Apply and use quantitative measurements in decision making;

(4) Implement a disciplined approach and improve it continuously.

91

"Software quality" KA didn't cover the following FP.

(2) Build with and for reuse;

(3) Grow systems incrementally;

(5) Invest in the understanding of the problem;

(6) Quality is the top priority; long term productivity is a natural consequence of high

quality;

(7) Since change is inherent to software, plan for it and manage it;

(8) Since tradeoffs are inherent to software engineering, make them explicit and document it;

(9) To improve design, study previous solutions to similar problems.

5.5 Result s in other KAs

This section presents the results of the mapping for the other knowledge areas such as

"Software design", "Software construction", "Software testing", with a description and the

related results in Tables 5.3 to 5.9. The detailed results are presented in the Annex IV.

5.5.1 "Softwar e design" knowledge area

Table 5.5 and Table 5.6 describe the engineering fundamental principles coverage for the

"Software design" knowledge area.

Table 5.5 Summary mapping of engineering FP in the "Software design" KA

Software design subareas

Software design fundamentals

Keys issues in software design

Software structure and architecture

Software design quality analysis and evaluation

Software design notations

Software design strategies and methods

—
Engineering

fundamental principle s

#4
#2, #4

#2, #4, ,#9
#1,#6

#4
#2, #4

92

Table 5.6 Detailed mapping of engineering FP in the "Software design" KA

Software desig n
subareas

Software desig n
fundamentals

Keys issues in
software desig n

Software structur e
and architecture

Software desig n
quality analysi s
and evaluation

Software desig n
notations

Software desig n
strategies and

methods

Software design topics

General design concepts

The context of software design

The software design process

Enabling techniques

Concurrency

Control and handling of events

Distribution of components

Error and exception handling and fault tolerance

Interaction and presentation

Data persistence

Architectural structures and viewpoints

Architectural styles (macro architectural patterns)

Design patterns (macro architectural patterns)

Families of programs and frameworks

Quality attributes

Quality analysis and evaluation techniques

Measures

Structural descriptions (static view)

Behavior descriptions (dynamic view)

General strategies

Function-oriented (structured design)

Object-oriented design

Data-structured centered design

Component-based design

Other methods

Engineering^
FP m

#4
#4
#4
#4
#2, #4
#4
#4
#4
#4
#2, #4, #9
#2, #4, #9
#4
#6
#6
#1
#4
#4
#4
#4
#4
#4
#2, #4
#4

93

5.5.2 Softwar e constructio n knowledg e area

Table 5.7 and Table 5.8 describe the engineering fundamental principle coverage for the

"Software construction" knowledge area.

Table 5.7 Summary mapping of engineering FP in the "Software construction" KA

Software constructio n subarea s

Software constructio n fundamental s

Managing construction

Practical consideration s

Engineering fundamental principle s ^

#6, #7

#1

#2, #4, #6

Table 5.8 Detailed mapping of engineering FP in the "Software construction" KA

Software constructio n

subareas

Software constructio n

fundamentals

Managing

construction

Practical

considerations

Software constructio n

topics

Minimizing complexity

Anticipating change

Constructing for verification

Standards in construction

Construction models

Construction planning

Construction measurement

Construction design

Construction languages

Coding

Construction testing

Reuse

Construction quality

Integration

Engineering

fundamental principle s 1 1
#6 1
#7
#6
#6

#1
#4
#4
#4
#4, #6
#2
#6
#4

94

5.5.3 Softwar e testin g knowledge area

Table 5.9 and Table 5.10 describe the engineering fundamental principle coverage for

"Software testing" knowledge area.

Table 5.9 Summary mapping of engineering FP in the "Software testing" KA

Software testing subareas

Software testing fundamental s

Test levels

Test techniques

Test related measure s

Test process

Engineering fundamental principle s i

#4,#8

#4

#4

1,#2, # 4 , # 7

Table 5.10 Detailed mapping of engineering FP in the "Software testing" KA

Software testin g

subareas

Software testin g

Fundamentals

Test levels

Software testin g

topics

Testing-related terminology

Keys issues

Relationships of testing to other

activities

The target of the test

Objectives of testing

Engineering 1

fundamental principle s '

#4

#4,#8

95

Table 5.10 Detailed mapping of engineering FP in the "Software testing" KA (continued)

Software testing

subareas

Test techniques

Test related

Measures

Test process

Software testing

topics

Based on tester's intuition and

experience

Specification-based

Code-based

Fault-based

Usage-based

Based on nature of application

Selecting and combining techniques

Evaluation of the program under test

Evaluation of the tests performed

Practical considerations

Test activities

U m i V Engineerin g 1

fundamental principle s 1

#4

#4

#4

#4

#4

#4

#4

#1

#1

1 , # 2 , # 4 , # 7

#4

5.5.4 Softwar e maintenanc e knowledge area

Table 5.11 and Table 5.12 describe the engineering fundamental principles coverage for

"Software maintenance" knowledge area.

Table 5.11 Summary mapping of engineering FP in the "Software maintenance" KA

Software maintenance subareas

Software maintenance fundamentals

Key issues in software maintenance

Maintenance process

Techniques for maintenance

Engineering FP 1

#1

4, # 6,# 7

96

Table 5.12 Detailed mapping of engineering FP in the "Software maintenance" KA

Software maintenanc e
subareas

Software maintenanc e
fundamentals

Key issues in software
maintenance

Maintenance proces s

Techniques for
maintenance

Software maintenanc e
topic

Definitions and terminology

Nature of maintenance

Need for maintenance

Majority of maintenance costs

Evolution of software

Categories of maintenance

Technical issues

Management issues

Maintenance cost estimation

Software maintenance
measurement

Maintenance processes

Maintenance activities

Program comprehension

Re-engineering

Reverse engineering

Engineering ^ H
fundamental principle s

#1

1

#4, # 6
#4,#7

5.5.5 Softwar e configuratio n managemen t knowledge area

Table 5.13 and Table 5.14 describe the engineering fundamental principles coverage for

"Software Configuration Management" knowledge area.

Table 5.13 Summary mapping of engineering FP in the "Software configuration
management" KA

I Softwar e configuratio n managemen t

[subarea s

Management of the SCM process

Engineering i

fundamental principle s 1

#1

97

Table 5.13 Summary mapping of engineering FP in the "Software configuration
management" KA (continued)

Software configuratio n managemen t

Software configuratio n identificatio n

Software configuration contro l

Software configuratio n statu s accounting

Software configuration auditin g

Software releas e management and delivery

Engineering i

^ ^ ^ ^ ^ u n d a m e n t a l principle s 1

#4

#7

#4

#4

#4

Table 5.14 Detailed mapping of engineering FP in "Software configuration management"

Software configuratio n

management

subareas

Management of the SCM

process

Software configuratio n

identification

Software configuratio n

control

Software configuratio n

status accountin g

Software configuratio n managemen t

topics

Organizational context for scm

Constraints and guidance for the scm process

Planning for scm

Scm plan

Surveillance of software configuration management

Identifying items to be controlled

Software library

Requesting, evaluating, and approving

software changes

Implementing software changes

Deviations and waivers

Software configuration status information

Software configuration status reporting

Engineering

fundamental

principles

#1

4

4

#7

#7

#7

4

4

98

Table 5.14 Detailed mapping of engineering FP in "Software Configuration Management"
(continued)

Software configuratio n

management

subareas

Software configuratio n

auditing

Software releas e

management and

delivery

Software configuration managemen t

topics

Software functional configuration audit

Software physical configuration audit

In-process audits of a software baseline

Software building

Software release management

Engineering
\ fundamental

principles

#4

#4

#4

#4

#4

5.5.6 Softwar e engineerin g management knowledge area

Table 5.15 and Table 5.16 describe the engineering fundamental principles coverage for

"Software engineering management" knowledge area.

Table 5.15 Summary mapping of engineering FP in the "Software engineering management"
KA

L Softwar e engineering managemen t

1 subarea s

Initiation and scope definitio n

Software projec t planning

Software project enactmen t

Closure

Software engineerin g measuremen t

Engineering

fundamental principle s

#4

#4, # 6

#4

#4

#1

99

Table 5.16 Detailed mapping of engineering FP in: "Software engineering management'

1 Softwar e

E engineerin g

1 managemen t

Initiation and

scope definitio n

Software projec t

planning

Software projec t

enactment

Closure

Software

engineering

measurement

Software engineering managemen t

topics

Feasibility analysis

Process for the review and revision of

requirements

Process plarming

Determine deliverables

Effort, schedule, and cost estimation

Resource allocation

Risk management

Quality management

Plan management

Implementation of plans

Supplier contract management

Implementation of measurement process

Monitor process

Control process

Reporting

Determining closure

Closure activities

Establish and sustain measurement commitment

Plan the measurement process

Perform the measurement process

Evaluate measurement

Engineering

fundamental

principles

#4

#4

#4

#4

#4

#4

#4

#4, # 6

#4

#4

#4

#4

#4

#4

#4

#4

#4

#1

#1

#1

#1

100

5.5.7 Softwar e engineerin g process knowledge area

Table 5.17 and Table 5.18 describe the engineering fundamental principles coverage for the

'software engineering process' knowledge area.

Table 5.17 Summary mapping of engineering FP in the "Software Engineering Process" KA

Software proces s

subareas

Process implementation and change

Process definitio n

Process assessmen t

Product and process measuremen t

^^^^^^Engineering J

fundamental principle s 1

#4

#4

#6

#1

Table 5.18 Detailed mapping of engineering FP in: "Software engineering process"

Software proces s

Subareas

Process

implementation an d

change

Process definitio n

Software proces s topics

Process infrastructure

Software process management cycle

Models for process implementation

and change

Practical considerations

Life cycle models

Software life cycle processes

Notations for process definitions

Process adaptation

Automation

Engineering |

fundamental principle s

#4

#4

#4

#4

#4

#4

#4

#4

#4

101

Table 5.18 Detailed mapping of engineering FP in: "Software engineering process"
(continued)

Software proces s

Subareas
. . . V • - . . . < - •

Process assessmen t

Product and process

measurement

Software process topics

Process assessment models

Process assessment methods

Software process measurement

Software product measurement

Quality of measurement results

Software information models

Measurement techniques

Engineering J

fundamental principle s J

#6

#6

1

#1

#1

#1

#1

5.6 Analysi s of the mapping results

This section introduces the results of the analysis related to the mapping of the engineering

fundamental principles and the SWEBOK Guide KAs. First, figure 5.1 presents the

frequency coverage of the FP by knowledge area: That is, for each knowledge area there are

different occurrences of the FP. One can see that from Figure 5.1:

• "Software requirements" covers eight FP;

• "Software configuration management", "Software engineering management", "Software

engineering process" covers three FP;

• "Software quality" covers two FP.

These results demonstrate that the "Software requirements" KA addresses most of the

engineering fundamental principles, while "Software quality" addresses the smallest number

of the engineering ftindamental principles.

102

1
Numl

Software Qucilitv

Soflwiire Engineering Tools & Method s

Software Engineering Process

Software Engineering Manageinen l

Software Configuration Managemen t

Software Maintenanc e

Software Testing

Software Construction

Software Design

Software Requirements

berof Engi n

* • • • • » ' * "''̂ *

eer

1

maam" t

ing

imam i

J

FP

1

0 1 2 3 4 5 6 7 8

Figure 5.1: Frequency of engineering fundamental principle s by knowledge area

Second,

Figure 5.2 shows the frequency coverage of the engineering ftindamental principles for

SWEBOK KAs. One can see that out of the nine engineering principles:

• "FP no. 4 - Implement a disciplined approach and improve it continuously" is covered by

nine KA's out often, making it the most covered FP;

• "FP no. 1 - Apply and use quantitative measurements in decision making" is covered by

nine knowledge areas;

• "FP no. 8 - Since tradeoffs are inherent to software engineering, make them explicit and

document it" is covered by three knowledge areas.

• These results demonstrate that:

• "FP no. 4 - Implement a disciplined approach and improve it continuously" and "FP no.

1 - Apply and use quantitative measurements in decision making" are the most covered in

the SWEBOK Guide.

103

Knowledge areas

Tradeoff

Change

Quality

Problem

Discipline

Incremental

Reuse

Measurement

ZJ

V
0 6 10

Figure 5.2: Frequency of engineering fundamental principle s for SWEBOK KAs

5.7 Summar y

In this chapter the focus was to analyze whether or not the nine FP were indeed present in the

SWEBOK KAs (ISO-TR-19759 2004).

This analysis was based on mapping between the nine FP and the SWEBOK Guide

knowledge areas. As a result of this mapping, out of the nine FP, eight (8) were found to be

present in the "Software requirements" KA. Two (2) FP were found to be present in the

"Software quality". "Software requirements" is the KA which addresses the largest number

of FP and "Software quality", the least number of FP.

104

The next phase of this research will focus on the identification and documentation of

operational guidelines of the FP on the basis of the content of the SWEBOK Guide.

CHAPTER 6

DESCRIPTION O F AN OPERATIONAL PERSPECTIVE OF THE SOFTWARE
ENGINEERING PRINCIPLE S ON THE BASIS OF THECONTENT OF THE

SWEBOK GUID E

6.1 Introductio n

The nine engineering FPs were derived from an analysis of the literature. However, there was

no description on how to operate them (Seguin N. 2006).

The SWEBOK Guide (ISO-TR-19759 2004) is composed often knowledge areas (KAs). The

knowledge areas which are described in the SWEBOK Guide are necessary but not sufficient

for a software engineer since the practitioners will have to be familiar with a number of

additional domains of knowledge, such as computer science and systems engineering.

As mentioned earlier in chapters 4 and 5 of this thesis, the nine engineering FP have been

identified for software engineering using (Vincenti W. G. 1990) and the (IEEE and ACM,

2004) software engineering curriculum to assess their coverage in the SWEBOK Guide

knowledge areas.

This chapter presents phase 5: how each of the engineering FP that are present in each

knowledge areas are described (i.e. operationalized) on the basis of the content of the

SWEBOK KAs.

This chapter is organized as follows: Section 2 presents the proposed operational guidelines

for the SWEBOK Guide. Section 3 presents "Software requirements" description. Section 4

presents "Software design". Secfion 5 presents "Software construction". Section 6 presents

"Software tesfing". Section 7 presents "Software maintenance". Section 8 presents "Software

106

configuration management". Section 9 presents "Software engineering process". Section 10

presents "Software quality" and finally a summary is presented in secfion 11.

In addition. Annex V presents the proposed operational guidelines aligned with international

standards such as IEEE 1362 1998 Concepts of Operations document (ConOps) (IEEE STD

1362-1998) for the main knowledge areas of the SWEBOK Guide.

6.2 Propose d operational guidelines for the SWEBOK (Annex V)

The proposed operational guidelines of software engineering principles on the basis of the

content of the SWEBOK Guide to provide a set of guidelines that may be used by

practitioners during the software development.

This proposed operational guidelines are structured based on the (IEEE STD 1362-1998)

which illustrates the operational concepts for the information technology domain: for

example, this IEEE standard suggests how to build such operational guidelines by following

many steps such as building:

• The set of definition concepts.

• The suggested operational scenario.

• The expected capabilities of the suggested scenario.

• The improved steps to operational scenario and its capabilities.

• The impact of these operational guidelines.

The operational concepts define the important elements on which the scenarios are built. The

operational scenarios define how to operate these concepts. The operational capabilities

describe the capabilifies of the scenarios; operational improvements give a description of

how to improve these capabilities and finally the operational impacts on the users and

developers.

107

6.3 Softwar e requirement s - descriptio n of an operational perspectiv e

The "Software requirements" KA documents four phases as follows: elicitation, analysis,

specification and validation - see Figure 6.1.

1 f '

Software

Requirements
r-...., - , .

Definition of a

^ software

rpninrpment

Product and

^ Process

rf»niiirpmpnt<;

Functional and

^ Non-funcbonal

rpniiirpmpnt

Emergent

^ Prosperities

r ^

Requirements

Process

Process

^ Models

Process Actors

Software Requirements

r ^r 1 r i r

Requirements

Elicilation

Requirements

^ Sources

Elicitation

^ Techniques

Process

^ Support &

u=.„,„.„,.„,

Process

^ Quality &

Requirements

Analysis

Requirements

^ Classification

Conceptual

Modeling

Architectural

Requirements

Specification

System

^ Definition

nnn imen t

Systems

^ Requirements

*lnprifirflfinn

Software
w Design & | w
^^ Requirements Requirements

Snprifirahnn

w Requirements

Negotiations

Requirements

Validation

Requirements

^ Reviews

Prototyping

•

Model

^ Validation

Acceptance

^ Tests

imnrovprnptit

Quantifiable

•

•

•

•

requirements

System and

* • Software

Rpniiirpmpnl«

^ r

Practical

Considerations

Iterative

Nature of

Rpniiirpmpnti;

Change

Management

Requirements

Attributes

Requirements

Testing

Measunng

Requirements

Figure 6.1 : SWEBOK Guide : "Software requirements " knowledge area
(ISO-TR-19759, 2004)

6.3.1 Principl e # 1: "Apply and use quantitative measurements in decision making"

A. Presenc e of this FP in the taxonomy of this KA

This FP is applied within the following "Software requirements" topics:

• Quantifiable requirements.

• Measuring requirements.

108

B. Operationa l guidelines documented in this KA for this FP

Measurement process : At the end of the software requirements phase, the "software

specification document" is produced. This document contains the functional and

nonfunctional requirements.

The functional requirements can be measured right from the requirements phase, using a

fianctional size measurements method (eg. COSMIC - ISO 19761). The output of this

measurement process is the functional size which can be used as input to estimate the cost of

design, development, test or the cost of maintenance tasks.

A model of these operational procedures for this measurement process in the "Software

requirements" phase is described in Figure 6.2.

Software
requirements
specifications

I Contain

Functional
Requirements

Non Functiona l
Requirements

Are measure d

Are Measure d

MJsing a
Measurement
Method

Size
Cost

Figure 6.2: Measurement process : operational view -requirements KA

6.3.2 Principle # 2: "Build with and for reuse"

A. Presenc e of this FP in the taxonomy of this KA

This ftindamental principle is applied within the following "Software requirements" topics:

• Conceptual modeling;

• Architectural design and requirements allocation;

• Acceptance test.

109

B. Operationa l guideline s documented in this KA for this FP

Build with an d for reuse : after finishing the task of eliciting the requirements, the software

engineer starts analyzing the requirements by classifying them, and next by modeling them

using one of the following models: data and control flows, state models, event traces, user

interactions, object models, data models and many others.

In "Conceptual modeling" the software engineer can be interested in developing the system

by, for example, reusing the conceptual models for the set of requirements. Components can

also be reused in requirements allocation and finally test cases can also be reused to conduct

an acceptance test to validate that the software satisfies the requirements.

These models components and test cases can be carefully defined and documented so that

they may be reused - see Figure 6.3.

Models

Components

Test cases

Requirement
Elicitation

Requirement
Analysis

r Requirement
Specification

V.

Requirement
Validation

Figure 6.3: General view for applying "Build with and for reuse" in requirements KA

6.3.3 Principle # 3: "Grow system incrementally"

A. Presenc e of this FP in the taxonomy of this KA

This fundamental principle is applied within the following "Software requirements"

subareas:

110

• Requirement elicitation;

• Requirement analysis;

• Requirement specification;

• Requirement validation.

B. Operationa l guidelin e documented in this KA for this FP

The operational guidelines for the principle # 3: "Grow system incrementally' suggest that

software should be build by increment: the implementation of this principle is similar to

principle #4: "Implement a disciplined approach and improve it continuously". The only

difference is in the input. To implement "Grow system incrementally' the software engineer

starts by focusing on a small set of requirements (that have high priority) then, by slowly

increasing the number of requirements in the set.

6.3.4 Principl e # 4: "Implement a disciplined approach and improve it continuously"

A. Presenc e of this FP in the taxonomy of this KA

This FP is applied within the following "Software requirements" subareas:

• Requirements elicitation;

• Requirements analysis;

• Requirements specification;

• Requirements validation.

B. Operational guidelines documented in this KA for this FP

Requirements activities : the requirements process is composed of the following four

activities:

Activity 1 : requirements elicitation: in this activity the software engineer starts by defining

the sources of requirements and by identifying one of the many sources of each requirement

which can be categorized into one of the following: goals, domain knowledge, stakeholders,

operational environment and organizational environment. After identifying the source of the

requirements software engineers can start collecting requirements by using different

I l l

elicitation techniques such as interviews, scenarios, prototypes, facilitated meetings and

observations. At the end of this process a list of requirements is produced - see Figure 6.4.

r / " Ident i fy requ i rements ^ Requirement s Elic.tat.o n \
\ ^ source s) 1

(Elici t requirement s j

V J

List o f Requirement s

Figure 6.4: Requirements elicitation- operational view in requirement KA

Activity 2: requirements analysis : in this activity the software engineer starts by classifying

the requirements as follows: whether they are functional or non functional, derived

requirements, type of requirements product or process, requirements priority (classified on a

fixed point scale: mandatory, highly desirable, desirable and optional), the scope of

requirements and finally the estimation of volatility and stability requirements.

Next, the software engineer develops a conceptual model of the real world problem using one

of the following types of models: data and control flows, state models, event traces, user

interactions, object models, data models and many others. Next, the software engineer

allocates requirements to components, and finally he negotiates requirements.

Activity 3 : requirement s specification : in the software specification activity the software

engineer produces a document. For complex systems three kinds of documents are produced:

system definition, system requirements specification and software requirements specification.

For simple systems only the "software requirements specification" document is produced.

Activity 4 : requirement s validation : In the "Software requirements" KA the following

artefacts are subject to validation and verification: the system definition document, the

system specification document and the software requirements specification document.

http://Elic.tat.on

112

This activity can be done through: inspections and reviews, prototyping, validating the

quality of models, identifying and designing an acceptance test to validate that the finished

product satisfies the requirements.

6.3.5 Principl e # 5: "Invest in the understanding of the problem"

A. Presenc e of this FP in the taxonomy of this KA

This FP is applied within the following "Software requirements" subareas:

• Requirements elicitation;

• Requirements analysis.

B. Operationa l guidelines documented i n this KA for this FP

The operational guidelines for the principle # 5: "Invest in the understanding of the problem"

are concerned with the two following activities:

Activity 1 : requirements elicitation;

Activity 2: requirements analysis.

The practical details for these activities are similar to those mentioned for principle # 4:

"Implement a disciplined approach and improve it continuously".

6.3.6 Principl e # 6 : "Quality is the top priority; long term productivity is a natural

consequence of high quality"

A. Presenc e of this FP in the taxonomy of this KA

This FP is applied within the following "Software requirements" topic and subarea:

• Process quality and improvement (SWEBOK topic);

• Requirements validation (SWEBOK subarea).

B. Operationa l guidelines documented i n this KA for this FP

To ensure the success of the quality of the final product there is a need to perform quality

checks right from the beginning in the "Software requirements" process.

113

Process quality and improvement (SWEBOK topic)

In this topic the software engineer evaluates the quality of the requirements process with the

help of quality standards. Process improvement models are used to orient the improvements

of the requirements process activities.

Requirements validation (SWEBOK subarea)

The practical details for this activity is similar to the one mentioned for principle # 4:

"Implement a disciplined approach and improve it continuously".

6.3.7 Principl e # 7: "Since change is inherent to software, plan for it and manage it"

A. Presenc e of this FP in the taxonomy of this KA

This FP is applied within the following "Software requirements" topics:

• Iterative nature of the requirements process;

• Change management;

• Requirements attributes;

• Requirements tracing.

B. Operationa l guidelines documented in this KA for this FP

Change management necessitates the following tasks in the software requirements process:

Identifying the requirements that possibly change, define the review, approve the process,

perform the change, apply requirements tracing, apply impact analysis, apply software

configuration management and report change history.

6.3.8 Principl e # 8 : "Since tradeoffs are inherent to software engineering, make them

explicit and document them"

A. Presenc e of this FP in the taxonomy of this KA

This fundamental principle is applied into the following topic:

• Requirements negotiation.

114

B. Operationa l guideline s documented in this KA for this FP

Stakeholders may require incompatible features, between requirements and resources or

between functional and non-functional requirements; this requires the following tasks:

• Identify conflict;

• Consult with stakeholders to negotiate an acceptable compromise;

• Trace decision back to customer;

• Implement the decision.

6.4 Softwar e design - description of an operational perspectiv e

The "Software design" KA is composed of six subareas as is illustrated in Figure 6.5.

- •

-¥

-¥•

i
Sofrtift l>«iti i
Fundamtnttli

Cicnctal (lo)|n

ThcCOOKMOf
software dcMgn

Ihc software
design (w c m

- •

- •

"-••

->

"

K») l»B n in
Softoart Dnit n

CoiKUfrcrKy

Cpniml and handling
ofoeni«

Diuji'lmiion n f

i,i>tnpi>iicnt>

i rror anJ v\cej>t«,in
handlini-and fault

tolennK

imeracikin ini

jvesenialion

Daia [vrvktrve

.<{oftwaro T)«i{jn

-¥•

•>

->

i
Soflnart Slruclttrt
lad Arthittctur t

.\rthikxtml
sin)wiu/cx ami

^ idMjyiinti

.Vclwiiviiiral vuW-
lnucrivi.\hikvlinl

IX-\ipn fullcms
iniivruarehiuvmral

pallermi

familioofprofants
and franxANoris

"
.S«ft»irc Dnit n
Qualil) Aail))i s
l td Evahiiiic n

Qualit) allnbutei

l)ualit> anal) vi\ and
\alua!ii>nlt.\"hni>(uo

u

Software
DflitB Notalion)

Slnktural
¥ dexripiiofl i

NaiKUcw)

iWuviorJc^tfijilun'.
(dynamic view;

—

1
SofiKirttln^n
Stnlrjin and

Mtlbodt

- • (pcnerjlStrak'j« >

runcil<in.i«Ki»cJ
(dnKiuredideMjn

(JbjCCl-ofkTi'.cd

design

Dalj-sifuinffc

l\)rapi>ni-ri-hascd
dcvjin

Figure 6.5: SWEBOK guide: "Software design " knowledge area
(ISO-TR-19759, 2004)

file:///rthikxtml

115

6.4.1 Principl e #1 "Apply and use quantitafive measurements in decision making"

A. Presenc e of this FP in the taxonomy of this KA

This fundamental principle is applied within the following "Software design" topic:

• Measures.

B. Operationa l guideline s documented in this KA for this FP

The measurement process can take place during the design phase to evaluate the size,

structure or quality. Two types of measures are referred to in this KA:

• Function oriented (structured) design measures represented as a structure chart;

• Object oriented design measures represented as a class diagram. Different measures can

be computed form both structure chart and class diagram.

6.4.2 Principle #2 "Build with and for reuse"

A. Presenc e of this FP in the taxonomy of this KA

This FP is applied within the following "Software design" topics:

• Design patterns (micro architectural patterns);

• Families of programs and frameworks;

• Component-based design.

B. Operationa l guidelines documented i n this KA for this FP

"Build with and for reuse" can be applicable for the following elements: patterns,

components, families of programs, and frameworks.

6.4.3 Principl e #4 "Implement a disciplined approach and improve it continuously"

A. Presenc e of this FP in the taxonomy of this KA

This FP is applied within the following "Software design" topics and subareas:

• The software design process;

• Architectural structures and viewpoints;

116

Architectural styles (macro architectural patterns);

Design patterns (micro architectural patterns);

Families of programs and frameworks;

Structural descriptions (static view);

Behavior descriptions (dynamic view);

Software design strategies and methods (subarea);

Enabling techniques;

Keys issues in software design (subarea).

B. Operationa l guidelines documented in this KA for this FP

Software design is composed of two steps: architectural design and detailed design. Software

design produces solutions in the form of models.

Step 1: Architectural desig n

In architectural design software is decomposed and organized into components using the

following different elements:

• Use the general strategies to help guide the design process. For instance: divide-and-

conquer and stepwise refinement, top-down vs. bottom-up strategies, data abstraction and

information hiding, use of heuristics, use of patterns and pattern languages, iterative and

incremental approach.

• Identify the views necessary to represent the system such as: logical view, physical view,

process view and development view.

• Define the architectural style which describes the software high level organization:

- General structure (for example, layers, pipes, and filters, blackboard);

- Distributed systems (for example, client-server, three-tiers, broker);

- Interactive systems (for example, Model-View-Controller, Presentation-Abstraction

Control);

- Adaptable systems (for example, micro-kernel, reflection);

- Others (for example, batch, interpreters, process control, rule-based).

117

• Use the different methods for modeling the structural and behavioral descriptions of the

system such as: function-oriented (structured) design, object-oriented design, data-

structure-centered design, component-based design (CBD) and other methods.

• Model the structural description of the system which represents the static view using

different notations, for instance: architecture description languages, class and object

diagrams, component diagrams, class responsibility collaborator cards, deployment

diagrams, entity-relationship diagrams, interface description languages, jackson structure

diagrams, structure charts.

• Model the behavioral description of the system dynamic view such as:

Activity diagrams, collaboration diagrams, data flow diagrams, decision tables and

diagrams, flowcharts and structured flowcharts, sequence diagrams, state transition and

statechart diagrams, formal specification languages, pseudo-code and program design

languages

Step 2: Detailed design

Detailed design describes the specific behaviour of the components already decomposed in

the architectural step. In this step more low level details are given for the previous

architectural design steps. Also in this step frameworks and design patterns are used to

describe details at a lower level (the micro-architecture). For instance - some examples of

design patterns:

• Creational patterns (builder, factory, prototype, and singleton);

• Structural patterns (adapter, bridge, composite, decorator, facade, flyweight, and proxy);

• Behavioural patterns (command, interpreter, iterator, mediator, memento, observer, state,

strategy, template, visitor).

Enabling techniques and key issues

Enabling techniques and key issues are necessary to implement principle #4 "Implement a

disciplined approach and improve it continuously" in the "Software Design". Various

enabling techniques and key issues are presented below:

118

Enabling techniques : Abstraction, coupling and cohesion, decomposition and

modularization, encapsulation/information hiding, separation of interface and

implementation, sufficiency, completeness and primitiveness.

Key issues : Concurrency, control and handling of events, distribution of components, error

and exception handling and fault tolerance, interaction and presentation and data persistence.

6.4.4 Principl e # 6 "Quality is the top priority; long term productivity is a natural

consequence of high quality"

A. Presenc e of this FP in the taxonomy of this KA

This FP is applied within the following "Software design" topics:

• Quality attributes;

• Quality analysis and evaluation techniques.

B. Operationa l guideline s documented in this KA for this FP

Quality attributes : apply the following set of quality attributes grouped by category to

obtain a good quality design. For instance:

• The "ilities" (maintainability, portability, testability, traceability);

• Various "nesses" (correctness, robustness);

• Those discernable at run-time (performance, security, availability, functionality,

usability);

• Those not discernable at run-time (modifiability, portability, reusability, integrability, and

testability);

• Those related to the architecture's intrinsic qualities (conceptual, integrity, correctness,

and completeness, buildability).

Quality analysi s an d evaluatio n techniques : The following techniques can be applied to

analyze and evaluate the quality of software design artefact such as:

•

119

Reviews

Example (architecture reviews, design reviews, inspections, scenario-based techniques

and requirements tracing).

