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Abstract 
 
Multi-beam antennas can be used for the sectorization of 360° azimuthal coverage. One 
of the suitable realizations, where four monopole antennas are placed at the corners of a 
square, is known as the “Monopole Four-Square Array Antenna”. This thesis presents 
the optimization problem for this array antenna. 
 
First, it is considered that this array is mounted on an infinite ground plane. With view 
to practical applications, optimization criteria are defined and a genetic algorithm is 
used to find the optimized values for the array variables. 
 
Next, the “Monopole Four-Square Array Antenna” is considered to be mounted on a 
finite ground plane (chassis). It is seen that all performance parameters of this array are 
changed and deteriorated due to the excitation of chassis modes, which couple to and 
between the monopole antennas and which radiate and produce diffraction at the edges 
of the ground plane. It is found, that the performance is strongly affected by the size of 
each antenna, the position of each antenna on the chassis as well as the size and shape of 
the chassis. 
 
A new optimization problem considering both the parameters of array and chassis 
dimensions is defined and the optimal values are found using the method of genetic 
algorithm. To model the chassis effects, in this step, the Theory of Characteristic Modes 
for the chassis is introduced and the effect of chassis modes on the radiation patterns 
and S-parameters are discussed. In order to allow the efficient use of the calculation-
extensive chassis modes in our optimization, an Artificial Neural Network (ANN) is set-
up to represent the effects of the chassis modes and the ANN is trained using results 
from an EM-field simulator. In a further step, the remaining mutual coupling between 
the elements of the monopole array is tackled. Using another ANN, a Decoupling and 
Matching Network (DMN) is designed for the “Monopole Four-Square Array Antenna” 
which considerably improves the radiation pattern. 
 
The final “full-degree” optimization problem considers all parameters of the monopole 
array on a small chassis as well as the variables in the DMN. It is shown that by 
changing the values of the weighting coefficients in the optimization problem, the 
resulting antenna design can be matched to priorities set by practical applications. 
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CHAPTER 1   Introduction and Overview 

 
Background 
 
Nowadays, Phased Array antennas are becoming increasingly popular for applications 
that require radiation pattern control. This popularity exists because the radiation pattern 
of a phased array can be shaped and steered electronically by proper element 
excitations. The analysis and design of array antennas is complicated due to the fact that 
array elements are not independent of each other. Instead, the elements interact 
electromagnetically through what is called mutual coupling. Using a matrix network 
instead of phase shifters to excite the elements leads to Multi-beam antennas which can 
be used for the sectorization of 360° azimuthal coverage. One of the suitable 
realizations, where four monopole antennas are placed at the corners of a square, is 
known as the “Monopole Four-Square Array Antenna”. This thesis presents the 
optimization problem for this kind of array antenna. In order to optimize the over-all 
array geometry, the effects of the ground plane (chassis) have to be also considered.  
 
Structure of the thesis 
 
The second and third chapters of this thesis review the foundations related to the 
research presented in this work. The second chapter presents a review of the monopole 
antenna and its fundamental parameters, including radiation mechanism, radiation 
efficiency and self impedance, which are investigated in our optimization problem. 
After that, the Monopole Four Square Array Antenna (MFSAA), as a planar array 
antenna, is introduced and the desired fundamental parameters of this array are 
introduced to be utilized in the next chapters.  
 
In chapter 3, the optimization methods and neural networks are introduced to be used in 
next chapters. In this way, a Genetic Algorithm (GA) method as a global optimizer is 
introduced and the advantageous characteristics of GA are discussed. After that, the 
Artificial Neural Networks (ANNs) are introduced to be used in modeling procedures in 
this thesis. An artificial neural network (ANN), usually called Neural Network (NN), is 
a mathematical model or computational model that is inspired by the structure and/or 
functional aspects of biological neural networks. Finally the Multilayer Perceptron 
(MLP) network is introduced for later application in the modeling of a finite ground 
plane (chassis) in chapter 5. 
 

In chapter 4, an optimization problem for the MFSAA on an infinite ground plane is 
defined and an optimization procedure is performed in three different phases. In the first 
phase, five performance criteria, namely the minimum envelope correlation of beams, 
maximum front-to-back ratio, best fit to the ideal secant-squared elevation pattern, 
suitable beam crossover levels and maximum directivity, as introduced in chapter 2, are 
applied for a simple antenna model (first order approximation model). For this simple 
antenna model only the distance between the elements is optimized.  
 

1 



2                       Chapter 1 

 
In the second phase, the second order approximation antenna model is defined and the 
efficiency of each antenna as well as the previous criteria are considered in our 
optimization problem. For this model, the values of element spacing, antenna length, 
antenna diameter and feed network source impedance are optimized using the Genetic 
Algorithm (GA).  
Finally, for the third order approximation model, the source voltages of the feed 
network are also varied over a certain range and the values of source voltages as well as 
the variables in the previous model are optimized, using a GA. In this model, a criterion 
for both self impedance (to be matched to the source impedance) and mutual 
impedances (to be minimized) are also added to previous criteria.  
 
In chapter 5, the finite ground plane (chassis) is introduced and the effects of using a 
chassis instead of an infinite ground plane for the MFSAA are discussed. As shown in 
[1], the ground plane can heavily influence the mutual coupling of the antenna elements 
placed on it, in principle due to the excitation of chassis current modes on its surface, 
which can lead to strong deterioration of the performance of the MFSAA.  
In the first part of this chapter, the Theory of Characteristic Modes (TCM) is 
introduced. Characteristic modes are real current modes that can be computed 
numerically for conducting bodies of arbitrary shape. Since characteristic modes form a 
set of orthogonal functions, they can be used to expand the total current on the surface 
of the body [2-4]. The limitations to find the characteristic modes are discussed and a 
Neural Network model is designed to calculate the chassis mode eigenvalues. 
The effects of a chassis on a single monopole antenna, two monopole antennas and the 
MFSAA are also shown in this chapter by observing variations on element patterns, 
reflection coefficients and mutual couplings between monopole antennas due to 
different chassis sizes. 
Finally, the performance optimization of the MFSAA on a chassis is considered. For 
this purpose, the EMPIRETM (IMST GmbH, Germany) simulator is used to model the 
structure and to optimize the antenna and chassis parameters and the simulations are 
checked by comparison with experimental results. It can be seen in this step, that it is 
necessary to design a Decoupling and Matching Network (DMN) to compensate the 
mutual coupling between antennas. A design for a DMN is introduced using the ADS 
(Advanced Design System, Agilent Corporation, USA) network simulator and EMPIRE 
which leads to additional lumped elements (Capacitors/Inductors) between both 
adjacent and opposite antennas. Networks for both the MFSAA on an infinite ground 
plane and for an MFSAA on a chassis are investigated and after optimizing the cost 
function using a GA optimizer, the optimal value of each capacitor/inductor as well as 
the length and diameter of each monopole antenna and array distance are found. A 
verification of this last optimization step of the MFSAA on a chassis with integrated 
DMN is presented by an experimental MFSAA and a comparison of simulated and 
measured antenna patterns and S-parameters. Finally, it is shown that by changing the 
weighting coefficients in our cost function, the results can be matched to our priorities.    
 
In Chapter 6, the most important conclusions of this thesis are summarized and some 
proposals are presented for future works. 
 

 

 

 

 

 

 

 

 

 



 

CHAPTER 2   Monopole Antenna and its Applications 

 
 

2.1 Introduction 
 
The official IEEE definition of an antenna is given by Stutzman and Thiele [7], as:  
“Antenna is a part of a transmitting or receiving system that is designed to radiate or 
receive electromagnetic waves”. There are many different antenna types, where the 
Monopole antenna is one of the most common antennas used for wireless 
communication systems. Its popular applications in wireless systems such as 
broadcasting, car radios, and also more recently for cellular telephones, are mainly due 
to its broadband characteristics and ease of construction. Monopole antennas are 
commonly used in airborne and ground-based communication systems at a wide range 
of frequencies [8]. In this chapter, the monopole antenna and its fundamental parameters 
are introduced and the fundamentals of planar array antennas as well as of the 
Monopole Four Square Array Antenna (MFSAA) are reviewed to be utilized in next 
chapters. The material in this chapter relies mainly on Balanis’ textbook [9].  
 
2.2 Monopole Antenna 
 
A monopole antenna in its simplest form, mounted on an infinite ground plane is shown 
in Fig 2.1, which can be considered as one-half of the corresponding double-length 
centre-fed linear dipole [9]. In this figure, L is the length of the monopole antenna, V0 is 
the known feed point voltage and I0 is the known feed point current. The sinusoidal 
current distribution on this vertical monopole antenna is approximated as: 
 

)(sin)( zLkIzI m −=    for Lz ≤≤0       (2.1) 
 
Im is the maximum current, where the feed point current I0 can also be described as: 

 
)sin(0 kLII m=                    (2.2) 

 
In both equations above, k is the wave number, related to the wavelength (λ): 
  

λ
π= 2

k    ( λ is the wavelength)                         (2.3) 

 
Fig 2.2 shows the approximated current distribution on a thin monopole antenna of 
different lengths between 0.1 λ and 1 λ. It can be seen from this figure, that outside the 
0.5λ region, the currents are in the opposite phase in comparison to the neighboring 0.5λ 
region.  
 
 
 

3 
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Fig. 2.1 A monopole antenna in its simplest form, mounted on an infinite ground plane 
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Fig. 2.2 Approximated current distribution on a thin monopole antenna of different lengths between 0.1 λ 

and 1 λ 
 
 

2.2.1 Radiation Mechanism 
 
Like a dipole antenna, a monopole antenna has an omnidirectional radiation pattern. In 
general, the radiation intensity of a thin monopole antenna mounted on an infinite 
ground plane can be approximated as the following equation: 
 

2

sin
)cos()coscos(

)( 




 −=
θ

θθ kLkL
cFmon         o900 ≤≤ θ                (2.4) 

 
In this equation, c is a constant, k is the wave number in equation (2.3) and L is the 
length of the monopole antenna. 

 

z

0I

0V

L

Lz =

0=z

)(zI
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The constant c can also be expressed as: 
 

2

2

0
8π

η mI
c =                (2.5)  

 
where η0 is the intrinsic impedance of the free space medium (η0 =120π  Ω) and Im is the 
maximum current in Fig 2.1. 
The radiation pattern of a thin monopole antenna with a length of 0.25λ mounted on a 
perfectly conducting infinite ground plane is depicted in Fig 2.3. 
 
 

 
Fig. 2.3 Radiation intensity of a λ/4 monopole antenna on an infinite ground plane 

 
As this figure shows, the maximum radiation can be seen in the horizontal direction, 
perpendicular to the monopole antenna (θ = 90○). 
It can be seen from equation (2.4), that the radiation intensity of a thin monopole 
antenna, depends strongly on the length of it. As the length of the monopole antenna 
increases, the beam becomes narrower and if it increases beyond one wavelength, the 
number of lobes increases [9].  

 
2.2.2 Radiation Efficiency 
 
The Radiation efficiency ηr of a monopole antenna can be described by the following 
equation [9]: 

dr

r
r PP

P

+
=η            (2.6) 

 
where Pr and Pd are the radiated power of the antenna and the dissipated power 
respectively.  
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The radiated power Pr is given by: 
 

2
2

0
r

r

R
IP =         (2.7) 

 
where I0 is the feed point current, shown in Fig 2.1 and Rr is the radiation resistance 
which can be approximated for a thin monopole antenna as [9, 10]: 
 

( )
∫

−=
π

r θd
θ

kLθkL

kL
R

0

2

2 sin
)]cos(cos[cos

)(sin
30

  Ω       (2.8) 

 
Fig 2.4 shows the simulated radiation resistance of a monopole antenna with four 
different lengths in a frequency range of 1 GHz to 10 GHz.  
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Fig. 2.4 Radiation resistance of a monopole antenna with different lengths vs. frequency 

 
The pole in the radiation resistance refers to the half-wavelength resonance of the 
monopole.  
It can be seen from this figure that the resonance frequency decreases by increasing the 
length of the monopole antenna. On the other hand, at high frequencies, the radiation 
resistance increases more quickly than at lower frequencies, with increasing the length 
of the monopole antenna. 
In equation (2.6), the dissipated power Pd can also be obtained by integrating the 
dissipation along the monopole antenna as [10]: 
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L
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2
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π
ρ

                (2.9) 
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where ρs is the sheet resistivity [8] and D  is the diameter of the monopole antenna. Rd  is 
the ohmic dissipation resistance and can be approximated: 

 








 −=
4

)2sin(
2)(sin2

kLkL

kLkD
R s

d

ρ
  Ω              (2.10)   

 
Fig 2.5 shows the variation of ohmic dissipation resistance for a monopole antenna with 
different diameters and a fixed length of L = 27 mm vs. frequency for ρs = 1 Ω/sq.  
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Fig. 2.5 Ohmic dissipation resistance of a monopole antenna with L =27mm and different diameters vs. 

frequency  
 
From this figure, it can be easily understood that a thicker antenna has less ohmic 
dissipation resistance, if the length of the antenna is kept constant. 
Using equations (2.7) and (2.9), the radiation efficiency of a monopole antenna in 
equation (2.6) can be expressed in terms of both the radiation resistance and the ohmic 
dissipation resistance of a monopole antenna as: 
 

dr

r
r RR

R

+
=η                   (2.11) 

 
The simulated radiation efficiency of a monopole antenna with a diameter of D = 1mm 
and varied lengths is shown in Fig 2.6 (a), where Fig 2.6 (b) shows the variation of the 
radiation efficiency when a monopole antenna has a fixed length of L = 27 mm and 
different diameters. An almost constant value of Rd and small value of Rr at low 
frequencies, result in a low efficiency at low frequencies, as can be seen in Fig 2.6 (a).  
As we can see from Fig 2.6 (a), for each antenna length at all frequencies below 
resonance frequencies, Rr increases more rapidly than Rd and this results in higher 
efficiency with increasing frequency. 
 



8                       Chapter 2 

 

1 2 3 4 5 6 7 8 9 10
20

30

40

50

60

70

80

90

100

Frequency (GHz)

R
ad

ia
to

n 
E

ff
ic

ie
nc

y 
(%

)

 

 

L=23 mm

L=25 mm
L=27 mm

L=29 mm

       (a) 

1 2 3 4 5 6 7 8 9 10
20

30

40

50

60

70

80

90

100

Frequency (GHz)

R
ad

ia
tio

n 
E

ff
ic

ie
nc

y 
(%

)

 

 

D=1 mm

D=2 mm
D=3 mm

D=4 mm

 
                                                     (b) 

Fig. 2.6 Radiation efficiency of a monopole antenna (a): with D =1mm and varied lengths vs. frequency, 
(b): with L =27mm and varied diameters vs. frequency 

 
On the other hand, it can be seen from Fig 2.6 (b), that by increasing the diameter of 
each monopole antenna, the efficiency is increased because of the reduction of Rd as 
seen in Fig 2.5. 
Since, the radiation efficiency of a monopole antenna can be optimized by optimizing 
the length and diameter of antenna, the radiation efficiency of the monopole antenna is 
considered as one of the optimization criteria in our optimization problem in chapter 4. 
 
2.2.3 Self Impedance 
 
The self (input) impedance of the monopole antenna can be determined as: 
 

in

in
s I

V
Z =                (2.12)           

 
where Vin and I in are the input voltage and input current of the antenna respectively. The 
self impedance of an antenna is an important parameter to determine the reflection 
coefficient of the antenna. To solve the integral equation for the current distribution, an 
induced EMF method [9] can be used and the self impedance of a monopole antenna 
can be found as a function of both the length L and diameter D of the monopole antenna 
(Self resistance is a function of L and self reactance is a function of both L and D).  
The self resistance of a monopole antenna can be expressed as below. 
  

)(sin2 2 kL

R
R m

s =           (2.13)           

  
In this equation, k is the wave number in equation (2.3) and Rm is the real part of the 
input impedance at the current maximum Im (as resulting from equation (2.2)), 
expressed in the following equation (2.14). 

  



Monopole Antenna and its Applications                  9 

 



−+++



 −+−+=

)]2(2)4()ln()[2cos(
2
1

)]2(2)4()[2sin(
2
1

)2()2ln(
2

0

kLCkLCkLCkL

kLSkLSkLkLCkLCR

ii

iiim π
η

           (2.14) 

 
In this equation, η0 is the intrinsic impedance of the medium (η0 =120π), k is the wave 
number, C is Euler’s constant (C ≈ 0.577) and Si(x) and Ci(x) are the sine and cosine 
integrals, explained in equations (2.15) and (2.16) respectively. 
 

τ
τ

τ
dxS

x

i ∫=
0

)sin(
)(                  (2.15) 

 

τ
τ

τ
dxC

x

i ∫
∞

= )cos(
)(                  (2.16) 

 
As can be seen, the self impedance of a monopole antenna is only a function of L 
(length of the antenna). The self reactance of a monopole antenna can also be described 
as: 
  

)(sin2 2 kL

X
X m

s =          (2.17)           

  
where k is the wave number and Xm or the imaginary part of the input impedance at the 
current maximum Im ,written as: 
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4

2

0

π
η

                    (2.18)           

 
In this equation, η0 is the intrinsic impedance of medium, k is the wave number, C is 
Euler’s constant and Si(x) and Ci(x) are the sine and cosine integrals, given in equations 
(2.15) and (2.16). As can be seen, the self reactance of a monopole antenna can be 
expressed as a function of both D (Diameter of the antenna) and L (length of the 
antenna).  
Fig 2.7 shows the self impedance of a thin monopole antenna (D = 0.006λ) with 
different lengths between 0 and 2λ. This figure shows that, both self resistance and self 
reactance become infinite for integer multiples of 0.5λ. In practice they are large. 
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Fig. 2.7 Self impedance of a monopole antenna with D = 0.006λ and varied lengths 

 
For a quarter-wave monopole (L/λ = 0.25), the self impedance is half of that of a half-
wave dipole: Zs= 36.5 + j 21.25 Ω.  This is due to the requirement of only half the 
voltage to drive the monopole antenna to the same current as a dipole. Assume a dipole 
as having +V0 and – V0 applied to its end, whereas a monopole antenna only needs to 
apply +V0 between the monopole antenna and ground plane to drive the same current 
(See Fig 2.1).  
Ideally the diameter of the monopole antenna does not affect the input resistance, as 
expressed in equation (2.13). However in practice it has a small affect due to the limited 
range of diameter. The effect of changing the diameter of a monopole on the self 
reactance is shown in Fig 2.8.  
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 Fig. 2.8 Self reactance of a monopole antenna with three different diameters and varied lengths  
 
It can be seen from this figure that the reactance can be reduced to zero provided the 
overall length is slightly less than n λ/4 (n = 1, 3,...) or slightly greater than n λ/4 (n =2, 
4,…).  
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This is commonly done in practice for L≈ λ/4 because the input resistance is close to 
50Ω, an almost ideal match to 50Ω coaxial transmission lines. As can be seen from both 
Fig 2.7 and Fig 2.8 and as it has been indicated before, for a λ/4 monopole antenna with 
small diameter, the reactance is equal to 21.25Ω.        
The self impedance of a monopole antenna is also considered as one of our optimization 
criteria in the next chapters. 
 
2.3 Planar Array Antenna 
 
Usually, the radiation pattern of a single antenna is relatively wide, with low value of 
gain. In many applications it is necessary to design antennas with more directive 
characteristics for longer distance communications. This can be achieved by utilizing an 
array of antennas [9]. One suitable array antenna realization is the planar (rectangular) 
array (Fig 2.9).  

