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Abstract 1 

Abstract 

 

Part 1: The level of cytogenetic damage induced by ionizing radiation under in vitro 

conditions in human peripheral blood lymphocytes is analyzed for the purpose of biological 

dosimetry and for assessing the intrinsic radiosensitivity of the blood donors. A factor that is 

often not regarded, but may influence the level of DNA damage is blood temperature during 

exposure. Hence, this part of the thesis was conducted to analyse the impact of temperature 

during irradiation of lymphocytes at 0°C and 37°C on the level of DNA damage using 

micronucleus assay and comet assay. 

Whole blood cultures were kept at 0°C and 37°C for 15 min before and during exposure to 2 

Gy of X-rays. In some experiments isolated PBL were additionally incubated  in the presence 

of 0.5 M DMSO (radical scavenger). 

A significantly higher level of micronuclei was found when lymphocytes were kept 15 min 

before and during exposure at 37°C when compared to 0°C. This effect disappeared in the 

presence of DMSO, what indicates that the observed temperature effect in micronucleus assay 

is due to the indirect action of radiation. No temperature effect was observed using alkaline 

and neutral versions of comet assay. 

 

Part 2: There is some evidence that approximately 10% of the population show an enhanced 

intrinsic radiosensitivity of normal tissue and hence have a higher risk for developing side-

effects during or after radiotherapy. Moreover, higher cellular radiosensitivity may also 

indicate cancer susceptibility. For that reason there is a need for a fast and robust test to assess 

individual cellular radiosensitivity. Hence, the aim of the second part of the thesis was to find 

out whether PBL from prostate cancer patients (PC) with strong clinical side effects following 

radiotherapy show enhanced rates of in vitro radiation-induced DNA damage when compared 

to patients without side effects and healthy age–matched donors. The study included 20 

prostate cancer patients without and 20 patients with acute side-effects during and after 

radiotherapy, as well as 20 healthy age-matched donors. From each donor, blood samples 

were collected, exposed to a radiation dose of 0.5 Gy or 1 Gy of γ–rays and analysed for the 

following biological endpoints: the initial level of dsb and the repair kinetics (γ–H2AX–

assay), apoptosis (Annexin V/PI–assay) and the induction of chromatid–type chromosomal 

aberrations (G2–assay). Significant higher chromatid aberration yield was found in prostate 

cancer patients when compared to healthy donors. No differences were observed between 

both patients groups in any in vitro assay. Clinical radiosensitivity in vivo assessed on the  
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basis of the EPIC questionnaire correlated with cellular radiosensitivity in vitro assessed on 

the basis of chromatid aberration 90th cut-off value analysis for 50-62 % of prostate cancer 

patients. 

However, based on the results of all chosen assays 6 prostate cancer patients were identified 

as cellular sensitive, whereof 4 of them were also clinically sensitive. 
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I. Introduction 

 
 

1.1 Short introduction to the history of radiation 
 
Since over 100 years big efforts have been undertaken to understand the influence of ionising 

radiation (IR) on biological tissue. Under certain circumstances a person or even entire 

populations might be exposed to radiation and in consequence suffer from the acquired 

damage. Nuclear bombings of Hiroshima and Nagasaki in 1945 during the 2nd world war are 

the best known examples for nuclear warfare. Nuclear reactors accidents (e.g. Three Mile 

Island in 1979, Chernobyl in 1986) affected staff, clean-up workers and the residents of the 

region close to the place of accident as well as those living many hundred kilometres away. 

The natural sources of IR such as cosmic radiation or radiation present in the earth’s crust 

(e.g. radon, radium, uranium from the natural radioactive series) contribute to the natural 

exposure of the population. An approximately equal contribution is due to exposure because 

of medical diagnostics and therapy. Cancer treatment like radiotherapy enables killing of 

tumour cells but is also responsible for the damage of the surrounding healthy tissue of 

patients.  

 

The discovery of ionising radiation by Wilhelm Conrad Röntgen in 1895 and of radioactivity 

by Henri Becquerel in 1896, further work of Marie Sklodowska-Curie, Pierre Curie, and 

many other scientists resulted in a huge enthusiasm and hopeful expectations at the beginning 

of the 20th century. Wearing watches painted using radioactive elements, radium baths, 

radium bread and candies, drinking of water that contained radioactive elements enjoyed great 

popularity. 

Thereafter, many cases of suspicious illnesses occurred during manufacturing of these 

watches and when radon bath, radioactive creams etc. were used. Those events brought home 

to public opinion that ionising radiation might be dangerous when used improperly and that is 

why there was a need to investigate precisely this phenomenon. The other reason to 

concentrate the efforts towards understanding the nature of ionising radiation, especially its 

interaction with tissue is common use of ionising rays in therapy of cancers as well as for the 

purpose of the biological dosimetry. 
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1.2 Radiation 
 
The term “radiation” describes a flux of energy in the form of electromagnetic waves 

(photons or light) or subatomic particles. The energy of the electromagnetic waves and 

particles determines the effects of radiation on organisms and cells. 

 

The energy deposited in non-ionising radiation is not high enough to overcome the binding 

energy that keeps electrons in their orbital shells so that no ions are produced. Ionising 

radiation (IR), on the contrary, contains energy high enough to create electrically charged 

particles (ions). The rate at which the energy is deposited along the track of radiation 

classifies the various types of IR into high- or low-LET (LET = linear energy transfer). 

High LET radiation, such as protons, neutrons and α-particles produce dense ionisation tracks. 

These kinds of high-LET ionising radiation possess different amount of energy, mass and 

speed. As example, α-particles and protons have a larger mass but a lower speed and deposit a 

large amount of energy over a short distance. In opposite, neutrons, which are uncharged, are 

highly penetrant (Hall 2000). 

 

Low-LET ionising radiation consisting of X-rays and γ-rays produce sparsely ionisation 

tracks. Those types of ionising radiation are less effective at creating ions but penetrate deeply 

into tissues. 

Ionising radiation, such as X-rays, electrons and protons are used during radiotherapy of 

tumours. 

 

The energy deposited by the radiation in a unit mass of matter is called the absorbed dose of 

IR and measured in Gray (Gy), whereof 1 Gy = 1 Joule/Kg. Due to the difference in the 

density of ionisation tracks between high- and low-LET the term “equivalent dose”  was 

introduced and measured in Sievert (Sv). In case of low-LET radiation (e.g. X-rays, γ-rays)    

1 Gy = 1 Sv, whereas in case of densely (high-LET) radiation the situation is more complex. 

For example, for α-particles 1 Gy = 20 Sv (Wakeford 2004). In this thesis the peripheral 

blood lymphocytes were exposed to low-LET radiation (X-rays and γ-rays). The effective 

dose, also measured in Sievert, is used to compare the stochastic risk of a non-uniform 

exposure of IR with the risks of a uniform exposure of the whole body.  
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1.3 The biological effects of ionising radiation 
 
Exposure to ionising radiation of a biological system initiates a cascade of processes that 

differ in time and therefore, can be divided in three phases: physical, chemical and biological 

(in accordance with Steel 1993). 

The physical phase takes 0-10-18 seconds and involves the interactions between charged 

particles and molecules in the exposed tissue. During this phase ionisations occur followed by 

excitation and emission of an electron and its ejection from the orbital shell. This electron 

may excites other atoms and thus starts a chain of ionisations. 

During chemical phase free radicals and damaged molecules react with other cellular 

elements (10-12 – 100 seconds). Free radicals have an un-paired electron in the outer shell and 

thus, they are highly reactive. They result, among others, from the radiolysis of cellular water 

and are able to induce DNA damage. In this case DNA damage is due to indirect action of 

ionising radiation (see section 1.3.2). 

The biological phase begins approximately 1 second after exposure and may extends to the 

entire lifespan and subsequent generations. This phase consists of damage recognition and its 

repair. When DNA damage is substantial the cells may undergo programmed cell death 

(apoptosis), whereas improper repair of smaller damages may lead to mutations (Steel 1993).  

 

Very high doses of ionising radiation on the whole body are lethal, whereas given as 

fractionated doses to a tumour during radiotherapy makes this treatment very effective.  

Biological effects of radiation to tissues/organs and on the cell/DNA level are described in 

more details in the sections 1.3.1 and 1.3.2. 

 

 

1.3.1 Radiation effects in tissues and organs: stochastic versus deterministic effects and 

acute versus late effects  

 
The effects of IR to normal tissues and organs are usually classified into two categories, 

depending on the mode of action on the body and the time period considered after exposure.  

These categories are referred to as stochastic effects and deterministic effects. 

Stochastic effects are usually associated with exposure to low level of IR over a long period 

of time (e.g. years). They are not certain to occur, but the probability of their occurrence 

increases with the dose. The most important of such stochastic effects are cancer and genetic 
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defects. For most of stochastic effects, radiation is not the only known cause and the 

determination whether an effect results from radiation exposure or not is generally not 

possible (IAEA 2004). 

Despite some controversies, the currently accepted radiation protection principles regarding 

stochastic effects are based on the following assumptions:  

� There is no threshold level of radiation dose below which we can certify that cancer or 

genetic effects will certainly not occur. 

� The dose response curve is linear for solid cancers and linear quadratic for leukaemias.  

� The severity of stochastic effects is not dose-dependent. 

Deterministic effects occur only if the dose is greater than a threshold value, affect all 

individuals in the exposed group and usually occur after a shorter period of time (seconds 

to tens of days) than stochastic effects. Deterministic effects have two characteristic 

features:  

� There is a threshold radiation dose, below which the deterministic effects are not 

observed. 

� The severity of deterministic effects are dose-dependent (IAEA 2004). 

Depending on the time, an organism or organ/tissue exposed to IR can express a response as 

an early (acute) or as a late reaction to injury as well as both.  

Early side reactions appear during and within 90 days after exposure to IR.  

When the body is exposed to IR, the total biological effect of radiation depends on the dose 

delivered and the proportion of the body exposed to radiation. The changes are mainly seen in 

highly proliferating hierarchical tissues such as skin, bone marrow and the intestinal track, so 

that early effects are represented by inflammation, leukopenia, oedema, denudation of 

epithelia and haemorrhage.  

The response of an organism to acute total body irradiation is described as one of the three 

known specific acute radiation syndromes (reviewed in Hall 2000):  

 

� The bone marrow syndrome, which starts 1 h to 2 days after exposure to a dose 

between 0.7 – 10 Gy, however the mild effects may occur after a dose of 0.3 Gy. 

The bone marrow syndrome includes the destruction of the bone marrow stem 

cells, resulting in infection and haemorrhage. In humans the death caused by 

haematological damage occurs after about 30 days, but up to 60 days is possible. 
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For this reason in animal models death due to bone marrow damage described as 

term of LD50/30 (Lethal Dose; a dose causing the death in 50 % of exposed subjects 

by 30 days). LD50/60 in humans (a dose causing the death in 50 % of exposed 

subjects by 60 days) is between 2.5 – 5 Gy, if no medical treatment is carried out. 

 

� The gastrointestinal syndrome (GI), which starts generally within few hours after 

exposure to a dose higher than 1 – 2 Gy. In humans the LD100/60 (a dose necessary 

to kill 100 % of the exposed subjects within 60 days) is applied to measure deaths 

due to damage in gastrointestinal track. LD100/60 in humans is about 10 Gy. 

Medical treatment may postpone somewhat the time of death, but cannot prevent 

it. 

 

� The cardiovascular/central nervous system syndrome starts within minutes after 

exposure to a dose higher than about 50 Gy, however some symptoms may 

develop after 20 Gy. Death follows within 3 days, resulting from collapse of 

circulatory system and increased pressure in the confining cranial vault. 

 

Late side reactions of radiotherapy occur after latent periods between 3 months and many 

years, sometimes decades of years (cancer) or in the offspring of exposed humans 

(genetic/teratogenic effects). They may be caused by the absorption of radiation directly in the 

target tissue, or as a consequence of acute damage.  

These reactions to total body exposure include normal tissue damage such as telangiectasia, 

atrophy or leukaemia. The induction of a secondary tumour is also observed (Hall 2000). 

 

During radiotherapy of cancer patients usually only a small area of the body is irradiated and 

the total dose delivered as well as the dose per fraction is well determined. For example, all 

prostate cancer patients participating in the present study received a total dose in the range of 

70.2 - 72 Gy at 1.8 or 2 Gy per fraction. 

Many cancer patients receiving radiotherapy will develop very little side effects, but in most 

patients the normal tissue will show some degree of side effects. This varies in type and 

amount, depending on the body part, which was treated, the area of normal tissue included in 

the treatment (Steel 1993), and the individual radiosensitivity. Patients may present different 

combinations of both early and late effects. In this study only the clinical side effects on the 

bladder and the rectum were evaluated in reference to individual radiosensitivity, as the 
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bladder and rectum are the most relevant organs at risk in prostate cancer radiotherapy (for 

details see Materials and Methods, section 2.2.2.2.1). 

Several trials have been undertaken to work out a comprehensive system for grading and 

reporting of normal-tissue reactions to IR after radiotherapy, such as RTOG/EORTC system, 

WHO, French/Italian- or European systems. They are either clinically (e.g. RTOG/EORTC) 

and/or biologically relevant. The ideal system would be relevant for both the clinical aspects 

and radiobiology (Steel 1993, chapter 12). 

For the purpose of the presented study the clinical normal tissue response to IR in prostate 

cancer patients was assessed on the basis of the EPIC questionnaire (the Expanded Prostate 

Cancer Index Composite; described in the chapter Materials and Methods, see also 

Appendix).  

 

 

1.3.2 Physical and biological effects of IR at the cellular level 
 
When cells are exposed to ionising radiation the first interaction is the excitation and 

ionisation of atoms or molecules of the tissue. This results, among other types of DNA 

damage, in the induction of DNA double-strand breaks (dsb), which, if not- or incorrectly 

repaired, might lead to lethal chromosomal aberrations. This can finally cause the loss of 

proliferative capacity (Dikomey et al. 2003). A consequence of this is an effect on cell 

function or cell death. 

 

Physical effects of ionising radiation are based on two effects, the direct and the indirect one 

mediated by radicals.  

When direct action takes place the ionising rays interact with the molecules of the critical 

target in the cell such as with DNA and induce ionisation or excite it through Coulomb 

interactions. This may lead to successive events, which produce biological damage. Direct 

actions dominate in case of exposure of biological material to high Linear Energy Transfer 

(LET) particles as for example neutrons or heavy ions. 

 

Indirect action of radiation arises from the interaction of DNA with radiation-formed reactive 

species. Reactive oxygen species (ROS) are mainly formed following radiolysis of water 

resulting, among others, in the formation of highly reactive hydroxyl radicals (●OH).  

Following low exposure LET most DNA damage is induced by hydroxyl radicals rather than 

by direct action of IR (Friedberg et al. 1995).  
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DNA molecules are considered to be the critical targets for IR in the cell and changes in bases 

as a response to oxidative stress after irradiation are examined widely (Dizdaroglu and 

Karakaya 1999, Evans et al. 2004). More than 20 different types of base damage were 

identified as consequences of oxidative stress caused by ionising radiation (Lindahl 1993). 

Single strand breaks (ssb) and double strand breaks (dsb) might be induced directly by 

ionising radiation or result from a conversion of the base damage (Cline and Hanawalt 2003). 

Cell response to oxidative damage (ROS) consists of several steps. First line of defence 

includes enzymes such as catalase, superoxide dismutase, amino acids, vitamins (e.g A, C, E), 

thiols and polyphenols (Slupphaug et al. 2003). Thereafter, enzymes that hydrolise oxidised 

dNTPs prevent incorporation of damaged bases into DNA. The third action is the repair of ssb 

and dsb in DNA by complex mechanisms of DNA repair, e.g. mismatch repair (MMR), 

homologous recombination (HR) and non-homologous end-joining (NHEJ; Slupphaug et al. 

2003), described more detailed in section 1.7. Most of the induced lesions in wild-type 

mammalian cells can be repaired whereas only a small fraction is irreparable. It is commonly 

postulated that single-strand breaks (ssb) are accurately repaired while double-strand breaks 

(dsb) cause often lethal events (Tounekti et al. 1993). 

It has also been observed that the difference in accuracy and efficiency of DNA damage repair 

influences the cellular radiosensitivity (Bishay et al. 2001). Moreover, double-strand breaks 

are assumed to be the major cause of the lethal effects on cellular level (Cline and Hanawalt 

2003). Tounekti et al. (2001) have demonstrated that double strand breaks are intrinsically 

300 times more cytotoxic when compared to single strand breaks. Furthermore, un-repaired 

dsb generate the induction of apoptosis, cause a permanent cell cycle arrest or mitotic cell 

death. Incorrect repair of double strand breaks can lead to carcinogenesis and finally dsb are 

precursors for the formation of chromosome aberrations after exposure to IR (Dikomey et al. 

1998). 

 

 

1.3.3 Radiation-induced genomic instability 
 
The term “radiation-induced genomic instability” refers to the elevated rates of different 

genomic changes such as gene mutations, chromosomal destabilization or an increased level 

of apoptosis in the unexposed offspring of irradiated cells (Morgan 2003a and 2003b) and 

organisms. The radiation-induced genomic instability was also observed in un-irradiated cells 

that had contact with either irradiated cells or factors produced by these irradiated cells. This 

phenomenon is known as “bystander effect” (reviewed in Lorimore et al. 2003). 
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Increased ROS production and oxidative stress have been suggested as possible mechanisms 

responsible for radiation-induced genomic instability (Clutton et al. 1996). Genomic 

instability was found in cancer cells and different genomic instability syndromes (e.g Ataxia 

telangiectasia, Fanconi anemia) are associated with specific cancer types. Radiation-induced 

genomic instability seems to play an important role in radiation-induced carcinogenesis.  

In contrast to structural DNA damage, which generally may be repaired, gene mutations result 

from unrepaired changes in the base sequence of DNA and cannot be recognized after cell 

division and are, therefore, transmitted to the progeny of the originally affected cell. The 

biological effect of mutations depends on the place where they occur. For example, a 

mutation of a gene may lead to a decrease in the normal control mechanisms of cell 

proliferation and may result in cellular transformation (Steel 1993). 

 

 

 

 

Figure 1.1: The effects of ionising radiation on tissue and cellular level (adapted from 

Giotopoulos 2008). 
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1.4 Radiosensitivity related to radiotherapy 
 
The term “radiosensitivity” means the relative susceptibility of cells, tissues, organs or 

organisms to the damaging effect of ionising radiation (IR). In the cellular response to 

ionising radiation different processes are involved, such as generation of free radicals, 

apoptosis, inflammation and DNA repair. Nuclear DNA is the most susceptible target of IR, 

therefore the repair of DNA damage after irradiation seems to be one major protective 

mechanism (Gudkov and Komarova 2003). Hence, mutations in proteins that constitute the 

repair pathways are related to genome instability and radiosensitivity. Defects in these 

proteins also give rise to many genetic disorders such as cancer predisposition, 

neurodegeneration, immunodeficiency etc.  

 

Radiotherapy is one of the most effective treatments of cancer. Therefore, there is great 

interest among clinicians in the in vitro detection of cellular radiosensitivity as an indicator 

for the risk of side effects in normal tissue after IR treatment (Brock, Tucker 2000). The aim 

of curative radiotherapy is inactivating cancer cells to reach tumour control with lowest 

damage of the surrounding normal tissue. This is an important parameter that serves a better 

quality of life for the patients during and after treatment. However, despite of many 

therapeutic improvements, efficient cancer therapy is still limited by side effects occurring in 

the normal tissue due to radiotoxicity (section 1.3.1). A number of patients- and treatment-

related factors are known to affect the variability of side effects, but more than 70 % of cases 

remain unclear (Turesson et al. 1996). Even, when patients are treated using similar 

radiotherapy schedules, they differ significantly in normal tissue damage (Bentzen and 

Overgaard 1994, Turesson et al. 1996, Russel and Begg 2002). It is supposed that 5-10 % of 

all radiotherapy patients suffer from different side effects of normal tissue (Turesson et al. 

1996, Andreassen et al. 2002). The identification of those sensitive individuals before the 

onset of therapeutic treatment has great importance for an optimized and therefore individual 

radiotherapy and consequently for a patient’s life length and its quality.  

 

Approximately 50 % of patients with malignant tumours will be offered radiotherapy with 

curative or palliative intention (Bentzen 2006). Inactivation of tumour cells require absorbed 

doses of tens of Gray (typically in the range 20 – 60 Gy). Too low dose may lead to 

incomplete treatment, whereas too high dose results in adverse side effects in normal tissue 

surrounding a tumour, so that the highest priority in radiotherapy is to deliver accurate dose to 

the tumour (IAEA 2004). 

 



I. Introduction 12 

The most common tumours treated with radiotherapy are breast cancer, prostate cancer, lung 

cancer, colorectal cancer, head and neck cancers, lymphoma, and cancer of the larynx. It is 

well known, that cells are most susceptible to be damaged by IR during the G2-phase of the 

cell cycle and mitosis and that most cancer cells proliferate rapidly. Thereby, cancer cells are 

more likely to be damaged by radiation because there are more cells undergoing division than 

in the normal cell population (Steel 1993).  

 
Cellular radiosensitivity is directly proportional to the rate of cell division and inversely 

proportional to the degree of cell differentiation. Hence, as example, lymphoid organs, bone 

marrow and blood are highly radiosensitive, whereas brain and muscle show low 

radiosensitivity (Rubin and Casarett 1968).  

 

 

1.5 Clinical versus cellular radiosensitivity 
 
As mentioned above, efficient radiotherapy of malignant tumours is limited by the adverse 

normal tissue side effects. That is why during the last few decades great efforts were focused 

on the development of in vitro assays to predict the normal tissue reactions to IR after tumour 

treatment. 

Several authors have found an enhanced cellular radiosensitivity in the cancer patients that 

developed severe clinical side reactions after radiotherapy (Borgmann et al. 2007, Hoeller et 

al. 2003, Widel et al. 2001). Lee et al (2003) have observed such a correlation in prostate 

cancer patients. In contrast, Lisowska et al. (2006) and Wang et al. (2005) have found no 

correlation between cellular radiosensitivity and the degree of acute reactions.  

The recent advances in both molecular genetics and biology allow the investigation of clinical 

radiosensitivity by predictive assays based on genotype aspects such as cellular 

radiosensitivity or subcellular damage endpoints (Peters and McKay 2001; see section 1.8).   

This would allow a reduction of the total dose for patients with high cellular radiosensitivity 

and thus alternative options for therapy may be taken into account. Normal and resistant 

patients may be exposed to a higher dose of IR. The second option applies especially to 

tumour entities for which dose escalation is possible, for example in case of prostate cancer. 

Such an individualization of radiotherapy could improve the whole therapy success rate by 

more than 20 % (Bentzen 1997, Tucker et al. 1999). 
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1.6 Cancer 
 
The most important of the stochastic radiation effects is cancer, whose development is a 

complex and multi-stage process usually taking many years (IAEA 2004). Cancer is one of 

the leading causes of death in the world (Karim-Kos et al. 2008). It is that in the European 

Union there will be approximately 1.25 million cancer deaths until 2015, which means almost 

130 000 (11 %) more deaths than in 2000. The increase in the predicted number of cancer 

deaths in 2015 is proportionally greater in males (13 %) than in females (10 %) and also 

larger in the acceding countries than in the current EU member countries. The highest number 

of cancer deaths in the current EU member countries will probably occur in 2015 in France 

and Germany, the Netherlands, Spain and Poland (Quinn et al. 2003).  

Over 200 different types of cancer are known, but the most common besides skin cancer are 

breast, lung, large bowel (colorectal) and prostate cancer. These four cancer types account for 

over half of all diagnosed cases. Cancer affects mainly older people, whereof about 64 % of 

cases diagnosed are 65 years old and older (www.cancerresearch.org).  

Cancer is a complex disease and carcinogenesis (the conversion of a normal cell into a cancer 

cell) is a complex multi-step process during which abnormal gene expression due to several 

mechanisms, such as DNA damage and abnormal gene transcription or translation occurs 

(Sarasin 2003). The causes of cancer in many cases are not clearly defined, however it is very 

well known, that both external (radiation and environmental chemicals; Montesano and Hall 

2001) and internal factors (immune system defects or genetic predisposition; Peto and 

Houlston 2001) usually play an important role in cancer initiation. As example, known genes 

associated with hereditary cancer include the aberrant BRCA1 and BRCA2 genes that 

increase breast cancer risk and the HNPCC gene that is linked with colon cancer 

(www.cancerresearch.org). 

 

 

1.6.1 Prostate cancer 
 
Among cancers, the most commonly diagnosed in men is prostate cancer (PC). It is estimated 

that one of six men will be diagnosed with this cancer entity over the course of a lifetime. In 

spite of many risk factors, which have been suggested for prostate cancer, the data are 

inconsistent (Nomura 1991 and Ross 1996). Over 60 % of cases are diagnosed in men older 

than 65 years and about 25 % in men older than 75 years, which categorizes PC as old men 

disease. Prostate cancer ranges from a slow-growing (indolent) to a highly aggressive form 
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(Fitzpatrick 2008). The risk of PC grows almost linearly with age, from 0.005 % in men 

younger than 39 years to 2.2 % in men at age ranging between 40-50 years. In man at age 60-

79 years the risk of being diagnosed with PC equates almost 14 % (Stangelberger 2008).  

The prostate cancer cells may spread from the prostate to other parts of the body, mostly to 

the bones and lymph nodes. Prostate cancer may cause pain, problems in urinating and during 

sexual intercourse, or erectile dysfunction (www.cancer.gov). 

The common use of prostate-specific antigen (PSA) as a screening test remains controversial. 

There is no agreement that measurement of PSA level has a predictive value for the risk of 

prostate cancer (Herman et al. 2009). Its inherent lack of specificity has led to several 

unnecessary biopsies (Lin et al. 2008). Also the effectiveness of digital rectal examination 

(DRE) for PC screening is not well established (Wilbur 2008). 

All prostate cancer patients chosen for this study suffered from low-stage (T1-3N0M0) 

prostate carcinoma. Moreover, two further factors such as age and gender are also in this case 

homogeneous. It is especially important in view of the fact that both factors age and gender 

are often revealed as affecting the level of DNA damage (Papworth et al. 2001, Mendoza- 

Nunez et al. 2001).  

 

 

1.6.2 Susceptibility to cancer  
 
Approximately 80 % of most common cancers are sporadic, 10-15 % of cases are the result of 

mutations in one or more low penetrance genes, interactions between gene and environment 

or both and 5-10 % are inherited and arise due to highly penetrant mutations (Nagy et al. 

2004). The majority of the discovered genes predisposing to cancer are highly penetrant, but 

also occur too rarely to be responsible for the induction of more than few percent of most 

cancer types (Nagy et al. 2004). The second interesting observation is the varying penetrance 

of the genes. For example in many cases of breast cancer the genes BRCA1 and BRCA2 

which are highly predisposing in heterozygotes are involved. Whereas the ATM gene, which 

causes Ataxia telangiectasia (AT), is only mildly penetrant in obligate heterozygotes. The full 

gene penetrance appears only in the homozygotes (Swift et al. 1986). 

Now it is well known that a high proportion of cancers arise due to genetic susceptibility. One 

maintains, however, that the relevant genes are low penetrant and hence, do not cause large  

multiple families cancer cases.  
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1.6.3 Detecting cancer susceptibility 
 
Over 30 years ago Taylor et al. (1975) observed an association between cancer predisposition 

and the in vitro hypersensitivity of human fibroblasts to ionising radiation. Indeed, the 

elevated chromosomal radiosensitivity has been found further in cancer patients when 

compared to healthy donors (e.g. Scott et al. 1999, Bonassi et al. 2000, Lisowska et al. 2006).  

 

The identification of individuals with cancer susceptibility (cancer-prone) would allow early 

detection and effective treatment. 

Therefore, this study was undertaken to assess the predictive value of the chosen in vitro 

assays for cancer predisposition. 

 

Identification of genes responsible for cancer susceptibility causes often trouble because of 

their low penetrance, gene combination and gene-environment interactions. The only reliable 

and successful known mechanism for identifying low penetrance genes is the analysis of 

polymorphisms at candidate loci. The effect of such polymorphisms in combination with each 

other and also with environmental risk can be only assessed when very large collectives of 

donors were investigated. Taken this into account it is obvious that alternative methods must 

be found. 

Recently, micro-array technology was developed and gladly used. This technique allows the 

screening of the expression level of various genes at different times and thus the 

transcriptional activity of certain regulatory genes as a characteristic of tumours can be 

assessed. Finally, mutations in potential low penetrance genes can be found. Other analytical 

tools, based on chromosome aberrations such as micronucleus assay, FISH assay 

(fluorescence in situ hybridisation), comet assay, apoptosis assay, γ-H2AX assay etc. are 

investigated as potential tools for prediction of cancer susceptibility. 

