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and Robin Wojnowski. Special thanks go also to my student assistants Simon Fausten and
Anna-Katharina Tielke for the friendly cooperation and their helpful support.

In addition to that, I want to mention some colleagues which have played a crucial role
during my graduation. First of all I thank Daniel Balzani who was the supervisor of my
diploma thesis and who gave me the first insides into material modeling in biomechanics.
I thank him for paving the way for my graduation and for the support he gave me during
that time. My special thanks are due to Professor Joachim Bluhm for his joy of teaching,
for lending an ear to everyone at any time, and for his commitment to the institute.
Moreover, I thank Karl Steeger for being full of energy of life, for his sense of humor, and
for his reliance. Special thanks go to a person, which I got to know at the very beginning of
my studies. Alexander Schwarz accompanied me during my whole time at the university,
became my colleague, and as a friend he was always ready to offer me help and advice.

My heartiest thanks go to my friends who gave me the right diversion from this work,
different perspectives, and many reasons to smile. Especially I would like to thank
Eva Albers, Bernhard Breil, Christina Delannay, Ina Graw, Thomas Hahn-Graw, Julia
Heßbrüggen, Andrea Kampen, Sandra Risthaus, and Kai Timmermann.

I thank my whole family for their backing, in particular my brother Andreas Brinkhues and
his wife Katja, my cousin Nicole Wesseling-Jätschmann, and certainly my parents Edith
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Abstract

The present work deals with the continuum-mechanical modeling and anal-
ysis of arterial walls. One focus is on the construction of anisotropic dam-
age models that are able to reflect damage effects in arterial tissues under
therapeutic loading. Damage effects are assumed to be a main contributor
to the success of a balloon angioplasty, which is a method of treatment
of atherosclerotic arteries. Another main focus is on the elaboration of a
numerical model for the incorporation of residual stresses in arterial walls.
Residual stresses influence the circumferential stress distribution in such
a way that they prevent large stress gradients in the arterial wall. Thus,
a novel approach for the implementation of residual stresses is proposed.
All models are adjusted to experimental data and applied to numerical
simulations of patient-specific arterial walls. The quasi-incompressibility
constraint is ensured by using the Penalty-Method and the Augmented-
Lagrange-Method, which are analyzed with respect to their computational
robustness.

Zusammenfassung

Die vorliegende Arbeit behandelt die kontinuumsmechanische Model-
lierung von Arterienwänden. Ein Schwerpunkt liegt in der Konstruk-
tion von anisotropen Schädigungsmodellen zur Beschreibung von Schädi-
gungseffekten in Arterienwänden, wie sie bei therapeutischen Maßnah-
men auftreten. Solche Schädigungseffekte gelten als einer der wesentlichen
Faktoren für eine erfolgreiche Behandlung von atherosklerotisch degener-
ierten Arterien mittels Ballonangioplastie. Ein weiterer Schwerpunkt liegt
in der Erarbeitung eines numerischen Modells zur Berücksichtigung von
Eigenspannungen in Arterienwänden. Eigenspannungen beeinflussen die
Spannungsverteilung in Umfangsrichtung derart, dass sie zu einer Ver-
ringerung der Spannungsgradienten in der Arterienwand beitragen. Hier-
auf aufbauend wird ein neuer Ansatz zur Implementierung von Eigenspan-
nungen vorgeschlagen. Alle Modelle werden an experimentelle Daten
angepasst und auf die numerische Simulation von patientenspezifischen
Arterienwänden angewendet. Die Quasi-Inkompressibilität des Materials
wird zum einen durch die Verwendung einer Penalty-Methode und zum
anderen über einen Augmented-Lagrange Ansatz erfüllt. Beide Methoden
werden hinsichtlich ihres Einflusses auf die Robustheit numerischer Simu-
lationen untersucht.





Table of contents I

Contents

1 Introduction 1

2 Human arteries: composition and diseases 3

2.1 General composition of a healthy artery . . . . . . . . . . . . . . . . . . . . 4

2.2 Disease of arterial tissue and possible treatments . . . . . . . . . . . . . . . 6

2.3 Mechanical behavior of arterial tissue . . . . . . . . . . . . . . . . . . . . . 9

3 Fundamentals of the continuum mechanics of solids 11

3.1 Kinematical relations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

3.2 Material time derivatives . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

3.3 The stress concept . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

3.4 Balance principles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

3.4.1 Mass balance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

3.4.2 Balance of linear momentum . . . . . . . . . . . . . . . . . . . . . . 19

3.4.3 Balance of angular momentum . . . . . . . . . . . . . . . . . . . . . 19

3.4.4 Energy balance (1st law of thermodynamics) . . . . . . . . . . . . . 20

3.4.5 Entropy inequality (2nd law of thermodynamics) . . . . . . . . . . . 21

3.5 Basic principles in the framework of material modeling . . . . . . . . . . . 23

3.5.1 Principle of material frame-indifference – Objectivity . . . . . . . . 24

3.5.2 Principle of material symmetry . . . . . . . . . . . . . . . . . . . . 25

3.6 Representation theorems of isotropic and anisotropic tensor functions . . . 26

3.6.1 Representation theorems of isotropic tensor functions . . . . . . . . 26

3.6.2 Representation theorems of anisotropic tensor functions . . . . . . . 28

4 Finite-Element-Method 31

4.1 Boundary value problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

4.2 Weak formulation of the field equations . . . . . . . . . . . . . . . . . . . . 31

4.3 Linearization of the weak forms . . . . . . . . . . . . . . . . . . . . . . . . 32

4.4 Finite element discretization . . . . . . . . . . . . . . . . . . . . . . . . . . 33

5 Material modeling of soft biological tissues 39

5.1 Polyconvex energy functions . . . . . . . . . . . . . . . . . . . . . . . . . . 39

5.1.1 Isotropic polyconvex energy functions . . . . . . . . . . . . . . . . . 40

5.1.2 Transversely isotropic polyconvex energy functions . . . . . . . . . 40

5.2 Incompressibility constraint . . . . . . . . . . . . . . . . . . . . . . . . . . 42



II Table of contents

5.2.1 Kinematic split of the deformation gradient . . . . . . . . . . . . . 42

5.2.2 Penalty-Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

5.2.3 Augmented-Lagrange-Method . . . . . . . . . . . . . . . . . . . . . 45

6 Identification of material parameter 47

6.1 Adjustment to experimental data . . . . . . . . . . . . . . . . . . . . . . . 47

6.2 Material parameters for the plaque components . . . . . . . . . . . . . . . 50

6.2.1 Identification of plaque parameter . . . . . . . . . . . . . . . . . . . 52

6.2.2 Influence of plaque behavior on arterial wall behavior . . . . . . . . 53

7 An anisotropic damage model for softening hysteresis in arterial walls 57

7.1 A short literature overview of damage in soft biological tissues . . . . . . . 57

7.2 Damage variable, strain equivalence principle and anisotropic damage . . . 59

7.3 Construction principle for damage models . . . . . . . . . . . . . . . . . . 62

7.3.1 Construction principle . . . . . . . . . . . . . . . . . . . . . . . . . 62

7.3.2 Specification of the model for soft biological tissues . . . . . . . . . 65

7.3.3 Algorithmic implementation . . . . . . . . . . . . . . . . . . . . . . 65

7.4 Specific constitutive models . . . . . . . . . . . . . . . . . . . . . . . . . . 69

7.5 Adjustment to experimental data . . . . . . . . . . . . . . . . . . . . . . . 70

7.6 Numerical simulation of an arterial wall . . . . . . . . . . . . . . . . . . . . 73

8 Numerical analysis of the robustness of the Penalty-Method and the
Augmented-Lagrange-Method 79

8.1 Constitutive model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

8.2 Automatic time stepping . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

8.3 FEAP and FETI-DP Method . . . . . . . . . . . . . . . . . . . . . . . . . 82

8.4 Simulation of an arterial segment with an axial length of 1 mm . . . . . . . 84

8.5 Simulation of an arterial segment with an axial length of 10 mm . . . . . . 86

9 Incorporation of residual stresses in patient-specific arteries 93

9.1 State of the art in the modeling of residual stresses in arteries . . . . . . . 93

9.2 Numerical simulation of an isotropic two-dimensional ideal tube . . . . . . 96

9.3 Derivation of suitable invariants for the definition of residual stresses in
fiber-reinforced soft biological tissues . . . . . . . . . . . . . . . . . . . . . 98

9.4 Incorporation of residual stresses . . . . . . . . . . . . . . . . . . . . . . . 99

9.5 Numerical simulations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

9.5.1 Anisotropic two-dimensional ideal tube . . . . . . . . . . . . . . . . 100



Table of contents III

9.5.2 Two-dimensional realistic artery . . . . . . . . . . . . . . . . . . . . 103

9.5.3 Three-dimensional realistic artery . . . . . . . . . . . . . . . . . . . 105

10 Summary and outlook 109

A Notation and calculation rules 111

B Voigt notation of the tangent modulus C 114

C Partial derivatives of the invariants with respect to C 115

References 125





Introduction 1

1 Introduction

In the last decades the field of biomechanics and related issues have emerged as a major
area of research. It incorporates the study of the structure and the mechanical function-
ality of human, animal, and vegetal biomaterials. The goal of biomechanical research is
to understand the biophysical phenomena arising in the field of biology and medicine,
which affect normal and degenerative processes of the organism. The research is an iter-
ative process, where hypotheses are formulated, proved by material models in computer
simulations, reformulated, and verified by adjustment to experimental data.

As first biomechanists often Leonardo da Vinci (1452–1519; analysis of movement and
anatomy of human joints, muscles, etc.) and Galileo Galilei (1564–1642; study of the
strength of bones) are mentioned. Further pioneers in this field are René Descartes (1596–
1650), Giovanni A. Borelli (1608–1679), Isaac Newton (1642–1727), Daniel Bernoulli
(1700–1782), and Thomas Young (1773–1829), to mention a few. The biomechanical re-
search made further progress in the 19th and 20th century, but received a new impetus with
the development of digital computers and the invention of the Finite-Element-Method in
the 1960s as well as the biological discoveries in the 1960s by Linus C. Pauling (1901–
1994; structure of proteins), and Francis H. C. Crick (1916–2004; molecular structure of
deoxyribonucleic, i.e. DNA, together with James D. Watson (born 1928)) among others.
A exhaustive historical overview is e.g. given in Fung [1993] and Humphrey [1995, 2003].

This work deals with the continuum-mechanical analysis of soft biological tissues with a
focus on the modeling of atherosclerotic arteries. Atherosclerosis is the result of biochemi-
cal and mechanical degenerative processes which lead to the formation of plaque deposits
and therewith to narrowing of the lumen (the inside space of an artery). Considerable
consequential diseases are among others heart attack or stroke, which are under the most
common causes of death in the Western industrial nations. For example, the causes of
death statistics of the federal statistical office of Germany states that in the year 2010 the
most frequent cause of death in Germany are cardiovascular disease (352 689 of 858 768).

In order to provide a normal blood flow and to prevent the aggravation of the disease and
the development of consequential diseases, the balloon angioplasty is an often used method
of treatment. Here, the degenerated arterial wall is dilated by using a balloon catheter
such that the lumen is increased. This pronounced therapeutic loading damages the artery
in such a way that irreversible deformations remain, even after the balloon is deflated and
removed from the artery. As a result, the damage in the arterial wall is a contributor
to the success of this treatment. Therefore, the first main aim of this work is to model
arterial tissues under therapeutic loading in order to gain more insight into the complex
biomechanical processes arising in dilated, damaged arterial walls. This could also give
information about the optimization of such therapeutic interventions. Another important
phenomenon occurring in arteries is the presence of residual stress. Residual stresses are
assumed to prevent large stress gradients in the arterial wall by homogenization of the
circumferential stresses. The in-vivo stress distribution is strongly influenced by residual
stresses. Thus, the second main goal of this work is to incorporate residual stresses into
the continuum-mechanical model. In order to provide a realistic framework, the material
models used in this work are adjusted to experimental data whenever suitable experiments
are available. Otherwise, when such experimental data is not available (for example in
the case of plaque deposits), reasonable parameters are chosen and their influence on
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the overall mechanical behavior is tested. Additionally, realistic arterial cross-sections
are taken into consideration, which have been obtained from patient-specific data. Since
arterial walls consist of incompressible material, robust computational schemes for the
incorporation of the incompressibility constraint are needed. For this purpose numerical
methods based on the Penalty and the Augmented-Lagrange approach are employed.

This work is structured as follows. In Chapter 2 biomechanical foundations of arterial
walls are briefly discussed. Hereby, a deeper view is taken on the composition of arteries
in order to explain their mechanical behavior. Additionally, typical vascular diseases and
possible methods of treatment are mentioned.
The continuum-mechanical framework used in this work is explained in Chapter 3. A
short review of some kinematical variables, measures of stress, the balance principles as
well as of the representation theorems of isotropic and anisotropic tensor functions is
given. The Finite-Element-Method is introduced in Chapter 4. First, the underlying
nonlinear boundary value problem and the corresponding weak formulation are discussed.
Then the needed linearized form is evaluated and the discretization of the domain with
finite elements is explained. Furthermore, details of specific finite elements used in this
work are provided.
For the material modeling of the soft biological tissues polyconvex energy functions will be
used. The construction of such functions is discussed in Chapter 5. Furthermore, differ-
ent methods for the consideration of the quasi-incompressibility of soft biological tissues
as the Penalty-Method and the Augmented-Lagrange-Method are explained. In order to
find adequate material parameters for the proposed strain-energy functions, a method for
adjustment to experimental uniaxial extension tests is discussed in Chapter 6. If no ex-
perimental data is available, as for example in case of the plaque components, reasonable
material parameters have to be chosen. The identification of different sets of parameters
for the plaque and their influence is investigated.
A material model for the description of damage of soft biological tissues is proposed in
Chapter 7. To provide an introduction into this subject a literature overview is given on
material damage modeling and experimental findings in this field. Then some fundamen-
tals in damage modeling are provided and the stress-strain hysteresis of over-expanded
soft biological tissue is discussed in detail. Based on the principle for the construction
of polyconvex energy functions, a construction principle for damage models as well as its
algorithmic implementation is presented. Specific anisotropic constitutive models fulfilling
the proposed construction principle are considered and adjusted to experimental data. In
a numerical simulation of a two-dimensional realistic arterial cross-section the applicabil-
ity of the anisotropic damage model as well as the working of the proposed algorithm in
finite-element simulations are demonstrated.
In Chapter 8 the Penalty-Method and the Augmented-Lagrange-Method are investi-
gated with respect to their influence on the robustness of the numerical simulation. Here,
special attention is paid to a boundary value problem with about a million degrees of
freedom, which is solved using an iterative solution strategy.
A novel model for the incorporation of residual stresses in arterial walls is introduced in
Chapter 9. This model is first tested in two-dimensional isotropic and anisotropic ideal
tubes and later on applied to two- and three-dimensional patient-specific arterial walls.
Additionally, the opening of unloaded arterial walls due to the presence of residual stresses
is investigated.
Chapter 10 provides a summary of this work and some aspects for future developments.
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2 Human arteries: composition and diseases

The word artery comes from the Greek and means “the one trailed on the pericardium
(heart sac)”. Arteries carry blood away from the heart: the systemic arteries carry the
oxygen-rich blood to the whole body, while the pulmonary arteries carry the blood with
low oxygen content to the lungs. In general, there exist two distinct types of systemic
arteries: elastic arteries and muscular arteries. Elastic arteries, for example the aorta and
the common carotid and iliac arteries, are located close to the heart and have a larger
diameter. They provide a pulsative, but continuous blood flow by passive contraction
during the diastole1 (windkessel effect). To the muscular type belong, amongst others, the
femoral and renal arteries. They are smaller, peripheral vessels, which regulate the blood
flow to the organs. Transitional arteries, which have both elastic and muscular properties
are, for example, the internal carotids. For detailed information, the reader is referred
to, for example, Humphrey [1995] and Junqueira and Carneiro [2005]. Fig. 2.1 shows a
schematic of the human arterial tree.

deep femoral artery

descending (thoracic) aorta

abdominal aorta

superior mesenteric artery

internal iliac artery

external iliac artery

ascending (thoracic) aorta

brachiocephalic trunk

celiac trunk

femoral artery

common iliac artery

left renal artery
right renal artery

inferior mesenteric artery

left common carotid artery

left subclavian artery

arch of aorta

right common carotid artery

right subclavian artery

Figure 2.1: Selection of the most relevant systemic arteries in the human body.

In the following sections the general composition of a healthy artery, possible arterial
diseases, and the mechanical behavior of arteries are discussed. The information on these
topics are taken mainly from Rhodin [1980], Silver et al. [1989], Fung [1993], Humphrey
[1995], Junqueira and Carneiro [2005], and Welsch [2006].

1The diastole is the relaxing phase of the cardiac cycle. Opposed to that, the systole is the contraction
phase.



4 Human arteries: composition and diseases

2.1 General composition of a healthy artery

A healthy artery is mainly composed of three layers. From the lumen (the inner side of the
artery) to the outer side we identify: (i) the intima, (ii) the media, and (iii) the adventitia,
see the schematic illustration of a healthy elastic artery in Fig. 2.2.

membrana elastica interna

stratum subendotheliale
endothelium

membrana elastica externa

smooth muscle

tunica externa
(adventitia)

tunica media
(media)

tunica interna
(intima)

Figure 2.2: Composition of a healthy elastic artery, taken from the webpage www.e-visits.de.

Intima (tunica interna). The intima is the innermost layer, which consists mainly
of endothelial cells and a subendothelial membrane (stratum subendotheliale). The flat,
elongated endothelial cells are axially oriented and attached to a thin basal membrane.
They build a monolayer, the endothelium, which prevents adhesion of blood to the luminal
surface. The subendothelial membrane is composed of extracellular matrix, i.e. connective
tissue2 and an amorphous ground substance with proteoglycans3. The membrane, which
separates the intima from the adjacent media is called membrana elastica interna. A
difference between muscular and elastic arteries is, that the intima of muscular arteries
is often thinner than the intima of the elastic type. This is due to the more pronounced
subendothelial layer in elastic arteries. Furthermore, in elastic arteries it cannot easily be
distinguished between the membrana elastica interna and the elastic membranes of the
media, whereas in muscular arteries this membrane is relative thick and clearly defined.

Media (tunica media). The main constituents of the middle layer, the media, are cir-
cular smooth muscle cells4 and connective tissue fibers. It is the thickest of the three main
layers. The boundary between the media and the adventitia is the membrana elastica
externa. In the middle layer the main differences between muscular and elastic arteries
become obvious. While in elastic arteries the media is formed by various concentric fen-
estrated elastin lamellae (30–70) and intermediate, axial smooth muscle cells, the media
of the muscular type is composed of dense, circular smooth muscle layers (up to 40) con-

2Connective tissue is composed of collagen fibers, elastic fibers, and reticular collagen fibers.
3Proteoglycans: glycoproteins that have a core protein with covalently fixed glycosaminoglycan chains.
4Smooth muscle cells are contractile tissue constituents with a fusiform shape.
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nected by gap junctions. The membrana elastica externa in elastic arteries cannot easily
be distinguished from the other lamellae and in muscular arteries it can only be observed
clearly in larger arteries. Following the arterial tree from the heart to peripheral muscular
arteries, the amount of elastic fibers decreases and the amount of smooth muscle cells
increases.

Adventitia (tunica externa). The outermost layer is the adventitia, which passes into
the adjacent loose connective tissue. It is composed of axially oriented collagen fibrils with
admixed elastic fibers (fibrils and elastin), and fibroblasts. In elastic arteries additionally
nerves and the vasa vasorum exist. The vasa vasorum serves the outer parts of the vessel.

Very important constituents in arteries are the fiber proteins collagen and elastin.

Collagen. In collagenous structures, bundles of collagen fibers are present, see Fig. 2.3a.
Each collagen fiber consists of collagen fibrils, which in turn are made up of micro-fibrils
interconnected by proteoglycan filaments (PG), see Fig. 2.3b. A subunit of the micro-fibril
is the tropocollagen, a collagen-molecule interconnect by cross-links (CL) on the molecular
level. Each tropocollagen is composed of three polypeptide strands twisted together into
a triple helix. Due to its structure, collagen has a high tensile strength and therefore it
provides the arterial wall with rigidity. There exist various classifications of collagen types,
which differ in their polymerized form (PF). In arteries mainly collagen of type I (PF:
fibrils), type III (PF: fibrils), and type IV (PF: network; in basal membrane) exists.

a)

micro-fibril

collagen
fibril

collagen
fiber

bundle of
collagen fibers

b)

PG

Micro-fibrils with proteoglycan-rich matrix

➀ Hole zone, 41 nm
➁ Overlap zone, 27 nm

➀ ➁

c)

Packing of molecules

(Collagen molecule)

Triple helix

300 nm
➁➀

∼ 68 nm

CL

10.4 nm

Tropocollagen

1.5 nm diameter

Figure 2.3: Composition of collagenous structures. a) Rough division of a collagen fiber
bundle, taken from Junqueira and Carneiro [2005], page 61. b),c) Molecular structure of col-
lagenous micro-fibrils connected by proteoglycan-rich matrix (PG), cf. Fratzl [2008], page 10
and Ross and Pawlina [2006], page 152. The main component is tropocollagen, which is in
turn interconnected with cross-links (CL).
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Elastin. Elastin is a structural protein consisting of elastic polypeptid chains, which are
interconnected with cross-links. If the elastic fibers are stretched, the molecules are able
to uncoil. By relaxation they recoil spontaneously, see Fig. 2.4. This provides the arterial
structure with elasticity.

stretch
CL

elastin molecule

Figure 2.4: Schematic illustration of elastin molecules interconnected with cross-links (CL)
in its relaxed and stretched configuration; cf. figure 4-28 in Alberts et al. [2004].

2.2 Disease of arterial tissue and possible treatments

Arteriosclerosis refers to a disease of arteries, in which the vessel wall becomes thicker
and hardens. Three forms of appearance of these pathological changes can be differed:
(i) atherosclerosis (see detailed explanation below), (ii) Mönckeberg’s sclerosis (medial
arteriosclerosis, calcium deposits in the media), and (iii) arteriolosclerosis (mostly small
arteries and arterioles are affected). Here, the atherosclerosis has the highest clinical sig-
nificance and is therefore treated in this work. For details see the textbooks Lenz [2007],
Böcker et al. [2008], and Lüllmann-Rauch [2009], which served as the basis for this section.

Atherosclerosis. Atherosclerosis is a chronic and progressive disease primary of the
intima, but also of the inner layers of the media. It appears mostly in elastic arteries and in
larger arteries of the muscular type. Here, proliferation of connective tissue, accumulation
of collagen fibers and proteoglycans, and deposit of fat (lipid), platelets (thrombocytes)
and calcium lead to the formation of atheromatous plaques. As a result the lumen narrows
(stenosis) and the blood flow is reduced, see the difference of normal and abnormal blood
flow in Fig. 2.5a and b. By building of lesions in the plaque the blood clots so that a
thrombus could evolve, which narrows the lumen additionally. The reduced or inhibited
perfusion in turn causes an inadequate blood supply of the organs (ischemia) to the extent
perhaps of a necrosis of the tissue, an infarct, or a stroke.

normal blood flow

wall
arterial

artery
cross-section

abnormal
blood flow

plaque

artery

plaque

guide wire

narrowed

catheter

balloon

artery
a) b) c)

Figure 2.5: a) Artery with normal blood flow. b) Occluded artery with abnormal blood flow;
a and b taken from the web page www.daviddarling.info/images. c) Inflation of a balloon
inside an artery, taken from the web page www.csmc.edu.
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The pathogenesis of the atherosclerosis is not yet fully understood due to the large amount
of concerned factors and cellular interactions. Nevertheless, two central hypotheses exist:

• The Response-to-injury hypothesis was proposed in Ross and Glomset [1973, 1976],
see also Ross [1982]. This hypothesis identified the injury of the endothelium by,
for example, hypercholesterolemia, biochemical deterioration, or mechanical injuries
(supported by hypertension), to be the cause for the disease. The lesion in the
endothelium enables platelets and the monocytes (those become macrophages after
migration into the tissue) to interact with the vessel wall and to release growth
factors. As a result proliferation of smooth muscle cells takes place, which migrate
from the media into the intima and produce extracellular matrix. Additionally, the
macrophages accumulate LDL5 and become foam cells. In a histological preparations
foam cells appear as “fatty streaks”.

• The Lipoprotein-induced-atherosclerosis hypothesis, see Brown and Goldstein [1983],
states that the crucial catalyst of atherosclerosis is the oxidative modification
of LDL to oxLDL (oxidized LDL). Due to oxLDL-receptors (scavenger receptor)
macrophages absorb oxLDL faster and consequently the transformation to foam
cells is faster.

The further pathogenesis of atherosclerosis is equal for both hypotheses. The foam cells
become necrotic and their content leaks into the surrounding tissue, building a soft lipid-
rich core, the so-called necrotic core. Additionally, a fibrous cap is formed and over time
dense calcium inclusions appear. A thrombus (blood clot evolved from intravascular coag-
ulation) formation evolves if the fibrous cap breaks open or if an endothelial erosion takes
place. A detailed explanation of the atherogenesis and the complications of atherosclerosis
is given in Libby and Ridker [2006].

Atherosclerotic plaques usually grow over a period of many years. Factors contributing
to the spread of the atherosclerosis are arterial hypertension, nicotine abuse, diabetes
mellitus, hypercholesterolemia, genetic (pre-) disposition, age, and male sex. Adiposity,
lack of physical activity, psychosocial stress, and hormonal disorder can be seen as risk
factors of second order. Several of these factors are not influenceable, the others can be
reduced by adequate exercises, a dietary change, or lowering the blood pressure by means
of a therapy. However, if the atherosclerosis is in an advanced stadium, invasive treatments
are necessary in the majority of cases: a bypass surgery, an atherectomy (excision of the
atheromatous plaque), or a balloon dilatation (sometimes with stent implantation).

Balloon dilatation/balloon angioplasty. A percutaneous transluminal angioplasty
(PTA) is a method of treatment for the dilation of an narrowed vessel in order to re-
establish the blood flow. If the dilation takes place through a balloon catheter6, it is
called a balloon angioplasty. By this minimally invasive treatment the balloon catheter
is introduced through the skin and guided to the narrowed vessel. If the narrowed lumen
is reached, the balloon is shortly inflated with a pressure of 6 to 20 bar, see Fig. 2.5c.

5LDL: low density lipoprotein. LDL is a transportation protein, which transports cholesterol to the
cells of the body. Here cholesterol is needed, for example, to repair the cell wall. In contrast, HDL (high
density lipoprotein) carries excessive cholesterol to the liver, where it is broken down.

6A balloon catheter is a catheter composed of an empty and collapsed balloon, which is attached on
a guide wire.
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The inflation is repeated until the arterial lumen has been sufficiently opened. Then, the
balloon is deflated and removed. During the procedure angiograms are made in order to
ensure a successful treatment. Additionally, a stent can be inserted in order to support
the vessel wall.

The vascular radiologist Charles Dotter discovered the transluminal angioplasty by chance
in 1963 when he performed an abdominal aortogram and relieved an occlusive lesion in
an iliac artery. Based on this finding he used the technique of multiple catheters with
increasing diameter and treated atherosclerosis in femoral arteries, see Dotter and Judkins
[1964]. The cardiologist Andreas Grüntzig developed a double-lumen, polyvinyl balloon
catheter, see Grüntzig [1977], Grüntzig et al. [1978], and enabled a dilation of coronary
arteries. He was the first who performed a balloon angioplasty and therefore he is a pioneer
of a nowadays well-established and widely-used treatment. For a historical overview see
Dotter [1980] and Landau et al. [1994].

Hypertension. Hypertension means high blood pressure. As a result of hypertension,
the extracellular matrix and the smooth muscle cells in the media structurally change
and therefore the media thickens. Hereby, hyperplasia is a higher replication of the cells
and hypertrophy is the increase of the cell size, see section 8.1 in Humphrey [2002]. As
mentioned before, hypertensive people have a higher risk to suffer from atherosclerosis.
The JNC 7 (Seventh report of the Joint National Committee on prevention, detection,
evaluation and treatment of high blood pressure; Chobanian et al. [2003]) classified the
blood pressure into different levels. According to that, a systolic blood pressure up to
120 mmHg is normal, a systolic blood pressure of 120-139 mmHg is prehypertensive,
and a systolic blood pressure over 140 mmHg is hypertensive, see Table 2.1. Thereby,
prehypertensive persons are not yet diseased, but they have an increased chance to suffer
from hypertension and should prevent the developing of the disease.

BP classification systolic BP [mmHg] diastolic BP [mmHg]
normal <120 and <80
prehypertensive 120-139 or 80-89
stage 1 hypertension 140-159 or 90-99
stage 2 hypertension ≥ 160 or ≥ 100

Table 2.1: Classification of hypertension for different blood pressures (BP) of adults, taken
from Chobanian et al. [2003]; 100 mmHg =̂ 0.13332 bar =̂ 13.332 kPa.

In this work we distinguish between two different loading types: the physiological and the
supra-physiological loading domain.

Physiological loading domain. Arteries, which are under “normal” blood pressure up
to approximately 120mmHg (16 kPa) or up to 140mmHg (18.7 kPa) and even higher in
case of hypertension, are said to be in the physiological loading domain. In this work the
upper limit of the physiological domain of 180mmHg (24 kPa) is taken into account.

Supra-physiological loading domain. High inner pressure not naturally arising in
arteries are referred to as supra-physiological or therapeutic, since such pressure arise, for
example, due to a balloon dilation. In this loading domain the artery will be mechanically
damaged, see Chapter 7.
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2.3 Mechanical behavior of arterial tissue

From a mechanical perspective arteries are highly deformable structures composed of
fibers embedded in a soft matrix material (extracellular matrix; ground substance). Ad-
ditionally, arteries are assumed to be quasi-incompressible, see for example Carew et al.
[1968], and Chuong and Fung [1984]. There are mainly two families of fibers reinforcing
the artery, which are helically coiled around the artery. The ground substance, which has
a much lower stiffness than the embedded fibers, is assumed to be isotropic and exhibits
a nearly linear stress-strain response.
In Roach and Burton [1957] the tension-radius response of elastin-digested, collagen-
digested and control samples of human iliac arteries was investigated. The experiments
show, that the arterial response in the low loading domain is mainly carried by elastin and
that the collagen is the load-carrying material at a higher loading range. At physiological
pressure, both constituents are responsible for the stress-strain response, where the colla-
gen is the dominant factor. In Fischer and Llaurado [1966], Cox [1978], and Nichols and
O‘Rourke [1998] the correlation between the mechanical response of arterial tissue and
the collagen and elastin content was investigated. It was shown, that the ratio of colla-
gen to elastin effects the stiffness of the arterial wall such that a higher collagen content
indicates a stiffer arterial wall behavior. Thus, the overall highly nonlinear stress-strain re-
sponse with the typical (exponential) stiffening effect at higher pressures is a result of the
straightening of the embedded wavy collagen fibers, see, for example, Gupta [2008]. Due
to the arrangement of the elastin and collagen fibers, the arterial wall behaves anisotropic.
One of the first works dealing with anisotropy in arterial walls is Patel and Fry [1969].
They stated, that arterial walls are cylindrically orthotropic.
As mentioned in Section 2.1, arteries are mainly composed of three layers. Due to their dif-
ferent composition, they have different mechanical properties and relevance. The intima is
relatively thin in healthy young arteries and therefore their mechanical influence is rather
insignificant. Arteriosclerotic degenerations lead to a thickening and stiffening of the in-
tima with age, thus the influence may become more significant. Furthermore, pathological
changes transform parts of the intima into plaque, leading to a total different mechanical
behavior. Thus, in this work the intima is neglected in healthy parts of the artery and
assumed to be a part of the plaque in degenerated arteries. The mechanically most im-
portant layers are the media and the adventitia, whereas the media is the load-bearing
layer in the physiological loading range and the adventitia saves the arterial wall from
rupture under higher loadings, see Holzapfel et al. [2000a]. Both layers are anisotropic as
mentioned in, for example, von Maltzahn et al. [1984]. Here, bovine carotid arteries are
investigated and it was stated that the media and the adventitia are stiffer in the axial
direction than in the circumferential direction. Additionally, they observed higher stress
values in the media compared with that in the adventitia under physiological conditions.
At zero stress state Yu et al. [1993] measured the initial Young’s modulus of inner layers
(intima and media) and of the outer layer (adventitia) of pig aortas. A higher Young’s
modulus was observed in the inner layers. Xie et al. [1995] observed the same in rat aorta
by application of a new experimental method. In Holzapfel et al. [2005] the mechanical
behavior of the individual layers of human coronary arteries are discussed in the frame-
work of finite strains. The authors found out that mechanical behavior of all tissues is
different. However, it is nonlinear and anisotropic in all cases. The tissue samples of the
adventitia are stiffer when tested in the axial direction than in circumferential direction.
In contrast, the samples of the media show the exactly opposite behavior. Sommer et al.
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[2010] analyzed the influence of axial pre-stretch on the circumferential and axial stress-
strain behavior of human common and internal carotid arteries. High axial pre-stretches
result in a stiffer response.
In the physiological range soft biological tissues as arteries behave (perfectly) elastic,
see Holzapfel et al. [2000a]. The reviews in Fung [1993], Abé et al. [1996], Liu [1999],
Humphrey [2002], and Holzapfel and Ogden [2006] give an overview on experimental find-
ings on the material behavior of arteries within the physiological range of deformations.
Under supra-physiological (therapeutic) loadings damage effects appear. These effects lead
to a softening of the arterial wall and result in hysteresis in the stress-strain response un-
der cyclic loading conditions. This topic is discussed in detail in Chapter 7. Another very
important issue is the existence of residual stresses in arterial walls. Even in an unloaded
state (when the artery is released from internal pressure), stresses are observed: these
stresses are called residual stresses. This topic is treated in Chapter 9.
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3 Fundamentals of the continuum mechanics of solids

The aim of this chapter is to briefly introduce the basic concepts of the continuum me-
chanics of solids used in the present work. In order to find more detailed information about
continuum mechanics the reader is referred to, for example, Eringen [1980], Marsden and
Hughes [1983], Stein and Barthold [1996], Chadwick [1999], Haupt [2000], Holzapfel [2000],
Truesdell and Noll [2004], and Wriggers [2008].

