
1

Three Dimensional Display

PROJECT REPORT
On

Development of Three Dimensional Display Based on lighting scheme using
Microcontroller

This Project submitted to the department of Electrical and Electronic Engineering to fulfill the
requirements of the degree of Bachelor of Science in Electrical and Electronic Engineering.

SUBMITTED BY

NAME: ID:

MD. JEWEL MONDAL 073800057

MD. RUHUL AMIN 081800056

S. M. EMRAN 091800024

K.M. SHAFKAT JANIL 081800088

MD. RAKIBUL HASAN 091800049

Supervised by

ABU SHAFIN MOHAMMED MAHDEE JAMEEL

(Lecturer, Faculty of Engineering & Technology)

DEPARTMENT OF ELECTRICAL AND ELECTRONIC ENGINEERING

EASTERN UNIVERSITY, BANGLADESH

AUGUST, 2012

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Eastern University Digital Library

https://core.ac.uk/display/33797827?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

2

Three Dimensional Display

DECLERATION

We do here by solemnly declare that, the work presented in this project report has been
carried by us and has been previously submitted to any other university for an academic
certificate/diploma or degree.

Signatures of the Candidates:

……………………

MD. JEWEL MONDAL

ID#073800057

……………………….

MD. RUHUL AMIN

ID#081800056

…………………….......

K.M.SHAFKAT JANIL

ID#081800088

………………..

S. M. EMRAN

ID#091800024

……………………..

MD. RAKIBUL HASAN

ID#091800049

3

Three Dimensional Display

APPROVAL
The project report design and implementation of development of three dimensional display
(3D) based on lighting scheme using Microcontroller has submitted to the following members
of the board of examiners of the faculty of Engineering & Technology in partial fulfillment of
the requirement for the Bachelor of degree of Science in Electrical & Electronics Engineering
by following students and has been accepted as satisfactory.

1. MD. JEWEL MONDAL ID#073800057

2. MD. RUHUL AMIN ID#081800056

3. K.M. SHAFKAT JANIL ID#081800088

4. S. M. EMRAN ID#091800024

5. MD. RAKIBUL ISLAM ID#091800049

Supervisor External Chairperson

………………………………… …………………….. ………………………….

ABU SHAFIN MOHAMMAD MAHDEE JAMIL MD. ASHIF IQBAL SIKDAR PROF. DR.
MIRZA GOLAM RABBANI

Sr. Lecturer Lecturer Chairperson

Faculty of E & T Faculty of E & T Faculty of E & T

Eastern University, Bangladesh Eastern University, Bangladesh Eastern University, Bangladesh

4

Three Dimensional Display

DEDICATION

Dedicated to our beloved parents and our honorable teachers.

5

Three Dimensional Display

ACKNOWLEDGEMENT

At first, we are grateful to the Almighty Allah, who helped us to complete this
project papers work successfully.

We would like to thank the following people for their valuable assistance during
the year:

It is a real pleasure to express our deepest appreciation sincere gratitude and
gratefulness to our project supervisor Abu Shafin Mohammad Mahdee
Jameel, Lecturer, Faculty of E&T, Eastern University, Bangladesh. For his supervision
and on his ongoing assistance throughout the year. His willingness to be a
mentor, to engage in problem solving and to provide feedback was greatly
appreciated and valued for his assistance in designing PFI in an efficient and
positive manner.

Our friends and family, thank you for your support and assistance.

At last, we would like to remember our almighty Allah for whom we can get
education.

6

Three Dimensional Display

ABSTRACT

Now a days we cannot imagine world without technology. By developing
technology, microcontroller is very important part for the performance of any
type programming through electronics,

In the project LEDs present many advantages over incandescent light sources
including lower energy consumption, longer life time, improved robustness,
smaller size, faster switching easy installation application, friendly environment,
and greater reliability. We designed our LED light scheme with advanced
technology which can replace directly the conventional bulbs such as
incandescent bulbs, lamppost, sodium as a rod light,

In this project we made work three dimensional display with micro-controller
based. We are supplied additional computer power supply for the 3D display.
We used program based microcontroller technology in this project. So we used
here programmable device AT mega 16.