Static analysi s

A static analysis technique evaluates a design (example, fault-tree analysis or automated

cross-checking).

Simulation and prototyping

Software design reviews, static analysis and simulation and prototyping are techniques to

evaluate a design.

6.4.5 Principl e #8 "Since tradeoffs are inherent to software engineering, make them explicit

and document them".

A. Presenc e of this FP in the taxonomy of this KA

This FP is visible in the Introduction where trade-off can be used to examine and evaluate

various alternative solutions. However, descriptive information is missing.

6.4.6 Principl e #9 "To improve design, study previous solutions to similar problems".

A. Presenc e of this FP in the taxonomy of this KA

This FP is applied within the following "Software design" topics:

• Architectural styles (macro architectural patterns);

• Design patterns (micro architectural patterns).

B. Operationa l guideline s documented in this KA for this FP

The implementation of this FP is in part similar to principle #4 "Implement a disciplined

approach and improve it continuously". This can be found in architectural design step using

architectural styles and in detailed design step using design patterns.

120

6.5 Software construction - description of an operational perspective

The "Software construction" knowledge area is composed of three subareas as illustrated in
Figure 6.6

-¥ jr

c

c

(

SoftAAUi'e
Constinction

FuiKtuiiHitals

viiiiiiiLziiig CoiiipU

\i]ricii>atiiig Cliaijg

'biistiuctiiig fca
/eiificatioii

itaixlaicls ill
[bllStllTCtiOLl

Software Constiiiction

?xit\''

e

— •

— •

— •

>lina0ng
ConstiTiction

'

Caistiiicrioii Nbcfels

Caistiiictiai Haiiiiiig

C'aistiiictioii
MeasiueiiKiit

> •

- •

- •

->

-*-

1

Pi-actical
Considerations

Coiistnicrioii ctedai

Ccaistiiictiai Langiiages

Codiiig

Caistii^tiai Testing

Reuse

Caistmctiai Qualit}'

iitegintioii

Figure 6.6: SWEBOK Guide: Software construction knowledge area
(ISO-TR-19759, 2004)

6.5.1 Principle # 1: "Apply and use quantitative measurements in decision making".

A. Presence of this FP in the taxonomy of this KA

This fundamental principle (FP) is applied within the following topic:

• Construction measurement.

B. Operational guidelines documented in this KA for this FP

Figure 6.7 presents the operational procedures for this FP in this Construction KA the

different artifacts that can be measured during the "Software construction" phase, such as:

code developed, code modified, code reused, code destroyed, code complexity.

121

C Cod e develope d

c
c

Code modif ie d

Code reuse d

Code destroye d

(Cod e complexit y j

Code inspectio n
statistics

Schedul ing c
/^ Faul t free an d fa i

f ind rat e

Artifacts measure d
In softwar e

construction

Software Constructio n
Pliase

Figure 6.7: Measurement i n the Construction KA

6.5.2 Principl e # 2: "Build with and for reuse"

A. Presenc e of this FP in the taxonomy of this KA

This FP is applied within the following "Software construction" topic:

• Reuse.

B. Operationa l guideline s documented i n this KA for this FP

In the "Software construction" KA during coding and testing activities, the different tasks

related to the reuse activity are described as follows and are presented in Figure 6.8:

• Select tasks: reusable units, databases, test procedures, or test data;

• Evaluate tasks: code or test reusability;

• Reports tasks: reuse information on new code, test procedures, or test data.

122

Select task s

Reusable uni t

Test dat a

c Databases

(Tes t procedure s

1

Evaluate task s

c Code

f Tes t reusabilit y

Construction Activit y

Coding and Testing Activitie s

Report task s

Reuse informatio n
on new cod e

c Test procedure s

Test dat a

Figure 6.8: Construction activities - operational view in construction KA

6.5.3 Principl e # 4: "Implement a disciplined approach and improve it continuously"

A. Presence of this FP in the taxonomy of this KA

This FP is applied within the following "Software construction" topics:

• Construction design;

• Coding;

• Construction languages;

• Construction testing;

• Integrafion.

B. Operational guideline s documented i n this KA for this FP

Construction desig n

In "Software construcfion" the design activity is similar to the "Software design" KA but, in

the former, the design is done on a smaller scale.

Construction language s

There are three types of construction languages. Some of these construction languages

include:

123

• Configuratio n languages : the text-based configuration files used in both the Windows

and Unix operating systems;

• Toolki t languages : they are more complex than configuration languages used to build

applications by integrating reusable parts;

• Programmin g languages: these are the most flexible type of construction languages.

Coding activity

During the coding activity of the software construction there are numerous techniques that

may be applied to write a code that is simple and understandable:

Naming and code source layout;

Use of classes, named constant;

Control structures and handle error conditions;

Prevent code-level security breaches;

Source code organization into statements, classes;

Document code;

Code tuning;

Resource usage via use of exclusion mechanisms and discipline in accessing serially

reusable resources.

Testing activity

The testing activity in the Construction KA involves two types of testing: unit and

integration.

Integration activit y

To accomplish the integration task whether related to different routines, components, classes,

and subsystems that are constructed during the construcfion activity (ISO-TR-19759, 2004):

• "Plan the sequence, in which components will be integrated";

• "Create scaffolding to support interim versions of the software";

• "Determine the degree of testing and quality work performed on components before they

are integrated";

124

• "Determine points in the project at which interim versions of the software are tested".

6.5.4 Principl e # 6 : "Quality is the top priority; long term productivity is a natural

consequence of high quality"

A. Presenc e o f this FP in the taxonomy of this KA: this FP is applied into the following

"Software construction" topics:

• Minimizing complexity;

• Constructing for verification;

• Standards in construction;

• Construction quality;

• Coding;

• Construction testing.

B. Operationa l guidelin e documented in this KA for this FP

Minimizing complexit y

This topic is related to "standards in construction", "coding" and "construction quality"

topics. Minimizing complexity is achieved through many possibilities such as using:

• Standards described in "Standards in construction";

• Specific techniques described in "Coding";

• Quality techniques described in "Construcfion quality".

Constructing for verificatio n

The verification activity is important in the software construction phase. Specific tasks that

support constructing for verification include the following:

• Follow coding standards to support code reviews, unit testing;

• Organize the code to support automated testing and restricted use of complex or hard-to-

understand language structures. See Figure 6.9.

125

C o n s t r u c t i o n / V c t i v i t ^

• V / o r i f i c a t i o n . / A c t i v i t y

l « ^
c C o d e r e v i e w s J
Q U n i t t e s t i n g j

~ r ^ c l - m i c | u o s u s o d ^

f R o l l o w c o d i n g s t a n d a r d s J—

c O r g a n i z e c o d e 31

n r ^ ^ u i 3 i 3 ^ « ~ t

T o ^ u | 3 | 3 ^ r t
c
c

/ A u t o m a t e d t e s t i n g

R e s t r i c t e c J u s e o f c o m p l e x
s t r u c t u r e s

J)

Figure 6.9: Constructing for verification- operationa l view in Construction KA

Standards in construction

The "Software construction" KA uses external and internal standards such as: construction

languages, construction models, constructing for verification etc. For more details, see Figure

6.10.

Software Construction
KA

External standards

Internal standards

For

For-

^ ^ Constructio n languages

<
For,

For X
Construction tools

Technical interfaces

Interactions between
software construction

Coordination of group
activities

3

Support
- ^ ^ ^ ^ S u p p o r t - ^ Minimizin g complexity

-^ ^Suppor t

Support Anticipating change

Constructing for
verification 3

Figure 6.10: Standards- operational view in Construction KA

126

Construction qualit y

Construction quality activities are performed on code and on artifacts that are related to

code. To write a code of a good quality during software construction, several techniques

exist, including: unit tesfing and integrafion testing, test-first development (see also the

Software Tesfing KA), code stepping, use of assertions, debugging, technical reviews.

Coding activity and construction testing activities

The related details for these two activities are already described in section 6.5.3 principle #

4.- "Implement a disciplined approach and improve it continuously".

6.5.5 Principl e (#7): "Since change is inherent to software, plan for it and manage it"

A. Presenc e o f this FP in the taxonomy of this KA: this FP is applied into the following

"Software construction" topic:

• Anticipating change.

B. Operationa l guideline documented in this KA for this FP

Anticipating change is supported by many specific techniques summarized in section 6.5.3

principle # 4: "Implement a disciplined approach and improve it continuously" in the

"Coding activity" section.

6.6 Softwar e testing - description of an operational perspectiv e

The "Software testing" KA is composed of five subareas - see-Figure 6.11.

127

r—

->

- •

1

Softwarf TfstJD g
Fund.iin»D(.il^

Teitmg-Related

Temiuiolog)'

Kevi Issue*

Relaiioiuhips of
Testiug to Other

Actmties

1

- Tel l Level s

TheTaigetofthe
*" • Tes t

Objectives o f
Tesimg

Soft^vare Testin g

I

*

*

*

Test
Techniques

B.ised on Tester's
jiiuitioti and E.xpenence

Specificiiioii-bsed

Code-based

Fault-based

Usage-based

B-isedoiiNaiwe
of.Applicaiio.1

Selecting and
Combining Technicjues

1
Test Reialed

Measures

Evaliationofihe
PiogiJin L'ndet Test

EvaJiiatioiiofihe
Tests Performe d

1

- Tes t Proces s

Practical
Considerations

• Tes t .-kctnities

Figure 6.11: SWEBOK guide: Software testing knowledge area
(ISO-TR-19759, 2004)

6.6.1 Principl e (#1) "Apply and use quantitative measurements in decision making"

A. Presenc e of this FP in the taxonomy of this KA: this fundamental principle is applied

into the following "Software tesfing" topics and sub-topic:

128

• Evaluation of the program under test;

• Evaluafion of the tests performed;

• Cost/effort estimation and other process measures (sub-topic).

B. Operationa l guidelines documented i n this KA for this FP

The test-related measures evaluate the program under test based on the observed test outputs.

Figure 6.12 presents the evaluation of the program under test.

Evaluation of the program under test

To evaluate a program under test, the following test related measures could be collected:

• Progra m measurement s to aid in planning and designing testing

To guide testing apply the following measures such as:

- Program size (for example, source lines of code or function points);

- Program structure (like complexity, frequency with which modules call each other).

• Definitio n o f fault types, classification an d statistics

To make testing more effective:

- Define faults types;

- Count the relative fault frequency.

• Measur e of fault density: a program under test can be assessed by:

- Counting the discovered faults;

- Classifying the discovered faults by their types;

- Measuring the fault density (the ratio between the number of faults found and the

size of the program) for each fault class.

• Lif e test, reliability evaluatio n

To decide when to stop a test:

- Evaluate a product by using a statistical estimate of software reliability (see

SWEBOK Guide section 2.2.5).

• Reliabilit y growt h model s

129

"Reliability growth models provide a prediction of reliability based on the failures

observed under reliability achievement and evaluation" (see "Software testing"" section

2.2.5) (ISO-TR-19759, 2004). These models are divided into:

- Failure-count;

- Time-between failure models.

Evaluation of the program
under test

^Program measurements to aid in planning^
and designing testing

fault types, classification, and statistics

Fault density

Life test, reliability evaluation

Reliability grovi/tt i models

Program size

Program structure

Define fault s types

(Line s of code

Function Points

Count fault frequency J

Complexity

Frequency with w/hicti
modules call eacti other 3

Failure-count

.Time-between failure models

Figure 6.12: Evaluation of the program under test

Evaluation of the tests performe d

To evaluate the tests performed the following test related measures could be done:

• Coverage/thoroughnes s measure s

- Evaluate the thoroughness of the executed tests by choosing the test cases that

exercise a set of elements identified in the program or in the specifications;

- Measure dynamically the ratio between covered elements and their total number.

- Example:

o Measure the percentage of covered branches in the program flowgraph;

o Measure the functional requirements exercised among those listed in the

specifications document.

130

• Faul t seeding: before test inserts fault into the program. Some measures include:

- Thenumber of artificial faults discovered;

- The number of testing effectiveness;

- Estimation of the remaining number of genuine faults.

• Mutatio n score: to measure the effectiveness of the executed test set:

- Measure the ratio of killed mutants to the total number of generated mutants.

• Termination : to decide when to stop tests the following thoroughness measures can

help, such as:

- Achieved code coverage;

- Functional completeness;

- Estimates of fault density;

- Estimate operational reliability;

- Cost;

- Risks.

Cost/effort estimatio n an d othe r proces s measures : measures relative to the control and

the improvement of the test process for management purposes include:

• Measure the resources spent on testing;

• Measure the relative fault-finding effectiveness of the various test phases.

These tests measures cover the following elements:

• Number of test cases specified;

• Number of test cases executed;

• Number of test cases passed;

• Number of test cases failed.

Evaluate test process effectiveness by evaluating:

• Test phase reports;

• Root cause analysis.

131

6.6.2 Principl e (#2) "Build with and for reuse"

A. Presenc e of this FP in the taxonomy o f this KA: this fundamental principle is applied

within the following "Test process" subarea:

• Practical considerations.

B. Operational guideline s documented in this KA for this FP

Build with an d for reuse : reuse the test material used to test the software. This test material

should also be documented so that it can be reused as in: test cases.

6.6.3 Principl e (#4) "Implement a disciplined approach and improve it continuously"

A. Presenc e o f thi s F P i n th e taxonom y o f this KA : this FP is applied into the following

"Software testing" topics and subarea:

• The target of the test (topic);

• Objectives of testing (topic);

• Test activities (topic);

• Test techniques (subarea).

B. Operationa l guidelines documented in this KA for this FP

The test process is composed of several activities from planning to defect tracking. Figure

6.13 presents the different testing activities. The operational details related to those activities

are as follows:

• Pla n the testing activities

The different steps for one baseline of the software include:

- Coordinate personnel;

- Manage available test facilities and equipment (which may include magnetic media,

test plans and procedures);

- Plan for possible undesirable outcomes.

• Generat e test-cases :to generate test cases the following tasks should be done:

132

- Define the target of the test - see test levels section;

- Define the objective of the test - see test levels section;

- Identify the techniques that are used for testing - see test techniques section;

- Put the control of test cases under the software configuration management;

- For each test case include the expected results.

• Defin e the environment for test development

- Check the compatibility for the testing environment with the software engineering

tools;

- Test environment should facilitate development and control of test cases, logging and

recovery of expected results, scripts, and other testing materials.

• Execut e the tests :during the execution of tests everything done should be:

- Performed and documented clearly enough that another person could replicate the

results;

- Performed in accordance with documented procedures using a clearly defined version

of the software under test.

• Evaluat e the test results

The results of tests are determined by success or failure. When a failure is identified before

it can be removed:

- Analyze and debug to isolate, identify, and describe a failure;

- Evaluate the test result with a formal review board if they are important.

• Repor t problems related to testing activities/ Test log:

Below is presented a list of information that can be reported into a test log or a problem-

reporting system:

- When a test was conducted;

- Who performed the test;

- What software configuration was the basis for testing;

- And other relevant identification information;

- Record incorrect test results in a problem-reporting system;

- Document anomalies not classified as faults.

133

Tests reports are also an input to the change management requests process (see the Software

Configuration Management KA, subarea 3: Software Configuration Control).

• Trac k defects for later analysis :

- When they were introduced into the software;

- What kind of error caused them to be created (poorly defined requirements,

incorrect variable declaration, memory leak, programming syntax error);

- When these errors could have been first observed in the software.

• Defect-trackin g informatio n i s used to determine:

- What aspects of software engineering need improvement;

- How effective previous analyses and testing have been.

134

Plan the testing activities

Generation test-case

Define the environment for test
development

Execute tests

Evaluate the test results

Report problems

Track defects

Figure 6.13: Phases for the testing activities- operational view in Testing KA

Test levels

The test level defines the target of the test and the objectives of the test. The target of the test

is divided into three levels; unit, integration and system testing. Figure 6.14 illustrates a

model related to the test levels.

135

Test Levels

f The target of the test

r'
Objectives of Testing

Acceptance/qualification testin g

Installation testing

Alpha and beta testing

V

Conformance testing/Functiona l
testing/Correctness testing

Unit testing

Reliability achievement and
evaluation

Regression testing

Performance testing

Stress testing

System testing

Integration testing

Test-driven development

Back-to-back testing

Recovery testing

Configuration testing

Usability testing

' ;

Figure 6.14: Phases for the testing levels - operational view in testing KA

Test techniques

To test software various techniques are defined. Some of these techniques include

specification based techniques, code based techniques and techniques based on the nature of

the application. More details about those techniques are presented in

Figure 6.15.

136

Equivalence partitioning j

Boundary-value analysis

Decision table

Finite-state machine-based

resting from formal specifications j

Random testing

»
Object-oriented testing

Component-based testing j

Web-based testing
4

GUI testing

Testing of concurrent programs

(Protoco l conformance testing

Testing of real-time systems

Testing of safety-critical systems
TsSaw

^ K J ^ ^
Testing techniques

[Base d or) the software engineer's
I intuition and experience

Specification-based techniques

Code-based techniques

Fault-based techniques

Usage-based techniques

Techniques based on the nature of
the application

Selecting and combining techniques

Ad hoc testing

Exploratory testing

Control-flow-based criteria

Data flow-based criteria

Reference models for code-based \
testing J

Error guessing

c

Mutation testing

Operational profile

Software Reliability Engineered
Testing

Functional and structural

Deterministic vs. random

J

Figure 6.15: Testing techniques- operational view in testing KA

6.6.4 Principl e (#7): "Since change is inherent to software, plan for it and manage it"

A. Presenc e of this FP in the taxonomy of this KA: this FP is applied into the following

"Test process" subarea:

• Practical considerations.

137

B. Operationa l guideline s documented i n this KA for this FP

"Test materials must be under the control of software configuration management, so that

changes to software requirements or design can be reflected in changes to the scope of the -

tests conducted" SWEBOK Guide. "Software testing" KA section 5.1.8.

6.6.5 Principl e (#8) : "Since tradeoffs are inherent to software engineering, make them

explicit and document them"

A. Presenc e of this FP in the taxonomy of this KA: this FP is applied into the following

"Software testing" subarea:

• Objectives of testing.

B. Operationa l guidelines documented in this KA for this FP

Regression testing: In regression testing a trade-off must be made between:

• The assurance given by regression testing every time a change is made;

• The required resources.

Also as mentioned in the "Introduction" section for this KA, a trade off must be made to

choose a set of test cases between:

• The limited resources and schedules;

• Unlimited test requirements.

138

6.7 Softwar e maintenance - description o f an operational perspectiv e

The "Software maintenance" KA is composed of four subareas - see- Figure 6.16.

1
Software

Maintenance
Fuudaineulals

Definitions an d
T*nnuiology

Nature o f
Mainteniuice

—>• Nee d fo r Maintenanc e

Majority o f
Maintenance Cost s

Softsrare Maintenanc e

1
1

Key Issue s i n
Software

Maintenance

Teclmical
Issues

Management
Issues

^Maintenance Cos t
Estituation

1
.Maintenance

Process

—^ Maintenance Processe s

'—•• Maintenance Aclisitie s

Software Maintenanc e
^"^ Measurement

—^ Evolutio n o f Soffwar e

Categories o f
^~^ Maiuleiunc e

1
Tecbniques fo r
.Maintenance

-•• Progra m Comprehensio n

- • Re-engineerin g

-•• Res'ers e Enmneenn g

Figure 6.16: SWEBOK Guide: "Software maintenance " knowledge area
(ISO-TR-19759, 2004)

6.7.1 Principl e (#1): "Apply and use quantitative measurements in decision making"

A. Presenc e o f thi s F P i n th e taxonom y o f thi s KA : this FP is applied within the

following "Software maintenance" topics:

• Maintenance cost estimation;

• Software maintenance measurement.

B. Operationa l guideline s documented i n this KA for this FP

Maintenance cos t estimation: The maintenance cost estimation could be done for plarming

purposes. To estimate resources for software maintenance apply the following approaches:

139

• Parametric models;

• Experience:

- Expert judgment (for example Delphi technique);

- Analogies;

- A work breakdown structure;

- Combine empirical data and experience.

• Combine both approaches.

Software maintenanc e measuremen t

• Measures common to all endeavors: The software engineering Institute (SEI) has

identified the following measures that will be useful for the maintainer: size, effort,

schedule and quality.

• Internal benchmarking techniques: The maintainers determine which of the following

specific measures: analyzability, changeability, stability and testability fit for the

organization.

6.7.2 Principl e (#4): "Implement a disciplined approach and improve it continuously"

A. Presenc e of this FP in the taxonomy of this KA: this FP is applied within the following

"Software maintenance" topics:

• Maintenance processes;

• Maintenance activities.

B. Operational guidelines documente d

Maintenance processes : The Maintenance Process subarea provides references and

standards used to implement the software maintenance process.

• Standard for software maintenance (IEEEI219-98);

• ISO 1476.

140

Maintenance activities : Maintenance activities are composed of the same activities that are

in the software development for instance: analysis, design, coding, testing and

documentation. In addition there are some activities that are unique to software maintenance

and other supporting activifies. See - Figure 6.17.

a. Uniqu e activities : The unique activities for "Software maintenance" are described as

• Transition: Transfer software from the developer to the maintainer;

• Modification request acceptance/rejection;

• Modification request and problem report help desk;

• Impact analysis;

• Software support;

• Service level agreements (SLAs) and specialized (domain-specific): maintenance

contracts which are the responsibility of the maintainers.

b. Supportin g activities: Below is a list of activities that support maintenance, such as:

• Software maintenance planning;

• Software configuration management;

Software quality. •

bl Maintenanc e plannin g activity : There are four perspectives to consider for

maintenance activities as follows:

o Th e individual (request level)

• Planning is carried out during the impact analysis,

o Th e release/version plannin g activity (software level)

• Collect the dates of availability of individual requests;

• Agree with users on the content of subsequent releases/versions;

• Identify potential conflicts and develop alternatives;

• Assess the risk of a given release and develop a back-out plan in case problems

should arise;

• Inform all the stakeholders.

141

o Maintenanc e planning (transition level)
• Estimates resources;

• Include those resources in the developers' project planning budgets;

• Decide to develop a new system;

• Consider quality objectives;

• Develop a concept document;

• Develop a maintenance plan.

Prepare the concept document for maintenance (ISO12207) [s7.2] that addresses:

• The scope of the software maintenance;

• Adaptation of the software maintenance process;

• Identification of the software maintenance organization;

• An estimate of software maintenance costs;

Prepare the maintenance plan during software development, and specify:

• How users will request software modifications;

• How users will report problems.

o Busines s planning (organizational level)

• Conduct business planning activities (budgetary, financial, and human resources).

b2. Softwar e configuratio n management : Software configurafion management

procedures should:

• Verify, validate and audit every step essential to identify, authorize,

implement and release the software product.

14:

f
c
c

V

S o f t w a r e d e v e l o p m en t Ac t iv i t i e s

D o c u m en ta t i o n

A n a l y s i s) (Des ig n) (C o d i n g) c Tes t i ng

• \

)

)

b 1 - U n i q u e ac t iv i t ie s V
c Tran si t io n :)C Im pact A na lys i s

C' IV I ed i f i ca t ion R e q u e s t N / " ' '

A c c e p t a n e e / R e j e c l i o n) \
IVI od i f i ca t lon R e q u e s t an d \ (''~Z

Prob lem R e p o r t He l p Des k J \ ^

S o f t w a r e S u p p o r t

3
D

erv i ce L e v e l A g r e e m e nts ^

f b 2 - S u p p o r t l n g
ac t iv i t i es

I iV I i a n t e n a n ce P l a n n i n g) (-̂ y v ^
S o f t w a r e c o n f i g u r a t i o n

m a n a g em en t
S o f twa re qua l i t y

P l a n n i n g act iv i t ie s

C o n c e p t
d o c u m en t

IVI a i n t e n a n ce p la n

M a i n t e n a n c e A c t i v i t i e s

Figure 6.17: Maintenance activities- operational view in maintenance KA

6.7.2 Principl e (#6) : "Quality is the top priority; long term productivity is a natural

consequence of high quality".

A. Presenc e o f thi s F P i n th e taxonom y o f thi s KA : this FP is applied within the

following topic:

• Maintenance activities.

143

B. Operationa l guidelines documented in this KA for this FP

Software quality represents one of the supporting activities of "Software maintenance". To

achieve the appropriate level of quality the different tasks related to software quality need to

be completed as follow:

• Plan quality;

• Plan processes implemented to support the maintenance process;

• Select the activities and techniques for software quality assurance (SQA), verification &

validation, reviews, and audits;

• A recommendation: The maintainer should adapt the software development processes,

techniques and deliverables, for instance:

- Testing documentation;

- Test results.

6.6.4 Principle (#7): "Since change is inherent to software, plan for it and manage i f

A. Presenc e of this FP in the taxonomy of this KA

This FP is applied within the following "Software maintenance" subtopics under

"maintenance activities":

• Software configuration management (maintenance activities).

B. Operationa l guideline s documented in this KA for this FP

Here are presented a few steps on how to perform software configuration management:

• Control the changes made to a software product;

• Establish the control by implementing and enforcing an approved software configuration

management process.

144

6.8 Softwar e configuratio n management : operationa l perspectiv e o f th e softwar e

engineering FP

The "Software configuration management" KA is composed of six subareas - see Figure

6.18.

S o f m i r r Confifurai io n M a a i g » m « n t

M a u i g r m r D i
of lil t S C M

Pro<Kt

0;g.i«jZ9iioiul
• C o n i M t f o r S C M

Constramls in d
• Guidanc e fo i

S C M P i o c e s i
Plimma; fo r

S C M " •
iC.'..'

Or^.Trt:anori .Ttd .*•

SCMRfiOLi-et:

otitt %eh.tdut<i

Tool Sflc-nan

ImyUmftiranon

Subcotftracror
Conrrol

Jntt»foct Co*i;*-&l • J

Software
• Coofiguratio a

NlMMgnunt Pla n

Sim'HlUiice o f _ ,
SC.\1

iCMMeaJU't:
Olid

SUaiurtmeitt

.iuJincfiCM

in
X

Soffwair
Coafltuiarion
Idfulificarlou

Idcniifyuig
l inus 1 0 txr
Couuolltd

Coft^ipiteltpn

ConJl;P'ianct:

Scth\art
CoHtigiiienoit

hfm
Rttnnon:i\tyi

.\.:qiiin<:g
U>,fh,ittf

C^nt'if;).mnoi:

Software
Libraiv

Sofiuarr
C onflturahon

CoDliol

RcqiKsii))?,
Evahuiuj ; an d

Approving
Sofhv.irf
Ciaugcs
Sojhiitiv

Co»t/i£t.ronan
Co't.foi 3Ki'd

So/Srt»v Change
Rtq\.rit r'icKt'i

l»iplciii«nting
SoftHKr
Cliaugct

Deviations an d
Waiveis

X
S o f i n a i r

C ODrigui'afion
Siatut

.\c<ouDrlot

Softwait
Coufigutaiion

Status
It)fonr.ation

Sofnvatc
Coofiguiaiioii

Sianu
R<pof'iag

X
Sofrii ar »

Couf l ju ia i ion
.Vudiiiug

Software
Funciioual

Configuiauoii
.Audii

SofKvaK
Physical

Configurauoii
Aiidii

Iii-Piccesi
.Audita of;)

Soft\v.iic
Ba^(lu)(

X
Sofmarr
Rrlfasr

Manaterornf
aud Dr i iv t i v

Sofhia i f
Buildiog

Sof!wajf
Release

Manageiceni

Figure 6.18: SWEBOK guide: "Software configuratio n management " knowledge
Area (ISO-TR-19759, 2004)

6.8.1 Principl e (#1): "Apply and use quantitafive measurements in decision making"

A. Presenc e o f thi s F P i n th e taxonom y o f thi s KA : this FP is applied within the

following "Software Configuration Management" topic:

145

• The measurement "FP no. 1 - Apply and use quantitative measurements in decision

making" is listed on "Surveillance of software configuration management" topic under

"Management of the SCM process" subarea but is not described.

B. Operationa l guideline s documente d i n thi s K A for thi s FP : there is no descripfion

on how to apply the measures.

6.8.2 Principl e (#4): "Implement a disciplined approach and improve it continuously"

A. Presenc e o f thi s F P i n th e taxonom y o f thi s KA : this FP is applied within the

following "Configuration management" subareas:

• Software configuration identification;

• Software configuration control;

• Software configuration status accounting;

• Software configuration auditing;

• Software release management and delivery.

B. Operationa l guidelines documented in this KA for this FP

Software configuratio n identificatio n

The software configuration identification tasks are as followS:

• Identifies items to be controlled;

• Establishes identification schemes for the items and their versions;

• Establishes the tools and techniques to be used in acquiring and managing controlled

items.

Software configuratio n control : the pracfical details for these activities are similar to those

mentioned later for principle # 7: "Since change is inherent to software, plan for it and

manage it".

146

Software configuratio n statu s accounting : the software configuration status accounting is

composed of two parts: the software configuration status information and the software

configuration status reporting. The software configuration status information and reporting

necessitate the support of various automated tools. For more details

Figure 6.19 presents a model for software configuration status accounting.

Software configuratio n auditing : software configuration auditing is composed of two parts:

software functional configuration audit and software physical configuration.

Software releas e management and delivery: the different tasks related for software release

management and delivery are presented as follows:

• Softwar e buildin g

- Build software using compilers.

• Softwar e releas e management : software release management contains the following

tasks:

- Identification;

- Packaging.

- Identify which product items are to be delivered.

Supported
automated tool s

Typ* of informations

Approved configuration identification

The Identirication and current
implementation status of changes.

deviations, an d waivers .

(Developmen t tea m j

c Maintenance tea m

(^roj. lect management

Software qualit y Z' SoftV A
ctivities 3

Can be used by

Softwara configuration status informat i ition J (' Software configuration status roport i ng J

Softwaro configuration status aooounting

y

Figure 6.19: Software configuratio n statu s accounting- operational view in the
Configuration Managemen t KA

147

- Select the correct variants of those items, given the intended application of the

product.

- Delivery of the elements of a product.

6.8.3 Principl e (#7): "Since change is inherent to software, plan for it and manage it"

A. Presenc e o f thi s F P i n th e taxonom y o f thi s KA : this FP is applied within the

following "Configuration management" subarea:

• Software configuration control.

B. Operationa l guidelines documented in this KA for this FP

Software configuration control is concerned with managing changes during the software life

cycle. Software configuration control covers the following tasks:

Determine what changes to make

• Initiate a corrective action in response to problem reports;

• Record the change request on the SCR (software change request) which may include a

suggested solution and requested priority;

• Submit recorded change requests;

• Evaluate the potential cost;

• Perform a technical evaluation to evaluate the impact of a proposed change also known as

impact analysis.

Software configuratio n contro l board

• An established authority, commensurate with the affected baseline, the SCI and the

nature of the change;

• An established authority will evaluate the technical and managerial aspects of the change

request and either accept, modify, reject, or defer the proposed change.