 

By use of a selection of the above mentioned assays we wanted to find out, whether the 

prostate cancer patients in this study show an elevated level of radiation-induced DNA 

damage in their lymphocytes, when compared to healthy donors. 
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1.7 Molecular aspects of individual radiosensitivity 
 
There are a number of classification systems characterizing the extent of side reactions in 

radiotherapy patients (e.g. Wei et al. 2000, Hoeller et al. 2003). The results from a clonogenic 

assay are presented in values of survival fraction (SF) and parameters α and β describing the 

survival curve. Measurement of DNA repair kinetics and the amount of repaired damage at 

certain analysed time points after exposure are supposed to give also some information about 

the possible development of side effects (Müller et al. 2001, Borgmann et al. 2002).  

Mutations in genes, which are involved in DNA repair pathways often lead to an increase in 

radiosensitivity (Bishay et al. 2001). The first association between a defect in DNA repair, 

radiosensitivity and cancer was published by Cleaver (1968) who observed that Xeroderma 

pigmentosum (XP) patients have a genetic defect in the ability to repair DNA damage caused 

by ultraviolet (UV) light. Lately is has been shown that also several other common hereditary 

forms of cancer are associated with DNA repair defects and radiosensitivity (Bourguignon     

et al. 2005). These disorders result mostly from mutations in genes attending in DNA 

signalling or repair pathways, cell cycle and transcription. The described situations occur in 

Fanconi anaemia (Duckworth-Rysiecki and Taylor 1985), Bloom’s syndrome (Wang et al. 

200), Nijmegen breakage syndrome (Demuth and Digweed 2007) etc. 

In the repair of dsb, which are regarded as the most critical type of radiation-induced DNA 

damage (Tounekti et al. 2001), two main repair mechanisms are involved – homologous 

recombination (HR) and non-homologous end-joining (NHEJ; Smith et al. 2001). 

Homologous recombination (HR) uses as a template the homologous sister chromatid and acts 

post-replication during the late S/G2 – phase, whereas NHEJ “works” in G1/early S – phase 

(Rothkamm et al. 2003). Both HR and NHEJ play crucial roles in the repair of lesions that 

arise in certain tissue types. The mutation of either of these pathways can lead to 

developmental defects and finally embryonic death, increase of cancer induction as well as 

defects in neurogenesis (Tsuzuki et al. 1996). Nevertheless, there are examples in which the 

knockout of a certain gene does not lead to a tumour development, as demonstrated by mice 

with knocked out Rad52 and Rad54 genes coding proteins involved in HR (Smith et al. 2001). 

Cell lines that are defective in any of the NHEJ genes showed also a high sensitivity to IR and 

have significant deficiencies in DNA dsb repair (Rothkamm et al. 2003). There are some 

defects in repair pathways which do not act directly on DNA repair, but cause 

radiosensitization, such as telomere shortening, signal transduction, transcription or regulation 

of cell cycle and cell death. For example, higher aberration level and elevated apoptosis rate 

was found in mTR-/- mice (G5 mTR-/- mice; mice lacking the RNA component of telomerase) 
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when compared to wild-type controls. In fifth generation mTR-/- mice telomeres are 40 % 

shorter than in wild-type mice (Goytisolo et al. 2000). 

 

 

1.8 Measurement of cellular sensitivity in vitro 
 
The concept developed since over 40 years ago that DNA damage is one of the crutial initial 

events for the development of radiation sensitivity was the reason why great efforts were 

undertaken to measure DNA damage and repair. 

It is well known, that different biological features, such as repair capacity, induction of 

chromosomal aberrations as well as biological endpoints, such as apoptosis and cell survival 

are affected by individual radiosensitivity. The existing experimental endpoints include 

measurement of: 

� apoptosis (programmed cell death) 

� induction of cellular death (loss of metabolic activity) 

� cytogenetic changes such as micronuclei, chromosomal/chromatid aberrations and 

chromosomal instability 

� clonogenic survival 

� initial and residual DNA damage and repair capacity using γ-H2AX assay, comet 

assay or pulsed field gel electrophoresis (PFGE) 

(Bourguignon et al. 2005, Joubert et al. 2008) 

 

In the present thesis the G2 assay, apoptosis assay and γ-H2AX foci assay were chosen to 

analyse the chromatid-type aberration yield, apoptosis rate as well as foci induction and repair 

in peripheral blood lymphocytes from prostate cancer patients and age-matched healthy 

donors. 

As the G2 assay was used in several studies (e.g. Scott et al. 1994, 1996, 1999, Terzoudi et al. 

2000, Lisowska 2006 etc.) and investigated in lymphocytes of many cancer patients and 

healthy donors, the results of chromatid-type aberrations were regarded in the thesis as point 

of reference. 
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1.9 The impact of temperature on radiation-induced cytogenetic damage 
 
The common application of ionising radiation sources for agricultural, military or medical 

goals in normal life increases the risk for overexposure of people. In case of accidental 

exposure the estimation of the absorbed dose and its influence on cellular damage is 

necessary.  

The level of cytogenetic damage induced by ionising radiation under in vitro conditions in 

human peripheral blood lymphocytes (PBL) is analysed for the purpose of establishing 

calibration curves used in biological dosimetry and for assessing the intrinsic radiosensitivity 

of  the blood donor (International Atomic Energy Agency [IAEA] 2001, Lisowska et al. 

2006). It indicates that blood exposure in vitro should be conducted under strictly controlled 

physical conditions to obtain a high reproducibility of the dose. Temperature control during 

irradiation in vitro is a factor that often is neglected. However, it has been announced that 

temperature has influence on radiation-induced chromosome aberrations (e.g Bajerska and 

Liniecki 1969, Gumrich, Virsik-Peuckert and Harder 1986, Claesson et al. 2007). Mostly a 

sparing effect of low temperature during exposure on the level of cytogenetic damage was 

observed (Bajerska and Liniecki 1986, Gumrich et al. 1986). Contrary, there are results 

showing no influence of temperature on DNA damage (Wojewodzka et al. 1996).  

In the first part of this study the influence of temperature on radiation-induced DNA damage 

was investigated to find out, whether the temperature condition during irradiation is a factor 

which should be strictly controlled for the purpose of high reproducibility of the results. 

 
 

1.10 Thesis aims 
 

 The goals of this thesis were: 

 

In part 1: Influence of temperature during irradiation on the level of DNA damage. 

 

� To find out, whether different temperature conditions during irradiation of peripheral 

blood lymphocytes have an influence on the radiation-induced level of chromosomal 

damage. 

 

� To check, whether the cytogenetic temperature effect in peripheral blood lymphocytes 

is related to the direct or indirect action of radiation. 
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In part 2: Comparison of individual radiosensitivity of peripheral blood lymphocytes from 

prostate cancer patients and healthy donors. 

 

� To compare individual cellular radiosensitivity between prostate cancer patients with 

and without clinical side effects after radiotherapy and age-matched male healthy 

donors to find out, whether the level of DNA damage may be associated with cancer 

susceptibility. 

 

� To find out whether one or more of the chosen assays might be appropriate to predict 

the risk for side effects after radiotherapy of prostate cancer patients. 
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II. Materials and methods  
 

Part 1: Influence of temperature during irradiation  on the level of DNA 

damage. 

 

2.1.1 Materials  
 

2.1.1.1 Equipment  
 
Centrifuge, MPW Med. Instruments, Poland 

Cell incubator, NuAire, USA 

Electrophoresis chamber, own construction 

Eppendorf cups, Eppendorf, Germany 

Fluorescence microscope, Nikon Labophot-2, Tokyo, Japan 

Irradiation source, 137Cs Gammacell 40, Fa. Atomic Energy, Canada 

Irradiation source, X-ray machine, Andreassen, Copenhagen, Denmark 

Light microscope, Nikon, Poland 

Water bath, MPW Med. Instruments, Poland 

Zeiss Fluorescence Microscope Axioplan 2 Imaging, Carl Zeiss, Germany 

 

2.1.1.2 Consumable materials and chemicals  
 
Acetic acid, Sigma, Poland 

Agarose Type VII (low melting point), Sigma, Poland 

Agarose Type IA (regular agarose), Sigma, Poland 

Cytochalasin B, Sigma, Poland 

DAPI (4’.6-diamidino-2-phenylindole), Sigma, Poland 

DMSO (dimethyl sulphoxide), Gibco, Poland 

EDTA, Sigma, Poland 

Falcon tubes, Sarstedt, Poland 

Gradisol, Sigma, Poland 

Sodium acetate, Sigma, Poland 

Tris base (Tris(hydroxymethyl)aminomethane), Sigma, Poland 
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Tris-HCl (Tris Hydrochloride), Sigma, Poland 

Trypan Blue, Sigma, Poland 

Microscope slides, Marienfeld, Germany 

RPMI 1640 medium, Sigma, Poland 

Fetal calf serum, Gibco, Poland 

Giemsa, Sigma, Poland 

Methanol, Sigma, Poland 

N-lauroylsarcosine, Fluka, Germany 

PBS, Sigma, Poland 

Sodium ethylenediaminetetraacetic (Na2EDTA), Sigma, Germany 

Tubes for blood culture, Greiner Bio-One, Germany 

Sodium chloride (NaCl), Fluka, Germany 

Phytohaemagglutinin (PHA), Gibco, Poland 

Penicillin/Streptomycin, Gibco, Poland 

Triton X-100, Sigma, Poland 

 

2.1.1.3 Buffers and solutions 
 

Micronucleus assay 
 

Alkaline comet assay 
 

Neutral comet assay 

 

Fix solution I: 

methanol 

0.9 % NaCl 

acetic acid 

at a ratio of 12:13:3 

 

 

Fix solution II: 

methanol 

acetic acid 

at a ratio of 4:1 

 

 

 

Lysis buffer, pH 10: 

2.5 M NaCl 

100 mM Na2EDTA 

10 mM Tris base 

1 % Triton X-100 

 

 

Electrophoresis buffer,  

pH 13: 

1 mM Na2EDTA 

300 mM NaOH 

 

Neutralising buffer: 

0.4 M Tris, pH 7.5 

 

Lysis buffer, pH 9.5: 

2.5 M NaCl 

100 mM EDTA 

10 mM Tris-HCl 

1 % N-lauroylsarcosine 

0.5 % Triton X-100 

10 % DMSO 

Electrophoresis buffer: 

300 mM sodium acetate 

100 mM Tris HCl, pH 8.3 

 

 

Neutralising buffer: 

0.4 M Tris, pH 7.5 
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2.1.1.4 Software 
 
Comet v.3.0 Kinetic Imaging, Liverpool, UK 

Metafer4, version 3.4, MetaSystems, Germany 

 

2.1.2 Methods 
 

2.1.2.1 Collection of blood samples 
 
Peripheral blood lymphocytes were collected by venous puncture from two male non-

smokers, age 26 and 46 years and two female occasional smokers of the same age. 

For micronucleus assay and alkaline comet assay whole blood or isolated lymphocytes were 

irradiated and set up for cultures. In all neutral comet assay experiments isolated lymphocytes 

were used, which resulted in a better quality of comets. 

 

2.1.2.2 Isolation of lymphocytes from whole blood 
 
Peripheral blood lymphocytes (PBL) were isolated by density gradient centrifugation using a 

lymphocyte separation medium (Gradisol). 15 ml whole blood from each donor was diluted 

with 15 ml of pre-warmed RPMI 1640 medium. 15 ml of cold Gradisol was added to two 50 

ml falcon tubes and 15 ml of diluted donors’s blood was carefully poured onto the Gradisol 

solution. The tubes were centrifuged 0.5 h at 400 x g at room temperature (RT) and after that, 

4 layers were distinguishable. The lymphocytes were harvested from the thin white layer, 

mixed with 30 ml warm RPMI 1640 and finally centrifuged 20 min at 300 x g at RT. The 

supernatant was carefully removed and the pellet was washed 2-3 times by resuspension in 

RPMI 1640, centrifugation as described above and finally the supernatant was discarded.  

Immediately after the last washing step the cell pellet was resuspended in 1 ml of RPMI 1640 

and the cell number was counted using trypan blue.  

 

2.1.2.3 Exposure conditions 
 
Whole blood or isolated lymphocytes were always aliquoted into Eppendorf cups, which were 

placed in 150 ml plastic cups, filled with water at 37°C and 0-4°C (crushed, melting ice). Two 

cups were incubated at 37°C and further two at 0-4°C for 20 min before and during exposure. 

For each temperature condition one sample was taken as a control and the other exposed to 2 
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Gy X-rays (dose rate 0.5 Gy/min) for micronucleus assay and alkaline comet assay. For the 

neutral comet assay, cells were irradiated with a dose of 20 Gy γ-rays at a dose rate of 0.74 

Gy/min.  

 

2.1.2.4 Micronucleus assay 
 
Directly after irradiation lymphocyte cultures were set up by adding either 0.5 ml of whole 

blood (donors 1, 2 and 3) or isolated lymphocytes (about 1.5 x 106, donor 1 ) to 4.5 ml of pre-

warmed RPMI 1640 medium, supplemented with 20% fetal calf serum, 10 µg/ml PHA, 100 

U/ml penicillin and 100 µg/ml streptomycin. Lymphocytes were then incubated at 37°C in a 

humidified atmosphere and 5 % CO2. After 44 h cytochalasin B at a final concentration 5.6 

µg/ml was added to block cytokinesis of the cells. Following 72 h of culture time the cells 

were harvested and fixed according to the protocol of Fenech (2000). The cultures were 

centrifuged for 15 min at 900 rpm, then the supernatant was carefully removed and after 

resuspension of the pellet 7 ml of 0.14 M KCl was slowly added to the cells. During addition 

of the hypotonic solution the tubes were vortexed to get a single cell suspension. The 

hypotonic treatment for 5 minutes at RT induces the swelling of the lymphocytes which is an 

important precondition for the bursting of the cell membrane during dropping the cells on 

slides. 

Following hypotonic treatment the samples were centrifuged at 900 rpm for 15 minutes and 

after removing of supernatant, 7 ml of fresh fix solution (I) was added. The cells were then 

centrifuged as described above. The pellet was washed 2-3 times with fresh fix solution (II), 

each time removing the supernatant, vortexing and adding fresh fixative. The cells were kept 

one or few days at 4°C. Directly before slide preparation the suspension was centrifuged 

again as above and the cell pellet was resuspended in 1-2 ml of fresh fix solution (II). 

 

2.1.2.4.1 Slide preparation and scoring criteria 
 
The cells were dropped (from a height of approximately 4 cm) on clean slides and allowed to 

air-dry over night at RT. Slides were stained with 5 % Giemsa for 7-10 minutes and dried 

over night. Slides were coded and scored at 400x magnification using a light microscope. For 

each experimental dose point 1000-2000 binucleated cells (BNC) were taken into account 

with exception of few cultures incubated shortly with toxic DMSO. Micronuclei were scored 

in agreement to the criteria published by Fenech (2000).  
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2.1.2.4.2 Treatment with DMSO  
 
For the experiments with DMSO isolated lymphocytes were used. Use of whole blood was 

unpractical because of the haemolytic properties of DMSO. DMSO was added to the 

lymphocyte cultures 5 min before exposure (final concentration 0.5 M) and removed by 

centrifugation for 5 min at 1100 rpm directly after exposure. The set up of the cultures for 

micronucleus assay was performed as described above. 

 

2.1.2.4.3 Statistical analysis of micronucleus assay 
 
Chi-square test for Poisson-distributed events (Sachs 1984) was used to compare the 

frequencies of micronuclei exposed at different temperatures. Dispersion index (DI) was 

calculated for micronuclei by dividing the variance by the mean value. The u test (Edwards et 

al. 1979) was used to assess a significance of deviation from a Poisson distribution. The 

paired, two sided Student’s t-test was used to compare the mean values of micronuclei per 

treatment (P < 0.05). The proliferation capacity of the lymphocytes was estimated by 

calculating the replication index (RI) according to the formula: 

 

RI = Mono + Bi*2 + Tri*3 + Tetra(+)*4/ N, 

 

where: Mono, Bi, Tri and Tetra(+) indicate cells with, respectively 1, 2, 3, 4 or more nuclei, 

and N is the number of scored cells. 

 

2.1.2.5 Alkaline comet assay 
 
The level of DNA damage was determined using the alkaline version of the comet assay in 

accordance with Wojewodzka et al. (1998). For each experiment four Eppendorf cups with 

0.5 ml blood were prepared. Two of them were incubated at 37°C and two at 0-4°C each for 

20 min before and during irradiation. One sample incubated at 37°C and one at 0°C 

(described as 37°C 2 Gy and 0°C 2 Gy) were irradiated. Not irradiated controls were 

described as 37°C 0 Gy and 0°C 0 Gy. Following exposure, about 50 µl of whole blood was 

mixed with 0.5 ml RPMI 1640 (donors 2, 3 and 4). Thereafter, 200 µl of suspension was 

mixed with the equal volume of warm (~ 37°C) low melting point agarose at a final 

concentration of 1 %. Finally 100 µl of this suspension was coated carefully on a microscope 



II. Materials and methods 25 

slide and covered with a cover slip. Glass slides were prepared in advance by precoating with 

0.5 % standard agarose diluted in deionised water and dried over night.  

The slides were then left for few minutes on ice. To minimize the influence of DNA repair 

after irradiation the following order for sample handling was practised: 37°C 2 Gy, 0°C 2 Gy, 

37°C 0 Gy and 0°C 0 Gy. After solidification of the agarose, slides were incubated in 50 ml of 

freshly prepared, cold lysis buffer to release damaged DNA. After 1 h, the slides were washed 

twice in PBS and placed on a horizontal gel electrophoresis chamber filled with fresh, cold 

electrophoresis buffer. The slides were incubated in this buffer for 40 minutes at 4°C to allow 

DNA unwinding. Electrophoresis was performed for 0.5 h at 4°C and a power supply setting 

of 2 V/cm. Thereafter the slides were washed three times with cold neutralization buffer for 3-

5 minutes, stained with 1 µM DAPI and kept in the fridge over night. After staining at least 50 

randomly selected comets per slide were captured at 200 x magnification using a fluorescence 

microscope. Digital images were acquired using the Comet v.3.0 Kinetic Imaging software. 

The Olive Tail Moment (OTM) was selected for further analysis. 

 

2.1.2.6 Neutral comet assay 
 
The comet assay in neutral version was performed as described by Wojewodzka et al. (2002) 

with some modification.  

Directly after irradiation all samples were put on ice to minimise DNA damage repair and 

immediately transported to the laboratory (about 10 minutes). The cell suspension (4 x 105 

cells/ml) was mixed with the equal volume of pre-warmed (37°C) low melting point agarose at 

a final concentration of 0.75 %. Thereafter, 100 µl of suspension was coated on a microscope 

slide precoated with a thin layer of 0.5 % standard agarose, covered with a cover slip and kept 

for 5 min on ice to allow solidification of the agarose. After removing the cover slips, the 

slides were left at 4°C in the dark for 1-2 h in lysis buffer. After lysis the slides were washed 

three times for 1-2 min with electrophoresis buffer and left in a horizontal gel electrophoresis 

chamber filled with cold electrophoresis buffer for 1 h in the dark for DNA relaxing. The 

electrophoresis was performed for 1 h at 14 V (0.5 V/cm, 4°C). Then, slides were washed three 

times for 3-5 min with 0.4 M Tris, pH 7.5, stained with DAPI (1 µg/ml) and kept in a fridge 

over night. 

The next day slides were analysed. Images from 50-100 randomly selected comets per slide 

were automatically captured at 200 x magnification using the fluorescence microscope and 

the Metafer4 software. The Olive Tail Moment was selected for further analysis. 
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2.1.2.7 Comet analysis  
 
The Olive Tail Moment is defined as the product of the tail length and the fraction of total 

DNA in the tail. The Tail Moment allows the measurement of the smallest detectable size of 

migrating DNA (reflected in the comet tail length) and the number of relaxed / broken pieces, 

represented by the fluorescence intensity of the DNA in the tail. 

 

2.1.2.8 Statistical analysis  
 
The average values of the tail moment were estimated for 4 donors in the alkaline version and 

for 3 donors in the neutral version of the comet assay at each dose and temperature.  

The paired, two sided Student’s t-test was used to compare the mean values of the Tail                                                

Moment per treatment and p < 0.05 was considered significant. 

 

 

Part 2: Comparison of individual radiosensitivity of peripheral blood 

lymphocytes from prostate cancer patients and healthy donors. 

 

2.2.1 Materials 
 

2.2.1.1 Equipment 
 
Casy Counter TTC, Schärfe System, Germany   

Centrifuge Multifuge 1s-r, Heraeus, Germany 

Centrifuge 5415R, Eppendorf, Germany 

Cytospin centrifuge Rotofix 32A, Hettich, Germany    

Cell Incubator MCO-20 AIC, Sanyo, Japan 

Irradiation source, 137 Cs Gammacell 40, Fa. Atomic Energy, Canada 

Flow cytometer FACSCanto TMII, BD Biosciences, Germany 

Spectrafuge mini C1301, Labnet International, USA 

Waterbath SW22, Julabo, Germany 

Vortex FB15013 TopMix, Fisher Scientific, Germany 

Axioplan 2 Imaging Microscope, Zeiss, Germany 
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2.2.1.2 Consumables and chemicals  
 
AccuMax, PAA, Austria  

Acetic acid, Merck, Germany 

Albumin from bovine serum (BSA), Sigma, Germany 

Colcemid, PAA, Austria 

Culture flasks (25 cm2), TPP, Switzerland 

Culture tubes (4.5 ml), Greiner Bio-One, Germany 

Ethanol, Merck, Germany 

Falcon tubes (50 ml), Sarstedt, Germany 

Fetal calf serum, Biochrom, Germany 

Fetal calf serum Gold, PAA, Austria  

Filter cards, Hettich Zentrifugen, Germany 

Formaldehyde, Fluka, Germany 

Giemsa, Merck, Germany 

Goat serum, PAA, Austria 

Potassium chloride (KCl), VWR, Germany 

Lymphocytes Separation Medium, PAA, Austria 

Methanol, Merck, Germany 

Microscope cover slips, VWR, Germany 

Microscope slides, VWR, Germany 

Microscope slides Superfrost® Plus, Thermo Scientific, Germany 

PBS (phosphate buffered saline without Mg+ and Ca+), PAA, Austria 

Penicillin/ Streptomycin, PAA, Austria 

PHA (phytohaemagglutinin), PAA, Austria 

Pipette tips (2.5 µl, 10 µl, 20 µl, 100 µl, 1000 µl), Eppendorf, Germany 

Prolong®Gold antifade reagent with DAPI, Invitrogen, USA 

RPMI 1640 with 2 mM stable glutamine, PAA, Austria 

Triton X-100, Sigma, Germany 

Tubes (1.5 ml, 2 ml), Eppendorf, Germany 

S-Monovette for blood transport, 10 ml, NH4, Sarstedt, Germany 
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2.2.1.3 Kits 
 
Annexin V- FITC Apoptosis Detection Kit, BD Biosciences, Germany 

 

2.2.1.4 Buffers and solutions 
 

γ-H2AX assay 

 
1.5 % formaldehyde 

2 ml 37.5 % formaldehyde 

          48 ml PBS 

 

 

0.25 % Triton 

0.25 ml Triton X-100 

100 ml PBS 

 

 

5 % goat serum 

2 ml goat serum 

          38 ml PBS 

 

TBP buffer 

         0.2 ml Triton 

1 g BSA 

100 ml PBS 

 

FACS buffer 

10 ml FCS 

90 ml PBS 

 

 

2.2.1.5 Antibodies 
 

γ-H2AX assay 

 

Primary antibody: Anti-phospho-histone H2A.X (ser139), clone JBW301, Maus, Upstate, 

USA 

Secondary antibody: Alexa Fluor 488 goat anti- mause IgG, Invitrogen 
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2.2.1.6 Software 
 
Metafer4, version 3.4, MetaSystem, Germany 

FACSDiva, BD Biosciences, Germany 

 

2.2.2 Methods 

2.2.2.1 Sample collection 
 
Blood samples from prostate cancer patients, as well as from healthy age-matched donors 

were collected between September 2007 and May 2009. All blood samples were collected in 

9 ml tubes and transported to Forschungszentrum Jülich GmbH in a polystyrene box for 

ambient temperature as well as to avoid breakage during transport (~1 hour). Then peripheral 

blood lymphocytes were immediately isolated and for G2 assay blood cultures were prepared.  

 

2.2.2.2 Donors 

2.2.2.2.1 Prostate cancer patients 
 
The study was based on patients with localized T1-3N0M0 prostate carcinoma, who were 

treated with three-dimensional conformal radiotherapy in between the years 2005 and 2006 at 

the Department of Radiation Oncology, RWTH Aachen University, Germany.  

The average patient age was 74 years, ranging from 61 to 84 years. The therapy was based on 

performing computer tomography (CP) scans in supine position with a slice thickness of 5 

mm. Patients were asked to have a full bladder each before making a CT scan and receiving 

the radiotherapy fraction. In all scans prostate volume, planning target volume (PTV), bladder 

and rectum were delineated by identifying the external contours. The treatment plans were 

calculated with the use of a four-field box technique with 15 MeV photons and a multileaf 

collimator. All patients have received a total dose in the range of 70.2 - 72 Gy at 1.8 or 2.0 Gy 

daily fractions. All patients have been surveyed prospectively before (time A), at the last day 

(time B), two months (median, range 6 weeks-6 months) after (time C) and sixteen months 

(median, range 12-20 months) after (time D) radiotherapy with the use of a validated 

questionnaire, the Expanded Prostate Cancer Index Composite (EPIC) (Wei et al 2000; Volz-

Sidiropoulou et al. 2008). Acute toxicity was assessed at times B and C, whereas late toxicity 

at time D. The EPIC form consists of 50 questions regarding the urinary, bowel, sexual and 

hormonal condition. In this study only the clinical side effects on the bladder and the rectum 
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were evaluated in reference to individual radiosensitivity. The multi-item scale scores were 

transformed lineary to a 0-100 scale. The higher the scores the worse is health-related quality 

of life (QoL). In agreement with the literature data mean scores below 5 points was 

characterised as clinically not significant, 5-10 points was described as “little” changes, 10-20 

points corresponded to “moderate” changes and over 20 points represented “very much” 

changes (Ososba et al. 1998, Pinkawa et al. 2008). 

Because the most critical organs at risk in prostate cancer radiotherapy are bladder and 

rectum, urinary and/or bowel quality of life (QoL) changes were a very important criterion 

connected with/without side effects after radiotherapy. Patients with severe, side effects were 

defined as having at least one, but preferably more urinary or bowel bother score changes in 

comparison to the baseline level: >40 points at time B, >20 points at time C or >10 points at 

time D – corresponding to those 25% of patients with the most severe reactions at the 

respective point in time, if the results of all patients are considered. Patients without relevant 

reactions were defined as patients with urinary or bowel bother score decreases below the 

mentioned cut-off levels at all times, but preferably always <10 points.  

Additionally the patients provided the information concerning smoking, chronic illnesses, 

taking medicine, diet and allergy (see Table 2.1). 

The information about prostate cancer patients were obtained from Professor Michael Eble 

and Doctor Michael Pinkawa from the Department of Radiation Oncology, RWTH Aachen 

University in Germany. 

Blood samples were obtained from 50 prostate cancer patients after radiotherapy, 25 of them 

showed strong clinical side effects after radiotherapy and 25 showed no side reactions. By the 

G2 assay 44 patients were tested, 22 with and 22 without severe clinical reactions after 

radiotherapy. The apoptosis/necrosis assay was performed for 41 patients, thereof 20 with and 

21 without reactions. In the γ-H2AX assay, measuring the mean fluorescence intensity by 

FACS, 45 patients were analysed, thereof 23 with and 22 without severe side reactions after 

radiotherapy. The γ-H2AX foci were scored for 44 patients, where 21 showed side reactions 

and 23 had no reactions after radiotherapy. 

 

2.2.2.2.2 Healthy donors 
 
Additionally blood samples from 23 age-matched male healthy donors were collected. The 

mean age of all healthy volunteers was 67 years ranging from 47 to 85 years. All healthy 

volunteers filled a questionnaire comprising questions about smoking, chronic illnesses, 

taking medicines, diet and allergy (Table 2.1). 
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Table 2.1: Characteristic of prostate cancer patients and healthy donors. 