We used here 64 LEDs for the design a cube and we also used here capacitor,
resistor, and extra power supply. Light will be bright and dark as programming
code.

7

Three Dimensional Display

INDEX

TABLE OF CONTENTS: PAGE NO.

A. Title Page ……………………………………………. 1

B. Declaration ……………………………………………. 2

C. Approval ……………………………………………… 3

D. Dedication …………………………………………….. 4

E. Acknowledgement ……………………………………. 5

F. Abstract ………………………………………………. 6

G. Index …………………………………………………. 7

H. Contents ………………………………………………. 8-9

8

Three Dimensional Display

CONTENTS

Sl.No Name Page

Chapter I-Introduction & Hardware 10-26

1.1 Led Cube 10
1.2 Introduction 11
1.3 Goal 12
1.4 Hardware 13
1.5 Microcontroller 14
1.6 Difference between Microprocessor and Microcontroller 16
1.7 Memory Unit 17
1.8 Interrupt 18
1.9 Central Processor Unit 18

1.10 Power Supply Unit 19
1.11 Timer 19
1.12 Counter 19
1.13 A/D Converter 20
1.14 Reduced Instruction Set Computer 20

1.15 Complex Instruction Set Computer 21
1.16 MAX232 21
1.17 USB asp 22
1.18 Wiring 23
1.19 Capacitors 23
1.20 20 Resistors 24
1.21 Transistor 26
1.22 Crystal oscillator 26

Chapter II-Software Implementation 27-31

2.1 AVR Microcontroller 27
2.2 AVR microcontrollers Categories 27
2.3 What’s special about AVR? 27
2.4 Features of Atmega16 28
2.5 Architecture of AVR 29
2.6 Atmel At mega 16 AVR 30
2.7 Pin Diagram of AT mega 16 Microcontroller 31

Chapter III-Overall Description & hardware Implementation 32-36

3.1 Working procedure 32
3.2 Assembly of the led’s 33
3.3 Wiring is done 35
3.4 Chief selection 36
3.5 Enabling Analogue to Digital Conversion 36

Chapter IV- Circuit Implementation & Programming 37-54

4.1 Circuit Diagram 37

9

Three Dimensional Display

4.2 Programming 38
4.3 Program Development 39
4.4 Output Three Dimensional Display 41
4.5 Final Code 42

Chapter V- Conclusion & Future 55-58

5.1 Conclusion 55
5.2 Future Developments and Improvements 56
5.3 Discussion 57

Reference 58

10

Three Dimensional Display

1.1 Led Cube 4x4x4

Project
Started: 12- 08-2011
Finished: 06-08-2012

11

Three Dimensional Display

1.2 Introduction

This project is based on microcontroller for the lightning scheme of led cube from the
Website www.instructables.com it was designed by “CHR” I’ve changed this design to fit my
purpose and materials while still being able to keep the same.

12

Three Dimensional Display

1.3 Goal

--To know microcontroller and it’s application.

--Create a similar led cube to the one from intractable.

--Program different behavior.

--Make it look as nice as possible.

13

Three Dimensional Display

1.4 Hardware

Led’s:

Light emitting diodes are diodes which produce light when current passes through in the right direction.

Just like any diode the other direction is completely blocked. Led’s are nowadays commonly used as light sources
because they are smaller, very efficient and have
a longer lifetime.

14

Three Dimensional Display

1.5 Microcontrollers:

Microcontrollers are small computers in a small package. They contain several
things such as a processor, ram and programmable memory and most last but
not least inputs and outputs. Microcontrollers are used in most automatically
controlled devices e.g. microwaves, cellphones and alarms. They are very
convenient to use for products produced in huge quantities because they can be
programmed very quickly. And they are very small compared to previous

techniques in which processor ram and programmable memory are separated.
These computers in a chip are nowadays also used in mp3 players in which
another function is very useful, this function is the sleep function, and
microcontrollers are able to wake up immediately on the touch of a button.