3.1 Kinematical relations

In the field of continuum mechanics, the body of interest is modeled as a continuum,
whereby the microscopic composition is not taken into account explicitly. We consider a
material body B as continuum in Euclidean space R3, which consists of a continuous set of
material points P . The boundary of the body is described as ∂B. The undeformed state of
the body is denoted as reference configuration B0 (material or Lagrangian configuration)
and is defined by the position X of the material points P ∈ B0 at time t = t0

X = X̂(Θ1,Θ2,Θ3) or X = X̂(Θi) with i = 1, 2, 3 , (3.1)

with the convective coordinates Θi. The convective coordinates can be imagined as lines
carved on the body, i.e. when the body deforms the convective coordinates deform as well.
The current configuration B (spatial or Eulerian configuration) is the deformed state of
the body. This state is defined by the position x of the material points P ∈ B at time t

x = x̂(Θ1,Θ2,Θ3, t) or x = x̂(Θi, t) with i = 1, 2, 3 . (3.2)

The cartesian coordinates can be written as functions of the convective coordinates: in
the reference position XA = X̂A(Θ1,Θ2,Θ3) with A = 1, 2, 3 and in the current position
xa = x̂a(Θ1,Θ2,Θ3) with a = 1, 2, 3. The position of the material points P in terms of
the orthonormal (cartesian) basis EA and ea, respectively, yields

X = XAEA and x = xa ea . (3.3)

The covariant basis vectors (natural basis) are the tangent vectors on the convective
coordinates Θi and can be computed by the partial derivative of the position vectors X
and x with respect to Θi. Therefore, the natural basis in the reference position Gi and in
the current position gi is given by

Gi =
∂X

∂Θi
=
∂XA

∂Θi
EA = XA

,i EA and gi =
∂x

∂Θi
=
∂xa

∂Θi
ea = xa,i ea . (3.4)

The contravariant basis vectors (dual basis) follow from the conditions

Gi ·Gk = δi
k and gi · gk = δi

k with δi
k =

{
1, if i = k
0, if i 6= k

. (3.5)

Here, δi
k is the so-called Kronecker symbol. Therefore, the contravariant basis vectors in

the reference position Gi and in the current position gi can be computed by

Gi =
∂Θi

∂X
=

∂Θi

∂XA
EA and gi =

∂Θi

∂x
=
∂Θi

∂xa
ea , (3.6)
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with EA = EA and ea = ea. The convective coordinates and the resulting basis vectors
are depicted in Fig. 3.1 for a simple two-dimensional problem.

G2

E2, e2

E1, e1

X

X1

G1

X2

B

x

g2

B0 g1

G2
G1 g2

g1
Θ1

Θ2 Θ2

Θ1

Figure 3.1: Schematic illustration of the reference configuration and the current configu-
ration with convective coordinates and resulting basis vectors of the natural and dual basis.

Motion, deformation and strain. The deformation and motion of a body B is given
by the nonlinear deformation mapping ϕ : B0 7→ B, which transfers the material points
P from the reference configuration into the current configuration, see Fig. 3.2. At time
t ∈ R+ the position of the points X ∈ B0 is mapped onto the current position x ∈ B

ϕ(X, t) : X 7→ x = ϕ(X, t) . (3.7)

Due to the fact that the deformation mapping defines an injective function, deformation
involving tearing and interpenetration of matter of the body is excluded and the inverse
deformation mapping is well defined:

ϕ−1(x, t) : x 7→X = ϕ−1(x, t) . (3.8)

The movement of a point P is described by the displacement vector u(X, t) as the dif-
ference between the position vector of the current and the reference configuration

u(X, t) = ϕ(X, t)−X = x−X . (3.9)

In order to describe the deformation process, the so-called transport theorems are used.
They describe the mapping from the reference to current configuration of infinitesimal
line, area, and volume elements, respectively. One of the most fundamental kinematic
quantities is the deformation gradient F , which is a primary measure of deformation
defined by the partial derivative of the spatial position x with respect to the material
position X,

F (X, t) =
∂x

∂X
= Gradx = ∇x . (3.10)

Considering eq. (3.9) we get the alternative representation of the deformation gradient

F = Grad[X + u(X, t)] = 1 +Gradu = 1+∇u , (3.11)
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∂B

F

X
x

P

E3, e3

E1, e1

E2, e2

B

da

dx

∂B0

dv
dX

dA

dV

P B0
CofF

detF

x = ϕ(X, t)

Figure 3.2: Schematic illustration of the reference configuration and the current configu-
ration with the corresponding geometrical mappings (transport theorems).

with the second-order identity tensor 1. In convective and cartesian coordinates, respec-
tively, the expression in eq. (3.10) yields

F =
∂x

∂Θi
⊗ ∂Θi

∂X
= gi ⊗Gi =

∂xa

∂Θi

∂Θi

∂XA
ea ⊗EA = F a

A ea ⊗EA , (3.12)

and it can be seen that F is a two-point tensor: one base vector is defined with respect to
the Eulerian configuration and the other is defined with respect to the Lagrangian con-
figuration. The deformation gradient is a linear operator and transforms an infinitesimal
line element in the reference configuration dX into a current infinitesimal line element
dx and the mapping of an infinitesimal line element reads

dx = F dX . (3.13)

From the condition that an inverse mapping exists follows that the deformation mapping
is one-to-one. Thus, the deformation gradient F cannot be singular and its inverse exists

F−1 =
∂X

∂x
=
∂X

∂Θi
⊗ ∂Θi

∂x
= Gi ⊗ gi =

∂XA

∂Θi

∂Θi

∂xa
EA ⊗ ea = (F−1)Aa EA ⊗ ea . (3.14)

From this follows that the determinant of the deformation gradient F differs from zero,

detF (X, t) 6= 0 . (3.15)

The mapping of an infinitesimal volume element can be computed by the scalar triple
product which is defined as the dot product of one of the vectors with the cross product
of the other two. Therefore, an infinitesimal referential volume element can be expressed
by dV = (dX1 ×X2) · dX3 and the corresponding current volume by

dv = (dx1 × x2) · dx3 = det



dx1

dx2

dx3


 = det




F dX1

F dX2

F dX3


 = detF det



dX1

dX2

dX3


 , (3.16)
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where we have considered eq. (3.13). This leads to the mapping of an infinitesimal volume
element

dv = detF dV = J dV (3.17)

with the local volumetric deformation measure J = detF = dv
dV

called the Jacobian
determinant. Since interpenetration of the body B is excluded, eq. (3.15) must be further
limited and the Jacobian determinant has to fulfill the condition

J = detF (X, t) > 0 . (3.18)

The mapping of an infinitesimal area element is derived by eq. (3.17) considering
eq. (3.13). Here, we compute first

dv = da · dx = JdA · dX = JdV

da · F dX = JdA · dX

(F Tda− JdA) · dX = 0 .

(3.19)

Since dX cannot be zero we obtain the so-called Nanson‘s formula

da = JF−T dA = CofF dA , (3.20)

where an infinitesimal material area element dA = NdA, with the material unit outward
normal vector N , is mapped to an infinitesimal spatial area element da = nda, with
the spatial unit outward normal vector n. A schematic representation of the transport
theorems is given in Fig. 3.2 and the summarization of the transport theorems is

dx = F dX

da = JF−T dA = CofF dA

dv = detF dV = JdV

. (3.21)

Decomposing the deformation into straining and rigid rotation at a material point, the
deformation gradient can be written in its polar decomposition

F = RU = V R , (3.22)

with the rotation tensor R and the right and left stretch tensors U and V , respectively.
The rotation tensor is a proper orthogonal tensor, i.e. R ∈ SO(3) with R−1 = RT .
Although the deformation gradient incorporates all information of the deformation at a
material point, it is not suitable for describing deformation in the sense of alteration of
shape since it is affected by rigid body rotations. The right Cauchy-Green deformation
tensor and the left Cauchy-Green deformation tensor (Finger tensor) are defined as

C = F TF = (RU)TRU = U 2 with CAB = δabF
a
AF

b
B , and

b = FF T = (V R)TV R = V 2 with bab = δABF a
AF

b
B ,

(3.23)
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which are free of rigid body rotations. Further deformation measures can be obtained by
evaluating half the difference between the square of the norm of the line element in the
current placement ds = ||dx|| and the reference placement dS = ||dX||, i.e.

1
2
((ds)2 − (dS)2) = 1

2
(dx · dx− dX · dX) . (3.24)

Inserting eq. (3.13) and eq. (3.23) in eq. (3.24) yields the Green-Lagrange strain tensor

E = 1
2
(C − 1) with EAB = 1

2
(CAB − δAB) , (3.25)

and usage of the inverse mapping dX = F−1dx yields the Euler-Almansi strain tensor

e = 1
2
(1− b−1) with eab =

1
2
(δab − (b−1)ab) . (3.26)

An alternative notation of the Green-Lagrange strain tensor in terms of the displacement
vector u is obtained by eq. (3.25) using eq. (3.11)

E = 1
2
(∇u+∇Tu+∇Tu∇u) . (3.27)

In the so-called geometrically linear theory of solid mechanics the deformations of the body
are assumed to be small. Therefore, geometric nonlinearities have not to be accounted for.
By neglecting all nonlinear contributions in eq. (3.27) or by linearization of the equation,
i.e.

LinE = E|X +∆E with ∆E =
d

dǫ
[E(X + ǫu)]

∣∣∣∣
ǫ=0

, (3.28)

with E|X = 0 and the directional derivative, also called Gâteaux derivative,
∆E = [1

2
(∇u+∇Tu+∇Tu∇(ǫu) +∇T (ǫu)∇u)]

∣∣
ǫ=0

we get the linear strain tensor

ε = 1
2
(∇u+∇Tu) = sym[∇u] , (3.29)

which is the symmetric part of the displacement gradient.

3.2 Material time derivatives

A material time derivative is the derivative with respect to time holding X fixed, i.e.
Dξ
Dt

= (∂ξ
∂t
)|X . For a material field Ξ = Ξ(X, t) and a spatial field ξ = ξ(x(X, t), t) the

material time derivative yields

DΞ

Dt
= Ξ̇ =

∂Ξ

∂t
and

Dξ

Dt
= ξ̇ =

∂ξ

∂t
+
∂ξ

∂x
· ∂x
∂t

=
∂ξ

∂t
+ gradξ · ẋ . (3.30)

Considering the velocity v = ϕ̇(X, t) and the acceleration a = v̇ = ϕ̈(X, t) as material
time derivatives of material fields, we compute

v(X, t) =
∂ϕ(X, t)

∂t
and a(X, t) =

∂2ϕ(X, t)

∂t2
. (3.31)

In contrast, if we consider material time derivatives of spatial fields, i.e. V = ϕ̇−1(x, t) = 0
and A = V̇ = ϕ̈−1(x, t) = 0, the velocity and the acceleration can be computed by

V =
∂ϕ−1(x, t)

∂t
+
∂ϕ−1(x, t)

∂x
ẋ = 0 → ẋ = v(x, t) and

a = v̇(x, t) =
∂v(x, t)

∂t
+
∂v(x, t)

∂x

∂x

∂t
=
∂v

∂t
+ gradv v =

∂v

∂t
+ l v ,

(3.32)
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with the spatial velocity gradient l. The material velocity gradient is given by

Ḟ =
∂ẋ

∂X
= Gradẋ (3.33)

and the relation between the spatial and the material velocity gradient can be derived as

l = gradv =
∂ẋ

∂x
=

∂ẋ

∂X

∂X

∂x
= Ḟ F−1 . (3.34)

An additive decomposition of l into a symmetric part d and a skew-symmetric part (spin)
w results in

l = d+w with d =
1

2
(l+ lT ) = sym[l] and w =

1

2
(l− lT ) = skew[l] . (3.35)

The material time derivative of the Jacobian determinant is (using eq. (3.34))

J̇ =
∂J

∂F
:
∂F

∂t
=
∂ detF

∂F
: Ḟ = detFF−T : Ḟ = JF−T : lF = J gradẋ : 1 = J divẋ .

(3.36)

3.3 The stress concept

In the following the concept of stresses in the framework of continuum mechanics is
discussed. Considering a deformable continuum body on which external forces are applied,
the field of internal forces acting on infinitesimal surfaces within the body as a reaction
to the external forces is called stress.

e1

e2

e3

da

x

a

P

−t

t

−nn

Figure 3.3: Body with cut free internal stress vector t.

Let us consider a cutting surface a, which passes through a material point P , as depicted
in Fig. 3.3. The continuum is subjected to external forces f , consisting of external surface
and body forces. As mechanical reaction to the external loadings, forces are transmitted
from one segment to the other through the cutting surface, resulting in a force distribution
on a small area ∆a, with a normal unit vector n. As ∆a becomes infinitesimally small
the ratio ∆f/∆a becomes df/da. The resulting vector df/da is defined as the traction
vector given by

t(x, t) = lim
∆a→0

∆f

∆a
=
df

da
(3.37)
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at the point P associated with a plane with a normal vector n. According to Cauchy’s
postulate, the traction vector t persists for all surfaces passing through the point P and
having the same normal vector n at P . The state of stress at a point in the body is then
defined by all stress vectors t associated with all planes that pass through that point.
In order to describe the stress state explicitly, Cauchy’s stress theorem states that there
exists a second-order tensor field σ(x, t), independent of n, such that t is a linear function
of n

t(x, t,n) = σ(x, t)n with ta = σabnb . (3.38)

The Cauchy stress tensor σ, also denoted as true stress, is a pure Eulerian stress tensor
and relates the current force in the cutting plane to the current area element. Another
stress tensor is obtained by multiplying the Cauchy stress tensor σ with the Jacobian
determinant J . Therefore, the resulting Kirchhoff stress tensor τ is also known as weighted
Cauchy stress tensor and is given by

τ = Jσ with τab = Jσab . (3.39)

The Lagrangian counterpart of the Eulerian Cauchy theorem can be formulated as

T (X, t,N) = P (X, t)N , (3.40)

with the normal N and the traction vector T associated to the undeformed surface ∂B0,
see Fig. 3.4.

da

B

t

n

dA

B0

T

N

CofF

Figure 3.4: Traction vectors T on ∂B0 and t on ∂B.

The referential traction vector T points in the same direction as the traction vector t and
it follows for every surface element

T dA = tda . (3.41)

The first Piola-Kirchhoff stress tensor P is obtained from eq. (3.41) by considering
eq. (3.20), eq. (3.38), and eq. (3.40), thus

P = JσF−T with P aA = Jσab(F−1)Ab. (3.42)

The stress tensor P is a two-field tensor obtained by a Piola transformation of σ and
relates the current force in the cutting plane to the referential area element and is also
denoted as nominal stress. A pure Lagrangian stress tensor, the second Piola-Kirchhoff
stress tensor S, can be obtained by a pull-back operation of the Kirchhoff stress tensor

S = F−1τF−T with SAB = (F−1)Aa τ
ab (F−1)Bb . (3.43)

A summary of the above mentioned stress tensors as well as the relations between the
different stress measures is given in Table 3.1.
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σ = σab τ = τab P = P aA S = SAB

σ Cauchy stress σ 1
J
τ 1

J
PF T 1

J
FSF T

τ Kirchhoff stress Jσ τ PF T FSF T

P 1st Piola-Kirchhoff stress JσF −T τF−T P FS

S 2nd Piola-Kirchhoff stress JF−1σF−T F−1τF−T F−1P S

Table 3.1: Summary of the relations between different stress measures.

3.4 Balance principles

In this section some fundamental principles of continuum mechanics are provided. The
fundamental balance principles discussed here are the mass balance, the balance of linear
momentum, the balance of angular momentum, and the energy balance (also referred to
as 1st law of thermodynamics) as well as the entropy inequality (also referred to as 2nd

law of thermodynamics). They are valid for every continuum, since the balance principles
are material-independent, and they have an axiomatic character. That means that they
have universal validity, but, however, they can not be deduced from other natural laws.
In the following the individual axioms, constituents and local forms are discussed briefly.

3.4.1 Mass balance

The conservation of mass is a conservation law, which means that during a motion the
mass of a body does not change for all times. Therefore, the first global form of the mass
balance is given by

m = const. →
∫

B0

ρ0 dV =

∫

B

ρ dv and ṁ =
d

dt

∫

B

ρ dv = 0 , (3.44)

with the current density ρ and the referential density ρ0. From the second equation in
eq. (3.44) with eq. (3.17) it follows that the Jacobian determinant is a volume ratio, i.e.

J =
ρ0
ρ

∀ X ∈ B0,x ∈ B , (3.45)

which is the first local form of balance of mass. Evaluation of the third equation in
eq. (3.44) under consideration of eq. (3.17) and eq. (3.36) leads to the second global form
of balance of mass

ṁ =
d

dt

∫

B

ρ dv =

∫

B0

(ρ̇J + ρJ̇) dV =

∫

B

(ρ̇+ ρ divẋ) dv = 0 (3.46)

and the corresponding second local form of balance of mass reads

ρ̇+ ρ divẋ = 0 ∀ x ∈ B . (3.47)

It should be noted that a balance equation is not only valid for each local material point
of the body and it is therefore reasonable to formulate a local form of the equation.
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3.4.2 Balance of linear momentum

The balance of linear momentum states, that the temporal change of the linear momentum
L, also called impulse, equals to the sum of forces K acting on the body B

L̇ = K → d

dt

∫

B

ρ ẋ dv =

∫

B

ρg dv +

∫

∂B

t da . (3.48)

Herein, g is the volume acceleration. Using eq. (3.17), eq. (3.36) and eq. (3.47) the material
time derivative of L results in

L̇ =
d

dt

∫

B

ρ ẋ dv =

∫

B0

[ẋ(ρ̇+ ρ divẋ) + ρẍ] J dV =

∫

B

ρ ẍ dv , (3.49)

and by usage of eq. (3.38) and eq. (A.16) the surface forces can be expressed by

∫

∂B

t da =

∫

∂B

σn da =

∫

B

divσ dv . (3.50)

Therewith, the global form of balance of linear momentum results in
∫

B

ρ ẍ dv =

∫

B

ρg dv +

∫

B

divσ dv , (3.51)

and the corresponding local form of balance of linear momentum reads

divσ + ρ(g − ẍ) = 0 ∀ x ∈ B . (3.52)

3.4.3 Balance of angular momentum

The balance of angular momentum states, that the temporal change of the angular mo-
mentum h(0), also referred to as moment of momentum, relative to a fixed point x0 equals
to the sum of moments m(0) acting on the body B. With definition of the position vector
r = x− x0 and the velocity at this point ṙ = ẋ− ẋ0 = ẋ the balance equation reads

ḣ(0) = m(0) → d

dt

∫

B

r × ρẋ dv =
∫

B

r × ρg dv +
∫

∂B

r × t da . (3.53)

Using equation eq. (3.17), eq. (3.36) and eq. (3.47) and noting that ẋ × ρẋ = 0 the
material time derivative of h(0) can be reformulated

ḣ(0) =
d

dt

∫

B

r×ρẋ dv =

∫

B0

[ẋ×ρẋ+r×ρẍ+r×ẋ(ρ̇+ρ divẋ)]J dV =

∫

B

r×ρẍ dv . (3.54)

The reformulation of the equation of the moment produced by the surface traction using
Cauchy’s theorem eq. (3.38) and the divergence theorem eq. (A.16) yields

∫

∂B

r × t da =

∫

∂B

r × σn da =

∫

B

[r × divσ + ǫ : σT ]dv , (3.55)
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with the permutation tensor ǫ, see eq. (A.15). The balance of angular momentum yields

∫

B

r × (divσ + ρ(g − ẍ))dv +

∫

B

ǫ : σT dv = 0 →
∫

B

ǫ : σT dv = 0 , (3.56)

using eq. (3.52). This equation is only valid, if the Cauchy stresses σ are symmetric, i.e.

σ = σT ∀ x ∈ B , (3.57)

known as Cauchy’s second equation of motion.

3.4.4 Energy balance (1st law of thermodynamics)

The first fundamental theorem of thermodynamics is the balance of energy. The corre-
sponding axiom says that the rate of total energy, which is the sum of internal energy
E and the kinetic energy K, equals to the rate of mechanical work W plus the rate of
non-mechanical work. In case of thermo-mechanics with the thermal power Q we obtain

Ė + K̇ =W +Q → d

dt

∫

B

eρ dv +
d

dt

∫

B

1
2
ρ ẋ · ẋ dv =W +Q , (3.58)

with the specific energy density per unit mass e. Using the equations eq. (3.17), eq. (3.36)
and eq. (3.47) the temporal change of the internal and the kinetic energy reads

Ė =
d

dt

∫

B

eρ dv =

∫

B0

(ėρ+ e[ρ̇+ ρ divẋ])J dV =

∫

B

ėρ dv , and

K̇ =
d

dt

∫

B

1
2
ρẋ · ẋ dv = 1

2

∫

B0

(ẋ · ẋ[ρ̇+ ρ divẋ] + 2ρẋ · ẍ)J dV =

∫

B

ρẋ · ẍ dv ,
(3.59)

respectively. Mechanical work is caused by volume and surface forces acting on a body.
Using Cauchy’s theorem eq. (3.38), the divergence theorem eq. (A.16), and the equations
eq. (3.57), eq. (3.34), eq. (3.35) and eq. (3.52) the rate of mechanical work yields

W =

∫

B

ẋ · ρg dv +
∫

∂B

ẋ · t da =
∫

B

(ẋ · ρẍ + σ : d) dv . (3.60)

It should be noticed, that the rate of mechanical work consists of the rate of internal
work Wint =

∫
B σ : d dv (internal stress power) and rate of kinetic work

∫
B ẋ · ρẍ dv. The

thermal power is given by

Q =

∫

B

ρ r dv +

∫

∂B

q da =

∫

B

(ρ r − divq) dv , (3.61)

with the heat source per unit mass r supplying energy in form of heat and the heat flux
q(x, t,n) = −q(x, t) · n describing heat entering the body across the surface. Thus, the
local form of the balance of energy reads

ρ ė = σ : d+ ρ r − divq ∀ x ∈ B . (3.62)
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With eq. (3.17) and eq. (3.39) the the internal stress power Wint is given by

Wint =

∫

B0

τ : d dV (3.63)

and with eq. (3.34) and Ė = 1
2
Ċ = F TdF alternative forms of the stress power read

Wint =

∫

B0

τ : (Ḟ F−1) dV =

∫

B0

τF−T : Ḟ dV =

∫

B0

P : Ḟ dV and

Wint =

∫

B0

τ : (F−T ĖF −1) dV =

∫

B0

F−1τF−T : Ė dV =

∫

B

S : Ė dV .

(3.64)

The stress power is the double contraction of a stress tensor and its associated rate of
deformation. In this context, the quantities (τ ;d), (P ; Ḟ ), and (S; Ė) are so-called work
conjugated pairs.

3.4.5 Entropy inequality (2nd law of thermodynamics)

The second fundamental theorem of thermodynamics is the entropy inequality, which
gives information about the direction of an energy transfer within a thermomechanical
process. The total rate of entropy production Γ equals to the difference between the rate
of total entropy Ḣ and the rate of entropy input Q̃, i.e. Γ = Ḣ− Q̃. The axiom of entropy
inequality states that the total rate of entropy production Γ is never negative, thus

Ḣ ≥
∫

B

1

ϑ
ρ r dv −

∫

∂B

1

ϑ
q · n da → d

dt

∫

B

ρ η dv ≥
∫

B

1

ϑ
ρ r dv −

∫

∂B

1

ϑ
q · n da , (3.65)

with the specific entropy η = η(x, t), the absolute temperature ϑ = ϑ(x, t) restricted to
positive values, the flux of entropy q/ϑ entering the body by conduction and the entropy
source r/ϑ entering the body by radiation. With the temporal change of the total entropy

Ḣ =
d

dt

∫

B

ρ η dv =

∫

B0

(ρ η̇ + η [ρ̇+ ρ divẋ])J dV =

∫

B

ρ η̇ dv , (3.66)

the global form of entropy inequality, also called Clausius-Duhem inequality, yields
∫

B

ρ η̇ dv ≥
∫

B

1

ϑ
ρ r dv −

∫

∂B

1

ϑ
q · n da , (3.67)

and with the divergence theorem eq. (A.16) the local form can be derived as

ρ η̇ ≥ 1

ϑ
ρ r − div

(q
ϑ

)
. (3.68)

Multiplying eq. (3.68) with the absolute temperature ϑ yields the spatial dissipation D.
By use of div(q/ϑ) = divq/ϑ− q · gradϑ/ϑ2 and eq. (3.62) D can be written as

D := ρ (ϑ η̇ − ė) + σ : d− 1

ϑ
q · gradϑ ≥ 0. (3.69)
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An additive split of the dissipation into an internal part Dint and a conductive part Dcond,
i.e. D = Dint + Dcond, and postulation that both parts have to be positive or zero yields
the Clausius-Planck inequality and the Fourier inequality

Dint = ρ (ϑ η̇ − ė) + σ : d ≥ 0 and Dcond = −
1

ϑ
q · gradϑ ≥ 0. (3.70)

For thermal independent processes Dcond vanishes. Let the Helmholtz free energy
ψ̃ = e− ϑη be the thermodynamic potential, then after a Legendre transformation applied
on eq. (3.70)1 we get

Dint = σ : d− ρ
(
˙̃ψ + ϑ̇η

)
≥ 0 . (3.71)

Considering isothermal processes, i.e. for constant temperature (ϑ = const.), the internal
dissipation eq. (3.71) reduces to

Dint = σ : d− ρ ˙̃
ψ ≥ 0 . (3.72)

Considering the work-conjugated pairs and using ρ0ψ̃ = ψ the material form of the internal
dissipation reads

Dint = S : Ė − ψ̇ ≥ 0 . (3.73)

If the Helmholtz free energy depends only on a strain tensor (e.g. E), then it is referred
to as stored energy and the material time derivative yields ψ̇ = ∂Eψ : Ė. Thus, we obtain

Dint =
(
S − ∂ψ

∂E

)
: Ė ≥ 0 . (3.74)

In case of a perfectly elastic material, locally no entropy is produced, i.e. Dint = 0, and
therefore, all processes are reversible (no plastic deformation, no damage, etc.). In order
to ensure Dint = 0 for arbitrary Ė due to the standard argument of rational continuum
mechanics, we set the term in the parentheses in eq. (3.74) equal to zero and obtain the
constitutive equation for the second Piola-Kirchhoff stresses as

S =
∂ψ

∂E
= 2

∂ψ

∂C
. (3.75)

This relation characterizes a hyperelastic (or Green elastic) material, for which the stresses
can be determined from a given stored-energy function, see Truesdell and Noll [2004],
page 13. The corresponding standard elasticity tensor for hyperelasticity, see for example
Holzapfel [2000], is given by

C =
∂S

∂E
= 2

∂S

∂C
= 4

∂2ψ

∂C∂C
, (3.76)

which is a symmetric fourth order tensor.

A summary of the balance equations and the entropy inequality is given in Table 3.2.
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Conservation of mass: ṁ = 0

m =

∫

B

ρ dv ρ0 = Jρ and ρ̇+ ρ divẋ = 0

Balance of linear momentum: L̇ = K

L =

∫

B

ρẋ dv K =

∫

B

ρg dv +

∫

∂B

t da divσ + ρ(g − ẍ) = 0

Balance of angular momentum: ḣ(0) = m(0)

h(0) =

∫

B

x×ρẋ dv, m(0)=

∫

B

x×ρg dv +
∫

∂B

x×t da ǫ : σT = 0 → σ = σT

Balance of energy: Ė + K̇ =W +Q

E =

∫

B

eρ dv, W =

∫

B

ẋ · ρg dv +
∫

∂B

ẋ · t da
ėρ = σ : d+ ρr − divq

K =

∫

B

1

2
ρẋ · ẋ dv, Q =

∫

B

ρ r dv −
∫

∂B

q · n da

Entropy inequality: Ḣ ≥
∫

B

rρ

ϑ
dv −

∫

∂B

q

ϑ
· da

H =

∫

B

ρη dv ρ(ϑη̇ − ė) + σ : d− q · gradϑ
ϑ
≥ 0

Table 3.2: Balance equations and entropy inequality: axiom, constituents and local form.

3.5 Basic principles in the framework of material modeling

The description of material behavior is based on the derivation of mathematical models,
the constitutive equations. In Section 3.4 eight field equations (1 from eq. (3.47), 3 from
eq. (3.52), 3 from eq. (3.57), 1 from eq. (3.62)) were derived, which include 23 field
quantities depending on the position and the time

{ϕ
|3
, ρ

|1
,σ

|9
, g

|3
, ψ

|1
, η

|1
, ϑ

|1
, r

|1
, q

|3
} → 23 field quantities . (3.77)

Since g and r (four quantities) are given, the resulting quantities have to be computed
by the eight field equations and additionally by 11 constitutive equations

f(σ
|6
, ψ

|1
, η

|1
, q

|3
) → 11 constitutive equations . (3.78)

In order to construct physically reasonable constitutive equations several basic principles
should be considered: the principle of consistency, the principle of determinism, the prin-
ciple of equipresence, the principle of fading memory, the principle of local agency, the
principle of material frame indifference (also referred to as objectivity), and the principle
of material symmetry. A detailed overview concerning this subject is given in e.g. Trues-
dell [1969], Truesdell and Toupin [1960], Noll [1974], and Stein and Barthold [1996]. See
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also Holzapfel [2000], in which special attention is paid to the principle of material frame
indifference. In the present section the principle of material objectivity and the principle
of material symmetry are discussed in more detail.

3.5.1 Principle of material frame-indifference – Objectivity

The principle of material frame-indifference or objectivity demands that

“Constitutive equations must be invariant under changes of frame of reference.”
And thus: “The response of a material is the same for all observers.”,

see e.g. Truesdell and Noll [2004]. Here, a frame of reference can be regarded as reference
system. For a change of frame or change of observer from O to O+, the one-to-one mapping
of an event in space described by the pair {x, t} to the corresponding pair {x+, t+} is
given by the Euclidean transformation

x+ = c(t) +Q(t)x ∀ Q(t) ∈ SO(3) and t+ = t− α , (3.79)

where the vector c(t) depends on the choice of origin, α ∈ IR denotes the time shift and the
proper orthogonal tensor Q(t) describes proper rotations, i.e. detQ = 1 and QT = Q−1,
see Fig. 3.5a. The proper orthogonal group SO(3) is a subgroup of the orthogonal group
O(3), which contains only proper rotations. The orthogonal group contains also improper
rotations (reflections and rotoinversions; detQ = ±1). Physical quantities are observer
independent if they transform under an Euclidean transformation as given in Table 3.3.

quantity
basis in the

transformation
current conf. reference conf.