 

 
 

Number of donors 
 
 

   
 

Patients with 
side effects (S) 

 

 

Patients without  
side effects (0) 

 

 

Healthy donors 
 (HD) 

 

 
No smokers 

Passive smokers 
Smokers 

 
20 
- 
5 

 
23 
- 
2 

 
18 
1 
4 

 

 

Previous illness (-es): 
Yes 
No 

No information 

 
3 
22 

- 

 
3 
22 
- 

 
16 
6 
1 

 

Taking of drugs: 
Yes 
No 

No information 

 
23 
2 
- 

 
24 
1 
- 

 
18 
4 
1 

 

Allergy: 
Yes 
No 

No information 

 
 

- 

 
 
- 

 
3 
19 
1 

 

Weight: 
Normal weight 
Underweight 
Overweight 

 
 

- 

 
 
- 

 
13 
2 
8 

 

 

All patients and healthy volunteers agreed with the test personal information sheet about the 

experiments and with the regulations concerning the data privacy protection. Ethical 

permission was obtained for the study (EK 130/08) by the ethics committee of the medical 

faculty, university clinics of RWTH Aachen, Germany. 

 

2.2.2.3 The G2 assay 
 
The G2 assay detects chromatid-type chromosome aberrations, mainly chromatid breaks and 

gaps occurring after irradiation of the cells during the G2 phase of the cell cycle. The G2 

assay was performed according to a modified version of the method of Scott et al. (1999). 

The samples were cultured within 3 hours after venous puncture. 1 ml heparinised whole 

blood was added to 9 ml of complete, pre-warmed (37°C) culture medium consisting of RPMI 

1640 with 2 % stable glutamine, 10 % donors own plasma, 2.5 % PHA 
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(phytohaemagglutinin) and 1 % antibiotics. PHA is a mitogen stimulating lymphocytes to 

become mitotically active cells (Chandler and Yunis, 1978) by making the plasma membrane  

permeable for growth factors. The medium is supplemented with donors own plasma and 

stable glutamine to provide the cell culture with factors identified as essential for growth such 

as adhesion factors, hormones, mineral elements, vitamins and binding proteins. 

Twenty four hours after stimulation by PHA the RNA synthesis in the cells increases, 

subsequently the nucleus enlarges and the DNA synthesis begins. Hence, the first mitoses are 

seen at about 48 hours after stimulation. 

The cultures were grown in 25 cm2 tissue culture flasks in a CO2 incubator at 37°C for 72 

hours. For each donor 2 cultures were set up, one for irradiation and one as a control to enable 

the determination of the spontaneous chromatid aberration yield. 

After 69 hours, the cultures were irradiated with a dose of 0.5 Gy γ-rays (dose rate 0.74 

Gy/min.) and placed immediately on ice during transport. Cultures were further incubated at 

37°C. Colcemid (final concentration 0.1 µg/ml) was added 1.5 h before harvest. Colcemid 

prevents the spindle formation, which causes an arrest between metaphase and anaphase and 

thus allows the preparation of metaphase chromosomes, which are highly condensed and 

therefore visible under the microscope. 

Thereafter, cultures were centrifuged at 1100 rpm for 10 minutes. Supernatants were removed 

and prewarmed 75 mM KCl was added to the pellets and vortexed to resuspend the cells. The 

suspension was incubated for 15 minutes at 37°C, which induces the swelling of the 

lymphocytes due to hypotonic treatment. Cells were then fixed 3 to 4 times in cold methanol: 

acetic acid (3:1), each time the supernatant above the cell layer was removed and the 

remaining pellet vortexed with fresh methanol: acetic acid solution. Tubes containing fixed 

lymphocytes were stored at -80°C overnight or longer. Incubation of lymphocytes at -80°C 

results in higher quality of metaphases on slides. 

 

2.2.2.3.1 Slides preparation 
 
Cell suspension was taken out from the freezer and centrifuged at 1100 rpm for 10 minutes. 

The supernatant was removed and the cell pellet was dissolved in 1 ml of fresh fixative, 100 

µl of cell suspension was dropped from a height of approximately 40-50 cm on a clean fat-

free slide. The slide was dried at room temperature over night. 

Because irradiation results in a reduced mitotic index, it was necessary to make 2-6 slides to 

obtain enough metaphases to score for each irradiated samples. For not irradiated controls 1-2  
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slides were sufficient. Staining of the slides was performed with 10 % Giemsa for a few 

minutes. The slides were dried at room temperature over night.  

 

2.2.2.3.2 Scoring criteria 
 
Slides were coded for anonymity, placed on the microscope stage and scanned at 10x 

magnification until a metaphase was found. The magnification of the microscope was 

changed to 100x objective using immersion oil and the quality of the metaphase was assessed 

before scoring for any chromosome damage. Only well spread metaphases were selected for 

analysis. Thereafter, chromosomes were counted and only if there were 46, they were taken 

into account. For analysis, 100 cells were scored for aberrations, which were mainly 

chromatid breaks with a few exchanges and chromatid gaps.  

Chromatid aberrations were classified according to Sanford et al. (1989) and Scott et al. 

(1999), who defined breaks as chromatid discontinuities with relocation of the broken 

segment and gaps as showing no displacement of the segment distal to the lesion. Gaps were 

included in the final G2 score only in case, if they were wider than the chromatid width. 

Chromatid breaks and gaps were added together to give the total G2 score for both irradiated 

and control samples. The spontaneous as well as radiation-induced chromatid yield was 

determined.  

 

2.2.2.3.3 Statistical analysis of chromatid aberrations 

 

2.2.2.3.3.1 Mean spontaneous and radiation-induced aberration yields 

 
Mean spontaneous as well as induced chromatid aberration frequencies were calculated by 

dividing the total number of aberrations observed by 100 (the total number of scored cells). 

The unpaired t test was used to compare G2 scores of the healthy donors with the prostate 

cancer patients with side effects after radiotherapy, as well as with the patients without 

effects.  

The unpaired t test was also used to compare G2 scores between both groups of patients. 
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2.2.2.3.3.2 Analysis of aberration distribution in accordance with the 50th percentile  
 
The analysis of average values of chromatid aberration is very sensitive on values lying in the 

ends of Gauss graph of chromatid distribution. In practise, it means that extreme high or low 

average chromatid aberration yields have a very strong influence on the mean value of the 

entire group of donors. To assess scope, where the aberration scores for 50 % patients are 

assembled, the aberration yields for each group of donors were separately divided by three 

quartile values into four equal parts. The middle quartil is also known as a median value and 

cuts data set (in this case aberrations yield) in half. Lower quartile (known also as 25th 

percentile) cuts off lowest 25% of data and upper quartile (or 75th percentile) cuts off highest  

25% of data. The area between lower and upper quartil is assembled around the median value 

and contains 50 % of all the scores in a group.  

 

2.2.2.3.3.3 Analysis of aberrations dispersion 
 
The u-test according to Edwards et al. (1979) was used to study the distribution of chromatid- 

type aberrations amongst metaphase cells in each donor. The chance of developing an 

aberration in a cell is randomly distributed, what means that each cell has an equal chance, if 

the observed distribution follows Poisson statistics. A positive u-value indicates over-

dispersion, whereas negative values indicate under-dispersion. 

If the u-value is greater than the value of 1.96 or -1.96 then the over-/under-dispersion is 

significant.  

Analysis of aberration dispersion was performed for samples exposed to 0.5 Gy of γ-rays. Not 

irradiated samples were excluded in this analysis because of very low aberration yields 

counted for 100 control cells. 

 

2.2.2.3.3.4 Determining radiosensitivity  
 
The proportion of radiosensitive individuals was determined by using a cut-off value of the 

90th percentile of spontaneous and radiation-induced chromatid aberration frequencies per 100 

cells for the control population, as proposed by Roberts et al. 1999 and Scott et al. 1999. 
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2.2.2.4 Isolation of lymphocytes from whole blood 
 
Peripheral blood lymphocytes (PBL) were isolated by density gradient centrifugation on 

Lymphocytes Separation Medium (LSM). 30 ml whole blood per donor was diluted with pre-

warmed 30 ml RPMI 1640, supplemented with 2% stable glutamine. 15 ml of cold LSM were 

added to a 50 ml falcon tube each and 15 ml of diluted blood were carefully poured onto the 

LSM solution. The next steps were performed in accordance with the protocol above 

(2.1.2.2). Immediately after the last centrifugation the cell pellet was resuspended in 1 ml of 

RPMI 1640 and the cell number was counted with a CASY Counter. Information about total 

cells number per sample, number of vital lymphocytes and cell viability were documented. 

Thereafter, 10 % own donor’s plasma and 1 % antibiotics were added, as well as additional 

amount of RPMI 1640 medium to get a final concentration of 106 cells/ ml. The culture was 

incubated at 37°C, 5 % CO2 over night to give the cells time for the repair of DNA damage 

and to recover from shearing forces due to isolation procedure. 

  

2.2.2.5 Sample irradiation for γ-H2AX assay and apoptosis/ necrosis assay   
 
After over night incubation each sample was divided in two culture flasks, one for irradiation 

and one as a control. The flasks were then put on ice, transported to the γ-ray machine and 

then irradiated with 1 Gy γ-rays at a dose rate of 0.74 Gy/min. The irradiation and the return 

to the laboratory were conducted also on ice to inhibit DNA repair. 

The irradiated sample and the control were divided each into three volumes (for 0.5 h, 5 h and 

24 h cultures) and placed in a 5 % CO2 gassed incubator at 37°C. The experiments for both   

γ-H2AX assay and apoptosis/necrosis assay were performed 0.5 h, 5 h and 24 h starting from 

the incubation after irradiation. 

 

2.2.2.6 The γγγγ-H2AX assay 
 
Phosphorylation of the histone H2A occurs within minutes after irradiation as response to the 

presence of DNA double strand breaks and is thought to recruit repair enzymes to these sites 

(Rogakou, Boon 1999; Paull, Rogakou 2000). 

When double strand breaks (dsb) are induced in the DNA, a complex cellular response is 

triggered. At sites flanking dsb the histone H2A becomes phosphorylated at the serine 139 

residue (Rogakou et al., 1999; Sedelnikova et al., 2002). After phosphorylation the histone is 

called γ-H2AX (Ragakou et al., 1998). Using an anti-γ-H2AX antibody labeled with a 
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fluorescent dye, the quantity and the pattern of γ-H2AX foci can be detected and visualised. 

The induction of γ-H2AX foci and the repair kinetics after irradiation with 1 Gy and different 

incubation times (0.5 h, 5 h and 24 h) at 37°C, 5 % CO2 was analysed. 

After the time points 0.5 h, 5 h and 24 h each irradiated and not irradiated sample (control) 

was treated as follows. 106 lymphocytes per sample were centrifuged in Eppendorf tubes for 5 

min at 3000 rpm (RT), resuspended and pretreated for 10 min with AccuMax at 37°C in order 

to detach cell aggregates. After centrifugation supernatants were discarded and pellets were 

resuspended in 0.5 ml of 1.5 % formaldehyde in PBS and fixed for 10 min, RT. Following 

centrifugation pellets were resuspended first in 0.3 ml of PBS and 0.7 ml of ice-cold 100 % 

ethanol afterwards and kept at -20°C over night or longer (max. 2 weeks), for thorough 

fixation. Thereafter, the samples were centrifuged for 5 min with 3000 rpm at RT, then the 

supernatant was removed and the cells suspended in 1 ml of 0.25 % Triton X-100 and 

incubated 0.5 h on ice to fix the lymphocytes. The presence of nonionic detergent such as 

Triton X-100 increases the permeability of the plasma membrane for the primary and 

secondary antibody. Afterwards cells were centrifuged as above and the pellet was incubated 

with 0.5 ml of 5 % goat serum, which was used as blocking agent reducing non-specific 

binding of proteins. After 1 h incubation at RT, samples were centrifuged, washed with 1 ml 

of PBS to reduce background by removing unbound antibody, and finally incubated under 

gentle shaking for 2 h at RT with the primary antibody, diluted 1:500 in TBP buffer. 

Thereafter, 0.5 ml of TBP buffer was added and the samples were centrifuged for 5 min with 

3000 rpm at RT. 

The supernatant was removed and the FITC labeled secondary antibody was added to the 

pellet for detection of γ-H2AX foci. 

After 1 h incubation in the dark the pellet was resuspended in 1 ml of FACS buffer. 

  

2.2.2.6.1 Slide preparation and foci scoring  
 
100 µl aliquots of the above described lymphocyte cell suspension prepared for FACS 

analysis was taken for cytospin centrifugation. Samples were centrifuged for 5 min at 400 x g, 

RT. Centrifugation using cytospin centrifugation allows to deposit a single layer of cells on a 

defined area of a glass slide, keeping the cellular integrity intact. The residual fluid was 

absorbed into the sample chamber’s filter card. Because lymphocytes adhere better to a 

positive charged surface Superfrost Plus glass slides were used for this procedure. For each 

sample 100-120 cells, stained with DAPI were scored. Images were taken using a Zeiss 
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microscope equipped with the Metafer4 software, version 3.4. (Metasystem GmbH), which 

was used for automatic analysis of foci.  

During the analysis microscope slides were scanned field by field at 10-fold magnification. 

Images were taken by scanning stained cells using the 40x objective. The desired objects were 

automatically identified and image galleries and objects features like foci number or 

distribution, as well as its positions were recorded.  

 

2.2.2.6.2 Fluorescence intensity analysis (FACS) 
 
900 µl of lymphocytes, suspended in FACS buffer were analysed by flow cytometry using the 

FACSDiva software (BD Biosciences). For each sample 10 000 events were recorded. Debris 

and cell aggregates were excluded from the analysis by a standard approach using the gate for  

lymphocytes in the forward (FSC) and side scatter characteristic (SSC). The γ-H2AX assay, 

described in this thesis based on the measurement of the median green Alexa Fluor 488 dye 

fluorescence signal.  The excitation wavelength of Alexa Fluor 488 is 488 nm, the emission 

maximum at 519 nm. A greater value of the fluorescence signal corresponds to the number of 

phosphorylated histones H2AX, according to the higher level of DNA damage. In contrast, a 

low fluorescence signal was interpreted as low level of γ-H2AX foci. 

 

2.2.2.6.3 Statistical analysis of γ-H2AX data 
 
The unpaired t test was used to compare fluorescence intensity or foci number of the 

treatment groups for the different time points. Statistical significance was designated if        

p< 0.05.  

 

2.2.2.6.4 Determining radiosensitivity  
 
The proportion of radiosensitive individuals was determined by using a cut-off value of the 

90th percentile of both spontaneous and radiation-induced relative fluorescence intensity per 

10.000 events and foci number per 100 cells for the control population, as proposed by 

Roberts et al. 1999 and Scott et al. 1999 for chromosome aberrations. 
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2.2.2.7 The apoptosis/necrosis assay 
 
In normal vital cells phospholipid phosphatidylserine (PS) is located on the inner membrane 

surface. During early apoptosis PS is translocated from the inner to the outer leaflet of the 

plasma membrane. The protein Annexin V binds because of its high affinity to PS. Annexin V 

conjugated with the fluorochrome FITC (fluorescein isothiocyanate) allows to detect and to 

visualise early apoptotic cells by FACS analysis and fluorescence microscopy. The loss of 

membrane integrity is a feature of late apoptosis. Uptake of Propidium Iodide (PI), as an 

intercalating DNA binding dye, allows discrimination between early and late 

apoptotic/necrotic cells. In a combined staining protocol using Annexin V as well as 

Propidium Iodide, vital (non-apoptotic) cells (Annexin V-FITC and PI negative), early 

apoptotic cells (Annexin V-FITC positive, PI negative) and late apoptotic/necrotic cells 

(Annexin V-FITC and PI positive) can be visualised separately.  

This assay can not distinguish between cells that have undergone apoptosis and those that 

have died because of the necrotic pathway, because in both cases dead cells are stained with 

FITC but also with PI. 

The Annexin V-FITC Apoptosis Detection Kit I was used. Briefly, lymphocytes (105 cells/ 

sample) were washed twice with cold PBS and centrifuged for 5 min at 300 x g. Thereafter, 

the pellet was resuspended in 100 µl of 1x binding buffer, then 5 µl of Annexin V- FITC and 

5 µl of PI were added to the sample. The cells were then incubated for 15 minutes at RT in the 

dark. Finally, 400 µl of 1x binding buffer was added and samples were immediately analysed 

by flow cytometry.  

 

2.2.2.7.1 Flow cytometry 
 
By flow cytometry the properties of individual particles can be measured. The cell suspension 

injected to a flow cytometer is directed into a stream of single particles that can be detected 

and analysed by the machine’s detection system, managed by a fluidics system. Each particle 

passes through one or more beam lights. The most commonly lights sources nowadays are the 

laser and the arc lamp. Light scattered in the forward direction corresponds with the forward 

scatter channel (FSC) and its intensity provides information about the particle size. Light 

measured approximately at a 90° angle to the excitation line is called side scatter channel 

(SSC) and provides information about the granularity of a cell.  

The excitation wavelength of FITC is in the range of 400-550 nm (blue light) with the 

maximum peak at 490 nm. The fluorochrome emits green fluorescence light above a range of 
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475-700 nm peaking at 525 nm. Propidium iodide is excited by green light at 490 nm and 

emits light with the maximum peak at 630 nm (red). 

 

 

 

 

 

 

 

Figure 2.2: Emission spectra of FITC and PI excited by blue light (490 nm). 

 

 

 

2.2.2.7.2 Apoptosis/ Necrosis measurement 
 
Apoptosis/necrosis was measured within 1 h after finish of sample preparation. The FSC and 

SSC values, as well as the compensation values were chosen using an unstained sample, a 

sample stained with Annexin V-FITC dye alone, and a sample stained with PI dye alone. The 

lymphocyte populations were gated according to physical characteristics on a dot plot 

diagram and monocytes as well as debris were excluded from the analysis. For each sample 

10 000 events were analysed. The histograms below (Figure 2.3) show typical scatters 

distinguishing between vital cells, early apoptotic cells and late apoptotic/ necrotic cells. 
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Figure 2.3: Typical two-parameter histograms for apoptosis/necrosis results.            

Lymphocytes were stained with FITC (x-axis, FITC-A channel) and PI (y-

axis, PerCP-CY5-5-A channel). Non-irradiated sample (left) and a sample 

irradiated with 1 Gy, both incubated 24 h at 37°C after exposure are 

presented. 

 
 

 

2.2.2.7.3 Statistical analysis of apoptosis/necrosis data 
 
The unpaired t test was used to compare percent of apoptotic/necrotic cells of the healthy 

donors with those of the prostate cancer patients with effects after radiotherapy, as well as 

with the patients without effects at each time point. The unpaired t test was also used to 

compare percent of apoptotic/necrotic cells between both groups of patients. 
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2.2.2.7.4 Determining radiosensitivity  
 
The proportion of radiosensitive individuals was determined by using a cut-off value of the 

90th percentile of spontaneous and radiation-induced early apoptotic as well as late 

apoptotic/necrotic lymphocytes for healthy donors (based on Roberts et al. 1999 and Scott et 

al. 1999). 
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III. Results 
 

Part 1: Influence of temperature during irradiation  on the level of DNA 

damage. 

 
 

3.1.1 Micronucleus assay 
 
The micronucleus assay results for 3 donors analysed in 6 independent experiments are 

presented in Table 3.1 and Figure 3.1. No difference was detected between not irradiated 

peripheral blood lymphocytes incubated at 0°C and 37°C. After exposure of PBL to X-rays a 

significantly higher frequency of micronuclei (p < 0.05) was observed in the samples 

incubated at 37°C in comparison with the samples kept at 0°C. This is true for both 

experiments with whole blood and isolated lymphocytes (see Table 3.1, Figure 3.1). The 

values for the dispersion index (DI, ranging from 0.94 to 1.29) calculated for all irradiated 

samples, indicate that this difference is not due to the presence of a few cells with a high 

number of micronuclei, which would occur in case of high DI values. The replication indices 

(RI) calculated for the 3 experiments with whole blood (donors: 1, 2 and 3) showed that the 

proliferation capacity of lymphocytes is similar for both temperatures in exposed samples, as 

well as in not irradiated samples. The RI obtained in the cultures of lymphocytes exposed to 

X-rays is graphically shown in Figure 3.2. 

Two independent experiments were performed with DMSO added to the isolated lymphocytes 

of donor 1. For the samples irradiated with 2 Gy X-rays at 0°C and 37°C in the presence of 

DMSO similar frequencies of micronuclei were observed (Table 3.1). The average values for 

the frequency of micronuclei in the presence and absence of DMSO are presented in Figure 

3.3. 
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Table 3.1: Frequency of micronuclei in peripheral blood lymphocytes exposed to X-ray. 
 

     Number of BNC with Mn    

Donor 
Dose (Gy), 
Rad. Type Temp. (°C) 

State at 
exposure DMSO 0 1 2 3 ≥4 DI 

Mn per 1000 
BNC Cells scored  

 
1 0 X 0 WB no 1975 22 2 1 0  14.5 2000 
 0 X 37 WB no 1979 21 0 0 0  10.5 2000 
 2 X 0 WB no 1666 289 42 3 0 1,24 191 2000 
 2 X 37 WB no 1438 447 99 14 2 1,09 347.5* 2000 

2 0 X 0 WB no 998 2 0 0 0  2 1000 
 0 X 37 WB no 996 4 0 0 0  4 1000 
 2 X 0 WB no 729 216 41 12 2 1,18 342 1000 
 2 X 37 WB no 598 249 108 35 10 1,29 610* 1000 

3 0 X 0 WB no 998 2 0 0 0  2 1000 
 0 X 37 WB no 989 10 1 0 0  12 1000 
 2 X 0 WB no 906 89 5 0 0 1 99 1000 
 2 X 37 WB no 886 119 12 4 0 1,16 151.8* 1021 

1 0 X 0 IL no 989 9 1 1 0  14 1000 
 0 X 37 IL no 484 16 0 0 0  32 500 
 2 X 0 IL no 830 142 27 1 0 1,1 199 1000 
 2 X 37 IL no 549 127 21 1 0 1,03 246.4* 698 

1 0 X 0 IL yes 995 5 0 0 0  5 1000 
 0 X 37 IL yes 607 7 0 0 0  11.4 614 
 2 X 0 IL yes 342 33 6 0 0 1,15 118.1 381 
 2 X 37 IL yes 663 68 5 0 0 1,02 106 736 

1 0 X 0 IL yes 389 3 0 0 0  7.7 392 
 0 X 37 IL yes 308 5 1 0 0  22.3 314 
 2 X 0 IL yes 544 62 6 1 0 1,11 125.6 613 
 2 X 37 IL yes 182 26 1 0 0 0,94 134 209 

WB, whole blood; IL, isolated lymphocytes; BNC, binucleated cells; DI, dispersion index 
 
*Difference between treatment groups significant with p < 0.05
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*Difference between 2 Gy, 37°C and 2 Gy, 0°C significant with p < 0.05 
 
Figure 3.1: The frequency of micronuclei for experiments with whole blood and isolated   

                    lymphocytes. 
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Figure 3.2: Replication index obtained in PBL from donors 1, 2 and 3 exposed to 2 Gy  

                   X- rays at 0°C and 37°C.  

           Donor 1                                Donor 2                                Donor 3 

         1, WB                         2, WB                             3, WB                         1, IL 

Donors/Materials 

*  

*  

*  
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Figure 3.3: Average values of micronuclei frequencies after exposure of lymphocytes to                   

                   X-rays in the absence or presence of DMSO at different temperatures. Error bars  

                   indicate standard deviations. 

 

3.1.2 Comet assay 
 
Results of the comet assay in the alkaline and neutral version are presented in Table 3.2 and 

graphically illustrated in Figure 3.4 (alkaline) and for the neutral version in Figure 3.5. 

The alkaline version of the comet assay was performed with peripheral blood lymphocytes 

from donors 1 (2 experiments), 2, 3 and 4. No difference was found between samples 

incubated at 0°C or 37°C shortly before and during exposure. The mean radiation-induced 

TM ± SD was 51.7 ± 24.5 and 43.1 ± 15.8 for the samples incubated at 0°C and 37°C, 

respectively. The values of Tail Moment for not irradiated samples are similar for both 

temperatures. 

Results of the neutral comet assay were obtained on donors 1, 2 and 3. There was no 

significant difference between cells incubated at different temperatures for both, controls and 

exposed samples. 

Furthermore, a somewhat higher level of damage was observed with both assays in samples 

exposed at 0°C. This tendency was not evident in not irradiated cells.

       2 Gy, 0°C                2 Gy, 37°C               2 Gy, 0°C                2 Gy, 37°C 
                                                                        + DMSO                 + DMSO 

*  
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Table 3.2: Results of the comet assay showing the average values of the tail moment per experiment and the mean value from 5 (alkaline version) and 

3 (neutral version) independent experiments. Standard deviations are shown in brackets. 

 

   Donor number  

Dose (Gy) Temp. (°C) 
Comet assay 

version 1 1 2 3 4 Mean 

0 0 A 8.1 (11.2) 9.4 (7.8) 11.0 (8.2) 54.3 (24.2) 37.1 (20.5) 23.9 (20.8) 

0 37 A 11.3 (13.2) 11.8 (9.8) 11.3 (6.6) 52.9 (21.5) 23.5 (14.9) 22.2 (18.0) 

2 0 A 54.5 (26.2) 25.4 (15.1) 33.7 (18.7) 88.9 (27.8) 56.2 (20.5) 51.7 (24.6) 

2 37 A 42.7 (24.2) 26.9 (16.9) 39.5 (23.3) 69.3 (28.6) 37.1 (20.5) 43.1 (15.8) 

         

   Donor number    

   1 2 3   Mean 

0 0 N 0.68 (0.29) 0.16 (0.27) 0.28 (0.41)   0.37 (0.28) 

0 37 N 0.34 (0.15) 0.75 (0.54) 0.20 (0.27)   0.43 (0.29) 

20 0 N 2.62 (1.04) 3.96 (1.39) 1.14 (1.47)   2.57 (1.40) 
 

20 
 

37 
 

N 
 

1.79 (0.66) 
 

2.87 (0.87) 
 

1.22 (1.56) 
   

1.96 (0.84) 
 

 
A, alkaline version; N, neutral version of the comet assay
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Figure 3.4: Results of the alkaline comet assay. Error bars indicate standard deviations. 
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Figure 3.5: Results of the neutral comet assay. Error bars indicate standard deviations. 

     0 Gy, 0°C                 0 Gy, 37°C                 2 Gy, 0°C               2 Gy, 37°C 

       0 Gy, 0°C                 0 Gy, 37°C                2 Gy, 0°C                2 Gy, 37°C 
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Part 2: Comparison of individual radiosensitivity of peripheral blood 

lymphocytes from prostate cancer patients and healthy donors. 

 

3.2.1 The G2 assay 
 

3.2.1.1 Mean spontaneous and radiation-induced aberration yield 
 
Results were obtained for 44 prostate cancer patients after radiotherapy who donated blood 

for the study. Out of these, 22 patients showed strong in vivo side effects after the treatment 

whereas no in vivo (clinical) effects were observed in the other 22 patients. Chromatid 

aberration yields (number of gaps, breaks and other aberrations per 100 metaphases), standard 

deviations and standard errors for all groups of blood donors are given in Table 3.3. There 

was a significantly higher aberration yield in both spontaneous (p = 0.029) and radiation-

induced (p = 0.004) aberrations in patients with severe reactions when compared to healthy 

donors. In addition, a weak but significant difference was found in radiation-induced 

aberration yields in patients without severe side effects in comparison with healthy donors    

(p = 0.021), see Table 3.3, also Figure 3.6. No difference was observed in the aberration 

yields between patients with and without side effects. 

 

Table 3.3: Mean spontaneous and radiation-induced aberration yields for prostate cancer   

                  patients with (S) and without (0) side effects after radiotherapy, as well as for  

                  healthy donors (HD). 
 

Donors; Dosis N Mean Stand. Deviat. SEM 
 

S; 0 Gy 22 2.0a 2.4 0.5 

S; 0.5 Gy 22 73.6b 45.3 9.7 

0; 0 Gy 22 1.2 1.5 0.3 

0; 0.5 Gy 22 67.1c 44.8 9.5 

HD; 0 Gy 21 0.8a 1.0 0.2 

HD; 0.5 Gy 21 42.1b,c 17.6 3.8 

S, patients with side effects; 0, patients without side effects; HD, healthy donors;  

N, number of donors; SEM, standard error of the mean,  

Difference significant with p < 0.05 between:  

a - patients S, 0 Gy and HD; 0 Gy; b - between patients S; 0.5 Gy and HD; 0.5 Gy;  

c – between patients 0; 0.5 Gy and HD; 0.5 Gy 
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3.2.1.2 Distribution of donors based on radiation-induced chromatid aberrations 
 
The number of chromatid aberrations in lymphocytes is very variable in different individuals. 

In order to exclude donors with extremely high and low aberration yields from the analysis, 

donors with aberrations frequency between the 25th and 75th percentiles were selected for 

comparison. 