Microcontroller can be termed as a single on chip computer which includes number of peripherals like RAM,
EEPROM, Timers etc., required to perform some predefined task.

15

Three Dimensional Display

Figure: : Architecture of AVR Microcontroller

Does this mean that the microcontroller is another name for a computer…?
The answer is NO!

The computer on one hand is designed to perform all the general purpose tasks on a single machine like you can use
a computer to run a software to perform calculations or you can use a computer to store some multimedia file or to
access internet through the browser, whereas the microcontrollers are meant to perform only the specific tasks, for
e.g., switching the AC off automatically when room temperature drops to a certain defined limit and again turning it
ON when temperature rises above the defined limit.

There are number of popular families of microcontrollers which are used in different applications as per their
capability and feasibility to perform the desired task, most common of these
are 8051, AVR and PIC microcontrollers.

16

Three Dimensional Display

1.6 Difference between Microprocessor and Microcontroller:
A microcontroller differs from a microprocessor in many ways. The first and most important difference is its
functionality. In order that the microprocessor may be used, other components such as memory must be added to it.
Even though the microprocessors are considered to be powerful computing machines, their weak point is that they
are not adjusted to communicating to peripheral equipment. Simply, In order to communicate with peripheral
environment, the microprocessor must use specialized circuits added as
External chips, in short microprocessors are the pure heart of the computers. This is how it was in the beginning and
remains the same today.

On the other hand, the microcontroller is designed to be all of that in one. No other specialized external
components are needed for its application because all necessary circuits which otherwise belong to peripherals are
already built into it. It saves the time and space needed to design a device.

Figure: Different Between Microcontroller versus Microprocessor

Microprocessor = cpu
Microcontroller = cpu + peripherals + memory
Peripherals = ports + clock + timers + uarts + adc converters +lcd drivers + dac + other stuff.
Memory = eeprom + sram + eprom + flash

A microcontroller has a combination of all this stuff.
A microprocessor is just of cpu.

17

Three Dimensional Display

1.7 Memory Unit:
Memory is part of the microcontroller used for data storage. The easiest way to explain it is to compare it with a
filing cabinet with many drawers. Suppose, the drawers are clearly marked so that it is easy to access any of them. It
is easy enough to find out the contents of the drawer by reading the label on the front of the drawer.

Each memory address corresponds to one memory location. The content of any location becomes known by its
addressing. Memory can either be written to or read from. There are several types of memory within the
microcontroller.

Figure: Memory Location

ROM (Read Only Memory) is used to permanently save the program being executed. The size of a program that can
be written depends on the size of this memory. Today’s microcontrollers commonly use 8-bit addressing, which
means that they are able to address up to 64 Kb of memory, i.e. 65535 locations. As a novice, your program will
rarely exceed the limit of several hundred instructions. There are several types of ROM. Exceed the limit of several
hundred instructions. There are several types of ROM.

18

Three Dimensional Display

1.8 Interrupt:

Figure : Central Processing Unit (CPU)

The most programs use interrupts in regular program execution. The purpose of the microcontroller is mainly to
react on changes in its surrounding. In other words, when some event takes place, the microcontroller does
something... For example, when you push a button on a remote controller, the microcontroller will register it and
respond to the order by changing a channel, turn the volume up or down etc. If the microcontroller spent most of its
time endlessly a few buttons for hours or days... It would not be practical. The microcontroller has learnt during its
evolution a trick. Instead of checking each pin or bit constantly, the microcontroller delegates the “wait issue” to the
“specialist” which will react only when something attention worthy happens. The signal which informs the central
processor about such an event is called an INTERRUPT

1.9 CPU (Central Processor Unit):
As its name suggests, this is a unit which monitors and controls all processes inside the microcontroller. It consists
of several smaller subunits, of which the most important are:

 Instruction Decoder is a part of the electronics which recognizes program instructions and runs other circuits
on the basis of that. The “instruction set” which is different for each microcontroller family expresses the
abilities of this circuit.