 
                                                  Fig. 2.9 Planar Array geometry  
 
If N×M monopole antennas are mounted along a rectangular grid (see Fig. 2.9), the total 
radiation intensity can be expressed as: 
 

2
),()(),( φθθφθ AFFF mon=          (2.19) 

 
Where Fmon(θ) is the radiation intensity of a single monopole antenna, described in 
equation (2.4), |AF(θ,φ )| is the array factor. 
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The Array Factor is a function of both the position and excitation of each antenna and 
can be expressed as the following equation for an array depicted in Fig 2.9 with a 
symmetric excitation and with its array factor maximum along θ0 , 0φ : 

 

 AF(θ,φ ) = ∑∑
= =

−−
2

1

2

1

])12cos[(])12cos[(4

M

m

N

n
mn vnumI               (2.20) 

 
where Imn is the complex current of the (m,n)th monopole antenna and u and v can be 
described  as below: 
 

)cossincos(sin 00 φθφθ
λ

π −= xd
u              (2.21) 

 

)sinsinsin(sin 00 φθφθ
λ

π
−= yd

v              (2.22) 

 
This thesis considers a planar array antenna in a special form where M = N = 2 and 
where the antenna currents are phase shifted (“phased array”). 
 
2.3.1 Mutual Impedance 
 
One of the most important characteristics of a planar array antenna is the mutual 
coupling between all antennas in this array as well as the mutual coupling between the 
ground plane (if the antennas are mounted on a finite ground plane) and each antenna. 
Note that the mutual coupling effect induces currents in antennas, thereby changing 
input impedance. 
Considering N×M monopole antennas, mounted on an infinite ground plane in Fig 2.9, 
the excitations I i (i = 1,..., h = N×M) at the input terminals of monopole antennas can be 
related to the terminal voltages of the antennas (see Fig 2.1) by the impedance matrix Z 
[9] as: 

V = ZI               (2.23) 
where: 

V= T
hVV ][ 1L      (2.24) 

and: 
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            (2.25) 

 
I= T

hII ][ 1L                                   (2.26) 
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The superscript T in both equations (2.24) and (2.26) denotes the transpose of V and I . 
Through the equations (2.23) and (2.25), the terminal voltage of each element can be 
expressed in terms of the current flowing in all elements: 
 

∑
=

=
h

j
jiji IZV

1

          (i=1,…,h)          (2.27) 

 
In this equation, Zij is the mutual impedance between the monopole antennas i, j and Zjj 
is the self impedance of antenna j, described in 2.2.3. 
The mutual impedance Zij  between two monopole antennas with the same length L, 
distance d from each other and mounted on an infinite ground plane can be described 
based on the induced EMF method [9] as a function of L and d : 
 

ijijij jXRZ +=                          (2.28) 

where: 

)(sin2 2
,

kL

R
R mij

ij =                        (2.29)   

 

)(sin2 2
,

kL

X
X mij

ij =                        (2.30)   

         
Rij,m and Xij,m are the real and imaginary parts of the mutual impedance at the current 
maximum Im, see equation (2.2), and are expressed as:   

 

)]()()(2[
4 210

0
, uCuCuCR iiimij −−=

π
η

          (2.31) 

 

)]()()(2[
4 210

0 uSuSuSX iiiij −−−=
π

η
          (2.32) 

 
kdu =0                                                    (2.33) 

 

( )LLdku 24 22
1 ++=                              (2.34) 

 

( )LLdku 24 22
2 −+=                              (2.35) 

 
η0 is the intrinsic impedance of medium (η0 =120π), Si(x) and Ci(x) are the sine and 
cosine integrals, explained in equations (2.15) and (2.16) respectively and k is the wave 
number, described in equation (2.3).  
Fig 2.10 shows the real and imaginary part of the mutual impedances of two side-by-
side monopole antennas of a length of L = 0.25λ and varied separation d. 
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Fig. 2.10 Mutual impedance between two monopole antennas of a length of L = 0.25λ and varied 
separation d  

 
This figure shows that by increasing the distance between the antennas, the mutual 
coupling between them is decreased with oscillations of the impedance components. 
The magnitude of the mutual coupling impedance steadily reduces.    
The mutual impedance between monopole antennas is also considered as one of our 
optimization criteria in next chapters.  

 
2.4 Monopole Four- Square Array Antenna (MFSAA) 
 
Considering M = N = 2 in Fig 2.9, one suitable array antenna can be realized based on 
the phased array principle, where four monopole antennas are placed at the edges of a 
square, in order to form four overlapping beams in azimuth and which is known as the 
“Monopole Four- Square Array Antenna (MFSAA)”[11]. Fig 2.11 shows the MFSAA 
with its excitation.  

 

 
 

Fig. 2.11 Monopole Four- Square Array Antenna, (a): layout, and (b): excitation by voltage sources 
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In this figure, each monopole antenna has a length of L and a diameter of D. The 
distance between each neighboring antenna is d. The terminal voltage of each element is 
expressed as: 

4,...,10 =−= iZIVV iioi        (2.36) 
 

where Vio is the source open-circuit voltage of each element and Z0 is the source 
impedance related to the feed network for each element. For the MFSAA, depicted in 
Fig 2.11, the equation (2.27) can be expressed as below (h = 4). 
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            (2.37) 

 
where Zs is the self impedance of each antenna which can be expressed as a function of 
the length (L) and diameter (D) of each antenna, Z12 and Z13 are the mutual impedance 
between neighboring antennas and between diagonally opposite antennas respectively 
which can be expressed as a function of the length L and separation d. 
Returning to the equations (2.36) and (2.37), the excitation of i th element (phase and 
amplitude) can be expressed as a function of length and diameter of this element, the 
source voltage and source impedance of the element feed network and also of the 
element spacing. 
 
2.4.1 Radiation Mechanism 
 
As an example, radiation intensities of the MFSAA with a length of L = 0.25λ, diameter 
of D = 0.006λ and varied separation d are simulated using equations (2.19), (2.36) and 
(2.37). The following excitation is considered for the source voltages of the first, 
second, third and fourth antenna respectively in Fig 2.11 (b) for a beam in 

o45=φ direction.  
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The source impedance related to the feed network for each element is assumed to be 
50Ω. With the mutual coupling ignored, the beam shapes are shown for five different 
separations in Table 2.1. The special phased excitation as given above represents the 
normal operating mode as known from practical antenna systems with dedicated feed 
networks [11], for the generation of four equal but rotated (in φ -plane) patterns (multi-
beam feed network). A special network for the generation of the excitation due to 
equation (2.38) will be presented in chapter 5.   
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Table 2.1 Azimuth beam patterns (Co-Polarization) and three-dimensional patterns of the MFSAA with a 
uniform length of L = 0.25λ, diameter of D = 0.006λ and different separations d (mutual coupling not 

considered) 
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As can be seen, by increasing the separation d, the number of side lobes as well as the 
amplitude of them will be increased. If the distance between the elements decreases, the 
beam shape converges to a nearly omni directional pattern as we expected this pattern 
from a single monopole antenna (see Fig 2.3). 
This table shows that, to obtain a suitable and useful Radiation pattern of the MFSAA, 
the separation d has to be optimized, while other properties, like efficiency and 
impedance match require optimization of the other parameters of each monopole 
antenna as well, such as: length L and diameter D. 
To define the suitable and useful radiation pattern, in the following, some important 
fundamental parameters are introduced to take into consideration, such as: directivity, 
envelope correlation of beams, front-to-back ratio, fitting to the ideal secant squared 
elevation pattern and beam crossover level. Note that so far the MFSAA is considered 
on an infinite ground plane.  
 
2.4.2 Directivity 
 
The Directivity D of an array antenna can be defined as the ratio of the radiation 
intensity in a given direction from the array to the average radiation intensity [9] and 
can be expressed as: 
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= ππ
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where ),( φθF is the total radiation intensity in equation (2.19). The maximum value of 
(2.37) or the maximum directivity D0 is given by: 
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The maximum directivity of the MFSAA with a uniform length of L = 0.25λ, diameter 
of D = 0.006λ, source voltages expressed in equation (2.38), source impedance of 50Ω 
and different separations d, is shown in Fig 2.12. D0 is calculated using equation (2.40) 
for 0 ≤ θ ≤ π/2 and 0 ≤φ ≤ 2π (half space over infinite ground plane).     
This figure shows that by changing the separation d, the maximum directivity of the 
MFSAA is changed dramatically. 
For this MFSAA, the maximum value of D0 can be seen both in the separations d = 
0.35λ and d = 0.79λ (D0,max = 7.84dB), where the latter separation yields a pattern with 
more than one main beam. 
Since in many cases, the antenna design requires the optimization of the directivity of 
the patterns [12-14], the maximum directivity of the MFSAA is defined as one of our 
optimization goals, which is considered in the optimization problem. 
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 Fig. 2.12 Maximum directivity of the MFSAA with a uniform length of L = 0.25λ, diameter of D 

= 0.006λ and different separation d  
 
2.4.3 Envelope Correlation of Beams 
 
In order to consider the diversity performance of an MFSAA, e.g., in a multi-beam 
configuration, which is useful for enhancing signal reception, i.e. in mobile 
communication systems, the envelope correlation of two different beams of this array 
can be derived. Following [15], the envelope correlation between two radiation patterns 
F1 and F2 is given by: 
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where Ω is the Beam Solid Angle [9]. 
Fig 2.13 shows the variation of the envelope correlation of two neighboring beams of 
the MFSAA with source voltages expressed in equation (2.38), source impedance of 
50Ω and with ∆φ = 90° difference between the maximum directions of beams. Each 
antenna has a length of L = 0.25λ and diameter of D = 0.006λ with varied separations d. 
This figure shows the distance between the monopole antennas is very critical for the 
envelope correlation. Since diversity performance depends strongly on the envelope 
correlation of the antenna beam patterns (e.g. [16, 17]), the envelope correlation of the 
MFSAA is also considered as one of our optimization criterion in the next chapters. 
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Fig. 2.13 Envelope Correlation between two neighboring Beams of a Monopole Four- Square Array 

Antenna with a length of L = 0.25λ and diameter of D = 0.006λ as a function of separation d 
 
2.4.4 Front-to-Back (F/B) ratio 
 
Front-to-Back (F/B) ratio is the ratio of the maximum directivity of an antenna over the 
maximum directivity of the side lobes in the backward direction (worst-case front-to-
back ratio). The other definition of the (F/B) ratio or 180-degree (F/B) ratio is defined 
as the difference in directivity between the maximum forward gain bearing and another 
bearing 180 degrees opposite. Considering the azimuth beam patterns of the MFSAA in 
Table 2.1, the values of both worst-case (F/B) ratio and 180-degree (F/B) ratio is 
indicated in Table 2.2. 
 

d/λλλλ 
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180-degree (F/B) ratio (dB) 
 

 

12.5 
 

26.2 
 

30.4 
 

34.8 
 

11.8 
 

Worst-case (F/B) ratio (dB) 
 

 

12.5 
 

26.2 
 

26.5 
 

8.1 
 

0.2 
 

Table 2.2 Front-to-back ratios of the MFSAA with different separations d, considering the radiation 
patterns in Table 2.1 

 
Note that, the worst-case (F/B) ratio is considered as a definition of the (F/B) ratio in the 
following.  
(F/B) ratio improvement has been considered in many antenna designs using different 
methods such as the methods in [18-20]. Due to its importance for the operation of a 
multi-beam antenna system, the (F/B) ratio of the MFSAA is considered as one 
additional optimization criterion in the next chapters. 
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2.4.5 Beam Crossover (BC) level 
 
In applications of the MFSAA as a switched beam antenna or as a multi-beam antenna, 
coverage of the full 360° azimuth range is limited by the beamwidth of each of the four 
beams.   
Lowest gain is found for the directions where two neighboring beams cross-over. 
A suitable beam crossover (BC) level is therefore important [21]. Two adjacent beams 
can intersect each other in the direction of ),( BB φθ and at a (BC) level of b dB. Fig 2.14 
shows two azimuth beam patterns of the MFSAA with the source voltages in equation 
(2.38) and the source impedance of 50Ω. Each antenna has a length of L = 0.25λ and 
diameter of D = 0.006λ. The antenna separation of d is equal to 0.271λ. 
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Fig. 2.14 Two azimuth beam patterns of the MFSAA with a length of L = 0.25λ, diameter of D = 0.006λ 
and separation d = 0.271λ rotated by 90° (shifted beam) to measure the beam crossover level (b = 2.86 

dB)   
 
In this case, the beam crossover level can be determined by measuring the level of b 
(the intersection point between the beam and the rotated beam).  
The (BC) values for the MFSAA with a length of L = 0.25λ and diameter of D = 0.006λ 
are shown in Fig 2.15 as a function of d / λ. 

 
Fig. 2.15 Beam Crossover Level for the MFSAA of a length of L = 0.25 λ, diameter of D = 0.006λ and 

different separation d 
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The useful range of (BC) level in practical systems is between -3dB and -6dB. 
Therefore, a reasonable (BC) is also one of the goals of designing the MFSAA in this 
thesis and is also considered as one of the optimization criteria in the next chapters. 

 
2.4.6 Fitting to the ideal secant squared elevation pattern 
 
The “Friis” transmission equation expresses the power received to the power 
transmitted between two antennas [9]: 
 

)4( 2
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P rt
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r

π
λ=                    (2.42) 

 
where Pr and Pt are the received and transmit power respectively and Gr and Gt  are the 
receive and transmit antenna gain (referred to a lossless isotropic source), expressed as: 
 

),(),( φθφθ ttt DkG =            (2.43) 
 

),(),( φθφθ rrr DkG =            (2.44) 
 

kt and kr are also the transmit and receive efficiency factors respectively (0 ≤ kt , kr ≤ 1) 
[22] and the transmit and receive antennas are separated by the distance R. 
If we use the MFSAA, i.e., in a base station, see Fig 2.16, at the fixed height h, above 
the ground elevation, elevation angle θ is related to h and R by: 
 

h = Rcosθ      (2.45) 
 

Then the power received by the receiving antenna can be made to be independent of the 
distance R, by choosing the gain function Gt (θ ,φ ) appropriately. 
 

 

 
 

       
Fig. 2.16 MFSAA in a base station at the fixed height h, above the ground as a transmit antenna 
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If the transmit antenna gain function is designed to have the secant-squared shape Gt (θ 
,φ ) = kc /cos2θ, then the equation (2.42) will become range independent if kc is chosen 
as a constant: 
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k =            (2.46) 

 
This assumes that the receiving antenna gain is isotropic (Gr = 1), which may be true 
approximately for small mobile terminals.  
In the next chapters this method will be used to design the MFSAA to optimally match 
the directivity to the secant squared shape, i.e., fitting to the ideal secant squared 
elevation pattern will also be considered as one of our optimization criteria in next 
chapters.  
 
2.4.7 Maximum Absolute Gain of the MFSAA 
 
One reason for employing an array antenna is to provide increased gain. By the 
conventional definition, e.g. [9], antenna gain is degraded by internal losses only, which 
is reflected by the radiation efficiency. However, a practical definition of gain may also 
include the mismatch loss (or return loss) which shifts the reference power from the 
accepted power at the antenna terminals (conventional definition) to the incident (or 
available) power. In our case for the MFSAA, the antenna gain (the maximum absolute 
gain) G0abs can be defined as [9]: 
 

00 DG Mrabs ηη=              (2.47) 

 
where rη is the radiation efficiency of the MFSAA with uniform length L and diameter 
D for each antenna in equation (2.11), D0 is the maximum directivity of the MFSAA in 
equation (2.40) and Mη is the mismatch efficiency of the MFSAA, expressed as: 
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In this equation, iΓ  is the (“active”) reflection coefficient of each antenna in the array 

with all other elements active and can be written as: 
 

0

0

ZZ

ZZ

i

i
i +

−=Γ            (2.49) 

 
In equation (2.49), Zi= Vi / I i is the impedance of each antenna, as calculated using e.g. 
equation (2.37), in combination with equations for the sources. 
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In the next chapters, the gain and the mismatch efficiency of the MFSAA will be 
calculated after each optimization procedure to show the performance of the optimized 
MFSAA. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 

CHAPTER 3   Optimization Methods and Neural Networks 
 

 
3.1 Optimization Overview  
 
Optimization is the mathematical discipline which is concerned with finding the 
maxima or minima of a cost function or functional f: Rn → R, possibly subject to 
constraints or conditions g and h, where g and h as well as the optimization problem can 
be described as [23-25]: 
 

min f (x) subject to g (x) = 0 and  h (x) ≤ 0 where x = [x1,x2,…,xn] 
  
The goal of optimization is to minimize/maximize the cost function f to obtain the 
optimal values of parameters. It is also sufficient to consider only minimization, since 
maximum of  f  is the minimum of – f. 
If we consider set S⊆ Rn, it can be possible to find x* ∈S such that )()( xfxf ≤∗  for all 
x∈S. Then x* is the optimal value of parameters x. 
Note that the maxima and minima of a cost function can either be “global” (the highest 
or lowest value over the whole region of interest) or “local” (the highest or lowest value 
over some small neighborhoods). Fig 3.1 shows a cost function with a global maximum 
of 1 and local maxima of 0.2. 
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Fig. 3.1 A cost function with local maxima of 0.2 and global maximum of 1 

 
It is usually most interesting to find the global optimum (such as the model parameters 
which give the best match to some image data) instead of local optimum, but this can be 
very difficult. In this chapter only two popular local optimization methods among too 
many methods [23] and the Genetic Algorithm (GA) method as a global optimization 
technique will be introduced and the application of this global optimizer will be 
discussed. 
 

24 
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3.1.1 Gradient-Based Optimization 
 
This method finds the critical point (or stationary point) between all x∈S for a cost 
function  f  of n variables, i.e. the solution of the nonlinear system [23,25]: 
 

0=∇f         (3.1) 
 

where f∇  is the gradient vector of  f, whose i th component is ixxf ∂∂ /)( . 
In Gradient-Based methods it is useful to choose a starting point that minimizes the 
process time. Starting from initial guess x0, the successive approximate solutions can be 
found as: 

)(1 kkkk xfxx ∇−=+ α        (3.2) 

 
where αk denotes the step width and is chosen depending on the used optimization. The 
performance of a gradient based method strongly depends on the initial values supplied. 
Several local optimization results can be found using different initial values. This 
method can be used for optimizing simple cost functions, which including only a few 
parameters. 
   
3.1.2 Direct Search Method 
 
Direct search [26, 27] is a method for solving optimization problems that do not require 
any information about the gradient of the cost function. The direct search algorithm 
searches a set of points around the initial point, looking for one where the value of the 
cost function is lower than the value at the initial point. After finding the new points, 
these points will be replaced by the previous (initial) points and this algorithm will be 
repeated until no further improvements are achieved. The special class of direct search 
algorithms called pattern search algorithm computes a sequence of points that get closer 
to the optimal point, as below [25]: 
 
1) At each step, the algorithm searches a set of points, called a mesh, around the initial 
point. 
 
2) The algorithm forms the mesh by adding the new point to a scalar multiple of a fixed 
set of vectors called a pattern. 
 
3) If the algorithm finds a point in the mesh that improves the cost function at this point, 
the new point becomes the previous point at the next step of the algorithm. 
 