Implementing software change s

• Implement approved SCRs using the defined software procedures in accordance with the

applicable schedule requirements;

148

• Provide a means for tracking which SCRs are incorporated, since a number of approved

SCRs might be implemented simultaneously into particular software versions and

baselines;

• As part of the closure of the change process;

- Completed changes may undergo configuration audits;

- Software quality verification to ensure that only approved changes have been made.

Deviations and waivers

• Identify the exception of deviation;

• Get the authorization of a waiver.

6.9 Softwar e engineerin g process- description of an operational perspectiv e

The "Software engineering process" KA is composed of four subareas see - Figure 6.20.

1
PvocfH

Iinpleineulalion
and Cliaiig r

Pix>cess
InlV.T>tnictuie

Softw.iie Proces s
Managetneiii
C>'cl«

Mcxlels for Procc s
Iniplciiieiitaiion .111
Cliaiige

Practical
C onsidei-ations

Software
Eiigiiteei'iug Proces s

1
1

Process
Drniiiliou

Software Lif e Cy c
Models

Sofrvvaie Lif e
Cycle Processe s

Notations fo r
Piocess
Det'mitioiis

Process .Acbpiaiio i

.Automation

e

i

- * •

1
Process

Assessinriil

Piocess Assessin e
Models

Process
Assessment
Mellicxts

It

1
Process »n d

Protluci
Mensiireineiii

• Process Nlciisitreiiicni

Software Product s
NlcasiirciJicnt

QiwliTj- of
Mcnsiireiuctit Result s

^ Software
Infornuitton Nlodcls

^ Piocess
Mc.isvueiiicnt
TecluiJC|wcs

Figure 6.20: SWEBOK guide: Software engineerin g process knowledge area
(ISO-TR-19759, 2004)

149

6.9.1 Principl e (#1): "Apply and use quantitative measurements in decision making"

A. Presenc e o f thi s F P i n th e taxonom y o f thi s KA : this FP is applied within the

following "Software engineering process" subarea:

• Process and product measurement.

B. Operationa l guidelines documented in this KA for this FP

Measurement could be applied on processes and product as in the "Software process" KA.

To measure processe s

• Apply measures on processes productivity or team productivity. For example,

- Measure function points produced per unit of person-effort.

• Apply measures on process outcomes. For example:

- Product quality (faults per KLOC (Kilo lines of code) or per Function point (FP));

- Maintainability (the effort to make a certain type of change);

- Productivity (LOC (Lines of code) or Function points per person-month);

- Time-to-market or customer satisfaction (as measured through a customer survey).

To measure product

Measure product size (lines of code, number of pages in software requirements documents

and functionality):

• Measure product structure;

• Measure product quality.

More details on product measurement are presented in Figure 6.21.

Product size

Product quality

Product structure

150

Lines of source code

(Numbe r of pages in SRD j

Functionality J
Qualitative

measurement

Control flow

Data flow

Nesting

Control structures

iviodular structure and
interaction

y

3
3,

Applied to

(Hig h level design j

(Lo w level design)

Code artifacts 3

Figure 6.21: Related product measurements- operational view in the Process KA

Assess the quality of the following measurement result s

Accuracy;
Reproducibility;
Repeatability;
Convertibility;
Random measurement errors.

Build information model s

Build information models based on the measurement data collected.

Use of techniques

Use the analytical techniques and the benchmarking techniques to analyze processes and to

identify their strengths and weaknesses.

151

• Analytica l technique s

- Experimental studies:

o Set up controlled or quasi experiments in the organization;

o Compare a new process with the current one to evaluate if the former has a better

outcome.

- Process simulation;

- Process definition review:

o Review the process definition;

o Identify deficiencies and potential process improvements.

- Orthogonal defect classification;

- Root cause analysis technique;

- Statistical process control;

- The personal software process.

• Benchmarkin g technique s

- Identify an 'excellent' organization in a field;

- Document its practices and tools;

- Assess the maturity of an organization or the capability of its processes.

6.8.2 Principle (#4): "Implement a disciplined approach and improve it continuously"

A. Presenc e of this FP in the taxonomy of this KA: this FP is applied within the following

"Software engineering process" subarea:

• Process implementation and change.

B. Operationa l guidelines documented i n this KA for this FP

Software process management cycle is composed of the four activities. Figure 6.22 describes

the different software process management activities. The activities are defined as follows:

152

• Th e establish proces s infrastructure activit y

- Establish commitment to process implementation and change (including obtaining

management buy-in);

- Put in place an appropriate infrastructure resources (competent staff, tools, and

funding);

- Assign responsibilities.

• Th e planning activity

- Understand the current business objectives and process needs of the individual,

project, or organization;

- Identify its strengths and weaknesses;

- Make a plan for process implementation and change.

• Proces s implementation an d change

- Execute the plan;

- Deploy new processes (which may involve, for example, the deployment of tools

and training of staff);

- Change existing processes.

• Proces s evaluation

- Evaluate the process implementation change;

- Use the resufts as input for subsequent cycles.

C Establ ish Proces s Infrastructur e
ii

c Planning activit y
i l
V

Process Implementa t io n an d
Change

ik

c Process Eva luat io n

Sof tware processe s m a n a g e m e n t
cycle

C Qual i t y Improvemen t Parad ig m J

Process A s s e s s m e n t Mode l s

Process A s s e s s m e n t Me thod s

Figure 6.22: Software proces s management cycle- operational view in the process KA

153

6.8.3 Principl e (#6) : "Quality is the top priority; long term productivity is a natural

consequence of high quality".

A. Presenc e o f thi s F P i n th e taxonom y o f thi s KA : this FP is applied within the

following "Software process" topics:

• Process assessment models;

• Process assessment methods.

B. Operationa l guidelines documented in this KA for this FP

Process assessment makes use of models and methods:

• The organization should evaluate which architecture to choose for an assessment:

continuous model or staged architectures depending on needs.

• To assess a process, choose an assessment method. For instance, there is the CPA-lPI

method used for process improvement, the SCE methods used for the capability of

suppliers. Figure 6.23 presents the model related to the process assessment models and

methods.

C Continuous architec t ure)

c s taged architectur e

(Proces s Evaluatio n j j j g g c
c

H a s

Process Assessmen t Model s S3
Process Assessmen t Method s

c
c

CBA- IP

S C E

Focuses on - Process improvemen t

Focuses o n - Y ^ ^ ^ ' ' ^ ^ ' ' " 9 th e capabilit y o K
VV supplier s J

Figure 6.23: Process assessment models and methods - operational view in the
Process KA

6.10 Softwar e quality - description o f an operational perspectiv e

The "Software quality" KA is composed of three subareas see Figure 6.24.

154

S o f m a t e Qiial i i y
Fuudaineutals

Sofrw .ire Engiii««tii i
Culnuc .-̂ lu l Etliics

V.-ihie and Cost s

Models ,iii d
QtwHiy
C h.'ii^nctcnstics

i.Qtwlit>' Iiiiprovct» «

Software Qualil y

8

— •

Sofnvare Qiialir y
M;aiiagpinei)t

Processes

Sot'lAv ai e QtwhtN'
Assiut>iicc

\'ent"ic.Ttioi) .iii d
V.i)td.itioii

Reviews an d
.\wdifs

Pi-ac(ir;«l
C'oiisidri-Mtions

Appljc.Tiioii O^Lilii y
Rcqiurenieiits

Defect
Ch-unactetiz-ition

S o l m a i c Qii-ilit y
Maimgeiiient
Tecl'juqucs

Soluv.Tic Qiialirj -
Mcs'.vireme-iit

Figure 6.24: SWEBOK guide: "Software quality " knowledge area
(ISO-TR-19759, 2004)

6.10.1 Principle (#1): "Apply and use qualitative measurements in decision making'

A. Presenc e o f thi s F P i n th e taxonom y o f thi s KA : this FP is applied within the

following "Software quality" topic:

• Software quality measurement.

file:///wdifs

155

B. Operationa l guideline s documented i n this KA for this FP

Some guidelines to follow for "Software quality measurement" such as:

• Assistanc e when to stop testing using

- Reliability models;

- Benchmarks.

• Us e of generic model s for cost of SQM processes based on

- When a defect is found;

- How much effort it takes to fix a defect.

• Us e of mathematical and graphical techniques to help interpret the measures

- Statistically based;

- Statistical tests;

- Trend analysis;

- Prediction.

• Reference s for measurement method s

- Measure defect occurrences with defect analysis;

- Apply statistical methods to understand the types of defects that are frequent;

- Measure the test coverage to estimate how much test effort to be done and to predict

possible remaining defects.

6.9.2 Principle (#4): "Implement a disciplined approach and improve it continuously"

A. Presenc e o f thi s F P i n th e taxonom y o f thi s KA : this FP is applied within the

following "Software quality" topic and subarea:

• Quality improvement (topic).

• Software quality management processes (sub-area).

B. Operationa l guideline s documented in this KA for this FP

Quality improvement : Total Quality management (TQM) process of Plan, Do, Check, and

Act (PDCA) are approaches used to improve quality.

156

Software qualit y managemen t processes : The software quality management processes

apply to products, processes and resources. Figure 6.25 presents a model related to the

different software management processes.

Software Management
processes

Quality assurance process

Verification process

Validation process

Review process

Audit process

Products

Process

Ressouces

Figure 6.25: Software managemen t processe s

Software qualit y assurance: in the software quality assurance plan the following steps

should be carried out defined:

- Define the quality target;

- Define the specific activities with their cost and resource requirements;

- Define management objectives for the activities and their schedule in relation to those

objectives.

Figure 6.26 presents model related to "Software quality assurance". The software quality

assurance plan idenfifies documents, standards, practices and addresses the following

activities such as: service after delivery to the software.

157

The SQA plan

Adresses

SQA Activities

Procurement of supplier \
software to the project J

Commercial off-the-shel f
software installatio n

Service after delivery of
the software

Reporting

Management

Documents

Standards J
Practices

-Conventions governing the^
project

Measures

Statistical techniques

Procedures for problem ^
reporting J

Corrective action

Resources

(security fo r physical media J

Training

SQA reporting
documentation J

Checked

Monitored

Tools

Techniques

Methodologies

j

Figure 6.26: Software qualit y assuranc e

Verification an d validation: Specify the planning and the execution of the verification

and the validation activities.

Reviews an d audits : five types of reviews are defined in (ISO-TR-19759, 2004) such

as: management reviews, technical reviews, inspections, walkthrough and audits.

Management reviews : The management reviews support decisions and are performed on

many reports such as: audit report, progress report and plans such as risk management plan,

and project management. Management reviews establish the adequacy of plans, schedules,

requirements and monitor the progress of inconsistencies. More details are presented in

Figure 6.27.

158

I IVIanagemen t review s

Decisions

Clianges

Corrective action s >

Performed on -

Determines The adequac y o f plan s

Sclnedules 3
Requirements

IVIonitor their progres s o r
inconsistencies

Products

Risk managemen t
plan

Project managemen t
plan

Software configuratio n
management pla n

Figure 6.27: Management reviews - operational view in the quality KA

Technical reviews : to set up a technical review in process the following two requirements

are necessary:

• The definition of specific roles which includes: a decision maker, a review leader, a

recorder, and technical staff;

• The mandatory input which includes: statement of objectives, a specific software product,

the specific software management plan, the issues list associated with the product and the

technical review procedure.

159

Figure 6.28 presents the model related to "Technical reviews".

statement o f objective s

A specifi c softwar e
product

The specifi c projec t
management pla n

The issue s lis t associate d
with thi s produc t

The technica l revie w
procedure

vA decision make r

A revie w leade r

Support

A recorde r

Technical sta f

1
—Input to^ - Review activit y

Figure 6.28: Technica l reviews - operational view in the quality KA

Inspections: an inspection is conducted with the participation of the author of an

intermediate or a final product, a leader, a recorder, a reader and 2 to 5 inspectors. These

team members may have different expertise such as domain expertise, design method

expertise and language expertise.

The inspection leader will receive the lists of anomalies prior to the inspection meeting. This

list of anomalies is produced by examining the software product by every team member. The

inspection leader conducts the inspection and verifies the team preparation during the

inspection. As a result, a list is produced that categorizes anomalies. Figure 6.29 presents the

model related to "Inspections".

160

Examine

Team expertis e

Domain expertise

Design method
expertise

Language expertise

Software produc t

Other review input

L
Anomalies

documented
An inspector leader

Inspection activity

- ^ Conduct the session

Verifies the team
preparation

Check list -
Classified
anomalies

Figure 6.29: Inspections - operational view in the quality KA

Walkthroughs and Audit

• A software engineer conducts walkthroughs. It is less formal than an inspection;

• The audit identifies the instances of nonconformance as a result a report is produced.

The audit activity is conducted formally with collaboration of a team that includes a leader

auditor, another auditor, a recorder, an initiator and a representative of the audit organization.

161

6.11 Summar y

This chapter has presented the operational perspective for each FP present in the KA on the

basis of the content of the SWEBOK Guide (ISO-TR-19759, 2004) for the following KAs:

Requirements, Design, Construction, Testing, Maintenance, Configuration Management,

Engineering Process and Quality.

Annex V includes details related to the operational guidelines aligned with the IEEE Std

1362-1998 (Concept of Operations (ConOps) Document). These detailed operational

guidelines are described for the main knowledge areas of the SWEBOK Guide.

These operational guidelines are composed of five elements based on the (IEEE STD 1362-

1998) standard. These suggested elements define the operational guidelines for any software.

CHAPTER 7

DEVELOPMENT OF A CONSOLIDATED SWEBOK VIEW FOR THE
MEASUREMENT FP

7.1 Introductio n

In the previous chapter operational guidelines for each FP were provided for the engineering

fundamental principles based on the content of the SWEBOK Guide: However, such

operational guidelines were dispersed, unevenly across all KA, making comprehension and

consolidation difficult.

The goal of this chapter is to present a consolidated view about the measurement FP "FP no.

1 - Apply and use quantitative measurements in decision making " within the KAs of the

SWEBOK Guide (ISO-TR-19759, 2004).

This chapter presents phase 6 and is organized as follows: section 7.2 presents the coverage

of the measurement FP in the SWEBOK Guide. Section 7.3 presents a consolidated view of

measurement FP. Section 7.4 presents a consolidated view model of the measurement FP.

Section 7.5 presents a measurement process. Section 7.6 presents a summary.

7.2 Coverag e of the measurement principl e in the KAs of the SWEBOK guid e

Table 7.1 describes the presence of the measurement principle in the knowledge areas of the

SWEBOK guide (ISO-TR-19759, 2004). This table is divided into three columns: each of

these columns lists the SWEBOK knowledge areas, subareas and topics.

One notes from Table 7.1 that the measurement FP is present in all the knowledge areas of

the SWEBOK guide. For instance, the measurement FP is described in one topic each for

"Software design", "Software construction", "Software configuration management" and

163

"Software quality"; and is described in more than two topics for "Software engineering

process", "Software engineering management" and "Software testing". The knowledge area

the most covered by this measurement FP is "Software engineering process".

Table 7.1 The measurement FP in the SWEBOK guide KA

SWEBOK

Knowledge areas

Software requirement s

Software desig n

Software constructio n

Software testin g

Software maintenanc e

Software configuratio n
management

Software engineering process

Software quality

SWEBOK

subareas

Software
Requirements
fundamentals

Practical
considerations

Software design
quality analysis
and evaluation

Managing
construction

Test related
Measures

Test process

Key issues in
software

maintenance
Management of
the scm process

Product and
process

measurement

Practical
considerations

^ H ^ SWEBO K ^m

topics ^ H

Quantifiable requirements

Measuring requirements

Measures

Construction measurement

Evaluation of the program under test
Evaluation of the tests performed

Practical considerations

Maintenance cost estimation

Software maintenance measurement

Surveillance of software configuration
management

Software process measurement

Software product measurement

Quality of measurement results

Software information models

Software quality measurement

164

7.3 Consolidate d view of measurement FP

This section presents a consolidated view for the measurement FP in the SWEBOK Guide

(ISO-TR-19759, 2004) and includes the consolidated view for the measurement FP for the

engineering processes, management process and for the secondary processes:

• The engineering processes refers to "Software requirements", "Software design",

"Software construction", "Software testing" and "Software maintenance" KAs.

• The management process refers to "Software engineering management" KA.

• The secondary processes refer to "Software configuration management", "Software

engineering process" and "Software quality" KAs.

Table 7.2 illustrates from right to left the different SWEBOK KAs, the measurements topics

related to each KA and the consolidated view.

Table 7.2 Consolidated view of the measurement FP

SWEBOK knowledge

areas

Software requirements

Software design
Construction

measurement
Software testing

Software maintenance

Software engineering
management

SWEBOK measurement topics

- Quantifiable requirements
-Measuring requirements
- Design measures
-Construction measurement

-Evaluation of the program under test
-Evaluation of the tests performed
-Practical considerations
-Maintenance cost estimation
-Software maintenance measurement
-Establish and sustain measurement

commitment
-Plan the measurement process
-Perform the measurement process
- Evaluate measurement

Consolidated view for

SWEBOK guide

A- Engineering processes

B- Management process

165

Table 7.2 Consolidated view of the measurement FP(continued)

H SWEBO K knowledge
m^ areas

Software configuration

management

Software engineering

process

Software quality

SWEBOK measurement topics

-Surveillance of software

configuration management

- Software process measurement

- Software product measurement

- Quality of measurement results

- Software information models

- Measurement techniques

-Software quality measurement

Consolidated view for

SWEBOK guide ^ ^

C- Secondary processes

7.4 Consolidate d view model of the measurement FP

In the SWEBOK Guide (ISO-TR-19759, 2004), the "Software Engineering Management"

KA describes the measurement process. In this knowledge area the measurement process is

composed of the four activities that are: "Establish and sustain measurement commitment",

"Plan the measurement process", "Perform the measurement process" and "Evaluate the

measurement process". This measurement process will allow the integration of all

measurement topics and subareas contained in the SWEBOK Guide. Figure 7.1 presents the

model for the measurement FP consolidated view. This model contains the engineering

processes, the secondary processes for the SWEBOK Guide.

7.5 Measuremen t process:

This section presents the different activities based on the measurement process as follows:

7.5.1 Establis h and sustain measurement commitment activit y

166

This section presents the topics or subareas related to the operational guidelines already

described in chapter 6 for the measurement FP for "establish and sustain the measurement

commitment" measurement process. These measurements topics or subareas are composed

from the engineering process and the secondary processes as follows: "Software information

models" and "Software quality measurements".

^ S , E s t a b l i s h e s . Plan ^ ^ S . Perform ^ \ X . Evaluate ^ S .

Engineering measurement

processes for SWEBOK «

Secondary processes for

SWEBOK

A consolidated view

of the measurement

FP in SWEBOK

Figure 7.1: Mode l of a consolidated SWEBO K view of the measurement FP

7.5.2 Pla n the measurement process

This section presents the topics or subareas related to the operational guidelines already

described in chapter 6 for the measurement FP related to "plan the measurement process".

These measurements topics or subareas are composed of the engineering process and the

secondary processes as follows: "Measuring requirements", "Design measures",

"Construction Measurements", "Evaluation of the program under tesf, "Maintenance cost

estimation", "Software maintenance measurement", "Software product measuremenf,

"Software information models" and "Software quality measurement".

7.5.3 Perfor m th e measurement proces s

This section presents the topics or subareas related to the operational guidelines already

described in chapter 6 for the measurement FP related to "perform the measurement

process". These measurements topics or subareas are composed of the engineering process

167

and the secondary processes as follows: "Design measures", "Evaluation of the tests

performed", "Cost/effort esfimafion and other process measures" (Practical consideration in

testing), "Software maintenance measurement", "Software product measurement", "Quality

of measurement results" and "Process measurement techniques".

7.5.4 Evaluat e the measurement proces s

This section presents the topics or subareas related to the operational guidelines already

described in chapter 6 for the measurement FP related to "Evaluating the measurement

process". These measurements topics or subareas are composed of the engineering process

and the secondary processes as follows: "Quantifiable requirements", "Design measures",

"Evaluation of the program under test", "Practical considerations in testing", "Maintenance

cost estimation", "Software process measurement", "Quality of measurements results",

"Process measurement techniques" and "Software quality measurement".

7.6 Summar y

In this chapter a consolidated view was given for the measurement FP "Apply and use

quantitative measurements in decision making ".

This chapter illustrated first the coverage of the measurement FP in the ten knowledge areas

of the SWEBOK Guide. For instance, the chapter most covered by the measurement FP is the

"Software engineering process" and among the least covered chapters by the measurement

FP are: "Software design" and "Software construction".

This chapter provided a consolidated view for the measurement FP based on the software

engineering management, the engineering processes and the secondary processes for the

SWEBOK Guide.

168

In addition, a model for the consolidated view was provided for the measurement FP. This

model allows for the integrafion of all the measurements topics and subareas that are

contained in the SWEBOK Guide (ISO-TR-19759, 2004) based on the management process.

CHAPTER 8

ANALYSIS OF A SWEBOK KA FROM AN ENGINEERING PERSPECTIV E WIT H
RESPECT TO THE ENGINEERING FUNDAMENTA L PRINCIPLE S

8.1 Introductio n

This chapter undertakes the identification of Vincenti's classification of the six categories of

engineering knowledge in the "Software requirements" KA with respect to the presence of

the set of fundamental principles.

In the literature survey, no work exists to map the principles and the categories of

engineering knowledge with the SWEBOK KA (ISO-TR-19759 2004). This mapping will

allow the identification of the missing engineering knowledge with respect to each FP.

Furthermore, the analysis undertaken in this chapter is based on chapters 3, 4 and 5 of this

research study:

• Chapter 3 presented the mapping between the six categories of engineering knowledge

defined by Vincenti and the "Software requirements" knowledge area. Annex I;

• Chapter 4 analysed the fundamental principles from an engineering perspective;

• Chapter 5 documented the coverage of the nine fundamental principles in the SWEBOK

guide.

This chapter presents phase 7 and is organized as follows: Section 2 introduces the

identification of the engineering concepts in the "Software requirements" knowledge area

with respect to the set of the engineering fundamental principles. Section 3 presents

Vincenti's categories and FP in the Requirements KA. Section 4 presents the mapping results

from Vincenfi's viewpoint. Section 5 presents the mapping results from the fundamental

principles viewpoint. A summary is presented in secfion 6. Annex VI presents the mapping

170

between the Vincenti, the nine FP and the "Software requirements", "Software design" and

"Software construction" KAs.

8.2 Identificatio n o f th e engineerin g concept s i n th e "Softwar e requirements " K A

with respect to the FP and Vincenti.

8.2.1 Mappin g 1 : Vincent i categorie s o f engineerin g knowledg e an d "Softwar e

requirements" KA

As mentioned in chapter 3 of this thesis, the "Software requirements" KA was analyzed from

an engineering perspective using the six categories of engineering knowledge (Vincenti W.

G. 1990). The output of this analysis is the identification of the engineering knowledge

addressed within the "Software requirements" KA - see

Figure 8.1.

Mapping 1 consists of the analysis between the categories of engineering knowledge and the

"Software requirements" KA done in chapter 3 of this thesis. The results of this mapping are

presented in terms of what is present and what is missing in the "Software requirements" KA

from an engineering perspective.

8.2.2 Mappin g 2: The list of FP to each of the SWEBOK KA (se e Chapter 5)

The analysis of the fundamental principles from an engineering perspective was done in

chapter 4; the output of chapter 4 is the list of the nine engineering fundamental principles.

Meanwhile, chapter 5 documented the coverage of the nine fundamental principles in the

SWEBOK guide. This documentafion was done through mapping the list of FP to each of the

SWEBOK KA - see Figure 8.2.

171

C : ^
Categories of

Engineering Knowledg e

Fundamental Design

Concepts

Criteria and Specification

Theoretical Tools

Quantitative Data

Practical Considerations

Design instrumentalities

<

Mapping 1

Documented

Result of

Mapping

Analysis

Software Requirements

KA

Figure 8.1: Mapping of the Vincent's engineering knowledge to the SWEBOK Guid e

172

The output of chapter 5 is the list of the FP present within each KA of the SWEBOK Guide.

The 9 Fundamental Principle s

Apply and use quantitative

measurements in decision making

Build with and for reuse

Grow systems incrementally

Implement a disciplined approach and
improve it continuously

Invest in the understanding of the
problem

Quality is the top priority; long term

productivity is a natural consequence of

Since change is inherent to software,

plan for it and manage it

Since tradeoffs are inherent to software
engineering, make them explicit and

Hnciiment i t

To improve design, study previous

solutions to similar problems

Mapping 2

Documented coverag e

FF's in the SWEBOK

Software Requirements

Software Design

Software Construction

Software Testing

Software Maintenance

Software Configuration

Management

Software Engineering

Management

Software Engineering

Process

Software Quality

Software Tools &

Method

Lists of Fundamental principles in SWEBOK Guide

Figure 8.2 : Mapping th e set o f the F P to the SWEBOK Guid e - see chapter 5

173

8.2.3 Mappin g 3 : Vincenti' s categorie s o f engineerin g knowledg e th e "Softwar e

requirements" with respec t the F P

Chapter 8 presents now a mapping between the set of the categories of engineering

knowledge (Vincenti W. G. 1990) into the "Software requirements" KA with respect to the

set of engineering ftindamental principles. This mapping allows the investigation of the

maturity of the "Software requirements" KA from an engineering perspective - see

Figure 8.3.

Categories of
Engineering Knowledg e

Fundamental Design
Concepts

Criteria and Specification

Theoretical Tools

Quantitative Data

Practical Considerafions

Design instrumentalities

^ Mappin g \

Documented

Result of

Mapping

I
Analysis

Documented Coverag e of the presence
of the FP in "Software Requirements "

1-Apply and use quantitative
measurements in decision making

2-Build with and for reuse

3-Grow systems incrementally

4-Implement a disciplined approach and
improve it continuously

5-Invest in the understanding of the problem

6-Quality is the top priority; long term
productivity is a natural consequence of

high quality

7Since change is inherent to software,
plan for it and manage it

8-Since tradeoffs are inherent to software
engineering, make em explicit and

document it

Figure 8.3 : Mapping o f the categories o f engineering knowledg e t o the se t of FP i n
"Software requirements " K A

174

8.3 Vincenti' s categories and FP in the requirements KA

This example illustrates the mapping between the following: the Vincenti's categories of

engineering knowledge (Vincenti W. G. 1990), the list of the presence of the FP in the

"Software requirements" KA. The results through this example will illustrate the missing

categories of engineering knowledge with respect to each FP that is present in the

Requirements KA.

This mapping is based on the different models of the six categories of engineering knowledge

described in Vincenti and provides a description of what is present completely and what is

missing as engineering knowledge with respect to each of the engineering fundamental

principles.

Furthermore, the details of the mapping are presented in Annex VI; the table describes the

mapping of all fundamental principles covered within the "Software requirements" KA with

respect to the six categories of engineering knowledge.

The results of this mapping process between the Vincenti's categories of engineering

knowledge and the list of the presence of FP in the "Software requirement" is summarized in

Table 8.1 where the fundamental principles are presented in rows while the categories of

engineering knowledge are presented in columns.

175

Table 8.1 Mapping results of the Vincenfi's categories of engineering knowledge to the FP
in the "Software requirements" KA.

f Engineerin g Fundamental Principle s

#1 Apply and use quantitative
measurements in decision making

2 Build with and for reuse

3 Grow systems incrementally

4 Implement a disciplined approach
and improve it continuously

#5 Invest in the understanding of the
problem

6 Quality is the top priority; long
term productivity is a natural
consequence of high quality

#7 Since change is inherent to
software, plan for it and manage it

#8 Since tradeoffs are inherent to
software engineering, make them
explicit and document it

#9 To improve design, study previous
solutions to similar problems

Vincenti's Categories of Engineering

Knowledge

Fu
nd

am
en

ta
l

D
es

ig
n

on
ce

pt
s

X

X

X

X

C
ri

te
ri

a
A

nd

Sp
ec

if
ic

at
io

n
X

X

X

X

X

T
he

or
et

ic
al

T

oo
ls

X

X

X

X
Q

ua
nt

ita
tiv

e
D

at
a

Pr
ac

tic
al

C

on
si

de
ra

ti
on

s

X

X

X

X

X

X

D
es

ig
n

In
st

ru
m

en
ta

lit
ie

s

X

X

X

X

X

8.4 Mappin g results from Vincenti's viewpoint

The results of this mapping between the Vincenti's categories of engineering knowledge

(Vincenti W. G. 1990) and the engineering fundamental principles are described as follows

176

from Vincenti's viewpoint see Figure 8.4: Vincenti's six categories and the FP frequencies

in the Requirements KA.

• The "fundamental design concepts" has mapping with fundamental principles 2 to 5,

whereas the other fundamental principles have no mapping to this engineering knowledge

category.

• The "criteria and specification" has mappings with ftindamental principles 3 to 7,

whereas the other fundamental principles have no mapping to "criteria and specification".

• The "theoretical tools" has mappings with fundamental principles 2 to 5, whereas the

other fundamental principles have no such mapping.

• The "pracfical considerations" has mappings with fundamental principles 1, 3, 4, 5, 7 and

8, whereas the other fundamental principles have no such mapping.

• The "design instrumentalities" has mappings with fundamental principles 2, 3, 4, 6 and 7,

whereas the other fundamental principles have no such mapping.

8.5 Mappin g results from the fundamental principle s viewpoint

Figure 8.5 summarizes the results of the mapping between the Vincenti's categories of

engineering knowledge and the engineering fundamental principles from the FP viewpoint.

Following is a description of these results:

• "FP no. 1 - Apply and use quantitative measurements in decision making" has mappings

with the following category: "Practical considerations"; and has no mapping with the

following categories: "fundamental design concepts", "criteria and specification",

"quantitative data", "theorefical tools" and "design instrumentalities".

• "FP no. 2 - build with and for reuse" has mappings with the following categories of

engineering knowledge: "fundamental design concepts", "theoretical tools" and "design

instrumentalities" and has no mapping with the following categories of engineering

knowledge: "criteria and specification", 'quantitative data" and "practical

considerafions".

177

Fundamental principles

6 Design instrumentalities \l
5 Practical considerations *-< -

4 Quantitative data

2 Criteria and specification

+^.

3 Theoritical tool s wimiMirin!iitifrifitii.*m i

1 Fundamental design concept s ^ -, rmr iinnTriffit -i

3

Figure 8.4: Vincenti's six categories and the FP frequencies i n the Requirements KA.

"FP no. 3 - grow systems incrementally" and "fp no. 4 - implement a disciplined

approach and improve it continuously" have mappings with "fundamental design

concepts", "criteria and specification", "theoretical tools", "practical considerations" and

"design instrumentalities" and has no mapping with "quantitative data".

"FP no. 5 - invest in the understanding of the problem" has mappings with "fundamental

design concepts", "criteria and specification", "theoretical tools", and "practical

considerations"; it has no mapping with the following categories of engineering

knowledge: "quantitative data" and "design instrumentalities".

"FP no. 6 - quality is the top priority; long term productivity is a natural consequence of

high quality" has mappings with the following categories, "criteria and specification" and

"design instrumentalities"; it has no mapping with the following categories of

engineering knowledge: "ftmdamental design concepts", "quantitative data", "theoretical

tools", and "practical considerations".