 Arithmetical Logical Unit (ALU) performs all mathematical and logical operations upon data.

 Accumulator is a SFR closely related to the operation of the ALU. It is a kind of working desk used for
storing all data upon which some operation should be performed (addition, shift/move etc.). It also stores the
results ready for use in further processing. One of the SFRs, called a Status Register (PSW), is closely
related to the accumulator. It shows at any given moment the “status” of a number stored in the accumulator
(number is greater or less than zero etc.).

19

Three Dimensional Display

1.10 Power Supply Unit:

There are two things worth attention concerning the microcontroller power supply circuit. Brown-out is a potentially
dangerous state which occurs at the moment the microcontroller is being turned off or in situations when power
supply voltage drops to the limit due to electric noise. As the microcontroller consists of several circuits which have
different operating voltage levels, this state can cause its out-of-control performance. In order to prevent it, the
microcontroller usually has built-in circuit for brown out reset. This circuit immediately resets the whole electronics
when the voltage level drops below the limit.

Reset pin is usually marked as MCLR (Master Clear Reset) and serves for external reset of the microcontroller by
applying logic zero (0) or one (1), depending on type of the microcontroller. In case the brown out circuit is not built
in, a simple external circuit for brown out reset can be connected to this pin.

1.11 Timer/Counter:

The microcontroller oscillator uses quartz crystal for its operation. Even though it is not the simplest solution, there
are many reasons to use it. Namely, the frequency of such oscillator is precisely defined and very stable; the pulses
it generates are always of the same which makes them ideal for time measurement. Such oscillators are used in
quartz watches. If it is necessary to measure time between two events, it is sufficient to count pulses coming from
this oscillator. That is exactly what the timer does. Most programs use these miniature electronic “stopwatches”.
These are commonly 8- or 8-bit SFRs and their content is automatically incremented by each coming pulse. Once a
register is completely loaded - an interrupt is generated! If the timer registers use an internal quartz oscillator for
their operation then it is possible to measure time between two events (if the register value is T1 at the moment
measurement has started, and T2 at the moment it has finished, then the elapsed time is equal to the result of
subtraction T2-T1). If the registers use pulses coming from external source then such a timer is turned into a
counter.

This is only a simple explanation of the operation itself.

1.12 Counter:

If a timer is supplying pulses into the microcontroller input pin then it turns into a counter. Clearly, it is the same
electronic circuit. The only difference is that in this case pulses to be counted come through the ports and their
duration (width) is mostly not defined. This is why they cannot be used for time measurement, but can be used to
measure anything else: products on an assembly line, number of axis rotation, passengers etc. (depending on sensor
in use).

20

Three Dimensional Display

1.13 A/D Converter:

External signals are usually fundamentally different from those the microcontroller understands (Ones and
Zeros), so that they have to be converted in order for the microcontroller to understand them. An analogue to digital
converter is an electronic circuit which converts continuous signals to discrete digital numbers. This module is
therefore used to convert some analogue value into binary number and forwards it to the CPU for further processing.
In other words, this module is used for input pin voltage measurement (analogue value). The result of measurement
is a number (digital value) used and processed later in the program.

Figure-1.10: Connection Analogue to Digital Converter and CPU

1.14 RISC (Reduced Instruction Set Computer):
In this case, the microcontroller recognizes and executes only basic operations (addition, subtraction,

copying etc.). All other more complicated operations are performed by combining these (for example, multiplication
is performed by performing successive addition). The constrains are obvious (try by using only a few words, to
explain to someone how to reach the airport in some other city). However, there are also some great advantages.
First of all, this language is easy to learn.

Besides, the microcontroller is very fast so that it is not possible to see all the arithmetic “acrobatics” it performs.
The user can only see the final result of all those operations. At last, it is not so difficult to explain where the airport
is if you use the right words. For example: left, right, kilometers etc.