This method is also a local optimization method and the accuracy of the results depends 
on the initial values. 
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3.1.3 Genetic Algorithm (GA) 
 
The genetic algorithm [28] is a method for solving optimization problems that is based 
on natural selection, the process that drives biological evolution. The genetic algorithm 
repeatedly modifies a population of individual solutions. 
At each step, the genetic algorithm selects individuals at random from the initial 
population to be parents and uses them to produce the children for the next generation. 
Over successive generations, the population evolves toward an optimal solution. 
The genetic algorithm differs from a standard optimization algorithm in two main ways, 
as can be seen in table 3.1 [25]. 
 

 

Standard Algorithm 
 

 

Genetic Algorithm 
 

 

Generates a single point at each iteration 
and the sequence of points approaches an 
optimal solution 
 

 

Generates a population of points at each 
iteration and the population approaches an 
optimal solution 

 

Selects the next point in the sequence by a 
deterministic computation 
 

 

Selects the next population by computations 
that involve random choices  

 

Table 3.1 Comparison between Standard Algorithms and Genetic Algorithm [25] 
 
The following parameters are the fundamental parameters in Genetic Algorithm method 
and have to be defined before describing this method [25, 29, 30]: 
 
• Fitness Function: The fitness function is the cost function we want to minimize / 
maximize it.  
 
• Individuals:  An individual is any possible solution which can be considered for the 
fitness function.  
 
• Population: Population is a group of individuals.  
 
• Generations: At each iteration, GA performs a series of computations on the current 
population to produce a new population. Each successive population is called a new 
generation. 
 
• Diversity: Diversity refers to the average distance between individuals in a 
population. A population has high diversity if the average distance is large; otherwise it 
has low diversity. Diversity is essential to the genetic algorithm because it enables the 
algorithm to search a larger region of the space. 
 
• Fitness Values: The fitness value of an individual is the value of the fitness function 
for that individual. Since GA finds the minimum of the fitness function, the best fitness 
value for a population is the smallest fitness value for any individual in the population. 
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• Parents and Children: To create the next generation, GA selects certain individuals 
in the current population, called parents and uses them to create individuals in the next 
generation, called children. Typically, the algorithm tries to select parents that have 
better fitness values.   
 
The following steps show how GA works: 
 
a) GA begins by creating a random initial population. 
 
b) GA creates a sequence of new populations, or generations using the individuals in the 
current generation to create the next generation. To create the new generation, the 
algorithm performs the following steps [25, 29, 30]: 
 

1) Scores each member of the current population by computing its fitness 
value 
 

2) Scales the raw fitness scores to convert them into a more usable range of 
values 
 

3)  Selects parents based on their fitness 
 

4) Produces children from the parents. Children are produced either by 
making random changes to a single parent – mutation – or by combining 
the vector entries of a pair of parents – crossover 
 

5)  Replaces the current population with the children to form the next 
generation 

 
c) GA stops when one of the stopping criteria is met. 
 
As an example, Fig 3.2 shows a plot of the following cost function including two 
independent variables x1 and x2 [25, 30] : 
 

)2cos2(cos1020 21
2
2

2
1 xxxxCost ππ +−++=          (3.3) 

   
As can be seen from Fig 3.2, this cost function has many local minima. However, the 
cost function has just one global minimum, which occurs at the point [0 , 0] in the x1-x2 
plane, where the value of the cost function is 0. At any local minimum other than [0 , 0], 
the value of the cost function is greater than 0. 
This function is often used to test the genetic algorithm optimizer, because of its many 
local minima. The contour plot of this function in Fig 3.3 shows the alternating maxima 
and minima. The algorithm begins by creating a random initial population, as shown in 
Fig 3.3 (b). In this example, the initial population contains 20 individuals, which is the 
default value of Population size in the Population options in MATLAB. 
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Note that all the individuals in the initial population lie in the upper-right quadrant of 
the picture, that is, their coordinates lie between 0 and 1, because the default value of 
Initial range in the Population options is defined at the point of [0 , 1] in MATLAB.  
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Fig. 3.2 A cost function with many local minima and a global minimum at [0 , 0] 
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Fig. 3.3 Contour plot of the cost function in Fig 3.2, with (a): its local minima and maxima, (b): Initial 
population  

 
At each step, the genetic algorithm uses the current population to create the children that 
make up the next generation. The algorithm selects parents, who contribute their genes 
(the entries of their vectors) to their children. The algorithm usually selects individuals 
that have better fitness values as parents. The genetic algorithm creates the following 
three types of children for the next generation [25, 30]: 
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• Elite children:  The children (individuals) in the current generation with the best 
fitness values. These individuals automatically survive to the next generation. 
 
• Crossover children: The children created by combining the vectors of a pair of 
parents. The algorithm creates crossover children by combining pairs of parents in the 
current population. At each coordinate of the child vector, the default crossover function 
randomly selects an entry, or gene, at the same coordinate from one of the two parents 
and assigns it to the child. 
 

• Mutation children:  created by introducing random changes, or mutations, to a single 
parent. The algorithm creates mutation children by randomly changing the genes of 
individual parents. By default, the algorithm adds a random vector from a Gaussian 
distribution to the parent. 
 

Fig 3.4 shows the populations at iterations 65, 80, 95, and 100, where at iteration 100 
the global minimum has been found by the GA optimizer. 
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Fig. 3.4 The populations at iterations 65, 80, 95, and 100 

 
 

Finally, the genetic algorithm uses the following five conditions to determine when to 
stop [25]: 
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1) Generations: The algorithm stops when the number of generations 

reaches the value of Generations 
 

2) Time limit: The algorithm stops after running for an amount of time 
in seconds equal to Time limit 
 

3) Fitness limit: The algorithm stops when the value of the fitness 
function for the best point in the current population is 
less than or equal to Fitness limit 
 

4) Stall generations: The algorithm stops if there is no improvement in the 
objective function for a sequence of consecutive 
generations of length Stall generations 
 

5) Stall time limit: The algorithm stops if there is no improvement in the 
objective unction during an interval of time in seconds 
equal to stall time limit 

 
The use of Genetic Algorithm in the design of antennas has become increasingly 
popular in recent years to reduce the difficulties in antenna synthesis. As examples, Lee 
at al [31] used GA in array antenna design optimization, Michielsson et al. [32] applied 
GA’s to the synthesis of multilayered broad-band absorbers, Haupt [33, 34], used GA’s 
to thin dense arrays of active elements for minimizing side lobe levels and Marcano et 
al [35] determined phase and amplitude settings for array beamforming with GA’s. 
In wire antenna design, Boag et al [36] designed electrically loaded wire antennas with 
GA’s, and Linden et al [37] have used GA’s to design arbitrarily shaped antennas that 
are circularly polarized. 
 
In this thesis the method of Genetic Algorithm will be used in the optimization 
procedures to find the global minima of several complicated cost functions. 
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3.2 Artificial Neural Networks (ANN) for system modelling  
 
A Neural Network or Artificial Neural Network (ANN) is an information processing 
paradigm that is inspired by the way biological nervous systems, such as the brain, 
process information [38]. In an ANN, a large number of processing elements (neurons) 
are working to solve specific problems by modeling the general input/output 
relationships. ANNs, like people, learn by example and after learning ANNs can be 
used to find the outputs for a set of inputs, which have not been used in the learning 
procedure. ANNs can be used for many complex tasks such as control engineering, 
telecommunications, biomedical and also Antenna design. The following abilities can 
be offered using ANNs [39]: 
 

• Adaptive learning: An ability to learn how to do tasks based on the data given for 
training or initial experience. 
 

• Self-Organization: An ANN can create its own organization or representation of the 
information it receives during learning time. 
 

• Real Time Operation: ANN computations may be carried out in parallel, and special 
hardware devices are being designed and manufactured which take advantage of this 
capability. 
 

• Fault Tolerance via Redundant Information Coding: Partial destruction of a 
network leads to the corresponding degradation of performance. However, some 
network capabilities may be retained even with major network damage. 
 
3.2.1 How Neural Network works 

In the human brain, a typical neuron collects signals from others through a host of fine 
structures called dendrites. The neuron sends out spikes of electrical activity through a 
long, thin stand known as an axon, which splits into thousands of branches. At the end 
of each branch, a structure called a synapse converts the activity from the axon into 
electrical effects [40]. See Fig 3.5. 

 

 
 

Fig. 3.5 The schematic of neuron and synapse (after [40])  
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Neurons combine the input signals from these connections or synapses to determine if 
and when it will transmit a signal to the other neurons through the connecting dendrites 
and synapses. The synapses modulate the input signals before they are combined, and 
the system is trained by changing the modulation at each synapse.  
Now, the ANN can be modeled based on the training procedure of the human brain. Fig 
3.6 shows the schematic of an artificial neural network, which consists of a set of inputs 
including n variables, m output data, input weighting coefficients and a neuron network.  
 

 

Fig. 3.6 The schematic of an artificial neural network  
 
Neuron Network above, consists of the receptor, adder (to add Wi xi signals, i = 1,…, n) 
and activation function to find adaptive rules between input and output data sets.      
As can be seen from this figure, an artificial neural network can be considered as a 
black box, which has several inputs and outputs. A suitable ANN can be found using an 
appropriate available set of input/output data in training mode and then, it can be tested 
for a new and again available set of input /output data, which have not been considered 
in the training procedure (using mode). Finally, if the neural network has been accepted 
as a suitable model, considering the acceptable error, the new set of inputs can be used 
and the unavailable outputs can be determined.  
There are many types of Neural Networks [38] but the most popular and useful neural 
network model, which is also used in this thesis, is a Multilayer Perceptron (MLP), 
introduced below. 
  
3.2.2 Multilayer Perceptron (MLP) 
 
Multilayer Perceptron (MLP) consists of three different layers: input layer, hidden layer 
and output layer. Fig 3.7 shows a Multilayer Perceptron Neural Network for n input and 
m output variables. 
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Fig. 3.7 Multilayer Perceptron with 3 layers (after [38]) 
 
 

• Input Layer: The input layer with n neurons (equal to the number of input variables) 
standardizes the input values, in a way that the range of each variable can be varied 
between -1 and 1. The input layer distributes the values to each of the neurons in the 
hidden layer 
 
• Hidden Layer: Arriving at a neuron in the hidden layer, with L transfer functions, the 
value from each input neuron is multiplied by a weight (wji), and the resulting weighted 
values are added together producing a combined value uj. Then uj is fed into a transfer 
function σ, whit the outputs of hj.  
The outputs from the hidden layer are then distributed to the output layer.  
Note that it may possible to choose more than one-hidden layer for neural network 
structure. The question is: How to choose the number of hidden layers and nodes in a 
neural network? 
To choose the optimal number of hidden layers, the performance difference of adding 
additional hidden layers is useful. If the situations in which performance improvements 
with a second (or third, etc.) hidden layer are very small, then increasing the number of 
hidden layers is not necessary. One hidden layer is sufficient for the large majority of 
problems. 
To select the size of the hidden layer(s), there are some rules to find the optimal number 
of neurons [41], but the most commonly relied on, is: “the optimal size of the hidden 
layer is usually between the size of the input and size of the output layers”. 
“Pruning” algorithm [42-44] describes also a set of techniques to trim network size (by 
nodes not layers) to improve computational performance and sometimes resolution 
performance. The goal of these techniques is removing nodes from the network during 
training by identifying those nodes which, if removed from the network, would not 
noticeably affect network performance (i.e., resolution of the data). Even without using 
a formal pruning technique, we can get a rough idea of which nodes are not important 
by looking at the weight coefficients after training. 
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By applying a pruning algorithm to the neural network during training, we can also find 
the optimal network configuration. 
 
• Output Layer:  Arriving at a neuron in the output layer with m neurons (equal to the 
number of output variables), the value from each hidden layer neuron is multiplied by a 
weight (wkj), and the resulting weighted values are added together producing a 
combined value vj. The weighted sum (vj) is again fed into a transfer function σ, which 
outputs a value yk. The y values are the outputs of the network.  
 
In recent years neural network models are used extensively for wireless communication 
engineering, which eliminates the complex and time consuming mathematical 
procedures of designing antennas, like method of moments (MOM) [45-55]. Various 
ANN models are developed for determining resonant frequencies of antennas of various 
shapes [46, 47] and [52, 53]. In [51, 54], several designs have been presented using 
ANN models. A comprehensive review of applications of ANN in microwave 
engineering and different types of methods to develop the ANN models is discussed in 
[54, 55]. 
Multilayer Perceptron (MLP) neural network, with different number of hidden layer 
neurons as well as the weighting coefficients is used to model several problems in this 
thesis, using routines provided in MATLAB (Neural Network Toolbox).  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 

CHAPTER 4   Performance Optimization of the MFSAA  
 

 
In this chapter an optimization problem for the Monopole Four Square Array Antenna 
(MFSAA) mounted on an infinite ground plane is defined and the optimization is done 
using the optimization methods introduced in Chapter 3. For this purpose, three types of 
approximation models are considered for the MFSAA: First-order, second order and 
third order approximation model. Finally, the simulation results for radiation patterns 
demonstrate the possible performance improvement, if geometry and electrical 
parameters of the MFSAA as well as the feed network parameters can be optimized. 
 
4.1 Optimization Problem 
 
A typical optimization problem for the phased array implies high directivity, narrow 
beamwidth and low side lobes. A large number of theoretical approaches have been 
developed to solve this problem [56]. For the MFSAA, described in chapter 2 and 
mounted on an infinite ground plane with uniform element spacing d, length L, diameter 
D and the excitations Ii for each monopole antenna (i =1,…,4), the following criteria 
have been considered in the optimization problem to improve the performance of the 
MFSAA on an infinite ground plane [57]. 
 
4.1.1 Minimum Envelope Correlation of Beams 
 
Following equation (2.41), the first criterion J1 can be defined as the minimum envelope 
correlation between two neighboring beams of the MFSAA, with ∆φ = 90° difference 
between the maximum directions, as:  

ρ=),,(1 iILdJ           (4.1) 

 
J1 is a function of element spacing d, length of each monopole L and excitations I i. By 
minimizing this function the minimum envelope correlation of beams can be obtained.  
 
4.1.2 Best fit to the ideal secant-squared elevation pattern 
 
According to the equations (2.40) and (2.43), the second criterion is expressed as the 
following equation: 
 

22
2 )],()(sec[

2
1

),,( φθθ DKILdJ i −=        (4.2) 

 
Factor 1/2 is used for improvement of convergence in the optimization process. 
J2 is a function which by minimizing this function the best fit to the ideal secant-squared 
elevation pattern will be achieved. In this equation, D is the Directivity of the MFSAA 
and K is a constant, chosen in order to simplify the relationship, described in equation 
(4.3). 
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t

c

k

k
K =        (4.3) 

 
In equation above, kc is another constant, expressed in equation (2.46) and kt is the 
transmit antenna efficiency factor in equation (2.43). Note that the secant behavior is 
not required over all angles, but only over a certain range, such as 0 ≤ θ ≤ θmax. 
θmax corresponds to the maximum distance to the received antenna Rmax = h cos(θmax). 
In this criterion, it has been considered that θmax = 90°. If the function J2 can be 
minimized in a best way, then the transmit power Pt will be equal to the received power 
Pr in “Friis” equation (2.42).   
 
4.1.3 Suitable Beam Crossover (BC) level 
 
To obtain the suitable beam crossover level, described in section 2.4.5, the third 
criterion can be written as below. 
 

2
3 )(

2
1

),,( BCβILdJ i −=       (4.4)  

 
Minimizing J3 obtains the suitable crossover level of beams. In this equation, β is a 
constant and can be defined with respect to the considered suitable range for BC level 
(see section 2.4.5). For this criterion, the suitable BC range is considered to be between 
0.5 (-3dB) and 0.25 (-6dB), and therefore β = 0.354 (-4.5dB) is defined for equation 
(4.4) as an optimum to give function J3 its minimum value.  
 
4.1.4 Maximum Front-to-Back (F/B) ratio 
 
Following the definition of Front-to-Back ratio in section 2.4.4, the fourth criterion J4 is 
defined as worst-case front-to-back ratio, as: 

 

=),,(4 iILdJ (F/B)          (4.5) 

 
J4 is also a function of element spacing d, length of each monopole L and excitations I i 
of four monopoles. In Table 2.2, it can be seen that the maximum value of F/B ratio of 
446.6 (26.5dB) can be found for a separation d = 0.271λ. Using equation (4.5) it is 
possible to find this maximum by varying the element spacing d, as well as the length L 
and excitations I i. Finally, by maximizing this function the maximum worst-case front-
to-back ratio of the MFSAA can be achieved.  
 
4.1.5 Maximum Directivity 
 
According to the definition of Directivity in section 2.4.2, the fifth criterion can be 
considered as: 

),(),,(5 φθDILdJ i =       (4.6)  
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),( φθD is the directivity of the MFSAA in equation (2.39). Maximizing J5, the 

maximum Directivity of the MFSAA can be achieved. 
 
4.1.6 Maximum Radiation Efficiency 
 
Equation (2.11) describes the Radiation Efficiency of a monopole antenna as a function 
of length L and diameter D of each monopole antenna. 
The sixth criterion can be defined as the following equation: 
 

rLDJ η=),(6       (4.7)  
 
where ηr is the radiation efficiency of each monopole antenna, which can vary between 
0 and 1. By maximizing this function the maximum Efficiency of the array can be 
achieved. 
 
4.2 First order approximation model 

 
In this step, the first five performance criteria: 4.1.1 - 4.1.5 are applied for a simple 
antenna model (first order approximation model) which excludes the effects of antenna 
mutual coupling. For this simple model, four identical quarter-wave monopole antennas 
(L = λ/4) are used to create the MFSAA on an infinite ground plane, shown in Fig 2.11. 
It is assumed that the amplitude excitation of each monopole antenna is uniform I i = I0 (i 
= 1,...,4) and the phases are fixed to 90°, 180°, 90° and 0° for the first, second, third and 
fourth antenna respectively (see Fig 2.11). 
For this model, only the distance d between the elements is varied whereas all other 
parameters are fixed. 0 ≤ θ ≤ 180º and 0 ≤ φ  ≤ 360º are also the ranges of both θ and φ  
in optimization procedure. 
First, each criterion is optimized separately. Results for each criterion are shown 
separately in Fig 4.1, where three different ranges have been defined as optimal range 
(red), useful range (green) and unacceptable range (grey). It has been realized that the 
five criteria do not coincide at the same optimum element spacing, but the following 
corridor seems a good compromise: 
 

350.0/252.0 ≤≤ λd          (4.8) 
 
A more precise determination of the optimum element spacing is obtained after defining 
a cost function with the appropriate weight factors as well as the condition in equation 
(4.8). In this way the main goal is to find the optimal distance d between the elements 
(in wavelength) based on the cost function in equation (4.9). The individual 
performance criteria have been grouped into criteria 4.1.1 to 4.1.3 which should be as 
small as possible and criteria 4.1.4 and 4.1.5 which should be as large as possible. The 
quotient of the two groups should be minimized to give an optimum result.  
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In this equation, n

iJ (i =1,…,5) is the normalized value of each criterion, obtained by 

dividing the equations (4.1), (4.2), (4.4), (4.5) and (4.6) by the maximum value of each 

iJ . For this purpose, each criterion has been analyzed separately and the maximum of 

each criterion has been found. E.g., Fig 2.12 shows that the maximum value of the fifth 
criterion in equation (4.6), considering the conditions indicated in section 2.4.2, which 
is 6.09 (7.84dB) and thus nJ5 = 5J /6.09. The range of each normalized criterion is thus 

balanced between 0 and 1. 
To optimize the cost function (4.9), the direct search method in 3.1.2 is selected because 
of only one optimized parameter (d).  After defining the weighting coefficients to be 
uniform (Wi =1) and considering the equation (4.8) as the only constraint, the optimal 
distance dop between the elements (in wavelength) has been found as dop = 0.319λ. (see 
precise optimization result in Fig 4.1). 