Data used for this analysis were obtained by subtraction of the aberration yield for not 

irradiated cells (controls) from radiation-induced aberration yield for each donor separately. 

The median value was not included in the halves when calculating the quartiles. The analysis 

allowed determination of regions containing 50 % of scores for the group S (aberration 

frequency < 40; 99 >), the group 0 (aberration frequency < 32; 87 >) and healthy donors 

(aberration frequency < 28; 54.5 >), separately. 

Even if the extremely low and high aberration scores were excluded, the differences between 

the groups of patients and healthy donors are observable (Figure 3.6). Additionally, statistical 

analysis (Student’s t test) of data for the middle regions (between the 25th and 75th percentiles) 

for both patient groups and healthy donors was performed. There is a statistically significant 

difference between patients with side effects (group S) and healthy donors (p = 0.014), as well 

as between patients without side effects (group 0) and healthy donors (p = 0.012). The mean ± 

SD values for the aberration yields are 57 ± 19 and 57.5 ± 18.9 aberrations per 100 cells in 

patients S and 0, respectively. The mean ± SD magnitude within healthy donors having 

aberration frequencies between lower and upper quartiles was 40.64 ± 8.17. Notable, the 

ranges between 25th and 75th quartiles for both patient groups are similar, whereas for healthy 

donors the range is much smaller. The results are graphically shown in Figure 3.6.  
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Figure 3.6: Results of chromatid aberration frequency in cells exposed to γ-rays for 3 groups    

of donors. Data are presented as box plots. The boxes extend from the 25th 

percentile to the 75th percentile with a horizontal line at a median (50th percentile) 

and a dotted line at the mean value. Error bars above and below the boxes 

indicate the 90th and 10th percentiles. The points above (●) the boxes mean top 

extreme values, the points below (●) mean bottom extreme values of aberrations. 

 

 

3.2.1.3 Determining the degree of cancer proneness, based on the frequency of 

spontaneous and radiation-induced aberrations.      

 
The 90th percentile of the chromatid aberration frequencies for the control group (age-matched 

healthy donors) was used to differentiate cancer-prone from non cancer-prone individuals. For 

this reason the number of healthy donors with a high level of aberrations was assessed on the 

basis of a 90th cut-off point, with respect to spontaneous and radiation-induced aberration 

yields. Thereafter, using the cut-off value computed for healthy donors, the number of cancer-

prone individuals among the cancer patients (both patients S and 0) was determined. 



III. Results 51 

The cut-off value in the group of healthy donors estimated in this study was 2 chromatid 

aberrations for spontaneous aberration yield. Individuals were classified as having a high G2 

aberrations yield (indicative of cancer proneness) if they exceeded the cut-off value of 2 

aberrations per 100 cells. This resulted in 9.5 % healthy donors (2/21) and 18 % (8/44) 

patients revealing enhanced spontaneous aberration yield (Figure 3.8, Table 3.4). 

The same procedure was applied to define individuals with an increased radiation-induced 

aberration frequency. The cut-off point in the group of healthy donors was assessed to be 57 

aberrations per 100 cells. This value allowed to identify 2 healthy donors (9.5 %) and 22 

patients (50 %) as sensitive (Figure 3.9; Table 3.4, ** and ***). The amount of 22 (50 %) 

radiosensitive patients in vitro (according to the frequency of radiation-induced aberrations, 

Fig. 3.9; Table 3.4, ** and ***) is in agreement with the number of patients, which showed 

side effects after radiotherapy (22 patients sensitive in vivo, representing 50 % of all patients). 

However, among 22 sensitive in vivo patients, only 11 were sensitive in vitro too (see Figure 

3.7, Table 3.4). The results of radiosensitivity in vitro (on the basis of chromatid aberrations 

yield) were compared with the radiosensitivity in vivo (on the basis of EPIC questionnaire), 

see Table 3.4. 

According to the spontaneous aberrations yield 1 patient in the group S and 2 patients in the 

group 0 are sensitive (Table 3.4, *). 

In agreement with radiation-induced aberration rate there are 7 sensitive patients in the group 

S and 10 patients in the group 0 (Table 3.4, **). 

According to both spontaneous and radiation-induced aberration yield 4 patients in the group 

S and 1 in the group 0 were assessed as sensitive (Table 3.4, ** and ***). 

Eleven patients have been assessed to be sensitive both in vivo and vitro (Figure 3.7).  

Moreover, ~ 11 % of the patients (P 2, P 8, P 18, P 27 and P 19) have been found with 

enhanced spontaneous as well as radiation-induced aberration yields (see Table 3.4, ***). An 

interesting observation is that 4 of them were classified as also clinical sensitive (P 2, P 8, P 

18, P 27, see Table 3.4).  

Amongst 8 sensitive patients in accordance to spontaneous aberration yield, 5 of them (P 2, P 

8, P 18, P 26 and P 27) showed clinical side effects in vivo, whereas 3 of them (P 12, P 19, P 

22) were not sensitive in vivo. 

No correlation was observed between elevated spontaneous and radiation-induced aberrations 

in any healthy donor. 
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Figure 3.7: In vivo and in vitro (according to radiation-induced aberrations) sensitivity   

                   of  patients. 
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Figure 3.8: Distribution of healthy donors (A) and prostate cancer patients (B) according to  

                    the frequency of spontaneous chromatid aberrations. The vertical line marks  

                    the 90th percentile cut-off value. 
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Figure 3.9: Distributions of healthy donors (A) and prostate cancer patients (B) according to  

                    the frequency of radiation-induced (0.5 Gy) aberrations. The vertical line marks 

                    the 90th percentile cut-off point. 
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Table 3.4: In vivo/in vitro individual radiosensitivity of patients. 
 
 

Aberrations yield for patients 

sensitive in vivo (with effects, S) 

 

Aberrations yield for patients 

not sensitive in vivo  

(without effects, 0) 

Patients Spontaneous 0.5 Gy Patients Spontaneous 0.5 Gy 

 

P 2*** 3 161 P 9**  2 79 

P 4** 2 102 P 10  1 15 

P 8*** 9 118 P 12*  6 32 

P 11  0 33 P 15 1 33 

P 13** 2 75 P 17** 0 174 

P 14 1 44 P 19*** 3 184 

P 16 1 43 P 22* 4 27 

P 18*** 5 202 P 23  1 26 

P 20   1 52 P 24  1 24 

P 25  1 44 P 29** 0 65 

P 26* 7 51 P 30**  1 60 

P 27*** 5 60 P 31** 0 95 

P 28 2 38 P 35** 0 105 

P 33** 2 101 P 37  1 43 

P 34** 2 88 P 39 0 43 

P 36**  0 66 P 41**  1 96 

P 38 1 41 P 42** 0 77 

P 40** 0 130 P 43 0 36 

P 44 0 38 P 46** 1 78 

P 45 0 33 P 47  1 56 

P 48 1 41 P 52** 0 87 

P 53** 0 59 P54 2 42 

 

* patients sensitive in vitro  according to the spontaneous aberration yield 

** patients sensitive in vitro  according to the radiation-induced (0.5Gy) aberration yield 

*** patients sensitive in vitro  according to both spontaneous and radiation-induced aberrations yield 
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3.2.1.4 Analysis of aberration distribution 
 
Analysis of radiation-induced (0.5 Gy) chromatid aberration distribution amongst the cells in 

all 3 groups of blood donors revealed an over-dispersion compared to Poisson distribution. 

There are, however, differences between the groups. The u-values for the patients in group S 

range between -1.88 and 9.24, with 5 negative values, 17 positive, and 11 of them having a 

magnitude exceeding 1.96, which is explicitly correlated with significant over-dispersion. 

In the group 0 the u value ranges from -1.034 to 4.88, for 3 patients u values are negative, 

whereas for 19 it is positive. For 9 patients chromatid aberrations are significantly over-

dispersed because the u value is greater that 1.96. 

For healthy donors the range of u values is the smallest one (-1.67 to 2.74). In 17 healthy 

donors the u value indicates an over-dispersion, but only in 4 cases over-dispersion is 

significant (u > 1.96). 

 

 

3.2.2 The γ-H2AX results 
 

3.2.2.1 Fluorescence intensity data 
 
Formation and loss of γ-H2AX foci in prostate cancer patients with (S) and without (0) side 

effects after radiotherapy and in age-matched healthy male donors (HD) was investigated. For 

statistical data analysis the background FACS signal in each sample was subtracted from the 

signal obtained in irradiated sample to get the induced yield of DNA damage measured as 

mean fluorescence intensity. 

As expected, in all groups of donors the maximum expression of γ-H2AX foci was detected 

0.5 h after irradiation. Interestingly, the highest fluorescence signal 0.5 h after exposure was 

observed in healthy donors (4632 ± 2783). The lowest FITC signal was detected in patients 

with severe side reactions (2717 ± 1822). The relative fluorescence intensity in patients 

without side effects was 3636 ± 1304. A decrease of the fluorescence signal was observed 5 h 

after exposure in all groups. The lowest fluorescence signal was detected in patients 0 (1448 ± 

689) followed by patients S (1493 ± 1012), and healthy donors (2201 ± 1273). In agreement 

with DNA damage repair a further decrease of the FITC signal was observed until 24 h after 

irradiation. The lowest fluorescence signal was detected in patients S (100 ± 454), followed 

by patients 0 (161 ± 677) and healthy donors (189 ± 428). The fluorescence intensity of the 

initial (0.5 h after exposure) DNA damage in patients S was significantly lower than in 
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healthy donors (*, p = 0.014, Figure 3.10). A significant difference was found 5 h after 

irradiation between patients 0 and healthy donors (**, p = 0.02, Figure 3.10). 

The values of FITC intensity in not irradiated lymphocytes showed no differences between all 

groups of donors for all analysed incubation times (Table 3.5). This indicates that the 

observed elevated level of DNA double strand breaks in HD lymphocytes is due to ionising 

radiation. 

 

 

3.2.2.2 Determining the degree of cancer proneness, based on the relative FITC   

fluorescence values measured in not irradiated and irradiated lymphocytes. 

 
The 90th percentile of the relative fluorescence values for the control group (age-matched 

healthy donors) was used to differentiate cancer-prone from non cancer-prone individuals. 

The analysis was performed for time points 0.5 h and 24 h after irradiation in accordance with 

spontaneous and radiation-induced DNA damage. The cut-off point in the healthy donors was 

3037 in not irradiated lymphocytes as measured at time point 0.5 h, and 2875 after 24 h. In 

case of the irradiated lymphocytes, the cut-off points were 108 and 3315 for the time 0.5 h 

and 24 h, respectively. This procedure identified one healthy donor (HD 5) according to 

spontaneous as well as radiation-induced DNA damage, 14 patients (31 %) exceeding cut-off 

point for spontaneous damage as well as 9 patients (20 %) being sensitive according to 

radiation-induced DNA damage. Nevertheless, only 4 (~ 9 %) patients (P 20, P 26, P 41 and P 

45) showed an enhanced DNA damage level (measured as fluorescence intensity of γ-H2AX 

foci) for both spontaneous and radiation-induced. However, in case of radiation-induced 

damage the obtained results concern only for the measurement of time point 24 h.  

In summary, using 90th cut-off value the above mentioned 4 patients (9 %) were identified to 

have an enhanced DNA damage level in agreement with both spontaneous and radiation-

induced DNA damage 0.5 h as well as 24 h after exposure. Thus, one can postulate that these 

patients are cancer-prone. 
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* Difference between healthy donors and patients with side effects significant with p < 0.05 

** Difference between healthy donors and patients without side effects significant with  

     p < 0.05  
 

Figure 3.10: Radiation-induced FITC fluorescence 0.5 h, 5 h and 24 h after exposure  

to γ-rays in prostate cancer patients and healthy donors. Error bars indicate 

standard deviations. 

 

 

Table 3.5: The mean fluorescence intensity in not irradiated lymphocytes of patients S, 

patients 0 and healthy donors. 

 
 

Mean ± SD 

0.5 h 

Mean ± SD 

5 h 

Mean ± SD 

24 h 
 

Patients S 
 

2485 ± 715 
 

2470 ± 639 
 

2454 ± 728 
 

Patients 0 
 

2555 ± 591 
 

2.51 ± 466 
 

2474 ± 459 
 

HD 
 

2442 ± 574 
 

2474 ± 474 
 

2514 ± 440 

S, patients with side effects; 0, patients without side effects; HD, healthy donors; 

SD; standard deviation 

 

          0.5 h                                 5 h                                   24 h 

                              Time after exposure 

*  

**  
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3.2.2.3 γ-H2AX foci number 

 
The number of the background γ-H2AX foci in a control lymphocyte sample was subtracted 

from the number of an exposed sample. In accordance with FACS results, the highest level of 

DNA damage, expressed as foci number per cell, was observed 0.5 h after exposure to 1 Gy. 

In contrast to FACS data, there was no significant difference in the average foci number 

between patients S and 0, as well as in healthy donors. There are, however, differences in foci 

number analysed at different time points. The mean ± SD for the foci number measured 0.5 h 

after exposure was 7.33 ± 4.02; 8.46 ± 2.97 and 7.31 ± 2.72 in patients with side effects, 

patients without effects and healthy donors, respectively. After 5 h a decrease of the foci 

number in all donor groups was measured with an average value of 2.9 ± 1.36 per cell in 

patients with side effects, 3.27 ± 1.38 in patients without side effects and 3.68 ± 2.04 in 

healthy donors. The lowest mean foci number was observed 24 h after exposure (1.15 ± 1.21; 

1.49 ± 1.67 and 1.87 ± 1.71 in patients S, patients 0 and healthy donors, respectively). In case 

of spontaneous foci number a slightly decreasing tendency with the incubation time was 

observed in all donors groups (Table 3.6).  

No significant difference could be detected in all analysed groups (Figure 3.11). However, a 

slightly higher average foci number was counted at the time points 5 h and 24 h in healthy 

donors, when compared with patients S and patients 0.  
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Figure 3.11: Mean radiation-induced foci number 0.5 h, 5 h and 24 after exposure to γ-rays in 

prostate cancer patients and healthy donors. Error bars indicate standard 

deviations. 

 

 

 

Table 3.6: Mean foci number in not irradiated lymphocytes of the patients S, patients 0 and  

                 HD. 

 
 

Mean ± SD 

0.5 h 

Mean ± SD 

5 h 

Mean ± SD 

24 h 
 

Patients S 
 

2.03 ± 1.5 
 

1.66 ± 0.87 
 

1.52 ± 0.77 
 

Patients 0 
 

2.00 ± 1.08 
 

1.75 ± 0.95 
 

1.60 ± 0.93 
 

HD 
 

2.08 ± 1.21 
 

1.86 ± 0.84 
 

1.2 ± 1.03 

 

S, patients with side effects; 0, patients without side effects; HD, healthy donors; 

SD; standard deviation 

 

 
 
 

              0.5 h                                   5 h                                     24 h 

                                          Time after exposure 
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3.2.3 Apoptosis/ Necrosis results 
 
The analyses were conducted with peripheral blood lymphocytes using the Annexin V-FITC 

flow cytometry assay. Cells were analysed for early apoptosis and late apoptosis/necrosis 0.5 

h, 5 h and 24 h post-exposure. This assay does not recognize differences between late 

apoptotic and necrotic cells, because of their morphological similarity. Statistical analysis was 

done on the means of the data obtained from patients with side effects after radiotherapy (S), 

patients without side effects (0) and healthy donors (HD). For each donor, the score for a not 

irradiated sample was subtracted from the yield in exposed cells to give the radiation-induced 

yield of early apoptotic and late apoptotic/necrotic cells. In addition, the results obtained in 

not irradiated samples are presented to show whether any changes in percent of spontaneous 

apoptosis/necrosis were or were not observed. Generally, in both cases, spontaneous and 

radiation-induced apoptosis and necrosis varied between individuals in all donor groups, 

representing an intrinsic feature of each donor. 

 

3.2.3.1 Early apoptosis results 
 
An increase of radiation-induced early apoptosis was observed in all donor collectives 5 h and 

24 h post-exposure. The increase in percentage of apoptotic cells between 0.5 h and 5 h was 

~0.6 %; ~0.5 % and ~0.8 % in cells of the S patients, patients 0 and healthy donors, 

respectively. Between 5 h and 24 h the observed increases of early apoptosis were much 

higher; ~8 %; ~7 % and ~13 % in cells of the S patients, patients 0 and healthy donors, 

respectively. The average percent of apoptotic cells in healthy donor cells at the time point   

24 h is higher (but not significantly) when compared to both patients groups (p = 0.054, see 

Table 3.7, Figure 3.12). Nevertheless, there is no statistically significant difference between 

patients and healthy donors, or between both patient collectives neither 0.5 h, nor 5 h nor 24 h 

after exposure. In not irradiated lymphocytes a stable amount of early apoptotic lymphocytes 

was detected. The lowest level of spontaneous, early apoptotic cells was found after 5 h in all 

donor groups (~10-11 %). After incubation times of 0.5 h and 24 h a value of about 13-14 % 

of early apoptosis was detected. The data concerning spontaneous early apoptosis are 

presented in the Table 3.8. 
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Table 3.7: Percent of radiation-induced early apoptosis in PBL of prostate cancer patients 

with and without side effects after radiotherapy and healthy donors 0.5 h, 5 h and  

24 h after exposure. 

 

S, patients with side effects; 0, patients without side effects; HD, healthy donors; 

N, number of donors; SD, standard deviation; SEM, standard error of the mean 

 

 

Table 3.8: Mean percent of spontaneous early apoptotic lymphocytes in the patients S, 

patients 0 and HD. 

 

 
 

Mean ± SD 

0.5 h 

Mean ± SD 

5 h 

Mean ± SD 

24 h 
 

Patients S 
 

14.16 ± 6.48 
 

11.89 ± 5.70 
 

13.84 ± 5.50 
 

Patients 0 
 

13.55 ± 4.86 
 

10.73 ± 4.09 
 

14.06 ± 4.64 
 

HD 
 

13.36 ± 5.45 
 

11.21 ± 5.36 
 

13.09 ± 7.73 

 

S, patients with side effects; 0, patients without side effects; HD, healthy donors; 

SD; standard deviation 

 

 

 

Donors 

  

Time after 

exposure (h) 

N 

 

Mean 

 

SD 

 

SEM 

 
 

S 0.5 20 0.43 1.87 0.42 

0  21 0.26 2.23 0.49 

HD  21 -0.04 2.98 0.65 
 

S 5 20 1.06 1.87 0.42 

0  21 0.73 3.15 0.69 

HD  20 0.79 2.63 0.59 
 

S 24 20 9.25 5.98 1.33 

0  21 7.99 7.90 1.72 

HD  17 13.94 10.57 2.56 
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Figure 3.12: Percent of radiation-induced early apoptotic PBL in prostate cancer patients and  

                      healthy donors 0.5 h, 5 h and 24 h after exposure. Error bars indicate standard 

                     deviations. 

 

 

3.2.3.2 Late apoptosis/necrosis results 

 
The data obtained for radiation-induced late apoptosis/necrosis show an increase with time 

until 24 h after exposure (Table 3.9, Figure 3.13). Generally, the results measured in 

lymphocytes of all donor groups 0.5 h and 24 h after irradiation do not differ in each of these 

time points between patients and healthy donors or between patients S and patients 0 (Table 

3.9, Figure 3.13). However, the results for healthy donors at time point 5 h are slightly but 

significantly higher when compared to patients S (p = 0.04) and also patients 0 (p = 0.02), see 

Table 3.9, Figure 3.14. 

The percentage increase of late apoptotic/necrotic cells between 0.5 h and 5 h was below     

0.4 % in all donor groups, whereas the observed increase of early apoptosis was much higher 

for the same time points: ~ 9 %; ~ 6 % and 6.6 % in cells of patients S, patients 0 and healthy 

donors, respectively. 
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Nevertheless, no significant difference between the in vivo sensitive patients (group S) and 

patients without any side reactions (group 0) was found. 

Interestingly, in contrast to the results of spontaneous early apoptosis (Table 3.8), an increase 

of spontaneous late apoptotic and necrotic lymphocytes was observed after 5 h of culture time 

and a further increase (about 2-fold when compared to 0.5 h) after 24 h in all donor groups 

(Table 3.10).  

 

 

Table 3.9: Percent of radiation-induced late apoptosis/necrosis in PBL of prostate cancer 

patients with and without side effects after radiotherapy and healthy donors 0.5 h, 

5 h and 24 h after exposure. 

 
 

Donors 

 

Time after 

exposure (h) 

N 

 

Mean 

 

SD 

 

SEM 

 
 

S 0.5 20 0.13 0.45 0.10 

0  21 0 0.72 0.16 

HD  21 0.023 0.40 0.09 
 

S 5 20 0.01* 0.51 0.11 

0  21 0** 0.56 0.12 

HD  20 0.41*,** 0.65 0.15 
 

S 24 20 9.11 12.63 2.83 

0  21 5.80 3.41 0.74 

HD  17 7.03 12.84 3.11 

 

S, patients with side effects; 0, patients without side effects; HD, healthy donors;  

N, number of donors; SD, standard deviation; SEM, standard error of the mean 

Difference significant with p < 0.05: * – between patients S and HD; ** – between patients 0 and HD 
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Table 3.10: Mean percent of spontaneous late apoptotic/necrotic lymphocytes in the patients 

S, patients 0 and HD. 

 

 
 

Mean ± SD 

0.5 h 

Mean ± SD 

5 h 

Mean ± SD 

24 h 
 

Patients S 
 

2.89 ± 2.02 
 

3.25 ± 2.46 
 

5.54 ± 3.43 
 

Patients 0 
 

2.31 ± 2.09 
 

2.70 ± 1.87 
 

4.85 ± 2.10 
 

HD 
 

3.14 ± 2.76 
 

2.69 ± 2.0 
 

4.24 ± 2.5 

 

S, patients with side effects; 0, patients without side effects; HD, healthy donors;  

SD; standard deviation 
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Figure 3.13: Percent of radiation-induced late apoptotic/necrotic PBL in prostate cancer 

patients and healthy donors 0.5 h, 5 h and 24 h after exposure to 1 Gy. Error 

bars indicate standard deviations.    
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Difference significant with p < 0.05: * – between patients S and HD; ** – between patients 0 and HD. 

 

Figure 3.14: Percent of radiation-induced late apoptotic/necrotic PBL in prostate cancer 

patients and healthy donors 5 h after exposure to 1 Gy. Error bars indicate 

standard deviations. 

 

 

3.2.4 Determining the degree of cancer proneness in accordance to the results of the 

90thpercentile cut-off analysis as measured by G2-, γ-H2AX- and 

apoptosis/necrosis-tests.  Potential application of the used tests as predictive 

assays. 

 
The 90th percentile analysis was performed for chromatid-type aberrations and FACS analysis 

(results described above), as well as for γ-H2AX foci and apoptosis/necrosis assay. The aim 

of the analysis was to find out whether these assays are able to determine an enhanced 

spontaneous and/or radiation-induced DNA damage in the same donors. Or expressed as 

question: Is it possible to predict the cancer proneness of donor lymphocytes by using one or 

more of these assays? 
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The cut-off points were estimated in the group of healthy donors for spontaneous and 

radiation-induced DNA damage for each assay separately. 

Generally, no relationship between the assays was found when sensitive healthy donors 

(according to both spontaneous and radiation-induced) were analysed; in each assay, different 

healthy donors were assessed as sensitive (Table 3.11). However, in late apoptosis/necrosis 

assay and FACS analysis of γ-H2AX assay, one healthy donor (HD 5) showed enhanced 

(over cut off point) fluorescence intensity in both not irradiated and irradiated cells at the time 

points 0.5 h and 24 h (Table 3.11). 

Thereafter, 6 patients  (P 17, P 18, P 20, P 34, P 41 and P 42) were found to have radiation-

induced DNA damage above the cut-off value when the results for spontaneous and radiation-

induced DNA damage of few of the assays were taken into account (see Table 3.12), what 

could indicate these patients as cancer-prone. 
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Table 3.11: Sensitive healthy donors assessed on the basis of 90th cut off point for 

spontaneous and radiation-induced DNA damage measured using G2-,           

γ-H2AX- and apoptosis/necrosis assays.  

 
 

             Spontaneous 
 

Radiation-induced 
 

Assay 

Time after exposure 
 

Sensitive healthy donors 
 

G2 

 

HD 7; HD 23 

 

HD 1; HD 2 

γ-H2AX; FACS 

 0.5 h 

                                   24 h 

 

HD 5; HD 18 

HD 5; HD 20 

 

HD 4; HD 5 

HD 5; HD 16 

γ-H2AX; Foci 

  0.5 h 

                                   24 h 

 

HD 15; HD 21 

HD 17; HD 24 

 

HD 7; HD 12 

HD 1; HD 2; HD 16 

Early apoptosis 

   0.5 h 

                                   24 h 

 

HD 3; HD 13 

HD 9; HD 19 

 

HD 9; HD 13 

HD 19; HD 22 

Late apoptosis/necrosis 

0.5 h 

24 h 

 

HD 3; HD 23 

HD 23; HD 24 

 

HD 3; HD 23 

HD 5; HD 22 

 

HD 5 –healthy donor number 5, etc. 
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Table 3.12: Sensitive prostate cancer patients assessed on the basis of 90th cut off point for 

spontaneous and radiation-induced DNA damage measured using G2-, γ-H2AX- and 

apoptosis/necrosis assays. The cut off points were estimated for each assay for spontaneous 

and radiation-induced DNA damage in healthy donors, respectively. 

 

P 2 – patient 2 ; P 8 – patient 8, etc. 

 

             Spontaneous 
 

Radiation-induced 
 

Assay 

Time after exposure 
 

Sensitive Patients 

 

G2 

 

P 2; P 8; P 12; P 18; P 19;  

P 22; P 26; P 27 

 

P 2; P 4; P 8; P 9; P 13; P 17; 

P 18; P 19; P 27; P 29; P 30; 

P 31; P 33; P 34; P 35; P 36; 

P 40; P 41; P 42; P 46; P 52; 

P 53 

γ-H2AX; FACS 

0.5 h 

 

24 h 

 

P 8; P 9; P 20; P 23; P 25;  

P 26; P 36; P 41; P 45 

P 8; P 9; P 19; P 20; P 26;  

P 27; P 28; P 34; P 40; P 41;   

P 45 

 

no sensitive patients 
 
 
P 17; P 18; P 20; P 26; P 34; 

P 40; P 41; P 42; P 45 

γ-H2AX; Foci 

  0.5 h 

 

 

24 h 

 

 

P16; P 25; P 29; P 31; P 33;    

P 34; P 36 

 

P 30; P 31; P 34; (lack of 

results for P 16; P 25; P 36) 

 

P 6; P 8; P 12; P 13; P 14;    

P 17; P 29; P 33; P 34; P 35; 

P 39; P 49 

P 6; P 8; P 12; P 17 

Early apoptosis 

   0.5 h 

 

  24 h 

 

P 15; P 18; P 20; P 44; P 50 

 

P 17 

 

P 15; P 16; P 17; P 18; P 20; 

P 21; P 44; P 50 

P 6; P 8; P 43 

Late apoptosis/necrosis 

0.5 h 

24 h 

 

P 6; P 14; P 16 

P 6; P 8; P 14; P 20; P 30 

 

P 6; P 14; P 16 

P 8; P 10; P 14; P 29 
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IV. Discussion  
 
 

Part 1: Influence of temperature during irradiation on the level of DNA 

damage. 

 
The influence of the temperature during irradiation on the level of cytogenetic damage in 

peripheral blood lymphocytes is known since a long time (Bajerska and Liniecki 1969, 

Gumrich et al. 1986, Virsik-Peuckert and Harder 1986). In contrast, Claesson et. al (2007) 

observed no temperature effect for the DNA dsb induction by alpha irradiation. 

The goal of this part of the thesis was to find out whether the temperature has an influence on 

the level of DNA damage and if yes, what is the reason for it, direct or indirect action of 

radiation? 

 

 

4.1.1 Comparison of micronucleus and comet assay results 
 
In present study a significantly reduced level of micronuclei in cells exposed to 2 Gy X-rays  

at 0°C as compared to 37°C was observed. This was true for both experiments with whole 

blood and isolated lymphocytes. This temperature effect disappeared when the lymphocytes 

were exposed in presence of DMSO, which is known as a radical scavenger. Thus, it seems 

that the observed temperature effect is due to the indirect action of radiation mediated by 

radicals. 

Surprisingly, the results of the comet assay did not confirm the results of the micronucleus 

assay. There was no difference between cultures exposed to X-rays at 0°C and 37°C, neither 

in alkaline nor in neutral version of the comet assay.  