Scalar field – – γ+ = γ

Eulerian vector field one – γ+ = Qγ

Eulerian 2nd order tensor two – Γ+ = QΓQT

Lagrangian quantity – two L+ = L

two-point tensor one one T+ = QT

Table 3.3: Objective Euclidean transformations of different arbitrary Eulerian and La-
grangian quantities as well as for a two-point tensor.

Nevertheless, not only the physical quantities but also the constitutive equations have to
be objective. In case of the free energy the principle demands that

ψ(F+) = ψ(QF ) = ψ(F ) ∀ Q ∈ SO(3) . (3.80)

The right Cauchy-Green tensor is invariant against rigid body rotations C = U 2, see
eq. (3.23), and considering the deformation gradient we notice that it is a priori objective

F+ =
∂x+

∂x

∂x

∂X
= QF → C+ = (F T )+F+ = (QF )TQF = F TQTQF = C. (3.81)

Therefore, it seems to be reasonable to formulate the constitutive equations in terms of
the right Cauchy-Green tensor in the following. Now, the free energy in its reduced form

ψ(C+) = ψ(C) ∀ Q ∈ SO(3) (3.82)

satisfies the principle of material frame-indifference automatically.
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3.5.2 Principle of material symmetry

The principle of material symmetry requires that

Constitutive equations have to be invariant with respect to all transformations of the
material coordinates, which belong to the symmetry group Gk of the underlying material.

Considering a material point X ∈ B0 and transferring it to an alternative reference
configuration B∗

0 by an arbitrary rigid body motion Q ∈ Gk yields

X∗ = QTX ∀ Q ∈ Gk , (3.83)

see Fig. 3.5b. Then the current position of each material point can be expressed by
x = x(X) or x = x(X∗) and the corresponding deformation gradient and the right
Cauchy-Green tensor are given by

F ∗ =
∂x

∂X

∂X

∂X∗ = FQ and C∗ = (F ∗)TF ∗ = QTCQ . (3.84)

Concerning the second Piola-Kirchhoff stress tensor S = 2∂Cψ(C) as constitutive equa-
tion, the principle of material symmetry requires that

ψ(C) = ψ(QTCQ)

QTS(C)Q = S(QTCQ)

}
∀ Q ∈ Gk . (3.85)

A material is isotropic, if the symmetry group Gk equals to the full orthogonal group O(3),
i.e. the material behavior is in all directions the same and thus a priori invariant with
respect to arbitrary rotations onto the reference configuration.

B+
x+

x

B0X

B0X

QT

F

F ∗

x

F+

Q

F

B
B

X∗

B∗

0

a) b)

Figure 3.5: Rigid body motion applied to a) the current configuration, and b) the reference
configuration.

Let us consider a scalar-valued function h, a vector-valued function h, and a tensor-valued
function of second order H as functions of a finite set of vector-valued arguments vi and
a finite set of tensor-valued arguments of second order Vj (argument tensors of higher
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order are not considered for simplicity). They are isotropic tensor functions, if they are
invariant with respect to rotations of the orthogonal group O(3), i.e.

h(vi,Vj) = h(QTvi,Q
TVjQ)

h(vi,Vj) = h(QTvi,Q
TVjQ)

H(vi,Vj) = H(QTvi,Q
TVjQ)





∀ Q ∈ O(3) . (3.86)

3.6 Representation theorems of isotropic and anisotropic tensor functions

The mathematical description of constitutive equations in continuum mechanics is mainly
associated to scalar-, vector-, or tensor-valued tensor functions. Such constitutive tensor
functions can be represented using coordinate-invariant scalar-valued quantities (invari-
ants) together with corresponding tensor-valued quantities (tensor generators). Funda-
mental works in the framework of the invariant theory are given by e.g. Grace and Young
[1903], Elliott [1913], Weyl [1946], Turnbull [1960], Gurevich [1964], and Schur [1968]. Rep-
resentation theorems for isotropic tensor functions are proposed and discussed in Wang
[1969a,b,c, 1970a,b, 1971], Smith [1970, 1971], and Boehler [1977]. These theorems are
the basis for the description of anisotropic materials by use of structural tensors, i.e. by
tensors reflecting the symmetry group of the considered material. Important works on
the concept of structural tensors are, for example, Boehler [1979, 1987a]. In the context
of representations of anisotropic tensor functions the reader is referred to, for example,
Spencer [1971], Boehler [1987b], Zheng and Spencer [1993], and Betten [2001]. The in-
variant theory in the framework of continuum mechanics is also described in Rivlin and
Ericksen [1955], Pipkin and Wineman [1963], Wineman and Pipkin [1964], Schröder [1996]
and Truesdell and Noll [2004]. The content of this section is based on the works Schröder
[1996] and Balzani [2006].

3.6.1 Representation theorems of isotropic tensor functions

In this section we focus on the representation theorems of isotropic tensor functions in
the framework of the invariant theory. The aim of the invariant theory is to determine
an invariant system of irreducible invariants. This set of irreducible invariants is the so-
called integrity basis, see Schur [1968], from which all other invariants can be deduced. In
this context, Hilbert’s theorem postulates that for a finite number of vectors and tensors
there exists a integrity basis consisting of a finite number of invariants, see the proof in
Gurevich [1964]. The application of the representation theory, saying that each isotropic
tensor function (cf. eq. (3.86)) can be expressed by a function of a finite set of scalar-valued
invariants Is and tensor generators hk,Hk, provides

h(vi,Vj) = h(Is), h(vi,Vj) =
∑

k

ϕk(Is)hk, and H(vi,Vj) =
∑

k

ϕk(Is)Hk, (3.87)

where Is = {I1, I2, I3, ..., Ip} is the integrity basis consisting of a set of p irreducible
invariants and ϕk(Is) are scalar-valued functions of the irreducible invariants. For a more
detailed derivation the reader is referred to Korsgaard [1990a,b].

The invariants of the right Cauchy-Green tensor C are defined by the characteristic poly-
nomial det[λ1−C] = λ3−I1λ2+ I2λ−I3 = 0 with the eigenvalues λ of C and the second
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order identity tensor 1. The Cayley-Hamilton theorem states that every square matrix
satisfies its own characteristic equation, thus

p(C) = C3 − I1C2 + I2C − I31 = 0 , (3.88)

with the set of isotropic principal invariants of the right Cauchy-Green tensor

I1 = trC, I2 =
1
2
((trC)2 − trC2) = tr[ cofC], I3 = detC . (3.89)

The resulting isotropic polynomial basis (integrity basis of polynomial invariants) is

Piso = {I1, I2, I3} . (3.90)

Now we are able to express the free-energy function ψ as isotropic scalar-valued function
in terms of the principal invariants of the right Cauchy-Green tensor

ψ(C) = ψ(Li|Li ∈ Piso) . (3.91)

Then, the second Piola-Kirchhoff stress tensor S (see eq. (3.75)) as well as the tangent
moduli C (see eq. (3.76)) can be written as isotropic tensor functions

S = 2∂Cψ = 2
∑

i

∂ψ

∂Li

∂Li
∂C

, (3.92)

and considering the symmetry conditions ∂2ψ
∂Li∂Lj

= ∂2ψ
∂Lj∂Li

C = 4
∑

i

[
∑

j

∂2ψ

∂Li∂Lj

{
∂Li
∂C
⊗ ∂Lj
∂C

}
+
∂ψ

∂Li

∂2Li
∂C∂C

]
, (3.93)

with the invariants Li, Lj ∈ Piso. Insertion of the partial derivatives of the invariants with
respect to C, see Appendix C, in eq. (3.92) yields the explicit expression for the isotropic
second Piola-Kirchhoff stress tensor

Siso = 2

[(
∂ψ

∂I1
+
∂ψ

∂I2
I1

)
1− ∂ψ

∂I2
C +

∂ψ

∂I3
CofC

]
, (3.94)

with the isotropic tensor generators Hiso = {1,C,CofC}. Then, with further insertion
into eq. (3.93) the isotropic tangent modulus is given by

Ciso = 4

[
∂2ψ

∂I1∂I1
1⊗ 1+

∂2ψ

∂I2∂I2
{I11−C} ⊗ {I11−C}

+
∂2ψ

∂I3∂I3
CofC ⊗ CofC

+
∂2ψ

∂I2∂I1
[1⊗ {I11−C}+ {I11−C} ⊗ 1]

+
∂2ψ

∂I3∂I1
[1⊗ CofC + CofC ⊗ 1]

+
∂2ψ

∂I3∂I2
[CofC ⊗ {I11−C} + {I11−C} ⊗ CofC]

+
∂ψ

∂I2
[1⊗ 1− 1⊠ 1] +

∂ψ

∂I3
I3[C

−1 ⊗C−1 −C−1
⊠C−1]

]
,

(3.95)

with (•)⊠ (•) in index notation being {(•)AB}⊠ {(•)CD} = (•)AC(•)BD.
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3.6.2 Representation theorems of anisotropic tensor functions

Anisotropic materials do not have the same material behavior in all directions. But, there
may be special directions present, along which the physical properties are identical. For
instance the material properties of a transversely isotropic material are the same in one
preferred direction and perpendicular to that the properties are rotationally-symmetric.
Thus, the underlying material symmetry group is given by

Gti = {±1,Q(α,A) with 0 < α < 2π} , (3.96)

with α being the angle of rotation around the preferred direction A in the reference
configuration. For rotations belonging to this symmetry group the relations in eq. (3.85)
hold. The direction-specific behavior can be described by the second-order structural
tensor

M = A⊗A with trM = 1 and ||A|| = 1 , (3.97)

which reflects the symmetry properties of the underlying transversely isotropic material,

M ∗ = QTMQ = M ∀ Q ∈ Gti . (3.98)

Inserting the extended list of argument tensors into eq. (3.85) yields

ψ(C,M) = ψ(QTCQ,M)

QTS(C,M)Q = S(QTCQ,M)

}
∀ Q ∈ Gti . (3.99)

However, if we not only account for a rotation of the loading but also of the structural
tensor we observe that the response functions remain unaltered, i.e.

ψ(C,M) = ψ(QTCQ,QTMQ)

QTS(C,M)Q = S(QTCQ,QTMQ)

}
∀ Q ∈ O(3) , (3.100)

see also Fig. 3.6, which is the definition of isotropic tensor functions. Thus, we can derive
a finite set of scalar-valued invariants and associated tensor generators, which represent
the characteristics of the material. Consequently, the requirement of material symmetry
is automatically fulfilled.

nCIIa1

a2
nCI

nSII

nCII

nSI

a1

a2

nSII

QTa2

a2

QTa1

nSI

a1a1

QTa2

a2 nCI

QTa1

a) b)

Figure 3.6: Eigenvectors nCI ,nCII of the deformation C and eigenvectors nSI ,nSII of
the stresses S in a transversely isotropic body: a) due to initial loading, b) after rotation
of both loading and structural properties. In the rotated system the principal strains and
stresses remain unaltered.
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Since the invariants of M (e.g. IM1 = trM = 1) are no expedient invariants for the
representation, we obtain the mixed invariants of the arguments C and M

J4 = tr[CM ], J5 = tr[C2M ], J6 = det[CM 2], J7 = tr[C2M 2] , (3.101)

see Boehler [1987b]. Note that J4 = J6 and J5 = J7, due to eq. (3.97)3, then the polynomial
basis will be extended for transversely isotropic materials to

Pti(C,M) = {I1, I2, I3, J4, J5} , (3.102)

and furthermore the free energy function ψ as will be written as

ψ(C,M) = ψ(Li|Li ∈ Pti(C,M)) . (3.103)

Extending the second Piola-Kirchhoff stress tensor and the tangent moduli to transverse
isotropy yields

S = Siso + Sti and C = C
iso + C

ti . (3.104)

with the transversely isotropic second Piola-Kirchhoff stress tensor

Sti = 2

[
∂ψ

∂J4
M +

∂ψ

∂J5
(CM +MC)

]
. (3.105)

Let the new set of tensor generators be Hti = {1,C,CofC,M , {CM +MC}}, then the
transversely isotropic tangent modulus appears as

Cti = 4

[
∂2ψ

∂J4∂J4
M ⊗M +

∂2ψ

∂J5∂J5
{CM +MC} ⊗ {CM +MC}

+
∂2ψ

∂I1∂J4
[1⊗M +M ⊗ 1]

+
∂2ψ

∂I1∂J5
[1⊗ {CM +MC}+ {CM +MC} ⊗ 1]

+
∂2ψ

∂I2∂I4
[{I11−C} ⊗M +M ⊗ {I11−C}]

+
∂2ψ

∂I2∂J5
[{I11−C} ⊗ {CM +MC}+ {CM +MC} ⊗ {I11−C}]

+
∂2ψ

∂I3∂J4
[CofC ⊗M +M ⊗ CofC]

+
∂2ψ

∂I3∂J5
[CofC ⊗ {CM +MC}+ {CM +MC} ⊗ CofC]

+
∂2ψ

∂J4∂J5
[{CM +MC} ⊗M +M ⊗ {CM +MC}]

+
∂ψ

∂J5
[(1⊠M)

34
T + (M ⊠ 1)

34
T ]

]
,

(3.106)

with (•)
34
T in index notation being {(•)ABCD}

34
T = (•)ABDC .
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4 Finite-Element-Method

In order to describe mathematically the physical phenomena occurring in materials, the
balance equations are used. These balance equations are given as partial differential equa-
tions of field variables. For complex nonlinear problems an analytical (exact) solution
of the problem can not be derived in general. Thus, an approximate solution of partial
differential equations on arbitrary domains must be taken into account, for example the
Finite-Element-Method (FEM). Here, firstly the continuous problem is transformed into
a discrete counterpart, i.e. the domain is discretized by a number of finite elements, and
then the discrete problem is solved using suitable numerical methods. Further informa-
tion concerning this subject is given in the standard text books Zienkiewicz and Taylor
[1989], Bathe [1996], Belytschko et al. [2000], Hughes [2000], Braess [2001], Zienkiewicz
and Taylor [2005], Zienkiewicz et al. [2005], and Wriggers [2008].

4.1 Boundary value problem

In case of thermally independent, quasi-static conditions (ẍ ≈ 0) the nonlinear boundary
value problem is characterized by the local balance of linear momentum eq. (3.52) and
boundary conditions. Then, the balance of linear momentum in the material setting can
be derived from eq. (3.52) with using eq. (3.44). This gives us the partial differential
equation

DivP + ρ0g = 0 , (4.1)

which is referred to as strong form of equilibrium. Since the boundary value problem is
driven by the displacements u as primary variable, the Dirichlet boundary conditions in
terms of the displacements and the corresponding Neumann boundary conditions are

u = ū on ∂B0u and T = PN = t̄ on ∂B0σ . (4.2)

Here, the surface of the body ∂B0 is divided into a part for prescribed deformations ∂B0u
and one part for prescribed stresses ∂B0σ whereby the parts do not overlap

∂B0 = ∂B0u ∪ ∂B0σ with ∂B0u ∩ ∂B0σ = ∅ . (4.3)

4.2 Weak formulation of the field equations

For complex boundary value problems it is in general impossible to derive an analytical
solution. Therefore, the strong form of equilibrium is converted to a so-called weak form.
We use the Galerkin method and multiply eq. (4.1) with an appropriate test function δu,
with δu = 0 on ∂B0u, and integrate over the domain B0

G(u, δu) = −
∫

B0

(DivP + ρ0g) · δu dV = 0 . (4.4)

Application of the product rule DivP ·δu = Div(P T δu)−P : Gradδu yields the relation

G(u, δu) =

∫

B0

P : Gradδu dV −
∫

B0

Div(δuP ) dV −
∫

B0

ρ0g · δu dV = 0 . (4.5)
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Using the Gauß divergence theorem (eq. (A.16)) and the relation Gradδu = δF leads to
the weak form of equilibrium

G(u, δu) =

∫

B0

P : δF dV

︸ ︷︷ ︸
Gint

−





∫

∂B0σ

t̄ · δu dA+

∫

B0

ρ0g · δu dV





︸ ︷︷ ︸
Gext

= 0 , (4.6)

with the internal virtual work Gint and the external virtual work Gext. With the relations

P : δF = (FS) : δF = S : sym[F T δF ] ,

δC = (δF )TF + F T δF = 2 sym[F T δF ] ,
(4.7)

and δE = 1
2
δC the alternative form of the internal part in terms of the symmetric second

Piola-Kirchhoff stress tensor S is given by

Gint(u, δu) =

∫

B0

S : δE dV =

∫

B0

S : 1
2
δC dV . (4.8)

4.3 Linearization of the weak forms

In order to solve the weak form G(u, δu) the Newton-Raphson iteration method is used,
since G(u, δu) is a nonlinear function in u. Therefore, a linearization of the underlying
equations is required. The linearization of the weak form of equilibrium at u = ū is given
by

LinG(ū, δu,∆u) = G(ū, δu) + ∆G(ū, δu,∆u) , (4.9)

with the linear increment ∆G(ū, δu,∆u). The increment is defined by the directional
derivative of G at ū in the direction of an incremental deformation ∆u as

∆G(ū, δu,∆u) = DG(ū, δu) ·∆u =
d

dǫ
[G(ū+ ǫ∆u, δu)]

∣∣∣∣
ǫ=0

. (4.10)

Under consideration of the incremental second Piola-Kirchhoff stress tensor ∆S, the in-
cremental right Cauchy-Green tensor ∆C and the increment of δC (see eq. (4.7)2)

∆C = ∆F TF + F T∆F ,

∆S =
∂S

∂C
: ∆C = 1

2
C : ∆C with C = 2∂CS ,

∆δC = δF T∆F +∆F T δF ,

(4.11)

and in case of conservative loads (volume forces ρ0g and traction forces t̄ are independent
of the displacements → ∆Gext = 0) the directional derivative of eq. (4.10) is

∆G(ū, δu,∆u) = DGint(ū, δu) ·∆u =

∫

B0

∆S : 1
2
δC dV +

∫

B0

S : 1
2
∆δC dV

=

∫

B0

1
2
δC : C : 1

2
∆C dV

︸ ︷︷ ︸
∆Gmaterial

+

∫

B0

S : 1
2
∆δC dV

︸ ︷︷ ︸
∆Ggeometric

. (4.12)
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Here, the increment of G is divided into a material part ∆Gmaterial and a geometric part
∆Ggeometric. Since Gext is independent of u the linearization of the weak form (eq. (4.9))
appears with eq. (4.8) and eq. (4.12) as

LinG(ū, δu,∆u) =

∫

B0

S : 1
2
δC dV −Gext +∆Gmaterial +∆Ggeometric . (4.13)

4.4 Finite element discretization

In the framework of the Finite-Element-Method partial differential equations are solved
on the discretized domain of a physical body. As shown in Fig. 4.1a for an arbitrary
physical body, the domain in the reference configuration B0 is geometrically subdivided
into a certain number of finite elements.

J

X = X(ξ)

B
h
0

B
e
0

B0

X1

η
η

Ωe ξ
Be0 ξ

X2

a) b)

Figure 4.1: a) Discretization of the physical domain B0 resulting in an approximate do-
main B0h. The approximate domain consists of individual finite elements Be

0. b) Four-noded
quadrilateral element in the parameterized space Ωe and the reference configuration Be

0.

Thus, the body B0 is approximated by a discrete counterpart Bh0 consisting of nelem finite
elements Be0, i.e.

B0 ≈ Bh0 =

nelem⋃

e=1

Be0 . (4.14)

In order to derive a compact formulation a vector-matrix notation will be used for the
following finite element formulation, i.e. some second-order tensor fields will be formu-
lated in vector form and all present higher-order tensors as matrices signified with square
brackets. For the symmetric second-order strain tensor C and the second Piola-Kirchhoff
stress tensor S this convention results in the equivalent Voigt notation

[C] := [C11, C22, C33, 2C12, 2C23, 2C13]
T and [S] := [S11, S22, S33, S12, S23, S13]

T ,
(4.15)

respectively. The matrix notation of the fourth-order mechanical moduli C yields

[C] :=




C1111 C1122 C1133 C1112 C1123 C1113

C2222 C2233 C2212 C2223 C2213

C3333 C3312 C3323 C3313

C1212 C1223 C1213

sym. C2323 C2313

C1313




(4.16)
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with [C]ij = [C]ji. A more detailed derivation of the appearing matrix entries is given in
Appendix B.

For the approximation of the unknown fields the isoparametric concept is taken into
account. Here, the main idea is to use the same interpolation (shape) functions NI(ξ) for
the approximation of the geometry

[X] = [X](ξ) =

nnode∑

I=1

NI(ξ)[XI ] , (4.17)

as well as for the unknown displacement fields and its virtual and incremental counterparts

[u] =

nnode∑

I=1

NI [dI ] , [δu] =

nnode∑

I=1

NI [δdI ], and [∆u] =

nnode∑

I=1

NI [∆dI ] . (4.18)

Here, [dI ], [δdI ], and [∆dI ] are the discrete nodal, virtual and incremental displacements
at one of nnode discrete nodal points I of the element. The corresponding interpolation
function NI at each point I is a function of the natural coordinates ξ = [ξ, η, ζ ]T on an
isoparametric space Ωe, which is mapped onto the reference configuration via the Jacobian

J =
∂[X]

∂ξ
=

∂

∂ξ

nnode∑

I=1

NI [XI ] =

nnode∑

I=1

[XI ]⊗∇ξNI , (4.19)

see Fig. 4.1b. The current position vector of an arbitrary point I is approximated by

[xI ] = [XI ] + [dI ] . (4.20)

The approximation of the virtual and incremental deformation gradient is given as

δF = Grad[δu] =

nnode∑

I=1

[δdI ]⊗GradNI(ξ) , δF a
A =

nnode∑

I=1

NI,A δd
a
I and

∆F = Grad[∆u] =

nnode∑

I=1

[∆dI ]⊗GradNI(ξ) , ∆F a
A =

nnode∑

I=1

NI,A ∆daI .

(4.21)

Since the interpolation functions are functions of the natural coordinates ξ, but the bound-
ary value problem is defined in physical coordinates X, we make use of the chain rule
and derive for the derivative of the interpolation functions the relation

GradNI(ξ) = ∇XNI =
∂NI(ξ)

∂X
=
∂NI(ξ)

∂ξ

∂ξ

∂X
= J−T ∂NI(ξ)

∂ξ
= J−T ∇ξNI . (4.22)

The virtual and incremental right Cauchy-Green tensor (eq. (4.11) and eq. (4.7)) are
approximated by

1

2
[δC] =

nnode∑

I=1

[BI ][δdI ] and
1

2
[∆C] =

nnode∑

I=1

[BI ][∆dI ] , (4.23)
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where the three-dimensional nodal B-matrices [BI ] are defined as

[BI ] =




F11NI,1 F21NI,1 F31NI,1

F12NI,2 F22NI,2 F32NI,2

F13NI,3 F23NI,3 F33NI,3

F11NI,2 + F12NI,1 F21NI,2 + F22NI,1 F31NI,2 + F32NI,1

F12NI,3 + F13NI,2 F22NI,3 + F23NI,2 F32NI,3 + F33NI,2

F11NI,3 + F13NI,1 F21NI,3 + F23NI,1 F31NI,3 + F33NI,1




, (4.24)

where NI,i = ∂NI/∂Xi. Inserting the above derived relations into eq. (4.6) with Gint

from eq. (4.8) the discretized weak form of equilibrium of an element in the reference
configuration is

Ge =

nnode∑

I=1

[δdI ]
T





∫

Be
0

[BI ]
T [S] dV

︸ ︷︷ ︸
[rintI ]

−
∫

∂Be
0σ

NI [t̄] dA−
∫

Be
0

NIρ0[g] dV

︸ ︷︷ ︸
[rextI ]





= 0 . (4.25)

Here, [rintI ]+[rextI ] := [rI ] denote the residuals associated to node I, consisting of an inter-
nal and an external part. The discrete form of the material linear increment ∆Ge,material

(cf. eq. (4.12)) is

∆Ge,material =

nnode∑

I=1

nnode∑

J=1

[δdI ]
T

∫

Be
0

[BI ]
T [C] [BJ ] dV

︸ ︷︷ ︸
[kmaterialIJ ]

[∆dJ ] , (4.26)

with the material nodal stiffness matrices [kmaterialIJ ]. And by using the relation

1
2
∆δCAB = 1

2

(
δab δF

a
A∆F

b
B + δab∆F

a
AδF

b
B

)

= 1
2

(
nnode∑

I=1

NI,A δd
a
Iδab

nnode∑

J=1

NJ,B ∆dbJ +

nnode∑

I=1

NI,A ∆daIδab

nnode∑

J=1

NJ,B δd
b
J

)

=

nnode∑

I=1

nnode∑

J=1

NI,A δd
a
IδabNJ,B ∆dbJ

(4.27)

we obtain the approximation of the geometric linear increment

∆Ge,geometric =

nnode∑

I=1

nnode∑

J=1

δdaIδab

∫

Be
0

NI,ANJ,BS
AB dV

︸ ︷︷ ︸
[kgeometricIJ ]

∆dbJ (4.28)
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with the geometric nodal stiffness matrices [kgeometricIJ ]. Combining eq. (4.25), eq. (4.26),
and eq. (4.28) we obtain the discrete form of the linearized weak form

LinGe =

nnode∑

I=1

[δdI ]
T [rI ] +

nnode∑

I=1

nnode∑

J=1

[δdI ]
T [kIJ ][∆dJ ] = 0 , (4.29)

with the complete nodal stiffness matrices [kIJ ] = [kmaterialIJ ] + [kgeometricIJ ]. The element
vector of the virtual and incremental nodal displacements as well as the residual element
vector are given by

[δde] =
[
[δd1]

T , [δd2]
T , [δd3]

T , ..., [δdnnode
]T
]T

,

[∆de] =
[
[∆d1]

T , [∆d2]
T , [∆d3]

T , ..., [∆dnnode
]T
]T

, and

[re] =
[
[r1]

T , [r2]
T , [r3]

T , ..., [rnnode
]T
]T

.

(4.30)

Analogously, the element stiffness matrix is defined as

[ke] =




[k11] [k12] [k13] ... [k1n]

[k21] [k22] [k23] ... [k2n]

[k31] [k32] [k33] ... [k3n]
...

...
...

. . .
...

[kn1] [kn2] [kn3] ... [knn]




with n = nnode . (4.31)

The global element stiffness matrix [K], the global virtual and incremental displacements
([δD] and [∆D]) as well as the global residual vector [R] can be obtained by an assembling
procedure over all nelem finite elements of the domain

[K] =
nelem

A
e = 1

[ke], [δD] =
nelem

A
e = 1

[δde], [∆D] =
nelem

A
e = 1

[∆de], [R] =
nelem

A
e = 1

[re] . (4.32)

The overall discrete form of 4.29 leads to the system of equations

[δD]T {[K][∆D] + [R]} = 0 ⇒ [∆D] = −[K]−1[R] , (4.33)

solved by the Newton-Raphson iteration method as mentioned before. Therefore, the
global nodal displacement vector is updated by D ⇐ D +∆D after each iteration until
the norm of the residual vector ||R|| is lower than a given tolerance value.

In order to compute the integrals appearing in eq. (4.33) we make use of the Gauss
quadrature and compute the volume integrals of a function f(x) by

∫

Be
0

f(X) dV =

∫

Ωe

f(ξ) detJ dΩ ≈
ngp∑

gp=1

f(ξgp) detJ ωgp (4.34)

considering a number of ngp Gauß points per element, which are characterized by their
location ξgp and their weighting factor ωgp.
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For specific finite elements used in the following the parameterized space Ωe, the in-
terpolation functions NI and the Gauß points with corresponding weights are listed in
Table 4.1.

Parameterized space Ωe Interpolation functions Gauß points and weights

1 23

ξ
Ωe

ξ ∈ [−1, 1]

N1 = 1
2
ξ(ξ − 1)

N2 = 1
2
ξ(ξ + 1)

N3 = 1− ξ2

ξ1gp = −
√

3
5
, ω1

gp =
5
9

ξ2gp = 0 , ω2
gp =

8
9

ξ3gp =
√

3
5

, ω3
gp =

5
9

24

5

ξ

6

3

1

η

Ωe

ξ ∈ [0, 1]

η ∈ [0, 1]

N1 = λ(2λ− 1)

N2 = ξ(2ξ − 1)

N3 = η(2η − 1)

N4 = 4ξλ

N5 = 4ξη

N6 = 4ηλ (λ = 1− ξ − η)

ξ1
gp = (1

6
, 1
6
) , ω1

gp =
1
6

ξ2
gp = (2

3
, 1
6
) , ω2

gp =
1
6

ξ3
gp = (1

6
, 2
3
) , ω3

gp =
1
6

2

1

4

ζ

5

6

7

8
10

9

ξ

η

3

Ωe

ξ ∈ [0, 1]

η ∈ [0, 1]

ζ ∈ [0, 1]

N1 = λ(2λ− 1)

N2 = ξ(2ξ − 1)

N3 = η(2η − 1)

N4 = ζ(2ζ − 1)

N5 = 4ξλ, N6 = 4ξη

N7 = 4ηλ, N8 = 4ζλ

N9 = 4ξζ, N10 = 4ηζ

(λ = 1− ξ − η − ζ)

ξ1
gp = (α, α, α) , ω1

gp =
1
24

ξ2
gp = (β, α, α) , ω2

gp =
1
24

ξ3
gp = (α, β, α) , ω3

gp =
1
24

ξ4
gp = (α, α, β) , ω4

gp =
1
24

(α = (5 + 3
√
5)/20 = 0.5854,

β = (5−
√
5)/20 = 0.1382)

η
1

34

5

6

8

2

7

ζ

ξ Ωe

ξ ∈ [−1, 1]

η ∈ [−1, 1]

ζ ∈ [−1, 1]

N1 = 1
8
(1− ξ)(1− η)(1− ζ)

N2 = 1
8
(1 + ξ)(1− η)(1− ζ)

N3 = 1
8
(1 + ξ)(1 + η)(1− ζ)

N4 = 1
8
(1− ξ)(1 + η)(1− ζ)

N5 = 1
8
(1− ξ)(1− η)(1 + ζ)

N6 = 1
8
(1 + ξ)(1− η)(1 + ζ)

N7 = 1
8
(1 + ξ)(1 + η)(1 + ζ)

N8 = 1
8
(1− ξ)(1 + η)(1 + ζ)

ξ1
gp = (−1√

3
, −1√

3
, −1√

3
) , ω1

gp = 1

ξ2
gp = (−1√

3
, 1√

3
, −1√

3
) , ω2

gp = 1

ξ3
gp = (−1√

3
, 1√

3
, 1√

3
) , ω3

gp = 1

ξ4
gp = (−1√

3
, −1√

3
, 1√

3
) , ω4

gp = 1

ξ5
gp = ( 1√

3
, −1√

3
, −1√

3
) , ω5

gp = 1

ξ6
gp = ( 1√

3
, 1√

3
, −1√

3
) , ω6

gp = 1

ξ7
gp = ( 1√

3
, 1√

3
, 1√

3
) , ω7

gp = 1

ξ8
gp = ( 1√

3
, −1√

3
, 1√

3
) , ω8

gp = 1

Table 4.1: Finite element subspaces, interpolation functions, and Gauß integration.
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In order to apply a load in form of a hydrostatic pressure p on the surface of a two-
dimensional or three-dimensional element, respectively, a corresponding one-dimensional
or two-dimensional element (see the first two rows in Table 4.1) is needed. Thus, the first
part of the external virtual work eq. (4.6) changes by replacing t̄ = pn

Gext
pressure =

∫

∂B0σ

t̄ · δu dA =

∫

∂B0σ

pn · δu dA (4.35)

and we obtain the disretized form with

Ge,ext
pressure =

nnode∑

I=1

[δdI ]
T

∫

∂B0σ

NI p [n] dA . (4.36)

Since the direction of hydrostatic pressure p changes with time, it is not a conservative
load, thus ∆Gext 6= 0. For a detailed description of the linearization the reader is referred
to Zienkiewicz and Taylor [1989] and Bathe [1996].
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5 Material modeling of soft biological tissues

Arteries mainly consist of matrix a material (the ground substance) that is reinforced by
two families of collagen fibers. Furthermore, they are composed of (thick-walled) layers:
the intima, the media and the adventitia, see Section 2.1. As mentioned in Section 2.3 the
intima is often neglected in continuum mechanical analyses due to its little mechanical in-
fluence. The distinct layers, media and adventitia, have a qualitatively similar mechanical
response and therefore they are modeled with the same type of strain-energy function

ψ(C,M(1),M(2)) = ψvol(detC) + ψiso(C) +
2∑

a=1

ψti
(a)(C,M(a)) . (5.1)

The isotropic part ψiso describes the matrix-material and the superimposed transversely
isotropic energies ψti

(1) and ψ
ti
(2) represent one fiber family in the fiber directions A(1) and

A(2), respectively. Following eq. (3.92) with ∂Cψ
vol = ∂I3ψ

vol CofC the general constitutive
equation for the second Piola-Kirchhoff stress tensor is given by

S = Svol + Siso +

2∑

a=1

Sti
(a) with Svol = 2

∂ψvol

∂I3
CofC , (5.2)

with Siso from eq. (3.94) and Sti from eq. (3.105). The function ψvol is a penalty func-
tion controlling the volumetric behavior and should become large for violations of the
incompressibility constraint J = 1. The notion of incompressibility and the correspond-
ing treatment within the continuum mechanical framework will be discussed in detail in
Section 5.2. For the description of the strain energies in eq. (5.1) polyconvex functions are
used and discussed in the next section.