178

• "FP no. 7 - since change is inherent to software, plan for it and manage it" has mappings

with "criteria and specification", "pracfical considerations" and "design

instrumentalities" and has no mapping with the following categories of engineering

knowledge: "fundamental design concepts", "theoretical tools", "quantitative data".

• "FP no. 8 - since tradeoffs are inherent to software engineering, make them explicit and

document it" has mappings with the following category of engineering knowledge

"practical considerations" and has no mapping with the following categories of

engineering knowledge: "fundamental design concepts", "criteria and specification",

"theoretical tools", "quantitative data" and "design instrumentalities".

• "FP no. 9 - to improve design, study previous solutions to similar problems" has no

mapping with any of the categories of engineering knowledge.

From this mapping the following can be observed:

• The principle "FP no. 3 - Grow systems incrementally" and "FP no. 4 - Implement a

disciplined approach and improve it continuously" has almost a full coverage of Vincenti

categories of engineering knowledge within the requirements KA. This means that these

two principles mapped five engineering categories and contain considerable engineering

knowledge.

• "FP no. 2 -Build with and for reuse", "FP no. 5 - Invest in the understanding of the

problem", "FP no. 6 - Quality is the top priority; long term productivity is a natural

consequence of high quality" and "FP no. 7 - Since change is inherent to software, plan

for it and manage i f partially cover the categories of engineering knowledge. This means

there are gaps of engineering knowledge with regards to these FPs within the

requirements KA.

• "FP no. 1 - Apply and use quantitative measurements in decision making" covers

"practical considerations" category of engineering knowledge while "FP no. 8 - Since

tradeoffs are inherent to software engineering, make them explicit and document it"

covers only the "practical considerations" category of engineering knowledge. This

179

shows that the coverage of engineering knowledge is very weak for these 2 FPs within

the requirements KA.

^

9 Solutions

8 Tradeoff

7Chatip,e

6 Quality

5 Problem

Ciitegorie.s of engineering Iciio\> ledge

•••wmmmmmmms

,„ttimitS

4 D i s c i p l i n e i »in«rtrrrt«fW(r>rtrnr. r •

3 Incremental

2 Reuse :ii(mm(m\mmmammmt>mttaimm^miiiSUi

1 Measurement » • Jl
y ./ y

Figure 8.5: Frequency of fundamental principle s for "Software requirements" KA

8.6 Summar y

The work presented here has involved the mapping between the "Software requirements" KA

and the Vincenti categories of engineering knowledge (Vincenti W. G. 1990) with respect to

the presence of each of the engineering fundamental principles. The results of this mapping

were presented from both the Vincenti's viewpoint and from the fundamental principles

viewpoint.

180

The analysis of the mapping results exposed the status of maturity of the "Software

requirements" knowledge area from an engineering perspective. It actually showed the

lacking of engineering knowledge with regards to each of the fundamental principles.

The analysis showed among other things that in the "Software requirements" KA two FP

mapped with five out of six Vincenti categories of engineering knowledge (Vincenti W. G.

1990) and two fundamental principles with a few mappings only.

CHAPTER 9

DEVELOPING A N EVALUATION METHO D TO VERIFY THE OPERATIONA L
GUIDELINES IN THE SWEBOK GUID E

9.1 Introductio n

Chapter 6 proposed the operational guidelines for the SWEBOK Guide along with IEEE

STD 1362-1998. Chapter 7 proposed the consolidated view for the measurement FP as can

be noticed, the proposed operational guidelines for the measurement FP are not completely

covered.

In this chapter, phase 8, the detailed development process for the evaluation method is

presented. This evaluation method will be used to evaluate the operational guidelines for the

measurement FP. This will allow the evaluation of the operational guidelines coverage for

this FP.

The evaluation of the operational guidelines will be undertaken for the measurement FP for

each of the SWEBOK knowledge areas where it has been described. This evaluation will

allow the verification of the coverage of the operational guidelines related to the

measurement FP.

This chapter is organized as follows: section 9.2 presents the operational guidelines

evaluation method and a summary is presented in section 9.3

9.2 Evaluatio n method for the operational guideline s

The evaluation method for the operational guidelines is composed of three phases:

• The first phase is the design of an operational model;

• The second phase is the evaluation procedure;

182

The third phase evaluates the results of the operational guidelines after implementation

through the first two phases.

Figure 9.1 illustrates the phases of the evaluation procedure - see figure 9.1.

—\

Phase 1

Design of an Operational Model

Phase 2

Evaluation of an Operational

Phase 3

Evaluation Results

Figure 9.1: The three phases of the evaluation procedure of operational guideline s

9.2.1 Phas e 1: Design of an operational model of operational guideline s

The operational model for the application of the FP is illustrated in

Figure 9.2. This model is composed of the following six elements: activities, steps, resources,

artifacts-input, artifact-output and stakeholders. Moreover the activities use resources (like

techniques and methods), are composed of tasks, deliver artifact output and are performed by

a stakeholder. The definitions of each of these elements are provided in (ISO-12207 1995) as

follows:

• Activities : In software engineering SE activities are strategically oriented and add real

value. SE activities are equally important during creation, maintenance and end-of-life

phases of an IT solution as well as "A set of cohesive tasks of a process".

• Task: "Requirement, recommendation, or permissible action, intended to contribute to

the achievement of one or more outcomes of a process".

83

Resources: "Asset that is ufilized or consumed during the execufion of a process".

Stakeholder "Individual or organization having a right, share, claim or interest in a

system or in its possession of characteristics that meet their needs and expectations".

Artifacts-input: Refer to acfivity and produced by performing the tasks.

Artifacts-output: Refer to activity and produced by performing the tasks.

Knowledge area s

Composed Of

Sub areas

Composed Of

• Topic s

Figure 9.2: Operational mode l of operational guideline s

184

These six elements of the operational model will be taken as criteria in the evaluation

procedure that is defined next.

9.2.2 Phas e 2: Conduc t the evaluation procedur e

Figure 9.3 describes the evaluation procedure and takes as input the operational guidelines

for the measurement FP in the SWEBOK Guide as well as the six evaluation criteria

previously defined. The output of the evaluation procedure will be the evaluated operational

guidelines.

Measurement Operational
Guidelines

Evaluation Criteria

Evaluation Procedure Operational Guidelines evaluated

Figure 9.3: Generic evaluation procedur e

The evaluation procedure consists of the two following steps as described in Figure 9.4:

• First, the evaluation criteria will be extracted from the operational model;

• Second, these criteria will be mapped to the measurement operational guidelines.

185

Operational Model -Extract-

Evaluation Elements

Activities

Taslcs

Ressources

Artifact-Input

Artifact-Ouput

Stal̂ ehoider's

Evaluation Procedure

—Mapped T o - ^ Measurement
Operational Guidelines

I
Measurement Operational Guidelines

Evaluated

Figure 9.4: Evaluation procedure of operational guideline s

9.2.3 Phas e 3: Evaluation result s

The result of the evaluation of the operational guidelines for the measurement FP within the

SWEBOK Guide is presented in Table 9.1.

This table is organized as follows: the ten SWEBOK knowledge areas are presented in the

rows while the six evaluation criteria are presented in the columns (activity, steps, resources,

artifacts-input, artifact-output and stakeholder).

186

The results of this evaluation are classified into categories ranging from high coverage (the

knowledge areas that have a good mapping result compared to the operational model) to low

coverage.

These categories are composed of the following:

• Category-A includes the knowledge areas that cover more than 80% of the six evaluation

criteria;

• Category-B includes the knowledge areas that cover over 50%;

• Category-C includes the knowledge areas that cover over 30%);

• Category-D includes the knowledge areas that cover over 16 %;

• Category-E includes the knowledge areas with zero coverage.

Some examples for these categories are presented as follows:

Category-A: coverage of more than 80% of the six evaluation criteria

"Software engineering management" and "Software process" KA cover respectively six and

five out of six criteria.

Category-B: 50%- coverage

'Software requirements", "Software testing", "Software maintenance"' and "Software

quality'" cover three out of six criteria. As an example, the coverage for two of the KA is

described as follows:

• "Software requirements" covers "resources" with size measurement method for

fiinctional requirements; with software specification document as "artifact-input" and

with functional size as "artifact-output".

• 'Software quality' covers "activifies" for: stop tesfing, cost of SQM, and interpretation of

results. It also covers "resources" for techniques, methods such as (defect analysis,

statistical test coverage) and generic models; and finally, using effort as "artifact-output".

187

Category-C: 30%)- coverage

"Software design" and "Software construction" respectively cover two out of six and one out

of six criteria.

• "Software design" covers "artifact-input" by using structure chart, class diagram and List

of measures as "artifact-outpuf.

Category-D: 16%-coverage

"Software construction" covers one out of six evaluation criteria.

• "Software construction" covers "artifact-output" with a list of measured artifacts such as

code developed.

Category-E: 0- coverage

"Software configuration management" cover zero out of six criteria.

• The measurement FP in "Software configuration management" is present but not

described, therefore none of the six criteria's is being covered.

Table 9.1 Evaluation results of the measurement- FP in the SWEBOK KA

SWEBOK

Chapters

Software

requirements

Software design

Software

construction

Activities Tasks Resources

y

Artitacts
-Input

J

J

J

Artiiacts-
Output

y

v/

TSTaliehoIders

188

Table 9.1 Evaluafion results of the measurement- FP in the SWEBOK KA (continued)

ISWEBOK

Chapters

Software testing

Software

maintenance

Software

configuration

management

Software

engineering

management

Software process

Software quality

Activities

J

J

J

y

Tasks

y

y

y

Resources

y

y

y

y

Artifacts

-Input

y

y

y

y

Artifacts-

Output

y

y

y

y

Stakeholders

y

This evaluation results provide five categories ranging from high coverage to low coverage.

This shows that the operational guidelines for the measurement FP are not completely

covered and there is missing information related to the description of the operational

guidelines for the requirements, design, construction, maintenance and quality KAs, For

instance, in most of these KAs there is a lack of activity and task descriptions. Once all the

missing elements related to activities, tasks, resources etc, will have been described for each

KA, a complete operational guidelines can be prepared for this FP across the full software

engineering body of knowledge - of course on the basis of the revisions subsequent to 2004

version of the SWEBOK Guide.

9.3 Summar y

This chapter illustrated the evaluation of the different operational guidelines related to the

measurement FP for each of the SWEBOK knowledge areas. It was based on a three-phase

89

evaluation procedure. Each operafional guidelines is taken as input to this evaluation

procedure and is evaluated against the six evaluation criteria that were extracted from the

operafional model.

As a result, this evaluafion exposed the missing elements related to the description of

operational guidelines for the measurement FP so that steps can be taken to further complete

those elements.

CONCLUSION

The research work presented in this thesis had two main research objectives:

• The identificafion of the engineering fundamental principles of software engineering

from the 34 candidates identified by (Seguin N. 2006),

• The description of the operational guidelines of these engineering fundamental principles

on the basis of the content of the SWEBOK Guide.

In this research study, these two objecfives were achieved by using Vincenti's, the SWEBOK

Guide and the IEEE standard 1362-1998 Concept of Operations (ConOps) Document.

In addition, the research issues that have been addressed in this thesis are aligned with

Vincenti's categories of engineering knowledge to analyze the software engineering and

analyze software engineering principles from an engineering perspective.

Moreover, operational guidelines for the SWEBOK Guide knowledge areas were described

in alignment with the IEEE 1362-1998. As a result of this research, several contributions

have been made, as discussed in the section "Contributions of the research".

This research work opens avenues to:

• Build a consensual analysis of the software engineering principles from an engineering

perspective;

• Identification of the software engineering principles;

• Improvement of the operational guidelines for the SWEBOK Guide;

• Improvement of the SWEBOK Guide from an engineering perspective and from the

software engineering principles perspective as well.

Contributions o f the research

This section summarizes the various contributions achieved throughout this research study.

These contributions are classified into four categories:

191

Engineering perspective in software engineerin g

The research contributions related to "Engineering perspective in software engineering" are

as follows:

• The models representing the relationships between the different categories of engineering

knowledge as well as the models for each of the categories of engineering knowledge that

have been extracted from Vincenti: these models make these categories more

understandable (Chapter 3);

• The analysis of software engineering from an engineering perspective;

• The mapping of the knowledge contained in the SWEBOK KA to Vincenfi's categories

of engineering knowledge;

• The presentation of the new breakdown of the SWEBOK KA based on the categories of

engineering knowledge.

Identification o f FP

The research contributions related to "Identification of FP" are as follows:

• Identification of 9 software engineering principles from the 34 candidate principles

selected by Seguin;

• Identificafion of the hierarchy of the set of the other 25 candidates.

Description of FP

^The research contributions related to "Description of FP" are as follows:

• The identification of software engineering principles within the content of the SWEBOK

Guide-ISO TR 19759;

• Each of the principles verified from an engineering perspective and then described from

an operational view point based on the content of the SWEBOK Guide and structured

according to the international standard IEEE 1362 1998 Concepts of Operations

document (ConOps);

• Consolidated view for the measurement FP;

• Evaluation method for the operational guidelines.

192

SWEBOK: Identification o f potential gaps

The research contributions related to "SWEBOK: Identification of potential gaps" are as

follows:

• Documentation of the principles using as a basis the SWEBOK KAs;

• Identification of the missing engineering FP within the content of the SWEBOK Guide;

• Identification of the missing categories of engineering knowledge within 3 SWEBOK

KA.

Some of the initial outcomes of this thesis (from phase 2 and phase 3) have been published /

submitted in the following journals or conferences:

• Abran, Alain; Meridji, Kenza, "Analysis of Software Engineering from An Engineering

Perspective", European Journal for the Informatics Professional ,vol. 7, No. 1, February ,

2006 , pp. 46-52 •. www.upgrade-cepis.org Upgrade : ISSN 1684-5285

N o v a t i c a : ISSN 0211-2124 .

• Abran, Alain; Meridji, Kenza, "Analysis de la Ingenieria del Software desde de la

perspective de la Ingenieria", in Novatica, Ed. ATI - Associacion de Technicos de

Informafica , Vol. 32 No. 179 , 2006 , pp. 7-20.

• Abran., A., Meridji, K., Dolado, J., "Software Engineering from an Engineering

Perspective: SWEBOK as a Study Object", Apoyo a la Decision en Ingenieria del

Software - ADIS workshop, Congreso Espanol de Informatica - CEDI Conference,

Zaragoza, Spain, Sept 11-14, 2007.

• Kenza Meridji, Alain Abran "Software Engineering Principles: Do they Meet

Engineering Criteria?" (Submitted to the Journal of Systems and Software ELSEVIER).

Workshop presentation s

• Meridji K.; Abran, A., "Software Engineering Principles? Do they Meet Engineering

Criteria", in Workshop: Engineering Foundations of Software Engineering', International

Conference on Software Engineering Educafion ICEE , Coimbra, Portugal, 2007.

http://www.upgrade-cepis.org

193

• Meridji K.; Abran, A., "Software requirements: Application of Fundamental Principles",

in Workshop: 'Engineering Foundations of Software Engineering', International

Conference on Software Engineering Education ICEE, Coimbra, Portugal, 2007 .

The research outcomes from phase 4 to phase 7 still have to be prepared into a publication

format and submitted for publication.

As can be noticed from the literature review in this thesis, there was not much previous work

done on the principles of software engineering. This thesis took into consideration the

engineering perspective for the identification from the literature of software engineering

principles. This led to the description of operational procedures of these principles from an

engineering view point such a study was not conducted in the literature.

To carry out the descriptions of the operational procedures, the SWEBOK Guide was a

candidate for this study. A number of verifications have been done in this thesis on the

SWEBOK Guide such as the following:

• Analysis of the SWEBOK Guide from an engineering perspective through comparing the

design concepts in SWEBOK vs. the design concepts in engineering;

• Mapping the SWEBOK KAs to the categories of engineering knowledge;

• Mapping the 9 engineering FP to the SWEBOK Guide from an engineering perspective

to verify the presence of the engineering FP in the SWEBOK Guide;

• Mapping the engineering knowledge, SWEBOK and the engineering principles this

illustrates that this mapping was possible.

The SWEBOK Guide has been verified from different perspectives. This research concludes

that the SWEBOK Guide maps with the engineering perspective. Also operational guidelines

have been built on the basis of this SWEBOK body of knowledge. Therefore the SWEBOK

Guide could be considered as an engineering body of knowledge and could be taken as a

foundation for software engineering.

194

This conclusion does not mean however that all foundations are included, not that what is

included is entirely mature.

Research limitations :

Some of the limitations of this research work are described as follows:

A- Engineering perspective in software engineerin g

Most of the analysis is based on an engineering perspective. Still to be addressed are all

engineering types of knowledge relevant and applicable to software engineering.

B- Identificatio n o f FP

• A limited number of references on the fundamental principles of software engineering

• The list of 34 CFP taken as input to phase 3 is not necessarily exhaustive.

• The nine engineering FP were identified through criteria; these criteria are not necessarily

exhaustive.

• The number of experts to verify the selected engineering FP was limited.

• The expertise of the participants to verify the selected engineering FP was limited.

• The research did not include experimentation of each FP identified.

C- Descriptio n o f FP

The content of the operational description is not exhaustive and is limited to the content of

the SWEBOK Guide.

D- SWEBOK : Identification o f potential gaps

Should the missing FP within the content of the SWEBOK Guide be covered or not within

each KA?

195

Further Research work

This thesis was of an exploratory nature in the same way the methodology adopted was of an

exploratory nature. Exploratory research does not give a definitive result by itself, rather it

opens new research directions such as:

A-Engineering perspectiv e in software engineerin g

Analysis of the content of software engineering discipline, such as measurement.

B-IdentificationofFP

• Identification of gaps in software engineering principles;

• Each principle can be the subject of a more in-depth research study;

• Revisions with additional experts could be conducted to further strengthen the nine

engineering FP and their hierarchy;

• Identification of engineering criteria within the software engineering body of knowledge;

• Identification of engineering criteria addressed within the software engineering

curriculum;

• Experimentation of these FP through successful projects to observe how the FP were

applied in such projects.

C-Description o f FP

Develop an international standard for operational guidelines.

D- SWEBOK: Identification o f potential gaps

The engineering FP could be used to improve the SWEBOK content in the upcoming

revision.

Addressing the missing categories of engineering knowledge exposed in this research study

could contribute to improve from an engineering perspective the upcoming update to the

content of the SWEBOK Guide.

196

Research impact s

Software engineering lacks well recognized fundamental principles and reflects its immature

status of development. Defining universal recognized fundamental principles could reform

our view of software engineering and software engineering education. This work could

eventually have an impact at the educational level as well as the industrial level.

Nowadays the industrial sector of software development is facing a lot of problems due to

many reasons. One of the reasons is that the software engineering discipline is not as mature

as other engineering disciplines. Software projects run over time and over budget. A

universally recognized and well documented set of fundamental principles applicable to

industry could have an industrial impact on the methodologies, the standards and the tools

used. For instance, the following questions can be raised:

• Do the methodologies proposed to the industry cover the fundamental principles?

• Do the software engineering standards, such as those of ISO and IEEE, cover the full set

of fundamental principles?

On the other hand, the definition and establishment of universally recognized fundamental

principles could have an impact on the design of software engineering curricula and could

provide material at the educational level for teaching courses related to the software

engineering discipline and could facilitate transmitting the appropriate knowledge and skills

to students in alignment with engineering knowledge, preparing them to be professional

engineers.

5

CO

K
A

.

to
M
ffl
H
P<
O
to
u o 1 - ^

u o
;ii
o m u
^
C/}

to
X
H
Z
NH

Q
to
z
H
Z
O
u
to
o

L
E

D

O
^

O
F

T
H

E

Z:

C
A

TI
O

SS

IF
I

C
LA

u 00

w
le

d
2
M
to

ii
ii

• . -<
OiO ti
u

V H

o
!3
O

o
ifl

tn

la
s

o
i>

J3
h.

«2
CO
Cu
<u

o

00
CI
-a
o
a, C/3

t: o o
tu

xi

pi
ng

s
be

t

&

s
th

e
m

)r

es
en

t

Uii

X

<
in

• i- H

.CI
H

u
"H
'3

O
m
rjy

A
s

in
 th

e
D

w
in

g
3

A
fo

r
th

e
fo

ll<

^
o o
d • <- H

>

m
en

ts

eq
ui

re

es
ig

n

1 1
^ (N

C
tio

n
on

st
ru

u
1 m

00
4

f ^

o
CQ

C
A

-S
W

l

V)

re
m

en
ti

R
eq

ui

(w
ar

e

o
!Z!

l -H

'5
'^
O
CQ
to
r/i
V

J3
•* .<

s
O

'3
a-

C4

O
Ml

V

S o

c
to

ica
l

u
R
h .

Cu

ifi

B
V

B
01
k .

3

v>
e _o
v<

er
a

;o
* [«

e o u

B
_o
'«̂ « !T "O

a> 02 ^ c« >

t «
Oi u
a! Q .

B

S

01

s
Oi B

O

3 C «

o".t;
a; =

0>

V)
B
0>
E
01
.t «
5. «
O) o

a.

V) C3

cj ra E o

O S "

B W
0» * -
E g
2i E
^%

B

0£
fi -3
s
o
Cu c «
CO • — q^ k .

O S M

U U

1515

.s «
c « ©
tl > <ii
e ® t ;

C/1

a> —
O " O

c o
. i s < U
t3 B

V5

3 _ C

u ra E O

" u - ra

W5
in e n
U —
O T 3

Cu c

t5 a
C C
3 O

e
'KI
V

c

o c y
c —
O rt

Q 3

ra e n
.2 §

t 5 • -

i s"

o
'-^^ 03
u V
Q H

o

CO

^
"5. • •rt

u _e
a.

oo
ON

ra
3 T l

en
• * — •

C
1 >

15 c i " • •

^ u . ra

aj ra

' e n — ^

T3 ^

3

O

B

s
(U

.ia
3
cr

a. o
a.

a.
PJ 5 0

© .s

a
a>

fi
o

fi
.Sf
'lyj
ii

CS

U B s §
o> • -

2f 3 3 fi cr o
•a u c s

S J 2
O T 3

s

E W D

u if i

Z o

en (/} OJ .Si

a- B

12 _o
• ©

s
u V

.frrf

„^
« E u o
z

B
WD
CO
ii

fi

-a c s
to T 3

'3
a
o
CQ
to
ii

©

fi
ii

ii

3 a
ii

o
tn
ii

CU
ii
(J
fi
©

OX)
_c
'£
B

"WD
fi
to

B
O

CS e n
L. B

Cu O u

B
o*
E B
u . 2
'5 " 5
01 : =

E - 2

3 C
o» S

C£ Q .

B

E
01

0> C Q

B
0>

E B
a .2
'5 15
o".t;
0> u

Oi =
C/l

B
U
E
0)
L.

'5 O"
0»
OS

c/̂
en
0>
U
O
L,
a.

42 e n
B • «

CU g E

a

OJ n

ra

T3
c ra
E i 2

Z! B
C O

p ra
. i i i >

Si "4 3 ^ .- K E

V. e n T 3 T 3

V3 05 a

WD
fi
•3
fi
©
Q H : «

ii • •

I - " -
© ' L .

WD
_fl

OJ

gi
n(

fi
to

V
WD

w
Ie

©

§

t

eg
o

.w

tn ra
en

c E
1)

^̂ ~ ^ >

<^ S - E

^ D a g I §
B E | E
<u ji ; o il :
c/] 3

IZI 0) B (o
^ ra b «

B
V
E

ire

3
O"
0>
u
^ s

pe
c

C/2

c«
B
O
*.s c«
u
0>
Q.
O
B
c«

VM
O

0>

ip
l

in
c

i-
a.

<u

re
m

3
cr a;

o

S 'en

la
s

o

c
•a 5 i
S S

UO ro q j

^ - ^ >
£ = E

CT . 3

=y g e n

"ra o c

2 ^ £

Z i 2

3

0>
B i £

O O
W)

2 c «

B . E ' E
c« ̂ ^ x :
= = ^
ly > > o »
CJ (• u
04 — u
a c « B
(/) o o

WD O

c

E C
ra < u
^ < " P p L ^ E
Ĵ ra D
0> > u en ^ 3
•*~> ^ C T

C/̂ ° U
C/D u

en
E E
o o

re
m

ca

ti

•3 S
CJ" e n
a> s n

Di —
CJ

E
0

-.—> ra

fic

CJ
D
D .
e/)

<̂
"ra E
0

CJ
E
3
tu

w
E ^0

^-t
0
E

E
0

z

en
E
0>
E

ir
ei

3
CT
u

„ T 3
E u

u B

•s ^

B ^ ^

'7i "
o> 0 1

•a . Q
01 • "
F 3

B

.2
v
u u

io
n

.4.-1

?!

(fi
U
V
a. en

ON
ON

o i e n
Si i >
C T -C >

Qi E
ra

0 - o

.2 §

. _ 1)
^ "O
" B
B 3

1 . 2
B L .

B CO
ra c u -j s
p S i E S
S ra w i 5
>>"S a - «

C/J i «

E E
(u o

•3 s
C T e n
< " 2 3
Di —

CJ

en u

E ' S |
E (1) ^ OJ C O • * - • • « e n en 3
>-> CT-'O

CZ) (U E
L« ra

3 L I

o «
en «

E § •
B k .
MD C L

E -2
«5 t S c E s
.h o E o g

c? Jc^« g

= ^ r a ra
ra

.2 o P ll.i
E 3

1) 1)

U- O Cft U o

U

01 —

J î ' o ' B
S ' - o

• * - » " ^

.2 ^ ' E

.a — if i

a

'3
O
o
CQ
to

a
Si

©

fi
ii

B
ii

'3
ii
u
ii

I
©
c/3
V

pfi

a
a
a
fi
©
WD

_C
'[!^
a
v
B

'51)
fi
to

en
B
O

2 S
p. o

en
• * j
B
ii
E B
« o
3 c«
a"-a 0»
oi
V3

.^rf
B
01

^ c«
>

B

E-2

c r -3
05 Q .

B
0»
E
Qi
u e n

01 c «

E B
Ji.2

OJ u
Q£ —

B
01
E

. b e n
3 e n

o> o
0 .

42 e n
B • «

- E g
S i i E

E
o

OJ tn
T3

ra
>

g-.S
E " ^

O g ^ B
!Z1 ^ . 3

WD
B

•3
fi
©
fi. e s
c« • - "
u a
u . t i
© u

W3

.s «
a « ©

•3 ^ W)
tl > ii

^§6

— : S ' S ra *- o »
.2i • « " ^

E e n
<u - a
x : o

E o

1S -e E 3

en
a.
4J * -
CJ 3
B O
O . D
O C «

ra w >
3 . 5
"̂ _ ^
.S . E
"3 • £ w)
e u ^
- . 2 -S

u
. M M

O ! «

H 2

CO
i f i

o
CJ

•o
B
c«

V
1 .

CL.

ii

•3

o
o
CQ
to
c/5

3
©

fi
ii

B
a

'5 o-
ii
i^

a
u

©
tn
ii

J3

fi o
ii
tl

' C
a
a
fi

"WD
fi

to

ic
al

c« k.
Cu

en
- . - « B
0>
E
0>
u
3

0
. ^ i ^

er
a

2
'en
B
0
U

B
0

c« CT-C3
ii
05

en
B
0)

'^ « >

B
E -2

3 i f i
cr-3
Qi ^

B
0)
E
O)

V ra

B

E B
£ . 2
'3 "r a
cr .-ti

OJ

V3

B
O*

. S e n

cr o
0» o

a.

^ e n
B "r a
01 - w

o> B ^
>- S i « *
g 2 i E
> ' 5 c s
o S ^ B

WD
fi

s o
C R c« • —
ii l -

£ .t ;
© ' u
U U

WD
â
cu
cu

gi
ni

fi
to

ii W3
T3

w
le

©
^

t̂

eg
o

.̂ ^ C4

o o
<N

o»
o

0X1
_B
'u
3

: ^ c j

U 3

Q- ra
^ E

0>

0>

. ^ 0 >

ra >
Q. - f l

B
0)
cn
ii
C3
.M
ra

Q

ra

• o
0>
B

X3

o

"5 o !

ca

in

73

B
4* _
S Q .
^ 2
Q. ^

fi o c

en »•
ii O

ii
> 01

oc
• a
ii i o
B

ii

«
ifi

o
tj

ra
en
'3
ii
L .

0.

c

C-fi

a
'3
O

o
CQ
to

!/5
ii

©

fi

ii

*3

ss

o
tn
ii

JS

a,
a
a
fi
o
u
WD

_ C

a>
fi

•53D
fi
to

ic
al

ra L.
Cu

M
.^.t
B
0«
E
0»
L.
3

s
0

•4->

er
a

;o
'en
B
0
u

B
2

' . - < ra
CT 7 3
01
Qi

VI
•^rf

ir
em

en

3
CT
0(
Q£

en
^..1
B
ii
E
cu L.

' 3
CT
01

OC
en
. S
0»
E
0>
1 -
3
! T
01
Qi

en
.̂^ B
0>
E
u L.

' 3
O"
V
CC

^ ra
>

ca
ti

on

ifi
'3 ii
a.
en

v j
en

"ra B
ra

B
2
-̂^ « .fc^

'3
"3

cn
01
u 0
i.
Q.