 
Fig. 4.1 Optimization results for the first order approximation model 

 
Table 4.1 shows the values of the envelope correlation (ρ), normalized second criterion 

nJ2 (fit to the secant-squared elevation pattern), beam crossover (BC) level, (F/B) ratio 
and maximum directivity (D0), when d = dop = 0.319λ.  
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Parameter  

 

ρ nJ2  
 

BC 
 

F/B 
 

D0 

Value 0.16 0.34 3.2 dB 15 dB 7.8 dB 
 

Table 4.1 Values of nJ2 , ρ, D0, (BC) and (F/B) for the MFSAA with d = dop = 0.319λ. 

 
Fig 4.2 shows the azimuth radiation pattern at the elevation beam peak θ = 90º of the 
quarter-wave MFSAA for the optimal separation d = dop = 0.319λ. 
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Fig. 4.2 Azimuth radiation pattern of the first-order approximation MFSAA  

 
For uniform amplitude and symmetrical phase excitation I i, the array pattern becomes 
symmetrical, as can be seen from this figure.    
 
4.3 Second order approximation model 
 
The next, more sophisticated optimization employs a second order approximation 
antenna model which considers the role of mutual coupling between the monopole 
antennas. In this step, we consider four identical realistic monopole antennas in the 
MFSAA, shown in Fig 2.11, of uniform variable length L and diameter D. The source 
impedance of the feed network Z0 can be also varied arbitrarily but the source voltages 
of the feed network are chosen as equation (2.38).  
In this step, the 6th criterion (Maximum radiation efficiency) in equation (4.7) is also 
considered to create the following cost function for the optimization procedure: 
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In this equation, 0Z′  is the real part and 0Z ′′  the imaginary part of the source impedance 

Z0 (equal for all monopole antennas).  
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n
iJ (i =1…6) is the normalized value of each criterion, as explained before and taken 

from equations (4.1), (4.2), (4.4), (4.5), (4.6) and (4.7) and can vary between 0 and 1.  
Wi (i =1…6) are also the weighting coefficients which are limited to ∑Wi = 6.  
Note that from the equations (2.36) and (2.37), it can be concluded that the excitations I i 
can be expressed as a function of the impedance Source Z0, the source voltages Vio, L, D 
and d, but because the source voltages are fixed by equation (2.38), the cost function 
(4.10) can be expressed in terms of the variables d, L, D, 0Z′  and 0Z ′′  only. 

Equations (2.38), (4.8) and the following conditions are considered as our constraints 
and weights in order to optimize the cost function (4.10). 

 
35.015.0 ≤≤ λL  (4.11) 

 
055.0004.0 ≤≤ λD  (4.12) 

 
Ω≤′≤Ω 15035 0Z  (4.13) 

 
Ω≤′′≤Ω− 5050 0Z  (4.14) 

 
5.1641 === WWW  (4.15) 

 
5.0532 === WWW  (4.16) 

 
The range of L and D in equations (4.11) and (4.12) has been chosen due to the practical 
applications and limitations. Note that due to each application, the ranges of L and D 
can be changed optionally. The range of the source impedance in equations (4.13) and 
(4.14) is also due to the popular 50Ω source impedance with a limited range of 
transformation for the real part and ± j50Ω for the imaginary part of the source 
impedance Z0. 
For the purpose of optimizing the cost function, a Genetic Algorithm (GA) optimizer, 
described in section 3.1.3, with generations of 35 individuals each, crossover rate = 0.8 
and mutation rate = 0.04 is used. Table 4.2 shows the optimal values of the parameters 
after optimization. 
 

 

Parameter opd  opL  opD  opZ0′  opZ0′′  
Value λ274.0  λ203.0  λ0072.0  Ω147  Ω−35  

 

Table 4.2 Optimized variables, obtained by Genetic Algorithm optimizer 
 
Using the optimal parameters in Table 4.2, the impedance matrix Z of this MFSAA is 
expressed in equation (4.17). 
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As we can see from this matrix, the diagonally opposite antennas have smaller mutual 
impedances in magnitude in comparison to the neighboring antennas, due to the larger 
separation. Note that reducing the mutual impedances between antennas is another 
criterion, which will be considered in next chapters after considering the effect of the 
finite ground plane on the antennas additionally. 
Very poor matching can also be seen by comparing the source impedance Z0 in Table 
4.2 with the diagonal elements of matrix (4.17). To improve the impedance matching of 
the MFSAA, an extended cost function will be considered in the third order 
approximation model. 
The excitations Ii can also be found using equations (2.36) and (2.37) for this MFSAA: 
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As expected, the 1st and 3rd elements have the same excitation. The 2nd antenna has 5º 
differences in phase in comparison to the 2nd antenna in the first approximation model, 
while the 4th antenna has 20º differences in phase with respect to the 4th element in the 
first approximation model. Fig 4.3 shows the azimuth radiation pattern at the elevation 
beam peak θ = 90º of the MFSAA corresponding to the optimized parameters in Table 
4.2.  
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Fig. 4.3 Azimuth radiation pattern of second-order approximation MFSAA  
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As expected, a symmetric radiation pattern can be seen in this figure, due to the same 
excitation of the first and third elements. Table 4.3 shows the values of the envelope 
correlation (ρ), normalized second criterion nJ2 , beam crossover (BC) level, (F/B) ratio, 
maximum directivity (D0), radiation efficiency ηr, mismatch efficiency ηM (calculated 
from equation (2.48)) and maximum absolute gain G0abs (calculated from equation 
(2.47)), using the optimized variables of Table 4.2.  
 
Parameter ρ nJ2  

 

BC 
 

F/B 
 

D0 
 

ηr 
 

ηM 
 

G0abs 

Value 0.32 0.31 3.35 dB 14.9 dB 8dB 71% 54% 3.84 dB 
 

Table 4.3 Values of the MFSAA in the second order approximation model 
 
The values of envelope correlation, beam crossover level and directivity are increased in 
this step in comparison to the first order approximation model (see Table 4.1), while the 
front-to-back ratio remains almost constant. The improvement of front-to-back ratio was 
to be expected due to reduced element pacing d. However, the element current 
excitation, equation (4.18), shows unequal amplitudes which degrades the F/B ratio 
from a 16.5dB result, possible for equal amplitudes with phases as given in equation 
(4.18); note that with equal amplitudes and 90º, 180º, 90º and 0º phases (as in equation 
(2.38)), the F/B ratio would even reach 23.8dB.  
The poor value of the mismatch efficiency as well as the absolute gain of the MFSAA 
in this table is due to the MFSAA impedance mismatch. This is seen as a result of the 
particular choice of the criteria, where the directivity was included for optimization but 
neither the impedance mismatch nor the mismatch efficiency or absolute gain.  
Note that, by changing the values of the weighting coefficients in equations (4.15) and 
(4.16), we can change our priorities and then the optimal values in both Tables 4.2 and 
Table 4.3 are changed.  
 
4.4 Third order approximation model 
 
Finally, in the third order approximation model, it is assumed that the source voltages of 
the feed network can be also changed over the following limited ranges: 
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where |Vio| is the amplitude and ioV∠  is the phase of the source voltage Vio (i=1,…,4). In 

this step the number of optimized parameters is increased from 5 to 13 parameters.  
Another criterion is also considered in the new cost function for this approximation 
model: To match the self impedance of each antenna to the characteristic impedance 
and also minimize the mutual impedance between antennas, the following criterion is 
defined in this step. 
 

( ) ( ) ( )3121
*
110007 ),,,,( ZmagnitudeZmagnitudeZZmagnitudeZZDLdJ ++−=′′′       (4.21) 

 
where 000 ZjZZ ′′+′=  is the source impedance, ∗11Z  is the complex conjugate of the self 

impedance Z11, Z21 is the mutual impedance between neighboring antennas and Z31 is 
the mutual impedance between diagonally opposite antennas. 
The following cost function is considered for this approximation model:  
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In this step the cost function above with conditions, indicated in equations (4.8), (4.11)-
(4.14), (4.19)-(4.20) and the following weighting coefficients (∑Wi = 6) are considered 
in our global optimization problem. 
 

75.07641 ==== WWWW          (4.23) 

 
1532 === WWW             (4.24) 

 
A Genetic Algorithm (GA) optimizer, with generations of 35 individuals each, 
crossover rate = 0.8 and mutation rate = 0.04 is designed to optimize the cost function 
(4.22).  
The following table shows the optimal values of the parameters after optimization. 
 

 

Parameter opd  opL  opD  opop ZjZ 00 ′′+′  
 

Value 
 

 

λ34.0  
 

λ23.0  
 

λ039.0  
 

Ω+ 631 j  
 
 

Parameter oV1 / V oV1∠  
oV2 / V oV2∠  

 

Value 
 

 

9.0  
 

o76  
 

85.0  
 

o188  
 
 

Parameter oV3 / V oV3∠  
oV4 / V  oV4∠  

 

Value 
 

88.0  
 

o82  
 

15.1  
 

o5.3  
 

Table 4.4 Optimized variables obtained by Genetic Algorithm optimizer with 13 variables 
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Moderate modifications of source voltages and much lower source impedance can be 
seen in this table. 
Considering the optimal values of dop, Lop and Dop, the impedance matrix Z of this 
MFSAA, can be expressed in equation (4.25). 
 

Z =



















−−−−−
−−−−−
−−−−−
−−−−−

jjjj

jjjj

jjjj

jjjj

2.18.286.1821.102.165.46.1821.10

6.1821.102.18.286.1821.102.165.4

2.165.46.1821.102.18.286.1821.10

6.1821.102.165.46.1821.102.18.28

  Ω         (4.25) 

 
As this matrix shows, the self impedance has been better matched to the source 
impedance of the network, but the relative magnitude of the mutual impedances didn’t 
change much in comparison to the previous results without considering a mutual 
coupling as a criterion. 
This means that a decoupling and matching network for MFSAA is necessary to obtain 
considerably less mutual coupling between antennas. In the next chapter, a procedure 
will be introduced in order to design a decoupling and matching network (DMN), 
considering the mutual coupling between antennas and also between each antenna and 
finite ground plane (chassis). 
Using the optimized variables in Table 4.4, the excitation Ii can be found using 
equations (2.36) and (2.37): 
 


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
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












o

o

o

o

34458.0

9562.0

2031

9064.0

4

3

2

1

I

I

I

I

  A        (4.26) 

 
We still see variations in the element current amplitudes versus the originally uniform 
excitation, however, more deviation than in result (4.18) from the second order 
approximation model. The 2nd and the 4th antennas have +23º and -16º differences in 
phase with respect to the antennas in the first approximation model respectively. We 
also note that the currents I1 and I3 are similar but not equal, which yields a slightly 
asymmetric pattern. This has to be expected since pattern symmetry was not a criterion 
and other criteria exhibit little dependence on symmetry. In section 5.3.7.3, new 
constraints will be considered for the optimization problem to obtain a symmetric 
radiation pattern. 
Fig 4.4 shows the azimuth radiation pattern at the elevation beam peak θ = 90º of the 
MFSAA in this step.  
As we can see from this figure, the mutual coupling of radiators still causes pattern 
degradation, compared with the pattern in Fig 4.2 which ignores mutual coupling. In 
particular, we see slight asymmetry in the lobes shape and in the level of the back lobes.  
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Fig. 4.4 Azimuth radiation pattern of third-order approximation MFSAA  

 
In comparison to the results obtained from the second order approximation model, the 
front-to- back ratio has decreased due to both the large separation d and the particular 
excitation I i in equation (4.26). 
Table 4.5 shows the values of the envelope correlation (ρ), normalized second criterion 

nJ2 (fit to the secant-squared elevation pattern), beam crossover (BC) level, (F/B) ratio, 
maximum directivity (D0), radiation efficiency ηr, mismatch efficiency ηM and 
maximum absolute gain G0abs , using the optimized variables of Table 4.4.  
 
Parameter 

 

ρ nJ2  
 

BC 
 

F/B 
 

D0 
 

ηr 
 

ηM 
 

G0abs 

Value 0.37 0.28 2.96 dB 9.8 dB 7.72 dB 76% 98% 6.45 dB 
 

Table 4.5 Values of the MFSAA in third order approximation model 
 
Comparing the values in this Table to the Table 4.3, it can be seen that the values of the 
mismatch efficiency and gain are increased due to the impedance matching of the 
MFSAA. 
Again, note that, by changing the values of the weighting coefficients in equations 
(4.23) and (4.24), the results in Table 4.5 can be matched to the priorities, defined in the 
optimization problem. 
 
In this chapter the optimization problem for a “Monopole Four-Square Array Antenna” 
mounted on an infinite ground plane has been considered and optimization results have 
been found using the optimization methods, introduced in chapter 3. In the next chapter, 
a finite ground plane (chassis) will be introduced and optimization will be done 
considering the effect of chassis.  
On the other hand, as can be seen from the results of the Z matrices both in second and 
third order approximation models, a decoupling and matching network (DMN) for the 
MFSAA is also required, which will be designed and applied in the next chapter. 

 
 
 



 

CHAPTER 5   MFSAA on a finite ground plane (Chassis) 
 

 
Feed point impedance and mutual coupling of monopole array elements on a finite 
ground plane (chassis) have been found to depend critically on the ground plane size 
and the position of each antenna [1]. This is due to the excitation of the modes of the 
chassis, which acts as an additional radiator element parasitically coupled to the array 
elements [1]. In this chapter, first, the theory of characteristic modes will be introduced 
and the effect of the excitation of chassis modes will be discussed. A neural network is 
also designed in this chapter to calculate the chassis modes excitation. After that, the 
performance optimization of the MFSAA on a chassis is defined and optimization is 
performed in this chapter. For this purpose, as well as all optimized parameters found in 
chapter 4, the size of the chassis is also optimized in order to minimize the new cost 
function, considered for the optimization problem. After that, a decoupling and 
matching network (DMN) for the MFSAA mounted on a chassis will be defined and 
realized to minimize the combined coupling between the antennas and also between 
chassis and antennas. 
Finally, a full degree optimization problem is defined and a Neural Network model as 
well as the Genetic algorithm optimizer is used in the optimization procedure.  
 
5.1 Theory of Characteristic Modes (TCM) 
 
The theory of characteristic modes was first developed by Garbacz [3] and was later 
refined by Harrington and Mautz [2, 58]. By definition, characteristic modes are current 
modes obtained numerically for arbitrarily shaped conducting bodies.  
Since characteristic modes are independent of any kind of excitation, they only depend 
on the shape and size of the conducting object. 
C. Fabrés [59] has used the characteristic modes in an antenna design procedure, 
performed in two steps: First, the shape and size of the radiating elements are 
optimized. If the size of the element is scaled, the resonant frequency of the modes will 
only be scaled, whereas if the shape of the element is varied, not only the resonant 
frequency but also the radiating properties of the modes will change. Next, the optimum 
feeding configuration is chosen so that the desired modes may be excited. Few modes 
are needed for modeling electrically small conducting bodies. Thus, small and 
intermediate-size antennas can be fully characterized in a wide operating band by just 
considering two to four characteristic modes.  
As the theory of characteristic modes is extensively described in [2, 58] only a review of 
the mathematical formulation of this theory is considered below (see Appendix for more 
details).  
 
5.1.1 Mathematical formulation of characteristic modes 
 
As explained in [2], characteristics modes of a conducting body can be obtained from 
the eigenfunctions of the following particular eigenvalues equation: 
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X (Jn) = λn R (Jn)          (5.1)   

   
where the λn are the eigenvalues, the Jn are the eigenfunctions or eigencurrents and R 
and X are the real and imaginary parts of the impedance operator: 
 

jXRZ +=          (5.2)   
 
The impedance operator Z is obtained after formulating an integro-differential equation 
[2]. It is known from the reciprocity theorem that if Z is a linear symmetric operator, 
then, its Hermitian parts, R and X, will be real and symmetric operators (see Appendix). 
From this, it follows that all eigenvalues λn in equation (5.1) are real, and all the 
eigenfunctions Jn, can be chosen real over the surface on which they are defined [2].  
In practice, to compute characteristic modes of a particular conducting body, Equation 
(5.1) needs to be reduced to a matrix form, as explained in [58], using a Galerkin 
formulation [60]: 

X Jn = λn R Jn          (5.3)   
 
Now the eigenvectors Jn and eigenvalues λn, of the object are obtained by solving the 
generalized eigenproblem of equation (5.3) with standard algorithms [61] for each 
frequency. Note that the number of characteristic modes for a structure depends on its 
dimensions in terms of wavelength and is directly related to the size of Z = R + j X 
matrix, if the Method of Moments (MoM) [59] is used to simulate the structure. 
The following steps have to be used to find the eigenvalues and the resonance modes of 
each structure: (see the Appendix) 
 

� Select the first frequency f1 
 

� Calculate the Z matrix (n × n) of the structure, e.g. using the Method of 
Moments [56] 

 

� Solve the equation (5.3) to find the eigenvectors J = [J1 J2 …Jn ]n × n and 
eigenvalues λ = [ λ1  λ2 … λn ]1 × n 

 

� Choose the next frequency and repeat the steps as indicated above 
 
Finally, it is possible to find the variation of eigenvalues with frequency and find the 
eigen (resonance) frequency of the nth mode, when λn = 0.  
The quality factor Qn of the nth mode can be calculated by taking the derivative of the 
eigenvalues with respect to the frequency: 
 

 
nωω

n
nn
ωd

λd
ωQ

=

=        (5.4)   

 
The quality factor of a resonant mode measures how sharp its resonance is.  
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As an example, Fig 5.1 shows the frequency dependence of the eigenvalues in the 
frequency range from 820MHz to 4820MHz for a 10cm×10cm chassis [62]. 
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Fig. 5.1 Frequency dependence of the first 9 eigenvalues for a 100mm×100mm chassis, taken from [62] 

 
From this figure, three resonances (λn(ω) =  0) can be observed in the given frequency 
range (λ1 ,λ2 and λ3) and the other modes have no resonances in this frequency range. 
Table 5.1 shows also the resonance frequencies and radiation quality factors at the 
resonances. 

 
 f0 (GHZ) Qn 

1st mode (λ1) 1.33 0.44 
2nd mode (λ2) 2.45 2.86 
3rd mode (λ3) 3.35 2.19 

 

Table 5.1 The first 3 characteristic mode resonances and their corresponding radiation quality factors for 
100mm×100mm chassis 

 
Note that calculations may provide a large number of characteristic modes from a 
chassis. In this situation, a systematic procedure has to be used to identify the important 
modes of the chassis [59]. The information provided by chassis modes is very helpful to 
design the antenna systems, which will be mounted on the chassis. For clarification, the 
eigencurrents distribution as well as the radiation patterns corresponding to the first, 
second and third resonance modes of a 100mm×100mm chassis are shown in Fig 5.2.  
The figure shows the three current modes with x-directed polarization. On a quadratic 
chassis the y-directed current modes exist as degenerate eigenmodes. The first and third 
chassis mode, Fig 5.2 (a) and (c), show even symmetry of currents along the y-axis and 
produce radiation normal to the chassis (x-z-plane). The second chassis mode exhibits 
odd symmetry which produces a radiation null in the x-z-plane and two lobes with 
phase opposition. 
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The antennas (e.g. the MFSAA) attached to the chassis produce surface current 
distributions which can couple to these current modes to a degree depending on the 
correlation of current distributions (antenna and chassis mode) and on the frequency 
deviation from the chassis mode eigenfrequency (resonance) and on the chassis mode 
Q-factor. The excitation of a chassis mode by the antenna leads to additional radiation 
from the chassis mode which is superimposed to the original pattern of the antenna.  
 