5.1 Polyconvex energy functions

In the last decades, the material behavior of collagenous soft tissues has been described
by use of numerous different material models. In this context, two-dimensional models
have been proposed by Vaishnav et al. [1973] and Fung et al. [1979]. An extension to
a three-dimensional model is given in Chuong and Fung [1983]. Weiss et al. [1996] were
among the first who applied the use of a structural tensor and the representation the-
orems for anisotropic tensor functions to models for collagenous soft. Throughout this
work we use polyconvex energy functions in order to describe the material behavior of
soft biological tissues. Such kind of energy functions satisfy the Legendre-Hadamard con-
dition, which is a physically reasonable requirement since the condition ensures real wave
speeds and material stability. A proof can be done by investigation of the acoustic ten-
sor, which has to be positive definite (i.e. all main minors have to be greater than zero).
For more details about polyconvexity the reader is referred to Ball [1976, 1977], Marsden
and Hughes [1983], and Ciarlet [1988]. Further information, especially with respect to the
proof of polyconvexity of special energy functions and the derivation of polyconvex en-
ergy functions for transverse isotropy and orthotropy see e.g. Hartmann and Neff [2003],
Schröder and Neff [2003], Schröder et al. [2005b], and Balzani [2006]. A first polyconvex
model for the description of the exponential stiffening behavior of soft biological tissues
has been proposed by Holzapfel et al. [2000a]. Further polyconvex models, which are able
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to describe collagenous soft tissues, are for example proposed in Itskov and Aksel [2004],
Balzani [2006], and Ehret and Itskov [2007].

5.1.1 Isotropic polyconvex energy functions

There exist a variety of well-known isotropic polyconvex functions, see e.g. Steigmann
[2003], Hartmann and Neff [2003], Schröder and Neff [2003], and Mielke [2005]. In this
section only those functions, which are considered in this work, are listed.

The compressible Mooney-Rivlin model, which is polyconvex and coercive, is given by

ψiso
MR = η1 I1 + η2 I2 + η3 I3 − δ ln

√
I3 , ∀ η1, η2, η3, δ ≥ 0 . (5.3)

Evaluation of the condition of a stress-free reference configuration yields a condition for
the parameter δ, i.e.

S(C = 1) = 2
[(
η1 + 3η2 − η2 + η3 − 1

2
δ
)
1
]
= 0 → δ = 2η1 + 4η2 + 2η3 . (5.4)

The isochoric neo-Hookean material model has the form

ψiso
NH = c1

(
I1

I
1/3
3

− 3

)
, ∀ c1 > 0 . (5.5)

Here, c1 is a stress-like material parameter. This function has often been used for the
description of the matrix material in soft biological tissues, for example, in Holzapfel
et al. [2000a, 2004a]. In Gundiah et al. [2007] suitable strain energies are investigated for
the description of arterial elastin, which is the main constituent of the ground-matrix,
and they found out that the (classical) neo-Hookean model is a satisfactory descriptor.
Further information about the modeling of the mechanical response of elastin for arterial
tissue is given in Watton et al. [2009].

A penalty term ψvol
P can be used in order to satisfy the incompressibility constraint,

ψvol
P = ε1

(
Iε23 + I−ε23 − 2

)
, ∀ ε1 > 0, ε2 ≥ 1 , (5.6)

see Schröder and Neff [2003] and Hartmann and Neff [2003] for the proof of polyconvexity.

It should be noticed, that eq. (5.5) and eq. (5.6) fulfill a priori the requirement of a
stress-free reference configuration.

5.1.2 Transversely isotropic polyconvex energy functions

For the description of transversely isotropic materials the possible polynomial basis
Pti := {I1, I2, I3, J (a)

4 , J
(a)
5 }, was derived in Section 3.6.2, cf. eq. (3.102). Nevertheless,

Merodio and Neff [2006] showed that the fifth invariant J
(a)
5 is not polyconvex. In Schröder

and Neff [2003] an alternative polyconvex invariant function is given by

K
(a)
1 := tr[ CofCM(a)] = J

(a)
5 − I1J (a)

4 + I2 , (5.7)

which is geometrically motivated. Introducing an alternative structural tensor

D = 1−M(a) , with trD = 2 (5.8)
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yields further alternative polyconvex invariant functions

K
(a)
2 = tr[C D] = I1 − J (a)

4 and K
(a)
3 = tr[CofC D] = I1J

(a)
4 − J (a)

5 . (5.9)

Now, the alternative polynomial basis used in this work is given by

Pti := {I1, I2, I3, J (a)
4 , K

(a)
i } with i = 1, 2, 3 . (5.10)

In order to describe the material behavior of soft biological tissues in the physiological
loading domain, principles for the construction of anisotropic polyconvex energies, which
automatically fulfill the condition of a stress-free reference configuration, are derived in
Balzani et al. [2006a] and Balzani [2006]. They are briefly repeated in the following. The
first construction principle is given by:

Construction Principle 1: Find a polyconvex function P (X) which is zero in
the reference configuration and include this function into any arbitrary convex
and monotonically increasing function m, whose first derivative with respect to
P vanishes in the origin; then the polyconvex function satisfying the stress-free
reference configuration is given by ψ = m(P (X)),

cf. Schröder and Neff [2003], Lemma B.9. As an example, such convex and monotonically
increasing functions m are given by

m1 := P k and m2 := cosh(P )− 1 , ∀ P > 0 and k > 1 . (5.11)

This leads to the following case distinction for the polyconvex energy function

ψ =

{
mi for P > 0
0 for P ≤ 0

with i = 1, 2 . (5.12)

Additionally, if k is chosen to be greater than 2, the tangent modulus is continuous, see
Balzani [2006]. The (internal) polyconvex functions P have to be zero in the reference
configuration (i.e. P (C = 1) = 0) and are given by, e.g.

P1 := J
(a)
4 − 1, P2 := K

(a)
1 − 1, P3 := K

(a)
2 − 1, P4 := K

(a)
3 − 2 . (5.13)

It should be noticed, that these functions satisfy the energy-free reference configuration
due to the fact that ψ = mi(P = 0) = 0 in the natural state.

Additional polyconvex functions, which fulfill the natural-state condition, are given fol-
lowing the second construction principle:

Construction Principle 2: Include any function m(P (X)), obtained by ap-
plying Construction Principle 1, into the exponential function g(m) = exp(m),

cf. Balzani et al. [2006a]. With P defined above we find a number of further functions

ψ =

{
exp(mi(P )) for P > 0
0 for P ≤ 0

with i = 1, 2 . (5.14)

In this work we make use of functions which fit into these principles.
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In Holzapfel et al. [2000a] a material model was provided that is able to reflect the strong
stiffening effect of soft biological tissues at higher loadings due to its exponential character

ψti,HGO1

(a) =
k1
2k2

{
exp

(
k2

〈
J
(a)
4 − 1

〉2)
− 1

}
, ∀ k1 > 0, k2 > 0 . (5.15)

The parentheses 〈(•)〉 denote the Macaulay brackets7 filtering out positive values. This
seems to be reasonable since shortening of the fibers is assumed to generate no stress. The
reason for that is the wavy structure of the collagen fibers, which buckle under compres-
sive load and thus are not able to support any compression. Therefore, the anisotropic
term is only activated in case of fiber-extension. The assumption that the collagen fibers
are almost entirely responsible for the resistance to stretch in the high loading domain,
see Roach and Burton [1957], can be obtained by a convenient choice of the parameter
k1 (dimension of stress) and the dimensionless parameter k2. The proof of convexity of
eq. (5.15) is given in Schröder et al. [2005b].

Introducing the isochoric part of J
(a)
4 into eq. (5.15) yields a further polyconvex function

ψti,HGO2

(a) =
k1
2k2

{
exp

(
k2

〈
J
(a)
4 I

−1/3
3 − 1

〉2)
− 1

}
, ∀ k1 > 0, k2 > 0 . (5.16)

5.2 Incompressibility constraint

In soft biological tissues often incompressible or nearly incompressible material behavior
can be observed. In material modeling the incompressibility constraint can be enforced by
different methods. Among others, there are two methods to be mentioned: the Penalty-
Method, which is discussed in Section 5.2.2, and the Augmented-Lagrange-Method de-
scribed in Section 5.2.3. These methods are often based on a multiplicative split of the
deformation gradient in a volumetric and a unimodular part, see Section 5.2.1. In this
work both methods are considered. For a numerical comparison of the two see Chapter 8.

5.2.1 Kinematic split of the deformation gradient

According to Flory [1961] the multiplicative split of the deformation gradient F into a
purely deviatoric part F̃ and a volumetric part F vol, can be formulated as

F = F vol F̃ = F̃ F vol with F vol = J1/31 and F̃ = J−1/3F , (5.17)

and the Jacobian determinant, see eq. (3.18). From eq. (5.17) it follows that the Jaco-
bian determinant J is the determinant of the volumetric deformation gradient and the
determinant of the deviatoric term is equal to 1, i.e.

detF vol = (J1/3)3 = J and detF̃ = (J−1/3)3 detF = 1 . (5.18)

This approach has the disadvantage of the incompressibility-locking phenomenon. The
reason for that is, that the deformation gradient is a function of the position and thus
the condition for incompressibility J = detF = 1 must be fulfilled in each point, see
Simo [1998], section 45.

7The Macaulay brackets are defined by 〈(•)〉 = (|(•)| + (•))/2, with (•) ∈ IR. The result differs from
zero only for positive values (•).
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Modified deformation gradient F̄ . In order to avoid incompressibility-locking the
deformation gradient F is replaced by a modified deformation gradient F̄ , according to
the approach of Simo et al. [1985], see also Simo and Taylor [1991], Weiss et al. [1996]
and section 45 in Simo [1998]. Therefore, the determinant of the deformation gradient
detF = J is replaced by a volume dilation Θ, which is constant over the element. Thus,
the modified deformation gradient arises as

F̄ = Θ1/3 F̃ with detF̄ = Θ → F̄ =

(
Θ

J

)1/3

F (5.19)

i.e. the dilational part Θ is an independent field. Then, the associated modified right
Cauchy-Green tensor is

C̄ = F̄ T F̄ = Θ2/3C̃ =

(
Θ

J

)2/3

C (5.20)

and the stored-energy function is now splitted into one part depending on Ī1 = trC̄, one
part depending on Ī2 = tr[CofC̄] and one part depending on Ī3 = detC̄, i.e.

Ī1 = trC̄ = Θ2/3 trC̃ =

(
Θ

J

)2/3

trC = Θ2/3 I1

I
1/3
3

,

Ī2 = tr[CofC̄] = Θ4/3 1
2

[
(trC̃)2 − trC̃2

]
=

(
Θ

J

)4/3

tr[CofC] = Θ4/3 I2

I
2/3
3

,

Ī3 = detC̄ = Θ2 detC̃ =

(
Θ

J

)2

detC = Θ2 .

(5.21)

The stored-energy function can also be decoupled into a deviatoric and a volumetric part

ψ̄(C̄) = ψ1(trC̄) + ψ2(tr[CofC̄]) + ψ3(detC̄) = ψdev(C̃) + ψvol(Θ) . (5.22)

Three-field functional. Since the dilation Θ is an independent field and since the con-
dition J = Θ will be enforced by a Lagrange multiplier p, the underlying three-field
Hu-Washizu functional Π can be given as

Π(ϕ,Θ, p) =

∫

B0

(
ψdev(C̃(ϕ)) + ψvol(Θ) + p(J(ϕ)−Θ)

)
dV +Πext(ϕ) , (5.23)

with the potential energy of the external loading Πext = Gext, see eq. (4.6). The variation
of eq. (5.23) with respect to the independent field variables ϕ, p and Θ yields the three
Euler-Lagrange equations

∂ϕΠ · δϕ =

∫

B0

1
2
δC :

[
2
∂ψdev

∂C̃
:
∂C̃

∂C
+ pJC−1

]
dV = 0 ,

∂pΠ δp =

∫

B0

δp (J −Θ) dV = 0 ,

∂ΘΠ δΘ =

∫

B0

δΘ

[
∂ψvol

∂Θ
− p
]
dV = 0 .

(5.24)
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The variation with respect to p yields the condition J = Θ, the variation with respect to
Θ yields the constitutive equation for the pressure p, i.e. p = ∂Θψ

vol, and the variation
with respect to ϕ yields the balance equation. By association the second Piola-Kirchhoff
stresses S, decoupled into a purely pressure-related and a purely deviatoric part, are

S = p J C−1 + 2
∂ψdev

∂C̃
:
∂C̃

∂C
with 2 ∂Cψ

dev = 2 J−2/3DEV
[
∂C̃ψ

dev(C̃)
]
, (5.25)

with the definition DEV[•] = [•]− 1
3
([•] : C)C−1. Now the displacement field is assumed

to be continuous over the discretized domain, whereas Θ and p are only continuous in each
element. The independent variables Θ and p can be condensed on element level and we
get a hybrid formulation, see Simo and Taylor [1991]. Furthermore, if the dilation Θ and
the pressure p are assumed to be constant over the element we obtain a P0-formulation.
The dilation can then be computed as volume average by

Θ = Θ̄ =
1

V

∫

V

JdV =
V

V0
and p = p̄ =

1

V

∫

V

∂Θψ
voldV = ∂Θψ

vol(Θ̄) . (5.26)

Note, that the above P0-formulation gives the same response as the F̄ -approach of Nagte-
gaal et al. [1974]. For an extended approach using a five-field formulation see the recently
published work Schröder et al. [2011]. A well written overview on the above mentioned
methods is given, for example, in Freischläger [2000].

5.2.2 Penalty-Method

In order to enforce the incompressibility constraint often the Penalty-Method is taken
into account, see e.g. Simo and Taylor [1982]. Incorporation of a penalty function
ψvol(Θ) = κǫ Γ(Θ) in the functional eq. (5.23) yields

Π(ϕ,Θ, p) =

∫

B0

[
ψdev + κǫ Γ(Θ) + p(J −Θ)

]
dV +Πext(ϕ) . (5.27)

The function Γ(Θ) obeys the following conditions:




Γ : IR+ → IR convex ,

Γ(Θ) ≥ 0 ∀ Θ ∈ IR+ ,

Γ(Θ) = 0 iff Θ = 1 .

(5.28)

Following eq. (5.24)3 the Lagrange multiplier p appear as

p := κǫΓ
′

(Θ) , (5.29)

and by association, if there exist another volumetric term ψ∗ in addition to the penalty
term such that ψvol(Θ) = ψ∗(Θ) + κǫ Γ(Θ), the Lagrange multiplier appears as

p := κǫΓ
′

(Θ) + ∂Θψ
∗ . (5.30)

The penalty parameter κǫ, which has to be greater than 0, has no physical relevance.
It should be noticed, that the incompressibility constraint will be fulfilled exactly, i.e. Θ
converges to one, only if κǫ converges to infinity. Using high penalty parameters may lead
to an ill-conditioning of the global stiffness matrix.
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5.2.3 Augmented-Lagrange-Method

Using the penalty approach mentioned in the previous section the penalty parameter may
become relatively large to enforce incompressibility. Therefore, the functional in eq. (5.27)
is augmented by an additional term, which furthermore enforces incompressibility, in order
to prevent ill-conditioning of the global stiffness matrix. In the context of the augmented
Lagrangian solution strategy we refer to Hestenes [1969], Powell [1969], Fortin and Fortin
[1985], Glowinski and Le Tallec [1984, 1988, 1989], and Simo and Taylor [1991]. The aug-
mentation is performed only on the dilational part Θ and thus the augmented Lagrangian
functional with the Lagrange multiplier λ follows as

L(ϕ,Θ, p, λ) := Π(ϕ,Θ, p) +

∫

B0

λ h(Θ) dV . (5.31)

Now the pressure p can be computed by p := κǫΓ
′
(Θ) + λ h′(Θ). The function h(Θ) has

to be a continuously differentiable function with the conditions
{
h : IR+ → IR ,

h(Θ) = 0 iff Θ = 1 .
(5.32)

In this work, the function h(Θ) = Θ−1 is used. For the update of the Lagrange multiplier

λn+1 = λn + κal h(Θn), (5.33)

two different algorithms are used, which are both presented in Simo and Taylor [1991]:
i) the Uzawa algorithm, for which the algorithm is given in Table 5.1, and ii) a simulta-
neous algorithm., see the algorithm in Table 5.2. Here, κal is a parameter associated to
the Augmented-Lagrange-Method, which has to be chosen in a reasonable manner, and
TOL is a tolerance value, which quantifies the maximum deviation of Θ from unity.

Given ϕ and λ from last time step

loop n, while |h(Θn)| > TOL

loop i, while δΠ(ϕi
n, Θ

i
n, p

i
n, λn) 6= 0

Compute Θi
n

Compute pin = λn h
′(Θi

n) + κǫ Γ
′(Θi

n)

end loop

Compute λn+1 = λn + κal h(Θn)

end loop

Table 5.1: Algorithmic implementation of the nested iteration (Uzawa algorithm) for a
typical time step with ∆t = k+1t − kt, cf. Simo and Taylor [1991]. At the beginning of the
simulation λ is initialized to zero.

In the Uzawa algorithm the iteration of λ is nested within the Newton iteration. Here, for
each value of λ, a nonlinear system is solved using Newton‘s method.
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Given ϕ and λ from last time step

loop i, while |h(Θi)| > TOL and δΠ(ϕi, Θi, pi, λi) 6= 0

Compute Θi

Compute λi = λi−1 + κal h(Θ
i)

Compute pi = λi h′(Θi) + κǫ Γ
′(Θi)

end loop

Table 5.2: Algorithmic implementation of the simultaneous iteration for a typical time step
with ∆t = k+1t − kt, cf. Simo and Taylor [1991]. At the beginning of the simulation λ is
initialized to zero.

In the simultaneous Augmented-Lagrange-Method the iteration for the Lagrange multi-
plier λ is performed simultaneously with the Newton iteration. This can be seen as an
inexact Newton method, such that quadratic convergence cannot be expected. In Fig. 5.1
such iteration is shown for a typical time step of the numerical example presented in
Section 8.4. As can be seen, the convergence is linear as long as the Lagrange multiplier is
iterated simultaneously. Once all elements fulfill the condition ||h(Θk)|| < TOL, quadratic
convergence is obtained.

Computing solution at time 1.00000000: Total proportional load 24.000000

Residual norm = 0.714490620000 1.000000000000

number of elements with dabs(h(theta)) .gt. 1.d-3: 322

Residual norm =12.698878000000 17.773331000000

number of elements with dabs(h(theta)) .gt. 1.d-3: 51

Residual norm = 4.407793800000 6.169141600000

number of elements with dabs(h(theta)) .gt. 1.d-3: 8

Residual norm = 1.757445700000 2.459718300000

number of elements with dabs(h(theta)) .gt. 1.d-3: 3

Residual norm = 0.929985650000 1.301606500000

Residual norm = 0.022476203000 0.031457660000

Residual norm = 0.000053131242 0.000074362407

Residual norm = 0.000000025876 0.000000036216

Figure 5.1: Simultaneous Augmented-Lagrange iteration for a typical time step of the
numerical example presented in Section 8.4.
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6 Identification of material parameter

In order to identify suitable material parameters for a numerical simulation of soft biologi-
cal tissues the constitutive model is adjusted to experimental data. The general approach
of the adjustment done in this work is explained in Section 6.1. If no sufficient exper-
imental data is available, for example in case of the plaque components, the material
parameters have to be chosen in a suitable way. In Section 6.2 the identification of five
different parameter sets for the plaque is shown. In order to analyze the influence of the
choice of parameters a subsequent investigation of the influence of the plaque behavior on
the overall arterial wall behavior is conducted.

6.1 Adjustment to experimental data

The experimental data used in this work was obtained from uniaxial extension tests of
human blood vessels. Here, the test strips were separated in circumferential or axial direc-
tion, see the schematic illustration in Fig. 6.1a,b. A detailed description of the dissection
into circumferential and axial strips from human illiac arteries and the mechanical testing
is given in Holzapfel et al. [2004b].

t
t

A(2)

t
t

x1

x3

x2

A(1)

2βf

x2

x1

βf

A(2)A(1)

➁➀

a) b) c)

Figure 6.1: Schematic illustration a) of a segment of a human blood vessel with strips in
circumferential (➀) and axial (➁) direction; b) of a strip in circumferential direction with

the preferred directions [A(1)] = [cosβf , − sinβf , 0]
T and [A(2)] = [cosβf , sinβf , 0]

T (the
fiber angle βf is defined as the angle between the circumferential and the fiber direction); c)
of a uniaxial extension in circumferential direction of the specimen.

The preferred directions indicated in Fig. 6.1b are given as

[A(1)] = [cosβf , − sinβf , 0]
T and [A(2)] = [cosβf , sinβf , 0]

T , (6.1)

where the fiber angle βf is the angle between the circumferential and the fiber direction,
which is taken as a phenomenological (fitting) parameter. Let λ1 be the stretch in the di-
rection of the extension (x1) and λ2 the transverse stretch. Then the associated structural
tensors appears as

[M(1)] =




c2 −cs 0

−cs s2 0

0 0 0


 and [M(2)] =



c2 cs 0

cs s2 0

0 0 0


 , (6.2)
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with the abbreviations c := cosβf and s := sinβf . Since incompressible material is assumed,
the deformation gradient F and the right Cauchy-Green tensor C are of the form

[F ] =



λ1 0 0

0 λ2 0

0 0 λ−1
1 λ−1

2


 and [C] =



λ21 0 0

0 λ22 0

0 0 λ−2
1 λ−2

2


 . (6.3)

In order to account for incompressibility, the volumetric part in eq. (5.1) is set to
ψvol = p(I3 − 1) and thus the corresponding term in eq. (5.2) yields Svol = 2pCofC, with
the pressure-like Lagrange multiplier p. Note, that the considered problem is symmetric
and therefore ψti := ψti

(1) = ψti
(2). Then, evaluation of eq. (5.2) with eq. (3.94), eq. (3.105)

and eq. (6.3) yields the S22 component of the second Piola-Kirchhoff stress tensor

S22 = 2

{
∂ψiso

∂I1
+
∂ψiso

∂I2

(
λ21 + λ−2

1 λ−2
2

)
+

(
p+

∂ψiso

∂I3

)
λ−2
2

+2

[
∂ψti

∂I1
+
∂ψti

∂I2

(
λ21 + λ−2

1 λ−2
2

)

+
∂ψti

∂I3
λ−2
2 +

∂ψti

∂J
(a)
4

sin2βf +
∂ψti

∂J
(a)
5

2 λ22 sin2βf
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The requirement S22 = 0 yields the Lagrange multiplier p and insertion of p into S33 = 0,

S33 = 2

(
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λ21λ
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2 sin2βf

])
= 0 ,

(6.5)

yields a relation between the stretch quantities λ1 and λ2. In general, the analytical
solution of eq. (6.5) can not be evaluated and therefore a Newton-scheme is used. Let
values with the index j−1(•) be values at the last iteration step and values with the index
j(•) be values at the current iteration step, then the linearization of eq. (6.5) is given by

LinS33 =
j−1S33 +

∂S33

∂λ2

∣∣∣∣
j−1λ2

j∆λ2 = 0 . (6.6)

Within each Newton step the increment j∆λ2 is computed and updated for a series of
nmp experimentally measured stretches λexp1,i with i = 1, . . . ,nmp, i.e.

jλ2,i ⇐ j−1λ2,i +
j∆λ2,i until || S33|jλ2 || < ǫ , (6.7)

with the tolerance parameter ǫ, which is close to computer accuracy. In each iteration
procedure the value of the stretch λ1 is given by the experimental stretch value, i.e.
λ1,1 = λexp1,i , and the starting value for the stretch λ2 is defined as

0λ2,i :=
√
C−1

33 λ
−2
1,i , (6.8)
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wherein the incompressibility constraint detC = 1 is taken into account in order to
improve the efficiency of the iteration. By dint of the achieved second Piola-Kirchhoff
stress S11 in the x1-direction, the Cauchy stresses are calculated by σcomp = λ21S11, which
can be compared with experimental data. Therewith, a relative error results in

r(λ1,i,α) :=
|σexp(λ1,i)− σcomp(λ1,i,α)|

max(σexp)
, (6.9)

with the maximum value of experimental stresses in the considered extension cycle
max(σexp) 6= 0, which is used as a normalization factor, and a vector α, which contains all
material parameters involved in the strain-energy function ψ. In Table 6.1 an algorithmic
box for the computation of the relative error r is given.

Do for i = 1, . . . , nmp

(I) Set λ1,i = λexp1,i , initialize C = 1 and set C11 = λ21,i

if i > 1 then C22 = C̃22/(λ1,i/λ1,i−1) and C33 = C̃33/(λ1,i/λ1,i−1)

(II) Compute initial value 0λ2,i =
√
C−1

33 λ
−2
1,i

(III) Do Newton iteration with index j

(i) Compute jS11 = S11|jλ2,i , jS22 = S22|jλ2,i , jS33 = S33|jλ2,i
(ii) if ||jS33|| < ǫ, with ǫ close to computer accuracy

then λ̃2,i =
jλ2,i and C̃22 = λ̃22,i and C̃33 = λ−2

1,i λ̃
−2
2,i and S11 =

jS11

break

else update jλ2,i ⇐ j−1λ2,i +
j∆λ2,i and go to (i)

(IV) Compute Cauchy stresses σcomp(λ1,i,α) = λ21,i S11

(V) Compute relative error r(λ1,i,α) :=
|σexp(λ1,i)− σcomp(λ1,i,α)|

max(σexp)

Table 6.1: Algorithmic box for the computation of the relative error r as a function of
the stretch λ1,i at each measuring point i = 1, . . . , nmp and a vector α, which contains all
material parameters involved in the strain-energy function ψ.

The objective function of the optimization is given by the resulting total error

r̄(α) =

ne∑

e=1

√√√√ 1

nmp

nmp∑

i=1

(
σexp(λ1,i)− σcomp(λ1,i,α)

max(σexp)

)2

, (6.10)

for a number of ne = 2 experiments, i.e. extension in circumferential and axial direction.
In this work an SQP8 algorithm is used for the minimization of eq. (6.10).

8SQP: sequential quadratic programming. The SQP method is a gradient based method. The
three key steps are (i) the update of the Hessian matrix using the BFGS (Broyden-Fletcher-Goldfarb-
Shanno) method at each major iteration, (ii) a QP-subproblem is solved using an active-set strategy
at each major point, (iii) a line-search algorithm with a merit function is used, where a small function
denotes a good agreement of data and the model to be fitted. For a general overview of the SQP method
see, for example, Gill et al. [1981], Powell [1983], and Fletcher [1987].
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6.2 Material parameters for the plaque components

Arterial plaque appears as soft lipid pools covered by a fibrous cap, see e.g. Davies [1996].
There exist various patient-specific differences in the morphology and the composition of
the plaque, as can be exemplarily seen in Fig. 6.2a in the different plaque constitution of
eight human stenotic iliac arteries. The four major plaque components of the coronary
plaque are fibrous tissue, fibrofatty tissue, necrotic-core tissue and dense calcified tissue.
The fibrous tissue mainly consists of bundles of collagen fibers with little or no lipid
deposits, while the fibrofatty tissue consists of loosely packed collagen fibers with lipid
accumulation. The necrotic-core tissue exhibits a high level of lipid and many necrotic
cells, remnants of dead lymphocytes and foam cells. The dense calcium is composed of
compact calcium crystals. For the in-vivo examination of the arterial structure VH IVUS
(virtual histology intravascular ultrasound) techniques can be used. Many publications
deal with the application of this method, see e.g. Nair et al. [2002], König and Klauss
[2007], Granada et al. [2007], Nasu et al. [2008], and Garcia-Garcia et al. [2010].

Virtual histology (VH) intravascular ultrasound (IVUS). The IVUS imaging is
catheter based and provides a series of gray-scale cross-sectional images, see Fig. 6.2b.
Using this method the degree of diseases in vessels can be identified so that decisions on the
need of medical treatment are facilitated, see for example Böse et al. [2007]. On the basis
of these gray-scale images the lumen-media interface and the media-adventitia interface
can be determined. A spectrum analysis of IVUS radiofrequency data using VH IVUS9

results in a detailed analysis of the four major plaque constituents, such that a color-
coded cross-sectional image can be derived, see Fig. 6.2c. For the following analyzes IVUS
gray-scale images and the corresponding color-coded VH IVUS images were provided by
Prof. Erbel and Dr. Böse from the West German Heart Center in Essen. One example of
the provided IVUS gray-scale images and corresponding color-coded VH IVUS images is
given in Fig. 6.2b,c. Note that in Fig. 6.2c large necrotic-core tissue was identified without
evidence of a fibrous cap. On the basis of the VH IVUS images numerical models were
generated, see for example Balzani et al. [2011] for details.

a) b)
transmitter & receiverlumen-intima

interface

external elastic membrane

c)

Figure 6.2: a) Macroscopic view of eight human stenotic iliac arteries (one side of a square
is 1 mm), taken from Holzapfel et al. [2004b]. b) IVUS (intravascular ultrasound) gray-scale
image and c) corresponding color-coded VH (Virtual Histology) IVUS image, from Prof.
Erbel and Dr. Böse (West German Heart Center, Essen).

Literature overview. In the last decades many scientific works investigated the plaque
and plaque-cap properties and especially their influence on plaque rupture. In Richardson
et al. [1989] plaques from patients who died from coronary thrombosis were investigated.