V) cn
B ra a * -

V B 3

5 2 ! E
5 ' 3 "
O g ^ B

WD

-3
fi
©
cu : «
V3 • - "
ii * -

© u

WD
fi

• - a >
^ W D - ^

C i i ©
tl S- a
c 2 1 S
«.5u

ra
ra
ra

•a
ii
>

nt
it

a

ra 3

1

B

ci
e

su
ff

i

^^ 0

ed
s

ii
B
0

ig
ne

rs
 a

c«
ii

ri
v(

o» •a
en
B

_2
ra

si
de

r

c
0

ii
u
B

'u
0> a.
X
01

i
E
CU >
I- . E
OJ - ^

o

E
0>

E

ir
e

3
o-(U

Di

E
0
4->

ra '̂ 0
00
a

O T 3

u =

.S E
ii =

-I
0> S

o
(N

2> S
=: l u
3 y
CT O cu ^
u Q-

o> u
Di 2

B

E

ir
e

3
CT
CU

Di

cn
. < - • B
<u B cu

qu
ir

cu a5

s
ra

• ^

o 00
<u E

rc
es

3
O

E

E u
ra w .t s

en
cu

_ t j
CT- O
a> u

T3

u ra

ra 3
*• "S B '

« 1- 2
>> _ ^
V B U

J : g o »

03 e o
• M M

a ii
•S n a
'*-' .St

ra
E
cu
>
ra « ^ x :

E
CU

E c u
3 y
CT p

!fi

01
oc

•a
ii

"? a
2 =
B I S

•^ «
X I

s
_2
ra
u

Ifi
•5
o
u
cn
<U

ifi
ii

T3

E
cu

E
• 3 ^
CT-.5
cu u
Di g

E
CU

E
cu

.E 3
CT
^ Qi

en
• 4 - '

E
cu
E cu
k̂

' 3
c-r

E
, 0

•§
' • • - »

0
OX)
cu
E

en
cu
CJ

cu 3
cd O

0
' • *J
u
ra
1.
a.
<u

s:
H

oc
B i »,
o • "
U B
E . 2

. 2 ra
•— ra

•O ° P
'S E o c
O £ 3

00
B

3
en
ra cu
"g . i

E
lU

E
cu u

' 3
CT
cu

E s
. B

3
O!

' 3

o
o
CQ
to

©

fi a
B
a

'3 a-
a

ii

I
©
tn
ii

JS

ii
fi
©
ii
WD

_e

fi
'mm

WD
fi
to

ra «
U B

0 . O
cj

cn
B
O)
E B
Si .2
3 ra
a*-53
ii : B

en

s §
E -2
a, «

. = C I
3 if i
O) S

Oi a .
B
01
£
01
i-

ii ra

B
u
E B

± ' f i
'3 "r a
cr .t :
0« u

Di =
01

cn
• . . ^

B
0>
E
V

.h c n — e n
O) o

a: ^
a .

en cn
B ra
« • -

01 B E

> - S ^ * >
« 2 i E
.2 ' 5 =«
ifi = .T 3
O S ^ B

WD
s
-3
B
©
CL, R
5« • —

© u

E !>
cu E

^ E
f\ ra

<u
cj
E
ra
D .
cu
u

0 0
E

'5.
£^
o
o

Di > < u 5 c u

X) c
E « i

en « « E
en •• — c u
cu ^ 6 0
CJ g ra
O C L B

Cu 3 c
cn E

O
J =
OC
B
%
o
B
id

E
CU

ii B

ra g
U E

E e n
i-r <

ii

0 .
cu
CJ
o Di > < t S

T3
E

ra

o

cu
E
cu
0 0
ra

3
cn

OJ
OC

ra

^ i i
2 I

WD

.S «

fl i i o
WD I f «
s= 2 «

C»

S 3

CN)

o

E
CU

cu E

^ E

00
E

' Q .

o
o
cu

E
ii

OJ E

^ E

ĉ
Q .
cu

3 ^ "
< , c n D -

I o > I

o
ra
en
cn 1>
ti
O

CJ
ra
en
en cu
CJ
O

OC

J£
_fi
1B
C«M
O
>-> ra
^

cn
"ra
B
ii

E oc
"O
3

1-5

r f
O
O

O
OS
to
c/3

fi
.2f
'tn
ii

ns
a
u I
©

c/5

f S

ii

'3
O
Ui o
CQ
to

V

©

fi
WD

• .M
in
ii

Tfi
v
k. a

o

a
ii
u
G
O
a
tl
fi

ii a

fi
to

B

_ec

^ «
<U c n
U 4 > e n

tn z

_oc
'cn
ii

TS

« s
^ -f i

a «

•a

B
B «
ec.2
'5 s n
o» > ^
"- e « . 2 § «

O" 0 1

B
2

o
1/3

•o
B «
« ^
cu fi
L. V
3 V ^ o ' S

® S 5 ^ V5 fi i ; en ra

B
B .2 f

•— e n
cn «
0> - o

3 o <

cn
ra

O) s
u o >
C« E
^ 3 5
cfi .£f- o
O ^ 3

<^ • « 5

WD
fi

-3
B
©
5« •- •
V ^
£: .t:
o u
U U

<4-. "C D
O E e n

^ e n ' ^ - ^

O. P 2 S
^ ra 0 0 E
cu ij u £ ra

3 O 0 0 X)

§ § - a E . ^

C E cu " "
E
o
D.

cu
p s

E
o

ra
B c5 o -s 1^ 2 ' c ra
00 J J C J p

W)

Is w ^ W D - ^

^^ t
a « o
tl >• ii
c 2 " S

cu

E
op
ii

-o
"ra
u
ii
E cu
o

o
0 0 J U C J

E o 2
(U ^ . I
CJ E 3
X ra ^
CU J = < S

5 i i 3
.S y ra
.5 Q." ^ cu

Q.

e/5 ra c u X e n
!> c u - ^
S ^ e g

iS O a j o
O- " ra = " ^
5 ^ ^ % _g 0 0

op S

en

B
.2f
'tn
ii

-O

ii a a
O

= - S -P
"5 U J C J
i i ' < u
TJ *. »

O B
* - .0 0
X e n
ii c u 00 e n

E 2 ^
ra XI . ?
> C 3 C

S E i
« g j t J
O I (U
c/l a

a
.a a
•*rf — " c: a .

o-.S
O " -

El E
cj ra * j
«J c u c

< P c u

00 O E
Z, 0 0
X • «
cu 1)

_ o
53 a . " ^ ra E c u o > >
lU y 4 = S

E L _ c C
O V O
CJ

cd e n

o

_4J
Q .
O
ii
a.

a. a
(J tn

4>
ii
fi
©

fi
tl

c • • '
3 a
to -o

fi
ii

o
CN

2 O ra
S S J I
i i 5 : C J 1 ^
• E w « p
x : — t i ^
Si i i '- c S < ̂ ^ t

en ra Q -

'̂ 5l aj en
*-> .2r u< en
X en CS 1>
CU CU % CJ

E ^ <e 2 o t u o a
CJ i s c n ra 1) > c u

. E 5 J =
H < = H

00

S
_o
'fi

S WD
u I B
O S
Z o

O E
^ 0 0
X ' ^
cu (U
S - a
O D
CJ i s ra cu >

"̂1
WD
o o
d . s u

£ .W D
o ' S

ii
T3
3

o
o
CQ
to
cu

3
©

ch
fi

.2f
'vi
ii

TS
ii u ca

©
tn
ii

ii
ii
fi
©
ii
WD
B

• p ^ u
ii a G

'tl
fi
to

B
.SP
'in " O
^ ra
0> e n
I . 9 > en

ifi - ^ - 3
r2 2 ^

cn B

B
.2f
*cn

T3

- s
* - 2

C . C S
V3 2

B
_OC.en g
cn en
0» >>. 2
' « ra
U B 3
lu ra —
ra . ^ ra
^ .- " >

•S = * *
o « • «

B
ra

2i c u . 5
c« H u 3 4̂ :> s V

® £ H
en ra

oc
cn
a;

IS
SU

>> ii
id

o»
T3

ar
e

^ i t ! C M
0

B
_0C
'cn cn

•T3 5
01 E
^ ii

i E
O B

c/3 3

WD
G,

"6
G
© a. <a
tn • —
ii ^

© u
U U

.2 «
^ W D >^
a « ©

.S " T W D
WD 1 ^ «
fl 2 t s
w ^ (3

3

' u
ti ra

a
ra cu

ii

' 3
CT
0>
u

if
ic

CJ
0>
a. C/2

ra
B _2 - . - >
« u

op
e

B
CS
(«

«
3

ra
Q j 1 .

o>
B jn

or

3
X)

i
ra
.̂ ^
3

c

0 0
c ^
c ea

cu
CJ

L^

J i c c : 0 0-0 g g

g § 'S -E ^ - O J =

O

O O ' E c n
E " ^

'E 3 ca

o ° '2 - i f E" C <"!;•? ;
= ^ ^ 2 a . c 2 5 J ^ S

ed
u

X c

0>

>
•4.^

ita

.^.t
B
« 3
O"
CJ
ifi
'u 01
a.
c/3

B

-..̂ 3
0
> i

ra
(fi

"ra 0
oc

1 ,

ra
CJ
B

.B
CJ
0>

01
• * ^

0> L.
CJ
B
0
CJ

3

p
ra

ra
3

a

3
x>
•g
ra

ra
3

E o>
Z
0
C
B
OC
VI
V

T3
0>
.s
H

• 0
cu
B

ef
i

• 0
IB
01

V
JS

.̂^ cn
3

s

1_
o - a
.2 §
L. * -
ii £

• - 0 <

- ^
B 3

-S'2
B L .

Q.

0> B
3 'u

^ ii in - w
B . 2

E § •
E L .
OC O .

< o

R .f i

.2 ^
O) If i

.^rf . M

•r w
U D .

c»

cu CL > •— ^
^ ' — c n
g t . U J
^ 9 - a

c

O
CM

c
3

tu

CJ

u

3 e" ...J 5 U P
" - a g
S - a c

CJ O a.
c

5 <» o

cn i i :
. _ c S i i P
^ o p td E S xi'.ojJ e d S o .S -
O e n Q H U c n

1 1 U 1 1 1 U
I - o - o

cn
cu
3

1
CQ

3

a

ii
ii

_2
"o.
cn
ii

.^ ra - ^ . t

^ cn
ra
'.-' cyi

' .B

H

-̂^ U
o
O

0>

-*.*

ii
> ii

B
_2
-«̂ ' s
i f i

QJ

3

o
o
CQ
to
c/3
ii x:

.4-1

3
0
fi
WD
cyi
ii

•O
V

©
tn
ii

J:

a.
V u
fi o
w
W5

_fi
'C

3J

fi
'tl
fi

to

.Sf
'en 'a
^ ra
ii in

tn ii

ii in
'oc'g o» 2
.w . B

cn

cn
B
_2
'*rf

£ o
« 3
^ B
C .21 °
O 'c n
^ i i

W) «
'cn
ii

•a
V
u ra

efi
0
tn

'7i

"ra
B
ra >>
-.-* "ra
3
cr

io
n

ra
3

ev
a

• 0
B
«S

73
B U
ra i :

2i a j 2
m U u 2 3 a i
> • " .f i

efi ^ 2
® £ s- *

in ra

B

c/3
01

iss
u

>> a j
^ii

B
OC
cn
ii

• 0
01
L.
ra

cS
0
tn

_ec
'en
01

• 0

ar
e

^
,*-
0
cn

cn

ra
-•J B
01 U

IB

1 3
B
3

C/1

x;^ E
ra ^ o

Jg § '" S e n
2̂ > % 3 a j
« E : 5 CT
cc3 ra ^ ' p

i i 3 V ^

"ra
a

itr
uc

t

ly^j

on
s

'^ .S" *c CJ
cn
a> • 0

^-.,
^

vi
e

CJ

ra
en

.̂-̂

u.
0

> ra
.c
X I

E
0
'^ a.
' i - i
CJ
cn
a j

T 3

5
w

CJ

•g
ra E

T 3

3
CU

i»£
B

'•5
fi
©
a . c 4

© ^

WD

.s «
*" W D - ^
a « o

. 5 " ^ W D
WD I ? c u

a 2 "S

o =
ii o c

_u

he
m

at

•*•* 9Q

S

• 0

od
s a

n

JS

"aj

E

•a

la
ki

ng

s

fo
r

Ia
tio

n

3
CJ

ca
l

CJ T D
E E

C C4- (
cu O
> E

E E e Z . 2
aj ra 7 ; S fc — 3
3 O 0 0 X I
CJ i 2 . £ ' H

g g- o .^
x:

• 4 - *

om
po

ne
n

CJ

-C3
-E

rr
or

 a
n

li
ng

T 3

§
x :

xc
ep

ti
on

aj

ne
e

ra

le
r

0

nd
 f

au
lt

t

ra

E
0

-I
nt

er
ac

ti

E
0

•i-t

-p
re

se
nt

a

0

a j
-4—'
en
en

-
da

ta
 p

et

'3
a
o
PQ
to
c/3

QJ J2 •.•

B
o
B

.2f
' c«
a>

• O
OJ

©

9J

. f i

a.
ii
ii
fi
©
ii
tl
_a
'C
OJ
fi

'Si)
fi

to

a.
a ti
B
0
CJ

ua
l

CJ
_u
"a3
• ^ . ^

B

. . - > 3
0
.a
ra
oc
B

12 B

JS

u
0

, B
OC
cn
ii

• 0

. D
ra
ifi
'•5
o
CJ

•a
B
ra
01
cn

'u
ii
u

a.

ea
ii

'•C 4J
u
0
a

JS

H

cn
"0
0

o
CN

B
_0C
'cn 1 3

^ e s
0» e n
^ ii in

C/3 * j 3

cn
S
O

4^

ra
B
OC

O e n
C/3 ,2i

> > . £

B
0 C . 2 _

' S e n ' ^
aj
"^ 2 ra
01 B 3
I- ra —
es . . «
efi S "
C>0 3 B

o- «

OI u IBM

ifi
O

C/3

•o
B
ra
o>
^ 3

tr
ue

cn

01
I .
3

^ - i

CJ ii

is
CJ
L.
ra

B
cn
â

is
su

>-, a
^

B
OC
cn ii •o
ii
u BAV

ifi
O

C/3

_op
'v> ii
T3

ar
e

^
, • * - *

O
C/l

(/I

3
a>
E
ra
13
B
3

WD
B
B
©

© I M

U U

W]

^ W D • i ^

.5 " ^ WD
fi o ^

aj
CJ o
k. a.
oc c
.S o
L. ' ^
3 C J

U 3 h
o» e a
^ E .2

0»
•o
aj

. B .w O J

CS >

cn ^
'fi a i

2 M
O
ra S

aj
• O

ra
CJ

Q .
E
ii

a
B

o

« «

3 t i
CJ u

ra

• a o>
B
01
in
ii
L.
Q.
0*

a
.t a
z: o c
a. -a
'n 2.
"^ i
en C
aj o

Q 3

ii

>
'Zi a i
a, o c
2 I
a- 5

_o;

ra

T3 o
CJ

•T3
B
ra
01

"tJ
ii

a.

c

cy-f i

©
c«

OJ

ii
<^
fi
©
ii
WD
fi

• IBM

ii
ii

'Sis
fi
to

ii
IS

'3 O
î
O
CQ
to
^
c/5
v

j 3
.«-> U

IO

ci:
fi
.2f
1/3

cu
;..

B
_oc
'in
ii
•o
aj
L. BAV

fil
O

C/3

•a
B
ra
cn
01 c n
'oil's ai ' ^
fi J S

2 t i :S E

cn
B
_2
ra

Oi " ^ ^ 2
CQ 3 ^ 3

efi .£ f
O c n tn ^

B

es
ig

T3
ai L.
es

1 ^ ^

o
tn

•u

ys
is

io

n

2 e s
3 3 ra —

.-« O i
"ra -v
3 B
CT" ra

= J i
ra ^
u u

i , 3 a i
. * - C J • =

Oi
u
ra

C3 fi i = cn ra

•— c n
cn «
Oi "O
3 en S i

. 2 ra

cn

B
OC
cn c n

01 B
L. O i
g E

5 C S
<fi T J
O E

C/3 3

WD
B

•5 s
©

(« •—
Oi ^ si V t. .ti
© L .

E
aj
ra u -

O. 3 ^
E C J c n

.00 2 i i E

^̂ ra n

WD .s «
** W D - ^
g -f i b
a i i o

• - ^ W D
fi 2 *

1^
CS ^

- 2
O C S

fi - a

a
ii
B

01 B
> ii

L. .ti i C M
o • " 3
ai B c/ i

JS C S . w
b- 3 O

O" B

OC
'c«
0)

Q

o
CN

•a
ii >
a . II

! • =
^ a i

CJ C M

B
ifi
o - o
*J 0 1

es g
.B B

4i E

H J S

ai

at
t

cu
E
op

'iTl
ii
O

o
CJ 1

ra
l

3
CJ
aj

rc
hi

ra

en

e ai

la
tt

u.

« - a

^ o
o •-

.23 C J
es 3

!« i; —
?̂ - «
Oi B L .
. a g o *
f- i g-

B
O

cn cn

"ra
E
ra

al
it

y
3

a

E
_o
ra
3

ev
al

T3
E
ra

cn
ai nbiu

j =

CJ
aj -t—>

"ra
^

•G
en

e

en
ai

'oi)

ra
te

en

on
-

4—1

o

•F
un

T3

st
ru

ct
ur

e

-o aj

ri
en

i

o

E

es
ig

-o

-o aj
4—•
E
aj

o
tJ aj

•O
bj

 E

es
ig

T3

tu
re

tr

ue

cn
ra

•D
at

E

es
ig

e

d
d

U H

!>

•c
en

O c u
D. - a
S "^ O a j

O ^

CJ
i f i

Oi
oc

T3
Oi

i
o

ra
CJ

ifi •5
o
CJ

ai

C _2
' • * . '

_ rt
CJ V
-** .f i
U c »
CS e

&H C J

OC
B
E c n
o —

_ C J B
es B .2
CJ O - w
•fi 'fi 5 .
CJ ra S : • "
es 2 S 3
^ a i ' ^ O i c-o = > E
ai ' S E o c
,.3 B 5 T 5
H O £ 3

JS
E

(A

a
ns
'3
O
O
09
to

c/5
9J

JS

3
©
ci
B

.2f
'cn
ii

ns
ii

o
cn
ii

a.
B
©
ii

tl
_C

u
ii
fi

'So
fi
to

_ec
'cn " O
i i B
ai :_
ra

efi
O

C/3

aj
SD
ii
ra k.
cn

cn
•0
0

JS
4-1
Oi
E

B
O

01

u ra
?

efi
0
tn

0
B
B
_ec
'cn
aj

B
OC.en -

•3; 2 , O ai ^ . —
•a ra -5
Oi B 3
1- ra —
ra .^ ra

o « 1 3
'^ S - S CT^ ra

T3
E 0 1
ra i

ai 3
S; o(fi
M ^ C J 2 3 0)
? - M -t i

.*- C J ' E o E y
c'i -fi i

cn ra

E
• ^

cn
Oi

is
su

>>
ai
^

B
OC
cn ii
•a
a
u BAV

j M

0
C/3

B
_0C

'S Oi
13

ar
e

^
,*-
0
en

cn
ra
B
01 U

IB

• a
s 3

WD
C

-3
B
©
cn • —
ii ^

t.^
o u
U U

E
O

aj -o

cd _
u O
3 " -

. p C J
CJ ra

.E S
x : ^ ^
CJ a i

o
.B
OC
B
%
O
B

WD

.s «
aj ^ .1 -

'wD ^
B O

©
WD
ii

w ^ u

r̂ o
CN

•^ . 2 g >
CJ > 'S • —

•c t « a . E
ra jn * ^ ra

o
'4-»

.B" ^ o
cn
a j

13

>
CJ

•̂ ra 4—>

en Oi o
X I

ai
E • >

. 2 C J
s-'s

^ ra

E

i i 1 3

CJ
ai

4—.

rc
hi

ra

cn

E

at
te

CL

13
1>
E
aj

' u O i
O ^ 3

2P a j

u a i - E a J - "
T3
aj

aj
LM

ic
tu

3

E
00

de
s

13
aj

B
aj
E
o CL T 3

o o y P a i E r a i i p j :

V5 T 3 X J

ra

3
13
Oi Ji

2 2

Oi
oc

1 3
Oi

E
o

« C O
. 3

^ " r a
ra a i
3 T 3

ra

ai
3
CT

OC

B

es

m
ii

e a

W3 u

Q 5

o o
CM

o
CQ
to

4>

no
s
o
Ui
O
PQ
to
c/3
.B

©

G

_ o
'** u
3
-̂<
1/3
B
©
ii
ii

O
c/3

Oi

&
Oi

fi
©

WD

<u
O)

_c
"wD
fi
to

B
O

ii

12
'in
B
O
CJ "« o
CJ
ra

B
01
E ec

13
3
"̂

B
_o

uc
t

cy}
B
©
u ii
u
«

©
in

r^

B
O
CJ
oc
oc «
B
ra

B
Oi
E
ra

13
B

c=
B
O

B
O
CJ
Oi
u
ra

i f i
o

c/3

WD
G

•3
fi
©
O i c «
cn • —
ii ^

© U

u u

00
E

'E
E
ra

E
O

E
O

U

^ • 2
X ^
i i 2
Q. I n
E = is
00.S

.E e n
_N " O
' E C « . 5 1 3 E 3
S 5 5

s
_0J)
'cw

u
•fi
15

Oi s
Oi

o
WD

.3 «
^ W D ' ^

c i i fi
•S - ^ WD
W) ? O i c 2 rt to s * W j j j { J

00 o
CN

E
o

00
ai

CS
e
.2 S
CS a

00
E

_ra
a.
E

^O
'4-*

a

5
en
E
O
U

E
0
.̂^ ra U l

00
ai
E

*-• CJ
E
en E
0

u

o
ii

a.

a.
u tn

® .s

E
.op
'en
ai

13
E
O

ai
13
O

E
O

E
O
U

fi
_o
"C

eS

1 ^
fi W D
^ IS

CJ

cn

WD
_ ©

"o
B

JS
ii
ii

CS

B o
U W D
fi ' M

:4 <u
CJ fi

ii

B
c«
B
3

B
©

B
.Sf
'c/3
CU to " O

ii

'3

O
CQ
to

c/3
cu

©
cis
fi

_©

a
fi
c/3
fi
o
ii
i.
c< I
©
cn
ii

CM
u
u
fi
©
CJ
tl

u _c
'wD
fi
to

B
2
"es
u
ai ;o

'cn
B
O
CJ
"ra

CJ
ra

a.

B
O

B
O
CJ
ec

_a
'SD
ra
B
«

«
B
3

C M

B
_2
CJ
3

B
O
CJ
ai
ra
ifi
O

E
op

"cn
ai

13
E
O

E
O
U

WD

-3
B
©
CU a
tn • —
ii ^ U a
C .t s
© u U U

WD
B

• - ii
* • W D - ^

SJ - o b
B i i «

•ts ^ WD
t l f- ii

fi 2 t a
w.5u

B
Oi
E _
.̂ §
3 o cr'fi
Oi ra
u u
a g.ii!
S o" o-
'̂ S B Q, e s . 3

O Q .

es
3
IT

• «
im
ii
B .
Oi es

o
oc

.fi u
B . E B
ra « < . B
3 3 "
CT- O S
CJ > > O i

a if, '-
ii Ji ii
Q. C S B

C/3 0 „ O
ec C J

E
o
u
3
E o
CJ

ra
13
E
ra

00

E -a

ec ^ ^

Oi *• •

^ E

ai
00
E
ra

J3
CJ
00

_E
ra

E

O 1 3

.2 §
U -M
Oi 2

. _ 4 ,

1:^
B L .

M
CS

.2
cu

• ^ r f

'u
U

_o
' • 4 . ^

CS
CJ
e
CJ
ii
a. c/3

ON o
CN

aj
0 0

§ x:
CJ
00

ra a.

E
<

in

CJ
ai

•M ra

E %
B > -ec a .

< o

. 2 4 - » >

.a: 'o ' B
2 1 - 0
« Q , . M

. 2^ 'S
x: t : i c
H - M V
• ^ ra 1 3

QJ

'3
O

o
CQ
to

c/3
Oi

o
ci: e
©

ii
3

tn
G
©
CJ
a
u
c«

©
cn
ii

ss

ii
•JS
cn
B
O
CJ

"ra
_ o
'^
CJ
es
u
b.

B

_2
CJ
3

- u
cn
B
O
CJ
oc
s

'ec «
B
ra

a. V
CJ
fi
©
CJ

WD
fi

• mi
u
ii
a>
fi
WD fi
to

4 . ^

B
Oi

E
« 13
B
3

C M UO
I

ii
3
L.

.*rf
in
B O
CJ
Oi
l_
ra
^ -4->

< M

O
C/3

E
aj

ra
1)

E
E
O

o

WD

-3
B
©
a. c «
cn • —

£ .t :
© b

U U

WD .s «
^ W D - ^

a « ©
. S " T W D
tl > ii
B fi t J

E
.00
"iTi
ii

"CT
P
.2 'fi Ci

E
4 - 1

en
E
O

1)
cn
3
0)

U o i

O 3
Oi e c

— J : ' 5
ra - M 4 »
2 1 3 1 3
« 5 o c e
2 « . a 5
B c n ' S • —
.3 O 2 —
fi . 3 E 3
« • J C J
5 * • ' - -f i
« B O "

B c E u

(U
13
O
E
E
O

E
O

E
O

B O
o

cn
1 3 u
ra

13
E
ra

5o

en
• 4 . . *

a.
Oi - M
CJ 3
B O o . a
CJ ra es OC

0 0
E

'E E
ra

E
o
U

^ • ^ B

« « .5 ?
B i - S R M o

C M ^

CS
^JJ

u
k.

2 i2
H 5

_0i
J3
ra

o
CJ

1 3
B «

CJ
Oi
L.

cu
CJ
B
©
CJ
WD
fi
'£
9J
Oi
B

' W D
fi
to

ii

3
'3
o ^̂
^
o
CQ to
^
c/3
<u

JS
• ^ ^

B
©
L.

c^
fi
©
•^^ ii

tr
u

cn
fi
O
CJ
ii
u
c«
^
s ©

cn
ii

Si

E
O

ra
01

72
'in

O
CJ

"ra

ct
l

ra
BU

U
O

]

.̂ ^

ru
e

4 - »

cn B
O
CJ
ec
B

na
g

ra
S

B
ai
E « -a
B
3

C M

B
O

B
O
CJ
Oi
u
ra

efi
O

C/3

WD
B

S
O

a
cn
Oi
L.
©

.2
. fa '

U

cn
Oi
CJ
O
L.
a. oc
B

WD
. 3 C J
^ W D ' ^

fi i i o
• S - ^ W D
WD ? l U
fi 2 m

«.5u

B
_ o
I- '.Z
3 C J

CJ 3 i ;
5i 3 = ^

rS" I * " -
c/3 B . O

0>
T5
Oi

J3
4 . ^

>-.
_ra
"a.

o
CN

a
.2
'>
9i

13
ii

a
B
Oi

B
OC

Oi
•o

es
CJ

a.
E
0)

13
Oi
B

J3
O

1 3
Oi

es .^

ii
>

ii

ra

T3
Oi
3 in
ii s:
en r ?
a M .
u e s
5J^ ec DS

Oi
. > O i
.M e c
a. -o

•E i i
'̂ i
en £
Oi O

Q 3

Oi >
• ^ a i
Q, O C

• £ |
<n i
ai i,
^ 2

Cu 3

_ai

ra
i f i
•5
o
CJ

•a
B
ra
ai
cn '3
0>
L.

fi

X i «

Ons

ii

!2 '3
O
^
o P3
to
^
c/3

B

.2 -fr^

de
ra

'v)
3
O
CJ

"3
CJ

ct
ii

rt
L. V

u
CJ
B
©
CJ

WD
_a
'C

SJ
ii

_G

'51)
a
to

©
th
a
©

• * *

CJ

st
ru

a ©
CJ
Oi
L.
CS 1

^̂ ©
c/3
3J

ti
on

a
3

cn B
0
CJ

ec
B

na
g

« S

Oi
E
es

na
B

B
o

B
O
CJ
Oi

ra

i f i
o

c/3

WD

a -5
d
© a. c «
cn •? *
SJ ^

© u u u

B * :
« ra
^ e s
® fi
2-§

Oi
ai

1 3
ai >
'u
a

B 1 3
o

CJ . i

WD

.s «
*" W D • ^

a i i o
• S - ^ W D
WD > «
fi 2 rt

I. .f i
<= fi
Oi B

x : e s

B
.2
'u
ifi

• o
B

« cn

ai
B
ec

D
es

.IS

a>
• c
'c/j

co
n

k .
Oi

a. X
4i

fr
om

1 3
Oi

i f i . >
O 1 3 i

. M • ^ ^ ^

« g °
£ E
Oi 3 -I I"
H . B

13
B
ra

ra
3
CT
E

. 0
CJ
3
i:
CO
E
O

U

3
CJ

i f i

• o
O)
OC

1 3
Oi

CJ
ra 3

^ s fi
« ^ - 2
>> ra
Oi B u

. 3 r O i - c «

o
B

Oi

cn
S _o
'*-

— C S

CJ u •fi 2
CJ c n

C u C J

(M
00
B

E
O

CO
B
O
U

B
O

ra
CJ

1 3 o
CJ
cn
ai

ifi
Oi

1 3

ra
CJ

ifi
*C
aj
>

00
a

E
O
U

oc
_a
E in
O •"

_ C J a
es a . 2

. « o - M
'.s ' M ra

a ' 5 .3 a
^ s

ra

E oc^
o - a
L. 3

ii
"3
OS

ii
ns
3

o
o
PQ
to
!/3
U

J2
.fad

3
©

a
_©
'•fcj

CJ
3
k.

• t - i
cn a
©
CJ

ii u
cS

©
cn
SJ

a
a
a
fi
©
CJ

tl

'iH
SJ
OJ

a
'tl a to

a
.2
4-
ra
Oi

!2
"cn
a
o
CJ

"ra .2
4.^
CJ
ra

a
o

a
o
CJ
oc
E

'eJD
ra
a

a
ai
E
ra

13

B
O

O
CJ
ai
u
ra ?