 

 
 

Fig. 5.2 Surface current densities and the radiation patterns for characteristic modes of a 10cm×10cm 
chassis, after [63] (a): First, (b): second and (c): third chassis modes  

 
Knowing the resonance frequencies of the chassis modes can be used to design the 
antenna system that utilizes the chassis as main radiator or on the other hand, to avoid 
the chassis radiation. As an example, in [1] a two-element monopole array has been 
evaluated on a chassis, considering the chassis modes excitation. 
In [1], it has been found that the excitation of the lowest order chassis mode strongly 
influences the feed point impedance and mutual coupling of monopole array elements as 
a function of the chassis size. The reason is that this fundamental mode (seen in Fig 5.2 
(a)), acts as an additional radiator element parasitically coupled to the array elements.  
As indicated in the Appendix, calculating the chassis modes as well as selecting the 
suitable modes is difficult and needs high execution time for running the programs (e.g. 
in MATLAB). To find a model for calculating the eigenvalues λ = [ λ1  λ2 … λn ]1 × n  of 
the chassis modes, a Neural Network model is designed and implemented below. 
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5.1.2 A Neural Network model to calculate the chassis mode eigenvalues 
 
In this part, a new method using a neural network, as explained in chapter 3, is used to 
calculate the eigenvalues of a chassis with arbitrary dimensions. 
The goal is to design a neural network model for the calculation of the first 20 
eigenvalues of a chassis with dimensions of x1(mm) × x2(mm), for 71 frequencies in the 
range of 820 MHz to 4820 MHz.  
The input and output variables are defined as: 
 

I = [x1(mm)     x2(mm)   f (MHz) ]           (5.5) 
 

O = [λ1      λ2  …  λ20]                                 (5.6) 
 

where λn is the eigenvalue of the nth chassis mode at frequency f (MHz). The required 
14200 data sets for input/output (71 frequency sets × 20 eigenvalues × 10 different 
chassis sizes) were taken from [62, 63], as shown below. 
 
 

 
 

Fig. 5.3 Required 14200 data sets taken from [62, 63] to learn the neural network model  
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To design a neural network model, 12780 data for 9 different chassis sizes from the 
available data sets are used in the training phase to learn the network and 1420 data for 
one chassis size are used in the testing phase only. 
In training phase, four different Multilayer Perceptron (MLP) structures with different 
number of layers, as explained in chapter 3, are considered in MATLAB to find the 
suitable structure and minimum error in testing phase. 
Fig 5.4 shows the ANN surface for this problem.  

 

 
Fig. 5.4 Surface of the Neural Network model to calculate the chassis modes 

 
The first MLP structure is designed to have 3 input cells, 3 input neurons for input 
layer, 4 hidden neurons for hidden layer, 20 output neurons for output layer and 20 out 
put cells. The number of neurons in hidden layer is increased to 8, 12 and 16 neurons 
for the second, third and fourth MLP structure to find the suitable model regarding the 
minimum error in testing phase. These different types of MLP are named as MLP (3-3-
4-20-20), MLP (3-3-8-20-20), MLP (3-3-12-20-20) and MLP (3-3-16-20-20). Fig 5.5 
shows different types of the Neural Network model to calculate the chassis modes.  
 

 
Fig. 5.5 Different structures of the Neural Network model to calculate the chassis modes 

 
12780 data are used for each MLP structure to learn the network. After that the value of 
average testing error, defined in equation (5.7), is calculated using 1420 data sets 
reserved for testing.  
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where Test

ji ,λ   is the eigenvalue of i th mode at j th frequency of testing set, which has not 

been used in training phase.NN
ji ,λ  is the eigenvalue of i th mode at j th frequency of the 

trained Neural Network using the input data sets of testing phase. 
The value of error e in equation (5.7) is found for each structure of MLP in MATLAB. 
Fig 5.6 shows the model accuracy comparison (average error e for testing data) between 
MLPs with different hidden neurons.  
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Fig. 5.6 Model accuracy comparison (average error on test data) between MLPs with different number of 
hidden neurons 

 
As Fig 5.6 shows, MLP (3-3-12-20-20) model is best suited and has been chosen for the 
structure of Neural Network model in further steps.   
Next, this MLP structure is used to find the variation of the eigenvalues of each mode 
with frequency. The available data for the chassis with dimensions of x1 = 100 mm and 
length of x2 = 30 mm is used for testing the neural network structure. Note that these 
data have not been used in the training procedure. 
Fig 5.7 shows the eigenvalues of the first and second modes, calculated by the neural 
network in comparison to the original data sets. 
This figure shows a good agreement between the results obtained from a neural network 
structure and the original data which have not been used during the design process of 
neural network.  
Other results for other modes show also a good accuracy of the neural network; 
however a slight degradation in the accuracy of this model can be seen in higher modes, 
which have extreme eigenvalues. 
The conclusion is that, this model can be used to determine the chassis modes with 
arbitrary dimensions of the chassis within the limits of the employed data set.  
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Fig. 5.7 Eigenvalues of the first (a) and second (b) modes, calculated by the neural network in comparison 
to the original data sets 

 
5.2 Effects of the finite ground plane (chassis) 
 
The self and mutual impedances of a monopole array antenna, mounted on a finite 
ground plane (chassis) have been found to depend strongly on the chassis dimensions 
due to the excitation of characteristic modes [1]. A number of studies have also been 
done to understand the effects of the length of the metal chassis of a handheld device on 
the impedance bandwidth, e.g., [64, 65]. These indicate that if the chassis resonates at 
the operating frequency of the antenna element, the bandwidth of the antenna-chassis 
combination increases strongly. Ali, et al in [66] have also shown that the optimum 
antenna near field performance can be achieved when the antenna resonance frequency 
is aligned with the chassis resonance frequency. In the following, the foundations 
regarding the effects of the chassis on the monopole antenna performances are 
described, in order to be used in our optimization procedure. Effects of the chassis on 
the monopole antennas are found by EM-field simulations for a number of 
configurations of monopoles and chassis. Note that in any case the calculated 
impedances and radiation patterns include basic monopole properties as also seen on an 
infinite ground plane and that direct results of chassis mode excitation is not easily 
isolated. 
 
5.2.1 Single monopole antenna on a chassis  
 
Consider a single monopole antenna mounted on a chassis, as shown in Fig 5.8. The 
chassis and monopole antenna dimensions are considered to have fix values as: x1 = x2 = 
100mm, H = 1mm, L = 31mm, D = 1mm. Consider that the single monopole antenna 
can move from the centre of the chassis to the chassis edge and the variable S (distance 
between the monopole antenna and the chassis edge) can be changed arbitrary. 
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Fig. 5.8 Single monopole antenna mounted on a chassis  
 
The reflection coefficient of this monopole antenna, when mounted on an infinite 
ground plane can be named as S11(inf) and the reflection coefficient of the antenna 
mounted on 100mm×100mm chassis in a distance of S from the chassis edge is 
simulated at four different distances: S11 (S = 5cm), S11 (S = 3.6cm), S11 (S = 2.2cm) and 
S11 (S = 0.8cm); calculations of EM-fields and network parameters have been performed 
using the EMPIRE simulator.     
Fig 5.9 shows the differences between S11(inf) and S11 (S cm) in linear format at each 
frequency. The resonance frequency of the monopole antenna is at 2.27 GHZ. 
When the monopole antenna is mounted in the centre of the chassis (see Fig 5.9 (a)), the 
second chassis mode at the frequency of 2.45 GHz can be seen clearly. This mode can 
be excited if the monopole antenna is mounted in the centre because of its anti-
symmetric current distribution which coincides with an anti-symmetric current 
distribution of the monopole (along the y-axis). On the other hand, the first and third 
chassis modes can not couple due to cancellation of symmetric chassis mode current 
and anti-symmetric monopole current contributions (see Fig 5.2).  
The first and third chassis resonance frequencies at 1.33 GHz and 3.35 GHz 
respectively can best be seen in Fig 5.9 (d), where the monopole antenna is near to the 
chassis edge. 
If the monopole antenna is close to the chassis edge, its currents are forced to flow very 
asymmetric on the chassis along the y-axis. Since all three chassis modes show a current 
distribution decaying towards the chassis edge with uniform current direction, the 
coupling of the y-directed currents of monopole and chassis modes is dominated by the 
imbalance of the monopole current in y-and anti-y-directions, so that all three modes 
appear excited. 
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  (d) 
Fig. 5.9 Differences between S11(inf) and S11 (S cm) in linear format. a) S=5cm, b) S=3.6cm, c) S=2.2cm 

and d) S=0.8cm   
 

Considering the monopole antenna in a distance of S = 0.8 cm from the chassis edge 
(10cm×10cm chassis), it is interesting to simulate the transmission S-parameters 
(coupling) between the chassis and the monopole antenna. For this purpose, a model in 
the EMPIRE simulator has been set-up with two coaxial ports with a same ground as 
PEC (Perfect Electric Conductor) as seen Fig 5.10. 
Fig 5.11 shows the transmission S-parameters, simulated for the configuration. 
The first and third chassis mode can be easily detected in Fig 5.11 because of the 
position of the monopole antenna on the chassis (near to edge).    
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Fig. 5.10 Monopole antenna on a chassis with two coaxial ports to simulate the coupling between antenna 
and chassis  
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Fig. 5.11 Transmission S-parameters between monopole antenna and 100mm×100mm chassis 

 
The effect of the chassis modes can be also found in the far-field radiation pattern of the 
monopole antenna, mounted on a chassis. The results in Fig 5.12 can be found for the 
elevation far-field radiation pattern of the monopole antenna calculated at the chassis 
resonance frequencies for S = 0.8cm and S = 5cm. 
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Fig. 5.12 Elevation radiation pattern of a monopole antenna mounted on a 100mm×100mm chassis 

(φ =90º) at the chassis resonance frequencies for S = 0.8cm and S = 5cm.  

 
The radiation pattern of the monopole antenna changes in a typical manner after 
mounting on a finite ground plane, as can be seen from Fig 5.12, compared to Fig 2.3.  
The pattern shown in Fig 5.12 for S = 5cm and f = 1.33GHz is closets to the pattern of a 
monopole on an infinite ground plane; we just see some diffraction around the corners, 
producing some radiation into the back hemisphere and an uptilt of the beam.   
At higher frequencies (patterns at 2.45GHz and 3.35GHz) we find the back lobes 
increased to even symmetrical pattern (at the resonance frequency of the second chassis 
mode) which indicates a strong excitation of the anti-symmetric second chassis mode. 
In any case, patterns keep the deep null along the z-axis, which shows that the chassis-
mode currents excited by the monopole at the chassis center are purely of the anti-
symmetric type of the second chassis mode. 
The symmetric chassis modes are seen to be excited by the monopole at the offset 
position close to the edge of the chassis at S = 0.8cm: The pattern at 1.33 GHz shows a 
very strong filling of the null, the pattern at 3.35GHz less and at 2.45GHz no filling is 
seen. The filling can be understood as the radiation contribution from the symmetric 
chassis mode currents which produce lobes along the z-axis. At 2.45GHz, the excitation 
of the first and third chassis mode seems to be very low (no filling is seen within the 
dynamic range of the pattern plots) but some increase in the back directed lobes 
indicates a limited excitation of the anti-symmetric second chassis mode currents. 
In both monopole positions we observe radiation patterns that extend over both the 
upper and the lower (back) hemisphere with even nearly equal magnitudes. This is a 
clear indicator that this radiation is due to currents flowing on the chassis in x-y plane, 
while the currents of the monopole over a ground plane clearly produce radiation 
concentrated on the upper hemisphere.  
For another demonstration of the effects of chassis modes, consider the monopole 
antenna on a chassis, depicted in Fig 5.8 with x2=100mm, H = 1mm, L = 31mm, D = 
1mm and S = 0.8cm. The reflection coefficients of the single monopole antenna are 
simulated for four different chassis lengths (x1=76mm, x1=56mm, x1=36mm and 
x1=16mm) as shown in Fig 5.13. 
 
 

S = 5 cm Frequencies:  
 
First chassis mode (1.33 GHz)  
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S = 0.8 cm 

  -9

  -6

  -3

  0 dB

60

120

30

150

0

180

30

150

60

120

90 90

  -9

  -6

  -3

  0 dB

60

120

30

150

0

180

30

150

60

120

90 90



MFSAA on a finite ground plane (Chassis)                            58 
 

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
-35

-30

-25

-20

-15

-10

-5

0

Frequency (GHz)

R
ef

le
ct

io
n 

S
-P

ar
am

et
er

s 
(d

B
)

 

 

X1 = 7.6 cm

X1 = 5.6 cm
X1 = 3.6 cm

X1 = 1.6 cm

 
Fig. 5.13 Scattering reflection coefficient of a Monopole antenna mounted on a chassis (S=0.8 in Fig. 5.8) 
 
Again, from this figure it can be seen that by changing the chassis size, the feed point 
impedance of the monopole antenna can be changed. Note that by changing the chassis 
size, the chassis resonance frequencies as well as the surface current densities and the 
radiation patterns for characteristic mode resonances will be changed.  
Considering the size of 100mm×36mm of the chassis, a dip in the reflection S-
parameters in the range of the frequencies from 2.7GHz to 2.9GHz can be seen. Using 
the Neural Network model in section 5.1.2 we calculate the following resonance 
frequencies as well as the quality factors for the first three modes of this chassis: 
 

 f0 (GHZ) Qn 
1st mode (λ1) 1.330 2.7 
2nd mode (λ2) 2.894 3.8 
3rd mode (λ3) 4.589 2.1 

 

Table 5.2 The first 3 characteristic mode resonances and their corresponding radiation quality factors for 
a 100mm×36mm chassis, obtained by Neural Network model 

 
As can be seen from Table 5.2, the dip in S11 is due to the second chassis mode which 
has a resonance at 2984MHz with a high quality factor of Qn =3.8.   
Table 5.3 shows the resonance frequencies as well as the quality factors of the 
resonance frequencies of the 100mm×16mm chassis, using the Neural Network model. 
 

 f0 (GHZ) Qn 
1st mode (λ1) 1.215 3.9 
2nd mode (λ2) 3.214 5.3 
3rd mode (λ3) 4.010 4.2 

 

Table 5.3 The first 3 characteristic mode resonances and their corresponding radiation quality factors for 
a 100mm×16mm chassis, obtained by Neural Network model 
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Looking at Table 5.3, the second dip in S11 at 3.2GHz for the monopole antenna on a 
100mm×16mm chassis shown in Fig 5.13 is identified as due to the excitation of the 
second chassis mode. 
 
5.2.2 Two monopole antennas on the chassis 
 
The chassis length has also an effect on the mutual coupling between antennas, mounted 
on it. This influence on the integration of a simple two-antenna array on the chassis has 
been considered in [67, 68].  
In this section, we investigate the mutual coupling of two monopole antennas on a 
chassis, as shown in Fig 5.14.  
 

 
 

Fig. 5.14 Two monopole antennas mounted on a chassis  
 

First, the chassis and monopole antenna dimensions are considered to have the fix 
values as: x1 = x2 = 100mm, H = 1mm, L = 31mm and D = 1mm for both antennas and d 
= 3cm.  
Assume that the array is moved from the centre of the chassis (S = 3.5cm) to the left 
chassis edge and the variable S (distance between left monopole antenna and chassis 
edge) is varied. From calculations using the EMPIRE simulator, the transmission S-
parameters of the array then can be found as shown in Fig 5.15. 
This figure shows that by changing the position of the antennas, the mutual coupling 
can be changed. The minimum coupling at f = 2.27GHz (the resonance frequency of the 
monopole) is obtained by mounting the first antenna in a distance of S = 0.8cm from the 
chassis edge.  
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Fig. 5.15 Transmission S-parameters of two monopole antennas mounted on a chassis in different 

positions and spaced by d=3cm  
 
Now again, the array antenna in Fig 5.14 is fixed at S = 0.8cm and the chassis length x2 
is considered to be fixed at x2 = 100mm. The length x1 is then varied in a wide range 
(between 5cm and 50cm). If the transmission Scattering parameters of the antennas are 
simulated at f = 2.27GHz, the variations depicted in Fig 5.16 can be found. 
 

 
5 10 15 20 25 30 35 40 45 50

-12

-11.5

-11

-10.5

-10

-9.5

-9

-8.5

-8

X1 (cm)

T
ra

ns
m

is
si

on
 S

-P
ar

am
et

er
s 

(d
B

)

 

 
Infinite ground plane

 
Fig. 5.16 Coupling of two monopole antennas mounted on a chassis edge (S = 0.8 cm)  

 
It can be seen that the mutual coupling between the antennas, varies in a periodic 
manner, as indicated in [1], because of the excitation of different modes with varying 
coupling in each length and varying phase relations.  
This indicates that the size of the chassis influences the performance of array antennas 
which therefore should be also considered in the optimization procedure. 
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5.2.3 MFSAA on the chassis 
 
Finally, to consider the effect of a finite ground plane on the MFSAA fundamental 
parameters and the necessity of optimizing the ground plane dimensions in our 
optimization procedure, the MFSAA is considered on a chassis, as shown in Fig 5.17. 
 