9VH IVUS technology is the proprietary of the Volcano Corporation, California, USA.
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The plaque rupture occurred in three out of five cases at the junction of the cap. In the
other cases the rupture evolves through the cap center. As one critical factor of plaque
rupture the stress distribution in the plaque was mentioned. Lee et al. [1991, 1992] studied
the mechanical behavior of three different types of fibrous caps (cellular, hypocellular
and calcified) from atherosclerotic plaques of the human abdominal aorta under dynamic
and static imposed uniaxial compression. They stated that the dynamic stiffness of the
hypocellular fibrous caps were 1-2 times stiffer than the cellular caps, while the calcified
caps were 4-5 times stiffer. Additionally, an increase in stiffness with increasing frequencies
of stress was observed. In a further work in Loree et al. [1994] tensile tests were performed
and they found out that the static tensile stiffness is less dependent on the cap-type. This
was explained by the existence of fibrous collagen, which is present in each type of cap
and dominates the mechanical behavior in case of tension. Ruptured and intact caps of
human aortas were mechanically tested in Lendon et al. [1991, 1993]. In plaques with
presence of a tear in the cap, the macrophage density was higher, the maximal stress at
fracture was significantly lower, and the extension was significantly larger than in intact
plaque caps. Experimental tests on human abdominal and iliac arteries were done by
Topoleski and Salunke [2000] and Salunke et al. [2001] in order to study the mechanical
behavior of different plaque types (calcified, fibrous, atheromatous) compared to healthy
vessels. They concluded that the behavior of calcified plaques is different from the other
plaque types and healthy arteries. Furthermore, they suggested that dividing the plaque
into only three categories is not sufficient since in each category different responses are
observed. Finite-Element simulations of atherosclerotic lesions were performed in Huang
et al. [2001]. Here, it was shown that the increased biomechanical stresses in the fibrous
cap of atherosclerotic plaque leading to plaque rupture is due to the presence of lipid pools,
while the impact of calcification is rather low. In contrast to the above mentioned works
Holzapfel et al. [2000b, 2004b] investigated not primarily the mechanical properties of the
plaque cap but those of the individual tissue components in the atherosclerotic plaques.
Here, the geometry of human iliac arteries with its different components was monitored by
use of hrMRI (high resolution magnetic resonance imaging). By histological analysis eight
different tissue types were identified, i.e. the adventitia, the non-diseased media, the non-
diseased intima, the diseased fibrotic media and the atherosclerotic plaque (collagenous
cap, fluid-like lipid pool, a fibrous part at the medial border, and calcification). With
exception of calcifications and lipid pools all tissue types were mechanically tested by
uniaxial extension tests in axial and circumferential direction. The results of Holzapfel
et al. [2004b] were used in this work in Chapter 7. Baldewsing et al. [2004] measured
IVUS elastograms, i.e. radial strain images, and used Finite-Element simulations in order
to investigate the influence of plaque material properties, plaque geometry, and catheter
position upon the peak radial strains. A clinical study was made in Rodriguez-Granillo
et al. [2006] in order to clarify the role of the plaque composition, which was identified
by spectral analysis of IVUS radiofrequency data, in the mechanisms of coronary-artery
remodelling.

Nevertheless, there exists only few experimental data with respect to the mechanical
behavior of the plaque. Due to that and because of the patient-specific differences, it is
difficult to identify material parameters for the plaque components. In the next section
the plaque is assumed to be a homogeneous and isotropic material. Physically reasonable
material parameters are assumed and applied in a numerical simulation in order analyze
their influence of different material parameters.
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6.2.1 Identification of plaque parameter

In the following the plaque is assumed to be homogeneous and isotropic. Therefore, the
compressible Mooney-Rivlin model ψiso

MR, see eq. (5.3), is used to describe the plaque
behavior. Following eq. (3.95) the isotropic elasticity tensor in the reference placement
can be obtained by

C
iso(C = 1) = (4η2 + 4η3)1⊗ 1+ (2δ − 4η2 − 4η3)1⊠ 1 . (6.11)

The classical isotropic elastic constitutive tensor in matrix notation is given by

[C] :=




C1111 C1122 C1122 0 0 0
C1111 C1122 0 0 0

C1111 0 0 0
1
2
(C1111 − C1122) 0 0

sym. 1
2
(C1111 − C1122) 0

1
2
(C1111 − C1122)



. (6.12)

The relations between the Ogden-parameters and the isotropic elasticity tensor appear as

4η2 + 4η3 = C1122 and 2δ = C1111 . (6.13)

Furthermore, the expressions of the isotropic moduli in terms of the Lamé constants λ
and µ are given by

C1111 = λ+ 2µ and C1122 = λ . (6.14)

The solution of the equations in eq. (6.13) and eq. (5.4) for the material parameters
(η1, η2, η3, δ) ∈ R+ under consideration of eq. (6.14) is given by

η3 = 1
4
ξ C1122 = 1

4
ξ λ

δ = 1
2
C1111 = 1

2
(λ+ µ)

η2 = 1
4
C1122(1− ξ) = 1

4
(λ+ 2µ− (ξ − 2) λ)

η1 = 1
4
(C1111 + (ξ − 2) C1122) = 1

2
µ− 1

4
λ+ 1

4
ξ λ





ξ ∈ [0, 1] . (6.15)

Thus, it is always possible to select a set of positive parameters λ and µ that satisfy
eq. (6.15) with (η1, η2, η3, δ) ∈ R+, see Ciarlet [1988] and Schröder and Neff [2003].

In Table 6.2 the identified material parameters (parameter set I-V) for different configu-
rations of the constants λ = 2µν/(1− 2ν) and µ are listed.

I II III IV V

λ [kPa] 13036 11950 6518 3259 1086

µ [kPa] 600 550 300 150 50

η1 [kPa] 141 88 20 60 4

η2 [kPa] 160 188 130 15 22

η3 [kPa] 3100 2800 1500 800 250

Table 6.2: Five different sets (I-V) of material parameters for the plaque with ν = 0.478.
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The constants are chosen is such a way that the plaque behaves quasi-incompressible,
i.e. the Poisson’s ratio ν is nearly 0.5. In this section, a Poisson’s ratio of ν = 0.478 is
assumed. In order to get a first impression of the material behavior of the plaque under
consideration of the different parameter sets, a uniaxial tension and a compression test
was performed, see Fig. 6.3. It is obvious that the stiffness continuously decreases from
parameter set I to set V.
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Figure 6.3: Stress-stretch relation of the plaque for the five different sets (I-V) of material
parameters as a result of a) a tension test and b) a compression test.

6.2.2 Influence of plaque behavior on arterial wall behavior

In order to investigate the influence of the plaque behavior under consideration of the five
different parameter sets with respect to the overall arterial wall behavior, a simulation of
a two-dimensional arterial cross-section was performed, cf. also the diploma thesis Tielke
[2009]. The patient-specific cross-section (Fig. 6.4b) was identified by an VH IVUS image
(Fig. 6.4a) as described in the introduction of this section, and discretized with 6 015
quadratic triangular finite elements, see Fig. 6.4c.

a) b) c)

Figure 6.4: a) Patient specific VH IVUS image and b) corresponding two-dimensional
numerical model of an arterial wall composed of adventitia, media and plaque and c) dis-
cretization of the cross-section with 6 015 quadratic triangular finite elements.

Since an artery has a very large dimension in x3-direction (axial) in comparison with
the dimensions in x1- and x2-direction the simulations are conducted under plane strain
conditions. As additional Dirichlet boundary conditions three outer boundary nodes are
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fixed, such that the cross-section is not allowed to move radially and the system is statically
determined. The material behavior of the media and the adventitia is modeled with the
material model

ψ = ψiso
MR +

2∑

a=1

ψti,HGO1

(a) , (6.16)

see eq. (5.3) and eq. (5.15) and the material parameters were fitted to experimental
data10 according to Section 6.1. The resulting parameters are listed in Table 6.3. The
stress-stretch results of the adjusted material model and the experimental data are shown
in Fig. 6.5.

c1 c2 c3 k1 k2 βf

[kPa] [kPa] [kPa] [kPa] [-] [ ◦]

media 14.64 0.15 60.81 6.85 754.01 43.47

adventitia 2.33 6.17 60.64 3.13e-8 147.17 52.29

Table 6.3: Material parameters or the media and the adventitia.

In the simulations the quasi-incompressibility is enforced by using the Augmented-
Lagrange-Method, see Section 5.2.3. Here, the nested iteration algorithm was used with
κal = 99.0 for media and adventitia and κal = 999.0 in case of the plaque.
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Figure 6.5: Uniaxial extension test: a) stress-stretch response (σ11 [kPa] vs. λ [-]) of the
experiments and the material model for media and adventitia; b) relative error r [-].

10Uniaxial extension tests performed on test strips the media and adventitia of a human abdominal
aorta (male, 40 years, primary disease: congestive cardiomyopathy); courtesy of Prof. Holzapfel, TU Graz.
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A good agreement between the experimental stress-stretch relation and the behavior of
the material model can be observed. For the media as well as for the adventitia the
relative error r is always smaller than 0.08 in axial direction and always smaller than 0.04
in circumferential direction, respectively.

In the numerical simulation of the arterial wall an internal hydrostatic pressure follower
load of pi = 24 kPa (180 mmHg) is applied stepwise by surface elements in order to
represent the blood pressure. The appearing stress distribution of the Cauchy stresses
in x1-direction, i.e. σ11, is depicted in Fig. 6.6 exemplarily for parameter set I and V.
Additionally, the distribution of stress in a vertical section through the artery is shown
(in the direction of x2 with x1 = 0), which correspond to the circumferential stresses.
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Figure 6.6: Distribution of the Cauchy stresses in x1-direction (σ11) for two parameter
sets, i.e. set I and V.

The diagram in Fig. 6.7a shows the σ11-distribution for all parameter sets on the right
hand side of the artery where the plaque is present.
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56 Identification of material parameter

A comparison of the particular sets makes obvious, that, if the plaque is relatively stiff
(parameter set I), it carries the total load, whereas the adventitia and the media are almost
stress-free. The softer the plaque is, the less stress it bears and the more the stresses are
transferred to the media. Since the adventitia is the load carrying layer at higher load
levels, see Section 2.3, it is always almost stress-free. In set V the plaque has the softest
material behavior and is nearly stress-free. In Fig. 6.7b the diagram shows the fraction
of the stresses, which is carried by the the plaque and the media/adventitia, respectively.
It should be noticed, that although the material behavior of media and adventitia are
adjusted to experiments, the stress distribution in the arterial cross-section is totally
different, depending on whether the plaque is a rather stiff or a rather soft material.
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7 An anisotropic damage model for softening hysteresis in ar-
terial walls

This chapter deals with the modeling of damage in soft biological tissues. A literature
survey of this topic with regard to the experimental observations and the mechanical
modeling is given in Section 7.1. In Section 7.2 a brief overview of the characteristics of
damage and of general assumptions concerning the modeling of damage is presented. In
order to get a more general overview the reader is referred to Lemaitre and Chaboche
[1990], Lemaitre [1996], Krajcinovic [1996], de Souza Neto et al. [1998], Skrzypek and
Ganczarski [1999], and Lemaitre and Desmorat [2005]. In Section 7.3 a novel principle for
the construction of damage models which is able to describe stress-softening hysteresis
and remnant strains in the collagen fibers after unloading is proposed. This principle is
applied to specific constitutive models in Section 7.4. The models are then adjusted to
experimental data of cyclic uniaxial extension tests of the media and the adventitia of
a human carotid artery in Section 7.5. In Section 7.6 a circumferential overstretch of a
simplified atherosclerotic artery is simulated to demonstrate that the proposed damage
model is working in finite element calculations. A part of the following results is published
in the joint works Balzani et al. [2009b, 2012].

7.1 A short literature overview of damage in soft biological tissues

In arterial walls microscopic tissue damage takes place in a supra-physiological load-
ing situation, i.e. by an inner pressure much higher than that occurring under normal
(physiological) conditions. As a result of such micro-damage the arterial tissues undergo
significant deterioration.

Experimental data. In Castaneda-Zuniga et al. [1980] it is shown that remnant defor-
mations occur if a certain load level is exceeded during the overexpansion of the arterial
lumen in the consequence of balloon angioplasty. Oktay et al. [1991] and Holzapfel et al.
[2000b] observed analogous findings in experimental studies on carotid arteries of dogs
and human iliac arteries. In Zollikofer et al. [1984] electron- and light microscopies were
investigated in order to study the influence of an overexpansion on the intima, the my-
ocytes and the collagen fibers of canine arteries over a period of six month. They discover
a repairing of the dilated segments due to proliferation of myocytes and collagen, and
intimal hyperplasia. In the study of Castaneda-Zuniga [1985] the main damage result-
ing from percutaneous arterial angioplasty was observed in the media. As mentioned in
Schulze-Bauer et al. [2002b] the influence of dilation on damage in the adventitia is low,
i.e. the adventitia behaves nearly elastically during an overexpansion. The same was ob-
served in Sommer et al. [2010], in which furthermore biaxial extension tests of intact and
layer-dissected human carotid arteries at physiological and supra-physiological loadings
were performed and analyzed. Experiments in the form of cyclic extension tests in the
supra-physiological loading range is less explored in the literature. One of the few works
performing cyclic uniaxial extension tests is Horný et al. [2010]. Here, samples of human
thoracic aorta were investigated. In Weisbecker et al. [2012] additionally layer-specific test
were performed on human thoracic and abdominal aortic samples.
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Constitutive modeling. A three-dimensional isotropic damage formulation at finite
strains was proposed in Simo [1987], see also Simo and Ju [1987]. Here, a scalar valued
internal variable (see Section 7.2) was used in order to reflect the discontinuous softening
behavior of polymers, i.e. the Mullins effect (Mullins [1948]). This technique has also been
applied in Govindjee and Simo [1991] and de Souza Neto et al. [1994]. An extension to
the modeling of continuous damage was given by Miehe [1995] by using a distinct internal
variable. Another phenomenological model for the description of damage was proposed
in Miehe and Keck [2000]. Here, the saturation behavior of filled rubber is investigated
in cyclic deformation processes. In Marckmann et al. [2002] micro-mechanical interpreta-
tions of the evolving damage as breakage of links in the material were adopted by a chain
model in combination with network alteration theory. Here, the alteration of the mean
chain length depends on the previous maximum chain stretch ratio. The idea of such net-
work alteration was adapted by Horgan et al. [2004] in combination with the Gent model
of rubber elasticity (Gent [1996]), and by Diani et al. [2006], which induced anisotropy
by modeling the damage as a function of the maximum stretch in the material directions.
Damage induced stress-softening effects combined with remanent deformations were mod-
eled in Besdo and Ihlemann [2003] based on the idea of limiting stresses. A pseudo-elastic
model was investigated previously by Ogden and Roxburgh [1999a,b] to model the Mullins
effect. In the theory of pseudo-elasticity the loading and unloading/reloading paths are
characterized by different strain-energy functions. In Dorfmann and Ogden [2003] the
model is adopted in order to account for a hysteretic response due to loading, partial
and complete unloading, and reloading cycles. By introduction of an additional internal
variable Dorfmann and Ogden [2004] enabled the accumulation of remanent strains. A
comparison of a continuum damage mechanics model used in, for example, Simo [1987],
Miehe [1995], and the pseudo-elastic model combined with Gao‘s elastic law (Gao [1997])
was done in Guo and Sluys [2006]. For the description of anisotropic damage, internal vari-
ables as tensors of second order are introduced, for example, in Simo and Ju [1987], Zhu
and Cescetto [1995], Hokanson and Yazdani [1997], and Menzel and Steinmann [2001]; in
the framework of micro-macro approaches see, for example, Steinmann and Carol [1998]
and Göktepe and Miehe [2005]. In Schröder et al. [2005a] and Balzani et al. [2007] the
damage is assumed to take effect only in fiber direction, so that a scalar-valued damage
variable could be used to describe the damage. Consequently, damage tensors could be
avoided, which yields a more practical approach. Scalar-valued damage variables are also
used in earlier works for isotropic damage, see, for example, Simo [1987] or Miehe and
Keck [2000]. In Rodŕıguez et al. [2006] a scalar-valued damage variable is used in order to
describe damage in the matrix. Fiber failure is modeled using a worm-like chain model,
see also Rodŕıguez et al. [2008]. An individual damage formulation for the matrix and the
fibers has also been proposed in, for example, Natali et al. [2003, 2005], Calvo et al. [2007],
Alastrué et al. [2007b], Peña et al. [2009], and Peña [2011]. In Gasser and Holzapfel [2007]
it is accounted for remanent strains after overstretch by using a finite-plasticity model.
The model by Ehret and Itskov [2009] is able to reflect the preconditioning of fibrous soft
biological tissues. Furthermore, the Mullins effect was investigated. The recently pub-
lished approach by Weisbecker et al. [2012] uses a pseudo-elastic damage model in order
to describe discontinuous softening in aortic arterial tissues, where damage in the fibers
and in the matrix material can be accounted for individually. Furthermore, they fitted
the model to experimental data.
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7.2 Damage variable, strain equivalence principle and anisotropic damage

In solid mechanics damage can be considered as the result of the evolution of micro-cavities
or micro-cracks resulting in discontinuities. Since we are interested in continuous media,
we consider a representative volume element (RVE), which accounts for such damage
discontinuities by using a homogenized (continuous) variable.

Scalar damage variable. A scalar variable for the description of micro-cavities or micro-
cracks at small strains was proposed by Kachanov [1958]. Here, a cutting plane of an RVE
at a material point M of a damaged body is considered, see Fig. 7.1a.

a)

δA

δAD RVE

x

n

b)

undamaged damaged

AD
A

pseudo-undamaged
statestatestate

F = σ̃ÃF = σA

ε(σ,D) = ε̃(σ̃, 0)

F = σA

F F F

Figure 7.1: a) RVE of a damaged body at a material pointM , cf. Lemaitre [1996], page 11;
b) One-dimensional effective stress concept as a result of strain equivalence, cf. Skrzypek
and Ganczarski [1999], page 10.

The cutting plane is defined by its area δA containing the area of all micro-cavities or
micro-cracks δAD|x, by its normal n and its position along the abscissa x, which is parallel
to n. Since we are interested in a representative continuous damage variable of the RVE, all
damage variables D(M,n, x) of each cutting plane are considered and then the maximum
is taken into account, i.e.

D(M,n) = sup
x

[D(M,n, x)] with D(M,n, x) =
δAD|x
δA

. (7.1)

This results in a damage variable, which is independent of the position x, i.e.
D(M,n) = δAD

δA
. Two extreme cases are possible: an undamaged material with D = 0

and a completely damaged material with D = 1, i.e. the damage variable varies be-
tween zero and one (D ∈ [0, 1]). The remaining (effective, undamaged) area is given by
δÃ = δA− δAD. If the damage parameter does not change with the normal vector orien-
tation, the material can be regarded as isotropically damaged. In that case the problem
under consideration reduces to the one-dimensional case and the damage variable is given
by the surface density of micro-defects

D =
AD
A

with D ∈ [0, 1] . (7.2)

Strain equivalence principle and effective stress concept. The damage variable
can be computed by the effective area using mathematical homogenization techniques,
see Voyiadjis and Kattan [2006]. In that case, the shape and size of defects have to be
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detected. In order to circumvent a difficult detection procedure, Rabotnov [1968] proposed
the effective stress concept, see also the hypothesis of strain equivalence in Lemaitre [1971].
As shown in Fig. 7.1b, a one-dimensional volume element is accounted for with cross-
section A, which is loaded by a uniaxial stress σ. In the undamaged state, the damage
variable is zero. Then micro-defects arise and D becomes a value greater than zero, the
material is damaged. It is assumed that this physical state can be transformed to a pseudo-
undamaged state without changing the material response, i.e. the strain remains the same
(ε̃ = ε). Here, the stress σ is replaced by the effective stress σ̃, which can be regarded as
fictitious undamaged stress acting on the reduced area Ã

σ̃ =
F

Ã
=

F

A− AD
=

σ

(1−D)
→ σ = (1−D)σ̃ . (7.3)

For a detailed description of this subject see Lemaitre [1996] (pp. 11), Skrzypek and
Ganczarski [1999] (pp. 10), and Lemaitre and Desmorat [2005] (pp. 3).

Anisotropic damage in soft biological tissues. Soft biological tissues are fiber-
reinforced and therefore not isotropic. To account for anisotropic damage, in several works
internal variables are used as tensors of second or fourth order (see Section 7.1). Even
though these anisotropic models are able to reflect the material response, the definition
of damage tensors often complicates the material modeling. Therefore, in the present
work a scalar-valued isotropic damage variable D is used in order to reflect the three-
dimensional anisotropy of damage occurring in soft biological tissues by application of
the (1 − D)-approach directly to the energy function, which is associated to the fibers.
The consideration of damage only in the fibers seems to be reasonable since the fiber
reinforcements are the main load bearing elements. Incorporation of the (1−D)-approach
directly to the energy function has been proposed in several works, see Section 7.1.

Damage and saturation effects in arterial walls. As mentioned in Section 2.3
healthy elastic arteries exhibit a highly non-linear and anisotropic stress-strain response.
In Fig. 7.2a the typical stress-strain response of an arterial strip loaded within a cyclic
uniaxial tension test is shown schematically. The cyclic application of the load, i.e. the
three loading cycles up to three different load levels (I, II, III) and the corresponding
unloading cycles shows Fig. 7.2b.

The first three cycles (load level I) are called the pre-conditioning. The material softens
until the path ending in point ➀ is reached. Then, after the pre-conditioning the material
behaves nearly perfectly elastic as expected due to in-vivo conditions and a physiological
blood pressure. Loading beyond the elastic domain up to load level II (point ➁), for
example due to a transluminal angioplasty (see Section 2.2), results in stiffness reduction
due to damage and plastic deformations, which remain after unloading. Thus, we follow
a lower path (A) while unloading, which could be due to deflation of a balloon catheter.
In the physiological stress range remanent strains εr,phys = ∆lr,phys/l0 are observed, which
are responsible for a dilation of the arterial lumen. The remanent strains are a result
of the damage (i) directly, since the damage reduces the material stiffness and increases
the strains in the physiological stress range, and (ii) indirectly, since the damage induces
plastic strains εr,plas = ∆lr,plas/l0. Application of further loading and unloading cycles by
a fixed maximum load level (load level II) yields a diminishing softening until the stress
hysteresis converges to a ‘saturated’ response curve (point ➂). Only when a higher load
level is reached (here the load level III), further softening effects occur (see path until
point ➃) and the saturation begins again.
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a)

σ
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➀

➂

➃
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III

εr,phys

t
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b)

Figure 7.2: Schematic diagram showing a) a cyclic uniaxial stress-strain response (σ,
ε = ∆l/l0) of an arterial strip, cf. Holzapfel et al. [2000a]. After pre-conditioning (point
➀) the material behaves (perfectly) elastic. Loading beyond the elastic domain up to point
➁ results in softening due to damage effects. Further loading and unloading cycles soft-
ens the material until it is ‘saturated’ (point ➂). Application of higher load levels (point
➃) causes further damage and softening effects. The remanent strains due to elasto-plastic
material behavior εr,plas = ∆lr,plas/l0 and remanent strains after two over-expansions at the
edge of the physiological stress range εr,phys = ∆lr,phys/l0 are shown. b) Corresponding cyclic
application of load (loading and unloading cycles) up to three different load levels (I, II, III).

In order to uncover the reason for the damage effects we have to take a closer look at
the main components of an arterial wall, i.e. elastin and collagen. Elastin is the main
constituent of the ground substance (the matrix material) and in combination with pro-
teoglycans it provides the matrix with resilience, see Montes [1996]. As mentioned in Sec-
tion 2.3 collagen rather than elastin is the load-bearing component at high strains where
damage appears. Additionally, comparing the behavior of elastin and collagen fibers, sig-
nificantly higher elastic strains are needed to cause a dissipative behavior in elastin, see,
for example, Roach and Burton [1957]. In this work we do not account for damage in the
matrix since it is assumed to be of secondary importance, see the experimental study of
Weisbecker et al. [2012].

The embedded collagen fibers are the main load-carrying elements in arterial walls. On
the molecular level the main component of the fibers is tropocollagen interconnected by
cross-links, see Section 2.1. If the fibers are elongated in fiber direction the cross-links
are straightened, and by exceeding a certain level (in the supra-physiological domain)
the cross-links break, see Fig. 2.3b. A complete failure of the micro-fibril takes place if a
certain number of cross-links have collapsed. Thus, the more load is applied, the less fibrils
are intact to resist the load and the more the stiffness of the material is reduced. Oriented
discontinuous damage takes place in fiber direction, if it is assumed that the cross-links
and therefore the micro-fibrils break due to overstretch and cannot heal themselves. The
reason for continuous damage effects may be a rearrangement of the cross-links, such that
further damage appears during a re-loading cycle within the same loading range as the
previous loading cycle. The saturation effect may be a result of the gradual breaking of
all cross-links, which cannot resist the applied maximum load level. If all such cross-links
have failed then the ‘saturated’ response curve is achieved. Furthermore, if a higher load
level is applied, there exist again some cross-links not able to resist the higher stretch.
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7.3 Construction principle for damage models

According to the construction principles for polyconvex energy functions for the hyperelas-
tic regime derived in Balzani et al. [2006a], see also the short replication in Section 5.1.2,
a principle for the construction of damage models, which are able to describe stress-
softening hysteresis and remnant strains in the collagen fibers after unloading, is given in
this section.

7.3.1 Construction principle

As mentioned before, the breaking of micro-fibrils results in remnant strains in soft bio-
logical tissues. The material model should be able to reflect such remnant strains, such
that the following construction principle has to be taken into account

Consider the modified (internal) energy function P := (1−D) P̄ − c with the
damage variable D ∈ [0, 1[ and polyconvex function P̄ . Then include P into any
arbitrary (external) convex and monotonically increasing function m(P (X)),
whose first derivative is zero in the origin,

see Balzani et al. [2012]. Here, the basic idea is to incorporate the (1−D)-term directly into
the inner function P instead of prefixing it. This approach poses the important effect that
by evolution of the damage function D the stress-free configuration is shifted resulting
in remanent strains after unloading. In a similar manner this idea was investigated by
Govindjee and Simo [1991] and Ogden and Roxburgh [1999b]. A number of seven possible
functions P̄ and the corresponding values of the functions in the natural (undamaged)
state c, i.e.

c = P̄i (C = 1) for i = 1, . . . , 7 , (7.4)

are given in Table 7.1. The value c is subtracted in order to satisfy the condition of a
energy-free reference configuration for the undamaged case.

P̄1 := J
(a)
4 P̄2 := K

(a)
1 P̄3 := K

(a)
2 P̄4 := K

(a)
3 (P̄5 := I1 P̄6 := I2 P̄7 := I3)

c 1 1 1 2 3 3 1

Table 7.1: Possible functions P̄ and value of the function P̄ in the natural state c.

Considering the above mentioned construction principle for the investigation of damaged
soft biological tissues the energy functions are of the type

ψ(C, D) := m(P (C, D)) with P := (1−D)ψ0 − c , (7.5)

where the fictitiously undamaged effective energy is defined as ψ0 := P̄ .

With D = Dint and isothermal processes we start from the dissipation inequality, see
eq. (3.73), with Ė = 1

2
Ċ and obtain with the abbreviation m′ := ∂Pm

D =
1

2
S : Ċ − ψ̇ ≥ 0 with ψ̇ =

∂ψ

∂C
: Ċ +

∂ψ

∂D
Ḋ =

∂ψ

∂C
: Ċ −m′ψ0Ḋ . (7.6)
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Insertion of the time derivative of the strain-energy function into the dissipation inequality
yields

D =

(
1

2
S − ∂ψ

∂C

)
: Ċ +m′ψ0Ḋ ≥ 0 . (7.7)

By application of the standard argument of rational continuum mechanics, cf. Sec-
tion 3.4.5, the second Piola-Kirchhoff stress tensor is given by

S = 2
∂ψ

∂C
= m′(1−D)S0 with S0 := 2

∂ψ0

∂C
, (7.8)

cf. eq. (3.75). The reduced dissipation Dred may be represented by the inequality

Dred := m′ψ0Ḋ ≥ 0 ⇒ Ḋ ≥ 0 . (7.9)

Note, that from eq. (7.9)1 follows that Ḋ has to be greater or equal zero in order to en-
sure thermodynamic consistency, because the function m is assumed to be monotonically
increasing and the energy functions are zero in the reference configuration.

In this work a damage function D is considered, which is assumed to depend on the
fictitiously undamaged (effective) energy ψ0 = P̄ , i.e.

D(β(ψ0)) = Ds

[
1− exp

(
ln(1− rs)

βs
β(ψ0)

)]
, (7.10)

with Ds ∈ [0, 1[, rs ∈ [0, 1[, βs > 0 is used, cf. Miehe [1995]. The only material parameter
in eq. (7.10) is βs, which represents the value of the internal variable β(ψ0) reached at a
certain fraction rs of the maximum damage value Ds for a fixed maximum load level, see
Fig. 7.3a. In this work a fraction of rs = 0.99 is taken into account. Therefore, βs is the
value of the internal variable β at a saturated damage value D = 0.99Ds. In Fig. 7.3b
it becomes visible that the smaller βs is, the faster the maximum damage value Ds is
reached.
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Figure 7.3: Relation between the damage variable D, its maximum value Ds and the
internal variable β for a certain value rs = 0.99: a) in general and b) for different values of
the material parameter βs.

The assumption that evolution of damage is activated in the loading and the reloading
processes is taken into account by choosing the internal variable β as follows

β(ψ0) :=
〈
β̃ − β̃ ini

〉
with β̃ =

t∫

0

〈
ψ̇0(s)

〉
ds . (7.11)
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The variable β̃ ini is the internal variable at an initial damage state, which ensures that the
damage evolution starts at the beginning of the supra-physiological domain and not in the
physiological range of deformations. The time s ∈ IR+ reflects the loading history, while
t ∈ IR+ indicates the current loading situation. The Macaulay brackets7 (page 42) ensure that
no damage evolution takes place while unloading.

The evolution of the internal variable β drives the saturation of the damage function in
eq. (7.10), which converges to a maximum value of damage Ds. This maximum value is
not a fixed or predefined value, but rather a function of the same type as eq. (7.10), i.e.

Ds(γ(ψ
0)) = D∞

[
1− exp

(
ln(1− r∞)

γ∞
γ(ψ0)

)]
, (7.12)

with D∞ ∈ [0, 1[, r∞ ∈ [0, 1[ and γ∞ > 0. Analogously, γ∞ represents the value of the
internal variable γ reached at the fraction r∞ of D∞ (in the following we use r∞ = 0.99).
The parameter D∞ is fixed and predefined and represents the converging limit for the
overall damage value. Not prefixing the maximal value Ds delivers the advantage to be
able to account for (i) increased maximally reachable damage value for increased load
levels and (ii) an unaltered maximum damage value under fixed maximum load levels
for cyclic processes. Such behavior is enabled by defining the internal variable as the
maximum value of the effective energy reached up to the current state

γ(ψ0) = sup
s∈[0,t]

〈
ψ0(s)− ψ0

ini

〉
. (7.13)

The parameter ψ0
ini is the effective strain energy at the limit of the physiological domain,

i.e. at the initial damage state. In order to enable the evolution of eq. (7.13) the following
saturation criterion is defined inducing no evolution for φ ≤ 0, i.e.

φ(ψ0) :=
〈
ψ0 − ψ0

ini

〉
− γ(ψ0) ≤ 0 . (7.14)

The proposed damage model is mainly driven by two material parameters (i) the param-
eter βs describing the damage behavior in the individual cycles and (ii) the parameter
γ∞ describing the saturation behavior. These two parameters have to be fitted to experi-
mental data. The third parameter D∞ is the maximally reachable damage value, ideally
equal to 1. Due to numerical reasons the adjustment results in values rather close to 1,
see Section 7.5.

In order to ensure thermodynamical consistency, the evolution of the proposed damage
variable has to be greater or equal to zero, see eq. (7.9). The evolution of the saturation
variable Ds is obtained by the derivative of eq. (7.12), i.e.

Ḋs = −
D∞

γ∞
ln(1− r∞) exp

(
ln(1− r∞)

γ∞
γ

)
γ̇ ≥ 0 . (7.15)

The evolution of the damage variable (eq. (7.10)) is given by

Ḋ = Ḋs

[
1− exp

(
ln(1− rs)

βs
β

)]
− Ds

βs
ln(1− rs) exp

(
ln(1− rs)

βs
β

)
β̇ ≥ 0 . (7.16)

Since eq. (7.15) and eq. (7.16) are greater or equal to zero the thermodynamical consis-
tency of the damage model derived in consideration of the proposed construction principle
is ensured.
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7.3.2 Specification of the model for soft biological tissues

As mentioned in Section 7.2 micro-damage and the resulting remanent strains are assumed
to evolve particularly in the fibers. Therefore, following the construction principle11 de-
scribed in the previous section we formulate the transversely isotropic part as

ψti
(a) := m(P(a)(C, D(a))) with P(a) = (1−D(a))ψ

ti,0
(a) − c , (7.17)

with the effective transversely isotropic strain-energy function ψti,0
(a) = P̄(a). The first part

of the inner function P , i.e. (1 − D(a))P̄(a), can be taken as the energy stored in the
micro-fibrils, which is softened by the damage variable D(a) in the case of over-expansion.
Accordingly, the (external) function m reflects the structural response and the interaction
of the micro-fibrils. The second Piola-Kirchhoff stress tensor is computed by eq. (5.2),
where the latter part is now given by

Sti
(a) = m′(1−D(a))S

ti,0
(a) , with S

ti,0
(a) = 2

∂ψti,0
(a)

∂C
. (7.18)

In the following, we add a superscript (a) to the quantities whenever it appears reasonable
in order to express that they have to be evaluated for each fiber direction a(a).