•fi
o

c/3

00
p

E
O

E
O

WD
a • pri

a
©
B. a tn • —

1:.^
© L .

u u

AVO

x: ec
.B AVO

a
^

WD
. 3 S J
^ W D - ^ SJ - a ^ G Ji o
tl > a
fi 2 M

aj
00
ra
3
00

00

00 a^

••K S
i i CT-
E E
.2 .2

CJ

s
4-»
cn
E
O

E 1 3

ii
o

E
O
CJ
3

E
O
U

E
. 0
ra
CJ

i f i
'u
aj >
a
00

E
O
o

E
O
CJ
3

E
O
CJ

ra
13
E
ra

• ^ ^

c/3

Oi
OC

•a
ii • 2 ^

^ 2

ra
3
CT"
E
O

o

oc

B

O

ra

Oi
E
oc

•o
3

cn
U

CS
fi
u

•c I
S I
p 5

(N

CN
fi
O

cn
fi
O
u

o
CO

fi
c«

"c
cn
ii ns
ii
!3

O
CA

a a
B

X
to

fi
OJ

cu
cc3

O
on

to c/ 3 CA)

Pu ?2

0)

o
cc3
CJ

; - (
.X2

OJ
fi
cu

-fi

fi
ii
tn
flj
S-I

D .
X
OJ

<
ii

JS
H

cu

W)

cu 'I
o

M
.3

cu
ii
fi

• I—(

fi
ii

i*-i o
CO

<u
' ; - l
O
W3
OJ td o
OJ

X3
4->
fi o

T3
(U
cn
cti

Xi

r r o o n

O
to
c/3

B

u
'3

aj u c«

©
c/3

CN

c

<
U.
Ui
C

a;
ed

1 o
c/3

S'
o
OJ) <1>

CJ

c

in
c

>
01)

cn
3

u o
CQ UJ

^
c/3

r

1 —

1 c 1
BD C

De
si

ns
tr

um
e

I »

w _ _ —

-, r

[->[

_ k

T l

S

pp
or

t
ro

ce
ss

 s
u

Cu

—

ge
m

en
t

m
an

a eq
ui

re
m

en
ts

oi
CN

C/1

UJ

re
v

et
es

t
cc

ep
ta

nc

<.
m

OJ)

ro
to

ty
pm

a.
•*

c
E

an
ag

e
ct

or

ha
ng

e
m

ro

ce
ss

 A

U a .
t/^ 's O

_ o

(S 1 3

o
U

hj ' E < n
^ = Q

3

1 =
« . 2

(J G .

r > i

ys
te

m

c/3

" •

nt
s

an
d

qu
ir

em
e

ft
w

ar
e

w)

nt
s

qu
ir

em
e

•ia

un
ct

io
na

u.
(N

on
ai

on

fu
nc

ti

Z

CO

qu
ir

em
e

u

cn
«i T 3
i^§

pr
op

ja

ii
ty

m

er
ge

nt

ro
ce

ss
 q

1X1 a .
m T

en
t

im
pr

ov
em

 en
ts

eq

ui
re

m

a:
*r,

on

as
si

fic
at

o

c o

ys
te

m
 d

ef
in

iti

c/3

O

do
cu

m
en

t

c I i
E

qu
ir

e
ys

te
m

 r
e

c/3

C^

suo

ec
if

ic
at

i
of

tw
ar

e

ul
oo

:n
ts

eq

ui
re

m

a:

E
o

ec
if

ic
at

i

t/i

en
ts

eq

ui
re

m

Qi

C3̂

bu
te

s

S 1

c« a.
C <J
V e
S °
B 0 1
3 ' 7

Cx« U
Q

l - > l

CN

c
_ ©
c« 'S
u c d
'S ' • u a
es "O

o

u

• - - • ! •..rf c a

e Q
3

E ^
ca

c > -
oc C J

ys
is

ca
c/i c a
E > .

pa
tt

-Q
ua

!
tio

n

in
-1

ev
al

an

d

Ci

ni
qu

te

ch

c/)
Ci

te
gi

ca

ra
l s

-G

en
e

E
Ci
k .

o

tio
n-

-F
un

c

c
tail

de
si

• u

3

St
ru

te

d
ct

or

-O
bj

e

E
Ofl

de
si

Ci
3

st
ru

ct

-D
at

a

c
OJ)

0)

ed
d

ce
nt

er

4-t

E Oi

po
n

-C
om

ig

n

c/l
OJ

e
d

d
ba

s

o o

o

CS
Ci

'S JC
« o

° £
4< r "

CS C S

~ I E
.t; ' u
U ii

U E -

r * i

>-, u -a c c Ci c a
h —

C
on

cu

C
on

tr
o

c^
D

c
ca

E
Ci

Ci

o
'" 3
.C)

U M

D
is

r:

o

U
l

o
CJ

-a E

n

E
rr

u o
"E
u. I i u
x:
Ci

cd

0 0

an
c

JC

ne
e

u«
CJ

o
"3
i*^

c
0
u

te
ra

^

E
0
ca

se
n

Ci

te
nc

C/l
tn
1 >
0 .
ca
ra
U

C/3

u .

ea
s

S

tn
in
_^

tv
 a

n
Q

ua
li

E
0
ta

ev
ai

u
an

d
in

ni
qu

e
te

ch
 tu

ra
l

St
ru

c

tn
E

ri
pt

io

de
sc

>

(S
ta

ti
B

eh
av

io
r

c

ri
pt

io

de
sc

^
CJ
>

am
ic

(d

yn

c
Ci

OJ c d
u . _ _

^ S
U E
C C
o o

U U

00-s

.S E II
cd c/ i

tn

c
Ci

3

C

Ci u
E 3
Ci ^

to — c a £ . —

O S ' E . £ E - E 2 C J :> , c 2_cd Q. — c a c j - E Cl. ^ ^ E S ^ ^ E S S S c a ^ c .

cn T 3 C
Ci u . 0 0
(JO ^ " ^ " E
CJ 5 i i B
«•»= s

O " E C i
CJ —

-a
Ci

nj E ^ H Dp. E
tn

tn tn •
Ci — S
>- c a . 2

tu
^ 1 g Ci

2 f = S
(J C J 5 0 '/• ;
3 C i

r, c i E
- O o E

_ Ci Cl . 0 0
"c/l c a d i E 'v 5
Ci t i — 5 C i

I I I I U I

c/3

d

-a

I o
(/3

CA
. . -4- 1

CS a .
B C i

u c
•o c
C M l
3 ' M

b , a i

Q

t-¥i

E
0 0

. 1 ^ X 5
C" « > C i
U C i C J ^ I o
Ci 5 C L

cn o - a o
^ E C

fe o S i g . 2 P - = . S 3 £ - 5 E ^ g - _ c i - g - c a S - . a u

c
E ^

cd
6 0 .

CJ - a

c
o

E
Ci

Ci

I s . s p - s . g g e ^ u E ^ ^ z i i ' ^
" C . , c / > - 2 - g c c S « J - E E o c J C

o _ ^ ii g ^ § _ g 2 > . ^ o • ' c - ^ ,^ u u
I I

. _ o
C i Q C J UJ Ci s:

tn c d

•T3
E
cd
Ci
Ul

3
t i
3

E o 2 2
O c n
Q. i i > - —

i i

0 0 E

2 S
fl\ \ w t - *z *
3 i •*- ' f j • —

<
E
cd
Q .

CS

> - - • !

c .̂ ^
<
^
C5
O

*.̂
CJ
3

C/)
C
O

U
<i>
;-! cd
;?

ct;
00

> !
U 1
c 1
hi 1
<^
^
u,
'^
C 1
<U 1
CJ 1

c j
> l
C3i I
c '

' 5 : ,
3 '

: ^ i
r ; i
CQ'
W |

c/:

• - - • !

I

o <s

O
n
c/3

8
_o

c o
U
a
u

I
o

^ ¥• -R - 5
tJO
E

' E

St
ru

rr o
U

E
O
cd

if
ic

>

E

tn
•T3

da
r

E
cd

io
n

U
t/i

O

c o
'^
u.

c o
U

w j

nn
i

C3
Q .

O
Z^

u
C/J

r o
U

-a
o
E

CJ
3

c/l
E
O

U

0 0
ca 3
OJI

§

B
_ O

CS ' v
Ci C S

'E ^
y Si
CS " O

o
u

'+3 C S
= Q es
3

o

c/3

!
-R

eu

E
O

St
ru

ct

1
-C

on
 al

it
y

3
CT

io
n

ns
tr

uc

'
-C

o

DO !
C. 1

tn
Ci 1

•*5 J£
« o

ii r'
r * !

S . 2
CS C S

L. ii

ca
• a

o
u
3

co
ns

c o
o
3
tn
E
O

U

CD
F
Ci

cd
Ci
F

c o

uc
t

tn
E
O

U

tn

-a
o
F

c o
Ci
3

tn
E
O

u

01
B

' - - • !

c«
CS & •

•M S i
C C i
Si c E ° « "^

•o c
e B s
3 " S

te. «

• - • H S
0 0
E
N lU

lU
l

S

>-.
X

Q.
E
o Ci

E

tn
• o

nd
a

cd
c/0

o

tn
E
o o

E
O

Ci
3

St
r

E
O

00
E
E
E
ca
Q.

E
O

Ci
3

St
r

E
O

C/l

Ci
-o C3
E

r<)

ANNEX III

.MAPPING RESULTS BETWEEN THE ENGINEERING FUNDAMENTA L
PRINCIPLES AND THE ENGINEERING CRITERI A

This Annex presents: C-1, C-2, C-3 and C-4
C-1: Result of mapping the candidate FPs to Vincenti engineering criteria

•v roblem

n riteria

H hnique;

c ality

ctl •^
in i-^ E. c ^

OO

D

D

D
D
I
I
I

c l
I
I
I
I

D
I
I

I

I
I
I

D
I
D

I
1
I

D

B

3

D

o

3
rt
3

1 Align incentives for developer and customer I I
2 Apply and use quantitative measurements in decision making
3 Build software so that it needs a short user manual 1
4 Build with and for reuse D
5 Define software artifacts rigorously
6 Design for maintenance
7 Determine requirements now D
8 Don't overstrain your hardware
9 Don't try to retrofit quality
10 Don't write your own test plans : . , ; : ; ; ,
11 Establish a software process that provides flexibility
12 Fix requirements specification error now
13 Give product to customers early
14 Grow systems incrementally
15 Implement a disciplined approach and improve it continuously I
16 Invest in the understanding of the problem D 1
17 Involve the customer
18 Keep design under intellectual control
19 Maintain clear accountability for results
20 Produce software in a stepwise fashion I

Quality is the top priority; long term productivity is a natural consequence
21 of high quality
22 Rotate (high performer) people through product assurance K
23 Since change is inherent to software, plan for it and manage it I

Since tradeoffs are inherent to software engineering, make them explicit
24 and document it D
25 Strive to have a peer, rather than a customer, find a defect
26 Tailor cost estimation methods
27 To improve design, study previous solutions to similar problems
28 Use better and fewer people •• ;• :
29 Use documentation standards
30 Write programs for people fu-st j
31 Know software engineering's techniques before using development tools
32 Select tests based on the likelihood that they will find faults I
33 Choose a programming language to assure maintainability

In face of unstructured code, rethink the module and redesign it fi-om
34 scratch. / I

D

C-2: Result of mapping the candidate FPs to the lEEE-ACM engineering criteria

217

a cision m
aking

2
CT>

f. urem
en

in

a in iplined proces

m 3
0C3
3 eer's ro les

r. in
O
O f T

ools

O
ft
< rt opm

ent &
vali dation

?3
(T>
E
ft design

D
I

D

I
I
I

D

D
D

D

D

I

D

D

1 Align incentives for developer and customer
2 Apply and use quantitative measurements in decision making
3 Build software so that it needs a short user manual
4 Build with and for reuse
5 Define software artifacts rigorously
6 Design for maintenance \
7 Determine requirements now
8 Don't overstrain your hardware
9 Don't try to retrofit quality
10 Don't write your own test plans . - ;, .' '
11 Establish a software process that provides flexibility
12 Fix requirements specification error now
13 Give product to customers early
14 Grow systems incrementally
15 Implement a disciplined approach and improve it continuously
16 Invest in the understanding of the problem • ' , .
17 Involve the customer
18 Keep design under intellectual control
19 Maintain clear accountability for results
20 Produce software in a stepwise fashion

Quality is the top priority; long term productivity is a natural consequence
21 of high quality
22 Rotate (high performer) people through product assurance
23 Since change is inherent to software, plan for it and manage it

Since tradeoffs are inherent to software engineering, make them explicit
24 and document it

/
25 Strive to have a peer, rather than a customer, find a defect
26 Tailor cost estimation methods
27 To improve design, study previous solutions to similar problems
28 Use better and fewer people
29 Use documentation standards
30 Write programs for people first *. . ; : ' .
31 Know software engineering's techniques before using development tools
32 Select tests'based on thie likelihood that they wiirfincTfaults ' | J
33 Choose a programming language to assure maintainability

In face of unstructured code, rethink the module and redesign it from
34 scratch.

D

D

D

I
D

D

D

D

The color codes are the following:

CF principles with a direct mapping to engineering criteria

218

CF principles with an indirect mapping to engineering criteria

CF principles with no mapping to engineering criteria

C-3: Categorization of the mapping of Vincenti engineering criteria to the Candidate FPs

Apply and use quantitative measurements in decision making
Build with and for reuse
Determine requirements now
Don't try to retrofit quality
Establish a software process thai provides llexibility
Grow systems incrementally
Implement a disciplined approach and improve it

15 continuousl y
16 Invest in the understanding of the problem

Quality is the top priority; long term productivity is a natural
21 consequence of high quality
23 Since change is inherent to software, plan for it and manage it

Since tradeoffs are inherent to software engineering, md<e
24 them explicit and document it

To improve design, study previous solutions to similar
27 problems
1 Align incentives for developer and customer
3 Build software so that it needs a short user manualj
5 Define software artifacts rigorously
6 Design for maintenance
8 Don't overstrain your hardware
10 Don't write your own test plans
12 Fix requirements specification error now
17 Involve the customer
18 Keep design under intellectual control
19 Maintain clear accountability for results
20 Produce software in a stepwise fashion
22 Rotate (high performer) people through product assurance
25 Strive to have a peer, rather than a customer, find a defect
26 Tailor cost estimation methods
28 Use better and fewer people
29 Use documentation standards
30 Write programs for people first

Know software engineering's techniques before using
31 development tools
32 Select tests based on the likelihood that they will find faults
33 Choose a programming language to assure maintainability

In face of unstructured code, rethink the module and redesign
34 it from scratch.

i l 3 Give product to customers early

219

C-4: Categorization of the mapping of lEEE-ACM engineering criteria to the Candidate FPs

f
18
21

22
24

25
26
27

31

1
3
7
8
9
11
14
16
17
19
20 I
t

a
S
s:
•2 .2
Cj
cu

Q

s:
cu

5
s
8
0

ca
U

2
-Q

•S
•S-

ca
ca

5b
s:

ca

°a

"a
S I-
<a

I
ca
Co

1
? - 2 - " w I

D

Apply and use quantitative measurements in decision D
making

4 Build with and for.reuse
5 Define software artifacts rigorously

Design for maintenance I
Don ' t write your own test plans
Fix requirements specification error now
Implement a disciplined approach and improve it

continuously
Keep design under intellectual control
Quality is the top priority; long term productivity is a

natural consequence of high quality
Rotate (high performer) people through product assurance
Since tradeoffs are inherent to software engineering, make

them explicit and document it
Strive to have a peer, rather than a customer, find a defect
Tailor cost estimation methods
To improve design, study previous solutions to similar

problems
Know software engineering's techniques before using

development tools
Align incentives for developer and customer
Build software so that it needs a short user manual
Determine requirements now
Don't overstrain your hardware
Don't try to retrofit quality
Establish a software process that provides flexibility
Grow systems incrementally
Invest in the understanding of the problem
Involve the customer
Maintain clear accountability for results
Produce software in a stepwise fashion
Since change is inherent to software, plan for it and manage

it
Use documentation standards
Select tests based on the likelihood that they will find faults I

33 Choose a programming language to assure maintainability
In face of unstructured code, rethink the module and I

redesign it from scratch.
Give product to customers early

28 Use better and fewer people
30 Write programs for people ftfst

1
I
D
I D

D
I I

D

1 D
D

I
I 1 1

I
1

I
I 1

I

D

D

D

ANNEX IV.

DETAILED RESULTS FOR THE IDENTIFICATION O F THE SOFTWAR E
ENGINEERING PRINCIPLE S WITHIN THE CONTENT OF THE

SWEBOK GUIDE - IS O TR 1975 9

This Annex introduces the detailed results related to the knowledge areas mentioned in
section 5.3.2 "Results in other KAs".

1. "Software design" knowledge area

The following six FP were identified as being present in the "Software design" KA:

(1) Apply and use quantitative measurements in decision making
(2) Build with and for reuse
(3) Grow systems incrementally
(4) Implement a disciplined approach and improve it continuously
(6) Quality is the top priority; long term productivity is a natural consequence of high quality
(8) Since tradeoffs are inherent to software engineering, make them explicit and document it

(is covered implicitly and is mentioned in the introduction).
(9) To improve design, study previous solutions to similar problems

The missing ones are the following:
(5) Invest in the understanding of the problem
(7) Since change is inherent to software, plan for it and manage it
2. Softwar e Construction knowledg e area

The following five FP were identified as being present in the "Software construction" KA:
(1) Apply and use quantitative measurements in decision making
(2) Build with and for reuse
(3) Grow systems incrementally
(4) Implement a disciplined approach and improve it continuously
(6) Quality is the top priority; long term productivity is a natural consequence of high quality
(7) Since change is inherent to software, plan for it and manage it

The missing ones are the following:
(5) Invest in the understanding of the problem
(8) Since tradeoffs are inherent to software engineering, make them explicit and document it
(9) To improve design, study previous solutions to similar problems

221

3. Software Testing knowledge area
The following six FP were identified as being present in the "Software testing" KA:

(1) Apply and use quantitative measurements in decision making
(2) Build with and for reuse
(3) Grow systems incrementally
(4) Implement a disciplined approach and improve it continuously
(7) Since change is inherent to software, plan for it and manage it
(8) Since tradeoffs are inherent to software engineering, make them explicit and document it

The missing ones are the following:
(5) Invest in the understanding of the problem

(6) Quality is the top priority; long term productivity is a natural consequence of high quality
(9) To improve design, study previous solutions to similar problems

4. Software Maintenance knowledge area

The following five FP were identified as being present in the "Software maintenance" KA:
(1) Apply and use quantitative measurements in decision making
(3) Grow systems incrementally
(4) Implement a disciplined approach and improve it continuously
(6) Quality is the top priority; long term productivity is a natural consequence of high quality
(7) Since change is inherent to software, plan for it and manage it

The missing ones are the following:
(2) Build with and for reuse
(5) Invest in the understanding of the problem
(8) Since tradeoffs are inherent to software engineering, make them explicit and document it
(9) To improve design, study previous solutions to similar problems

5. Software Configuratio n Managemen t knowledge area
The following three FP were identified as being present in the Software configuration

management KA:

(1) Apply and use quantitative measurements in decision making
(4) Implement a disciplined approach and improve it continuously
(7) Since change is inherent to software, plan for it and rrianage it

The missing ones are the following:
(2) Build with and for reuse
(3) Grow systems incrementally
(5) Invest in the understanding of the problem
(6) Quality is the top priority; long term productivity is a natural consequence of high quality
(8) Since tradeoffs are inherent to software engineering, make them explicit and document it
(9) To improve design, study previous solutions to similar problems

222

6. Software Engineering Management knowledge area
The following three FP were identified as being present in the "Software Engineering

Management" KA:
Apply and use quantitative measurements in decision making
(4) Implement a disciplined approach and improve it confinuously
(6) Quality is the top priority; long term productivity is a natural consequence of high quality

The missing ones are the following:
(2) Build with and for reuse
(3) Grow systems incrementally
(5) Invest in the understanding of the problem
(7) Since change is inherent to software, plan for it and manage it
(8) Since tradeoffs are inherent to software engineering, make them explicit and document it
(9) To improve design, study previous solutions to similar problems

7. Software Engineerin g Process knowledge area

The following three FP were identified as being present in the "Software Engineering
Process" KA:
(1) Apply and use quantitative measurements in decision making
(4) Implement a disciplined approach and improve it continuously
(6) Quality is the top priority; long term productivity is a natural consequence of high quality

The missing ones are the following:
(2) Build with and for reuse
(3) Grow systems incrementally
(5) Invest in the understanding of the problem
(7) Since change is inherent to software, plan for it and manage it
(8) Since tradeoffs are inherent to software engineering, make them explicit and document it
(9) To improve design, study previous solutions to similar problems

ANNEX V

PROPOSED DRAFT: OPERATIONAL GUIDELINE S O F THE NINE
FUNDAMENTAL PRINCIPLE S OF SOFTWARE ENGINEERING BASE D ON THE

SWEBOK GUIDE CONTENT - ISO TR 1975 9 (2004)

The content of this draft proposes operational guidelines for the main knowledge areas of the
SWEBOK Guide such as "Software requirements" (p.l), "Software design" p. 14, "Software
construction" p.25, "Software testing" p.38, "Software maintenance" p.51

The content of this Armex for each of the KA is structured as follows:
Operational concepts.
Operational scenario.
Operational capabilities.
Operational improvement.
Operational impacts

Proposed Operational Guidelines for Software Requirements
The Proposed Operational Guideline s

(Software Requirements fo r SWEBOK Guide)

The operational guidelines of the 9 FP in the "Software requirements" KA of SWEBOK
Guide.

Software Engineering Principle s
SWEBOK Guid e

Software Requirements Knowledg e
Area

1. Principle #I"Apply and Use Quantitative
Measurements i n Decision Making"

Quantifiable requirements.
Measuring requirements.

2. Principle #2"Build with and for Reuse"
Conceptual Modeling
Architectural Design and
Requirements Allocation
Acceptance Test

3. Principle #3"Grow System Incrementally "
> Requirement Elicitation
> Requirement Analysis
> Requirement Specification
> Requirement Validation

4. Principle #4 "Implement A Disciplined
Approach and Improve It Continuously'

> Requirement Elicitation
> Requirement Analysis
^ Requirement Specification
> Requirement Validation

5. Principle #5"Invest in The Understanding > Requirement Elicitation

224

of The Problem" Requirement Analysis

6. Principle #6"Quality is The Top Priority;
Long Term Productivity I s A Natural
Consequence of High Quality"

> "Process Quality and
Improvement" (topic).

> "Requirements Validation" (sub-
area).

7.Principle #7"Since Change is Inherent to
Software, Plan for it and Manage It"

Iterative Nature of the
Requirements Process
Change management
Requirements attributes
Requirements tracing

8. Principle #8 "Since Tradeoffs ar e Inherent
to Software Engineering , Make Them
Explicit and Document them"

Requirements Negotiation

By applying principle #1 "Apply and use quantitative measurements in decision making" of
the software requirement (Quantifiable and Measuring requirements) for the SWEBOK
taxonomy and aligned with IEEE Std 1362-1998 concepts of operational document, the
current situation of the SWEBOK guide require to improve the concepts of the operational
document.

Principle #l"Apply an d Use Quantitative Measurements in Decision Making'

Operational
Concepts

Operational
Scenario

Operational
Capabilities

- Quantifiable requirements.
- Measuring requirements.
Measurement process

- At the end of the software requirements phase, the 'software
specification document' is produced: this document contains the
functional and nonfiinctional requirements.

- The functional requirements can be measured right from the
requirements phase, using a functional size measurements method (eg.
COSMIC-ISO 19761).

Operational
improvements

- Input to estimate the cost of design, development, test or the cost of
maintenance task.

Operational
impacts

Impacts during development
Organizational impacts
User impacts
Developer impacts
Buyer impacts

225

By applying principle #2 "Build with and for reuse " of the software requirement (Conceptual
Modeling, Architectural Design and Requirements Allocation, Acceptance Test) for the
SWEBOK taxonomy and aligned with IEEE Std 1362-1998 concepts of operafional
document, the current situation of the SWEBOK guide require to improve the concepts of the
operational document.

Principle #2"Build with and for Reuse"

Operational
Concepts

Operational
Scenario

Operational
Capabilities

- Conceptual Modeling
- Architectural Design and Requirements Allocation
- Acceptance Test

Build with and for reuse
- After finishing the task of eliciting the requirements the software

engineer start analyzing the requirements by classifying them,
- Modeling them using one of the following models: data and control

flows, state models, event traces, user interactions, object models, data
models and many others.

Conceptual Modeling
- The software engineer can be interested in developing the system by, for

example, reusing the conceptual models for the set of requirements.
- Components can be reused in requirement allocation and finally "Test

cases" can be reused to conduct acceptance test to validate that the
software satisfies the requirements.

Operational
improvements

These models, components and test cases can be carefully defined and
documented so that they may be reused.

Operational
impacts

Impacts during development
Organizational impacts
User impacts
Developer impacts
Buyer impacts

By applying principle #3"Grow system incrementally"of the software requirement
(Requirement Elicitation, Requirement Analysis, Requirement Specification, Requirement
Validafion) for the SWEBOK taxonomy and aligned with IEEE Std 1362-1998 concepts of
operational document, the current situation of the SWEBOK guide require to improve the
concepts of the operational document.

Principle U3"Grow System Incrementally"

- Requirement Elicitation

226

Operational
Concepts

Operational
Scenario

Operational
Capabilities

Requirement Analysis
Requirement Specification
Requirement Validation
The operafional guidelines for the principle # 3: "Grow system
incrementally' suggest that software should be build by increment: the
implementafion of this principle is similar to principle #4. "Implement a
disciplined approach and improve it continuously" the only difference
is in the input.
Focusing on a small set of requirements (that have high priority).
Increasing the number of requirements slowly in the set of
requirements.

Operational
improvements

- Software requirements growth.

Operational
impacts

Impacts during development
Organizational impacts
User impacts
Developer impacts
Buyer impacts

By applying principle #4 "Implement a disciplined approach and improve it continuously "\r\
the software requirement (Requirement Elicitation, Requirement Analysis, Requirement
Specification, Requirement Validation) for the SWEBOK taxonomy and aligned with IEEE
Std 1362-1998 concepts of operational document, the current situafion of the SWEBOK
guide require to improve the concepts of the operational document, table xx put forward
irmovative operational concepts as follows:

Principle #4 "Implement A Disciplined Approach and Improve It Continuously'

Operational
Concepts

Operational
Scenario

- Requirement Elicitation
- Requirement Analysis
- Requirement Specification
- Requirement Validation

Requirements Activities

Activity 1 : Requirements elicitation:
- Software engineer starts by defining the sources of requirements by

identifying one of the many sources of each requirement.
- Start collecting requirements by using different elicitation techniques

such as interviews, scenarios, prototypes, facilitated meetings and
observations.

Activity 2: Requirements Analysis:

227

Operational
Capabilities

Operational
improvements

- Software engineer starts by classifying the requirements whether they
are functional or non functional.

- Develop a conceptual model of the real world problem using one of the
following models: data and control flows, state models, event traces,
user interactions, object models, data models and many others.

Activity 3: Requirements Specification :
- In the software specification phase the software engineer produces a

document. For complex systems three kinds of documents are produced:
"System Definition", "System Requirements Specificafion" and
"Software Requirements Specification".

Activity 4: Requirements Validation:
- In the software requirement KA the following artifacts are subject to

validation & verification: the system definition document, the system
specificafion document, the software requirements specification
document and the baseline specification.

Activity 1 : Requirements elicitation:
- Categorized the source of requirements into goals, domain knowledge,

stakeholders, the operational environment and the organizational
environment.

Activity 2: Requirements Analysis:
- Derived requirements, type of requirements product or process,

requirements priority (classified on a fixed point scale: mandatory,
highly desirable, desirable and optional), the scope of requirements and
finally the estimation of volatility and stability requirements.

- Allocate requirements to components,
- Negotiate requirements
Activity 3: Requirements Specification :
- For simplified complex systems the "Software Requirements

Specification" document is produced.
Activity 4: Requirements Validation:
- Reviews, prototyping, validating the quality of models, identifying and

designing acceptance test to validate that the finished product satisfies
the requirements.

- Defining the sources of requirements
- Using different elicitation techniques
- Classifying the requirements
- Developing a conceptual model
- Simplified complex systems
- Validating the product

Operational
impacts

Impacts during development
Organizational impacts
User impacts
Developer impacts
Buyer impacts

228

By applying principle #5 "Invest in the understanding of the problem "of the software
requirement (Requirement Elicitation, Requirement Analysis) for SWEBOK taxonomy and
aligned with IEEE Std 1362-1998 concepts of operational document, the current situation of
the SWEBOK guide require to improve the concepts of the operational document.

Principle #5"Invest in The Understanding of The Problem'

Operational
Concepts

Operational
Scenario

Operational
Capabilities

Operational
improvements

- Requirement Elicitation
- Requirement Analysis

Requirements Activitie s

Activity 1 : Requirements elicitation:
- Defining the sources of requirements by identifying one of the many

sources of each requirement.
- Collecting requirements by using different elicitation techniques such as

interviews, scenarios, prototypes, facilitated meetings and observations.
Activity 2: Requirements Analysis:
- Classifying the requirements whether they are functional or non

functional.
- Developing a conceptual model of the real world problem using one of

the following models: data and control flows, state models, event traces,
user interactions, object models, data models and many others.

Activity 1 : Requirements elicitation:
- Categorized the source of requirements into goals, domain knowledge,

stakeholders, the operational environment and the organizational
environment.

Activity 2: Requirements Analysis:
- Derived requirements, type of requirements product or process,

requirements priority (classified on a fixed point scale: mandatory,
highly desirable, desirable and optional), the scope of requirements and
finally the estimation of volatility and stability requirements.

- Allocate requirements to components,
- Negotiate requirements
- defining the sources of requirements
- using different elicitation techniques
- classifying the requirements
- Developing a conceptual model

Operational
impacts

Impacts during development
Organizational impacts
User impacts
Developer impacts
Buyer impacts

229

By applying principle #6" Quality is the top priority; long term productivity is a natural
consequence of high quality "of the software requirement ("Process Quality and
Improvement" (topic),"Requirements Validation" (sub-area)) for SWEBOK taxonomy and
aligned with IEEE Std 1362-1998 concepts of operational document, the current situation of
the SWEBOK guide require to improve the concepts of the operational document.

Principle #6"Quality is The Top Priority; Long Term Productivity Is A Natural
Consequence of High Quality"

Operational
Concepts

- "Process Quality and Improvement" (topic).
- "Requirements Validation" (sub-area).

Process quality and improvement
- In this topic the software engineer evaluate the quality of the

requirements process with the help of the quality standards.
- Process improvement models are used to orient the improvements of the

requirements process activities.
Requirements Validation:
- In the software requirement KA the following artifacts are subject to

validation & verification: the system definition document, the system
specification document, the software requirements specification
document and the baseline specification.

Operational
Scenario

Process quality and improvement
- Evaluate the quality of the requirements process
- Improvements of the requirements process activities
Requirements Validation:
- Reviews, prototyping, validafing the quality of models, identifying and

designing acceptance test to validate that the finished product satisfies
the requirements.

Operational
Capabilities

Operational
improvements

- Validating the product
- Validating the quality of models
- Quality of the requirements process
- Improving process activities of the requirements.

Operational
impacts

Impacts during development
Organizational impacts
User impacts
Developer impacts
Buyer impacts

By applying principle #7 "Since change is inherent to software, plan for it and manage it "of
the software requirement (Iterative Nature of the Requirements Process, Change
management. Requirements attributes and Requirements tracing) for the SWEBOK

230

taxonomy and aligned with IEEE Std 1362-1998 concepts of operational document, the
current situafion of the SWEBOK guide require to improve the concepts of the operational
document.

Principle #l"Since Change is Inherent to Software, Plan for it and Manage It"

Operational
Concepts

- Iterative Nature of the Requirements Process
- Change management
- Requirements attributes
- Requirements tracing

Change management necessitates the following tasks in the software
requirements process.
- Identifying the requirements that possibly change,
- Define the review. Approve the process,
- Perform the change,
- Apply requirements tracing,
- Apply impact analysis,
- Apply software configuration management and
- Report change history.

Operational
Scenario

Operational
Capabilities

- Change management
- Requirements attributes
- Requirements tracing

Operational
improvements

- Iterative Nature of the Requirements Process

Operational
impacts

Impacts during development
Organizational impacts
User impacts
Developer impacts
Buyer impacts

By applying principle #8 "Since tradeoffs are inherent to software engineering, make them
explicit and document them"of the software requirement (Requirements Negotiation) for the
SWEBOK taxonomy and aligned with IEEE Std 1362-1998 concepts of operational
document, the current situation of the SWEBOK guide require to improve the concepts of the
operational document.

Principle #8 "Since Tradeoffs ar e Inherent to Software Engineering, Make Them
Explicit and Document them"

Operational - Requirements Negotiation

231

Concepts

Operational
Scenario

Operational
Capabilities

Stakeholders rnay require incompatible features, between requirements and
resources or between functional and non-functional requirements
- Identify conflict
- Consult with stakeholders to negotiate an acceptable compromise.
- Trace decision back to customer
- Implement the decision
- Software Requirements Negotiation

Operational
improvements

- Solve the software requirements conflict
- Improve the decision process

Operational
impacts

Impacts during development
Organizational impacts
User impacts
Developer impacts
Buyer impacts

Proposed Operational Guidelines for Software Desig n

The Proposed Operational Guideline s
(Software Desig n for SWEBOK Guide)

The operafional guidelines of the 9 FP in the "Software design" KA of SWEBOK Guide.