 
 
 

Fig. 5.17 MFSAA mounted on a chassis with phases of source voltages indicated  
 
The MFSAA is fixed at H = 1mm, L = 31mm and D = 1mm for all antennas and d = 
5.93cm. The source voltages of the feed network are assumed as the voltages in 
equation (2.38) which allows the monopole currents I i to vary according to the effects of 
mutual coupling, as seen in section 2.4. S1 is the distance between the first monopole 
antenna and the left chassis edge and between the third monopole antenna and the right 
chassis edge, while S2 is the distance both between the fourth monopole antenna and the 
bottom chassis edge and between the second monopole antenna and the top chassis 
edge.  
First, by fixing both x2 at x2 = 10cm and S2 at S2 = 0.8cm, the radiation patterns are 
simulated for three different chassis length x1: x1 = 10cm (S1 = 0.8cm), x1 = 12cm (S1 

=1.8cm) and x1 = 14cm (S1 = 2.8cm). See Fig 5.18.  
Then, by fixing both x1 at x1 = 10cm and S1 at S1 = 0.8cm, the radiation patterns are 
found for three different chassis length x2: x2 = 10cm (S2 = 0.8cm), x2 = 12cm (S2 

=1.8cm) and x2 = 14cm (S2 = 2.8cm). See Fig 5.19. 
The two sets of patterns show major variations due to changes in the dimensions of the 
chassis. However, identification of the individual chassis modes which are responsible 
for particular pattern effects is difficult because the patterns represent total field 
intensities without discrimination of polarization components.  
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Fig. 5.18 (a): Elevation radiation pattern (φ =0º), (b): elevation radiation pattern (φ =90º) and (c): 

azimuthal radiation pattern (θ =90º) at 2.27GHz of the MFSAA in Fig 5.17 with x2 = 10cm (total fields, 
patterns normalized to peak gain) 

 

 
 

Fig. 5.19 (a): Elevation radiation pattern (φ =0º), (b): elevation radiation pattern (φ =90º) and (c): 

azimuthal radiation pattern (θ =90º) at 2.27GHz of the MFSAA in Fig 5.17 with x1 = 10cm (total fields, 
patterns normalized to peak gain) 

 
The patterns also represent the result of currents on the monopoles and on the chassis at 
the same time, and pattern changes may be the result of changes in the monopole 
currents (due to changing mutual coupling) and/or due to changes in the phase and 
amplitude of the chassis modes excited. 
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In order to understand the pattern effects demonstrated in Fig 5.18 and Fig 5.19, it is 
helpful to realize the coupling of monopole currents and chassis mode currents: The two 
equal phase currents I1 and I3 can couple to the anti-symmetric currents of the 2nd chassis 
mode, both the x-polarization and the y-polarization current modes; coupling to the 
symmetric current distributions of 1st and 3rd chassis modes is suppressed due to 
symmetry relations. 
The anti-phase currents I2 and I4 couple to the symmetric current distributions of 1st and 
3rd chassis modes with x-polarization, while the y-polarized modes are suppressed due 
to symmetry relations. A higher-order current mode with y-polarization maybe coupled, 
but this is out of the scope of the present investigation. 
The superposition of field from the MFSAA monopole currents and the chassis mode 
currents can best be analyzed using the elevation patterns. While the pattern cuts with 
φ =0º (x-z-plane) show the effects of the x-polarized symmetric and anti-symmetric 
chassis modes, the pattern cuts with φ =90º (y-z-plane) show the effects of the 
symmetric x-polarized and of the anti-symmetric y-polarized chassis mode currents. 
In particular, Fig 5.18(a) exhibits a decrease of the first chassis mode (x-polarized) with 
increasing width x1. This mode is characterized by a filling of the null in the x-z-plane 
and an omni-directional pattern in the y-z-plane. 
Fig 5.18(b) gives a y-z-cut which should exhibit symmetric pattern and a null at 0º and 
180º (z-axis) for the MFSAA on an infinite ground plane. Instead, for x1=10cm, we see 
the null slightly filled due to radiation from the even current distributions of the 1st 
chassis mode with x-polarization. For x1 >10cm, this contribution seems to fade out and 
the radiation from the anti-symmetric current distribution of the 2nd chassis mode with 
y-polarization remains which is compliant with the symmetry of the resultant patterns 
and the deep minima. However, the y-polarized 2nd chassis mode should exhibit a null 
along the y-axis, which we miss in Fig 5.18 (b) and Fig 5.18 (c). This is a hint to a 
contribution from the symmetric current distribution of the 3rd chassis mode (y-
polarized) which produces radiation in the x-z-plane with anti-phase relative to the 
radiation from the 1st chassis mode. Fig 5.18 (c) shows the azimuth pattern (x-y-plane) 
where we observe a strong variation around φ = ±90º (especially for x1 >10cm patterns 
in comparison to x1=10cm pattern) which can be attributed to the variation in the 
magnitude of the 1st and 3rd chassis modes with y-polarization.   
The variation in x2, Fig 5.19(a), for large x2, shows a major increase in the filling of the 
pattern null in the upper and lower hemisphere (to about 10dB below peak gain) due to 
strong excitation of the symmetric current distribution (x-polarization), probably of the 
3rd chassis mode. 
The asymmetric elevation pattern, Fig 5.19(b) indicates that symmetric and anti-
symmetric chassis modes of x- and y-polarization are excited with phase and amplitude 
depending on the chassis length, i.e., the first, second and third modes. This asymmetric 
pattern degradation is also seen in the back-lobes in azimuth plane, Fig 5.19 (c).  
A comparison of x-z- plane cuts for infinite ground plane, quadratic chassis of 
10cm×10cm and rectangular chassis configurations in Fig 5.20 demonstrates the extent 
of pattern degradation by null-filling due to the chassis mode excitation. 
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The major variation of radiation in the back-lobe direction (θ = 90º, left) have to be 
attributed to changes in the monopole currents and the third chassis mode because the 
other chassis modes exhibit nulls into this direction, see Fig 5.2. 
 

 
Fig. 5.20 Elevation radiation pattern (φ =0º) at 2.27GHz of the MFSAA in Fig 5.17.  

 
These results represent another support of the idea of including the dimensions of the 
chassis as additional parameters in the optimization problem of the MFSAA; as will be 
presented in the following.        
 
5.3 Performance optimization of the MFSAA on chassis 
 
In this section the chassis dimensions x1, x2 and H as well as the antenna parameters L, 
D, d and S in Fig 5.17 are considered in the optimization problem and new optimized 
parameters are found to realize the MFSAA on a chassis. A quadratic chassis is 
assumed in the following in agreement with the concept of the MFSAA used as a multi-
beam array antenna. 
 
5.3.1 Minimize the reflection and coupling scattering coefficients of the antennas 
 
In the following, the question is investigated whether it is possible to reduce the mutual 
coupling by just increasing the element spacing (within the practical limits of the array) 
as well as optimizing the chassis size. 
For this purpose, it is considered that S is the distance between each antenna and the 
chassis edge and x1 = x2 = x in Fig 5.17. This leads to:  
  

2
2dx

S
−=            (5.8) 

 
The chassis length x, now is a dependable variable with monopole distance d.  
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Variable S is also considered to vary as: 
 

cmS 1.0≥            (5.9) 
 
Then the dependable variable x can be varied as: 
 

dcmx 22.0 +≥            (5.10) 
 
The following cost function is only considered for the optimization problem at the 
monopole center frequency of  fc=2.27 GHz in this step: 
 

 )()()(),,,,( 312111 SmagnitudeSmagnitudeSmagnitudedDLHxJ ++=            (5.11)  

          
where S11 is the reflection coefficient of each antenna on a chassis and S21 and S31 are 
the transmission S-parameters of neighboring and diagonally opposite antennas 
respectively. 
Because the array separation is the most important factor in mutual coupling between 
antennas and due to the effect of the chassis on the mutual coupling as seen before, the 
upper range for the element distance d in equation (4.8) is increased to λ57.0 (far above 
the compromise corridor in Fig 4.1). Equations (4.11) and (4.12) as well as the 
following conditions are considered as constraints of our new optimization problem. 
 

57.0/252.0 ≤≤ λd             (5.12) 
 

05.0/001.0 ≤≤ λH             (5.13) 
 

1/4.0 ≤≤ λx                      (5.14) 
 

Table 5.4 shows the optimal values of the parameters after optimizing the cost function 
(5.11) under conditions (4.11), (4-12), (5.10) and (5-12)-(5-14) using the EMPIRE 
simulator at 2.27 GHz and using the direct search method. 
 

 

Parameter opd  opL  opD  opx  opH  
Value λ486.0  λ251.0  λ008.0  λ80.0  λ01.0  

 

Table 5.4 Optimized variables, obtained by optimizing the cost function (5.11) at 2.27 GHz 
 
Using these optimized parameters, the simulated reflection coefficient S11 of each 
monopole antenna at fc=2.27GHz is shown in Fig 5.21. Simulated transmission S-
parameters of the MFSAA using the optimized variables in Table 5.4 are shown in Fig 
5.22. 
To decrease the coupling between the antennas, the optimization algorithm has 
increased the antenna separation and the value of dop = 0.486λ (64 mm) has been found. 
This leads to much lower coupling compared to closer spacing case (compare S21 of Fig 
5.22 to Fig 5.15).  
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Fig. 5.21 S-parameter S11 of the MFSAA mounted on a chassis, using the optimal parameters in Table 5.4 
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Fig. 5.22 Transmission S-parameters of the MFSAA mounted on a chassis, using the optimal parameters 

in Table 5.4  
 

The radiation pattern (azimuthal plane, θ = 90º) of this MFSAA, using the optimized 
parameters in Table 5.4, can be simulated as shown below at 2.27 GHz. 
 

 
Fig. 5.23 Azimuth radiation pattern (θ = 90º) for the MFSAA on a chassis, using the optimal parameters 

in Table 5.4 and simulated at 2.27 GHz 
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The radiation pattern in Fig 5.23 is completely symmetrical. A deep null is created in 
the radiation pattern and undistorted yet relatively high side lobes can be seen for this 
pattern. 
Any realization of this MFSAA will introduce deviations in the geometrical dimensions 
(e.g., the wire diameter D may not be available) which may change the optimal values 
in Table 5.4. Therefore, finding the optimum tolerance region of each parameter in 
Table 5.4 may help us to realize the MFSAA using parameters close to the optimized 
values while keeping close to the optimum performance. 
  
5.3.2 Optimum Tolerance Region  
 
To simulate the optimum tolerance ranges of x, H, L, D and d, the cost function (5.11) is 
considered to have the optimal values in Table 5.4. By varying each parameter in its 
range (see equations (4.11), (4.12), (5.10) – (5.12)) the value of the cost function varies 
as shown in Fig 5.24. 
The optimal value of the cost function (5.11) using the optimal values in Table 5.4 is 
calculated as -70.1dB. The optimum range of each parameter is defined between -70.1 
dB and -69dB. Fig 5.24 (b) shows that the chassis thickness H has the widest optimum 
range (least critical) while the separation d and monopole length L have the smallest 
tolerance. 
Table 5.5 shows the parameters which are close to the optimized values in Table 5.4 and 
are in the optimum tolerance range (see Fig 5.24) and which are selected due to 
practical limitations to fabricate the MFSAA on a chassis.  
 

 

Parameter d  L  D  x  H  
Value 60mm 32mm 0.9 mm 100mm 1.1mm 

 

Table 5.5 Parameters close to the optimized values in Table 5.4 chosen to fabricate the MFSAA on a 
chassis  
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Fig. 5.24 Optimum tolerance ranges of x, H, L, D and d 
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5.3.3 Realization of the MFSAA  
 
To check the results obtained in section 5.3.1, the MFSAA on a finite ground plane is 
fabricated using the parameters shown in Table 5.5 and is measured around fc=2.27GHz. 
See Fig 5.25. 

 

 
 

Fig. 5.25 Realization of the MFSAA on a chassis using the parameters in Table 5.5 
 

The simulated and measured S-parameters for this MFSAA are shown in Fig 5.26. 
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Fig. 5.26 Simulated and Measured S-parameters for the MFSAA on a chassis with parameters in Table 
5.5 
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In Fig 5.26, S11 is the reflection S-parameter of each antenna, S21 is the transmission S-
parameter between neighboring antennas and S31 is the transmission S-parameter 
between diagonally opposite antennas. 
Fig 5.26 shows a good agreement between the simulation and measured results at and 
around the center frequency of  fc = 2.27 GHz.  
Both S21 and S31 still exhibit high coupling, the value of S21 in simulation is -14 dB 
whereas in experiment the result is -13.1 dB and S31 has a value of -17.6 dB in 
simulation and -16 dB in experiment.  
The difference between the simulated S21 and S31 in this figure (obtained by the 
parameters which are close to the optimal parameters) and Fig 5.22 (obtained by the 
optimal results) is less than 1.5dB and this demonstrates that to reduce the coupling 
between antennas much better, e.g. below -20 dB, it is not sufficient only to optimize 
the antenna and chassis parameters. For this purpose, a Decoupling and Matching 
Network (DMN) is also necessary for the MFSAA on a chassis, which will be presented 
in section 5.3.5.  
With respect to the chassis mode effect, Fig 5.26 shows the same artifact in all three 
plotted S-parameters above the monopole resonance frequency fc : S11 is lower and S21 
and S31 are higher than in an array on infinite ground plane which can be attributed to 
coupling with the 2nd and/or 3rd chassis mode at 3.35 GHz. 
 
5.3.4 Realization of the feed network 
 
To measure the far-field radiation pattern for the MFSAA on a chassis, depicted in Fig 
5.25, a feed network is needed to generate the excitation phases of 90º, 180º, 90º and 0º 
with a uniform amplitude for the source voltages of the first, second, third and fourth 
antenna, as explained in equation (2.38). 
Fig 5.27 shows the layout of this network of three cascaded 90º hybrid couplers [69]. 
 

 
                                           Fig. 5.27 Feed network for the MFSAA 
 

90º Hybrid coupler  

Input  50Ω Absorber  

 180º 90º 0º 90º 
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The network was designed for RO3010 substrate with a relative permittivity of 10.2 and 
a thickness of 1.28 mm using the ADS simulator with its Schematic and Momentum 
simulation modes. Fig 5.28 shows the schematic design of the hybrid coupler in ADS 
simulator.  
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Fig 5.28 Schematic design of Hybrid coupler in ADS simulator 

 
Fig 5.29 shows the simulated S-parameters (ADS Momentum simulation) of the hybrid 
coupler optimized for 2.27 GHz.  
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Fig. 5.29 Simulated S-parameters of the hybrid coupler  
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A phase error of 0.6º between the output ports and an insertion loss of 0.1dB has been 
found in Momentum simulation for this hybrid coupler.   
After designing the hybrid coupler, the network shown in Fig 5.27 was fabricated on a 
RO3010 substrate as shown below.  
 

 
 

Fig. 5.30 Realization of the feed network  
 
The following S11 and S21 measurements show acceptable reflection and isolation of this 
network at the frequency of  fc = 2.27GHz. 
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Fig. 5.31 Measured S11 (dB) and S21 (dB) for the network, shown in Fig 5.30 

 
The transmissions S-parameters of the network have been measured as shown in Fig 
5.32. 
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Fig. 5.32 Measured transmission S-parameters (amplitude) for the matrix network, shown in Fig 5.30 

 
An average insertion loss of 0.46 dB is found for this network at fc = 2.27GHz. Fig 5.33 
shows the phases of the transmissions S-parameters of this network. Phase errors of 
+2.2°, 0°, -3.98° and -3° are found for the first, second, third and fourth output ports of 
the network respectively at fc = 2.27GHz which can be assumed small enough in order 
not to deteriorate the radiation pattern of the MFSAA considerably. 
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Fig. 5.33 Measured transmission S-parameters (degree) for the matrix network, shown in Fig. 5.30 

 
After connection of the network to the MFSAA, shown in Fig 5.25, the far-field 
radiation pattern was measured in our anechoic chamber as shown in fig 5.34. 
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Fig. 5.34 Output ports of the network connected to the MFSAA to measure the far-field radiation pattern 

 
Fig 5.35 shows the simulated and measured far-field azimuth radiation patterns (θ=90º) 
for the MFSAA with parameters in Table 5.5 
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Fig. 5.35 Azimuth radiation pattern (θ = 90º) for the MFSAA, shown in Fig 5.25 at 2.27 GHz with 
parameters in Table 5.5. (a): measured results, (b): simulated result  

 
A comparison between the simulated and measured radiation pattern above, shows that 
the calculated and measured results are in good agreement.  
 
 

dB 
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The F/B ratio is measured at a level of 6.5dB in Fig 5.35 (a), where the simulation result 
for the F/B ratio of the MFSAA shows a level of 7dB.  
Comparing the radiation patterns in Fig 5.35 (obtained by the parameters which are 
close to the optimal parameters) and the radiation pattern in Fig 5.23 (obtained by the 
optimal results) shows no considerable difference between them. This supports the 
applicability of the optimum ranges which have been found for the parameters shown in 
Fig 5.24.  
As explained before and by looking at the values of S21 and S31 for the MFSAA on a 
chassis, to reduce the coupling between antennas, a Decoupling and Matching Network 
(DMN) is necessary for the MFSAA on a chassis. In the next section a DMN will be 
designed and used for the MFSAA on a chassis.  
 
5.3.5 Design of a Decoupling and Matching Network (DMN)-idealized 
 
In [70] and [71], a method has been introduced to design an RF decoupling and 
matching network (DMN) between three-monopole antenna ports and the receiver 
channels. For that purpose, three ideal monopoles have been considered on an infinite 
ground plane with lumped reactances between them in order to create a DMN. Based on 
the Y matrix of the array without DMN and with DMN, equations have been derived to 
allow the values of the lumped elements to be calculated. Finally three monopole 
antennas are realized on a chassis with DMN. 
In the following, this approach is extended to the MFSAA in order to design a DMN. In 
this step, the MFSAA is assumed on an infinite ground plane and the DMN is assumed 
to be a network of concentrated reactances without consideration of transmission line 
effects in a practical realization; hence, this design is termed “idealized”. 
The optimum network elements are derived using an optimization procedure rather than 
by analytical methods. 
For this purpose, consider the four monopole antennas on an infinite ground plane, as 
depicted in Fig 2.11(a). To accomplish the RF decoupling and matching network, six 
lumped capacitors / inductors are connected between adjacent antenna ports as shown in 
Fig 5.36. It is necessary to use a cyclic symmetric network and to accept certain 
limitations in the achievable performance from this condition because we are interested 
in matching / decoupling for all four beam directions of the MFSAA multi-beam 
antenna which require the complex excitation of the antenna elements to be cycliclly 
interchangeable without any change in the antenna properties (apart from beam 
direction). 
The decoupling network consists of the components jB1 (Capacitance C1 or inductance 
L1) between neighbouring antennas and jB2 (Capacitance C2 or inductance L2) between 
diagonally opposite antennas [72] which leads to four possible combinations of L1/C1 
and L2/C2 components (termed option 1- 4 in simulations below).  
Avoiding the crossing of two transmission lines between opposite antennas, a cross-
coupler (0dB coupler) [73], as a cascade of two hybrid couplers (with slight 
modifications on line widths), was assumed between the antenna ports.  
Initially ignoring transmission line and cross-coupler effects, the admittance matrix in 
equation (5.15) describes the DMN. 
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Fig. 5.36 DMN using a cross-coupler for the MFSAA 
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The decoupled array admittance matrix YD , then can be expressed in terms of the 
admittance matrix Y above and the impedance matrix Z of the MFSAA without DMN, 
as below:  
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For decoupling the array, the mutual admittances of the decoupled system (DY12  and DY13 ) 

should be zero. Solutions for B1 and B2 can be obtained by minimizing the following 
cost function (real and imaginary parts): 
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d is the separation, L is the length of each antenna and D is the diameter of each antenna 
(Note that impedance matrix Z is a function of d, L and D as described in sections 2.2.3 
and 2.3.1 for self and mutual impedances).  
Considering the cost function above with equations (5.12), (4.11), (4.12) and the 
conditions for all states of B1 and B2 in Table 5.6 (at fc = 2.27GHz), the GA optimizer 
with generations of 30 individuals each, crossover rate = 0.8 and mutation rate = 0.028 
is used to minimize the cost function J in equation (5.17) in MATLAB. 
 
Option 

 
Element B1 Element B2 Conditions 

1 Capacitor Capacitor 157.00157.0 1 ≤≤ B                          157.00157.0 2 ≤≤ B  
2 Inductor Inductor 0066.0013.0 1 −≤≤− B                   0066.0013.0 2 −≤≤− B  
3 Capacitor Inductor 157.00157.0 1 ≤≤ B                      0066.0013.0 2 −≤≤− B  
4 Inductor Capacitor 0066.0013.0 1 −≤≤− B                      157.00157.0 2 ≤≤ B  

 Table 5.6 Options for choosing B1, B2 and conditions to optimize the cost function (5.17) 
 
Note that all conditions in Table 5.6 are chosen in order to accomplish a range for 
capacitors and inductors that can be easily realized for f = 2.27GHz. It is also possible to 
increase the chosen ranges in Table 5.6, if no practical optimal results can be found. 
Table 5.7 shows the optimal values of the parameters after optimization as well as the 
values of DY12  and DY13 . 
 