7.3.3 Algorithmic implementation

In order to implement the proposed model in a finite-element framework the linearization
of the second Piola-Kirchhoff stress tensor

∆S(C, D(a)) =
∂Svol

∂C
: ∆C +

∂Siso

∂C
: ∆C +

2∑

a=1

(
∂Sti

(a)

∂C
: ∆C +

∂Sti
(a)

∂D(a)

∆D(a)

)
(7.19)

is required. Here, the specific derivatives are given by

∂Sti
(a)

∂D(a)

= −
[
m′ +m′′(1−D)ψti,0

]
S

ti,0
(a) and ∆D(a) =

∂D(a)

∂β(a)
∆β(a)+

∂D(a)

∂Ds,(a)

∂Ds,(a)

∂γ(a)
∆γ(a) ,

(7.20)
where we used eq. (7.18)1, eq. (7.10) and eq. (7.12). The insertion of the linearizations of
β(a) and γ(a) into eq. (7.20)2 yields

∆D(a) =

(
∂D(a)

∂β(a)

∂β(a)

∂ψti,0
(a)

+
∂D(a)

∂Ds,(a)

∂Ds,(a)

∂γ(a)

∂γ(a)

∂ψti,0
(a)

)
∂ψti,0

(a)

∂C
: ∆C . (7.21)

The compact notation of the incremental stress ∆S follows, if we use the properties
eq. (7.18)2 and ∆C = 2∆E, i.e. ∆S = C : ∆E. Here, the elasticity tensor C in the mate-
rial description can be additively decoupled into an elastic part Celas and an transversely
isotropic part Cti

(a), which is in turn decoupled into three parts, i.e.

C = C
elas +

2∑

a=1

C
ti
(a) with C

ti
(a) = C

eD
(a) + C

D
(a) + C

Ds

(a) . (7.22)

11It should be noticed, that the construction principle for softening models can be applied to the
isotropic part as well.
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The elastic part Celas is given as the isotropic standard elasticity tensor for hyperelasticity

C
elas = C

vol + C
iso = 4

∂2ψvol

∂C∂C
+ 4

∂2ψiso

∂C∂C
, (7.23)

cf. eq. (3.76). The first part of Cti
(a), i.e. the part CeD

(a), is the (standard) damaged trans-
versely isotropic elasticity tensor and can be computed by

C
eD
(a) = m′(1−D(a))C

ti,0
(a) +m′′(1−D(a))

2 S
ti,0
(a) ⊗ S

ti,0
(a) , (7.24)

with m′′ := ∂2PPm and the effective transversely isotropic elasticity tensor given by

C
ti,0
(a) = 4

∂2ψti,0
(a)

∂C∂C
. (7.25)

The latter parts in eq. (7.22) are the damage-evolution part and the saturation-evolution
part. In the case that ψ̇ti,0

(a) is greater than zero, the damage-evolution part is

C
D
(a) = −

[
m′ +m′′(1−D(a))ψ

ti,0
(a)

] ∂D(a)

∂β(a)

∂β(a)

∂ψti,0
(a)

S
ti,0
(a) ⊗ S

ti,0
(a) , (7.26)

and zero otherwise. The saturation-evolution part can be computed by

C
Ds

(a) = −
[
m′ +m′′(1−D(a))ψ

ti,0
(a)

] ∂D(a)

∂Ds,(a)

∂Ds,(a)

∂γ(a)

∂γ(a)

∂ψti,0
(a)

S
ti,0
(a) ⊗ S

ti,0
(a) (7.27)

whenever φtrial
(a) is greater than zero, and it is zero otherwise. Here, φtrial

(a) is the trial value
of the saturation criterion in the current time step, i.e.

φtrial
(a) =

〈
ψti,0
(a) − ψ

ti,0
ini,(a)

〉
− kγ(a) , (7.28)

using eq. (7.13). This criterion evaluates whether an update of the saturation has to be
performed. The discrete time steps with t ∈ {k+1t, kt} are considered for the numerical im-
plementation. Here, values with the index k+1(•) and k(•) denote values at the current and
the last time step, respectively. In order to obtain a clear notation, the index of the current
time step is only assigned if necessary. If φtrial

(a) > 0 we have to fulfill φ(a) = 0 (eq. (7.14))
and the algorithmic current internal variable of the saturation term is computed by

γ(a) =
〈
ψti,0
(a) − ψ

ti,0
ini,(a)

〉
. (7.29)

Otherwise, if φtrial
(a) ≤ 0 it is set equal to the value of the last time step, i.e. γ(a) =

kγ(a).
Now, we define the algorithmic current internal variable of the damage term as

β(a) =
〈
β̃(a) − β̃ ini

(a)

〉
with β̃(a) =

kβ̃(a) +
〈
ψti,0
(a) − kψti,0

(a)

〉
. (7.30)

Following eq. (7.10) and eq. (7.30) and considering the derivative of the Macaulay brackets
∂X〈X〉 = ∂X [

1
2
(|X|+X)] = 1

2
(sign[X ] + 1), with the sign function sign[X ], we obtain

∂D(a)

∂β(a)
= −Ds,(a)

ln(1− rs)
βs

exp

(
ln(1− rs)

βs
β(a)

)
,

∂β(a)

∂ψti,0
(a)

=
1

4

[
sign

(
β̃(a) − β̃ ini

(a)

)
+ 1

][
sign

(
ψti,0
(a) − kψti,0

(a)

)
+ 1

]
,

(7.31)
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(I) Compute Svol, Siso, Cvol and Ciso

(II) Do for a = 1, 2

(i) Compute effective transversely isotropic strain-energy function ψti,0
(a)

(ii) Check initial damage state

if t < (tini − ǫ), then go to (vi)

else a) Read history kψti,0
(a) ,

kβ̃(a),
kψti,0

ini,(a),
kβ̃ ini

(a)

b) Compute β̃(a) =
kβ̃(a) +

〈
ψti,0
(a) − kψti,0

(a)

〉

c) if (tini − ǫ) < t < (tini + ǫ), then

set ψti,0
ini,(a) = ψti,0

(a) , β̃
ini
(a) = β̃(a)

else set from history ψti,0
ini,(a) =

kψti,0
ini,(a), β̃

ini
(a) =

kβ̃ ini
(a)

(iii) Read history kγ(a) and compute maximum damage saturation value

a) Trial criterion φtrial
(a) =

〈
ψti,0
(a) − ψ

ti,0
ini,(a)

〉
− kγ(a)

b) Check algorithmic saturation criterion

if φtrial
(a) > ǫ, then set γ(a) =

〈
ψti,0
(a) − ψ

ti,0
ini,(a)

〉

else set from history γ(a) =
kγ(a)

c) Compute damage saturation value

Ds,(a) = D∞

[
1− exp

(
ln(1− r∞)

γ∞
γ(a)

)]

(iv) Compute internal variable β(a) =
〈
β̃(a) − β̃ ini

(a)

〉

(v) Compute damage function

D(a) = Ds,(a)

[
1− exp

(
ln(1− rs)

βs
β(a)

)]

(vi) Compute transversely isotropic stress tensor

a) Compute effective stress tensor Sti,0
(a) = 2∂Cψ

ti,0
(a)

b) if t > tini, then Sti
(a) = m′ (1−D(a)

)
S

ti,0
(a)

else Sti
(a) = m′Sti,0

(a)

(vii) Compute transversely isotropic part of the elasticity tensor

(see Table 7.3)

(III) Compute total stress and elasticity tensors

S = Svol + Siso +

2∑

a=1

Sti
(a) and C = C

vol + C
iso +

2∑

a=1

C
ti
(a)

Table 7.2: Algorithmic box (taken from Balzani et al. [2012]) for the computation of
the stress and elasticity tensors. The initial values of the history variables at k = 0 are
0ψti

(a) =
0β̃(a) =

0ψti,0
ini,(a) =

0β̃ini
(a) =

0γ(a) = 0, and the tolerance ǫ should be close to com-
puter accuracy.
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respectively. For the complete computation of the total tangent moduli C the derivatives
incorporated in eq. (7.27) are needed, which are given by

∂D(a)

∂Ds,(a)

= 1− exp

(
ln(1− rs)

βs
β(a)

)
,

∂Ds,(a)

∂γ(a)
= −D∞

ln(1− r∞)

γ∞
exp

(
ln(1− r∞)

γ∞
γ(a)

)
,

∂γ(a)

∂ψti,0
(a)

=
1

2

[
sign

(
ψti,0
(a) − ψ

ti,0
ini,(a)

)
+ 1
]
,

(7.32)

where we used eq. (7.10), eq. (7.12) and eq. (7.29). In Table 7.2 and Table 7.3 an overview
of the algorithm to determine the stress and elasticity tensors is given. Before entering
the supra-physiological state, the damage variable D(a) is set equal to zero. Only if the
upper limit of the physiological domain is reached this damage algorithm is considered.

(i) Compute effective elasticity tensor Cti,0
(a) = 4∂2

CC
ψti,0
(a)

(ii) if t > tini, then

a) Compute derivatives from (7.31), (7.32)

D′
(a) = ∂β(a)D(a), β ′

(a) = ∂ψti,0
(a)
β(a),

D
′,Ds

(a) = ∂Ds,(a)
D(a)

D′
s,(a) = ∂γ(a)Ds,(a), γ′(a) = ∂ψti,0

(a)
γ(a),

b) Compute parts of the transversely isotropic elasticity tensor

• Cti
(a) := CeD

(a) = m′ (1−D(a)

)
C

ti,0
(a) +m′′(1−D(a))S

ti,0
(a) ⊗ S

ti,0
(a)

• if
(
ψti,0
(a) − kψti,0

(a)

)
> ǫ , then

CD
(a) = −

[
m′ +m′′(1−D(a))ψ

ti,0
(a)

]
D′

(a)β
′
(a)S

ti,0
(a) ⊗ S

ti,0
(a)

Cti
(a) ⇐ Cti

(a) + CD
(a)

• if φtrial
(a) > ǫ , then

C
Ds

(a) = −
[
m′ +m′′(1−D(a))ψ

ti,0
(a)

]
D

′,Ds

(a) D
′
s,(a)γ

′
(a)S

ti,0
(a) ⊗ S

ti,0
(a)

Cti
(a) ⇐ Cti

(a) + C
Ds

(a)

else Cti
(a) = m′C

ti,0
(a) +m′′S

ti,0
(a) ⊗ S

ti,0
(a)

Table 7.3: Algorithmic box (from Balzani et al. [2012]) for the computation of the trans-
versely isotropic elasticity tensor Cti

(a). The tolerance ǫ should be close to computer accuracy.
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7.4 Specific constitutive models

In this section two specific constitutive models are investigated, which meet the construc-
tion principle mentioned in Section 7.3. They are adjusted to experimental data in order
to analyze their ability to capture the behavior of soft biological tissues, in particular of
human carotid arteries, under cyclic uniaxial extensions. In general form, the strain-energy
functions read

ψ(HGO) := ψvol + ψiso +
2∑

a=1

ψti,HGO
(a) and ψ(BNSH) := ψvol + ψiso +

2∑

a=1

ψti,BNSH
(a) . (7.33)

For the isotropic response the neo-Hookean function ψiso
NH (eq. (5.5)) is used, and in order

to enforce the incompressibility constraint the function ψvol
P is applied, see eq. (5.6).

The first transversely isotropic function is a combination of the function ψti,HGO1

(a)

(eq. (5.15)) and the fiber-dispersion approach presented in Gasser et al. [2006]. Here,
an additional scalar parameter κ is introduced, which reflects the variation in dispersion
of collagen-fiber orientations in soft biological tissues. Thus, the range of κ characterizes
a state between isotropic distribution with equally distributed collagen fibers and ideal
alignment of collagen fibers. The individual expressions in eq. (7.17) can be identified as

m(P(a)) =
k1
2k2

{
exp

(
k2〈P(a)〉2

)
− 1
}
, P̄(a) = ψti,0

(a) = κI1+(1−3κ)J (a)
4 , c = 1 , (7.34)

with the restrictions k1 > 0, k2 > 0 and κ ∈ [0, 1/3]. Now, the first transversely isotropic
strain-energy function is completely given by

ψti,HGO
(a) =

k1
2k2

{
exp

[
k2

〈
(1−D(a))

(
κI1 + (1− 3κ)J

(a)
4

)
− 1
〉2]
− 1

}
. (7.35)

As second function a power function proposed in Balzani et al. [2006a] is combined with
the fiber-dispersion approach and we identify

m(P(a)) = α1〈P(a)〉α2 , P̄(a) = ψti,0
(a) = κI1 +

(
1− 3

2
κ

)
K

(a)
3 , c = 2 . (7.36)

Here, the restrictions α1 > 0, α2 > 1 (for smooth tangent moduli α2 > 2), and κ ∈ [0, 2/3]
has to be enforced. Now, the complete expression for the second transversely isotropic
strain-energy function is

ψti,BNSH
(a) = α1

〈
(1−D(a))

[
κI1 +

(
1− 3

2
κ

)
K

(a)
3

]
− 2

〉α2

. (7.37)

As mentioned in Section 5.1.2 the anisotropic term of the models is only activated if the
fibers are extended, that is when (1−D(a))ψ

ti,0
(a) > c.

It should be noticed, that m(P(a)) is convex and monotonically increasing and P is poly-
convex and zero in the reference state for both models. Therefore, the two models satisfy
the construction principles in the physiological domain before reaching the initial damage
state, see Section 5.1.2, and remain polyconvex in the hyperelastic regime.
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7.5 Adjustment to experimental data

In the following the models are adjusted to experimental data, which has been obtained
from uniaxial extension tests with two strip specimens from the media of a human carotid
artery (one in circumferential direction, and the other one in the axial direction, i.e.
ne = 2), see Balzani et al. [2012]. The specimens were excised during autopsy and then
tested within 24 hours after death. In order to accomplish pre-conditioning, five loading
and unloading cycles were performed prior to testing for each test to achieve repeatable
stress-strain curves in the physiological loading domain. Then, uniaxial extension tests in
0.9% NaCl solution at 37◦C were performed with continuous recording of the tensile force,
the strip width and the gage length. Details on the customized tensile testing machine
are given in Schulze-Bauer et al. [2002b].

Physiological loading domain. In order to adjust the model response in the purely
physiological domain rather moderate loads were investigated in the first loading cycle.
Here, a number of nmp = 49 measuring points for the axial and nmp = 43 measuring
points for the circumferential tension test were created. Then the two models ψ(HGO) and
ψ(BNSH) in eq. (7.33) were adjusted to the experimental data using the method mentioned
in Section 6.1. The achieved material parameters are given Table 7.4.

c1 k1 k2 α1 α2 κ βf r̄

[kPa] [kPa] [-] [kPa] [-] [-] [ ◦] [-]

ψ(HGO) 6.56 1482.38 564.81 - - 0.16 37.03 3.7×10−2

ψ(BNSH) 7.54 - - 984.29 2.18 0.055 39.48 3.6×10−2

Table 7.4: Material parameters and resulting total error r̄ (eq. (6.10)) of the two models
(eq. (7.33)) for the media of a human carotid artery in the physiological loading domain.

The resulting stress-strain response of the two models in comparison to experimental data
is shown in Fig. 7.4. Additionally, the relative error r is depicted in Fig. 7.5, in order to
show the accurate match of the models with the experimental data. The relative error r
(eq. (6.9)) as well as the total error r̄ (eq. (6.10)), given in Table 7.4, are relatively small.
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Figure 7.4: Comparison of the constitutive model response (ψ(HGO) and ψ(BNSH)) with
experimental data from uniaxial extension tests performed with strip specimens of the media
of a human carotid artery in circumferential ➀ and axial ➁ directions.
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Figure 7.5: Relative error r corresponding to Table 7.4. For the model response the two
strain-energy functions ψ(HGO) and ψ(BNSH) are used.

Supra-physiological loading domain. In the following the comparison of the model
response to experimental data obtained from a significantly increased load corresponding
to the supra-physiological loading domain is investigated. Cyclic uniaxial extension tests
in the circumferential and in the axial direction were performed on the same specimens,
see the stress-strain response in 7.6a, where a strong anisotropy as well as a pronounced
softening hysteresis is visible.
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Figure 7.6: Cyclic uniaxial extension tests of the media of a human carotid artery in circum-
ferential ➀ and axial ➁ directions: a) experimental data, and b) results of the constitutive
model ψ(HGO) using the material parameters given in Tables 7.4 and 7.5.

For the least-squares fit, two different procedures are taken into account:

i) The (hyperelastic) parameters (Table 7.4) of the constitutive model ψ(HGO) are fixed,
and only the damage parameters are adjusted. The resulting material parameters are
listed in Table 7.5.

D∞ γ∞ βs r̄

[kPa] [kPa] [-] [-]

ψ(HGO) 0.99 6.52 0.37 0.11

Table 7.5: Damage parameters and error measure r̄ for the constitutive model ψ(HGO)

for the media of a human carotid artery in the supra-physiological loading domain. The
adjustment was performed with fixed hyperelastic parameters.
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The stress-strain response of the proposed model ψ(HGO) is shown in Fig. 7.6b. Quali-
tatively and quantitatively the model correlates good with the experimental data and a
relatively small error measure r̄ is obtained, see Table 7.5. Nevertheless, a slight overesti-
mation of the exponential character is visible.

ii) Suitable bounds for the (hyperelastic) parameters on the basis of the fitted parameters
given in Table 7.4 are prescribed. Then, the hyperelastic as well as the damage parameters
are fitted to the experimental data, see Table 7.6.

c1 k1 k2 α1 α2 κ βf D∞ γ∞ βs r̄

[kPa] [kPa] [-] [kPa] [-] [-] [ ◦] [kPa] [kPa] [-] [-]

ψ(HGO) 7.50 1288.97 400.0 - - 0.2 35.06 0.99 6.67 0.001 0.137

ψ(BNSH) 9.02 - - 1400.0 2.20 1e-8 39.87 0.96 17.98 0.06 0.08

Table 7.6: Material parameters and error measure r̄ of the two models ψ(HGO) and ψ(BNSH)

for the media of a human carotid artery in the supra-physiological loading domain. For the
adjustment suitable bounds for the (hyperelastic) parameters, based on the results given in
Table 7.4, have been considered.

As a result, the hyperelastic response is not as accurately mapped as above. Furthermore, a
low sensitivity of the overall mechanical response with respect to changes in βs in the range
of values close to zero, i.e. for βs < 0.001 was observed, leading to the additional constraint
βs ≥ 0.001. The stress-strain response of the models ψ(HGO) and ψ(BNSH) is depicted
in Fig. 7.7a and Fig. 7.7b, respectively. The correlation between the experiments and
both models is qualitatively and quantitatively good. This impression is supported by a
relatively small error measure r̄, see Table 7.6. Nevertheless, the correlation is not perfect:
using the model ψ(HGO) the exponential character is slightly overestimated, as observed by
the previous adjustment; using the model ψ(BNSH) this characteristic is underestimated.
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Figure 7.7: Cyclic uniaxial tension tests of the media of a human carotid artery in cir-
cumferential ➀ and axial ➁ directions: a) results of the constitutive model ψ(HGO), and b)
results of the constitutive model ψ(BNSH). The material parameters are given in Table 7.6.

It should be noticed, that the remanent strain present in the fibers after unloading can
not be observed in the Figs. 7.6 and 7.7. This is due to the superposition with the stresses
in the matrix material, in which no remanent effects take place.



An anisotropic damage model for softening hysteresis in arterial walls 73

7.6 Numerical simulation of an arterial wall

In this section a numerical example of a two-dimensional cross-section of an artery with
a pronounced atherosclerotic plaque is discussed, in order to show the applicability of
the anisotropic damage model to finite-element simulations. The cross-section of the
artery and its components are determined by high-resolution Magnetic Resonance Imag-
ing (hrMRI) and histological analysis, see Fig. 7.8a. The identified components are non-
diseased intima, fibrous cap, i.e. the fibrotic part at the luminal border, fibrotic intima at
the medial border, calcification, lipid pool, non-diseased media, diseased fibrotic media,
and adventitia. The cross-section of the arterial model was developed based on the hrMRI
image and discretized with 6 048 quadratic triangular elements, see Fig. 7.8b. Here, the
fibrotic intima at the medial border and the diseased fibrotic media are combined and
treated as fibrotic media. Since the non-diseased intima has secondary importance with
respect to the mechanical behavior we do not account for it in the numerical simulation.

a) b)

adventitia

fibrotic media

lipid pool

calcification

media

fibrous cap

Figure 7.8: a) Human external iliac artery: high-resolution magnetic resonance image,
filtered and (manually) segmented, taken from Holzapfel et al. [2004b], page 659. b) Cross-
section of the arterial model discretized with 6 048 quadratic triangular finite elements; the
considered components are adventitia, non-diseased media, fibrotic (diseased) media, fibrous
cap, lipid pool, and calcification.

We use the constitutive model ψ(HGO) and the adjusted parameters from Table 7.4 and Ta-
ble 7.5 (Section 7.5) for the media. The set of material parameters used for the simulation
of the adventitia and the plaque components are listed in Table 7.7.

c1 k1 k2 κ βf D∞ γ∞ βs

[kPa] [kPa] [-] [-] [ ◦] [kPa] [kPa] [-]

adventitia 4.0 1640.23 115.63 0.097 45.60 0.99 10.84 7.36

fibrotic media 21.12 1951.48 925.37 0.095 25.55 0.99 6.52 0.37

fibrous cap 24.12 4778.44 1023.59 0.12 53.18 0.99 6.52 0.37

calcification 2250.0 – – – – – – –

lipid pool 2.5 – – – – – – –

Table 7.7: Hyperelastic and damage parameters of adventitia and plaque components.
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For the simulation the parameters rs = r∞ are set to 0.99. The parameters of the function
ψvol
P (ε1 and ε2) are chosen such that detF = 1± 1%, see Table 7.8. The lower values for

the calcification are due to the assumption that it is not incompressible.

ε1 ε2

[kPa] [-]

adventitia, non-diseased media,
50.0 20.0

fibrotic media, fibrous cap

calcification 5.0 2.0

lipid pool 20.0 10.0

Table 7.8: Parameters of the penalty function ψvol
P for the different arterial constituents.

The material parameters of the adventitia are adjusted to experimental data of a human
carotid artery. The stress-strain response of the model and the experimental data are
depicted in Fig. 7.9. It can be observed that the model and experimental curves fit well.
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Figure 7.9: Cyclic uniaxial extension tests of the a) adventitia of a human carotid artery
in circumferential ➀ and axial ➁ direction; b) associated response of the model ψ(HGO).

For the fibrous cap and the fibrotic media cyclic extension tests are available only in the
physiological loading range. Therefore, only the (hyperelastic) parameters are adjusted
to experiments from Holzapfel et al. [2004b], see the stress-strain response of the model
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and the experimental data in Fig. 7.10a. For the supra-physiological loading range the
damage parameters are adopted from the adjustment of the media. The calcified regions
and the lipid pool are modeled by the strain-energy function given in eq. (7.33)1 with
ψti,HGO
(a) = 0, i.e. it is assumed that they are isotropic materials. The corresponding material

parameters are chosen in accordance with the assumptions and investigations of Holzapfel
et al. [2004b] (page 660 and 661, respectively). Thus, the mechanical response of the
calcified regions close to the reference configuration exhibits an average Young’s Modulus
of 12 ± 4.7MPa and the lipid pool is a butter-like, incompressible fluid that can be
described with material parameters, which cause a significantly lower stiffness compared
with the other components. Damage is neither considered in the lipid pool nor in the
calcification due to the minor role of damage effects in these regions.

a) b)
 0

 100

 200

 300

 400

 500

 600

 700

 800

 1  1.1  1.2  1.3  1.4  1.5

I-fc circumferential
I-fc axial

I-fc model
Mf circumferential

Mf axial
Mf model

σ11 [kPa]

λ [-]

1125

180

C E

B

pi [mmHg]

supra-physiological
loading domain

physiological loading domain

time

D

A

F

Figure 7.10: a) Uniaxial extension tests and constitutive model response of the fibrous
cap (I-fc) and the fibrotic media (Mf). Symbols: experimental measuring points; Solid lines:
constitutive model response. b) Variation of the applied internal pressure pi [mmHg].

In Fig. 7.10b the applied loading path of the simulation is shown. Here, six markers (A-F)
characterize important points in the loading path. In point A the artery is unloaded. Then
an internal pressure of 24.0 kPa (=̂180.0mmHg) is applied, which characterizes the upper
bound for the hypertensive pressure and furthermore the initial damage state (point B).
Until point C the internal pressure increases to a value of 150.0 kPa (=̂1125.0mmHg).
Up to this pressure level an over-expansion of the artery takes place. In the next step
the internal pressure is decreased to the physiological state (24.0 kPa, point D). Path B

to D can be interpreted as a balloon-angioplasty procedure. If the first overload is not
sufficient for a successful balloon angioplasty treatment, the over-expansion procedure
has to be repeated. This is simulated by considering of the loading path D to F. Until
the final point of blood pressure in point F is reached, a total number of 140 load steps
are applied. A time-stepping scheme is used in order to define the step size automatically
(∆tini = 0.0001, nmax

it = 6, nmin
it = 5, ∆tmax = 0.2), see Section 8.2 for further explanations.

The results of the numerical example are depicted in Fig. 7.11, Fig. 7.12, and Fig. 7.13. In
Fig. 7.11 the distribution of the normalized damage variable D(1)/maxD(1) under blood
pressure is shown (maxD(1) is the maximum damage value reached in the simulation).
Here, Fig. 7.11a represents the situation after a first over-expansion associated to point D
and Fig. 7.11b represents the situation after the second over-expansion (point F). The
first overstretch mainly induces damage in the media and the fibrous cap, which increases
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during the second overstretch and reaches a higher maximum value. Furthermore, a pro-
nounced concentration is observable at the interface of the media and the fibrous cap.

0.300
0.279
0.257
0.236
0.214
0.193
0.171
0.150
0.129
0.107
0.086
0.064
0.043
0.021
0.000

a) b)

D(1)/maxD(1)

Figure 7.11: Distribution of the normalized damage variable D(1)/maxD(1) in an arte-
rial cross-section under blood pressure of 24 kPa after a) one over-expansion (point D in
Fig. 7.10b), and b) after two over-expansions (point F in Fig. 7.10b).

In another numerical simulation axial residual strains of 5% were taken into account in
order to analyze the assumption that they have a considerable influence on the damage
evolution. It should be noticed, that circumferential residual strains were not considered
in these simulations. This is a reasonable simplification, since the residual stresses are
significantly lower compared with the stresses obtained during an arterial over-expansion.
Firstly, the distribution of (J

(1)
4 )1/2, which is associated to the stretch in the fiber direction,

is taken under consideration in the physiological undamaged configuration at a blood
pressure of 24 kPa (point B), see Fig. 7.12. Comparison of Fig. 7.12a (simulation without
axial residual strains) and Fig. 7.12b (simulation with axial residual strains of 5%) makes
visible, that the fiber stretch is higher if residual strains are taken into account. However,
the difference is rather low.
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Figure 7.12: Distribution of the stretch (J
(1)
4 )1/2 in the fiber direction of a loaded but

undamaged artery at internal pressure of 24 kPa (point B in Fig. 7.10b): a) without axial
residual strains and b) with axial residual strains of 5%.
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Now we again take a look at the normalized damage variable D(1)/maxD(1). In Fig. 7.13
the distribution associated to point E is shown, i.e. at the second over-expansion of the
artery: again we compare the two cases in which no residual strains are taken into account
(Fig. 7.13a) and residual strains of 5% are considered (Fig. 7.13b). Here, the difference
between the two cases is much more pronounced as observed in Fig. 7.12: the normalized
damage values are up to four times higher if we apply axial residual strains. Especially
from a medical perspective, this is an interesting result since the rather high damage
values at the fibrous-cap/media interface could increase the risk of plaque rupture.
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Figure 7.13: Distribution of the normalized damage variable D(1)/maxD(1) in an arterial
cross-section under blood pressure of 150kPa (point E in Fig. 7.10b): a) without and b) with
axial residual strains of 5%.

In order allow the comparison of Fig. 7.11 and Fig. 7.13 the same maximum damage value
of maxD(1) = 0.0951 has been used for the calculation of the normalized value.
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8 Numerical analysis of the robustness of the Penalty-Method
and the Augmented-Lagrange-Method

In this chapter the numerical robustness and the computational costs of three-dimensional
simulations is investigated with regard to the use of a pure Penalty approach and with
regard to the use of an Augmented-Lagrange approach with a nested or a simultaneous
iteration of the Lagrange multiplier. The theory behind the different approaches was
discussed in Section 5.2. For a proper comparison between the approaches we will make
use of an automatic time step size control described in Section 8.2.

In Section 8.1 the constitutive model is described, which is used in the three-dimensional
numerical simulations. The results of the simulations are discussed in Section 8.4 (1 mm
long arterial segment) and in Section 8.5 (patient-specific 10 mm long arterial segment).
Because of the high number of degrees of freedom (more than a million) in case of the sim-
ulation of the longer segment, the parallel implementation of FEAP12 and the FETI-DP13

domain decomposition method is used, which is briefly discussed in Section 8.3. A part
of the following results is published in Brinkhues et al. [2012].

8.1 Constitutive model

In the three-dimensional simulations that are considered in this section arterial walls are
investigated, which are composed of media, adventitia and degenerated tissue. The degen-
erated tissue consists of plaque and in the numerical simulation in Section 8.4 additionally
of calcified regions and extracellular lipid. The strain-energy function of the underlying
media and adventitia material is

ψ = ψiso
NH + ψvol

P +
2∑

a=1

ψti,HGO2

(a) , (8.1)

see the individual energy functions in eq. (5.5), eq. (5.6), and eq. (5.16). For the identifi-
cation of the parameters c1, k1, k2 and βf for the adventitia and the media the material
model (eq. (8.1)) is adjusted to experimental data10 (page 54) with the adjustment strategy
proposed in Section 6.1. In Table 8.1 the resulting parameters are summarized.

c1 k1 k2 βf penalty augmented
[kPa] [kPa] [-] [ ◦] ε1 [kPa] ε2 [-] ε1 [kPa] ε2 [-]

media 9.23 192.86 2626.84 43.9 360.0 9.0 10.0 4.0

adventitia 7.17 3.68e-3 51.15 54.7 70.0 8.5 10.0 4.0

Table 8.1: Material parameters for the media and the adventitia with penalty parameters
ε1 and ε2 for the Penalty approach and the Augmented-Lagrange approach.

Since the adjustment is done under the assumption that the material is quasi-
incompressible, the incompressibility constraint has to be enforced separately in the nu-
merical simulation. Thus, the penalty parameters have to be chosen sufficiently large in
case of the Penalty approach, such that detF ≈ 1, see also Table 8.1. The volumetric

12Finite Element Analysis Program, R. L. Taylor, University of California.
13Finite Element Tearing and Interconnecting - Dual Primal.
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change produced by the chosen penalty parameters is only known subsequently. Using an
Augmented-Lagrange approach lower penalty parameters can be chosen, but an accurate
stopping criterion has to be taken into account (i.e. a sufficiently small tolerance value
TOL, see Fig. 5.1 and Fig. 5.2 must be used). Thus, the volumetric change is controlled
during the iteration process by satisfying the element-wise condition | detF − 1| ≤ TOL.

The stress-strain response of the material model in consideration of the adjusted param-
eters is shown in Fig. 8.1. Here, it is clearly visible that the experimental data and the
material model fit very well for the media as well as for the adventitia in both directions,
i.e. in axial and circumferential direction. Furthermore, the stress-strain response remains
similar under consideration of a Penalty approach, displayed in Fig. 8.1a, compared to
the use of an Augmented-Lagrange approach, see Fig. 8.1b.
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Figure 8.1: Comparison of the stretch-strain response of the experiments and the material
model in a uniaxial extension test (media and adventitia) under consideration of a) a Penalty
approach and b) an Augmented-Lagrange approach.

For the description of the plaque components the isotropic Mooney-Rivlin strain-energy
function ψiso

MR (eq. (5.3)) is used. For the extracellular lipid and the calcified regions the
isotropic part of the energy function is taken into account. The parameters of the degen-
erated tissue are chosen as listed in Table 8.2.
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η1 η2 η3 c1 ε1 ε2
[kPa] [kPa] [-] [kPa] [kPa] [-]

plaque 80.0 250.0 2000.0 – – -

calcified regions – – – 6800.0 50.0 10.0

extracellular lipid – – – 700.0 5250.0 10.0

Table 8.2: Material parameters of the degenerated tissue.