The alkaline version of comet assay allows detection of single and double strand breaks, also 

alkali-labile sites (Singh et al. 1991). However, it is well known, that 1 Gy of X-rays induces 

about 1000 ssb and only about 40 dsb per cell (Ward 1988; Whitaker 1992). Thus, combining 

low radiation dose and alkaline comet assay, gives generally the information about ssb. 

The neutral comet assay, generally detects DNA dsb (Olive and Banath, 1993, Wojewodzka 

et al. 2002). 

Altogether, single and double breaks have a potential to generate chromosomal damage 

(Nowak and Obe, 1984). Hence, the temperature effects observed at the level of micronuclei 

should also be seen in both alkaline and neutral comet assay. However, many literature data 
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do not confirm such a correlation. For example Wojcik et al. (1996) observed an adaptive 

response in lymphocytes, characterized as less initial damage and an increased repair capacity 

measured with the comet assay. Intriguing, the results of chromosomal aberrations analysed in 

the lymphocytes of the same donors, did not reflect the comet assay data. On the contrary, 

Wojewodzka et al. (1996) have found an adaptive response to ionising radiation in peripheral 

blood lymphocytes for the induction of micronuclei but not for DNA damage measured by the 

alkaline comet assay. 

The reason for this disagreement is not clear. It is known, however, that DNA damage can be 

measured by the comet assay regardless of the proliferative status of the analysed cells. In 

contrast, chromosome aberrations can only be analysed in dividing cells which undergo 

mitosis. Hence, the results of the comet assay can be biased by early apoptosis (Choucroun et 

al. 2001, Lankoff et al. 2004). The results of dispersion index values of micronucleus test for 

cultures exposed to the different temperatures indicate however, that no selective cell 

elimination influenced the discrepancy between both methods. In addition, the replication 

indices (RI) obtained in cultures of donors 1, 2 and 3 in micronucleus test exposed to 0 Gy 

and 2 Gy at 0°C and 37°C showed no impairment in replication of lymphocytes kept at 4°C 

when compared to 37°C.  

Another possible explanation deals with the chromatin structure. Long time ago it has been 

proposed that the variation in the chromatin structure could be responsible for differences in 

the induction of DNA damage between cell lines (Olive et al. 1986, Jorgensen et al. 1990, 

Ward 1990, Ljungman 1991, Schwartz et al.1993) and also in cellular radiosensitivity 

(Gordon at al. 1990, Lynch et al. 1991). Moreover, Woudstra et al. (1996) have showed that a 

modified chromatin structure was able to modify the cellular radiosensitivity.  

 

 

4.1.2 Comet assay results at 0°C and 37°C 
 
A further interesting observation was somewhat higher Tail Moment values in samples 

exposed to X-rays at 0°C as compared to 37°C. This tendency was true for both alkaline and 

neutral comet assay. In not irradiated samples this trend was not observed. It is well known, 

that repair of DNA damage starts very effectively within minutes after irradiation (Dikomey 

and Franzke 1986). In our experiments the irradiation for the alkaline version of comet assay 

took 4 min and for neutral version 27 min, so that the cells had enough time to start repair of 

ssb and dsb. 
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DNA repair at 37°C is much more effective than at 0°C, so that the difference in the cellular 

ability to repair DNA damage during and within minutes after irradiation may be a factor 

preventing the detection of temperature effects by comet assay. 

 

 

4.1.3. The possible explanation of sparing effect of low temperature  
 
The lack of agreement between micronucleus assay and comet assay results does not change 

our conclusions drawn from experiments with micronucleus test in presence and absence of 

radical scavenger (DMSO). 

There is still one question left to be answered: why are lymphocytes more sensitive to 

irradiation performed at 37°C when compared to 0°C? 

Densely ionising radiation acts on DNA mainly through an indirect effect (Roots et al. 1985), 

so if our assumption concerning indirect action of radiation is true, there should be no 

temperature effect or minimal effect after exposure of the cells at 0°C and 37°C to high LET 

radiation.  For this reason, the blood from donors 1 and 3, used in the experiments described 

in this thesis were also exposed to 6 MeV neutrons at 0°C and 37°C and about 1000 cells per 

dose point were scored. The exposure to high LET and Mn scoring were conducted by 

Christian Johannes (Essen, Germany) and the results were published (Brzozowska et al. 

2009). Surprisingly, a significantly reduced level of micronuclei was found in cells exposed to 

neutrons at 0°C, when compared to 37°C. No differences were found between not irradiated 

samples, incubated at 0°C or 37°C (Brzozowska et al. 2009).  

On the contrary, Claesson et al. (2007), who analysed a DNA damage induction after gamma 

and alpha irradiation, observed a temperature effect in cells exposed to gamma but not to 

alpha particles. However, Claesson et al. used different radiation types, also different cells 

(fibroblasts) and endpoints, which could cause the discrepancy between our results. In spite of 

this, we should remember that even at very high LET radiation the indirect effect exists and 

may contribute as much as 30 % of the whole biological effect of radiation (Ito et al. 2006). 

Additionally, exposure to neutrons is also connected with the emission of gamma rays, which 

corresponds to 10 % in case of exposure to 6 MeV neutrons (Wuttke et al. 1998). 

In summary, the comet assay results, as well as the lack of agreement between data of 

Claesson et al. (2007) and Brzozowska et al. (2009) do not exclude the hypothesis about a 

temperature effect in association with the indirect effect of radiation. 

There are a number of publications revealing a sparing effect of low temperature on radiation-

induced DNA damage. In 1959 Deschner and Gray found a 13 % reduction of the aberration 
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frequency when the temperature was lowered from 37°C to 3°C during irradiation. Belli and 

Bonte (1963) observed a 25 % higher mean lethal dose in HeLa cells exposed at 5°C in 

comparison to 37°C. Bajerska and Liniecki (1969) have observed a reduction in the yield of 

dicentrics and acentric fragments at 20°C as compared to 37°C. However, the frequency of 

rings and minutes was similar at 20°C and 37°C. Also Gumrich et al. (1986) found a reduced 

dicentrics yield in lymphocytes kept at 4°C for 30-50 min before, during and 10 min after 

irradiation when compared to 37°C. Moreover, Gumrich et al. observed characteristic S-

shaped temperature dependency, where the dicentric chromosome aberration yield was low in 

a temperature range between 4°C and 10°C, achieving maximum aberration frequency at 

20°C. During last 10 years series of experiments concerning the temperature effect have been 

conducted by Elmroth and co-workers. They found a protective effect of low temperature 

(2°C) using halo assay before and during exposure to X-rays on inhibition of DNA supercoils 

rewinding in MCF-7 cells when compared to 37°C (Elmroth et al. 1999a). The same results 

were obtained using diploid fibroblasts (Elmroth et al. 1999b). Also the experiments from the 

colony forming assay confirmed a protective effect of low temperature during exposure 

(Elmroth et al. 2000a).  

However, in presence of radical scavenger DMSO during exposure at 37°C the radiation-

induced damage in diploid fibroblast cells was reduced. No effects were observed, when the 

cells were irradiated in presence of DMSO at 0°C, indicating the temperature dependence of 

the indirect effect (Elmroth et al. 1999b and 2000b).  

Somewhat confusing, no temperature effect assessed on the level of micronuclei was detected 

in human fibroblasts (Larsson et al. 2007). These results remain unexplained.  

 

Even, if the reasons of the discrepancy between results examined with the use of different 

methods are still not clear, there are enough data presenting that irradiation in low temperature 

makes cells less sensitive to ionising radiation when compared to the physiological 

temperature of 37°C. There are many possible explanations for this effect. 

The first hypothesis is the assumption, that hypothermia leads to condensation of the 

chromatin, what makes the chromatin less accessible for free radicals and thus protects the 

DNA from damage. In this context it is interesting to recall the results of Vergani et al. 

(2004). They confirmed that internal and external cellular factors, such as for example 

temperature, induce changes in the cell shape and are able to remodel the chromatin structure 

and gene expression. Lowered temperature causes depolymerisation of microtubules 

(Cassimeras et al. 1986), what causes histone deacetylation and finally condensation of the 

chromatin (Le Beyec et al. 2007). 
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The role of chromatin conformation in the cell response to radiation has been investigated 

already in the 70s. A higher frequency of DNA damage was observed in euchromatin when 

compared to heterochromatin (Holmberg and Jonasson 1973; Bauchinger and Götz 1979). 

Lately, Falk et al. (2008) observed less susceptibility to dsb induction by γ-rays in condensed 

chromatin in comparison to decondensed (open) chromatin.  

Altogether, a reduced level of micronuclei after exposure to low LET radiation in cells kept at 

0°C when compared to 37°C can be expected due to the chromatin condensation at lowered 

temperature in association with the indirect effect of radiation. 

The second possible explanation of the temperature effect in cells during irradiation could be 

inhibition or elimination of the bystander effect at lowered temperature. Although the 

occurrence of the bystander effect has been found in a variety of biological systems, no 

mechanism responsible for this effect was identified. It is supposed, that multiple pathways 

are involved in this phenomenon, moreover, different cell lines respond in different ways (Hei 

et al. 2007). The bystander effect appears as a consequence of a signalling cascade in the cell 

(Hei et al. 2007) and thus, should be inhibited at low temperatures. Ryan and co-workers 

assessed bystander effect to be responsible for 20-50 % of the observed damage induced by 

radiation (Ryan et al. 2007). This agrees with the results of present thesis, where the sparing 

effect in cells exposed to X-rays at 0°C was in the range 20 - 45 %. Additionally, our results 

with DMSO also support the assumption, since it is known that the bystander effect is 

mediated by reactive oxygen species (Hei et al. 2008). Nevertheless, there are no evidences 

indicating that the bystander effect does not occur at 0°C, so that the assumption that the 

bystander effect could be responsible for the temperature effect during irradiation remains 

hypothetical. 

A last factor, which was taken into consideration could be a possibly decreasing of the ability 

to proliferate for cells exposed at 0°C. In consequence, the cells with a high level of DNA 

damage would divide slower and remain undetected in the micronucleus assay, as it has been 

presented by Hoffmann et al. (2002). Nonetheless, no differences were found in replication 

indices in PBL irradiated at 0°C or 37°C, what indicates that the temperature effect is not due 

to decreased proliferation capacity of cells kept at 0°C. 
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4.1.4 Summary of the first part the thesis  
 
Taken together, the results obtained in this part of the study confirmed the previous reports 

about the sparing effects of low temperature during irradiation to the level of cytogenetic 

damage. This effect disappeared in the presence of the radical scavenger DMSO, which 

indicates the indirect action of radiation being responsible for the result observed. 

The mechanisms, possibly responsible for the effect of temperature during irradiation and 

measured with micronuclei, could be a condensation of chromatin at lowered temperature or 

inhibition/abolition of the bystander effects.  

The lack the temperature effect as measured with the e comet assay remains unexplained and 

needs further investigation. 

 

The conclusion derived from this part of the study is that control of temperature during 

irradiation is critical for reliable and reproducible results. Keeping cells at 37°C during 

transport to irradiation source and during irradiation allows the maintenance of physiological 

conditions. On the other hand, when transport to irradiation source and back takes 20 minutes, 

like in this study, the temperature could decrease when the container with samples was 

opened, especially during the winter. In this case the conditions during transport and 

irradiation cannot be permanently controlled. For this reason it has been decided to transport 

and irradiate the lymphocytes and blood cultures from prostate cancer patients and healthy 

donors in the second part of this study on ice. 

 

 

Part 2: Comparison of individual radiosensitivity of peripheral blood 

lymphocytes from prostate cancer patients and healthy donors. 

 

Over 30 years ago Taylor et al. (1975) observed an association between cancer predisposition 

and the hypersensitivity of cells to ionising radiation in vitro. This finding was confirmed by 

many researches in the following years. Some of them found an enhanced level of 

chromosome aberrations in lymphocytes of cancer patients when compared to healthy 

individuals (Scott et al. 1999, Roberts et al. 1999, Lisowska et al. 2006). It was, therefore, 

postulated that a higher cellular sensitivity to radiation in vitro might indicate a susceptibility 

to cancer development. The present study objective was to find out whether, indeed, prostate 
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cancer patients show an enhanced cellular sensitivity when compared to age-matched healthy 

donors. 

The second aspect of this part of the thesis deals with the dependence between clinical side 

effects and individual cellular radiosensitivity. The association between individual 

radiosensitivity and the risk of acute side effects after radiotherapy appears to be not obvious; 

some reports showed a clear correlation (e.g. Barber et al. 2000a, Widel et al. 2003), whereas 

other authors revealed no evident relationship (e.g. Begg et al. 1993, Rudat et al. 1997 and 

1998). If the individual risk of side effects would be known before radiotherapy, a cancer 

treatment could be conformed to each patient individually. For this reason it was highly 

interesting to find out whether the assays chosen for this study might be used as reliable tools 

for prediction of a risk for side effects development on the basis of individual cellular 

radiosensitivity. Hence, all prostate cancer patients participated in this study, have donated 

blood samples minimum 12 months after the completion of radiotherapy treatment This 

allowed clinical identification of those patients who developed early and/or late severe side 

effects (patients S) and patients who showed no side effects (patients 0) during this time. 

 

Exposure to IR during tumour treatment induces several chromosomal aberrations, which 

might be found in peripheral blood lymphocytes months and years after radiotherapy. In the 

present study, however, chromatid aberrations such as breaks and gaps were analysed. As 

chromatid aberrations are induced followed by irradiation of lymphocytes that are in G2-

phase of cell cycle and not in G0-phase, the potential influence of radiotherapy on the level of 

chromatid aberrations should be considered  as marginal. 

 

 

4.2.1 Chromosomal aberrations. Cancer susceptibility 
 
Enhanced G2 chromosomal radiosensitivity as measured with the G2 assay was observed in 

various cancer patients compared to controls. Lisowska et al. (2006) analysed 38 larynx 

cancer patients (mean age 57) after radiotherapy and 40 healthy donors (mean age 47). Thirty 

four patients and 36 healthy donors were male. The mean frequency of aberrations in patients 

was significantly higher compared to healthy donors. Additionally, 39.5 % of patients     

showed an enhanced chromosomal radiosensitivity. A weak but significant correlation 

between aberration frequency and age was observed. Elevated G2 chromatid radiosensitivity 

was also observed in fibroblasts from individuals with dyskeratosis congenita, when 

compared to healthy donors (DeBauche et al. 1990). These authors supposed that increased 
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susceptibility of chromatid breakage induction by X-rays could be a cellular marker of 

diagnostic value. 

A number of published data deal with chromosomal radiosensitivity in breast cancer patients 

(Scott et al. 1994 and 1999, Terzoudi et al. 2000, Mozdarani et al. 2005). The majority of the 

data has been collected for breast cancer patients whose lymphocytes were exposed to 

radiation in the G2 phase of cell cycle. Scott et al. (1994) analysed DNA damage in PBL of 

50 breast cancer patients and 74 healthy donors. They found out that breast cancer patients are 

significantly more cellular sensitive than controls. These data were later confirmed with a 

larger number of cases (130 breast cancer patients and 105 normal donors, Scott et al. 1999). 

Using a cut-off point of the 90th percentile of healthy donors they found about 40 % sensitive 

patients. Howe et al. (2005) observed an elevated level of radiation-induced chromatid 

aberrations in patients with benign prostatic hyperplasia (BPH) or prostate cancer in 

comparison with healthy donors. The study was performed with blood samples drawn from 15 

patients with BPH, 17 prostate cancer patients and 14 healthy donors. Using the 90th 

percentile cut-off value they detected 7 % of healthy donors, 40 % of the BPH patients and ~ 

88 % (15 patients) of the prostate cancer group to be radiosensitive. 

In this thesis a significantly higher level of radiation-induced chromatid aberrations was 

observed in PC patients when compared to healthy donors.  

Moreover, using the 90th percentile cut-off method, 50 % (22/44) of prostate cancer patients 

were identified to be radiosensitive in vitro on the basis of radiation-induced aberration yield. 

Our results are in agreement with the data of Scott et al. (1994, 1999), Howe et al. (2005) and 

also Lisowska et al. (2006) which indicates that the procedure used in these experiments was 

prepared correctly. Although the case numbers do not exceed 22 in the patients and healthy 

donors groups, on the basis of the data published by Scott et al. (1994, 1999), the results 

obtained in this study should be accredited as reliable. 

 

Additionally, in both groups of prostate cancer patients also a higher spontaneous aberration 

yield was observed. This finding supports the suggestion of Bonassi et al. (2000, 2004), that 

an enhanced level of spontaneous aberrations in lymphocytes may be a marker for cancer 

predisposition.  

The difference in average spontaneous aberrations yield between patients with side effects 

after radiotherapy (S) and healthy donors was significant. Eight patients (18 %) were found to 

have spontaneous aberration frequencies above the 90th percentile of the cut-off value. Out of 

these 5 showed also side effects (clinically sensitive in vivo). 
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 For only 5 patients the aberration yield for both spontaneous and radiation-induced 

aberrations was above the cut-off thresholds. The missing correlation between spontaneous 

and radiation-induced aberrations above the 90th cut-off point suggests that different cellular 

mechanisms may be responsible for the G2-sensitivity after irradiation and the spontaneous 

DNA damage.  

 

Further, there are also known data revealing no difference in G2 radiosensitivity between 

cancer patients and healthy donors. Hence, Baria et al. (2001) observed no elevated 

lymphocyte sensitivity in patients with cervix and lung cancer. A somewhat confusing result 

was published by Papworth et al. (2001). These authors found an enhanced radiosensitivity 

only in those larynx cancer patients that were younger than 45 years old.  

 

The reason for the lack of agreement between the results obtained in this study with the data 

of Baria et al (2001) and Papworth et al. (2001) is not clear. A possible explanation could be 

different temperatures during exposure and transport of the samples. Papworth et al. (2001) 

performed all steps at 37°C, whereas in these experiments the transport to the irradiation 

source in another building and back to the laboratory, as well as the exposure were conducted 

on ice. Furthermore, some differences in the protocols have to be mentioned. Papworth et al. 

(2001) added colcemid 0.5 h after irradiation and the cells were harvested after 1 h, whereas 

in these experiments colcemid was added 1.5 h after exposure followed by cell harvest after 

further 1.5 h. The experiments described by Baria et al. (2001) have been performed in 

agreement with Papworth et al. (2001). Finally, a factor, that should be taken into account is 

the individual differences between persons in manual aberrations analysis.  

 

In view of the potential importance of the chromatid analysis for detecting of individual 

radiosensitivity and predisposition of cancer there is a need to find out which mechanisms 

underlie the hypersensitivity. Scott et al. (1994) have suggested that G2 chromosomal 

radiosensitivity is a marker for low penetrance predisposing genes in a substantial number of 

breast cancer patients. This observation was later confirmed by Parshad et al. (1996) and Patel 

et al. (1997). Howe et al. (2005) have found that mitotic inhibition values were lower in 

benign prostatic hyperplasmia patients (BPH) than in prostate cancer patients (PC). Thus, 

mitotic inhibition indicates different mitotic delay times in lymphocytes from BPH and PC 

patients. It has been, therefore, suggested that different cellular and molecular processes occur 

in response to exposure to IR in these both cancer patients groups (Howe et. al 2005).  
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4.2.2 Clinical versus cellular radiosensitivity measured by G2 assay 
 
The goal of curative radiotherapy is inactivation of cancer cells one the one hand and greatest 

achievable protection of the normal tissue on the other hand. Nevertheless, the success of 

radiotherapy is limited by the risk of side effects. The reduction of possible side effects after 

radiotherapy offer the patients a chance for a better life quality. It is well known, that the 

occurrence of side effects depends on many factors such as total dose, tumour volume, 

comorbidity of patients and many others (Bentzen and Overgaard 1994, Turesson et al. 1996).  

It should be also kept in mind that even after similar radiotherapy treatment, patients develop 

a broad range of radiation injury in the normal tissue (Turesson 1990, Borger et al. 1994, 

Burnet et al. 1998, Raaphorst et al. 2002). This is due to the variation in individual intrinsic 

radiosensitivity, largely determinated by genetic factors (Turesson et al. 1996, Borgmann et 

al. 2007).  

Taken together, the main question is whether the chromosomal radiosensitivity of in vitro 

irradiated lymphocytes can be used to predict the risk of side reactions in cancer patients 

before radiotherapy? 

A number of scientists have undertaken trials to find a correlation between the reactions of 

healthy tissue to radiotherapy and the chromosomal radiosensitivity in peripheral blood 

lymphocytes. A positive correlation was reported for breast cancer (Hoeller et al. 2003, 

Borgmann et al. 2008), cervix cancer (De Ruyck et al. 2005, Widel et al. 2001) as well as for 

prostate cancer (Lee et al. 2003). In contrary, no relationship between cellular and clinical 

sensitivity was found by Lisowska et al. (2006), Papworth et al. (2001), Wang et al. (2005), 

Slonina et, al (2000) and Barber et al. (2000).  

 

Hoeller et al. (2003) conducted a study with 86 patients after breast conserving surgery and 

irradiation with a median dose of 55 Gy. Thereafter, the stage of fibrosis (grades: 0, 1, 2 and 

3) was compared with radiosensitivity in vitro, as measured with radiation-induced 

chromosomal damage (G0 assay). They observed a 2-3-fold higher annual rate for fibrosis in 

patients with high cellular radiosensitivity in comparison with patients with intermediate and 

low radiosensitivity. 

Borgmann et al. (2008) observed an enhanced individual radiosensitivity in PBL of breast 

cancer patients and in patients with different tumour sites showing acute reactions after 

radiotherapy of grade 2-3. Intriguing, these results were true for the in vitro exposure dose of 

6 Gy and not so clear after irradiation with 3 Gy. The authors concluded that determining of 

individual radiosensitivity after irradiation with 6 Gy seems to be a good tool for prediction of 

acute effects after curative radiotherapy.  
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Continuing, Lee et al. (2003) irradiated ex vivo lymphocytes from prostate cancer patients 

before the onset of radiotherapy to find out whether the level of micronuclei correlates with 

the clinical reactions after treatment. They found a significant greater level of micronuclei in 

PBL of over-reacting patients when compared to average-reacting patients. 

 

In contrast, Lisowska et al. (2006) observed no relationship between radiation-induced 

aberration frequencies and the degree of acute reactions. Additionally, Papworth et al. (2001) 

observed no significantly greater DNA damage as measured with G2 and G0 assays in young 

head and neck tumour patients with enhanced toxicity to radiotherapy. Wang et al (2005) 

analysed DNA damage and repair using comet assay in 100 nasopharyngeal cancer patients 

after radiotherapy (total radiation dose of 70 Gy). Twenty-one patients showed an enhanced 

initial radiation damage and 19 patients showed a reduced DNA repair capacity 15 and 30 

min after exposure. These patients were supposed to be radiosensitive in vivo. However, the 

obtained data indicate no apparent relationship between the acute skin reactions and in vitro 

radiation effects in lymphocytes. Only 3 of the patients suffered from enhanced acute skin 

reactions after the treatment.  

 

In present study 22 from 44 prostate cancer patients showed an increased clinical 

radiosensitivity (side effects) as assessed on the basis of validated EPIC questionnaire (the 

Expanded Prostate Cancer Index Composite). Twenty two of the patients showed also 

elevated radiation-induced chromosomal radiosensitivity as assessed on the basis of 90th 

percentile cut-off point. However, an intriguing observation was that only 11 from 22 

radiosensitive in vitro patients were also clinically sensitive. Moreover, the other 11 

radiosensitive in vitro patients showed no clinical side effects.  

Hence, the correlation between clinical sensitivity in vivo and cellular radiosensitivity in vitro 

observed in this thesis on the basis of radiation-induced aberration yield was true for 50 % of 

the analysed prostate cancer patients. 

 

In agreement with the results for spontaneous aberration yield and 90th percentile cut-off 

value 8 prostate cancer patients have been assessed as sensitive in vitro, whereof 5 of them 

showed also clinical side effects. So that the correlation between clinical sensitivity in vivo 

and cellular sensitivity in vitro observed  in spontaneous aberration yield was true for 62 % of 

the analysed PC patients. 
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Taken together, using G2 assay, we found 22 (50 %) of the prostate cancer patients, 

participated in the study, which showed an elevated radiation-induced chromatid aberration 

yields, whereof 11 of the patients were also clinically sensitive. Elevated yields of 

spontaneous aberrations were found in 8 prostate cancer patients (18 %), whereof 5 of the 

patients were also clinically sensitive.  

Hence, the clinical individual radiosensitivity was reflected in this study at the level of 

cellular sensitivity in 50-62 % of prostate cancer patients.  

In conclusion, the results for clinical versus cellular sensitivity seems to be promising, 

however further studies are suggested. 

 

Concerning the discrepancy in results revealed by authors above named, there were several 

different factors in the experiments such as age of the blood donors, tumour volume, total 

dose of radiation, daily fraction of radiation and the most important, the different tumour 

entities, that could influence the results. For example the patients examined by Papworth et al. 

(2001) were at the moment of diagnosis younger than 50 years, the average age of patients 

examined in this study was 72.5 years and all donors were older than 58 years. A significant 

influence of age on chromosome aberration levels was observed by many authors (e.g. 

Papworth et al. 2001, Lisowska et al. 2006). 

However, it does not explain existing (Hoeller 2003, Borgmann 2008) or lack of correlation 

(Scott et al. 1994, 1999, Lisowska 2006, Howe 2005) between clinical sensitivity in vivo and 

cellular sensitivity in vitro. 

Andreassen et al. (2002) suggested that “clinical normal tissue radiosensitivity should be 

regarded as so-called complex trait dependent on the aggregate effect of many ‘minor genetic 

determinats’ and that single nucleotide polymorphisms (SNPs) could account for a proportion 

of such genetic component”. Moreover, the authors supposed that some genetic variations 

affect mostly normal tissue response to IR, whereas others behaved differently. At present, a 

great attention is focused on SNPs analysis. It is supposed that there is a correlation between 

SNPs and clinical response to ionising radiation (Andreassen et al. 2002 and 2003). As SNPs 

represent a very numerous type of genetic variations and tens or hundreds of genes could 

participate in the response to IR, it seems to be understandable that the potential correlation 

between radiosensitivity in vivo and in vitro could be very complex. The present state of 

knowledge and assumptions concerning SNPs should be still, however, regarded as 

preliminary. 
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In conclusion of G2 assay, a significantly enhanced level of chromatid aberrations was found 

in PBL of prostate cancer patients in accordance to both spontaneous and radiation-induced 

aberration yield when compared to healthy donors. No difference was observed between 

patients with and without side effects.  

The present results show that the chromosomal radiosensitivity of prostate cancer 

lymphocytes may be a marker of cancer predisposition. A predictive value for the risk of 

developing side effects to radiotherapy was true in this study for 50-62 % of prostate cancer 

patients, when the clinical sensitivity in vivo on the basis of the EPIC questionnaire and 

cellular sensitivity on the basis of spontaneous and radiation-induced chromatid aberrations 

level were analysed. 

 

 

4.2.3 The γ-H2AX assay 
 
“The DNA damage induced directly after irradiation is considered by several authors to be 

responsible for clinical radiation sensitivity, because a large amount of DNA damage will be 

harmful to the cell” (Wang et al. 2005). 

Moreover, the current theory suggests that the phosphorylation of the histone H2A is a marker 

of the induction of DNA dsb as well as of radiosensitivity (Rothkamm and Löbrich 2003).  

The literature gives information revealing the maximum number of phosphorylated γ-H2AX 

histones in human lymphocytes in the range between 10 min – 1.5 h after irradiation 

(Takahashi and Ohnishi 2005, Löbrich et al. 2005, Andrievski and Wilkins 2009). In this 

study the maximum γ-H2AX foci expression was assessed after 0.5 h culture time at 37°C, 5 

% C02. This is in agreement with Löbrich at al. (2004) who assessed a maximum foci number 

at 0.5 h after exposure of lymphocytes to 1 Gy. However, they found a higher foci level (20 

foci/cell/ 1 Gy) in comparison to the results presented in this thesis (~ 7-8 foci/cell/     1 Gy). 

One basic difference in the mode of evaluation is the manual foci counting performed by 

Löbrich et al., whereas in this study the foci were counted automatically. The fact that the 

automatically working system cuts-off the fluorescence intensity of a focus underneath a 

certain user defined value, might be one possible explanation for these differences in foci 

numbers.  

The FACS data in the presented thesis showed a 1.7-fold higher initial fluorescence signal   

0.5 h after exposure in healthy donors compared to patients S. The fluorescence intensity in 

patients S corresponds to about 58.5 % of the value measured in healthy donors. The higher 

level of the fluorescence signal was also observed in healthy donors 1 h after exposure when 
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compared to prostate cancer patients (n = 10) and cervical cancer patients (n = 20; Wegierek-

Ciuk, personal communication).  