Option 

 

opB1 / S opB2 / S λ/opd  λ/opL  λ/opD  DY12 / S DY13 / S  

1 031.0  022.0  465.0  257.0  046.0  2.47j - 2.09  6.61j - 3.22  
2 0071.0−  0098.0−  432.0  278.0  009.0  8.67j + 9.13  6.17j + 12.32  
3 086.0  011.0−  515.0  169.0  003.0  8.34j - 7.23  13.82j - 8.12  
4 007.0−  092.0  557.0  202.0  006.0  9.15j + 7.55  11.42j - 10.12  

 Table 5.7 Optimized variables as well as the mutual coupling admittances of the MFSAA with DMN-
idealized 

 
S (siemens) or Ω-1 is the unit of both B and Y. As Table 5.7 shows, the optimal values 
for the first option can be selected as the optimal values for lumped elements in DMN. 
This leads to utilize four 2.17pF capacitors between neighboring monopole antennas 
and two 1.54 pF capacitors between diagonally opposite monopole antennas (fc = 
2.27GHz).  
It can be noted that the DMN reduces the resultant coupling between monopoles but a 
perfect decoupling seems impossible. This may be due to the limitation from the cyclic 
symmetric network topology but this was not investigated further.  
 
5.3.6 Design of a DMN-realistic effects 
 
More complete modeling is realized by assuming finite ground plane, transmission lines 
between antenna terminals and cross-coupler ports including gaps for integration of 
lumped element susceptances and assuming the cross-coupler, according to the 
schematic of Fig 5.36. 
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The concept is to design the complete DMN including the cross-coupler and 
transmission lines with reactive components as a microstrip circuit in ADS/Momentum 
and export the geometry file of the microstrip structure on a substrate to the EMPIRE 
simulator where it is combined with the geometry of the MFSAA. 
Consequently, the electro-magnetic field solution from the EMPIRE simulator is based 
on a complete and realistic model of the antenna. Field distributions and network 
parameters from this approach can be assumed to be more realistic than results from a 
combination of EM-field simulation for the monopole array alone with imported 
network characterization of the DMN since the radiation effects of the network are also 
included. 
In the first step, a cross-coupler, shown in Fig 5.36 was designed. The cross-coupler, 
also known as 0dB coupler, is an efficient means of crossing two transmission lines 
with a minimal coupling between them. Fig 5.37 shows a planar implementation of a 
cross-coupler, made as a cascade of two hybrid couplers.  
 

 
Fig. 5.37 The cross-coupler or 0 dB coupler [73] 

 
The following S-matrix describes this device: 
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The coupler was modeled and optimized in ADS for a frequency of f = 2.27GHz and on 
RO3010 substrate (relative permittivity of 10.2 and a thickness of 1.28 mm). The 
schematic is shown in Fig 5.38. 
The ADS Momentum simulation results in Fig 5.39 show the accuracy of the simulated 
cross-coupler design.  
As can be seen from Fig 5.39, the cross-over coefficient S31 is close to 1 (-0.15dB) and 
the undesired coupling is very low, with S12 and S14 around -40dB.   
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Fig. 5.38 The cross-coupler in ADS simulator (schematic) optimized for fc = 2.27GHz  
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Fig. 5.39 Simulated S-parameters of the cross-coupler, shown in Fig. 5.37  
 
Using the cross-coupler design as above, the complete DMN was created by adding 
connecting microstrip lines (50Ω lines) between coupler ports and antenna feed points 
(considering the optimized variables of d and x in Table 5.4), while leaving the values 
of C1/L1 lumped elements between neighboring antennas and C2/L2 elements between 
diagonally opposite antennas as variables for the optimization process.  
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Contrary to the realization of Fig 5.25, external antenna ports are now created by 50Ω 
transmission lines leading to the edges of the substrate/chassis where SMA-connectors 
can be edge mounted, see Fig 5.40. It is also seen that the DMN is not fully symmetric 
due to the connection of the cross coupler by two different lengths and due to the 
placement of reactances C2/L2 at different distances from antenna elements, see the 
following figure. 
 

 
 

Fig. 5.40 MFSAA with DMN using a cross-coupler for the MFSAA mounted on a chassis (model in 
EMPIRE simulator) 

 
In the consequent optimization, we aim to find optimum values for the coupling 
susceptances which achieve the minimum scattering coefficients, while keeping the 
geometry of the chassis, monopole antennas as given in Table 5.6, and of the DMN 
unchanged.  
Note that the geometry of DMN in Fig 5.40 is based on keeping connecting network on 
RO3010 substrate as simple as possible. As explained in the “Conclusions and Future 
Works” chapter, it is also possible to optimize the geometry of DMN by keeping the 
length and width of the microstrip lines as variables and find the optimum geometry of 
the transmission lines.         
The following cost function is considered for the optimization problem: 
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where Sii are the reflection coefficients of each antenna and Sij are the transmission S-
parameters of neighboring and diagonally opposite antennas. 
 
 
 

1 

2 

3 

4 

C1 / L1 

C1 / L1 

C1 / L1 

C1 / L1 

C2 / L2 

C2 / L2 

  

y 

x 

Z 

 



81                        Chapter 5 

 
Table 5.8 shows the optimal values of the capacitors/inductors after optimizing the cost 
function (5.19). 
 

 

Option 
 

Between neighboring 
antennas 

Between diagonally 
opposite antennas 

 

1 
 

pFCop 5.11 =  
 

pFCop 5.22 =  
 

2 
 

nHLop 51 =  
 

nHLop 82 =  
 

3 
 

pFCop 8.51 =  
 

nHLop 52 =  
 

4 
 

nHLop 3.61 =  
 

pFCop 6.32 =  
 

Table 5.8 Optimized variables as of the MFSAA, depicted in Fig 5.40 
 

The following table shows the reflection coefficients of each monopole antenna, 
obtained for each option in Table 5.8 at 2.27GHz. The slight asymmetry in the DMN 
layout mentioned above, results in differences in the scattering parameters, yet at low 
level.  
 

 

Option 
 

 

S11 
 

S22 
 

S33 
 

S44 
 

1 
 

dB25−  

 

dB37−  

 

dB36−  

 

dB45−  

 

2 
 

dB20−  

 

dB18−  

 

dB17−  

 

dB23−  
 

 

3 
 

dB18−  

 

dB26−  

 

dB19−  

 

dB18−  

 

4 
 

dB15−  

 

dB18−  

 

dB23−  

 

dB20−  

 

Table 5.9 Reflection S-parameters for the MFSAA, depicted in Fig 5.40 for each option 
 
And the following table shows the transmission S-parameters of the MFSAA, obtained 
for each option in Table 5.8 at 2.27GHz. 
 

 

Option 
 

 

S12 
 

S13 
 

S14 
 

S23 
 

S24 
 

S34 
 

1 
 

dB31−  
 

dB35−  
 

dB29−  

 

dB30−  

 

dB36−  

 

dB32−  

 

2 
 

dB26−  
 

dB25−  
 

dB29−  

 

dB25−  

 

dB25−  

 

dB22−  
 

 

3 
 

dB20−  
 

dB14−  
 

dB19−  

 

dB19−  

 

dB16−  

 

dB17−  

 

4 
 

dB25−  
 

dB17−  
 

dB28−  

 

dB23−  

 

dB18−  

 

dB27−  

 

Table 5.10 Transmission S-parameters for the MFSAA, depicted in Fig 5.40 for each option 
 
As these tables show, if we select the capacitors between both the neighboring antennas 
and between diagonally opposite antennas, the coupling between antennas can be 
compensated considerably with low reflection coefficients of antennas.   
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Results of optimization show that the chosen topology of the DMN is well suited to 
decouple the elements of the chosen antenna configuration. Modifications of the layout 
of the network (e.g., the length of transmission lines could be varied) may improve the 
matching and decoupling performance further, but this was not investigated. However, 
in the next step, antenna parameters plus the variables of the DMN are combined in one 
“Full degree optimization” in order to further improve the solution.  
 
5.3.7 Full degree optimization 
 
The full degree optimization assumes that all parameters of the MFSAA on a finite 
ground plane except from the edge distance S = 0.8cm may be varied as well as the 
coupling elements values of the DMN, with the principal topology of the DMN fixed as 
shown in Fig 5.40. In order to keep the time consumption for this large optimization 
problem in practical limits, the behavior of the antenna system was first mapped to a 
neural network model.    
 
5.3.7.1 Neural Network model for antenna plus DMN 
 
The antenna design now is assumed with the monopole length and diameter allowed to 
vary, the chassis length and thickness allowed to vary and assuming a DMN as shown 
in Fig 5.40 suitably connected between the monopole feed points and allowing the 
concentrated element capacitors/inductors to vary. The only fixed parameters of the 
antenna system are the monopole edge separation S = 0.8cm (see Fig 5.17), as used 
earlier, and the design of the cross-coupler. All variables can vary according to 
equations (4.11), (4.12), (5.13), (5.14) and Table 5.6. Note that the monopole distance d 
is a dependable variable with the chassis length as explained in equation (5.8) and the 
cross-coupler is designed to remain fixed, even when choosing the minimum value of d 
in equation (5.12).       
For the neural network structure, 10 low-level neural modules Bi, 10 knowledge hubs Ai 
and 2 Multilayer Perceptron (MLP) for high-level neural module C are considered. Six 
variables: Antenna length L, Antenna diameter D, Chassis length x (x1 = x2 = x in Fig 
5.17), Chassis height H, neighbouring capacitance/inductance C1/L1 and opposite 
capacitance/inductance C2/L2 have been considered as the input vector X to our model 
and the output vector Y is considered to be the decoupled impedance matrix ZD, 
consisting of the self impedance of each monopole antenna as well as the mutual 
impedances between all antennas with integrated DMN as in Fig 5.40. 
Fig 5.41 shows the structure of this neural network. The output and input of the neural 
network can be expressed as: 
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Fig. 5.41 Neural Network structure for antenna with integrated DMN 
 

Based on results calculated using the EM field simulator, 150 random samples have 
been recorded to both train and test the neural network. 125 data have been used for 
training the model and 25 data for testing the accuracy of model. 
The number of hidden layers and nodes in neural network is then optimized using the 
method explained in section 3.2.2. 
The neural network structure is designed in MATLAB and the variation of “Average 
Testing Error” for 25 testing data during the training process (with 125 samples) is 
calculated. Fig 5.42 shows the accuracy of this neural network structure. 
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Fig. 5.42 Neural network model accuracy 

 
This figure shows that with training data more than 106, the error remains 
approximately at 0.5%. This low average error on test data shows that no more training 
data have to be used to train the network.  
Finally, this neural network model is implemented in our optimization problem. 
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5.3.7.2 Optimization Problem 
 
In this step, the antenna system with integrated DMN is considered as optimization 
problem. The variables are the same as used in our neural network model, namely 
antenna length L, antenna diameter D, separation d, chassis dimension x, chassis height 
H, neighbouring capacitance/inductance C1/L1 and opposite capacitance/inductance 
C2/L2. The monopole edge separation S = 0.8cm (see Fig 5.17) is assumed fix. Although 
the monopole distance d is a dependable variable as it scales with the chassis length x 
(see equation (5.8)), d is still mentioned as a variable in the list of variables of the 
optimization problem below.   
Equations (4.11), (4.12), (5.8), (5.12), (5.13), (5.14) and Table 5.6 are considered as 
constraints for the optimization problem. The source impedance of the feed network Z0 

is also fixed to 50Ω and the source voltages Vio (i =1,…,4) are chosen as equation 
(2.38). 
Now, the excitations I i (i =1,…,4) at the input terminals of each antenna can be 
expressed as a function of Z0 , Vio and the impedance matrix ZD from the outputs of the 
neural network model in equation (5.20). Note that the impedance matrix ZD includes 
the effects of the chassis and full DMN to the MFSAA.  
The following cost function is considered in our optimization problem: 
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After normalizing each criterion, taken from equations (4.1), (4.2), (4.4), (4.5), (4.6) and 
(4.7), n

iJ (i =1,…,6) is the normalized value of each criterion, varying between 0 and 1, 

as described in section 4.2. 7J is chosen to minimize the load mismatch and the residual 

mutual coupling and is expressed as below. 
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nJ7 , the normalized value of 7J can be obtained by dividing the equation (5.22) by the 

maximum value of 7J . In this equation D
kkZ*  are the complex conjugates of diagonal 

elements of the matrix ZD in equation (5.20) and D
kmZ are the off-diagonal elements of 

ZD. The weighting coefficients in equations (4.23) and (4.24) are applied to the cost 
function (5.21).  
Consequently, the cost function (5.21) was minimized using a GA optimizer with 
generation of 35 individuals each, PCrossover = 0.75 and PMutation = 0.04 in MATLAB. 
Table 5.11 shows the optimization results for the decoupled and matched MFSAA on a 
chassis.  
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Parameter opd  opL  opD  opx  
 

opH  
 

opop LC 11 /  
opop LC 22 /  

 

Value 
 

λ485.0  
 

λ246.0  
 

λ0091.0  
 

λ81.0  
 
 

λ02.0  
 
 

pF3.2  
 

pF8.4  
 

Table 5.11 Optimized variables for the MFSAA on a chassis with integrated DMN at 2.27GHz 
 

By comparing the results in Table 5.11 and the results in Table 5.4, it can be seen that 
the antenna system parameters have a small variation in both tables. The optimized 
antenna length is decreased while the antenna diameter is increased in the full degree 
optimization procedure. As can be seen from both tables, the chassis dimensions remain 
almost constant. 
On the other hand, the values of capacitors in Table 5.11 are different from the values of 
capacitors in Table 5.8 (option 1). 
Note that for the DMN, again two capacitors have been selected by the optimizer. 
Considering these optimal values, the impedance matrix ZD of the antenna system can 
be expressed as below. 
 

ZD =


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


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−−−−

−−+−
−−−−

jjjj

jjjj

jjjj

jjjj

7.159.5023.74.102.141.91.4

23.72.106.597.52.81.43.9

4.102.147.52.82.11.533.65.4

1.91.41.43.93.65.43.58.54

  Ω     (5.23) 

 
As this matrix shows, the self impedance has been better matched to the 50Ω 
characteristic impedance of the network. 
The relative magnitude of the mutual impedances has been reduced in comparison to the 
equation (4.25). Now, the excitation I i can be expressed as follows: 
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  A         (5.24) 

 
The 1st and 3rd elements have different excitations and this leads to asymmetric radiation 
patterns. The 2nd and the 4th antennas have also -4.6º and -6.5º differences in phase with 
respect to the antennas in the first approximation model in section 4.2 respectively and 
show different currents magnitudes (also relative to I1 and I3). This shows that the over-
all optimization leads to a DMN which provides a compromise between perfect 
decoupling of elements (which would lead to the current I i to be equal in magnitude and 
have the same phases as the source voltages) and all other goals (costs).    
Fig 5.43 shows the azimuth radiation pattern at the elevation beam peak θ = 58º of the 
antenna system corresponding to the values in Table 5.11.  
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Fig. 5.43 Azimuth radiation pattern (θ=58º)  of the antenna system using the optimized parameters in 

Table 5.11 and simulated at 2.27GHz 
 

As expected, a slightly asymmetric radiation pattern can be seen in this figure. Table 
5.12 shows the values of the envelope correlation (ρ), normalized second criterion 

nJ2 (fit to the secant-squared elevation pattern), beam crossover (BC) level, (F/B) ratio, 
maximum directivity (D0), radiation efficiency ηr, mismatch efficiency ηM and 
maximum absolute gain G0abs , using the optimized parameters in Table 5.11.  
 
Parameter 

 

ρ nJ2  
 

BC 
 

F/B 
 

D0 
 

ηr 
 

ηM 
 

G0abs 

Value 0.39 0.24 2.75 dB 8.1 dB 8.72 dB 78% 99% 7.6 dB 
 

Table 5.12 Values of the antenna system using the optimized parameters in Table 5.11 
 
The high values of the mismatch efficiency and gain are due to minimizing the load 
mismatch. Both values improved comparing with the optimized values in Table 4.5.  
Note that, by changing the values of the weighting coefficients in equations (4.23) and 
(4.24) the results in both Tables 5.11 and 5.12 can be changed to be matched to the 
priorities, defined in the optimization problem. 
 
5.3.7.3 Optimization Problem and symmetric radiation pattern 
 
As can be seen from Fig 5.43, the radiation pattern of the antenna system is asymmetric. 
To obtain a symmetric radiation pattern, the following constraints are also considered in 
our optimization problem to achieve amplitude excitations for the 1st and 3rd antennas 
which are both close to 1A and have only little phase difference: 
 

9.0, 31 ≥II A                   (5.25) 

 
( ) 05.031 ≤− II A              (5.26) 

 
oo 100

31 , ≤∆≤ IIφ              (5.27) 
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where 

31 ,IIφ∆ is the phase difference between the excitations I1 and I3. 

With these additional conditions, the cost function (5.21) was minimized using the GA 
optimizer, used before and Table 5.13 shows the optimization results for the decoupled 
and matched MFSAA on a chassis with symmetric radiation pattern.  
 

 

Parameter opd  opL  opD  opx  
 

opH  
 

opop LC 11 /  
opop LC 22 /  

 

Value 
 

λ457.0  
 

λ218.0  
 

λ025.0  
 

λ77.0  
 
 

λ02.0  
 
 

pF8.1  
 

pF1.3  
 

Table 5.13 Optimized variables results for the decoupled and matched MFSAA on a chassis with 
symmetric radiation pattern 

 
As this table shows, the uniform antenna length L, separation d and the values of 
capacitors are decreased in comparison to the Table 5.11, where all other parameters 
have only small variations.    
Considering these optimal values, the impedance matrix ZD of the antenna system is 
expressed as: 
 

ZD =
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1.3575.2813161.123.6
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13162.3103.7713.15.1

1.123.68.63.23.15.12.963

  Ω      (5.30) 

 
As this matrix shows, the self impedance match (to 50Ω characteristic impedance) is 
degraded and most of the mutual impedances have been improved due to the effects of 
the new constraints on the optimization procedure. 
The excitation I i is found as: 
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The currents I1 and I3 are now more similar which should lead to a more symmetric 
pattern. Fig 5.44 shows the azimuth radiation pattern at the elevation beam peak θ = 58º 
of the antenna system corresponding to the values in Table 5.13: A symmetric pattern 
with slight asymmetry in the lobe shape and in the level of the back lobes can be seen.  
In the antenna designs up to this step, the level of the back lobes has been increased in 
comparison to the symmetric pattern of the ideal MFSAA on an infinite ground plane in 
Fig 4.2, mainly due to the large antenna separation d. Note that the excitation I i has also 
notable influence on the level of the back lobes (front-to-back ratio). In section 5.3.9, by 
increasing the weighting coefficient of “F/B ratio” criterion, the optimization process 
will aim to decrease the level of the back lobes to better suit practical applications. 
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Fig. 5.44 Azimuth radiation pattern (θ=58º)  of the antenna system using the optimized parameters in 

Table 5.13 and simulated at 2.27GHz 
 
Table 5.14 shows the values of the envelope correlation (ρ), normalized second criterion 

nJ2 (fit to the secant-squared elevation pattern), beam crossover (BC) level, (F/B) ratio, 
maximum directivity (D0), radiation efficiency ηr, mismatch efficiency ηM and 
maximum absolute gain G0abs , using the optimized parameters in Table 5.13. 
 
Parameter 

 

ρ nJ2  
 

BC 
 

F/B 
 

D0 
 

ηr 
 

ηM 
 

G0abs 

Value 0.44 0.28 2.68 dB 10.5 dB 8.4 dB 70% 97% 6.7 dB 
 

Table 5.14 Values of the antenna system using the optimized parameters in Table 5.13 
 
The values of mismatch efficiency, directivity and absolute gain in table 5.14 are 
decreased considerably in comparison to the optimal values in Table 5.12. This shows 
that to obtain a symmetric radiation pattern a degradation of the values of the optimized 
parameters has to be accepted. 
To realize this MFSAA and, as described in section 5.3.2, finding the optimum 
tolerance range of each parameter in Table 5.13 can help us to realize the MFSAA using 
parameters close to the optimized values.  
 