Penalty term. The penalty term ψvol
P in eq. (8.1) models the incompressibility by pe-

nalizing deviations from the constraint detF = 1. The influence of the penalty parameter
on the penalty function is shown in Fig. 8.2. Here, the curve of the penalty function used
for the Penalty-Method is compared with the curve used in the Augmented-Lagrange-
Method. It is clearly visible, that the curve belonging to the Penalty approach is very
steep compared to the one belonging to the Augmented-Lagrange approach.
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Figure 8.2: Comparison of the penalty function ψvol
P = ε1(I

ε2
3 + I−ε2

3 − 2) for the two sets
of parameters (Penalty approach and Augmented-Lagrange approach) for the media, see
Table 8.1.

The second derivative of the penalty function is related to the material tangent. This
derivative with respect to the invariant I3 is given by

∂2ψ

∂2I3
= ε1ε2

(
(ε2 − 1) Iε2−2

3 +
ε2 + 1

Iε2+2
3

)
, (8.2)

which grows linearly with ε1 and exponentially with ε2. Thus, it may have a bad influence
on the condition number of the stiffness matrix, i.e. the condition number may deteriorate.

8.2 Automatic time stepping

In order to ensure a proper comparison between the different approaches an automatic
time stepping scheme is used, where the size of the incremental time steps is controlled. It
should be noticed, that the notation “time” is used in the sense of a “pseudo” time. Here,
the initial time step size ∆tini is chosen. During the simulation the step size is reduced
automatically by ∆t = ∆t·10−1/5, if more than nmax

it Newton iterations are needed. On the
other hand, if less than nmin

it Newton iterations are needed, the time step size is increased
by ∆t = ∆t · 101/5. The maximum time step size is bounded from above by ∆tmax.
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Regarding the nested Augmented-Lagrange approach only the number of Newton itera-
tions in the first Newton step is considered. Generally, the later Newton steps converge
faster than the first step. In the simultaneous Augmented-Lagrange approach (SAL) the
iteration for the Lagrange multiplier is performed simultaneously with the Newton cor-
rection. As mentioned in Section 5.2.3 this can be seen as an inexact Newton method.
Therefore, the bounds nmax

it and nmin
it are chosen higher.

8.3 FEAP and FETI-DP Method

The pre- and postprocessing of the computation is done by FEAP12 (page 79), while the
FETI-DP13 (page 79) method is used to subdivide the domain and to solve the solution
vector with a parallel solution strategy. Within our parallel solver environment we use
MPI14, PETSc15, UMFPACK16 and ACML17.

One global iteration can be divided into the following main steps:

i) FEAP: Computation of element stiffnesses and element right-hand-sides and trans-
ferring the computed values by the use of an interface to the FETI-DP solver.

ii) FETI-DP: Decomposition of the whole domain into subdomains, assembling of the
systems of equations for all subdomains, and computation of the solution vector by
the parallel solver.

iii) Transferring the solution vector by the use of an interface to FEAP.

iv) FEAP: Update of the displacement vector.

In this work the classical Newton-Krylov-FETI-DP approach is used. Here, firstly the
linearization is done and thereafter the linearized systems are solved using the FETI-DP
domain decomposition method.

FETI-DP domain decomposition method In Farhat and Roux [1991] FETI domain
decomposition methods were first introduced. In the framework of domain decomposition
methods an approximate inverse is built from solving small problems on subdomains
and a small global problem. For an overview on domain decomposition methods see the
textbooks Smith et al. [1996], Quarteroni and Valli [1999], and Toselli and Widlund [2005].
The more recent FETI-DP domain decomposition methods were proposed in Farhat et al.
[2000a, 2001] and enhanced in, for example, Klawonn and Widlund [2001, 2002, 2005,
2006], Klawonn et al. [2002], Klawonn [2006], Klawonn and Rheinbach [2006, 2007a],
Klawonn et al. [2011]. By using FETI methods, large structural-mechanics problems can
be solved on massively parallel machines, see for example Farhat et al. [2000b], Bhardwaj
et al. [2000], and Klawonn and Rheinbach [2010].

In the framework of FETI-DP methods the considered domain B0 is decomposed into
a number of N nonoverlapping subdomains B0,i, i = 1, . . . , N , with diameter H and
boundary ∂B0,i. A graph partitioner (Karypis et al. [2003]) is used in order to define the

14MPI: Message Passing Interface.
15PETSc: Portable, Extensible Toolkit for Scientific Computation; Balay et al. [2001, 2004, 1997].
16UMFPACK: Unsymmetric MultiFrontal PACKage; Davis [2004].
17ACML: AMD Core Math Library released by the american company AMD (Advanced Micro Devices).
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decomposition into unions of finite elements with matching finite-element nodes on the
boundaries of neighboring subdomains across the interface

Γ :=
⋃

i 6=j
∂B0,i ∩ ∂B0,j and Γ =

N⋃

i=1

∂B0,i \ ∂B0 , (8.3)

with ∂B0,i ∩ ∂B0,j . This process does not need access to geometric data since it is a com-
pletely algebraic process. After decomposition one or several subdomains can be allotted
to each processor.

The linearized subdomain problems, cf. eq. (4.33), are identified for each subdomain B0,i
with the local stiffness matrices K(i), the load vectors f (i), and the local displacement
increment ∆D(i), i.e.

K(i) ∆D(i) = f (i) with i = 1, . . . , N . (8.4)

We distinguish between nonprimal variables with index (•)B and primal variables with
index (•)Π. Furthermore, the nonprimal variables are subdivided into internal variables
with index (•)I and dual variables with index (•)∆. Thus, the local stiffness matrices are
given by

K(i) =

[
K

(i)
BB (K

(i)
ΠB)

T

K
(i)
ΠB K

(i)
ΠΠ

]
with K

(i)
BB =

[
K

(i)
I I (K

(i)
∆ I)

T

K
(i)
∆ I K

(i)
∆∆

]
. (8.5)

Generally, the N independent local problems in eq. (8.4) lead to discontinuous solutions
across the subdomain interfaces Γ. In order to enforce continuity of the solution in the
primal variables, a finite-element subassembly is performed

[
KBB (KΠB)

T

KΠB KΠΠ

]
=




K
(1)
BB · · · 0 (K

(1)
ΠB)

T

...
. . .

...
...

0 · · · K
(N)
BB (K

(N)
ΠB)

T

K
(1)
ΠB · · · K

(N)
ΠB

∑N
i=1K

(i)
ΠΠ



. (8.6)

Using a global-to-local map RΠ with entries from {0, 1} and the identity IB applied on
the nonprimal variables, we achieve the partially assembled, global stiffness matrix

K̃ =

[
KBB (K̃ΠB)

T

K̃ΠB K̃ΠΠ

]
=

[
IB 0
0 (RΠ)

T

] [
KBB (KΠB)

T

KΠB KΠΠ

] [
IB 0
0 RΠ

]
, (8.7)

which is coupled in the primal variables yielding a coarse problem for the method. An
appropriate choice of the primal variables yields a positive definite matrix K̃. The corre-
sponding global load vector and global displacement increment appear as

f̃ =

[
fB
f̃Π

]
=

[
IB 0
0 (RΠ)

T

] [
fB∑N
i=1 f

(i)
Π

]
=




f
(1)
B
...

f
(N)
B

f̃Π




and ∆D̃ =

[
∆DB

∆D̃Π

]
. (8.8)
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In order to enforce equality of the solution of the other subdomain interface variables
∆D∆, the continuity constraint B∆D̃ = 0, with B = [0,B∆, 0], is introduced. The ma-
trices B = [B(1), . . . ,B(N)] are denoted as jump operators and have entries from {−1, 0, 1}.
We use Lagrange multipliers λ and obtain the minimization problem

K̃∆D̃ + BTλ = f̃

B∆D̃ = 0



 , (8.9)

yielding the saddle point system

[
K̃ BT

B 0

] [
∆D̃
λ

]
=

[
f̃
0

]
. (8.10)

By eliminating the displacement variables ∆D̃ we obtain the Schur-complement system

FFETIλ = d , with FFETI = BK̃−1BT and d = BK̃−1f . (8.11)

We solve eq. (8.11) iteratively with a preconditioned Krylov subspace method, the GMRES
(generalized minimum residual) method. Hereby, the memory requirements are signifi-
cantly reduced by performing the iteration only on the interface. As preconditioner we
use the Dirichlet preconditioner M−1 := BDRT

Γ SRΓB
T
D, whith the Schur complement

S, the restriction matrix RΓ with elements {0, 1} (removes interior variables ∆DI from

∆D̃), and scaled variants of the jump operator B, i.e. BD. For further information on the
FETI-DP solver the reader is referred to Rheinbach [2006] and Klawonn and Rheinbach
[2006, 2007b], it has been also used in Balzani et al. [2009a].

8.4 Simulation of an arterial segment with an axial length of 1 mm

The tree-dimensional arterial model investigated in this section was generated by an ex-
trusion of an arterial cross-section, such that the model is 1 mm in depth, i.e. in axial
direction. In Fig. 8.3 the model is shown, which is discretized with 8 812 quadratic tetra-
hedral elements with 14 594 nodes, which gives 43 782 degrees of freedom.

adventitia

 
 
 
 

media
 
 
 
 
 

plaque

calcified region

`
`
`
`
`
`
`̀

extracellular lipid

Figure 8.3: Model of the artery, which consists of adventitia, media and degenerated intima
(plaque, extracellular lipid, calcified regions).

In the simulation all nodes of the cross-section in the front and the back of the arterial
model are fixed in axial direction. Additionally, the displacements of two nodes are fixed
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vertically and the displacements of one node is fixed horizontally. The constitutive model
for the individual components is described in Section 8.1 and the material parameters are
listed in Table 8.1 and Table 8.2.

For the enforcement of incompressibility the following methods are used and
analyzed regarding the robustness of the simulation: i) the Penalty-Method,
ii) the Augmented-Lagrange-Method with a nested iteration (NAL) and an adherence
of the (detF = 1)-condition with a tolerance of ±1% and κal = 999.0, and iii) the
Augmented-Lagrange-Method with a simultaneous iteration (SAL) and an adherence of
the (detF =1)-condition with a tolerance of ±1% and κal = 999.0.

For the automatic time stepping scheme the initial time step size value is ∆tini = 0.001 and
the maximum time step size is ∆tmax = 0.1. For the simulations with the Penalty approach
and the nested Augmented-Lagrange-Method the bounds are nmax

it = 9 and nmin
it = 6

and for the simulation with simultaneous Augmented-Lagrange-Method nmax
it = 11 and

nmin
it = 8.

The distribution of detF under an inner pressure pi = 24 kPa is shown in Fig. 8.4. The
quasi-incompressibility condition can be regarded as met in a sufficient manner: for the
two simulations with the Augmented-Lagrange approach the tolerance value is maintained
and also for the simulation with the Penalty approach detF ≈ 1± 0.01.

a)

min = 0.9963
max = 1.0119

b)

min = 0.9928
max = 1.0099

c)

detF

min = 0.9936
max = 1.0096

Figure 8.4: Distribution of the determinant of the deformation gradient detF under an
inner pressure pi = 24 kPa using a) the Penalty-Method and using the Augmented-Lagrange-
Method with b) a nested iteration and c) a simultaneous iteration.

An evaluation of the numerical simulation with regard to the robustness is given in Fig. 8.5.
Here, the diagrams show the time increment, the last absolute residual norm and the
number of Newton iterations over time. In the simulation with the Penalty-Method more
time steps are needed. It can be stated that during the automatic time stepping scheme
the maximum time increment ∆tmax is reached faster when the Augmented-Lagrange-
Method is used. Furthermore, in most cases the value of the last residual norm using
an Augmented-Lagrange-Method is below the value using the Penalty-Method. Compar-
ison of the two Augmented-Lagrange approaches shows, that more Newton iterations are
needed using the nested iteration compared to the simultaneous iteration. In summary, the
highest robustness of the simulation can be obtained by using the Augmented-Lagrange-
Method with a simultaneous iteration.
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Figure 8.5: Time increment, last absolute residual norm of the time step and number
of Newton iterations over time: a) Penalty-Method; Augmented-Lagrange-Method with b)
nested iteration and with c) simultaneous iteration.

8.5 Simulation of an arterial segment with an axial length of 10 mm

The three-dimensional geometry of the artery analyzed in the following numerical simu-
lation is based on histological pictures, cf. Brands et al. [2009], Balzani et al. [2011]. The
artery is composed of media, adventitia and of a large inclusion of plaque, see Fig. 8.6.

Figure 8.6: Layered finite element model of the arterial segment discretized using 10-noded
tetrahedral elements: a) complete arterial model, b) blanked adventitia and c) plaque.
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The model is discretized with 305 033 quadratic tetrahedral elements yielding 434 517
nodes and therefore 1 303 551 degrees of freedom. Due to such a large number of degrees
of freedom, the FETI-DP domain decomposition method is used parallel to the Finite
Element Program FEAP, see Section 8.3. The Newton method stops if a reduction of the
absolute residual norm to a value less than 10−6 or a value less than 10−4 for three consec-
utive Newton steps is achieved. In the FETI-DP Krylov iteration the stopping criterion is
an absolute residual less than 5 · 10−9. The domain is decomposed into 224 subdomains,
see Fig. 8.7.

Figure 8.7: Domain decomposition of the arterial segment into 224 subdomains. For a
better view of the nonoverlapping method the subdomains are dispersed.

The following different methods are used in order to enforce quasi-incompressibility:

• Penalty-Method

• Augmented-Lagrange-Method with the nested iteration and enforcement of the con-
dition | detF − 1| ≤ 0.01, i.e. TOL = 1%, and the parameter κal = 499.0

• Augmented-Lagrange-Method with the simultaneous iteration and enforcement of
the condition | detF − 1| ≤ 0.01, i.e. TOL = 1%, and the parameter κal = 500.0

• Augmented-Lagrange-Method with the simultaneous iteration and enforcement of
the condition | detF − 1| ≤ 0.001, i.e. TOL = 1‰, and the parameter κal = 1 000.0

For the automatic time stepping scheme the initial time step size value is ∆tini = 0.001
and the maximum time step size is ∆tmax = 0.4. For the simulations with the Penalty
approach and the nested Augmented-Lagrange-Method (NAL) the bounds are nmax

it = 9
and nmin

it = 6 and for the simulation with simultaneous Augmented-Lagrange-Method
(SAL) nmax

it = 36 and nmin
it = 18.

The artery is loaded with an internal pressure of pi = 33.331 kPa (≈ 250 mmHg). In
Fig. 8.8a the range of the determinant of the deformation gradient detF under full load-
ing is shown for the different approaches. In the Augmented-Lagrange approaches the
predefined conditions | detF − 1| ≤ 0.01 and | detF − 1| ≤ 0.001, respectively, are met.
The solution using the Penalty approach only satisfies | detF − 1| ≤ 0.0209. Additionally,
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Fig. 8.8 shows the distribution of the determinant of the deformation gradient detF . The
distribution is depicted for the Penalty approach, the NAL, and the SAL approach with
a tolerance value of 10−2. The overall distribution is very smooth in case of all three
different simulations. Furthermore, due to the equal tolerance value, the two simulations,
in which the Augmented-Lagrange-Method are used, exhibit an almost identical distribu-
tion. One reason for the difference to the simulation using the Penalty-Method is that it
is not possible to explicitly define a tolerance value.

 0.99

 0.995

 1
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 1.01

 1.015

 1.02

 1.025
detF

penalty NAL, TOL =1% SAL, TOL =1% SAL, TOL =1‰a)

detF

b) c) d)

Figure 8.8: a) Diagram showing the range of the determinant of the deformation gradient
for the different used approaches. The minimum and maximum values (detFmin/detFmax)
are as follows: penalty (0.9926/1.0209), NAL with TOL = 0.01 (0.9901/1.0099), SAL with
TOL = 0.01 (0.9902/1.01), SAL with TOL = 0.001 (0.9990/1.001); Distribution of the
determinant of the deformation gradient detF : b) Penalty approach, c) NAL (TOL=10−2),
and d) SAL with TOL=10−2.

In Fig. 8.9, Fig. 8.10, Fig. 8.11 and Fig. 8.12 the evaluations of the simulations are
displayed. The diagrams show the time increment, the last absolute residual norm, the
number of Newton iterations, and the number of FETI-DP iterations for each approach.
Additionally, the main facts are summarized in compact form in Table 8.3. Here, also the
total costs of the computations are listed, which can roughly be estimated by multiplying
the number of global Newton steps (summary of all Newton steps needed within the
simulation) with the corresponding average number of (inner) FETI-DP iterations.
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Figure 8.9: Penalty-Method: a) time increment, b) last absolute residual norm, c) number
of Newton iterations, and d) FETI-DP iterations over time.
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Figure 8.10: NAL method: a) time increment, b) last absolute residual norm, c) number
of Newton iterations, and d) FETI-DP iterations over time.
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Figure 8.11: SAL method with TOL = 0.01: a) time increment, b) last absolute residual
norm, c) number of Newton iterations, and d) number of FETI-DP iterations over time.
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Figure 8.12: SAL method with TOL = 0.001: a) Time increment, b) last absolute residual
norm, c) number of Newton iterations, and d) number of FETI-DP iterations over time.
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If we compare the number of Newton iterations needed in the Penalty-Method in
Fig. 8.9 with the number needed in the simultaneous Augmented-Lagrange-Method with
TOL = 0.01 (see Fig. 8.11) more Newton iterations are needed in the SAL approach due
to the additional Augmented-Lagrange iterations. Nevertheless, the convergence of the
nonlinear scheme and the linear iterative solver is much faster in case of the SAL method,
so that the total costs are less, see also Table 8.3. The total cost of the nested Augmented-
Lagrange approach (Fig. 8.10) is distinctly higher due to the high amount of the Newton
iterations.

In Fig. 8.10c, Fig. 8.11c and Fig. 8.12c it is visible that the number of Newton iterations
becomes greater during the simulation. A reason for that may be, that only a very small
number of finite elements violate the element-wise condition | detF − 1| ≤ TOL in the
beginning of the simulation and this number increases in the course of the simulation.

We can also observe, that the number of FETI-DP iterations becomes greater during the
simulations, see Fig. 8.9d, Fig. 8.10d, Fig. 8.11d and Fig. 8.12d. This may be a result
of the increasing influence of the incompressibility constraint during the simulation. In
Balzani et al. [2009a] it was found out that the convergence of the nonlinear iteration
scheme as well as the convergence of the iterative linear solver is measurably influenced
by the anisotropies resulting from the energy terms of the fibers. Thus, an alternative
explanation is that the increase of iterations is due to exponential stiffening of the fibers.

Summarizing the above, it can be conducted that the use of the Augmented-Lagrange-
Method can significantly improve the properties of the linearized systems appearing in the
nonlinear solution scheme. Here, a lower number of iterations is needed for convergence
of the FETI-DP iterative method. Furthermore, larger time steps ∆t can be chosen,
such that the convergence of the nonlinear scheme is also improved. Nevertheless, the
Augmented-Lagrange approach needs an additional iteration process for the Lagrange
multiplier.

time global Newton ∅ FETI-DP total
steps iterations iterations costs

penalty 19 112 220.8 24 729.6
(min = 170,max = 316)

SAL, TOL = 0.01 13 141 150.2 21 178.2
(min 98,max = 217)

NAL, TOL = 0.01 19 618 154.0 95 172.0
(min = 98,max = 427)

SAL, TOL = 0.001 13 248 161.4 40 027.2
(min = 98,max = 368)

Table 8.3: Comparison of the methods in the framework of the FETI-DP method. The
Finite-Element model has approx. 1.3 million degrees of freedom, see Fig. 8.6. The total
cost can be estimated roughly by multiplying the number of global Newton iterations by the
average number of FETI-DP iterations. This table is taken from Brinkhues et al. [2012].
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9 Incorporation of residual stresses in patient-specific arteries

In this chapter a method for the incorporation of residual stresses into a numerical model
for the simulation of arterial walls is introduced. Section 9.1 gives an overview of the
state of the art in this field of research. The proposed new method, see also Schröder and
Brinkhues [2012], is based on the assumption that residual stresses reduce the gradient
of the wall stresses in radial direction. An experimental motivation for such an approach
is given in, for example, Takamizawa and Hayashi [1987] or Fung [1991]. The idea is to
use the local difference of the circumferential stresses with respect to its volume average
for the estimation of the residual stresses. In Section 9.2 a plausibility check of the new
approach is done by a simple numerical simulation of an isotropic two-dimensional ideal
tube. Here, the gradients of the circumferential stresses are reduced through the residual
stresses. Since arterial walls are anisotropic and exhibit a distinct material behavior in
fiber direction, suitable stress measures (the fiber stresses) are defined. The associated
invariants, which are used for the definition of the residual stresses in soft biological tis-
sues are derived in Section 9.3. Since an arterial geometry is not rotationally symmetric,
the numerical realization of this method is based on a decomposition of the domain into
different segments, see Section 9.4. Furthermore, each segment is subdivided into sectors
depending on how many different fiber reinforced layers the segments consist of (e.g. ad-
ventitia and media). Such sectoral division seems to be evident, since the individual layers
exhibit different opening angles and therefore a different residual stress distribution, see
Holzapfel et al. [2007], especially figure 6 on page 537. In Section 9.5 numerical simulations
are performed in order to show the suitability of the proposed approach.

9.1 State of the art in the modeling of residual stresses in arteries

Until the early 1980‘s a cylindrical arterial segment, which is not loaded with any external
force, was assumed to be stress free. This assumption was disproved experimentally by
Vaishnav and Vossoughi [1983]. They sliced circular rings of bovine and porcine abdominal
aortas radially; for a schematic illustration see Fig. 9.1. After the radial sectioning the rings
opened up into a horseshoe leading to the conclusion that the aorta is residually stressed
in circumferential direction when it is intact but free from external forces. However, Bergel
[1960] seems to be the first who observed this phenomenon.

θ

Figure 9.1: Schematic of longitudinal cut through an artery and resulting opening angle θ.

In Chuong and Fung [1986] it was stated that residual stresses reduce the magnitude of the
stresses and the stress gradient of a pressurized artery significantly, see also Fung [1991].
Takamizawa and Hayashi [1987] suggested that the residual stresses cause an almost uni-
form circumferential strain distribution under physiological pressure; this is called the
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uniform-strain hypothesis. In Nollert et al. [1992] it is stated that a reduction of the stress
gradient at the inner side of the arterial wall may reduce the risk of atherogenesis. Further
experimental observations on rat aortas showed that the level of the segmental opening
differs depending on the position of the segment in the aortic tree, see Liu and Fung
[1988]. Thus, the opening angle θ gradually varies from the ascending aorta to the lumbar
region: it starts by 160◦, follows a curve to 60◦, tends toward zero before becoming slightly
negative and increases again over 60◦. Liu and Fung [1989] banded abdominal rat aortas
near the celiac trunk in order to establish hypertension. Then they discussed the change
of the opening angle as a result of hypertension and hypertrophy and found out that a
change in blood pressure changes the residual strains and therefore the opening angle
significantly. They stated that the residual-strain change is stress-modulated. A study on
the circumferential residual stresses in the left ventricle and the trachea is given in Omens
and Fung [1990] and Han and Fung [1991], respectively. The zero-stress state of small
blood vessels, which consists of 79–57% smooth muscles, was investigated by Fung and
Liu [1992]. Additionally, the effect of several drugs on the microvessels were presented.
Experiments on bovine aortas done by Vossoughi et al. [1993] showed that even the cut-
ted configuration is not fully stress-free. Additional circumferential cuts caused different
opening angles for the individual arterial layers. Thus, the magnitude of opening of the
inner layers increases while those of the outer layers reduces indicating that stresses still
remain after the radial cut. Experiments on human aortas in Schulze-Bauer et al. [2002a]
revealed also that residual stresses are not vanishing by a single cut, see also the study of
Matsumoto et al. [2004] on porcine thoracic aortas. Greenwald et al. [1997] investigated
aortas from rats and provided similar results concerning the different opening angles of the
individual layers after mechanical removal of the other layers. Additionally, they showed
that elastase treated (elimination of elastin) specimens offer smaller opening angles while
collagenase treated (elimination of collagen) and frozen (destruction of smooth muscle
cells) specimens behave like the untreated control specimens. First studies on human tho-
racic and abdominal aortas were done by Saini et al. [1995]. Here, the influence of age, sex,
the position along the artery, and atherosclerosis on the opening of sliced arterial rings
was discussed. It was stated that the value of the opening angle increases with increasing
distance from the heart (female: 150◦–200◦, male: 200◦–250◦). They also observed larger
opening angles in aged and atherosclerotic diseased vessels, and in those obtained from
male samples. Three-dimensional residual deformations of intact human abdominal aortas
were shown in Holzapfel et al. [2007]. In this study arterial rings were cut open and then
separated into three layers. Furthermore, residual deformations on axial strips were in-
vestigated. It was stated that, due to the occurrence of the residual deformations in three
dimensions, they cannot be described by a single parameter. A review of experimental
methods for residual-strain measurement was given by Rachev and Greenwald [2003].
Chuong and Fung [1986] were probably the first to use a constitutive model to compute
residual stresses. They discussed a procedure for the description of the geometry of an
open artery, whose closed counterpart was regarded as thick-walled cylindrical tube with
constant thickness. This method is known as opening-angle method. Therewith they com-
puted the two-dimensional residual stresses in the unloaded closed artery and showed
that the residual stresses enforce compression on the inner side of the vessel wall and
tension on the outer side of the vessel wall. Many works are based on the opening-angle
method to achieve an analytical solution for the residual strains of initially open ideal
tubes, which were closed by an initial bending. Rachev [1997] derived a mathematical
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model for the stress-dependent remodeling of a two-layer arterial tube. The assumption
that the stress and strain values are equal under hypertensive and normotensive condi-
tions was taken into account by means of remodeling of the zero-stress configuration by
thickening of the layers. They also observed remaining residual stresses in the opened-up
configuration of a hypertensive artery. Using a one-layer model Chaudhry et al. [1997]
showed that circumferential stresses and gradients are reduced significantly at the inner
wall. The opening-angle method was also used by Holzapfel for an analytical solution of
the initial deformation tensor for multilayered arterial tubes. In Holzapfel et al. [2000a]
the opening-angle method was applied to a two-layered tube and different material models
were investigated. Another key objective was to analyze the effect of the residual stresses
onto the overall stress distribution in the physiological regime. The high-pressure response
is analyzed in Holzapfel and Gasser [2007]. Peña et al. [2006] applied the opening-angle
method to more realistic arterial geometries and conducted corresponding finite-element
simulations. To account for residual stresses, Alastrué et al. [2007a] used a special form
of the multiplicative decomposition of the deformation gradient, in which one part corre-
sponds to the opening angle experiment. This approach was also investigated by Alastrué
et al. [2008], where growth was included, and implemented in a micro-sphere model in
Alastrué et al. [2009]. A combination of the opening-angle method and a constrained mix-
ture model of vascular growth and remodeling was suggested in Cardamone et al. [2009].
Here, the mixture components are the individual constituents of the artery, i.e. elastin,
collagen and smooth muscle. One aim of the authors was find the origin of residual stress.
For the modeling of growth and remodeling in the framework of constrained mixture
models see also Alford et al. [2008] and Valentin and Humphrey [2009]. Holzapfel and
Ogden [2010] accounted for the different behavior of the three main arterial layers and
used different opening angles for the individual layers. Additionally, they extended the
opening-angle method by accounting for bending and stretching in both circumferential
and axial directions in order to reflect the three-dimensional residual stretch and stress
state. A further extension of the model was done by Bustamante and Holzapfel [2010],
which accounted for opening angles depending on axial and radial position, i.e. different
opening angles along the tube. Furthermore, a different set of opening angles for intima,
media and adventitia were considered. St̊ahlhand et al. [2004] used experimental data in
order to derive a residual-strain state. In order to do so, a minimization problem was
derived for an approximate identification of material parameters including the residual
strains. The parameters for the residual strains were presumed in the sense of the opening-
angle method. This parameter identification algorithm is used in Olsson et al. [2006] to
determine an initial local deformation tensor, which is able to describe the residual strain,
see also Klarbring et al. [2007]. An extension of the model was given by Olsson and Klar-
bring [2008], which introduced the evolution of growth. In the recent paper of Chen and
Eberth [2012] a uniform circumferential stress was obtained by introducing a special class
of constitutive functions without considering a residually stressed state. This idea could
be attractive for the design of engineered blood vessels.
In contrast to the above mentioned methods Balzani et al. [2006b, 2007] used a numerical
method in order to establish a residual-strain state. Here, an initially open artery was
numerically closed within a displacement-driven procedure. This model is appropriate,
but nevertheless numerically extensive. In this work a novel model for the incorporation
of residual stresses is proposed. An advantage of this model is that it is suitable for the
incorporation of residual stresses in patient-specific three-dimensional arterial models.
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9.2 Numerical simulation of an isotropic two-dimensional ideal tube

As a plausibility check of the new approach two-dimensional numerical simulations of an
isotropic ideal tube are performed. The circular ring has an inner radius r = 1 mm and
an outer radius of r = 2 mm and is discretized with 6 100 quadratic triangular elements,
see Fig. 9.2a. The material behavior is reflected by the Mooney-Rivlin model ψ = ψiso

MR

introduced in eq. (5.3). The corresponding material parameters are randomly chosen and
listed in Table 9.1. According to the procedure introduced in Section 6.2.1 the Lamé
constants are µ = 30 [kPa] and λ = 345 [kPa] and the Poisson’s ratio is ν = 0.46.

c1 c2 c3

[kPa] [kPa] [kPa]

8.75 6.25 80.0

Table 9.1: Material parameters of the isotropic ideal tube.

Under an inner pressure of pi = 16 kPa (120 mmHg) the distribution of the stresses in
circumferential direction with the normal vector nϕ

σϕ = σ : (nϕ ⊗ nϕ) (9.1)

arises as depicted in Fig. 9.2b (solid line). The maximum stresses are located at the inner
surface (r = 1 mm) and decrease towards the outer surface (r = 2 mm), such that a stress
gradient of the circumferential stresses in radial direction can be observed. According
to the above mentioned approach this gradient should be reduced as a consequence of
residual stresses in circumferential direction.

a)
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without residual stresses 
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with residual stresses (B)

σϕ [kPa]

r [mm]

Figure 9.2: a) Ideal two-dimensional circular ring discretized with 6 100 quadratic trian-
gular elements. b) Circumferential stresses σϕ [kPa] plotted over the radius r [mm] without
and with application of residual stresses at an inner pressure of pi = 16 kPa ≈ 120 mmHg;
(A) after the first application of residual stresses and (B) after a further application.

Firstly the average value of the circumferential stresses in radial direction are computed.
In this special case for a rotationally symmetric distribution of stress we get

σϕ =
1

V

∫

B

σϕ(x) dv . (9.2)
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It should be noted that eq. (9.2) only holds for this rotationally symmetric stress distri-
bution. The difference between the circumferential stresses and the average value is used
to compute the residual stress distribution

σres = ∆σϕ nϕ ⊗ nϕ with ∆σϕ = σϕ − σϕ . (9.3)

After the application of the residual stresses by a stress update σ ⇐ σ − σres the cir-
cumferential stresses arise as depicted in Fig. 9.2b (line with circles). If this procedure18

is repeated another time a fully homogeneous stress distribution is obtained as indicated
by line with solid circles in Fig. 9.2b. The stress distribution along the tube before and
after the application of the smoothing-loop are shown in Fig. 9.3a and b.
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Figure 9.3: Stress distribution of circumferential stresses σϕ in an isotropic two-dimensional
circular ring under an inner pressure of pi = 16 kPa: a) without considering residual stresses
and b) after application of the residual stresses. c) Pure residual stress distribution in an
unloaded circular ring (pi = 0 kPa) and d) opening of the ring due to residual stresses.

If the circular ring is unloaded to zero internal pressure, i.e. pi = 0 kPa, only the residual
stresses remain as depicted in Fig. 9.3c. It is clearly visible that the residual stresses
enforce pressure at the inner surface and tension at the outer surface as was expected. In
a further step, the tube is sliced radially. As shown in Fig. 9.3d, the circular ring opens
due to the residual stresses. An opening angle can be observed and the circumferential
stresses are almost zero.