In this study the results obtained for fluorescence intensity of dsb measured by FACS 0.5 h 

after exposure were not confirmed when γ-H2AX foci were counted by fluorescence 

microscopy. The discrepancy between these assays could be due to various parameters which 

were measured.  

 

A significant reduction (40 % - 50 %) of both fluorescence signal and foci number was 

observed in all groups of donors 5 h after exposure when compared to the initial level of 

damage. This correlates very well with the observation of Banath et al. (2004). They found     

6 h after exposure to 2 Gy about half the amount of γ-H2AX foci they measured 1 h after 

irradiation in cervical cancer lines.  

A further decrease of the fluorescence signal was detected until time point 24 h after exposure 

which represented about 4 % of the initial DNA damage. This was true for both groups of 

patients and for healthy donors.  

Interestingly, Wegierek-Ciuk observed a decrease of the fluorescence signal in lymphocytes 

of cervical cancer patients, but not in prostate cancer patients. Moreover, prostate cancer 

patients showed 24 h after exposure a higher level of γ-H2AX fluorescence signal than after  

1 h post-exposure. 

The reduction of foci number was not so clearly after 24 h and corresponded to ~16 % of the 

initial foci number in patients S, ~18 % in patients 0 and ~26 % in healthy donors. A decrease 

of DNA dsb during incubation of lymphocytes at 37°C is in agreement with the results of 

Olive and Banath (2004) indicating that the decline of γ-H2AX foci correlates with DNA dsb 

repair processes.  

It does not explain, however, the differences between the patients and the healthy donors. A 

possible explanation of this observation could be that the decreased foci number in prostate 

cancer patients was due to modulated DNA damage recognition. An adjustment process could 

be develop due to fractionated radiotherapy of tumours. It might results in no recognition of 

DNA damage under a certain level (Löbrich et al. 2005). 

 

It existed no information concerning in vivo radiosensitivity for the healthy donors examined 

in this thesis. That means that they were not pre-separated in sensitive or normal responders 

like this was done for prostate cancer patients.                                                              

In brief, no significant differences have been found between patients with and without side 

effects after radiotherapy in the spontaneous and radiation-induced initial level of DNA dsb. 
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The enhanced level of DNA damage in HD could be due to a slower activation of appropriate 

molecular mechanisms or the heterogeneous population of healthy donors which were 

unselected for radiosensitivity. 

 

 

4.2.4 Apoptosis/ necrosis assay 
 
 “Lymphocytes were described to be the most radiosensitive immunocompetent cells, 

showing a dose dependent increase in apoptosis” (Crompton and Ozsahin 1997). Based on 

this assumption, the measurement of apoptosis rate in lymphocytes might give more 

information about in vitro radiosensitivity of prostate cancer patients as well as healthy 

donors. 

A correlation between cellular radiosensitivity and radiation-induced apoptosis is not certain. 

High apoptosis is correlated with elevated radiosensitivity in several cell lines as published by 

Dewey et al. (1995), Barber et al (2000b), whereas Crompton et al. (1999 and 2001) and 

Ozsahin et al. (2005) found decreased apoptosis in lymphocytes of radiosensitive individuals. 

 

The rate of radiation-induced early apoptosis and late apoptosis/necrosis showed in the 

current study increases with culture time. The same increasing tendency appeared also in 

spontaneous late apoptosis/ necrosis. An increase of spontaneous and radiation-induced 

apoptosis in lymphocytes with incubation time was also observed by many authors (Hertveld 

et al, 1997, Kern et al. 1999, Bordon et al. 2009). Hertveld et al. observed a lower level of 

spontaneous and a slightly higher level (between 15-18 %) of early apoptosis (Annexin V 

positive cells) than described in this thesis (~8-14 %). This difference could be due to 

irradiation time. A common practise is to irradiate lymphocytes directly after isolation, 

whereas in this study the isolated lymphocytes were incubated over night to allow the cells to 

repair DNA damage caused by shearing forces during isolation steps.  

Additionally, interesting results about a negative correlation concerning the age of blood 

donors and the level of radiation-induced apoptosis in CD4 T-lymphoctyes have been 

published by Crompton et al. (1999). They postulated that with each 10 years of life, a dose of 

9 Gy X-rays induces 6.5 % less apoptosis. A lot of published results were obtained using 

lymphocytes of younger donors, when compared to the age of prostate cancer patients and 

healthy donors from this study. It could therefore, explain why the level of radiation-induced 

early apoptosis as well as late apoptosis and necrosis measured in this study 24 h after 

exposure was not higher than 14 %. 
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Big efforts were undertaken to improve the suitability of the apoptosis assay as predictive test 

for cancer proneness. Bordon et al. (2009) maintain that estimating the cellular 

radiosensitivity of PBL is possible using the radiation-induced apoptosis rate measured after 

Annexin V/PI staining.  

Discrepancy between the results of Bordon et al. and the data described in this thesis could be 

due to many reasons. First of all, Bordon et al. (2009) have performed a more complex study 

about the relationship between individual radiosensitivity and programmed cell death. They 

analysed apoptosis in PBL 24 h, 48 h and 72 h after exposure to different radiation doses. The 

cervical patients were divided into groups due to clinical toxicity (sexual, bowel, rectal and 

urinary). Only 4 healthy donors were included in this study. There was no separation into 

early apoptotic and late apoptotic/necrotic cells. Apart from that, sample irradiation and 

preparation was performed under different conditions. However, Bordon and co-workers 

found in lymphocytes of cervical carcinoma patients with late toxicity after radiotherapy a 

lower apoptotic response when compared to patients who had not developed late toxicity. 

This finding agrees with previous studies (Crompton et al. 2001, 1999), in which no 

significant differences between healthy donors and cancer patients with normal as well as 

with hypersensitivity was found for apoptosis in CD4 and CD8 lymphocytes measured 48 h 

after exposure to 2 Gy and 9 Gy of X-rays. A clearly reduced level of radiation-induced 

apoptosis in donors with elevated toxicity to radiation was observed. The authors can not 

explain which mechanism is responsible for the relationship between elevated radiation 

toxicity and reduced apoptosis rate. They assumed that the increased late toxicity could be 

due to a delay in mobilizing the physiological response to radiation injury. Thus, they 

conclude that individuals expressing high levels of apoptosis activate the physiological 

response to radiation rapidly whereas individuals with a low apoptosis level mobilize this 

response slowly. 

Altogether, Crompton et al. (1999, 2001) and Ozsahin et al. (2005) believed the leukocytes 

apoptosis assay to be a useful predictor of an increased late toxicity to radiation therapy.  

 

In contrary, Barber et al. (2000b) observed no correlation between apoptosis level measured 

by TUNEL assay and toxicity in healthy donors, breast cancer patients and individuals with 

ataxia telangiectasia (AT). Apart from that, the authors found a somewhat reduced level of 

apoptosis in breast cancer patients and AT individuals when compared to healthy donors. The 

same tendency was observed in this thesis for radiation-induced early apoptosis 24 h after 

exposure. Moreover, 5 h after exposure the difference between radiation-induced late 

apoptosis/necrosis in healthy donors was significantly higher when compared to patients S 
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and patients 0. Barber et al. (2000b) supposed that the reduced apoptosis level in breast cancer 

patients may be connected with a genetic predisposition to this cancer entity. At least, the 

authors did not recommend application of apoptosis assay as a reliable tool for the prediction 

of normal tissue response to radiotherapy.  

Generally, the apoptosis/necrosis data obtained in this study do not differ between patients S, 

patients 0 and healthy donors (the exception described above) what makes this assay not a 

good candidate for a reliable predictive test. 

 
 

4.2.5 Prediction of cancer proneness using G2-, γ-H2AX- and apoptosis/necrosis assays  
 
The comparison of the G2 assay and apoptosis/necrosis assay is somewhat baffling. For 

apoptosis/necrosis assay, as well as for the γ-H2AX assay not stimulated lymphocytes were 

used, whereas in G2 test, PHA was added. In most proliferating cells apoptosis is induced by 

residual DNA damage and occurs either in the late interphase or after one or more mitoses 

(Dewey et al. 1995, Hendry and West 1997). Nevertheless, in the thesis the efforts were 

focused to find out whether assessed cancer susceptibility can be confirmed in the same 

patients when different assays were used. 

As was mentioned earlier, an enhanced level of chromosomal damage is supposed to be a 

marker of cancer predisposition. Big trials were made to find a correlation between cellular 

individual radiosensitivity measured as chromosomal aberrations (G2, G0 assays) and cancer 

susceptibility and thus a lot of results were published (Scott et al. 1996, Barber et al. 2000a, 

Papworth et al. 2001, etc.). For this reason in the present thesis the results of the G2 assay 

were used as reference data for the discrimination between cancer-prone and non-prone 

patients with reference to the data obtained with the other assays. 

The results obtained in this study are presented in chapter 3 Results, subsection 3.2.4 and in 

Table 3.11. Generally, 6 patients (P 8, P 17, P 18, P 20, P 34, P 41) were found to be sensitive 

according to spontaneous and radiation-induced DNA damage analysed with various assays.  

Four of them were assessed as also clinically sensitive (P 8, P 18, P 20, P 34), whereas P 17 

and P 41 were classified on the basis of the EPIC questionnaire as patients without side 

effects after radiotherapy. With the exception of P 20, the rest of them showed high induced 

chromosome aberration yield as assessed with the G2 assay. Despite P 41 was not sensitive in 

vivo (without clinical side effects after radiotherapy), in this study he has been classified as 

sensitive in vitro when G2 (0.5 Gy) and FACS results for 90th cut-off point were taken into 

consideration. Moreover, P 41 showed also an enhanced level of chromosomal aberrations 
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when lymphocytes were exposed to γ-rays in G0 phase of cell cycle (FISH assay, Schmitz S, 

personal communication). In P 41, 18 metaphases with aberrations have been found in not 

irradiated lymphocytes and 46 metaphases with 96 various aberrations after exposure to 2 Gy, 

when 100 metaphases were analysed. Blood of P 41 was drawn once and the cultures for both 

assays (G2, G0) were set up within 3 h after venous puncture.  

 

Taken together, a partial agreement was found with respect to identification of cancer-prone 

patients when the results of the chosen assays were taken into consideration. The highest 

correlation was observed for G2- and FACS (γ-H2AX assays) data.  

Four patients out of 6 were assessed as radiosensitive in vitro on the basis of nearly all chosen 

assays and showed also clinical side effects. So far, however, it is not proved that clinical 

radiosensitivity must be reflected on cellular level. 
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V. Summary and final conclusions 

 

The goal of this thesis was: 

 

Part 1 

� To find out, whether different temperature conditions during irradiation of peripheral 

blood lymphocytes have an influence on the radiation-induced level of chromosomal 

damage 

� To check, whether the cytogenetic temperature effect in peripheral blood lymphocytes 

is related to the direct or indirect action of radiation 

 

Part 2 

� To find out whether one or more chosen assays might be appropriate to predict cancer 

susceptibility 

� To compare individual radiosensitivity between prostate cancer patients with and 

without clinical side effects after radiotherapy and age-matched male healthy donors – 

prediction of the risk of development any side effects after radiotherapy. 

 

 

Results: 

 

Part 1 

� A significantly higher level of micronuclei was found when lymphocytes were kept 15 

min before and during exposure at 37°C when compared to 0°C. This effect 

disappeared in the presence of DMSO (radical scavenger) 

� The observed temperature effect in micronucleus assay is supposed to be due to the 

indirect action of radiation 

� No temperature effect was observed using alkaline and neutral versions of comet assay 

 

Part 2 

� Significant differences between prostate cancer patients and healthy donors in G2-,      

γ-H2AX (FACS) and late apoptosis/necrosis assays were observed. 
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� No significant differences between prostate cancer patients with side effects (S) and 

without side effects (0) after radiotherapy were found. 

 

� Clinical radiosensitivity in vivo assessed on the basis of the EPIC questionnaire 

correlated with cellular radiosensitivity in vitro assessed on the basis of chromatid 

aberration 90th cut-off value analysis for 50-62 % of prostate cancer patients. 

� Six prostate cancer patients were identified as notably sensitive in vitro when 

spontaneous and/or radiation-induced DNA damage were analysed. Four of them were 

also sensitive in vivo on the basis of EPIC questionnaire. 

 

 

Final conclusions: 

 

Part 1 

� The observed sparing effect of low temperature could be due to: 

- The condensation of the chromatin in lowered temperature, what makes the 

chromatin less accessible for free radicals and thus protects the DNA from damage. 

- The inhibition or elimination of the bystander effect in lowered temperature. 

� This effect disappeared in the presence of the radical scavenger DMSO, an 

observation which favours the indirect action of radiation as being responsible. 

� The lack of the temperature effect as measured with the comet assay remains 

unexplained and needs further investigation. 

� The conclusion derived from this part of the study is that control of temperature during 

irradiation is critical for reliable and reproducible results. 

 

Part 2 

� The chromosomal radiosensitivity in lymphocytes of prostate cancer patients: 

-  May be a marker of cancer predisposition. 

- Seems to have a predictive value for the risk of developing side effects to 

radiotherapy for about 50-62 % of prostate cancer patients analysed in the study. 

� The enhanced level of DNA damage as measured with the γ-H2AX assay (FACS) in 

HD could be due to a slower activation of appropriate molecular mechanisms or the 

lack of a pre-selection of sensitive/resistant individuals. 

� The apoptosis/necrosis data do not differ between patients S, patients 0 and healthy 

donors, which indicates that this assay alone is not a reliable predictive tool.  
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� Further investigations using G2-, γ-H2AX- and apoptosis/necrosis assays are 

necessary to find out whether the likeliness to identify in vivo and in vitro sensitive 

individuals might be increased by using 2 or more of these methods in combination in  

order to get a good agreement concerning correlation of clinical and cellular sensitivity 

of cancer patients. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Acknowledgements 92 

Acknowledgements 
 
 
I would like to thank cordially all people who directly and indirectly made this work possible. 

 

First of all, I want to thank Dr. Reinhard Lennartz and Dr. Ekkehard Pomplun for providing 

me the possibility to conduct my PhD thesis at the Department of Security and Radiation 

Protection of the  Research Center Jülich in Germany.  

 

My special thanks go to Dr. Sabine Schmitz for providing me with excellent guidelines for 

my work, for invaluable support at work and in private life. 

 

Furthermore, I would like to thank Professor Wolfgang-Ulrich Müller from the Duisburg-

Essen University for scientific supervision of my PhD thesis, for numerous advices and 

interesting, friendly discussions. 

 

I also want to acknowledge: 

Dr. Ralf Kriehuber for several precious comments and tips 

All colleagues from the Department of Security and Radiation Protection for nice work 

atmosphere and friendship. 

 

Especially I want to thank our cooperation partners Professor Michael Eble and Doctor 

Michael Pinkawa from the Department of Radiotherapy, RWTH Aachen for recruitment of 

patients and support in statistics and ethical matters. 

 

My cordial thanks to Professor Andrzej Wojcik from Stockholm University, GMT 

Department for his priceless support, tolerance and friendly advices. 

 

With gratitude I want to acknowledge all people, who helped me and gaved invaluable tips 

always when I asked: Maryla Wojewodzka, Sylwia Meczynska-Wielgosz, Marta Deperas-

Kaminska, Joanna Deperas-Standylo, Aneta Wegierek-Ciuk, Anna Lankoff, Halina Lisowska 

and Sylwester Sommer. 

 

Last but not least I would like to thank my family and friends for their emotional involvement 

in my work, for their patience and understanding. 



References 93 

References  
 
 
Andreassen CN, Overgaard M, Overgaard J. 2002. Does variability in normal tissue reactions 

after radiotherapy have a genetic basis – where an how to look for it? Radiother Oncol 64, 131-

140 

 

Andreassen CN, Alsner J, Overgaard M, Overgaard J. 2003. Prediction of normal tissue 

radiosensitivity from polymorphisms in candidate genes. Radiother Oncol 69, 127-135  

 

Andrievski A, Wilkins RC. 2009. The response of hamma-H2AX in human lymphocytes and 

lymphocytes subsets measured in whole blood cultures. Int J Radiat Biol Apr;85(4):369-76 

 

Banath JP, MacPhail SH and Olive PL. 2004. Radiation sensitivity, H2AX phosphorylation, and 

kinetics and repair of DNA strand breaks in irradiated cervical cancer cell lines. Can Res 64, 

7144-7149, Oct 1 

 

Barber JBP, Wayne B, Spreadborough AR, Levine E, Warren C,  Kiltie AE, Roberts SA, Scott D. 

2000. Relationship between in vitro chromosomal radiosensitivity of peripheral 

blood lymphocytes and the expression of normal tissue damage following radiotherapy for breast 

cancer. Radiother Oncol 55, 179-186 

 

Baria K, Warren C, Roberts SA, West CM and Scott D. 2001. Chromosomal radiosensitivity as a 

marker of predisposition to common cancers? British J of Can, 84(7), 892–896 

 
 
Baria K, Warren C, Eden OB, Roberts SA, West CM and Scott D. 2002. Chromosomal 

radiosensitivity in young cancer patients: possible evidence of genetic predisposition. Int J Radiat 

Biol, Vol. 78, No. 5, 341-346 

 

Begg AC, Russell NS, Knaken H, Lebesque JV. 1993. Lack of correlation of human fibroblast 

radiosensitivity in vitro with early skin reactions in patients undergoing radiotherapy. Int J Radiat 

Biol 64:393-405 

 

Bentzen SM, Overgaard J. 1994. Patient-to-patients variability in the expression of radiation-

induced normal tissue injury. Sem Radiat Oncol 4:68-80 

 



References 94 

Bentzen SM. 2000. Potential clinical impact of normal-tissue intrinsic radiosensitivity testing. 

Radiother Oncol 43:121-131 

 

Bentzen SM. 2006. Preventing or reducing late side effects of radiation therapy: radiobiology 

meets molecular pathology. Nat Rev Cancer 6:702-13. 

 

Bishay K, Ory K, Olivier MF, et al. 2001. DNA damage-related RNA expression to assess 

individual sensitivity to ionizing radiation. Carcinogenesis 22:1179-83 

 

Bonassi S, Hagmar L, Stromberg U, et al. 2000. Chromosomal aberrations in lymphocytes predict 

human cancer independently of exposure to carcinogenesis. Cancer Res 60:1619-1625 

 

Bonassi S, Znaor A, Norppa H, et al. 2004. Chromosomal aberrations and risk of cancer in 

humans: An epidemiologic perspective. Cytogenet Genome Res 104:376-382  

 

Bourguignon MH, Gisone PA, Perez MR, Michelin S, Dubner D, Di GM, Carosella ED. 2005. 

Genetic and epigenetic features in radiation sensitività. Part II: implications for clinical practice 

and radiation protection. Eur J of Nucl Med and Mol Imag 32(3): p. 351-68 

 

Bordon E, Hernandez LAH, Lara P, Pinar B, Fontes F, Gallego CR, Lloret M. 2009. Prediction of 

clinical toxicity in localized cervical carcinoma by radio-induced apoptosis study in peripheral 

blood lymphocytes (PBLs). Radiat Oncol 4:58; p.1-7 

Borger JH, Kemperman H, Smitt HS, et al. 1994. Dose and volume effects on fibrosis after breast 

conservation therapy. Int J Radiat Oncol Biol Phys 30:1073-81 

 

Borgmann K, Röper B, El-Awady  RA, Brackrock S, et al. 2002. Indicators of late normal tissue 

response after radiotherapy for head and neck cancer: fibroblasts, lymphocytes, genetics, DNA 

repair, and chromosome aberrations. Radiother Oncol 64:141-52 

 

Borgmann K, Haeberle D, Doerk T, et al. 2007. Genetic determination of chromosomal 

radiosensitivities in G0- and G2-phase human lymphocytes. Radiother Oncol 83:196-202 

 

Borgmann K, Hoeller U, Nowack S, Bernhard M, Röper B, Brackrock S, Petersen C, Szymczak 

S, Ziegler A, Feyer P, Alberti W, Dikomey E. 2008. Individual radiosensitivity measured with 

lymphocytes may predict the risk of acute reaction after radiotherapy. Int J Radiat Oncol Biol 

Phys, May 1; 71(1): 256-264 



References 95 

Brock WA, Tucker SL. 2000. In vitro radiosensitivity and normal tissue damage. Radiother Oncol 

55:93-4 

 

Brzozowska K, Jochannes C, Obe G, Hentschel R, Morand J, Moss R, Witting A, Sauerwein W, 

Liniecki J, Szmiel I, Wojcik A. 2009. Effect of temperature during irradiation on the level of 

micronuclei in human peripheral blood lymphocytes exposed to X-rays and neutrons. Int J Radiat 

Biol, pp. 1-9 

 

Burnet NG, Nyman J, Turesson I, et al. 1994. The relationship between cellular radiation 

sensitivity and tissue response may provide the basis for individualizing radiotherapy schedules. 

Radiother Oncol 33:228-238 

 

Burnet NG, Wurm R, Peacock JH. 1996. Low dose-rate fibroblast radiosensitivity and the 

prediction of patient response to radiotherapy. Int J Radiat Biol 70:289-300 

 

Burnet NG, Johansen J, Turesson I, Nyman J, Peacock JH. 1998. Describing patients’ normal 

tissue reactions: concerning the possibility of individualising radiotherapy dose prescriptions 

based on potential predictive assays of normal tissue radiosensitivity. Int J Cancer 1998; 79:606-

13 

 

Cancer Treatment Information, Abramson Cancer Center of the University of Pennsylvania, 

http://www.oncolink.com/treatment/ 

 

Cassimeris LU, Wadsworth P, Salmon ED. 1986. Dynamics of microtubule depolymerization in 

monocytes. J of Cell Biol 102:2023-2032 

 

Chandler ME, Yunis JJ. A high resolution in situ hybridization technique for the direct 

visualization of labelled G-banded early metaphase and prophase chromosomes. 1978. Cytogenet 

Cell Genet. 22(1-6):352-6. 

 

Choucroun P, Gillet D, Dorange G, Sawicki B, Dewitte JD. 2001. Comet assay and early 

apoptosis. Mutation Research 478: 89-96. 

 

Cleaver JE. 1968. Drfrctive repair replication of DNA in xeroderma pigmentosum. Nature 218: 

p.625-6 

 



References 96 

Cline SD and Hanawalt PC. 2003. Who’s on first in the cellular response to DNA damage? 

Nature Rev Mol Cell Biol 4(5): p.361-72 

 

Clutton SM, Townsend KM, Walker C, Ansell JD, Wright EG. 1996. Radiation-induced genomic 

instability and persisting oxidative stress in primary bone marrow cultures. Carcinogenesis 

17:1633-9 

 

Cox JD, Stetz JA, Pajak TF. 1995. Toxocity criteria of the radiation therapy oncology group 

(RTOG) and the European organisation for research and treatment of cancer (EORTC). Int J 

Radiat Oncol Biol Phys ;31:1341-6. 

 

Crompton NE, Ozsahin M. 1997. A versatile and rapid assay of radio-sensitivity of peripheral 

blood leukocytes based on DNA and surface-marker assessment of cytotoxicity. Radiat Res 

147;55-60 

 

Crompton NE, Miralbell R, Rutz HP, Ersoy F, Sanal O, Wellmann D, Bieri S, Coucke PA, Emery 

GC, Shi YQ, Blattmann H, Ozsahin M. 1999. Altered apoptotic profiles in irradiated patients with 

increased toxicity. Int J Radiat Oncol Biol Phys. Oct 1;45(3):707-1 

 

Crompton NE, Shi YQ, Emery GC, Wisser L, Blattmann H, Maier A, Li L, Schindler D, Ozsahin 

H, Ozsahin M. 2001. Sources of variation in patient response to radiation treatment. Int J Radiat 

Oncol Biol Phys Feb 1;49(2):547-54 

 

DeBauche DM, Shashidhar Pai G., Wayne SS. 1990. Enhanced G2 chromatid radiosensitivity in 

dyskeratosis congenital fibroblasts. Am J Hum Genet 46:355-357 

 

Demuth I and Digweed M. 2007. The clinical manifestation of a defective response to DNA 

double-strand breaks as exemplified by Nijmegen breakage syndrome. Oncogene 26(56): p.7792-

8 

Deschner EE, Gray LH. 1959. Influence of oxygen tension on x-ray-induced chromosomal 

damage in Ehrlich ascities tumor cells irradiated in vitro and on vivo. Radiat Res 11:115-146 

 

De Ruyck K, Van Eijkeren M, Claes K, et al. 2005. Radiation-induced damage to normal tissues 

after radiotherapy in patients treated for gynecologic tumors : Association with single nucleotide 

polymorphisms in XRCC1, XRCC3 and OGG1 genes and in vitro chromosomal radiosensitivity 

in lymphocytes. Int J Radiat Oncol Biol Phys 62:1140-1149 

 



References 97 

Dewey WC, Ling CC, Meyn RE. 1995. Radiation-induced apoptosis: relevance to radiotherapy. 

Int J Radiat Oncol Biol Phys 33:781-96 

 

Dikomey E, Franzke J. 1986. DNA repair kinetics after exposure to X-irradiation and to internal  

beta-rays in CHO cells. Radiation and Environmental Biophysics 25:189-194 

 

Dikomey E, Dahm-Daphi J, Brammer I, Martensen R, Kaina B. 1998. Correlation 

between cellular radiosensitivity and non-repaired double-strand breaks studied in nine 

mammalian cell lines. International Journal of Radiation Biology 73(3): p. 269-78. 

 

Dikomey E, Borgmann K, Brammer I, Kasten-Pistula U. 2003. Molecular mechanisms of 

individual radiosensitivity studied in normal diploid human fibroblasts. Toxicology 193:125-35 

 

Dizdaroglu M, Karakaya A. 1999. Mechanisms of oxidative damage: lesions and repair. New 

York: Kluwer Academic Publishers/plenum Press. 67-87 

 

Druckworth-Rysiecki G and Taylor AM. 1985. Effect of ionising radiation on cells from 

Fanconi’s anemia patients. Canc Res 45(1): p. 416-20 

 

Edwards AA, Lloyd DC, Purrott RJ. Radiation-induced chromosome aberrations and the Poisson 

distribution. Radiat Environ Biophys. 1979 Apr 30;16(2):89-100. 

 

Elmroth K, Erkell LJ, Hultborn R. 1999a. Influence of temperature on radiation-induced 

inhibition of DNA supercoiling. Radiation Research 152:137-143 

 

Elmroth K, Erkell LJ, Nygren J, Hultborn R. 1999b. Radiation and hypothermia: Changes in DNA 

supercoiling in human diploid fibroblasts. Anticancer Research 19:5307-5311 

 

Elmroth K, Nygren J, Erkell LJ, Hultborn R. 2000a. Effect of hypothermic irradiation on the 

growth characteristics of two human cell lines.  Anticancer Research 20:3429-3433. 

 

Elmroth K, Nygren J, Erkell LJ, Hultborn R. 2000b. Radiation-induced double-strand breaks in 

mammalian DNA: Influence of temperature and DMSO. International Journal of Radiation 

Biology 76:1501-1508. 

 



References 98 

Evans HJ. 1967. Human Radiation Cytogenetics, edited by HJ Evans, WM Court-Brown and AS 

McLean (Amsterdam: Nort-Holland Publishing Co.), p.20 

 

Evans MD, Dizdaroglu M and Cooke MS. 2004. Oxidative damage and disease: induction, repair 

and significance. Mut Res 567(1): p. 1-61 

 

Falk M, Lukasova E, Kozubek S. 2008. Chromatin structure influences the sensitività of DNA to 

gamma-radiation. Biochemica Biophysica Acta 1783:2398-2414 

 

Fertil B, Malaise EP. 1981. Inherent radiosensitivity as a basic concept for human tumor 

radiotherapy. Int J Radiat Oncol Biol Phys 7:621-629  

 

Fitzpartick JM. 2008. Management of localized prostate cancer in senior adults: the crucial role of 

comorbidity. BJU Int, 101 (Suppl. 2): 16-22 

 

Friedberg EC, Walker GC, Siede W. 1995. DNA repair and mutagenesis, 1st edition. Washington 

DC, ASM press 

 

Geara FB, Peters LJ, Ang KK, et al. 1996. Comparison between normal tisseue reactions and local 

tumor control in head and neck cancer patients treated by definitive radiotherapy. Int J Radiat 

Oncol Biol Phys 35:455-462 

 
Giotopoulos G. PhD thesis: DNA methylation, cell differentiation and genetic factors involved in 

radiosensitivity. Universisty of Leicester Aug 2008 

 

Gumrich K, Virsik-Peuckert RP, Harder D. 1986. Temperature and the formation of radiation-

induced aberrations. I. The effect of irradiation temperature. Int J of Radiat Biol 49:665-672 

 

Gordon DJ, Milner AE, Beany RP, Grdina DJ, Vaughan ATM. 1990. The increase in 

radioresistance of Chinese hamster cells cultured as spheroids is correlated to changes in nuclear 

morphology. Radiation Research 121, 175-179 

 

Goytisolo FA, Samper E, Martin-Caballero J, Finnon P, Herrera E, Flores JM, Bouffler SD, 

Blasco MA. 2000. Short telomerases results in organismal hypersensitivity to ionising radiation in 

mammalian. J Exper Med 192(11): p. 1625-36 

 



References 99 

GudkovAV, Komarova EA. 2003. The role of p53min determining sensitivity to radiotherapy. 