5.3.7.4 Optimum Tolerance Region  
 
To find the optimum tolerance ranges of L, D, x, H, C1 and C2, the cost function (5.21) 
is considered to have the optimal values in Table 5.13. 
By varying each parameter in its allowed range (see equations (4.11), (4.12), (5.8), 
(5.12)- (5.14) and Table 5.6 (option 1)) the value of the cost function varies as shown in 
Fig 5.45 at the frequency of 2.27GHz. 
The optimal (lowest) value of the cost function (5.21) using the optimal values in Table 
5.13 is calculated as 0.15 and the optimum range of each parameter is defined between 
0.15 and 0.25.  
Fig 5.45 (d) shows that the chassis thickness H has the widest optimum range while the 
monopole length L has the smallest range (most critical). 
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Fig. 5.45 Optimum tolerance ranges of L, D, x, H, C1 and C2 
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Note that since the separation d is a dependable variable of chassis length x, by 
considering equation (5.12) as the constraint for d and while S = 0.8 cm, the chassis 
length x varies between 6.23cm and 12cm (see equation (5.8)) as can be seen in Fig 
5.45(c). Now, by considering both the optimum range of x from Fig 5.45(c) (between 
9.55cm and 10.84cm) and equation (5.8), the optimum range of d can be calculated as: 
 

cmdcm rangeop 53.662.5 ≤≤ −         (5.32) 
 

Table 5.15 shows the parameters which are close to the optimized values in Table 5.13 
and equation (5.32) and are in the optimum tolerance range (see Fig 5.45), and which 
are selected due to practical limitations to fabricate the MFSAA on a chassis.  
 

 

Parameter d  L  D  x  H  1C  2C  
Value 58mm 29mm 0.9 mm 98mm 1.1mm 1.5 pF 3.3 pF 

 

Table 5.15 Parameters close to the optimized values in Table 5.13 chosen to fabricate the MFSAA with 
DMN on a chassis  

 
Next, a realization of this MFSAA with DMN is presented and the results as well as the 
radiation patterns are compared with the simulation results. 
 
5.3.8 Realization of the optimized MFSAA decoupled and matched 
 
A realization of the MFSAA on a chassis utilizing a DMN using the parameters shown 
in Table 5.15 is fabricated and is measured at around 2.27 GHz. See Fig 5.46.  
 

 
 

Fig. 5.46 Realization of the MFSAA with DMN using a cross-coupler, with the parameters in Table 5.15  
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The simulated (using EMPIRE simulator) and measured reflection coefficients S11, S22, 
S33 and S44 are shown in Fig 5.47 and the simulated and measured transmission S-
parameters are shown in Fig 5.48. 
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Fig. 5.47 Simulated (Empire simulator) and measured reflection coefficients S11, S22, S33 and S44 of the 

MFSAA in Fig 5.46 
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Fig. 5.48 Simulated (Empire simulator) and measured transmission S-parameters of the MFSAA in Fig 

5.46 
 
Both figures show a small shift in resonance frequency in simulation results due to 
using non-optimized parameters close to the optimized values (parameters in Table 
5.15).  
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All measured S-parameters in both figures are in a range below -20 dB which satisfies 
the motivation to design a DMN for our MFSAA, as indicated in section 5.3.3. 
The feed network, shown in Fig 5.30, is now connected to MFSAA with DMN, shown 
in Fig 5.46 to measure the far-field radiation pattern in our anechoic chamber in the 
same way as shown in Fig 5.34. The following figure shows the simulated and 
measured far-field azimuth radiation patterns (θ=90º). 
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Fig. 5.49 Azimuth radiation pattern (θ = 90º) for the MFSAA with DMN, shown in Fig 5.46 at 2.27 GHz 
with parameters in Table 5.15. (a): measured results, (b): simulated result  

 
A comparison between the simulated and measured radiation pattern above, shows that 
the calculated and measured results are in good agreement. The F/B ratio is measured at 
a level of 11.6 dB in Fig 5.50 (a), where the simulation result for the F/B ratio of the 
MFSAA shows a level of 12.5dB.   
Comparing the front-to-back ratio for the MFSAA with DMN obtained by the 
parameters which are close to the optimal parameters and obtained by the optimal 
results in Fig 5.44, shows a better value for the front-to-back ratio for the pattern 
obtained by the parameters close to the optimized parameters which is due to decreasing 
the separation d from 59.4 mm to 58 mm. 
Such high level of back lobes which leads to a low front-to-back ratio is not suitable in 
practical applications. Below it is shown how by changing the weighting coefficients of 
our optimization problem, our priorities are changed to be matched to practical 
applications. 
 
5.3.9 Changing the weighting coefficients of the optimization problem 
 
Fig 5.44 shows the pattern obtained from the full degree optimization method. This 
MFSAA design is not suitable for practical applications due to very high level of back 
lobes. 
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To improve the front-to-back ratio, it is possible to change the weighting coefficients in 
equations (4.23) and (4.24) aimed to choose a high value for W4 (the weighting 
coefficient of “F/B ratio” criterion). The following weighting coefficients (∑Wi = 6) are 
now considered in our global optimization problem. 
 

7,6,5,3,2,145.0 == iWi          (5.33) 

 
3.34 =W                (5.34) 

 
Using these new weighting coefficients, the cost function (5.21) was minimized using 
equations (4.11), (4.12), (5.8), (5.12), (5.13), (5.14), (5.25), (5.26), (5.27) and Table 5.6 
as constraints and the GA optimizer, used before. Note that the cross-coupler is 
designed to remain fixed, even by choosing the minimum value of d in equation (5.12).        
Table 5.16 shows the optimization results for the decoupled and matched MFSAA on a 
chassis with a high weighting coefficient for “F/B ratio” criterion. 
  

 

Parameter opd  opL  opD  opx  
 

opH  
 

opop LC 11 /  
opop LC 22 /  

 

Value 
 

λ262.0  
 

λ252.0  
 

λ034.0  
 

λ79.0  
 
 

λ035.0  
 
 

pF2.4  
 

pF7.6  
 

Table 5.16 Optimized variables for the decoupled and matched MFSAA on a chassis with high value of 
weighting coefficient for “F/B ratio” criterion 

 
As this table shows, the separation d is decreased considerably and the values of 
decoupling capacitors between both the neighboring antennas and between diagonally 
opposite antennas are increased in comparison to the Table 5.13. This can be assumed 
to be the result of higher mutual coupling at shorter element spacing d. 
The uniform length of monopole antennas is also found approximately to be equal to a 
quarter-wave monopole. All other parameters have only small variations.   
Considering the optimal values in this table, the impedance matrix ZD of the antenna 
system is expressed by equation (5.35). 
 

ZD =
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3.11721.163.141.107.267.162.15
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7.162.153.111.71.122.31.155.38

  Ω      (5.35) 

 
As this matrix shows, the self impedance match (to 50Ω characteristic impedance) is 
degraded and mutual impedances are increased which is due to reducing the weighting 
coefficients of the 7th criterion in equation (5.22). The excitation I i is found as expressed 
in equation (5.36). 
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The currents I1 and I3 have the amplitudes close to 1A and are similar due to inducing 
conditions (5.25)-(5.27) in our optimization problem. 
Fig 5.50 shows the azimuth radiation pattern at the elevation beam peak θ = 63º of the 
antenna system corresponding to the values in Table 5.16: A symmetric pattern with 
slight asymmetry in the lobe shape and in the level of the back lobes can be seen. 
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Fig. 5.50 Azimuth radiation pattern (θ=63º)  of the antenna system using the optimized parameters in 

Table 5.16 and simulated at 2.27GHz 
 
The level of the back lobes now is greatly decreased in comparison to the patterns in Fig 
(5.44) and Fig (5.49).  
Table 5.17 shows the values of the envelope correlation (ρ), normalized second criterion 

nJ2 (fit to the secant-squared elevation pattern), beam crossover (BC) level, (F/B) ratio, 
maximum directivity (D0), radiation efficiency ηr, mismatch efficiency ηM and 
maximum absolute gain G0abs , using the optimized parameters in Table 5.16. 
 
Parameter 

 

ρ nJ2  
 

BC 
 

F/B 
 

D0 
 

ηr 
 

ηM 
 

G0abs 

Value 0.53 0.39 2.48 dB 25 dB 6.1 dB 68% 94% 4.2 dB 
 

Table 5.17 Values of the antenna system using the optimized parameters in Table 5.16 
 
(F/B) ratio is the only parameter which is improved in comparison to the optimal values 
in Table 5.14. This shows that to obtain low level back lobes in the radiation pattern a 
degradation of all other values has to be accepted. In particular, since this goal can only 
be achieved with using small element spacing, the beam width has to increase and 
directivity and gain have to decay. 
 



 

CHAPTER 6   Conclusions and Future Works  
 

 
The optimization problem for the Monopole Four Square Array Antenna on a finite 
ground plane (chassis) using phased excitation has been considered in this thesis. 
First, by considering the MFSAA on an infinite ground plane, the optimization problem 
was defined and the variables were optimized using a Genetic Algorithm method as a 
global optimizer. Three types of approximation models have been considered for the 
MFSAA. The performance improvement was achieved by optimizing the geometry and 
electrical parameters of the MFSAA as well as the feed network parameters. 
Next, the MFSAA has been considered on a finite ground plane (chassis). Feed point 
impedance and mutual coupling of monopole array elements on a chassis have been 
found to depend critically on the ground plane size and the position of antenna 
elements. This is due to the excitation of the current modes of the chassis (chassis 
modes or characteristic modes), which act like additional radiator elements parasitically 
coupled to the array elements. 
The theory of characteristic modes was introduced and the effect of the excitation of 
chassis modes has been discussed in this thesis. An Artificial Neural Network (ANN) 
was designed to model the chassis modes by calculating the eigenvalues of a chassis 
with arbitrary dimensions.  
The performance optimization of the MFSAA on a chassis has been defined and 
optimization has been performed. In order to tackle the remaining problem of mutual 
coupling, a decoupling and matching network (DMN) for the MFSAA mounted on a 
chassis was designed and realized to minimize the combined coupling between the 
antennas and also between chassis and antennas. 
Finally, a full degree optimization problem was defined and another Neural Network 
model, based on extensive EM-field simulations, as well as the Genetic algorithm 
optimizer was used in the optimization procedure. To check the simulation results, the 
MFSAA with DMN on a finite ground plane was fabricated and parameters were 
measured. 
Viability of the optimization method was tested by introducing new requirements in 
every step and a final test was made by requiring the full degree optimization to yield a 
design for an antenna that provides high F/B ratio as a prime requirement (highest 
weight). 
The simulation time for each optimization was between 8-12 hours. The optimization 
time depends mainly on choosing the fundamental (initial) parameters of the 
optimization method. 
 
For future work, the geometry of the DMN, used in this thesis can also be minimized by 
keeping the length and width of the microstrip lines as variables and find the optimum 
geometry of the transmission lines. 
Further, as shown in [5, 6], the chassis can be interpreted as an antenna structure which 
can support resonant current distributions, similar to a shorted wire dipole antenna. On 
the other hand the behavior of both dipole and monopole antennas can be described by 
an equivalent RLC-circuit model (e.g. [6, 74]).  
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Now, the theory of characteristic modes of the chassis can be employed to design a 
network model for the MFSAA mounted on a chassis which represents the monopole 
and the chassis-modes as resonant circuits which are coupled. Such a network (matrix) 
representation could help in understanding the various coupling processes and explain 
the contributions to the array radiation patterns. 
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Appendix      Computation of Eigenvectors and Eigenvalues  
 

 
A. Definition of eigenvectors and eigenvalues 
 
An N × N matrix A is said to have an eigenvector x and corresponding eigenvalue λ if: 
 

Ax = λx             (A.1) 
  
The zero vector is not considered to be an eigenvector at all. On the other hand the 
equation (A.1) can hold only if: 
 

0det =λ−A           (A.2) 

 
which if expanded out, is an Nth degree polynomial in λ whose roots are the 
eigenvalues. This proves that there are always N (not necessarily distinct) eigenvalues. 
Equal eigenvalues coming from multiple roots are called degenerate. 
 
B. Different types of matrices and its associated eigenvalues 
 
Matrix A is called symmetric if it is equal to its transpose: 
 
 A=AT       (A.3) 
 
 It is called Hermitian or self-adjoint if it equals the complex-conjugate of its transpose 
(its Hermitian conjugate denoted by †): 
 
 A = A†      (A.4) 
 
It is termed orthogonal if its transpose equals its inverse: 
 
 

AT 
· A = A · AT =1           (A.5) 

 
and is unitary if its Hermitian conjugate equals its inverse. 
 
A matrix is called normal if it commutes with its Hermitian conjugate: 
 

A† · A = A· A†               (A.6) 
 
For real matrices, Hermitian means the same as symmetric and unitary means the same 
as orthogonal. 
 
The eigenvalues of a Hermitian matrix are all real. In particular, the eigenvalues of a 
real symmetric matrix are all real.  
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Contrariwise, the eigenvalues of a real non-symmetric matrix may include real values, 
but may also include pairs of complex conjugate values. Finally, eigenvalues of a 
complex matrix that is not Hermitian will in general be complex. 
 
On the other hand, the eigenvectors of a normal matrix with non-degenerate eigenvalues 
are complete and orthogonal, spanning the N-dimensional vector space. For a normal 
matrix with degenerate eigenvalues, we have the additional freedom of replacing 
eigenvectors corresponding to degenerate eigenvalues by linear combinations of 
themselves. 
 
When a matrix is not normal, in general, we can not find any orthogonal set of 
eigenvectors, nor even any pairs of eigenvectors that are orthogonal. While the N non-
orthogonal eigenvectors will “usually” span de N-dimensional vector space, they do not 
always do so. That is, the eigenvectors are not always complete. These matrices that do 
not have eigenvalue decomposition are said to be defective or non-diagonalizable. 
 
For defective matrices “Schur decomposition” can be used instead of eigenvalues 
decomposition. Using “Schur decomposition” a defective matrix A can be expressed as: 
 

A = U ·S· UT            (A.7) 
 
where the columns of U provide a basis with much better numerical properties than a set 
of eigenvectors. 
 
C. Generalized eigenvalue problems 
 
From equation (5.1), the eigenvectors and eigenvalues of a body can be obtained by 
solving the following eigenvalue problem: 
 

X (Jn) = λn R (Jn)          (A.8)   
 
This kind of problem is called generalized eigenvalue problem, and presents the general 
form 
 

A· x = λB · x        (A.9) 
 

Often A and B are symmetric, and B is positive definite. In this case, the generalized 
eigenvalues of A and B can be computed using the Cholesky factorization. 
 
Cholesky factorization expresses the symmetric matrix B as the product of a triangular 
matrix and its transpose: 
 

B = L  · LT           (A.10) 
 

where L  is an upper triangular matrix. 
 



Computation of Eigenvectors and Eigenvalues                                                                        104 

 
However, not all symmetric matrices can be factored in this way. The matrices that have 
a Cholesky factorization are said to be positive definite. This implies that all the 
diagonal elements of B are positive and that the off-diagonal elements are not too large. 
 
If B is non-singular the problem can be solved by reducing it to an equivalent standard 
eigenvalue problem: 
 

(B−1 · A) · x = λ x            (A.11) 
 

If B is a singular matrix, the generalized eigenvalue problem can not be directly 
transformed into a standard eigenvalue problem, so an alternative algorithm called QZ 
factorization is necessary. QZ factorization is also valid for non-symmetric (non-
Hermitian) A and B matrices. 
 
In order to solve the generalized eigenvalue problem in (A.8), it can be reduced to its 
standard eigenvalue problem: 
 

(R−1 · X) · Jn = λn Jn            (A.12) 
 
This can be done because R and X matrices correspond with the real and imaginary 
parts of the generalized impedance matrix of the antenna Z. 
 
D. Computation of Characteristic Modes using MATLAB 
 
The eigenvalues and eigenvectors of any antenna can be obtained in quite a straight 
forward way, by solving (A.8) with Matlab’s command eig: 
 

),(],[ RXeigDJ =        (A.13) 
 
where D is the canonical form of (B-1A), that is, a diagonal matrix with the eigenvalues 
on the main diagonal, and J is a matrix whose columns are the eigenvectors. 
 
MATLAB uses LAPACK routines to compute eigenvalues and eigenvectors, so it 
selects the most suitable decomposition algorithm depending on the mathematical 
properties of matrices R and X. 
 
Note Matlab’s command eig returns the eigenvectors and eigenvalues, only if R and X 
are square matrices. If the dimension of these matrices is M×M, MATLAB will return 
M eigenvectors and M associated eigenvalues. 
 
If it will be possible to find the Z matrix of a body, then the equation (A.13) can be used 
to find the eigenvalues of the modes for the body.  
 
In MATLAB it is possible to consider edge cells with RWG (Rao-Wilton-Glisson) 
vector basis function for a body (e.g. chassis). See Fig A.1 
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Fig. A.1 Two ground planes with different number of edge elements 

 
The size of the Z matrix, with components X and R in equation (A.13), for a body is 
equal to the number of edge elements. If the number of edge elements increases, the 
number of modes, found by MATLAB also increases.  
 
The edge element can be also shown as below: 
 

 
                                                               Fig. A.2 Edge element 

 
The RWG vector basis function associated with nth edge is defined as:  
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The Impedance Matrix can be also defined as: 
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where: 
 

•  m and n correspond to two edge elements 
 
• ml  is he edge length of element m  
 
• A is the magnetic vector potential: 
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• Φ  is the scalar potential: 
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where: 
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Example1) Consider the 4cm × 6cm chassis. MATLAB program is used to find the 
eigenvalues of the chassis modes:   
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Fig. A.3 4cm × 6cm chassis with 62 edge elements 
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•  The impedance matrix Z of this chassis with the size of 62×62 is obtained from 
available an M-file program in MATLAB for each frequency 
 
•  Another M-file program in MATLAB has been written to solve the eigenvalues 
using equation (A.13)  

 

•  The eigenvectors [ ]6221 JJJJn

r
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rrr
=  have been found  

 

•  The eigenvalues 
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• The number of edge elements (The size of impedance matrix) has to be optimized, 
due to: 

 
Obtain real matrices of nJ

r
 and nλ  (Complex eigenvalues and eigenvectors can 

be achieved from ill-conditioned Z matrices) 
 

• Problem: We have 62 modes but which modes have to be selected? 
 

• Selecting the first 6 modes due to their resonances: 
 

 
Fig. A.4 Eigenvalues of the first six chassis modes of the 4cm × 6cm chassis with 62 edge elements 
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Example2) Consider the 10cm×10cm chassis. MATLAB program is used to find the 
eigenvalues of the chassis modes:   

-0.05

0

0.05

-0.05

0

0.05

10cm x 10cm plate

 
Fig. A.5 10cm × 10cm chassis with 280 edge elements 
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frequency, then the following results can be obtained: 
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Fig. A.6 Eigenvalues of the first eight chassis modes of the 10cm × 10cm chassis with 280 edge elements 
 
The information presented in this appendix (a) to (c) has been extracted from reference 
[59] and appendix (d) is based on own MATLAB codes. 
 



 