Software Engineering Principles SWEBOK Guid e
Software Design Knowledge Area

1. Principle #l"Apply an d Use
Quantitative Measurements in
Decision Making"

> Measures

2. Principle #2"Build with and for Reuse'
> Design Patterns (micro architectural

patterns):
> Families of Programs and

Frameworks
> Component-Based Design:

3. Principle #4 "Implement A Disciplined
Approach and Improve It
Continuously"

^ The software design process
> Architectural structures and

viewpoints
> Architectural styles
> Design patterns (micro architectural

patterns)
Families of programs and

frameworks
Structural descriptions (static view)

>

232

> Behavior descriptions (dynamic
view)

> Software Design Strategies and
Methods

> Enabling techniques and Keys issues
in Software Design (sub-area)

4. Principle #6"Quality is The Top
Priority; Long Term Productivity I s
A Natural Consequence of High
Quality"

> Quality Attributes
> Quality Analysis and Evaluation

Techniques.

5. Principle #9 "To improve design, study
previous solutions to similar
problems"

> Architectural styles
> Design patterns (micro architectural

patterns)

By applying principle #1 "Apply and use quantitative measurements in decision making" for
the software design (Measures) for the SWEBOK taxonomy and aligned with IEEE Std
1362-1998 concepts of operational document, the current situation of the SWEBOK guide
require to improve the concepts of the operational document.

Principle #l"Apply and Use Quantitative Measurements in Decision Making'

Operational
Concepts

Measures

Measurement proces s
The measurement process can take place during the design phase, two types

of measures are referred to in this KA: Operational
Scenario

Operational
Capabilities

Function oriented (structured) design measures represented by modules,
interfaces, hidden information, concurrency, message passing,
invocation of operations and overall program structure in a
comprehensive way.
Object oriented design measure represented as a class diagram.
Different measures can be computed form both structure chart and class
diagram to serve as a foundation for the formal definition of object-
oriented design measure.
The definifions of measures shall be precise and unambiguous (this,
however, is a goal that is not achieved easily).
The measures shall be based on design artefacts that are typically
constructed in the design phase.
The measures shall be suited for automatic measurement as far as
possible.

233

Operational
improvements

Measurement shall be possible even if the design is incomplete or not
detailed.

Evaluate the size, structure and quality.

Operational
impacts

Impacts during development
Organizational impacts
User impacts
Developer impacts
Buyer impacts

By applying principle #2 "Build with and for reuse " for the software design (Design Patterns
(micro architectural patterns). Families of Programs and Frameworks and Component-Based
Design) for the SWEBOK taxonomy and aligned with IEEE Std 1362-1998 concepts of
operational document, the current situation of the SWEBOK guide require to improve the
concepts of the operational document.

Principle #2"Build with and for Reuse"

Operational
Concepts

Operational
Scenario

- Design Patterns (micro architectural patterns):
- Families of Programs and Frameworks
- Component-Based Design:

Build with and for reuse
- Can be applicable for the following elements: patterns, components,

families of programs, and frameworks.
- Patterns create re-usable descriptions of how a building's architecture

could support the architecture behaviours. The pattern give a resource to
ensure they got all the details right.

When the team specifies the response that works best for them (and
their users), they can codify it in a pattern. Future teams, need to
respond to that desired behaviour, respond similarly, meeting
established user expectations while leveraging the previous work.

Many teams, starting their library, often turn to one of the off-the-shelf
pattern libraries that are popping up on the scene. While these are often
well documented and inexpensive (some are open source and free), they
turn out to be less helpful than it would seem. This is because they are
generic solutions, not taking the project's specific technological
constraints and business requirements into account. The most helpful
pattern libraries make these constraints and requirements their focus.

Components specify the design response to the pixel level. Because they

234

often are represented by their code, they also embody the specific
interaction behaviour. They contain the brand styling elements, such as
the fonts, color, and look.

Developers use these components to piece together the specifics of the
design. Once built, they are ready-made elements that can easily plug
into any new screen. This speeds every part of the development process,
from early prototypes to final deployment.

Interaction design frameworks describe entire subsystems of patterns.
For example, a login subsystem needs a pattern where users enter an id
and password. But it also needs a pattern for password recovery, a
pattern for setting up the id initially, a pattern for creating new ids, and a
pattern for changing the password.

Teams create the frameworks by looking at what other designs have
been done. They become a checklist, helping the team ensure they've all
the right patterns to start their design.

Frameworks are a high-level of abstraction. They don't talk to the
specific design. Instead, that is filled in by the components based on the
individual patterns.

Operational
Capabilities

Operational
improvements

Patterns create re-usable descriptions of how a building's architecture
could support the architecture behaviours
Developers use these components to piece together the specifics of the
design.
Interaction design frameworks describe entire subsystems of patterns

minimal effort
components are close to the final implementation

Operational
impacts

Impacts during development
Organizational impacts
Designer impacts
Developer impacts

By applying principle #4 "Implement a disciplined approach and improve it continuously"io
the software design (The software design process Architectural Structures and viewpoints.
Design patterns (micro architectural patterns). Families of programs and frameworks.
Structural descriptions (static view), Behavior descriptions (dynamic view), Software Design
Strategies and Methods (sub-area). Enabling techniques. Keys issues in Software Design
(sub-area)) for the SWEBOK taxonomy and aligned with IEEE Std 1362-1998 concepts of
operational document, the current situafion of the SWEBOK guide require to improve the
concepts of the operational document.

235

Principle #4 "Implement A Disciplined Approach and Improve It Continuously"

- The software design process
- Architectural Structures and viewpoints
- Design patterns (micro architectural patterns)
- Families of programs and frameworks
- Structural descriptions (static view)
- Behavior descriptions (dynamic view)
- Software Design Strategies and Methods
- Enabling techniques and Keys issues in Software Design (sub-area)

Operational
Concepts

Software desig n steps

Software design is composed of two steps process architectural design and
detailed design. Software design produces solutions in form of models The
following describes the software design steps:

Operational
Scenario

Step 1: Architectural design

Architectural design for the software is decomposed and organized into
components using the following different elements:

- Use the general strategies to help guide the design process. For
instance: divide-and-conquer and stepwise refinement, top-down vs.
bottom-up strategies, data abstraction and informafion hiding, use of
heuristics, use of patterns and pattern languages, iterative and
incremental approach.

Identify the views necessary to represent the system such as: logical
view, physical view, process view and development view.

Define the architectural style. It describes the software high level
organization.

• General structure (for example, layers, pipes, and filters,
blackboard)

• Distributed systems (for example, client-server, three-tiers,
broker)

• Interactive systems (for example, Model-View-Controller,
Presentation-Abstraction-Control)

• Adaptable systems (for example, micro-kernel, reflection)
• Others (for example, batch, interpreters, process control,

rule-based).

236

- Use the different methods for modeling the structural and behavioral
descriptions of the system such as: Function-Oriented (Structured)
Design, Object-Oriented Design, Data-Structure-Centered Design,
Component-Based Design (CBD) and other methods.

- Model the structural description of the system: this represents the
static view using different notations. For instance: Architecture
description languages. Class and object diagrams. Component
diagrams. Class responsibility collaborator cards. Deployment
diagrams. Entity-relationship diagrams, Interface description
languages, Jackson structure diagrams, Structure charts.

- Model the behavioral description of the system dynamic view such as:
Activity diagrams, Collaboration diagrams. Data flow diagrams,
Decision tables and diagrams. Flowcharts and structured flowcharts.
Sequence diagrams, State transition and state chart diagrams.
Formal specification languages. Pseudo-code and program design
languages

Step 2: Detailed design

Detailed design describes the specific behavior of the components already
decomposed in the architectural step.

- In this step more low level details are given for the previous
architectural design steps.

- The frameworks and design patterns are used to describe details at a
lower level (the micro-architecture). For instance - some examples
of design patterns:

• Creational patterns (for example, builder, factory, prototype,
and singleton)

• Structural patterns (for example, adapter, bridge, composite,
decoratpr, fa9ade, flyweight, and proxy)

• Behavioral patterns (for example, command, interpreter,
iterator, mediator, memento, observer, state, strategy,
template, visitor).

Enabling Techniques and Key issues

- Enabling techniques and key issues are necessary to implement
principle #4 "Implement a disciplined approach and improve it
continuously" in the "Software Design".

- Various enabling techniques and key issues are presented to evolution
of scientific knowledge involves learning by observing, formulating

237

theories, and performing experiments. Many fields like physics,
medicine and manufacturing use experimentation as a means to
encapsulate as well as to verify and validate knowledge.

Operational
Capabilities

- Appropriate abstractions from the reality of software development to
learn how to improve skills and competencies. For that purpose,
process, product and quality models are developed.

- Key issues: Concurrency, Control and Handling of Events,
Distribution of Components, Error and Exception Handling and
Fault Tolerance, Interaction and Presentation and Data Persistence.

- General structure (for example, layers, pipes, and filters, blackboard)
- Distributed systems (for example, client-server, three-tiers, broker)
- Interactive systems (for example. Model-View-Controller,

Presentation-Abstraction-Control)
- Adaptable systems (for example, micro-kernel, reflection)
- Others (for example, batch, interpreters, process control, rule-based).
- Creational patterns (for example, builder, factory, prototype, and

singleton)
- Structural patterns (for example, adapter, bridge, composite,

decorator, fa9ade, flyweight, and proxy)
- Behavioral patterns (for example, command, interpreter, iterator,

mediator, memento, observer, state, strategy, template, visitor).
- Enabling techniques: Abstraction, Coupling and cohesion.

Decomposition and modularization. Encapsulation/information
hiding. Separation of interface and implementation. Sufficiency,
completeness and primitiveness.

- Key issues: Concurrency, Control and Handling of Events,
Distribution of Components, Error and Exception Handling and
Fault Tolerance, Interaction and Presentation and Data Persistence.

- Families of programs and frameworks
- Structural descriptions (static view)
- Behavior descriptions (dynamic view)
- Software Design Strategies and Methods

Operational
improvements

Operational
impacts

Impacts during development
Organizational impacts
User impacts
Developer impacts
Buyer impacts

By applying principle #6"Quality is the top priority; long term productivity is a natural
consequence of high quality" to the software design (Quality Attributes and Quality Analysis
and Evaluation Techniques) for SWEBOK taxonomy and aligned with the IEEE Std 1362-

238

1998 concepts of operafional document, the current situation of the SWEBOK guide require
to improve the concepts of the operafional document.

Principle #6"Quality Is The Top Priority; Long Term Productivity Is A Natural
Consequence of High Quality"

Operational
Concepts

- Quality Attributes
- Quality Analysis and Evaluation Techniques.

Quality Attributes:
- Quality attributes related to the architecture's intrinsic qualities

(conceptual, integrity, correctness, and completeness, buildability).
- The "ilities" (maintainability, portability, testability, traceability),
- Various "nesses" (correctness, robustness), including "fitness of

purpose."
- Those discernable at run-time (performance, security, availability,

fiinctionality, usability),
- Those not discernable at run-time (modifiability, portability,

reusability, integrability, and testability),

Operational
Scenario

Operational
Capabilities

Quality Analysi s an d Evaluatio n Techniques : The following techniques
can be applied to analyze and evaluate the quality of software design artifact
such as:

- Architecture reviews
- Design reviews, and inspections
- Scenario-based techniques
- Requirements tracing
- A static analysis technique evaluates a design (example, fault-tree

analysis or automated cross-checking).
- Software design reviews, static analysis and simulation and

prototyping are techniques to evaluate a design.
- Evaluate the Software Design
- Software design review
- Identify overall quality of the software design

- Quality of the proposed design
- Improved of the evaluating technique of the proposed design.

Operational
improvements

Operational
impacts

- Impacts during development
- Organizational impacts
- Developer impacts

239

By applying principle #9 principle #9 "To improve design, study previous solutions to
similar problems" to the software design for SWEBOK taxonomy and aligned with IEEE
Std 1362-1998 concepts of operational document, the current situation of the SWEBOK
guide require to improve the concepts of the operational document.

1. Principle #8 "To improve design, study previous solutions to similar problems'

Operational
Concepts

• Architectural styles (macro architectural patterns);
• Design patterns (micro architectural patterns).

The implementation of this FP is in part similar to principle #4
"Implement a disciplined approach and improve it continuously". This can
be found in architectural design step using architectural styles and in
detailed design step using design patterns.

Operational
Scenario

Operational
Capabilities
Operational

improvements

Operational
impacts

Impacts during development
Organizational impacts
User impacts
Developer impacts
Buyer impacts

Proposed Operational Guidelines for Software Construction s

The Proposed Operational Guideline s
(Software Constructio n for SWEBOK Guide)

The operational guidelines of the 9 FP in the "Software Constrcufion" KA of SWEBOK
Guide.

Software Engineering Principle s

1. Principle # 1 "Apply and Use
Quantitative Measurements in
Decision Making"

2. Principle #2"Build with and for
Reuse"

SWEBOK Guide
Software Constructio n Knowledg e

Area

> Construction measurement

> Reuse

240

3. Principle #3"Grow System
Incrementally"

4. Principle #4 "Implement A Disciplined
Approach and Improve It
Continuously"

> Construction design
> Coding
> Construction languages
> Construction testing
> Integration

5. Principle #6"Quality is The Top
Priority; Long Term Productivity Is A
Natural Consequence of High Quality"

> Minimizing complexity
> Standards in construction
> Constructing for verification
> Construction quality
> Coding
> Construction testing

6. Principle #7"Since Change is Inherent
to Software, Plan for it and Manage It"

> Anticipating change.

By applying principle #1 "Apply and use quantitative measurements in decision making" for
the software construction (Construction measurement) for the SWEBOK taxonomy and
aligned with IEEE Std 1362-1998 concepts of operational document, the current situation of
the SWEBOK guide require to improve the concepts of the operational document.

Principle #l"Apply an d Use Quantitative Measurements in Decision Making'

Operational
Concepts

- Construction measurement

Several construction activities and artefacts can be measured, these
measurements can be usefiil for purposes of managing construction with the
following scenario:
- Process measurement of the construction to improve the construction

process
- Software product measured to ensure the quality during construction
- Measurement technique for the construction process and product.

Operational
Scenario

Operational
Capabilities

Measure the following artifacts :
- Code developed
- Code modified
- Code reused
- Code destroyed
- Code complexity
- Scheduling.

Operational
improvements

Improve code inspection statistics.
Improve effort

241

Improve fault-fix and fault-find rates

Operational
impacts

Impacts during development
Organizational impacts
User impacts
Developer impacts
Buyer impacts

By applying principle #2"Build with and for reuse" for the software construction (Reuse)
for the SWEBOK taxonomy and aligned with IEEE Std 1362-1998 concepts of operational
document, the current situafion of the SWEBOK guide require to improve the concepts of the
operational document.

Principle U2"Build with and for Reuse'

Reuse
Operational

Concepts
In the "Software construction" KA during coding and testing activities, the

different tasks related to reuse activity are described as follow;
- Select reusable units, databases, test procedures, or test data
- Evaluate code or test reusability
- Report reuses information on new code, test procedures, or test data.

Operational
Scenario
Operational

Capabilities

Operational
improvements

- Reusable units,
- Reusable databases,
- Reusable test procedures, or test data
- The evaluation of code or test reusability
- The reporting of reuse information on new code, test procedures, or test

data
- Improve the reusability of test procedure and data
- Improve the evaluation of the code or test reusability

Operational
impacts

- Impacts during development
- Organizational impacts
- Designer impacts
- Developer impacts

By applying principle #4 "Implement a disciplined approach and improve it continuously "for
the software construction (Construction design. Coding, Construction languages. Construction
testing and Integrafion) for the SWEBOK taxonomy and aligned with the IEEE Std 1362-
1998 concepts of operafional document, the current situation of the SWEBOK guide require
to improve the concepts of the operational document.

Principle #4 "Implement A Disciplined Approach and Improve It Continuously'

242

Operational
Concepts

Construction design
Coding
Construction languages
Construction testing
Integration

Construction design
In "Software construction" the design activity is similar as in the "Software

design" KA but in the former the design is done on a smaller scale. Operational
Scenario

Construction language s
- Construction languages include all forms of communication by which a

human can specify an executable problem solution. There are three
types of construction languages. Some of these construction languages
includes:
• Configuratio n languages : the text-based configuration files used in

both the Windows and Unix operating systems
• Toolki t languages : they are more complex than configuration

languages used to build applications by integrating reusable parts.
• Programmin g languages: these are the most flexible type of

construction languages.

- There are three general kinds of notation used for programming
languages, namely:
• Linguistic : are distinguished in particular by the use of word-like

strings of text to represent complex software constructions, and the
combination of such word-like strings into patterns that have a
sentence-like syntax

• Formal : heart of most forms of system programming, where
accuracy, fime behavior, and testability are more important than
ease of mapping into natural language. Formal constructions also
use precisely defined ways of combining symbols that avoid the
ambiguity of many natural language constructions.

• Visual: visual entities on a display

Coding activity

During the coding activity of the software construction there are numerous
techniques that may be applied to write a code that is simple and
imderstandable.

- Naming and code source layout
- Use of classes, named constant etc
- Control structures and Handle error conditions

243

Operational
Capabilities

- Prevent code-level security breaches
- Source code organization into statements, classes etc
- Document code
- Code tuning
- Resource usage via use of exclusion mechanisms and discipline in

accessing serially reusable resources.

Testing activity
The testing activity in the Construction KA involves two types of testing:

- Unit and
- Integration.

Integration activity
To accomplish the integration task whether related to different routines,

components, classes, and subsystems that are constructed during the
construction activity.

- "Plan the sequence, in which components will be integrated"
- "Create scaffolding to support interim versions of the software"
- "Determine the degree of testing and quality work performed on

components before they are integrated"
- "Determine points in the project at which interim versions of the

software are tested".
- Configuration languages. Toolkit languages and Programming

languages.
- Techniques that may be applied to write a code that is simple and

understandable.
- Test units and software integration.

Operational
improvements

Operational
impacts

- Improve the construction design on smaller scale
- Improve the coding activity
- Improve the construction languages in terms of (linguistic, formal

methods and visual trends)
- Construction testing
- Integration the construction closely related to software design and

software testing.
- Impacts during development
- Organizational impacts
- User impacts
- Developer impacts
- Buyer impacts

By applying principle #6"Quality is the top priority; long term productivity is a natural
consequence of high quality" for the software construction (Minimizing complexity.
Standards in construction. Constructing for verification, Construction quality. Coding and

244

Construction tesfing) for the SWEBOK taxonomy and aligned with IEEE Std 1362-1998
concepts of operational document, the current situation of the SWEBOK guide require to
improve the concepts of the operational document.

Principle U6"Quality Is The Top Priority; Long Term Productivity Is A Natural
Consequence of High Quality"

Operational
Concepts

Minimizing complexity
Standards in construction
Constructing for verification
Construction quality
Coding
Construction testing

Minimizing complexity
This topic is related to "standards in construction", "coding" and

"construction quality" topics. Minimizing complexity is achieved through
many possibilities such as using:
• Standards described in "Standards in Construction"
• Specific techniques described in "Coding" topic.
• Quality techniques described in "Construction Quality" topic. Operational

Scenario
Standards in construction

- Standards directly affect construction issues include Use of external
standards.

- Standards may also be created on an organizational basis at the
corporate level or for use on specific projects

- Software Construction KA depends on the use of external standards
for construction languages, construction tools, technical interfaces,
and interactions between Software Construction and other software
engineering.

Constructing for verification

The verification activity is important in the software construction phase.
Specific tasks that support constructing for verification include the
following:

- Follow coding standards to support code reviews, unit testing,
- Organize the code to support automated testing, and restricted use of

complex or hard-to-understand language structures.
- Building software in such a way that faults can be search out readily

by the software engineers wrifing the software as well as during
independent testing and operational activities.

- Techniques that support constructing for verificafion include

245

following coding standards to support code reviews, unit testing,
organizing code to support automated testing, and restricted use of
complex or hard-to-understand language structures, among others.

Construction Qualit y
Construction quality activities are performed on code and on artifacts that

are related to code. To write a code of a good quality during software
construcfion, several techniques exist, including: Unit testing and integration
testing, test-first development (see also the Software Testing KA), code
stepping, use of assertions, debugging, technical reviews (see also the
Software Quality KA,), static analysis (IEEE 1028).

Operational
Capabilities

Coding activity and Construction Testing activities

The related details for these two activities are already described in
"Implement a disciplined approach and improve it continuously"
- Minimizing software complexity
- Using Standards in the construction
- Constructing for verification and testing
- Construction quality

Operational
improvements

Improving software quality
Improving verification method and testing.
Improving the code activity.

Operational
impacts

Impacts during development
Organizational impacts
Developer impacts

By applying principle #7 "Since Change is Inherent to Software, Plan for it and Manage It"
for the software construction (Anticipating change) for the SWEBOK taxonomy and aligned
with IEEE Std 1362-1998 concepts of operational document, the current situation of the
SWEBOK guide require to improve the concepts of the operational document.

"Principle #7"Since Change is Inherent to Software, Plan for it and Manage It"

Operational
Concepts

Operational
Scenario

- Anticipating change

"Most software will change over time, and the anticipation of change
drives many aspects of software construction. Software is unavoidably
part of changing external envirormients, and changes in those outside

246

environments affect software in diverse ways".

Operational
Capabilities

Anticipating change is supported by many specific techniques:
• Communication methods (for example, standards for document

formats and contents)
• Programming languages (for example, language standards for

languages like Java and C++)
• Platforms (for example, programmer interface standards for

operating system calls)
• Tools (for example, diagrammatic standards for notations like UML

(Unified Modeling Language)
Implement a disciplined approach
Improve it confinuously in "coding activity".

Operational
improvements

Construction Communication method
Improving platform in a construction
Improving programming languages.

Operational
impacts

Impacts during development
Organizational impacts
User impacts
Developer impacts
Buyer impacts

Proposed Operational Guidelines for Software Testin g

The Proposed Operational Guideline s
(Software Testin g for SWEBOK Guide)

The operafional guidelines of the 9 FP in the "Software tesfing" KA of SWEBOK Guide.

Software Engineering Principle s SWEBOK Guid e
Software Testing Knowledge Area

1. Principle #1 "Apply and Use Quantitative
Measurements in Decision Making"

Evaluation of the program under test
Evaluation of the tests performed
Cost/effort estimation and other
process measures

2. Principle #2"Build with and for Reuse" - Practical considerations
3. Principle #3"Grow System Incrementally"

4. Principle #4 "Implement A Disciplined
Approach and Improve It Continuously"

The target of the test
Objectives of testing
Test activities
Test techniques.

5. Principle #7"Since Change is Inherent to
Software, Plan for it and Manage It"

- Practical considerations

247

6. Principle #8 "Since Tradeoffs are Inherent
to Software Engineering, Make Them
Explicit and Document them"

- Objectives of testing

By applying principle #1 "Apply and use quantitative measurements in decision making" for
the software testing (Evaluation of the program under test. Evaluation of the tests performed
and Cost/effort estimation and other process measures) for the SWEBOK taxonomy and
aligned with IEEE Std 1362-1998 concepts of operational document, the current situation of
the SWEBOK guide require to improve the concepts of the operational document

Principle #l"Apply and Use Quantitative Measurements in Decision Making"

Operational
Concepts

- Evaluation of the program under test
- Evaluation ofthe tests performed
- Cost/effort estimation and other process measures
- The test-related measures evaluate the program under test based on the

observed test outputs, as well as the evaluation of the thoroughness of
the test set.

Operational
Scenario

- Evaluatio n of the program under test

To evaluate a program under test, the following test related measures could
be collected:

1- Progra m measurement s t o ai d i n plannin g an d designin g
testing

To guide testing apply the following measures such as:

• Program size (for example, source lines of code or function
points)

• Program structure (like complexity, frequency with which
modules call each other).

• Definitio n o f fault types, classification, an d statistics
To make testing more effective:

• Define faults types
• Count the relative fault frequency.

More information can be found in the Software Quality KA, topic
Defects characterization.

Measure fault density: a program under test can be assessed by:
• Counting the discovered faults

248

• Classifying the discovered faults by their types.
• Measuring the fault density (the ratio between the number of

faults found and the size ofthe program) for each fault class.
• Lif e test, reliability evaluatio n
To decide when to stop test:

• Evaluate a product by using a statistical estimate of software
reliability (see sub-topic 2.2.5),

• Reliabilit y growth models
"Reliability growth models provide a prediction of reliability based on

the failures observed under reliability achievement and evaluation (see
sub-topic 2.2.5)".
These models are divided into:

• Failure-count
• Time-between failure models.

- Evaluatio n o f the tests performe d
To evaluate the test performed the following test related measures could be

done:
• Coverage/thoroughnes s measure s

• Evaluate the thoroughness of the executed tests by choosing the
test cases that exercise a set of elements identified in the program
or in the specifications.

• Measure dynamically the ratio between covered elements and
their total number.

Example:
1- Measure the percentage of covered branches in the

program flowgraph,
2- Measure the functional requirements exercised

among those listed in the specifications document.

• Fault seeding
Before test insert fault into the program.
Some related measures include:

• The number of artificial faults discovered,
• The number of testing effectiveness ,
• Estimation of the remaining number of genuine faults.

• Mutatio n score
To measure the effectiveness ofthe executed test set:

• Measure the ratio of killed mutants to the total number of
generated mutants.

• Terminatio n
To decide when to stop test the following thoroughness measures

249

can help, such as:
• Achieved code coverage
• Functional completeness,
• Estimates of fault density
• Estimate operational reliability,
• Cost
• Risks

- Cost/effor t estimatio n and other process measure s
Measures relative to the control and the improvement of the test process for

management purposes include:
• Measure the resources spent on testing,
• Measure the relative fault-finding effectiveness of the various test

phases,
• These tests measures cover the following elements:

1. Number of test cases specified,
2. Number of test cases executed,
3. Number of test cases passed,
4. Number of test cases failed,

- Evaluate test process effectiveness by evaluating:
1. Test phase reports
2. Root cause analysis.

- Evaluation of the test criteria
- Evaluation ofthe software
- Estimation of the cost
- Estimation ofthe effort

Operational
Capabilities

Operational
improvements

Operational
impacts

- Improve the evaluation testing model
- Improve the criteria to evaluate the software
- Improve the estimating process for the cost and productivity
- Impacts during development
- Organizational impacts
- User impacts
- Developer impacts
- Buyer impacts

By applying principle #2 "Build with and for reuse" of the software testing (Practical
considerafions) for the SWEBOK taxonomy and aligned with the IEEE Std 1362-1998
concepts of operational document, the current situation of the SWEBOK guide require to
improve the concepts ofthe operational document.

Principle #2"Build with and for Reuse"

250

Operational
Concepts

Operational
Scenario
Operational

Capabilities

Operational
improvements

- Practical considerations

Build with and for reuse: reuse the test material used to test the software.
This test material should also be documented so that it can be reused such
as: test cases.
- Test the software
- Test material

- Improve the criteria for reusing the test

Operational
impacts

Impacts during development
Organizational impacts
Designer impacts
Developer impacts

By applying principle #4 "Implement a disciplined approach and improve it continuously" of
the software testing (The target of the test, Objectives of testing. Test activities and Test
techniques) for the SWEBOK taxonomy and aligned with the IEEE Std 1362-1998 concepts
of operational document, the current situation ofthe SWEBOK guide require to improve the
concepts ofthe operational document.

Principle #4 "Implement A Disciplined Approach and Improve It Continuously'

Operational
Concepts

Operational
Scenario

The target ofthe test
Objectives of testing
Test activities
Test techniques.

The test process is composed of several activities from planning to
defect tracking. The details related to those activities are illustrated in
the test activities as follow:

Plan the testing activities
1. The different steps for one baseline of the software include:
2. Coordinate personnel,
3. Manage available test facilities and equipment (which may

include magnetic media, test plans and procedures),
4. Plan for possible undesirable outcomes.
5. Estimate the time and effort needed for more than one baseline

project.

251

• Generat e test-case s
To generate test cases the following should be done:
1. Define the target of the test - see test levels section
2. Define the objective ofthe test - see test levels section
3. Identify the techniques that are used for testing - see test

techniques section
4. Put the control of test cases under the software configuration

management
5. For each test case include the expected results.

• Defin e the environment test development
1. Check the compatibility for the testing environment with the

software engineering tools.
2. Test environment should facilitate development and control of

test cases, logging and recovery of expected results, scripts, and
other testing materials.

• Execut e the tests
During the execution of tests everything done should be:

1. Performed and documented clearly enough that another person
could replicate the results.

2. Performed in accordance with documented procedures using a
clearly defined version ofthe software under test.

• Evaluat e the test results
The results of test are determined by success or failure. When a failure

is identified before it can be removed:
1. Analyze and debug to isolate, identify, and describe a failure.
2. Evaluate the test result with a formal review board if they are

important.

• Repor t problems related to testing activities/ Test log
Below a list of various information that can be reported into a test log

or a problem-reporting system
1. When a test was conducted,
2. Who performed the test,
3. What software configuration was the basis for testing,
4. And other relevant identification information.
5. Record incorrect test results in a problem-reporting system,
6. Document anomalies not classified as faults

Test reports are also an input to the change management requests
process (see the Software Configuration Management KA, subarea 3:
Software Configuration Control).

252

• Trac k defect for later analysis
Analyze the defects to determine:

1.
2.

3.

When they were introduced into the software.
What kind of error caused them to be created (poorly defined
requirements, incorrect variable declaration, memory leak,
programming syntax error, for example).
When they could have been first observed in the software.

Defect-tracking information is used to determine:
1. What aspects of software engineering need improvement
2. How effective previous analyses and testing have been.

• Tes t Levels
The test level defines the target ofthe test and the objectives ofthe test.

The target of the test is divided into three levels; unit, integration and
system testing. Figure 6.19 illustrates the model related to the test
levels.
• Tes t Techniques

To test software various techniques are defined. Some of these
techniques includes specification based techniques, code based
techniques and techniques based on the nature ofthe application.
The target ofthe test
Objectives of testing
Test activities
Test techniques
Improve the target ofthe test
Improve Objectives of testing
Improve Test activities
Improve Test techniques

Operational
Capabilities

Operational
improvements

Operational
impacts

- Impacts during development
- Organizational impacts
- User impacts
- Developer impacts
- Buyer impacts

By applying principle #7 "Since Change is Inherent to Software, Plan for it and Manage It"
for the software testing (Pracfical considerations) for the SWEBOK taxonomy and aligned
with IEEE Std 1362-1998 concepts of operational document, the current situation of the
SWEBOK guide require to improve the concepts ofthe operational document.

"Principle #7"Since Change is Inherent to Software, Plan for it and Manage It'

253

Operational
Concepts

- Practical considerations

"Test materials must be under the control of software configuration
management, so that changes to software requirements or design can be
reflected in changes to the scope ofthe tests conducted"

Operational
Scenario
Operational

Capabilities
- control of software configuration management
- software requirements or design
- scope of the tests conducted

Operational
improvements

- improve the software management
- improve the software configuration control activities

Operational
impacts

Impacts during development
Organizational impacts
User impacts
Developer impacts
Buyer impacts

By applying Principle #8 "Since Tradeoffs are Inherent to Software Engineering, Make
Them Explicit and Document them"of the software testing () for the SWEBOK taxonomy
and aligned with IEEE Std 1362-1998 concepts of operational document, the current
situation of the SWEBOK guide require to improve the concepts of the operational
document.