Nat Rev Canc 3:117-129 

 

Hall EJ. Radiobiology for the radiobiologist. 5 ed. 2000, Philadelphia: Lippincott Williams and 

Willkins, 608. 

 

Hei TK, Zhou H, Ivanov VH, Hong M, Lieberman HB, Brenner DJ, Amundson SA, Geard CR. 

2008. Mechanism of radiation-induced bystander effects: A unifying model. Journal of Pharmacy 

and Pharmacology 60:943-950  

 

Hendry JH, West CM. 1997. Apoptosis and mitotic cell death: their relative contributions to 

normal-tissue and tumor radiation response. Int J Radiat Biol 71:709-19 

 

Herman MP, Dorsey P, John M, Patel N, Leung R, Tewari A. 2009. Techniques and predictive 

models to improve prostate cancer detection. Cancer Jul 1;115(13 Suppl):3085-99 

 

Hertveldt K, Philippe J, Thierens H, Cornelissen M, Vral A and de Ridder L. 1997. Flow 

cytometry as a quantitative and sensitive method to evaluate low dose radiation induced apoptosis 

in vitro in human peripheral blood lympgocytes. Int J Radiat Biol, vol. 71, no. 4, 429-433 

 

Hoeller U, Tribius S, Kuhlmey A, Grader K, Fehlauer F, Alberti W. 2003. Increasing the rate of 

late toxicity by changing the score? A comparison of RTOG/EORTC and LENT/SOMA scores. 

Int J Radiat Oncol Biol Phys 55(4): p.1013-8 

 

Hoeller U, Borgmann K, Bonacker M, Kuhlmey A, Bajrovic A, Jung H, Alberti W, Dikomey E. 

2003. Individual radiosensitivity measured with lymphocytes may be used to predict the risk of 

fibrosis after radiotherapy for breast cancer. Radiotherapy and Oncology 69:137-144  

 

Hoffman GR, Sayer AM, Littlefield LG. 2002. Higher frequency of chromosome aberrations in 

late-arising first-division metaphases than in early-arising metaphases after exposure of human 

lymphocytes to X-rays in G0. Int J of Radiat Biol 78:765-772 

 

Howe O, O’Malley K, Lavin M, Gardner RA,  Seymour C, Lyng F, Mulvin D, 

Quinlan DM and Mothersill C. 2005. Cell Death Mechanisms Associated with G2 

Radiosensitivity in Patients with Prostate Cancer and Benign Prostatic Hyperplasia. Radiat Res  

164, 627–634  

IAEA, Radiation, People and Environment J. Ford, Editor. 2004 



References 100 

Ito A, Nakano H, Kusano Y, Hirayama R, Furusawa Y, Murayama C, Mori T, Katsumura Y, 

Shinohara K. 2006. Contribution of indirect action to radiation-induced mammalian cell 

inactivation: Dependence on photon energy and heavy-ion LET. Radiat Res 165:703-712 

 

Johansen J, Bentzen SM, Overgaard J, et al. 1996. Relationship between the in vitro 

radiosensitivity of skin fibroblasts and the expression of subcutaneous fibrosis, telangiectasia, and 

skin erythema after radiotherapy. Radiother Oncol 40:101-109 

 

Jorgensen TJ, Prasad SC, Brennan TP, Dritschilo A. 1990. Constraints to DNA unwinding near 

radiation-induced strand breaks in Ewing’s sarcoma cells. Radiation Research 123, 320-324 

 

Joubert A, Zimmerman KM, Bencokova Z, Gastaldo J, Chavaudra N, Favaudon V, Arlett CF, 

Foray N. 2008. DNA double-strand break repair defects in syndromes associated with acute 

radiation response: At least two different assays to predict intrinsic radiosensitivity? Int J of 

Radiat Biol 84(2): p. 107-25 

 

Karim-Kos HE, de Vries E, Soerjomatarm I, et al. 2008. Recent trends of cancer in Europe: A 

combined approach of incidence, survival and mortality for 17 cancer sites since the 1990s. Eur J 

Cancer 44:1345-89 

 

Kern P, Keilholtz L, Forster C, Seegenschmiedt MH, Sauer R, Herrmann M. 1999. In vitro 

apoptosis in peripheral blood mononuclear cells induced by low-dose radiotherapy displays a 

discontinuous dose-dependence. Int J Radiat Biol., vol. 75, no. 8, 995-1003 

 

Lankoff A, Krzowski L, Glab J, Banasik A, Lisowska H, Kuszewski T, Gozdz S, Wojcik A. 2004. 

DNA damage and repair in human peripheral blood lymphocytes following treatment with 

microcystin-LR. Mutation Research 559:131-142 

 

Larsson DE, Gustavsson S, Hultborn R, Nygren J, Delle U, Elmroth K. 2007. Chromosomal 

damage in two X-ray irradiated cell lines: Influence of cell cycle stage and irradiation 

temperature. Anticancer Res 27:749-753 

 

Le Beyec J, Xu R, Lee SY, Nelson M, Rizki A, Alcaraz J, Bissell MJ. 2007. Cell shape regulates 

global histone acetylation in human mammary epithelial cells. Experimental Cell Res 313:3066-

3075 

 



References 101 

Lee TK, Allison RR, O’Brien KF, et al. 2003. Lymphocytes radiosensitivity correlated with 

pelvic radiotherapy morbidity. Int J Radiat Oncol Biol Phys 57:222-229 

 

Lin K, Lipsitz R, Miller T, Janakiraman S. 2008. Benefits and harms of prostate-specific antigen 

screening for prostate cancer: an evidence update fort he US Preventive Services Task Force: Ann 

Intern Med 149:192-199 

 

Lisowska H, Lankoff A, Wieczorek A, Florek A, Kuszewski T, Gozd S, Wojcik A. 2006. 

Enhanced chromosomal radiosensitivity in peripheral blood lymphocytes of larynx cancer 

patients. Int J Radiat Oncol Biol Phys 66(4):1245-1252 

 

Ljungman M. 1991. The influence of chromatin structure on the frequency of radiation-induced 

DNA strand breaks: a study using nuclear and nucleoid monolayers. Radiation Research 126, 58-

64 

 

Löbrich M, Rief N, Kühne M, Heckmann M, Fleckenstein J, Rübe C, Uder M. 2005. In vivo 

formation and repair of DNA double-strand breaks after computed tomography examinations. 

Proc Natl Acad USA Jun 21;102(25):8984-9. 

 

Lorimore SA, Coates PJ, Wright EG. 2003. Radiation-induced genomic instability and bystander 

effects: inter-related non-targeted effects of exposure to ionising radiation. Oncogene 22:7058-69 

 

Lynch TH, Anderson P, Wallace DMA, Kondratowicz GM, Beaney RP, Vaughan ATM. 1991. A 

correlation between nuclear supercoiling and the response of patients with bladder cancer to 

radiotherapy. British Journal of Cancer 64, 867-871 

 

MacKay RI, Niemierko A, Goitein M, et al. 1998. Potential clinical impact of normal-tissue 

intrinsic radiosensitivity testing. Radiother Oncol 46:215-219 

 

Morgan WF. 2003a. Non-targeted and delayed effects of exposure to ionising radiation: I. 

Radiation-induced genomic instability and bystander effects in vitro. Radiat Res 159:567-80 

 

Morgan WF. 2003b. Non-targeted and delayed effects of exposure to ionizing radiation: II. 

Radiation-induced genomic instability and bystander effects in vivo, clastogenic factors and 

transgenerational effects. Radiat Res 159:581-96 

 



References 102 

Mozdarani H, Mansouri Z, Haeri SA. 2005. Cytogenetic radiosensitivity of G0-lymphocytes of 

breast and esophageal cancer patients as determined by microbucleus assay. J Radiat Res (Tokyo) 

2005;46:111-116. 

 

Mueller WU, Bauch T, Stüben G, et al. Radiation sensitivity of lymphocytes from healthy 

individuals and cancer patients as measured by comet assay. Radiat Environ Biophys 40:83-9 

 

Nagy R, Sweet K, Eng C. 2004. Highly penetrant hereditary cancer syndromes. Oncogene 

23:6445-6470 

 

Nomura AM, Kolonel LN. 1991. Prostate cancer: a current perspective. Epidemiol Rev 13:200-

227 

 

Nowak C, Obe G. 1984. On the origin of chromosomal aberrations in human peripheral 

lymphocytes in vitro. I. Experiments with Neurospora endonuclease and polyethylene glycol. 

Human Genetics 66:335-343 

 

Olive PL, Hilton J, Durand RE. 1986. DNA conformation of Chinese hamster V79 cells and 

sensitivity to ionising radiation. Radiation Research 107, 115-124 

 

Olive PL, Banath JP. 1993. Detection of DNA double-strand breaks through the cell cycle after 

exposure to X-rays, bleomycin, etoposide and 125IdUrd. Int J of Radiat Biol 64:349-358 

 

Olive PL, Banath JP. 2004. Phosphorylation of histone H2AX as a measure of radiosensitivity. Int 

J Radiat Oncol Biol Phys Feb 1;58(2):331-5 

 

Ososba D, Rodriquez G, Myles J, et al. Interpreting the significance of changes in health-related 

quality-of-life scorses. J Clin Oncol 1998;16:139-144. 

 

Ozsahin M, Crompton NE, Gourgou S, Kramar A, Li L, Shi Y, Sozzi WJ, Zouhair A, Mirimanoff 

RO, Azria D. 2005. CD4 and CD8 T-lymphocytes apoptosis can predict radiation-induced late 

toxicity: a prospective study in 399 patients. Clin Cancer Res. Oct 15; 11(20):7426-33 

 

Papworth R, Slevin N, Roberts SA, et al. 2001. Sensitivity to radiation-induced chromosome 

damage may be a genetic predisposition in young head and neck cancer patients. Br J Cancer 

84:776-782 

 



References 103 

Parshad R, Price FM, Bohr VA, Cowans KH, Zujewski JA, Sanford KK. 1996. Deficient DNA 

repair capacitiy , apredisposing factor in breast cancer. British J of Can 74, 1-5 

 

Patel RK, Trivedi AH, Arora DC, Bhatavdekar JM, Patel DD. 1997. DNA repair proficiency in 

breast cancer patients at their first degree relatives. Int J of Can 73, 20-24 

 

Paull TT, Ragakou EP, Yamazaki V, Kirchgessner CU, Gellert M, Bonner WM.  

A critical role for histone H2AX in recruitment of repair factors to nuclear foci after DNA 

damage. Curr Biol. 200 Jul 27-Aug 10;10(15):886-95 

 

Peters L. McKay M. 2001. Predictive assays: will they ever have a role in the clinic? Int J Radiat 

Oncol Biol Phys 49:501-504 

 

Peto J, Houlston RS. 2001. Genetics and the common cancers. Eur J of Cancer 37 Suppl 8: S88-

96. 

 

Pinkawa M, Fischedick K, Asadpour B, et al. Toxicity profile with a large prostate volume after 

external beam radiotherapy for localized prostate cancer. Int J Radiat Oncol Biol Phys 

2008;70:83-89. 

 

Quinn MJ, d’Onofrio A, Møller B, Black R, Martinez-Garcia C, Møller H, Rahu M, Robertson C, 

Schouten LJ, LaVecchia C, Boyle P. 2003. Cancer mortality trends in the EU and acceding 

countries up to 2015. Ann Oncol Jul;14(7):1148-52 

 

Raaphorst GP, Malone S, Alsbeih G, Souhani L, Szumacher E, Girard A. 2002. Skin fibroblasts in 

vivo radiosensitivity can predict for late complications following AVM radiosurgery. Radiother 

Oncol 64:153-6 

 

Roberts SA, Spreadborough AR, Bulman B, Barber JBP, Evans DGR, Scott D. 1999. Heritability 

of cellular radiosensitivity: a marker of low penetrance predisposition genes in breast cancer? Am 

J Hum Genet. 65: 784-794 

 

Rogakou E, Pilch DR, Orr AH, Ivanova VS, Bonner WM. 1998. DNA double-stranded breaks 

induce histone H2AX phosphorylation on serine 139. J. Biol. Chem. 273:5858–5868. 

 
Rogakou EO, Bonn C, Redon C, Bonner WM. 1999. Megabase chromatin domains involved in 

DNA double-strand breaks in vivo. J Cell Biol. Sep 6; 146(5):905-16 



References 104 

Ross R, Schottenfeld D. Prostate cancer. In: Schottenfeld D, Frauemni J, (end.). Cancer 

Epidemiology and Prevention, Oxford University Press: Oxford, 1996, pp 1180+1206 

 

Roots LA, Chatterjee A, Chang P, Lommel L, Blakely EA. 1985. Characterisation of hydroxyl 

radical-induced damage after sparsely and densely ionising irradiation. Int J of Radiat Biol 

47:157-166 

 

Rothkamm K and Loebrich M. 2003. Evidence for a lack of DNA double-strand break repair in 

human cells exposed to very low x-ray doses. Proceedings of the National Academy of Sciences 

U.S.A. 100(9):p.5057-62. 

 

Rudat V, Dietz A, Conradt C, et al. 1997. In vitro radiosensitivity of primary human fibroblasts. 

Lack of correlation with acute radiation toxicity in patients with head and neck cancer. Radiother 

Oncol 43:181-188 

 

Rudat V, Dietz A, Nollert J, et al. 1999. Acute and late toxicity, tumour control and intrinsic 

radiosensitivity of primary fibroblasts in vitro of patients with advanced head and neck cancer 

after concomitant boost radiochemotherapy. Radiother Oncol 53:233-245 

 

Russell NS, Begg AC. 2002. Predicitve assays for normal tissue damage. Radiother Oncol 

64:125-129 

Rubin P and Casarett GW. 1969. Clinical Radiation Pathology (Philadelphia: W. B. Saunders). 

Ryan LA, Smith RW, Seymour CB, Mothersill CE. 2008. Dilution of irradiated cell conditioned 

medium and the bystander effect. Radiat Res 169:188-196 

 

Sachs L. 1984. Angewandte Statistic. 6th ed. Berlin: Springer Verlag 

 

Sanford KK, Parshad R, Gantt RE, Tarone RE, Jones GM, Price FM. 1989. Factors affecting and 

significance of G2 chromatin radiosensitivity and predisposition to cancer. Int J of Radiat Biol, 

55, 963-968. 

 

Sarasin A. 2003. An overview of the mechanisms of mutagenesis and carcinogenesis. Mut Res 

544:99-106 

 



References 105 

Schwartz JL and Vaughan ATM. 1993. DNA-nuclear matrix interactions and ionising radiation 

sensitivity. Environmental and Molecular Mutagenesis 22, 231-233 

 

Scott D, Spreadborough A, Levine E, Roberts SA. 1994. Genetic predisposition in breast cancer. 

Lancet Nov 19;344(8934):1444 

 

Scott D, Spreadborough A, Jones LA, Roberts SA, Moore CJ. 1996. Chromosomal 

radiosensitivity in G2-phase lymphocytes as an indicator of cancer predisposition. Rad Res 145:3-

16 

 

Scott D, Barber JBP, Spreadborough AR, Burrill W, Roberts SA. 1999. Increased chromosomal 

radiosensitivity in breast cancer patients: a comparison of two assays. Int J Radiat Biol. 

Jan:75(1):1-10 

 

Sedelnikova OA, Rogakou EP, Panuytin IG, Bonner W. Quantitative detection of 125IUdr-induced 

DNA double-strand breaks with γ-H2AX antibody. 2002. Radiation Res. 158, 486-492 

 

Singh NP, Tice RR, Stephensen RE, Schneider E. 1991. A microgel electrophoresis technique fort 

he direct quantitation of DNA damage and repair in individual fibroblasts cultured on microscope 

slides. Mut Res 252:289-296 

 

Slonina D, Klimek M, Szpytma T, et al. 2000. Comparison of the radiosensitivity of normal-tissue 

cells with normal-tissue reactions after radiotherapy. Int J Radiat Biol 76:1255-1264 

 

Slupphaug G, Kavli B, Krokan HE. 2003. The interacting pathways for prevention and repair of 

oxidative DNA damage. Mut Res 531: p. 231-51 

 

Smith J, Smith K, Mezard C. 2001. Tying up Loose Ends: Generation and Repair of DNA 

Double-Strand Breaks. Atlas Genet Cytogenet Oncology Haematology 

 

Stangelberger A, Waldert M, Djavan B. 2008. Prostate cancer in elderly men. Rev Urol, 10:111-

119 

 

Steel GG et al. 1993. Basic clinical radiobiology. 

 

Swift M, Morrel D, Cromartie E, Chamberlin AR, Skolnick MH, Bishop DT. 1986. The incidence 

and gene frequency of ataxia-telangiectasia in the United States. Am J of Hum Gen 39:573-583 



References 106 

Takahashi A, Ohnishi T. 2005. Does γH2AX foci formation depend on the presence of DNA 

double strand breaks? Cencer Letter 229:171-179 

 

Taylor AM, Harnden DG, Arlett CF, Harcourt SA, Lehmann AR, Stevens S, Bridges BA. 1975. 

Ataxia telangiectasia: a human mutation with abnormal radiation sensitivity. Nature Dec 

4;258(5534):427-9 

 

Terzoudi GI, Jung T, Hain J, et al. 2000. Increased G2 chromosomal radiosensitivity in cancer 

patients: the role of cdk1/cyclin-B activity level in the mechanisms involved. Int J Radiat Biol 76, 

No. 5, 606-615 

 

Tounekti O, Kenani A, Foray N, Orlowski S, Mir LM. 2001. The ratio of single- to double-strand 

DNA breaks and their absolute values determine cell death pathway. British Journal of Cancer 

84(19): p. 1272-9 

 

Tsuzuki T, Fujii Y, Sakumi K, Tominaga Y, Nakao K, Sekiguchi M, Matsushiro A, Yoshimura Y, 

Morita T. 1996. Targeted disruption of Rad51 gene leads to lethality in embryonic mice. Proc of 

the Nat Acad of Scien USA 93(13): p. 6236-40 

 

Tucker SL, Geara FB, Peters LJ, Brock WA. 1996. How much could the radiotherapy dose be 

altered for individual patients based on a predictive assay of normal-tissue radiosensitivity? 

Radiother Oncol 38:103-113 

 

Turesson I. 1990. Individual variation and dose dependency in the progression rate of skin 

telangiectasia. Int J Radiat Oncol Biol Phys 36:1065-75 

 

Turesson I, Nyman J, Holmberg E, Oden A. 1996. Prognostic factors for acute and late skin 

reactions in radiotherapy patients. Int J Radiat Oncol Biol Phys 36:1065-1075 

 

Virsik-Peuckert RP, Harder D. 1986. Temperature and the formation of radiation-induced 

chromosome aberrations. II. The temperature dependence of lesion repair and lesion interaction. 

Int J of Radiat Biol 49:673-681 

Volz-Sidiropoulou E, Pinkawa M, Fischedick K, et al. Factor analysis of the Expanded Prostate 

Cancer Index Composite (EPIC) in a patient group after primary (external beam radiotherapy and 

permanent iodine-125 brachyterapy) and postoperative radiotherapy for prostate cancer. Curr 

Urol 2008;2:122-129. 

 



References 107 

Wakeford R. 2004. The cancer epidemiology of radiation. Oncogene 23:6404-28 

Wang Y, Cortez D, Yazdi P, Neff N, Elledge SJ, Qin J. 2000. BASC, a super complex of BRCA1 

– associated Proteins invovlved in the recognition and repair of aberrant structures. Genes and 

Development 14: p. 927-39 

 

Wang WD, Chen ZT, Li DZ, Cao ZH, Sun SL, Pu P, Chen XP. 2005. Correlation between DNA 

repair capacity in lymphocytes and acute side effects to skin during radiotherapy in 

nasopharyngeal cancer patients. Clin Cancer Res 15;11 (14):5140-5 

 

Ward JF. 1988. DNA damage produced by ionising radiation in mammalian cells: identities, 

mechanism of formation, and reparability. Pro Nucl Acid Res Mol Biol 35, 95-125 

 

Ward JF. 1990. The yield of DNA double-strand breaks produced intracellularly by ionising 

radiation: a review. Int J of Radiat Bioly 57, 1141-1150 

 

Wei JT, Dunn RL, Litwin MS, et al. Development and validation of the expanded prostate cancer 

index composite (epic) for comprehensive assessment of health-related quality of life in men with 

prostate cancer. Urology 2000;56:899-905. 

 

Whitaker SJ. 1992. DNA damage by drugs and radiation: what is important and how is it 

measured? Eur  J  Cancer 28, 273-276 

 

Widel M, Kolosza Z, Jedrus S, et al. 2001. Micronucleus assay in vivo provides significant 

prognostic information in human cervical carcinoma; the updated analysis. Int J Radiat Biol 

77:631-636 

 

Widel M, Jedrus S, Lukaszczyk B, et al. 2003. Radiation-induced micronucleus frequency in 

peripheral blood lymphocytes is correlated with normal tissue damage in patients with cervical 

carcinoma undergoing radiotherapy. Radiat Res 159:713-721 

 

Wilbur J. 2008. Prostate cancer screening: The continuing controversy. American Family 

Phisician, volume 78, number 12 

 

Wojcik A, Sauer K, Zölzer F, Bauch T, Müller W-U. 1996. Analysis of DNA damage recovery 

processes in the adaptive response to ionising radiation in human lymphocytes. Mutagenesis 

11:291-297 



References 108 

Wojewodzka M, Kruszewski M, Szumiel I. 1996. Anti-CD38 prevents the development of the 

adaptative response induced by X-rays in human lymphocytes. Mutagenesis vol. 11 no. 6 pp.593-

596 

 

Wojewodzka M, Buraczewska I, Kruszewski M. 2002. A modified neutral comet assay: 

Elimination of lysis at high temperature and validation of the assay with anti-single-stranded 

DNA antibody. Mut Res 518:9-20 

 

Wuttke K, Müller WU, Streffer C. 1998. The sensitivity of the in vitro cytokinesis-blocked 

micronucleus assay in lymphocytes for different and combined radiation qualities. 

Strahlentherapy und Oncologie 174:262-268 



Abbreviations 109 

Abbreviations 
 

AT     ataxia telangiectasia 

ATM     ataxia telangiectasia mutated 

BNC     binucleated cell 

CP     computer tomography 

DMSO     dimethyl sulphoxide 

DI     dispersion index 

DAPI     4’.6-diamidino-2-phenylindole 

dsb     double strand breaks      

EPIC     Expanded Prostate Cancer Index Composite 

FACS     fluorescence activated cell sorting 

FISH     fluorescence in situ hybrydisation 

FITC     fluorescein isothiocyanate 

FSC     forward scatter channel 

γ-H2AX     phosphorylated histone H2AX 

Gy     gray 

G5 mTR-/-    mice lacking a RNA component of telomerase 

HNPCC    hereditary non-polyposis colorectal cancer  

HR     homologous recombination 

KCL      potassium chloride 

Kg     kilogram 

LMS     lymphocytes separation medium 

MeV      mega-electron volt 

M      mol 

ml     mililiter 

Mn     micronuclei 

UV     ultraviolet light 

PC     prostate cancer 

PBL     peripheral blood lymphocytes 

PFGE     pulsed field gel electrophoresis 

PHA     phytohaemagglutinin 

PI     propidium iodide 

PSA     prostate specific sntigen 
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PS     phospholipid phosphatidylserine 

PTV     planning target volume 

RI     replication index  

RT      room temperature 

ROS     rective oxygen species     

SF     survival fraction 

SSC     side scatter channel 

Sv     sievert 

TM     Tail Moment 

T1-3N0M0    TNM grading system to describe prostate tumour  

T describes the tumour and uses different numbers to 

explain how large it is 

N stands for nodes and tells whether the cancer has spread 

to the lymph nodes 

M means metastatic and tells whether the cancer has spread 

throughout the   body    

WB     whole blood  

XP     xeroderma pigmentosum 
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Table 3.12: Sensitive prostate cancer patients assessed on the basis of 90th cut off point for 

spontaneous and radiation-induced DNA damage measured using G2-, γ-H2AX- 

and apoptosis/necrosis assays. The cut off points were estimated for each assay 

for spontaneous and radiation-induced DNA damage in healthy donors, 

respectively. 
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Figure 1.1: The effects of ionising radiation on tissue and cellular level (adapted from 

Giotopoulos 2008). 

Figure 2.2:  Emission spectra of FITC and PI excited by blue light (490 nm). 
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irradiated with 1 Gy, both incubated 24 h at 37°C after exposure are 

presented.     
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Figure 3.2: Replication index obtained in PBL from donors 1, 2 and 3 exposed to 2 Gy  
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Figure 3.10: Radiation-induced FITC fluorescence 0.5 h, 5 h and 24 h after exposure  

to γ-rays in prostate cancer patients and healthy donors. Error bars indicate 

standard deviations. 

Figure 3.11: Mean radiation-induced foci number 0.5 h, 5 h and 24 after exposure to γ-rays in 

prostate cancer patients and healthy donors. Error bars indicate standard 

deviations. 

Figure 3.12: Percent of radiation-induced early apoptotic PBL in prostate cancer patients and  

                      healthy donors 0.5 h, 5 h and 24 h after exposure. Error bars indicate standard 
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Figure 3.13: Percent of radiation-induced late apoptotic/necrotic PBL in prostate cancer 

patients and healthy donors 0.5 h, 5 h and 24 h after exposure to 1 Gy. Error 

bars indicate standard deviations.    