21

Three Dimensional Display

1.15 CISC (Complex Instruction Set Computer):
CISC is the opposite of RISC! Microcontrollers designed to recognize more than 200 different instructions can do
much and are very fast. However, one needs to understand how to take all that such a rich language offers, which is
not at all easy.

1.16 MAX232:

The MAX232 chip is a chip which functions as an interpreter between the computer and the AVR. It converts the

signals from an RS-232 serial port (computer) to the RX, TX, and signals (AVR).

22

Three Dimensional Display

1.17 USBasp:

The USBasp is another interpreter though this one works over the computers USB port. It is easier than the
MAX232 because this is a ready to use solution, whereas the MAX232 still needs to be connected to the rest of the
board. The USBasp also has a status led which is very convenient

23

Three Dimensional Display

1.18 Wiring:

Well wires, these are cables that let through electricity. This can be as a power
supply or as a matter of signals. This cable in the picture is the 10 pins connecter
used to connect the USBasp with the 10 pins connecter on the protoboard.

1.19 Capacitors:

Capacitors are used to for many different things. But in this project they are mainly used as stabilizers for example
between a ground and 5v wire. Otherwise the current might blow the microcontroller.

24

Three Dimensional Display

1.20 Resistors:
A resistor is a component that ‘resists’ the flow of electricity. The flow of electricity is called current.
Every resistor has a certain value telling how much it resists the flow.

This resistance is called ohm, it’s most commonly shown with the omega Ω.

These resistors are needed on the breadboard to prevent a led from getting to much current. This would
kill the LED. It’s the same case with the Infrared LED.

Resistors are color coded. One gold, silver or blank ring indicating the tolerance the resistor can differ from
the given value. And 3 rings which
Together make the value in ohm. The fifth ring isn’t used to often.

Each color is a number varying from 1 to 9. See the table on the right.
For example when a resistor is in the above case blue, red, red it means the first digit is
“6” the second digit is “2” and it must be multiplied by “2 x 10” or a hundred which
would make it 6200 Ω.

Once such a resistor is made it will not change its value. The only thing which could
happen is it gets burned when its limit is overridden by supplying a high enough voltage
killing the entire thing. When this happens the resistor won’t do anything anymore and can

25

Three Dimensional Display

be thrown away.
For example when a resistor is in the above case blue, red, red it means the first digit is
“6” the second digit is “2” and it must be multiplied by “2 x 10” or a hundred which

would make it 6200 Ω.

Once such a resistor is made it will not change its value. The only thing which could
happen is it gets burned when its limit is overridden by supplying a high enough voltage
killing the entire thing.

26

Three Dimensional Display

1.21 Transistor:

In this project the transistor is used merely as a switch to allow more current to pass through the circuit bypassing the
AVR which cannot take this much current.

1.22 Crystal oscillator:

Crystals are used together with microcontrollers to make them run faster. The
standard clock speed (cycles per second) of the Atmega 16 series is 1 MHz but
with our crystal oscillator it can run at 14.7456 MHz which makes it look much
smoother.

A Crystal oscillator is an electronic circuit that uses mechanical resonance of a
vibrating crystal to create an electrical signal with one exact frequency.

27

Three Dimensional Display

2.1 AVR Microcontroller:

AVR was developed in the year 1996 by Atmel Corporation. The architecture of AVR was developed by Alf-Egil
Bogen and Vegard Wollan. AVR derives its name from its developers and stands for Alf-Egil Bogen Vegard
Wollan RISC microcontroller, also known as Advanced Virtual RISC. The AT90S8515 was the first microcontroller
which was based on AVR architecture however the first microcontroller to hit the commercial market was AT90S1200
in the year 1997.

2.2 AVR microcontrollers Categories:
AVR microcontrollers are available in three categories:

1. TinyAVR – Less memory, small size, suitable only for simpler applications
2. MegaAVR – These are the most popular ones having good amount of memory (upto 256 KB), higher number

of inbuilt peripherals and suitable for moderate to complex applications.
3. XmegaAVR – Used commercially for complex applications, which require large program memory and high

speed.