Principle #8 "Since Tradeoffs ar e Inherent to Software Engineering , Make Them
Explicit and Document them"

Operational
Concepts

Operational
Scenario

Objectives of testing

- Regressio n testing : In regression testing a trade-off must be made
between:

• The assurance given by regression testing every time a change is
made

• The resources required to do that.

Also as mentioned in the Introduction for this KA, a trade off must be
made to choose a set of test cases between:
• The limited resources and schedules
• Unlimited test requirements.

Operational
Capabilities

test requirements
resources requirements

254

Operational
improvements

Operational
impacts

- Improve resource requirements
- Improve test requirements
- Improve the objective ofthe testing frequently
- Impacts during development
- Organizational impacts
- Developer impacts

Proposed Operational Guidelines for Software Maintenanc e

The Proposed Operational Guideline s
(Software Maintenanc e for SWEBOK Guide)

The operational guidelines of the 9 FP in the "Software maintenance" KA of SWEBOK
Guide.

1.

2.

3.

4.

Software Engineering Principle s

Principle #1"Apply and Use Quantitative
Measurements in Decision Making"
Principle #4 "Implement A Disciplined
Approach and Improve It Continuously"
Principle #6"Quality is The Top Priority;
Long Term Productivity Is A Natural
Consequence of High Quality"
Principle #7"Since Change is Inherent to
Software, Plan for it and Manage It"

SWEBOK Guid e
Software Maintenance Knowledg e

Area
- Maintenance Cost Estimation.
- Software Maintenance Measurement
- Maintenance processes
- Maintenance activities

- Maintenance Activities

- Impact analysis
- Software configuration management

By applying principle #1 "Apply and use quantitative measurements in decision making" for
the software Maintenance (Maintenance Cost Estimation and Software Maintenance
Measurement) for the SWEBOK taxonomy and aligned with IEEE Std 1362-1998 concepts
of operational document, the current situation of the SWEBOK guide require to improve the
concepts of the operational document.

Principle #l"Apply an d Use Quantitative Measurements in Decision Making"

Operational
Concepts

- Maintenance Cost Estimation.
- Software Maintenance Measurement

Operational

- Maintenanc e Cos t Estimation The maintenance cost estimation could
be done for planning purposes. To estimate resources for software
maintenance according to ISO/IEC14764 apply the

255

Scenario following approaches:
1 -Parametric models
2-Experience

V Expert judgment (for example Delphi technique)
> Analogies
> A work breakdown structure
> Combine empirical data and experience.

3-Combine both approaches

Software Maintenance Measuremen t

Operational
Capabilities

• Measures common to all endeavors: The software engineering
Institute (SEI) has identified the following measures that will be
useful for the maintainer: size, effort, schedule and quality.

• Internal benchmarking techniques: The maintainers determine which
of the following specific measures: analyzability, changeability,
stability and testability fit for the organization.

Maintenance Cost
Software Measurement ofthe Maintenance

Operational
improvements

Improve criteria for estimating cost and productivity ofthe maintenance.

Operational
impacts

Impacts during development
Organizational impacts
User impacts
Developer impacts
Buyer impacts

By applying principle #4 "Implement a disciplined approach and improve it continuously "of
the software Maintenance () for the SWEBOK taxonomy and aligned with IEEE Std 1362-
1998 concepts of operational document, the current situation ofthe SWEBOK guide require
to improve the concepts ofthe operational document.

Principle #4 "Implement A Disciplined Approach and Improve It Continuously"

- Maintenance processes
- Maintenance activities

Operational
Concepts

Maintenance processes:
The Maintenance Process subarea provides references and standards

used to implement the software maintenance process. Operational
Scenario

256

Standard for Software Maintenance (IEEE1219)
ISO/IEC 14764 [ISO 14764-99]

Maintenance Activities:
Maintenance activifies are composed of the same activities that are in

the software development for instance: analysis, design, coding, testing
and documentation. There are some activities that are unique to
software maintenance and other supporting activities.

1-Unique activities : The unique activities for "Software maintenance"
are described as follow:

• Transition: Transfer software from the developer to the
maintainer

• Modification request acceptance/rejection
• Modification request and problem report help desk
• Impact analysis
• Software support
• Service level agreements (SLAs) and specialized (domain-

specific): Maintenance contracts which are the responsibility of
the maintainers

2-Supporting activities : Below a list of activities that support
maintenance, such as:
• Software maintenance planning,
• Software configuration management,
• Software quality.

2.1 Maintenance planning activity : There are four perspectives to
consider for maintenance activities as follow:
The individual (request level)

• Plarming is carried out during the impact analysis.

• Th e release/version plannin g activity (software level)

> Collect the dates of availability of individual requests
> Agree with users on the content of subsequent

releases/versions
> Identify potential conflicts and develop alternatives
> Assess the risk of a given release and develop a back-out

plan in case problems should arise
> Inform all the stakeholders

257

• Maintenanc e planning (transition level)

> Estimates resources
> Include those resources in the developers' project

planning budgets.
> Decide to develop a new system
> Consider quality objectives (IEEE1061-98).
> Develop a concept document,
> Develop a maintenance plan.

• Prepare the concept document for maintenance [ISO 14764-
99:s7.2] that addresses:

> The scope ofthe software maintenance
> Adaptation ofthe software maintenance process
> Identification ofthe software maintenance organization
> An estimate of software maintenance costs

• Prepare the maintenance plan during software development,
and specify:

> How users will request software modifications
> How users will report problems.

• Busines s planning (organizational level)

> Conduct business planning activities (budgetary,
financial, and human resources).

2.2 Softwar e configuratio n management : Software configuration
management procedures should: Verify, validate and audit every
step essential to identify, authorize, implement and release the
software product.

Operational - Process of the Maintenance
Capabilities - Activities ofthe Maintenance
Operational - Improve the maintenance processes

improvements - Improve maintenance activities.
- Impacts during development
- Organizational impacts

Operational _ User impacts
impacts _ Developer impacts

- Buyer impacts

By applying principle #6 "Quality is the top priority; long term productivity is a natural
consequence of high quality "fox the software Maintenance () for the SWEBOK taxonomy

258

and aligned with IEEE Std 1362-1998 concepts of operational document, the current
situation of the SWEBOK guide require to improve the concepts of the operational
document.

Principle #6"Quality Is The Top Priority; Long Term Productivity Is A Natural
Consequence of High Quality"

Operational
Concepts

Operational
Scenario

Maintenance Activities

Software Quality represents one of the supporting activities of
"Software maintenance" To achieve the appropriate level of quality the
different tasks related to software quality need to be completed as
follow:
• Plan quality
• Plan processes implemented to support the maintenance process.
• Select the activities and techniques for Software Quality Assurance

(SQA), V&V, reviews, and audits
• A recommendation: The maintainer should adapt the software

development processes, techniques and deliverables, for instance:
> Testing documentation
> Test results.

Operational
Capabilities

Software quality
Maintenance ofthe activities steps.

Operational
improvements

Improve software quality for maintenance requirements
Improve the maintenance ofthe activities steps.

Operational
impacts

Impacts during development
Organizational impacts
Developer impacts

By applying principle #7 "Principle #7"Since Change is Inherent to Software, Plan for it and
Manage If'for the software Maintenance () for the SWEBOK taxonomy and aligned with
IEEE Std 1362-1998 concepts of operational document, the current situation of the
SWEBOK guide require to improve the concepts ofthe operational document.

"Principle #7"Since Change is Inherent to Software, Plan for it and Manage It"

Operational
Concepts

Operational
Scenario

Impact analysis
Software configuration management

- Here are presented a few steps on how to perform impact analysis:

• Determine the risk of making a change

259

• Analyze a change request, modification request (MR) or a problem
report (PR)

• Translate a change request into software terms.
• Perform impact analysis after a change request enters the software

configuration management process.

Operational
Capabilities

Software configuration managemen t
• Control the changes made to a software product.
• Establish the control by implementing and enforcing an approved

software configuration management process.
Impact analysis
Software configuration management

Operational
improvements

Improve the analysis impacts
Improve the configuration management cycle.

Operational
impacts

Impacts during development
Organizational impacts
User impacts
Developer impacts
Buyer impacts

ANNEX VI

MAPPING SWEBO K KA WITH VINCENTI SIX CATEGORIES AND THE NINE
FUNDAMENTAL PRINCIPLES (9 FP'S).

This Aimex presents the mapping between Vincenti six categories of engineering knowledge,
the nine fundamental principles and the following 3 KAs in the SWEBOK Guide

• Requirements
• Design
• Construction

F-1: Mapping scope definitions ofthe "Software requirements" KA in SWEBOK taxonomy
with Vincenti six categories and the nine fundamental principles (9 FP's).

Software
requirements

subareas

Software
requirements

topic

Scope Engineering
FP

Vincenti's
six

Categories
Deflnition o f a

software
requirement

Is concerned with problems to be addressed
by software, it is a property which must be
exhibited by software developed or adapted
to solve a particular problem.

Software
requirements

fundamentals

System System requirements are the requirements
requirements for the system as a whole.
and software Software requirements are derived from
requirements system requirements.

Requirements
Process

Process actors There are often many people involved besides
the requirements specialist, each of whom has a
stake in the software.

Process To make the link between the process activities
support and and the Issues of cost, human resources,
management training, and tools.

#4

#4

#1

Product and Product parameters are requirements on
process software to be developed and A process
requirements parameter is essentially a constraint on the #1

development ofthe software
Functional &

nonfunctional
requirement
Emergent

properties

QuantiFiable
requirements

Describe the functions that the software is to
execute and Non functional requirements are
a constraints or quality requirements.
requirements which cannot be addressed by

a single component, but which depend for
their satisfaction on how all the software

components interoperate
Is to state as clearly and as unambiguously

as possible quantitatively the software
requirements.

#1

#2

#2

#2

Process a process initiated at the beginning of a project
models and continuing to be refined throughout the life

cycle, also is concerned with how the activities #4 #|
of elicitation, analysis, specification, and
validation are configured for different types of
projects and constraints

#6

#6

261

Process
quality an d
improvement

Requirements process coverage by process
improvement standards and models,

Requirements process measures and
benchmarking and Improvement planning and
implementation

#4, #6 #2

Requirements
sources

Requirements
elicitation

Is concerned with where software requirements
come from and how the software engineer can
collect them. For example Goals, Domain
knowledge, Stakeholders, The operational
environment and The organizational
environment

#3, #4,#5 #5

Elicitations It comes after requirement sources the
techniques requirement technique includes Interviews,

Scenarios, Prototypes, Facilitated meetings and
Observation.

#3, #4,#5 #1

Requirements
classification

Requirements
analysis Conceptua l

Classified the requirements whether
Functional and non functional requirements
and Whether the requirement is on the
product or the process, and emergent
prosperities.

#3, #4,#5 #2

Conceptual models comprise models of
modeling entities from the problem domain configured

to reflect their real-world relationships and
dependencies such as The nature of the
problem, The expertise of the software
engineer, process requirements of the customer
and availability of methods and tools

#2,#3, #4,#5 #3

Architectural
design an d
requirements
allocation

Architectural design is the point at which the
requirements process overlaps with software or
systems design and illustrates how impossible it
is to cleanly decouple the two tasks.
Allocation is important to permit detailed

analysis of requirements

#2,#3, #4 #1

Requirement Conflict resolution." This concerns resolving
negotiation problems with requirements where conflicts

occur between two stakeholders requiring
mutually incompatible features, between
requirements and resources, or between
functional and non-functional requirements,

#3, #4,#5,#8 #5

#3, #4 #2

Requirements
specification

System known as the user requirements document or
definition concept of operations, includes representatives
document of the system users/customers and conceptual

models designed to illustrate the system
context, usage scenarios and the principal
domain entities, as well as data, information,
and workflows

Systems often separate the description of system
requirement requirements from the description of software #3, #4 # 2
specification requirements ^
Software Permits a rigorous assessment of requirements

requirement before design can begin and reduces later
specification redesign. It should also provide a realistic basis

for estimating product costs, risks, and #3 #4 ^2
schedules. Software requirements specification
provides an informed basis for transferring a
software product to new users or new machines.

262

Finally, i t can provide a
enhancement
language

also often
basis
written

for
1 i n

software
natural

#3, #4, #6 #6

Requirements
validation

Requirement Validation is by inspection or reviews of the
reviews requirements document(s). A group of

reviewers is assigned a brief to look for errors,
mistaken assumptions, lack of clarity, and
deviation from standard practice.

Prototyping Prototyping is commonly a means for
validating the software engineer's interpretation #3, #4, #6 #6
of the software requirements, as well as for
eliciting new requirements

Model to validate the quality of the models developed #3, #4, #6
validation during analysis

Acceptance
test

to validate the finished product satisfies #2,#3,#4, #6 #6

Iterative
nature ofth e
requirement
process

Requirements typically iterate towards a level
of quality and detail which is sufficient to
permit design and procurement decisions to be
made.

#7 #5

Practical
consideration

Change the procedures that need to be in place, and #7 #6
management the analysis that should be applied to proposed

changes
Requirement Consist not only of a specification of what is

attributes required, but also of ancillary information #7 #2
which helps manage and interpret the
requirements. This should include the various
classification dimensions ofthe requirement

Requirements
tracing

is concerned with recovering the source of
requirements and predicting the effects of
requirements,

#7 #5

Measuring is typically useful to have some concept ofthe
requirement "volume" of the requirements for a particular

software product to evaluating the "size" of a #1 #5
change in requirements and estimating the
cost of a development or maintenance task

F-2: Mapping scope definitions ofthe "Software design" KA in SWEBOK taxonomy with
Vincenti six categories and the nine fundamental principles (9 FP's).

Software
design

subareas

Software
design

topic
Scope

Engineering
candidate

FP

Vincenti's
six

Categories

Software

General desig n
concepts

A form of problem solving. A number of
other notions and concepts are also of interest
in understanding design in its general sense:
goals, constraints, alternatives,
representations, and solutions.

#1

The contex t of
software desig n

the role of software design throughout the
life cycle #1

The softwar e
design proces s

generally considered a two-step process:
Architectural desig n
Architectural design describes how

software is decomposed and organized into #4 #1

263

Design
fundamentals

components
software architecture
Detailed desig n

Detailed design describes the specific
behaviour of these components.
Software design principles, also called

enabling techniques, The enabling
techniques are the following:

Enabling Abstraction, Coupling and cohesion, #4 # 1
techniques Decomposition and modularization,

Encapsulation/information hiding,
Separation of interface and implementation,
Sufficiency, completeness and
primitiveness

Concurrency How to decompose the software into
processes, tasks, and threads and deal with #4
related efficiency, atomicity, synchronization,
and scheduling issues

Control an d How to organize data and control flow, how
handling o f to handle reactive and temporal events # 4
events through various mechanisms such as implicit

invocation and call-backs.

Keys issue s i n
Software
Design

Distribution o f
components

How to distribute the software across the
hardware, how the components communicate,
how middleware can be used to deal with
heterogeneous software

#2, #4

#1,#2,#3

#1,#2,#3

#1,#2,#3

Error an d
exception
handling an d
fault toleranc e

How to prevent and tolerate faults and deal
with exceptional conditions. #4 #1,#2,#3

Interaction an d
presentation

How to structure and organize the
interactions with users and the presentation of
information (for example, separation of
presentation and business logic using the
Model-View-Controller approach)

#4 #1,#2,#3

Data
persistence

How long-lived data are to be handled #4 #1,#2,#3

Architectural
Structures an d
viewpoints

"A view represents a partial aspect of a
software architecture that shows specific
properties of a software system"

#4 #1

Architectural
styles (macr o
architectural
patterns)

Software
Structure an d
Architecture

Number of major architectural styles.
General structur e (for example, layers,

pipes, and filters, blackboard)
Distributed systems (for example, client-

server, three tiers, broker)
Interactive system s (for example, Model-

View-
Controller, Presentation-Abstraction-

Control)
Adaptable system s (for example, micro

kernel,
reflection)
Others (for example, batch, interpreters,

process control, rule-based).

#2, #4, #9 #1,#6

design patterns can be used to describe

264

Design
patterns (macr o
architectural
patterns)

details at a lower, more local level their
microarchitecture
Creational pattern s (for example, builder,

factory, prototype, and singleton)
Structural pattern s (for example, adapter,

bridge, composite, decorator, fa9ade,
flyweight, and proxy)
Behavioural pattern s (for example,

command, interpreter, iterate, mediator,
memento, observer, state, strategy, template,
visitor)

#2, #4,#9 #5

Families o f
programs an d
frameworks

Families allow the reuse of software designs
and components #4 #1

Quality
attributes

Software
Design Qualit y
Analysis an d
Evaluation

. "ilities"- (maintainability, portability,
testability,
traceability)
"nesses" (correctness, robustness), including

"fitness of purpose."
at run-time (performance, security,

availability, functionality, usability),
those not discernable at run-time

(modifiability,
portability, reusability, integrability, and

testability), and
those related to the architecture's intrinsic

qualities (conceptual integrity, correctness,
and completeness, buildability)

Quality
analysis an d
evaluation
techniques

Software design reviews
Static analysis
Simulation and prototyping

Software
Design
Notations Behavior

descriptions
(dynamic view)

used to describe the dynamic behavior of
software and components such as (Activity
diagrams. Collaboration diagrams, Data flow
diagrams, Decision tables and diagrams.
Flowcharts and structured flowcharts, State
transition and state chart diagrams, etc)

#6 #2

#6 #3, #5, #6

Measures can be used to assess or to
quantitatively estimate various aspects of a # 1 # 2

Measures software design's size, structure, or quality
Function-oriented (structured) design

measures
Object-oriented design measures
describe and represent the structural aspects

Structural of a software design such as (Architecture
descriptions description languages. Class and object #4
(static view) diagrams, Component diagrams. Class

responsibility collaborator cards. Deployment
diagrams, Entity-relationship diagrams, etc)

#3, # 6

#4 #3, # 6

General
strategies

top-down vs. bottom-up strategies
data abstraction and information hiding
use of heuristics
use of patterns and pattern languages
use of an iterative and incremental approach

#4 #2, #5 , #6

Function- Used after structured analysis, thus

265

Software
Design
Strategies an d
Methods

oriented
(structured
design)

producing, among other things, data flow
diagrams and associated process descriptions

Object-
oriented desig n

Software design methods based on objects
have been proposed. The field has evolved
from the early object based design ofthe mid-
1980s (noun = object; verb = method;
adjective = attribute)

Data-
structured
centered desig n

The software engineer first describes the
input and output data structures (using
Jackson's structure diagrams, for instance)

#4 #2, #5, #6

#4 #2, #5, #6

#4 #2, #5, #6

A software component is an independent
unit, having well defined interfaces and

Component- dependencies that can be composed and
based desig n deployed independently. Component-based #2, #4 #2, #5, #6

design addresses issues related to providing,
developing, and integrating such components
in order to improve reuse.

Other method s Other interesting but less mainstream
approaches also exist: formal and rigorous
methods

#4 #2, #5, #6

F-3: Mapping scope definitions of the "Software construction" KA in SWEBOK taxonomy
with Vincenti six categories and the nine fundamental principles (9 FP's).

Software
construction

subareas
Software

construction
topic

Scope Engineerin Vincenti' s
g si x

candidate Categorie s
FP

Software Minimizin g
Construction complexit y
Fundamentals

Reduced complexity is achieved through
emphasizing the creation of code that is simple
and readable rather than clever.
Minimizing complexity is accomplished

through making
use of standards^

Constructing
for
verification

Constructing for verification means building

software in such a way that faults can be ferreted

out readily by the software engineers writing the

software, as well as during independent tesfing

#6 #1

Anticipating Anticipating change is supported by many
change specific techniques:

Communication methods (for example,
standards for document formats and contents)
Programming languages (for example, language #7 ^2
standards for languages like Java and C++)
Platforms (for example, programmer interface

standards for operating system calls)
Tools (for example, diagrammatic standards for

notafions like UML (Unified Modeling
Language)

#6 #5, # 6

266

operational activities. Specific techniques that

support constructing for verification include

following coding standards to support code

reviews, unit testing, organizing code to support

automated testing, and restricted use of complex

or hard-to-understand language structures,

among others.

Standards i n Include
construction Use of external standards: for construction

languages, construction tools, technical
interfaces, and interactions between Software
Construction and other KAs. #5
Use of internal standards: support coordination

of group activities, minimizing complexity,
anticipating change, and constructing for
verification.

#1,#2,#3,
#6

Construction Some models are more linear from the
models construction point of view such as the waterfall

and staged-delivery life cycle models. #4 # | #3 #5
Other models are more iterative, such as

evolutionary prototyping. Extreme
Programming, and Scrum.

Construction Affects the project's ability to reduce
planning complexity, anticipate change, and construct for

verification. Each. #4
defines the order in which components are

created and integrated, the software quality
management processes, the allocation of task

assignments to specific software engineers
Construction including code developed, code modified, code

measurement reused, code destroyed, code complexity, code #1 #3
inspection statistics, fault-fix and fault-find
rates, effort, and scheduling

Managing
Construction

Practical Constructio n
Considerations desig n

building a physical structure must make small-
scale modifications to account for unanticipated
gaps in the builder's plans.

#1, #3, #6

#4 #1,#3

Construction Include all forms of communicafion by which a
languages human can specify an executable problem

solution to a computer.
The simplest type of construction language is a
configuration language,
Toolkit languages are used to build applications

out of toolkits (integrated sets of application-
specific reusable parts), and are more complex
than configuration languages.
Programming languages are the most flexible

type of construction languages. They also
contain the least amount of information about
specific application areas and development
processes, and so require the most training and
skill to use effectively.

#4 #6

267

Coding The following considerations apply to the
software construction coding activity:

source code,
- Use of classes, enumerated types,

variables, named constants, and other
similar entifies

- Use of control structures #4 #5
- Handling of error conditions

Prevention of code-level security breaches
Resource usage via use of exclusion
mechanisms and discipline in accessing
serially reusable resources
Source code organization (into statements,
routines, classes, packages, or other
structures)
Code documentation
Code tuning

Construction two forms of testing, which are often performed
testing by the software engineer who wrote the code:

-Unit testing
-Integration testing #4^ #5 #5
The purpose of construction testing is to reduce

the gap between the time at which faults are
inserted into the code and the time those faults
are detected.

Reuse

Construction
quality

The tasks related to reuse in software
construcfion during coding and testing are:
-The selection of the reusable units, databases,

test procedures, or test data
-The evaluation of code or test reusability
-The reporting of reuse information on new

code, test procedures, or test data
The primary techniques used for construction

include:
-Unit testing and integration testing
-Test-first development
-Code stepping
-Use of assertions
-Debugging
-Technical reviews

#2 #5

#6 #5, # 6

#4 #1

Integration include
planning the sequence in which components

will be integrated, creating scaffolding to
support interim versions of the software,
determining the degree of testing and quality
work performed on components before they are
integrated, and determining points in the project
at which
interim versions ofthe software are tested.

ANNEX VII

WORKSHOP I N INTERNATIONAL CONFERENC E O N ENGINEERING
EDUCATION - ICE E 2007-03-20 COIMBRA (PORTUGAL) 2007

The Engineering Foundations of Software Engineering
Workshop Program - Sunday Sept. 2, 2007

Draft - May 1 2007

International Conference on Engineering Education - ICEE 2007-03-20
Coimbra (Portugal) 2007 - http://icee2007.dei.uc.pt/program.htm

Topics
Speaker-

Discussion
Leader

Ref.
material

Discussio
n Topic s

RELATED WORK

Delphi Studies on Fundamental Principles of Robert
1 Software Engineering Dupuis

JSS paper

The literature on software engineering principles +
identification of criteria for selecting candidate Normand
fundamental principles (from an inventory of 313 principles Seguin
proposed in the literature to a core set of 34 candidate
fundamental principles)

In 'Revue Genie -Criteri a
logiciel' (to be -Outcom e
translated) -Coverag e

'WORK IN PROGRESS

A- Fundamentals of Software Engineerin g
Vincenti engineering knowledge types and their

mapping to software engineering concepts Alain Abran Upgrade
paper

The core set of fundamental principles selected
using Vincenti and ACM-IEEE 2000 curriculum
criteria

Kenza
Meridji

Draft paper

Overview of the Software Engineering Body of Robert SWEBOK
Knowledge - SWEBOK Dupuis Guide
Coverage of SE fundamental engineering principles Kenza

in the SWEBOK & software engineering education Meridji
Slides

1st Group Discussion To be
determined

How to cover
fundamental
principles in the
teaching of sofrvvare
engineering?

Software engineering ontology for project
management

Fran Ruiz-
Bertol
Javier Dolado

2 Group Discussion
To be

determined

Coverage
verification for
teaching software

http://icee2007.dei.uc.pt/program.htm

269

project management

B- IEEE-Computer Society - Professional Practice
Committee (PPC) project: Principles of Practice

10 Context and Needs of PPC

3"̂ Group Discussion for software engineering
teac?hing on principles of pracfice

Robert
Dupuis

To be
detemiined

lEEE-CS PPC
related slides

- Identification of
gaps
- Identification of

sources to cover
gaps

12
4 Group discussion on related process issues for

principles of practices
To be

determined

- How to recognize
obsolescence?
- llpdatc

mechanisms?
- How to describe

levels of
abstraction?
- How to build

consensus (wiki,
etc.)?
- Next steps?

Result o f worksho p o n engineerin g foundation s o f softwar e engineerin g i n th e
international conference on engineering education ICEE 2007

First result on the mapping of the candidate FP to Vincenti engineering criteria

Fundamental principle s

5: Define software artifacts rigorously

20: Produce software in a stepwise fashion

25: Strive to have a peer, rather than a customer
find a defect

Vincenti engineerin g Criteri a wit h
corresponding direc t (D) o r indirec t (I)

mapping
Problem: D, Criteria:D

Testing: D

Problem: D/I

Fundamental principles Reason for rejection

5: Define software artifacts rigorously 1: Is not related to problem directly for the
same reason as in 3
Is not related to criteria directly. This criteria

is related to the identification of concepts.
20; Produce software in a stepwise fashion 2: Testing has no think to do with the actual

FP
25: Strive to have a peer, rather than a 3: Is not related to problem, "recognition of

customer find a defect problem" which is recognized at the domain

270

level

Fundamental principle s

14: Grow systems incrementally

28: Use better and fewer people

IEEE & AC M engineerin g criteri a wit h
corresponding direc t (D) o r indirec t (I)
mapping
Disciplined process: (D) instead of (I)

Engineer's role : I

Fundamental principle
14: Grow systems incrementally

28: Use better and fewer people

Reason for rejection
1: Is not related to discipline process

directly. It can be done in any order.
2: Engineer's can have many roles

Second resul t on the mapping ofthe candidate FP to IEEE & ACM engineering criteria

List of fundamental principle s of software engineerin g
The participants agreed on the list of 9FP.

Hierarchy o f candidate FP
The participants agreed on the hierarchy of candidate FP.

BIBLIOGRAPHY

Abran A. et al. (2004). The search for software engineering principles: An overview of
resuhs. PRlnciples of Software Engineering, Buenos Aires (Argentina).

Basili V. et al. (1986). Experimentation in Software Engineering. IEEE Transactions on
Software Engineering.

Baskerville R. et al. (2003). internet-speed software development different? IEEE Computer
Society.

Boehm B.W. (1983). "Seven Basics Principles of Software Engineering." Journal of Systems
and Software 3(no 1): 366-371.

Bourque P. and Dupuis R. (1997). Fundamental Principles of Software Engineering ,. in
Third International Symposium and Forum on Software Engineering Standards „
Walnut Creek, CA,.

Bourque P. et al. (2002). "Fundamental principles of software engineering - a journey."
Journal of Systems and Software 62: 59-70.

Buschmann F. et al. (1996). Pattern Oriented Software Architecture. England. England.

Davis A.M. (1994). "Fifteen principles of software engineering." Software, IEEE 11(6): 94-
96,101.

Davis A.M. (1995). 201 Principles of Software Development. New-York, McGraw-Hill.

Dupuis R. et al. (1997). Principes Fondamentaux du genie logiciel : Une etude Delphi dans le
genie logiciel et ses applications. . In Dixiemes journees Internationales «Le genie
logiciel et ses applications)) (GL97). Paris (France): 3-5. .

Dupuis R. et al. (1999). Progress Report on the Fundamental Principles of Software
Engineering. ISESS'99 , , IEEE Computer Society ,. in 4th International Software
Engineering Standards Symposium. Curitiba, Brazil.

Ghezzi C. et al. (2003). Fundamentals of Software Engineering. New-Jersey, Prentice Hall.

Guay B. (2004). Comparative analysis between the SWEBOK Guide and the fundamental
principles of software engineering. Software engineering. Montreal, Ecole de
technologie superieure.

IEEE 1028-97 IEEE Standard for Software Reviews, IEEE.

272

1EEE1219-98 "IEEE Std 1219-1998, IEEE Standard for Software Maintenance, IEEE. 1998."

IEEE 610.12-1990 (2001). IEEE Standard Glossary of Software Engineering Terminology,
Institute of Electrical and Electronics Engineers R. D. Pierre Bourque, Alain Abran,
James W. Moore, and Leonard Tripp SWEBOK Guide.: 84

IEEE and ACM (2004). Curriculum Guidelines for Undergraduate Degree Programs in
Software Engineering. A. V. o. t. C. C. Series.

IEEE STD 1362-1998 IEEE Guide for Information Technology System Defnition Concept of
Operations (ConOps) Document, IEEE computer society.

ISO9126-01 "ISO/IEC 9126-1:2001, Software Engineering-Product Quality-Part 1: Quality
Model, ISO and lEC, 2001.".

ISO 14764-99 ISO/IEC 14764-1999,Software Engineering-Software Maintenance, ISO and
lEC, 1999. ISO/IEC 14764-1999,.

ISO-12207 (1995). "Informafion Technology Software Life Cycle Processes.".

ISO-TR_19759 (2004). SWEBOK Guide:Software Engineering Body of Knowledge

Jabir and Moore J.W. (1998). A Search for Fundamental Principles of Software Engineering
- Report of a Workshop conducted at the Forum on Software Engineering Standards
Issues, Computer Standards and Interfaces, vol. 19, pp. 155-160, 1998. Montreal,
Quebec, Canada, 21-25 October 1996,.

Kotonya G. and Sommerville I. (2000). Requirements Engineering: Processes and
Techniques, John Wiley & Sons.

lEEE-Std 610.12 (1990). "IEEE Standard Glossary of Software Engineering Terminology."

Robert F. et al. (2002). A technical review ofthe software construction knowledge area in the
SWEBOK Guide. STEP.

Seguin, N. and A. Abran (2007). "Inventaire des principes du genie logiciel." Revue Genie
Logiciel: 45-51.

Seguin N. (2006). Inventaire, Analyse et Consolidation des Principes Fondamentaux du
Genie logiciel Montreal, Universite du Quebec a Montreal

Vincenfi W. G. (1990). What engineers know and how they know it. Baltimore, London, The
Johns Hopkins University Press.

Wang Y. (2007). Software Engineering Foundafions: A Software Science Perspective.

273

Wiegers K.E. (1996). Creating a software Engineering culture. New-York, Dorset House
Publishing.