18Each of those applications of residual stresses we call a “smoothing-loop”.
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9.3 Derivation of suitable invariants for the definition of residual stresses in
fiber-reinforced soft biological tissues

In patient-specific arteries circumferential stress cannot uniquely be defined. Furthermore,
due to the heterogeneous composition of arteries as well as from a biological and physical
point of view, the usage of the circumferential stresses is not suitable for the purpose of
defining residual stresses in fiber reinforced soft biological tissues. Therefore, the definition
of physically and biologically motivated invariants is of crucial importance.

Soft biological tissues are assumed to be quasi-incompressible materials. Generally, in case
of such kinematically constrained materials the true stresses σ are decomposed into devia-
toric and hydrostatic parts. Furthermore, fiber-reinforced tissues like arterial walls exhibit
a distinct behavior in the direction of the fibers. Therefore, the Cauchy stresses are addi-
tively decomposed into deviatoric ground stresses σ∗, which depend on the deformation,
and reaction stresses σr

σ = σ∗ + σr . (9.4)

The second part of the stresses, σr, is a reaction to the constraints and cannot be computed
from constitutive equations. For the definition of suitable invariants we assume (in addition
to the incompressibility of the material) the (fictive) inextensibility of the fibers. Since the
material is assumed to be incompressible and inextensible in the current fiber directions
a(1) and a(2), the reaction is composed of a hydrostatic pressure p and tensions T(1) and
T(2) in the direction of inextensibility a(1) and a(2), respectively. Thus, the reaction stress
tensor σr results from the equilibrium conditions in consideration of the side conditions
of the boundary value problem and arises as

σr = −p 1+ T(1) m̃(1) + T(2) m̃(2) . (9.5)

Here, m̃(1) and m̃(2) are the structural tensors associated to the preferred directions ã(1)

and ã(2) in the current placement, i.e.

m̃(a) = ã(a) ⊗ ã(a) with ã(a) =
a(a)

||a(a)||
and a(a) = FA(a) for a = 1, 2 . (9.6)

Following eq. (9.5) the expressions trσ∗, σ∗ : m̃(1) and σ∗ : m̃(2) are absorbed into the
functions p, T(1) and T(2) leading to the side conditions on the ground stresses

trσ∗ = 0 , σ∗ : m̃(1) = 0 and σ∗ : m̃(2) = 0 . (9.7)

The general idea of this approach is based on Spencer [1972] and Rogers [1987], see
also Schröder [1996]. It should be noticed, that the assumption of inextensible fibers is
intended for the motivation of suitable invariants only. This assumption is not taken into
account in the constitutive modeling of the arterial behavior. In consideration of eq. (9.5)
and eq. (9.7) the projection of the stresses onto the current preferred directions and the
evaluation of the volumetric part of the stresses lead to the following three conditions

σ : m̃(1) = − p + T(1) + T(2) m̃(2) : m̃(1) ,

σ : m̃(2) = − p + T(1) m̃(1) : m̃(2) + T(2) ,

1 : σ = − 3 p + T(1) + T(2) ,

(9.8)
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from which the hydrostatic pressure p and the fiber stresses T(1) and T(2) can be obtained

p =
[
−(ξ + 1) 1 : σ + σ : m̃(1) + σ : m̃(2)

]
/
[
3ξ + 1

]
,

T(1) =
[

(1− ξ) 1 : σ − 2 σ : m̃(1) + (3 ξ − 1) σ : m̃(2)

]
/ Ξ ,

T(2) =
[

(1− ξ) 1 : σ + (3 ξ − 1) σ : m̃(1) − 2 σ : m̃(2)

]
/ Ξ .

(9.9)

Here, the abbreviations ξ = m̃(1) : m̃(2) = cos2 φ and Ξ = 3 ξ2 − 2 ξ − 1 are introduced,
where φ denotes the inclination angle between the two current preferred directions.

9.4 Incorporation of residual stresses

The incorporation of residual stresses is based on a decomposition of the domain, which
is carried out in two consecutive steps. First, the arterial cross-section, which consists of
nMAT layers or materials, respectively, is initially decomposed into nSG segments. Then,
each segment is further subdivided into nMAT sectors, depending on the number of ma-
terials the segments consists of. Considering a two-dimensional arterial cross-section, the
number of sectors can be specified as

n2D
SC = nSG · nMAT . (9.10)

In Fig. 9.4a the decomposition of a two-dimensional arterial cross-section consisting of
two layers is depicted schematically.

m○a○

}segment

a) b)

Figure 9.4: Schematical illustration of the decomposition of an arterial cross-section, which
consists of two materials (media m○ and adventitia a○, i.e. nMAT = 2), nSG = 16; a) two-
dimensional cross-section decomposed into n2DSC = 32 sectors and b) additional longitudinal
decomposition in nL = 5 parts yielding nSC = 32 · 5 = 160 sectors.

The consideration of three-dimensional numerical simulations requires an additional de-
composition in longitudinal direction. Thus, a decomposition in nL longitudinal section
increases the number of sectors to nSC = n2D

SC · nL, see Fig. 9.4b.

When the artery is loaded with a physiological internal pressure, the local volume average
values of the fiber stresses are computed for each sector19 with the subvolumes Vi, i.e.

T
i

(1) =
1

Vi

∫

Bi

T(1)(x) dv and T
i

(2) =
1

Vi

∫

Bi

T(2)(x) dv , (9.11)

19These average values provide well-defined values only for (nearly) coaxial preferred directions in each
sector. Thus, the increase of the amount of segments provides more and more suitable values.
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with i = 1, . . . , nSC and x ∈ Bi. The difference between this mean value and the fiber
stresses yields the stresses

∆T(1) = T(1) − T
i

(1) and ∆T(2) = T(2) − T
i

(2) in Bi . (9.12)

These stresses in turn are used for an estimation of the residual stresses

σres = −∆p 1+∆T(1) m̃(1) +∆T(2) m̃(2) . (9.13)

Since the residual stresses should not cause changes in volume, ∆p can be computed from
the condition trσres = 0 and yields

∆p =
1

3

(
∆T(1) +∆T(2)

)
. (9.14)

The estimation of the residual stresses is accomplished within an iterative process, as
mentioned in the isotropic example in Section 9.2. Here, the so-called smoothing-loops
(SL) are applied with a certain amount of the computed residual stresses in eq. (9.13)
in a stepwise manner. After that the residual stresses are stored and considered in the
following simulations in form of the second Piola-Kirchhoff stress tensor

Sres = JF−1 σres F−T . (9.15)

9.5 Numerical simulations

In this section some numerical simulations are investigated in order to show the suitability
of the proposed approach. In Section 9.5.1 an anisotropic two-dimensional ideal tube is
considered. Here, a pitch circle, which consists of only one material, is investigated as
well as a whole circular ring consisting of two materials (media and adventitia). A two-
dimensional realistic artery is investigated in Section 9.5.2. The cross-section originates
from patient-specific VH IVUS data, see Section 6.2. Finally, three-dimensional parts of a
patient-specific arterial wall are simulated in Section 9.5.3. For the media and adventitia
we use the strain-energy function

ψ = ψiso
MR +

2∑

a=1

ψti,HGO1

(a) , (9.16)

see eq. (5.3) and eq. (5.15) and the material parameters from Section 6.2.2, Table 6.3. The
plaque is modeled according to Section 6.2.1 where the parameter set IV is used, see Ta-
ble 6.2. The condition of quasi-incompressibility is enforced by an augmented Lagrangian
solution strategy, see Section 5.2.3.

9.5.1 Anisotropic two-dimensional ideal tube

This section is subdivided into two parts. In the first part a pitch circle of −5◦ to 5◦ is
considered, which consists purely of media material. Here, the smoothing effect on the
gradients of some stress measures as a result of the incorporation of the residual stresses
is investigated. In the second part of this section a complete circular ring is considered,
which consists of media and adventitia. In this simulation the focus will be on the opening
of the circular ring due to residual stresses.
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Analysis of a pitch circle consisting of media material. The pitch circle, which
consists only of media material, is discretized with 10 015 triangular elements, see Fig. 9.5.
The cross-section is subdivided into n2D

SC = 2 · 1 sectors20 since nMAT = 1. The pitch circle
is loaded with an internal pressure of pi = 16.0 kPa and a number of 10 smoothing-loops
(SL) is applied with 100%.

pi

Figure 9.5: Pitch circle with boundary conditions, which is discretized with 10 015 quadratic
triangular elements. On the right hand side a detail of the mesh is depicted.

In Fig. 9.6a the fiber stress T(1) in the fiber direction a(1) over the radius r is depicted.
The different curves show the fiber stress distribution without considering residual stresses
(normal) and after application of residual stresses using 2, 5 or 10 SLs. A strong gradient
is visible if no residual stresses are considered. The gradient decreases as a consequence
of the application of residual stresses. After 10 SL the distribution is almost linear.
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Figure 9.6: a) Fiber stress T(1) in the direction a(1) over the radius r [mm] in a radial cut
without and with residual stresses (2, 5, and 10 smoothing-loops (SL)). b) Maximum and
minimum value of the fiber stress T(1) in one of the two sectors after each applied SL.

The diagram in Fig. 9.6b shows the minimum and maximum values of the fiber stress T(1)
in one of the two sectors after each applied smoothing-loop. It is clearly visible that the
difference of the minimum and maximum values decreases continuously. As a consequence
the stress-gradient in the sector, in which the element is located, decreases.

The distributions of the fiber stresses of the overall pitch circle without considering residual
stresses and after application of the residual stresses are depicted in Fig. 9.7. Additionally,

20Note, that the use of only one sector would be sufficient due to the homogeneous material.



102 Incorporation of residual stresses in patient-specific arteries

the distributions of some values in a horizontal slice through the pitch circle at x2 = 0 mm
are shown: the fiber stresses T(1), the pressure p, the Cauchy stress σ11 and σ22 as well
as the gradient of the σ22-stresses σ

′
22. In this slice the stresses σ11 are equal to the

radial stresses σr and the stresses σ22 are equal to the circumferential stresses σϕ. In the
simulation, in which no residual stresses are considered, the stresses T(1), σ11, σ22, and
the pressure p exhibit a highly exponential character and therefore a strong gradient. The
gradient of the σ22-stresses (σ′

22) is very high at the inner side of the pitch circle. After
the application of the residual stresses, the gradients are smoothed such that they the
stresses are nearly linear and the gradient σ′

22 is almost zero.
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Figure 9.7: Distribution of the fiber stresses T(1) [kPa] of the overall pitch circle without
considering residual stresses (left hand side) and after application of the residual stresses
(right hand side) and distribution of some values in a horizontal slice through the pitch circle
at x2 = 0 mm: the fiber stresses T(1), the pressure p, the Cauchy stresses σ11 and σ22 (which
are equal to the radial stress σr and the circumferential stress σϕ, respectively) as well as
the gradient of the σ22-stresses σ

′

22.
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Analysis of a circular ring consisting of media and adventitia material. The
cross-section of the circular ring is composed of two materials (nMAT = 2: media and ad-
ventitia) and discretized with 6 100 quadratic triangular elements, see Fig. 9.8a. It is de-
composed into n2D

SC = 36 · 2 sectors and loaded with an internal pressure of pi = 16.0 kPa.
The corresponding distribution of the fiber stresses T(1) over the radius is depicted in
Fig. 9.8b and in Fig. 9.8c. After application of 2, 5, and 10 smoothing-loops with an
amount of 100% the fiber-stress distribution arises as shown in Fig. 9.8b. Since the stresses
are smoothed in an appropriate way after 2 smoothing-loops the further simulations are
performed with the residual stresses obtained at this stage of the simulation, see Fig. 9.8d.
Here, an almost homogeneous distribution can be observed in the media and in the ad-
ventitia, respectively. If the ring is unloaded and then sliced, it opens as a result of the
residual stresses and an opening angel appears, see Fig. 9.8e.
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Figure 9.8: a) Two-dimensional circular ring discretized with 6 100 quadratic triangular
elements, which consists of media and adventitia material. Fiber-stress T(1) under an inner
pressure of pi = 16 kPa: b) over radius r [mm] (without residual stresses and after application
of 2, 5, and 10 smoothing-loops); c) distribution without residual stresses and d) after
application of residual stresses. e) Opening due to residual stresses (pi = 0 kPa).

9.5.2 Two-dimensional realistic artery

In this section the simulation of a two-dimensional patient-specific arterial cross-section
in consideration of residual stresses is discussed. The arterial model is identical to that
in Section 6.2.2, see Fig. 6.4. It is decomposed into n2D

SC = 36 · 2 sectors, even though
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there exist three materials (adventitia, media, and plaque) nMAT = 2. This is due to the
reasonable assumption that the plaque exhibits no fibers (T(1) = T(2) = 0) and thus no
residual stresses. At an internal pressure of pi = 16.0 kPa a number of 13 smoothing-loops
are applied with 10% of magnitude. The fiber stresses T(1) at x2 = 0 mm before and after
the application of the smoothing-loops arise as depicted in Fig. 9.9.
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Figure 9.9: Fiber stresses T(1) without and with residual stresses (after application of 13
smoothing-loops (SL)) in the direction a(1) in a diagram over the radius r [mm] (x2 = 0 mm;
left: left hand side of the domain, right: right hand side of the domain without plaque; the
origin of the coordinate system is approximately in the center of the domain).

Throughout the whole procedure the adventitia is almost stress free. However, in the
media the smoothing of the strong gradient as a result of the application of the residual
stresses is visible. The smoothing of the stresses can also be seen in Fig. 9.10a. Here, the
σ22 stress distribution is displayed.
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Figure 9.10: Stress distribution of the σ22 stresses without and with residual stresses (left
hand side and right hand side, respectively).

In order to allow for a more quantitative statement about the smoothing of the stress
distribution, we take a look at the stress gradient σ′

22. In Fig. 9.11 the gradients σ′
22

corresponding to the σ22 stresses are depicted in the horizontal slice through the artery.
It can be observed that the gradients in consideration of residual stresses are two times
to four times lower compared to those without residual stresses.
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Figure 9.11: Diagram of the gradients σ′

22 [kPamm ], which correspond to the σ22 stress. The
gradients are depicted over the current radius r [mm] in a horizontal slice through the artery.

Next, we analyze the behavior of the unloaded artery with residual stresses after a radial
cut. In order to do so, a sliced, but geometrically closed cross-section is taken into account.
The residual-stress distribution, which has been computed in the previous numerical sim-
ulation, is applied on the cross-section. In Fig. 9.12 the result of the simulation is shown.
The artery opens due to the residual stresses and an opening angle of θ ≈ 50◦ arises.

θ ≈ 50◦
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Figure 9.12: Distribution of the von Mises stress σvM [kPa] in an opened artery (opening
angle θ ≈ 50◦). The opening is only due to residual stresses as the internal pressure is zero.

The von Mises stresses, defined by σvM =
√

3/2 ‖ devσ‖ with devσ = σ − 1
3
trσ 1, are

close to zero in the opened state. However, the stresses are not exactly equal to zero,
which is in agreement with the experimental findings of Vossoughi et al. [1993].

9.5.3 Three-dimensional realistic artery

In this section the proposed approach is applied to the incorporation of residual stresses in
three-dimensional simulations of patient-specific arterial walls. We consider a construction
of the arterial geometry based on two sequenced two-dimensional VH IVUS images, see
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Section 6.2, with a distance of 0.5 mm to each other21. In the first example we consider the
geometry depicted in Fig. 9.13. The model is discretized with 2 725 triangular elements
with quadratic shape functions.

Figure 9.13: Three-dimensional patient-specific arterial model consisting of adventitia (or-
ange), media (red), and plaque (yellow). Discretization was done with 2 725 elements.

The geometry is decomposed into nSC = 10 · 2 · 3 = 60 sectors. Since we consider the
adventitia and the media for the computation of the residual stresses we have nMAT = 2,
as explained in Section 9.5.2. As mentioned in Section 9.4 a segmentation in longitudinal
direction is also needed. Therefore, nL = 3 segments are investigated in this direction.
In the simulation the arterial wall is loaded with an internal pressure of pi = 16.0 kPa.
Thereafter, a number of seven smoothing-loops is applied, each with an amount of 10%.
In Fig. 9.14 the distribution of the σ22 stresses is depicted for the case that no residual
stresses are considered and after the application of the smoothing-loops.

σ22 [kPa] σ22 [kPa]

a) b)

Figure 9.14: Distribution of the stresses σ22 [kPa]: a) without considering residual stresses
and b) after the application of the smoothing-loops.

It is visible that the residual stresses influence the stress distribution in the physiological
loading range such that the stresses are smoothed. Nevertheless, in this three-dimensional
simulation the smoothing is not as pronounced as in the two-dimensional case. The open-
ing of the artery as a result of the residual stresses is analyzed in an unloaded but sliced
configuration, see Fig. 9.15. In the opened state the von Mises stresses are nearly zero
and an opening angle of θ ≈ 30◦ arises.

21For a detailed discussion of the construction principle the reader is referred to Balzani et al. [2011].
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Figure 9.15: Distribution of the von Mises stresses σvM [kPa] in an open artery. The
opening is due to residual stresses.

In two further simulations, the application of the residual stresses is applied on dis-
tinct three-dimensional arterial-wall geometries. The segmentation was again done with
nSC = 60 sectors. The first model is discretized with 5 620 triangular elements with
quadratic shape functions, as shown in Fig. 9.16a.
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Figure 9.16: a/c) Three-dimensional patient-specific arterial models. b/d) Corresponding
distribution of the von Mises stresses σvM [kPa] in the opened artery.

Here, six smoothing-loops are applied with an amount of 10%. Again, the residual stresses
lead to an opening of the artery when it is sliced in radial direction, see Fig. 9.16b. In
Fig. 9.16c the discretization of the second model is shown. Here, 5 452 triangular elements
with quadratic shape functions are used. During this simulation 11 smoothing-loops are
applied with an equal amount of 10%. In Fig. 9.16d the opening of the artery is shown.
Comparison of the opening angles of the three simulations shows that the respective angles
are different, which can be explained by the difference in the arterial-wall compositions.
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10 Summary and outlook

This work dealt with the constitutive modeling of soft biological tissues with a focus on
i) the construction of suitable damage models for the simulation of degenerated arteries
and ii) the development of a novel model for the incorporation of residual stresses in
arterial-wall simulations.

Summary. In order to motivate the work a general overview on the composition
and the mechanics of arterial walls was provided with a special focus on diseases and
possible treatments. It was discussed that atherosclerosis, as one of the most frequent
degenerations of the human vessels, contributes immensely to serious diseases such as
heart attack and stroke. The understanding of the mechanisms of the related treatments
as for example the overexpansion of the vessel using a balloon angioplasty could help
to improve and facilitate corresponding medical therapies. A key to understand the
mechanical behavior of the human artery is given by continuum mechanics. Therefore,
the fundamental continuum-mechanical relations were provided and discussed in detail.
Since the typical deformations of the vessel during treatment are rather large, the theory
is provided in the general, non-linear case and the field equations are formulated in
terms of non-linear deformation and stress measures. Since analytical solutions of the
occurring field equations on any domains under general boundary conditions do not
exist, a numerical scheme given by the Finite-Element-Method was used in this work.
Thus, some fundamental procedures of the non-linear Finite-Element-Method were
introduced and discussed in detail. We started with the strong form of the balance of
linear momentum and converted it into a weak formulation using Galerkin’s method.
Based on that, a discrete version was derived using discretization with finite elements. In
order to provide a concise representation of the procedures, vector-matrix notation was
used throughout the derivations.
Material models of soft biological tissues are based on suitable energy functions which
describe the constitutive response of the underlying material. In this work, we focused on
polyconvex free energies since they guarantee the existence of minimizers and material
stability. The construction of such polyconvex functions was discussed and several
energies were provided, which are suitable for the description of the physical behavior
of arterial walls. Since the biological tissues which are analyzed in this work do not
change their volume under applied loading we had to employ a suitable method for
the consideration of this incompressibility constraint. The Penalty-Method as well as
the Augmented-Lagrange-Method were explained in detail. Later on, the robustness of
related numerical simulations with regard to the incorporation of these two different
methods was investigated. Here, a special focus was on a boundary value problem with
about a million degrees of freedom describing the structure of a patient-specific arterial
segment with 10 mm in length. In order to solve the arising equations, an iterative
solution strategy (FETI-DP) was used, which is based on domain decomposition. The
FETI-DP domain decomposition method was explained briefly. It was found out, that
the use of an augmented Lagrange algorithm provides advantages for the nonlinear
and the iterative solution in terms of the number of iterations needed for obtaining
convergence of the FETI-DP iterative method and the possibility to apply larger time
steps. Adequate material parameters of the free energy were identified from experimental
uniaxial extension tests by using a least-squares method. Whenever no experimental data
was available reasonable parameters were chosen.
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In order to get an insight into the field of damage mechanics, this work provided a liter-
ature overview as well as a detailed discussion of the hysteretic stress-strain behavior of
soft biological tissues. For the construction of damage models a construction principle was
proposed, which is based on the construction principle of polyconvex energy functions.
This principle was applied to some specific constitutive models, which were then adjusted
to experimental data. In a two-dimensional simulation of a realistic arterial cross-section
the applicability of the anisotropic damage model was shown. As a further aspect axial
strains were taken into consideration. The proposed algorithm worked in the framework
of finite element simulations and the damage models were able to reflect the experimental
stress-strain behavior accurately.
There exist a variety of publications in the scientific literature on the incorporation of
residual stresses, which were outlined in this work. Many of these works are based on the
the so-called opening angle method, which is, however, restricted to ideal geometries. In
this work, a novel model was proposed, which is concerned with the numerical implemen-
tation of residual stresses in patient-specific geometries. The basic idea of this approach is
to reduce the stress gradients in circumferential direction. In an isotropic simulation this
effect was incorporated by application of residual stresses, which were computed under
physiological loadings. When the residually stressed body was sliced it opened as a result
of the residual stresses. In order to apply the method to fiber-reinforced soft biological
tissues, first suitable invariants were defined as function of the stresses in the direction of
the embedded fibers. These fiber stresses were used to compute the residual stresses in
particular segments of the arterial wall. The segmentation was done for two reasons: i) in
order to account for the heterogeneous composition of the arterial wall and ii) in order
to reflect the distinct residual stress behavior in the particular layers. In the performed
numerical simulations of an anisotropic ideal tube and of two- and three-dimensional
patient-specific arterial walls, the expected results were achieved. The stresses in circum-
ferential direction exhibited a smoothed distribution under physiological loadings and an
opening angle was observed after application of the residual stresses to the unloaded, but
sliced arterial walls.

Outlook. Biomechanics is a scientific field, which will always bear new aspects and mo-
tivation for further research. Here, only a few aspects related to this work are mentioned:

(i) In order to describe the material behavior of soft biological tissues as accurate as
possible, a focus should be on the micro-mechanical response of the individual com-
ponents of the tissue. For this reason material models could be developed, which
reflect the macro-mechanical behavior based on micro-mechanical information. Es-
pecially for the modeling of the damage behavior this could give further insight into
the complex structural interactions.

(ii) In order to allow for more realistic simulations, the method for the incorporation
of the residual stresses could be applied to larger arterial segments. For such large-
scale simulations parallel solution strategy are necessary. Thus, the residual-stress
approach could be implemented in the FETI-DP scheme. In this way the biome-
chanical analysis of patient-specific arteries could be improved.
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A Notation and calculation rules

Tensor operations in tensor and index notation

1st-order contraction: c = a · b or c = aibi

a = Ab or ai = Aijbj

A = BC or Aij = BikCkj

2nd-order contraction: c = A : B or c = AijBij

A = A : B or Aij = AijklBkl

dyadic product: A = a⊗ b or Aij = aibj

(A.1)

Arrangement of a matrix

A = Aij =




A11 A12 · · · A1m

A21 A22 · · · A2m

...
...

. . .
...

An1 An2 · · · Anm




← 1st row

← 2nd row

· · ·
← nth row

↑ ↑ ↑
1st 2nd · · · mth column

Transposed of a matrix
AT or (Aij)

T = Aji (A.2)

with (AT )T = A , (A+B)T = AT +BT , (AB)T = BTAT (A.3)

Identity matrix (also 2nd-order identity tensor)

1 = δij =




1 0 · · · 0
0 1 · · · 0
...

...
. . .

...
0 0 · · · 1


 (A.4)

Trace of a matrix (also trace of a 2nd-order tensor)

trA = A : 1 = c or A11 + A22 + . . .+ Ann =
n∑

i=1

Aii = c (A.5)

A symmetric matrix is characterized by

A = AT (A.6)

A skew-symmetric matrix is characterized by

A = −AT and trA = 0 (A.7)
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Matrix notations of some 4th-order unity tensors

I = Iijkl =
1

2
(δikδjl + δilδjk) =




1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1/2 0 0
0 0 0 0 1/2 0
0 0 0 0 0 1/2




(A.8)

Ī = Īijkl = 1⊗ 1 = δijδkl =




1 1 1 0 0 0
1 1 1 0 0 0
1 1 1 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0




(A.9)

Î = Îijkl = δikδjl =




1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1




(A.10)

Gradient of a scalar s, of a vector v, and of a 2nd-order tensor T

grad = ∇ =




∂

∂x
∂

∂y
∂

∂z




, grad s =




∂s

∂x
∂s

∂y
∂s

∂z




, gradv =




∂vx
∂x

∂vx
∂y

∂vx
∂z

∂vy
∂x

∂vy
∂y

∂vy
∂z

∂vz
∂x

∂vz
∂y

∂vz
∂z




grad s = ∇s = v or s,i = vi → vector

gradv = ∇v = T or vi,j = Tij → 2nd-order tensor

gradT = ∇T = T̄ or Tij,k = T̄ijk → 3rd-order tensor

(A.11)

Divergence of a vector v and a 2nd-order tensor T

div v =
∂vx
∂x

+
∂vy
∂y

+
∂vz
∂z

, divT =




∂Txx
∂x

+
∂Txy
∂y

+
∂Txz
∂z

∂Tyx
∂x

+
∂Tyy
∂y

+
∂Tyz
∂z

∂Tzx
∂x

+
∂Tzy
∂y

+
∂Tzz
∂z




div v = gradv : 1 = ∇v : 1 = s or vi,i = s → scalar

divT = gradT : 1 = ∇T : 1 = v or Tij,j = vi → vector
(A.12)
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Some calculation rules

div(sv) = v · grad s+ s div v

div(sT ) = T · grad s+ s divT

div(Tv) = (divT T ) · v + T T : gradv

(A.13)

Another tensor operation that is often used is the tensor product of a tensor with a vector.
Let A be a tensor and let v be a vector. Then the tensor cross product gives a tensor C
defined by

C = A× v =⇒ Cij = ekljAikvl , (A.14)

or T = v × v via Tij = ǫijkvk. The permutation symbol eijk is defined as

eijk =





1 if ijk = 123, 231, or 312

−1 if ijk = 321, 132, or 213

0 if any two indices are alike

(A.15)

Divergence theorem (also referred to as Gauß’s theorem)

∫

B

div[v v] dV =

∫

∂B

v v · n dA =

∫

∂B

v v · dA

∫

B

divT dV =

∫

∂B

T · n dA =

∫

∂B

T · dA
(A.16)
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B Voigt notation of the tangent modulus C

The arrangement of the 4th-order elasticity tensor C in 9×9 matrix notation based on the
vector notation of the stresses [σ̂] = [σ11, σ22, σ33, σ12, σ23, σ13σ21, σ32, σ31, ] and the strains
[ε̂] = [ε11, ε22, ε33, ε12, ε23, ε13, ε21, ε32, ε31] is given by

[C9×9] =




C1111 C1122 C1133 C1112 C1123 C1113 C1121 C1132 C1131

C2211 C2222 C2233 C2212 C2223 C2213 C2221 C2232 C2231

C3311 C3322 C3333 C3312 C3323 C3313 C3321 C3332 C3331

C1211 C1222 C1233 C1212 C1223 C1213 C1221 C1232 C1231

C2311 C2322 C2333 C2312 C2323 C2313 C2321 C2332 C2331

C1311 C1322 C1333 C1312 C1323 C1313 C1321 C1332 C1331

C2111 C2122 C2133 C2112 C2123 C2113 C2121 C2132 C2131

C3211 C3222 C3233 C3212 C3223 C3213 C3221 C3232 C3231

C3111 C3122 C3133 C3112 C3123 C3113 C3121 C3132 C3131




. (B.1)

Based on the Voigt notation of the stresses [σ] = [σ11, σ22, σ33, σ12, σ23, σ13, ] and the
strains [ε] = [ε11, ε22, ε33, 2ε12, 2ε23, 2ε13, ] the 9 × 9 matrix can be transformed into the
6× 6 matrix

[C6×6] =




C1111 C1122 C1133 C11(12) C11(23) C11(13)

C2211 C2222 C2233 C22(12) C22(23) C22(13)

C3311 C3322 C3333 C33(12) C33(23) C33(13)

C(12)11 C(12)22 C(12)33 C(12)(12) C(12)(23) C(12)(13)

C(23)11 C(23)22 C(23)33 C(23)(12) C(23)(23) C(23)(13)

C(13)11 C(13)22 C(13)33 C(13)(12) C(13)(23) C(13)(13)




(B.2)

where C(ij)kl =
1
2
(Cijkl+Cjikl), Cij(kl) =

1
2
(Cijkl+Cijlk), and C(ij)(kl) =

1
2
(C(ij)kl+Cij(kl)).

With the symmetries Cijkl = Cjikl = Cijlk = Cklij we get the final representation

[C] =




C1111 C1122 C1133 C1112 C1123 C1113

C2222 C2233 C2212 C2223 C2213

C3333 C3312 C3323 C3313

C1212 C1223 C1213

sym C2323 C2313

C1313




. (B.3)
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C Partial derivatives of the invariants with respect to C

In this appendix some partial derivatives of the invariants with respect to the right
Cauchy-Green tensor C are provided. The first derivative of the principal invariants are
given by

∂I1
∂C

=
∂ trC

∂C
=
∂C : 1

∂C
= 1 ,

∂I3
∂C

=
∂ detC

∂C
= detCC−1 = CofC ,

∂I2
∂C

=
∂ tr[ CofC]

∂C
=
∂{detCC−1} : 1

∂C
=
∂ detC{C−1 : 1}

∂C

= CofC tr[C−1]− detCC−2 = CofC[tr[C−1]−C−1] .

(C.1)

Using the Cayley-Hamilton theorem multiplied with C−1 we obtain C2 = I1C − I21 +
I3C

−1, and with tr[ CofC] = tr[C−1] detC we get CofC = C2 − I1C + I21. Thus we
compute the first derivative of the second invariant alternatively as

∂I2
∂C

= C2 tr[C−1]− I1C tr[C−1] + I21 tr[C
−1]−C2C−1 + trCCC−1 − I21C−1

= tr[C−1][C2 − I1C + I21− I3C−1]−C + trC1 = trC 1−C .
(C.2)

The first derivatives of the mixed invariants are given by

∂J4
∂C

=
∂ tr[CM ]

∂C
=
∂CM : 1

∂C
= M ,

∂J5
∂C

=
∂ tr[C2M ]

∂C
=
∂C2M : 1

∂C
= CMT +MTC = CM +MC ,

(C.3)

with the symmetric structural tensor MT = M . The second derivative of the first invari-
ant is zero, i.e. ∂CC∂

2I1 = ∂C1 = 0, and the second derivative of the second principal
invariant is given by

∂2I2
∂C∂C

=
∂{trC 1−C}

∂C
= 1⊗ 1− 1⊠ 1 . (C.4)

with (•)⊠(•) in index notation is defined as {(•)AB}⊠{(•)CD} = (•)AC(•)BD. The second
derivative of the third principal invariant is given by

∂2I3
∂C∂C

=
∂ CofC

∂C
=
∂ detCC−1

∂C
= detCC−1 ⊗C−1 − detCC−1

⊠C−1 . (C.5)

The second derivative of the fourth invariant is zero, i.e. ∂CC∂
2J4 = ∂CM = 0, and of

the fifth invariant it is given by

∂2J5
∂C∂C

=
∂{CM +MC}

∂C
= (1⊠M)

34
T + (M ⊠ 1)

34
T , (C.6)

with (•)
34
T in index notation is defined as {(•)ABCD}

34
T = (•)ABDC .
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