Figure 3.14: Percent of radiation-induced late apoptotic/necrotic PBL in prostate cancer 

patients and healthy donors 5 h after exposure to 1 Gy. Error bars indicate 

standard deviations. 
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Raw data 
Appendix A: The numbers of scored spontaneous and radiation-induced chromatid aberrations 

 

 
Aberrations per 100 cells 

 

 
Aberrations per 100 cells 

 
Aberrations per 100 cells 

 
 

Group S 
 

Control 
 

0.5 Gy 
  

Group 0 
 

Control 
 

0.5 Gy 
  

Group HD 
 

Control 
 

0.5 Gy 
 

P 2 3 161  P 9 2 79  HD 1 0 88 
P 4 2 102  P 10 1 15  HD 2 0 65 
P 8 9 118  P 12 6 32  HD 3 1 55 
P 11 0 33  P 15 1 33  HD 4 0 45 
P 13 2 75  P 17 0 174  HD 5 1 56 
P 14 1 44  P 19 3 184  HD 7 3 46 
P 16 1 43  P 22 4 27  HD 8 0 55 
P 18 5 202  P 23 1 26  HD 9 1 37 
P 20 1 52  P 24 1 24  HD 10 0 31 
P 25 1 44  P 29 0 65  HD 12 0 25 
P 26 7 51  P 30 1 60  HD 13 0 22 
P 27 5 60  P 31 0 95  HD14 0 18 
P 28 2 38  P 35 0 105  HD 15 1 16 
P 33 2 101  P 37 1 43  HD 16 0 47 
P 34 2 88  P 39 0 43  HD 17 1 32 
P 36 0 66  P 41 1 96  HD 18 2 46 
P 38 1 41  P 42 0 77  HD 20 0 32 
P 40 0 130  P 43 0 36  HD 21 0 23 
P 44 0 38  P 46 1 78  HD 22 1 51 
P 45 0 33  P 47 1 56  HD 23 3 37 
P 48 1 41  P 52 0 87  HD 24 2 57 
P 53 0 59  P 54 2 42     
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Appendix B: Mean foci number per 100-120 cells  
 

 

 
Patients with effects (S) 

 
Patients without effects (0) 

 
Healthy donors (HD) 

 

Patients 
 
 

 
Control 

0.5 h 
 

 1 Gy 
0.5 h  

    

1 Gy 
5 h 

 

1 Gy 
24h 

 

Control 
24 h 

 

Patients  
 
 

Control 
0.5 h 

 

 1 Gy 
0.5 h   

   

1 Gy 
5 h 

 

1 Gy 
24h 

 

Control 
24 h 

 

Donors 
 
 

Control 
0.5 h 

 

 1 Gy 
0.5 h    

 

1 Gy 
5 h 

 

1 Gy 
24h 

 

Control 
24 h 

 
 

P 8 1,48 14,27 6,55 5,86 2,04 P 6 0,88 12,84 6,9 6,06 1,1 HD 1 1,38 11,24 8,2 6,22 1,72 

P 11 0,663 6,4 1,655 1,555 0,773 P 7 1,58 12,5 6,62 4,68 1,18 HD 2 0,58 9,44 6,56 4,76 0,98 

P 13 1,01 15,73 6,05 2,61 0,86 P 9 1,26 11,59 4,97 1,3 0,84 HD 3 0,74 8,3 5,96 3,24 1,7 

P 14 0,79 17,63 5,03 2,99 1,05   P 10 1,36 10,79 6,02 3,39 1,22 HD 4 1,59 12,66 7,76 1,5 1,47 

P 16 5,083 5,901 3,659 3,016    P 12 1,44 13,22 4,94 6,02 1,91 HD 5 0,77 11,66 6,8 2,81 0,67 

P 20 0,8 10,24 4,09 2,67 0,75   P 15 0,96 11,7 4,71 3,11 0,72 HD 7 0,52 13,32 3,45 2,02 0,3 

P 25 3,516 7,033 4     P 17 1,42 17,14 7,14 5,36 1,17 HD 8 0,5 4,783 1,258 1,325 0,975 

P 26 1,232 5,617 1,795 0,808 1,285   P 22 1,402 6,839 4,045 3,327 0,991 HD 9 1,9 6,708 2,825 3,492 2,317 

P 27 0,864 7,536 3,964 3,064 2,018   P 23 0,214 8,556 1,207 0,685 0,225   HD 10 1,793 9,125 6,55 3,678 3,433 

P 28 1,017 7,15 4,508 2,3 0,967   P 24 2,636 9,318 4,396 2,082 1,432   HD 11 3,017 8,851 4,57 4,15 1,132 

P 32 1,456 2,442 2,603 4,425 2,275   P 29 3,488 12,983 7,367 2,183 1,902   HD 12 3,3 12,207 7,1 2,967 1,728 

P 33 3,76 13,208 7,339 2,754 2,292   P 30 2,942 11,4567 5,554 2,942 4,117   HD 13 1,633 2,767 3,385 4,437 2,767 

P 34 3,883 14,342 7,182 4,292 3,593   P 31 4,892 11,417 6,785 4,042 3,683   HD 14 2,678 9,675 6,117 2,918  

P 36 4,659 10,669 6,157     P 35 2,817 12,309 6,408 3,289 2,43   HD 15 4,261 9,094 7,775 3,933  

P 38 0,167 7,44 2,55 0,777 0,992   P 37 2,025 8,694 4,408 2,192 1,5   HD 16 2,508 8,692 4,383 7,032 1,793 

P 40 1,125 7,017 2,767 2,133 1,388   P 39 2,358 12,851 6,075 3,612 1,75   HD 17 3,367 10,642  3,215 3,672 

P 45 2,342 9,808 4,653 3,194 0,943   P 41 1,225 4,592 2,308 2,587 0,458  HD 18 2,975 10,623 5,75 4,421 1,025 

P 48 2,612 9,388 4,992 0,727 1,831   P 42 2,372 9,433 4,15 3,333 1,675   HD 20 2,253 9,439 6,653 4,458 1,517 

P 50 2,6 11,388 6,355 3,617 2,375   P 43  3,867 4,325 2,6 2,333   HD 21 4,405 12,092 6,205 3,81 1,521 

P 51 0,022 6,167 3,442 0,869 0,717   P 47 0,856 6,175 3,55 1,475 0,525   HD 22  9,467 6,608 3,518 2,721 

P 53 3,3 7,033 6,57 1,74 1,355   P 49 1,785 12,458 5,603  2,066   HD 23 0,742 3,717 1,583 1,542 2,925 

        P 52 3,129 8,208 3,861 2,636 1,708   HD 24 2,892 10,328 5,508 4,117 4,052 

      
  P 54 

 
3,008 

 
9,744 

 
4,358 

 
4,342 

 
1,959 
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Appendix C: FACS results  
 

Patients with effects (S) 
 

 
Patients without effects (0) 

 
Healthy Donors (HD) 

 

Patients 
 

 
Control 

0,5 h 
 

1 Gy 
0,5 h 

 

1 Gy 
5 h  

 

1 Gy 
24 h  

 

Control 
24 h  

 
Patients 

 

Control 
0,5 h 

 

1 Gy 
0,5 h 

 

1 Gy 
5 h 

  

1 Gy  
24 h 

 

Control 
24 h  

 
 Donors 

 

Control 
0,5 h 

 

1 Gy 
0,5 h 

 

1 Gy 
 5 h 

  

1 Gy  
24 h 

 

Control 
24 h  

 

P 8  3,164 9,875 6,307 2,391 2,881 P 9 3,172 8,928 4,744 2,489 2,879 HD 1 1,121 6,079 4,661 2,851 1,794 

 P 11  1,704 5,378 3,838 1,965 1,8   P 10 1,925 5,743 3,932 1,845 1,828 HD 2 2,028 9,816 5,653 2,277 2,338 

 P 13  1,73 6,119 3,508 1,855 1,536   P 12 1,852 5,211 3,621 1,953 1,569 HD 3 2,093 9,493 6,523 2,864 2,805 

P 14 1,823 5,603 3,296 2,084 1,665   P 15 1,933 5,915 2,998 2,318 2,148 HD 4 2,671 14,127 8,691 3,312 2,628 

P 16 1,276 1,535 1,107 1,083 1,455   P 17 1,131 5,774 4,296 4,343 1,402 HD 5 3,049 12,79 6,545 3,347 3,386 

P 18 1,678 4,448 4,171 4,041 2,661   P 19 1,609 7,043 3,591 3,022 3,208 HD 6 2,359 10,572 5,149 2,433 2,648 

P 20 3,218 6,476 5,696 3,562 3,144   P 21 2,86 7,684 5,145 3,104 2,832 HD 7 1,524 5,312 2,597 1,531 1,606 

 P 25  3,384 2,839 1,691 1,054 0,725   P 22 2,849 7,572 4,938 2,66 2,832 HD 8 1,383 6,587 3,138 1,604 1,656 

P 26 3,795 9,529 6,103 3,216 3,542   P 23  3,606 9,303 3,004 2,295 2,362 HD 9 2,772 7,172 4,91 2,981 2,634 

P 27 2,91 5,989 4,551 2,846 3,224   P 24  3,002 9,094 4,1 2,471 2,434   HD 10 2,294 4,168 4,361 2,812 2,704 

P 28 2,66 7,641 5,719 3,095 2,992  P 29 2,849 5,263 5,053 2,147 2,442   HD 11 2,624 5,348 4,397 2,941 2,183 

P 32 2,435 3,972 2,915 2,194 2,68  P 30 2,669 4,944 3,65 2,232 2,746   HD 12 2,866 5,953 4,437 2,5 2,868 

 P 33  2,094 5,388 4,096 2,326 2,243   P 31  2,508 5,529 4,106 2,4 2,149   HD 13 2,732 5,41 3,93 2,755 2,308 

P 34 2,988 6,703 5,406 3,405 3,294  P 35 2,909 5,452 4,691 2,96 2,753   HD 14 2,666 5,869 3,913 2,486 2,714 

P 36 3,092 4,62 4,381 2,464 2,716   P 37  2,523 5,282 3,977 2,78 2,584   HD 15 2,513 4,733 3,837 2,731 2,703 

 P 38  1,538 3,702 2,423 2,483 2,159  P 39 2,451 4,456 3,267 2,496 2,311   HD 16 2,887 5,302 4,105 3,487 2,481 

P 40 2,733 5,184 5,547 3,947 3,124  P 41 3,345 5,585 4,54 3,692 3,092   HD 17 2,634 5,657 3,734 2,47 2,855 

P 44 2,659 6,878 4,58 2,772 2,85  P 42 2,738 6,045 4 3,389 2,869   HD 18 3,302 5,818 4,236 2,992 2,475 

P 45 3,345 5,476 4,07 3,333 2,922  P 43 2,82 5,679 3,643 2,452 2,507   HD 20 3,036 6,131 5,052 2,983 2,942 

P 48 1,542 2,342 2,401 1,514 1,392  P 49 2,925 6,168 3,564 2,932 2,603   HD 21 2,295 5,142 3,711 2,715 2,56 

P 50 2,94 5,688 4,667 3,088 2,551  P 52 2,389 5,099 3,406 2,514 2,695       

P 51 2,063 3,57 3,064 2,06 2,227  P 54 2,163 4,449 2,934 2,175 2,199       
P 53 

 
2,397 

 
3,968 

 
3,464 

 
2,568 

 
2,671 
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Appenix D: Early apoptosis results 
 

Patients with effects (S) Patients without effects (0) Haelthy donors (HD) 
 

Controls 
 

Irradiated samples 
 

Controls 
 

Irradiated samples 
 

Controls 
 

Irradiated samples 
 

Patients 
 0.5 h 5 h 24 h 0.5 h 5 h 24 h 

Patients 
 0.5 h 5 h 24 h 0.5 h 5 h 24 h 

Donors 
 0.5 h 5 h 24 h 0.5 h 5 h 24 h 

P 8 15,1 17,2 19 15,7 22,7 41,4 P 6 9,4 7,6 7,9 5 10,4 39,55 HD 3 25,4 4,9  15,1 6,1 13,6 

P 11 5,3 4,1 5 5,85 5,3 17,4 P 10 9,5 8,5 15,4 7,65 11,75 19,95 HD 4 2  7 1,3 3 20,9 

P 13 17,6 15,1 7,1 21 16,8 22,6 P 12 8,6 12,8 9,7 12 8,85 11 HD 5 14 11,7 8,1 14,9 14 15,9 

P 14 18,1 16,2 21,1 17,35 19,1 25,35 P 15 26,8 20,5 17,7 23,45 20,05 22,2 HD 7 6,6 5,1 4,1 6,5 8,8 13,8 

P 16 19,3 16,7 13,1 21,65 14,05 14,8 P 17 19,3 15 22,7 19,55 19,5 27,35 HD 8 12 8,8 6,3 11,6 16 23,5 

P 18 23,6 20 15,6 23,95 18,6 22,35 P 19 15,6 10,8 15,2 16,7 12,7 19,75 HD 9 18,2 24,3 22,6 24,8 18,7 33,4 

P 20 21,6 21,1 27 27,1 24,1 27 P 21 20 15,5 21,8 19,9 16,5 31,2 HD 10 14,1 10,1 13,4 15,1 11,2 26,6 

P 25 13,7 11,7 13,2 14,9 12,1 24,5 P 22 15 16,8 21,6 19 15,1 18,7 HD 11 14,4 10,1 14,3 14,3 10,5 26,1 

P 27 7,7 6,7 10 7,7 7,7 26 P 23 11,9 9,8 16,4 10,8 10,8 19,7 HD 12 10,6 8,3 10,4 11,5 10,6 23 

P 28 13,7 12,7 14,9 13,7 11 32,3 P 29 11,8 8,7 11,6 15,9 10,9 24,6 HD 13 22,4 21,2  23,1 19,4  

P 32 5,7 4,8 7,1 6 5,7 21,7 P 30 13,7 11,9 15,2 14,2 14,5 25,6 HD 14 10,1 10,2  10,6 9,1  

P 33 9,3 6,2 12 8,6 7,1 20,6 P 31 13,7 10,1 8,2 14,6  23,9 HD 15 13,1 9,2  13,5 8,8  

P 34 9,9 10,3 14,8 10,7 10,8 20,1 P 35 11,3 9,4 14 11,2 9,9 18,8 HD 16 9,7 5,7 6,2 10 6,8 12,3 

P 36 8,8 7 12,7 9,3 8,3 16,7 P 37 13,1 8 12,9 11,5 9,3 14,9 HD 17 14,9 13,6 16,1 14,6 12,3 27,6 

P 38 19 15,5 20,4 18,2 18,1 29,9 P 39 12 8,3 12,1 11,6 8,8 17,9 HD 18 8,2 6,8 7,8 7,9 8,4 22,6 

P 40 5,7 5,4 8,7 3,8 7,2 22,3 P 41 14,9 9,7 14,1 16,5 11,9 22,7 HD 19 14,7 15,3 33,9 18,4 18,4 37,3 

P 44 22,8 11,4 15,1 22,4 14,3 19,8 P 42 10,9 7,3 12,8 14,3 10,7 21,8 HD 20 13,7 10,1 15,5 10,8 8,8 21 

P 45 11,5 7,3 11,9 11 7,9 16,5 P 43 18,2 14,3 16 17,2 18 39,9 HD 21 8,2 5,9 7,5 7,6 6,4 12,4 

P 48 9,1 7,1 8,9 10,7 7,9 12,4 P 46 10,8 7 10,4 10,5 6,4 13,9 HD 22 15 15,4 17 14,7 15,6 44,6 

P 50 25,7 21,4 19,3 22,3 20,4 28,3 P 47 4,5 2,7 5,5 4,1 3,2 7,2 HD 23 20 16,4 19,3 19,3 15,6 21,4 

       P 54 8,9 6,4 10,6 9,7 7,2 19,1 HD 24 14,3 14,1 22 15,2 17,5 28 
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Appendix E: Late apoptosis/necrosis results 
 

Patients with effects (S)  Patients without effects  (0)                     Haelthy donors (HD) 
 

Controls 
 

Irradiated samples 
  

Controls 
 

Irradiated samples 
  

Controls 
 

Irradiated samples 
  

Patients  
 0.5 h 5 h 24 h 0.5 h 5 h 24 h 

Patients 
 0.5 h 5 h 24 h 0.5 h 5 h 24 h 

Donors  
 0.5 h 5 h 24 h 0.5 h 5 h 24 h 

P8 5,9 8,8 15,8 5,6 7,9 32,9 P6 9,6 7,3 7,8 6,75 7,6 16,4 HD3 11,4 4  11,3 6,3 9,7 

P11 1,7 4,2 3,5 1,95 2,85 16,85 P10 3,2 6,2 8 3,4 5,25 17,4 HD4 4,4  5,2 3,5 5,4 12,5 

P13 1,7 1,9 6,6 2,05 2,35  P12 0,9 0,9 1,9 1,1 0,9 4,5 HD5 1,2 1,9 3,2 1,8 1,7 18,6 

P14 7,2 9,1 9,5 7,6 9,25 28,25 P15 4,7 4,2 4 4,9 4,7 11,45 HD7 2,8 2,6 2,3 2,7 2,7 4,9 

P16 7,7 7,2 4,6 7,9 6,55 9,25 P17 1,4 1,8 4,1 1,4 2,25 13,05 HD8 3,5 4,1 4,6 3 5,3 10,3 

P18 1,4 2,9 5,6 1,85 2,85 14,25 P19 1,2 1,9 3,4 1,35 2,2 9,9 HD9 0,1 0,1 0 0 0 0 

P20 4,5 4,7 12,2 5,4 5,7 12,2 P21 1,7 2,1 5,5 2,3 2,5 13 HD10 2,5 2,1 2,9 2,5 3,3 8,2 

P25 1,6 2 3 1,5 2,2 8,7 P22 2 2,7 5,8 2,4 2 15,3 HD11 4,7 4,4 5,4 4,6 4,6 8,3 

P27 3,9 1,9 3,4 4,1 2 5,8 P23 3,4 3,4 4,5 3,1 3,6 8,6 HD12 1,4 1,6 3,8 1,5 1,8 8,4 

P28 4,1 1,8 3,7 4,1 2 7,2 P29 1,8 3,4 6,6 2 3,9 20,6 HD13 4,3 3,5  4,4 4,1  

P32 1,3 1,8 3,6 1,8 1,9 13,9 P30 2,9 4,9 8,2 3,1 5,5 15,7 HD14 0,6 0,6  0,6 0,9  

P33 1,7 2,2 5,1 1,8 2,5 12 P31 1 1,2 6,2 0,9  14,8 HD15 0,7 1  1 1  

P34 1,2 1,4 2,4 1,5 1,1 7,6 P35 1,6 1,4 4,2 1,4 1,4 7,5 HD16 1 0,9 1 1,2 0,9 2,2 

P36 1,9 1,3 3,7 1,5 1,3 5,6 P37 0,8 1,1 3,8 1 1,1 6,7 HD 17 1,9 2,3 6,3 1,6 2,2 9,9 

P38 1 1,1 3,2 1,2 1,3 8,3 P39 0,9 1 2,3 1 0,7 5 HD18 1,7 1,8 2,5 1,8 2,1 4,2 

P40 2,5 2,2 4,8 1,6 2,4 6,6 P41 1,1 0,9 2,6 1 1,4 7,3 HD19 2,6 3 5,7 2,7 2,6 7,1 

P44 2,5 2,8 5,9 2,7 2,9 9,6 P42 1,4 2,2 5,9 1,9 2,4 12,2 HD20 2,5 2,3 4,9 2,7 3,2 7,2 

P45 2,7 3 5,7 1,9 2,9 8 P43 2,1 3,6 6,9 1,5 2,7 9,2 HD21 3,4 2,1 2,8 3,2 2,8 4,3 

P48 1,1 0,6 1,8 1,5 0,8 5,6 P46 4,3 3,5 4,6 4 2,6 6,3 HD22 3,3 3,6 7,1 3,4 3,4 19,4 

P50 2,2 4,2 6,7 2,8 4,6 15,4 P47 0,3 0,4 0,7 1 0,5 2,2 HD23 8,9 9,2 10,2 10,1 10,2 13,5 

       P54 1,7 2,3 4,1 1,5 2,2 5,7 HD24 5,9 5,9 8,4 5,7 6 16,8 
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EPIC questionnaire 
 
Appendix F : EPIC questionnaire (The Expanded Prostate Cancer Index Composite)  
 

Beschwerden beim Wasserlassen in den letzten vier Wochen 
(Zutreffendes bitte ankreuzen /Angaben freiwillig: Fragen, die Sie nicht beantworten 

möchten, können Sie überspringen) 
 

1. Wie oft hatten Sie ungewollten Urinabgang? 
 

 mehrmals täglich  ungefähr einmal 
täglich  

mehrmals 
wöchentlich  

ungefähr einmal 
wöchentlich  

selten oder 
nie  

�  �  �  �  �  

 
 

2. Wie oft hatten Sie Blut im Urin? 
 

 mehrmals täglich  ungefähr einmal 
täglich  

mehrmals 
wöchentlich  

ungefähr einmal 
wöchentlich  

selten oder 
nie  

�  �  �  �  �  

 
 

3. Wie oft hatten Sie Schmerzen oder Brennen beim Wasserlassen? 
 
mehrmals täglich  ungefähr einmal 

täglich  
mehrmals 

wöchentlich  
ungefähr einmal 

wöchentlich  
selten oder 

nie  
�  �  �  �  �  

 
 

4. Was beschreibt Ihre Fähigkeit, das Wasser zu halten, am besten? 
 

     keine Urinkontrolle  häufiges Träufeln  gelegentliches 
Träufeln  

komplette 
Kontrolle 

� �  �  � 

 
 

5. Wie viele Vorlagen brauchen Sie täglich, um den unwillkürlichen Abgang zu 
beherrschen? 

 
drei oder mehr täglich  zwei täglich  eine täglich  keine  

� � � � 
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Wie belastend waren die folgenden Beschwerden für Sie? 
 
 
 

6. ungewollter Harnabgang 
7. Schmerzen oder Brennen  
beim Wasserlassen 
8. Blut im Urin 
9. Schwacher Harnstrahl  
oder inkomplette Entleerung 
10. Aufwachen,um Wasser 

zu lassen 
11. häufigesWasserlassenwä

hrend  
des Tages 

 
 
12. Wie belastend war insgesamt das Wasserlassen für Sie? 
 

 
 
 

Beschwerden beim Stuhlgang in den letzten vier Wochen  
(Zutreffendes bitte ankreuzen /Angaben freiwillig: Fragen, die Sie nicht beantworten 
möchten, können Sie überspringen) 
 
 
13. Wie oft hatten Sie Stuhldrang (Gefühl, zur Toilette gehen zu müssen, ohne 
Stuhlgang)? 
 

mehrmals 
täglich  

ungefähr einmal 
täglich  

mehrmals 
wöchentlich  

ungefähr einmal 
wöchentlich  

selten oder 
nie  

�  �  �  �  �  

 
 
14. Wie oft hatten Sie unkontrollierten Stuhlabgang? 
 

mehrmals 
täglich  

ungefähr einmal 
täglich  

mehrmals 
wöchentlich  

ungefähr einmal 
wöchentlich  

selten oder 
nie  

�  �  �  �  �  

 
 
 15. Wie oft hatten Sie wässrige Stühle (keine feste Form)? 
 

immer  üblicherweise  ungefähr die 
Hälfte der Zeit 

selten  nie  

�  �  �  �  �  

 

  großes 
Problem  

mäßiges 
Problem  

kleines 
Problem  

sehr kleines 
Problem  

kein 
Problem  

�  �  �  �  �  

�  �  �  �  �  

�  �  �  �  �  

 �  �  �  �  �  

 

�  

 

�  

 

�  

 

�  

 

�  

 

�  

 

�  

 

�  

 

�  

 

�  

großes 
Problem  

mäßiges 
Problem  

kleines 
Problem  

sehr kleines 
Problem  

kein Problem  

�  �  �  �  � 
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 16. Wie oft hatten Sie blutige Stühle? 
 

immer  üblicherweise  ungefähr die Hälfte 
der Zeit 

selten  nie  

�  �  �  �  �  

 
  
17. Wie oft hatten Sie Schmerzen beim Stuhlgang? 
 

immer  üblicherweise  ungefähr die Hälfte 
der Zeit 

selten  nie  

�  �  �  �  �  

 
  
18. Wie oft hatten Sie Stuhlgang an einem normalen Tag? 
 

fünfmal oder häufiger  drei- oder viermal  zweimal oder seltener  
�  �  �  

 
 
 19. Wie oft hatten Sie krampfhafte Schmerzen im Bauch-, Becken- oder 
Enddarmbereich? 
 

mehrmals täglich  ungefähr einmal 
täglich  

mehrmals 
wöchentlich  

ungefähr einmal 
wöchentlich  

selten oder 
nie  

�  �  �  �  �  

 
 

 

Wie belastend waren die folgenden Beschwerden für Sie? 
 

                                         großes 
Problem 

mäßiges 
Problem  

kleines 
Problem  

sehr kleines 
Problem  

kein 
Problem  

20. Stuhldrang  �  �  �  �  �  

21. vermehrte 
Häufigkeit des 
Stuhlgangs  

�  �  �  �  �  

22. wässrige Stühle  �  �  �  �  �  

23. unkontrollierte 
Stuhlabgang  

�  �  �  �  �  

24. blutige Stühle  �  �  �  �  �  

25. krampfhafte 
Bauch-/Becken-
/Enddarmschmerzen  

�  �  �  �  �  

 
 
  26. Wie belastend war insgesamt der Stuhlgang für Sie? 
 

großes Problem  mäßiges 
Problem  

kleines 
Problem  

sehr kleines 
Problem  

kein Problem  

�  �  �  �  � 
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Sexuelle Beschwerden in den letzten vier Wochen 

(Zutreffendes bitte ankreuzen /Angaben freiwillig: Fragen, die Sie nicht beantworten 
möchten, können Sie überspringen) 

 
 

Wie würden Sie folgende Punkte einschätzen? 
 

 
 
 
 
  30. Wie würden Sie die übliche QUALITÄT Ihrer Erektionen einschätzen 

 
 
31. Wie würden Sie die übliche HÄUFIGKEIT Ihrer Erektionen einschätzen (wenn Sie eine 
Erektion wollten)? 
 

nie  weniger als die Hälfte der 
Fälle  

mehr als die Hälfte der 
Fälle  

immer  

�  �  �  �  

 
 
32. Wie oft sind Sie mit einer Erektion morgens oder in der Nacht aufgewacht? 
 

nie  seltener als einmal 
wöchentlich  

ungefähr einmal 
wöchentlich  

mehrmals 
wöchentlich  

täglich  

�  �  �  �  �  

 
 
 
 
 
 
 

 sehr gering oder 
nicht vorhanden 

gering zufrieden-
stellend 

gut sehr gut 

27. Ihr sexuelles 
Verlangen 

�  �  �  �  �  

28. Ihre Fähigkeit, 
eine Erektion zu 

haben 

�  �  �  �  �  

29. Ihre Fähigkeit, 
einen Höhepunkt zu 

erreichen 

�  �  �  �  �  

      

keine  nicht ausreichende 
Festigkeit für sexuelle 

Aktivität  

ausreichende Festigkeit 
nur für das Vorspiel  

ausreichende 
Festigkeit für 

Geschlechtsverke
hr  

�  �  �  �  
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 33. Wie oft hatten Sie irgendeine sexuelle Aktivität? 
 

nie  seltener als 
einmal 

wöchentlich  

ungefähr 
einmal 

wöchentlich  

mehrmals 
wöchentlich  

täglich  

�  �  �  �  �  

 
 
34. Wie oft hatten Sie Geschlechtsverkehr? 
 

nie  seltener als einmal 
wöchentlich  

ungefähr einmal 
wöchentlich  

mehrmals 
wöchentlich  

täglich  

�  �  �  �  �  

 
 
35. Wie würden Sie Ihre Fähigkeit zur Sexualität insgesamt einschätzen? 
 

sehr 
schlecht  

schlecht  zufriedenstellen
d  

gut  sehr gut  

�  �  �  �  �  

     

 
 
 Wie belastend waren die folgenden Punkte für Sie? 
 
 großes 

Problem 
mäßiges 
Problem  

kleines 
Proble
m  

sehr kleines 
Problem  

kein 
Proble
m  

36. Ihr sexuelles 
Verlangen  

�  �  �  �  �  

37. Ihre Fähigkeit, 
eine Erektion zu 
haben  

�  �  �  �  �  

38. Ihre Fähigkeit, 
einen Höhepunkt zu 
erreichen  

�  �  �  �  �  

 
 
39. Wie belastend war insgesamt Ihre Sexualität bzw. Mangel an Sexualität für Sie? 
 
großes 
Problem  

mäßiges 
Problem  

kleines 
Problem  

sehr kleines 
Problem  

kein Problem  

�  �  �  �  � 
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Hormonelle Beschwerden in den letzten vier Wochen  
(Zutreffendes bitte ankreuzen /Angaben freiwillig: Fragen, die Sie nicht beantworten 
möchten, können Sie überspringen) 
 
 
40. Wie oft hatten Sie Hitzewallungen? 
 

häufiger als 
einmal täglich  

ungefähr 
einmal täglich  

häufiger als 
einmal 

wöchentlich  

ungefähr 
einmal 

wöchentlich  

selten oder 
nie  

�  �  �  �  �  

 
 
 41. Wie oft hatten Sie Schmerzen in der Brustdrüse? 
 

häufiger als 
einmal täglich  

ungefähr einmal 
täglich  

häufiger als 
einmal 

wöchentlich  

ungefähr 
einmal 

wöchentlich  

selten 
oder 
nie  

�  �  �  �  �  

 

 

    

  
42. Wie oft waren Sie depressiv verstimmt? 
 

häufiger als 
einmal täglich  

ungefähr einmal 
täglich  

häufiger als einmal 
wöchentlich  

ungefähr 
einmal 

wöchentlich  

selten 
oder 
nie  

�  �  �  �  �  

 
  
43. Wie oft fühlten Sie einen Energiemangel? 
 

häufiger als 
einmal täglich  

ungefähr einmal 
täglich  

häufiger als 
einmal 

wöchentlich  

ungefähr einmal 
wöchentlich  

selten 
oder 
nie  

�  �  �  �  �  

 
 
44. Welche Gewichtsänderung trat bei Ihnen in den letzten vier Wochen auf? 
 

5kg oder 
mehr 

zugenommen  

weniger als 
5kg 

zugenommen  

keine 
Gewichtsänderun

g  

weniger als 5kg 
abgenommen  

5kg oder 
mehr 

abgenomme
n  

�  �  �  �  �  
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Wie belastend waren die folgenden Beschwerden für Sie? 
 
 großes 

Problem 
mäßiges 
Problem  

kleines 
Problem  

sehr 
kleines 
Problem  

kein 
Proble
m  

45. Hitzewallungen  �  �  �  �  �  

46. 
Brustsdrüsenschmerzen/ 
-vergrößerung  

�  �  �  �  �  

47. Verlust der 
Körperbehaarung  

�  �  �  �  �  

48. Depressive 
Verstimmung  

�  �  �  �  �  

49. Energiemangel  �  �  �  �  �  

50. Gewichtsänderung  �  �  �  �  �  
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