The following table compares the above mentioned AVR series of microcontrollers:

Series Name Pins Flash Memory Special Feature
TinyAVR 6-32 0.5-8 KB Small in size
MegaAVR 28-100 4-256KB Extended peripherals

XmegaAVR 44-100 8-384KB DMA , Event System
included

2.3 What’s special about AVR?
They are fast: AVR microcontroller executes most of the instructions in single execution cycle. AVRs are about 4
times faster than PICs, they consume less power and can be operated in different power saving modes. Let’s do the
comparison between the three most commonly used families of microcontrollers.

Descriptions 8051 PIC AVR

SPEED Slow Moderate Fast
MEMORY Small Large Large
ARCHITECTURE CISC RISC RISC
ADC Not Present Inbuilt Inbuilt
AVR is an 8-bit microcontroller belonging to the family of Reduced Instruction Set Computer (RISC). In RISC
architecture the instruction set of the computer are not only fewer in number but also simpler and faster in operation.

28

Three Dimensional Display

The other type of categorization is CISC (Complex Instruction Set Computers). We will explore more on this when we
will learn about the architecture of AVR microcontrollers in following section.

Let’s see what this entire means. What is 8-bit? This means that the microcontroller is capable of transmitting
and receiving 8-bit data. The input/output registers available are of 8-bits. The AVR families controllers have register
based architecture which means that both the operands for an operation are stored in a register and the result of the
operation is also stored in a register. Following figure shows a simple example performing OR operation between two
input registers and storing the value in Output Register.

Figure: OR operation between two input registers and storing in Output Register

The CPU takes values from two input registers INPUT-1 and INPUT-2, performs the logical operation and
stores the value into the OUTPUT register. All this happens in 1 execution cycle.

2.4 Features of Atmega16:
In our journey with the AVR we were working on microcontroller, which is a 40-pin IC and belongs to the mega AVR
category of AVR family. Some of the features of Atmega8 are:

· 8KB of Flash memory
· 1KB of SRAM
· 512 Bytes of EEPROM
· Available in 40-Pin DIP
· 8-Channel 10-bit ADC
· Two 8-bit Timers/Counters

· One 8-bit Timer/Counter
· 4 PWM Channels
· In System Programmer (ISP)
· Serial USART
· SPI Interface
· Digital to Analog Comparator.

29

Three Dimensional Display

2.5 Architecture of AVR:

The AVR microcontrollers are based on the advanced RISC architecture and consist of 32 x 8-bit general purpose
working registers. Within one single clock cycle, AVR can take inputs from two general purpose registers and put
them to ALU for carrying out the requested operation, and transfer back the result to an arbitrary register.

The ALU can perform arithmetic as well as logical operations over the inputs from the register or between the register
and a constant. Single register operations like taking a complement can also be executed in ALU. We can see that
AVR does not have any register like accumulator as in 8051 family of microcontrollers; the operations can be
performed between any of the registers and can be stored in either of them.

AVR follows Harvard Architecture format in which the processor is equipped with separate memories and buses for
Program and the Data information. Here while an instruction is being executed, the next instruction is pre-fetched
from the program memory.

Figure-2.2: AVR Architecture Format

Since AVR can perform single cycle execution, it means that AVR can execute 1 million instructions per second if
cycle frequency is 1MHz. The higher is the operating frequency of the controller, the higher will be its processing
speed. We need to optimize the power consumption with processing speed and hence need to select the operating
frequency accordingly.

30

Three Dimensional Display

2.6Atmel At mega 16 AVR:
The ATmega16 microcontroller used in this lab is a 40-pin wide DIP (Dual In Line) package chip.
This chip was selected because it is robust, and the DIP package interfaces with proto supplies like solderless bread
boards and solder-type perf-boards. This same microcontroller is available in a surface mount package, about the size
of a dime. Surface mount devices are more useful for circuit boards built for mass production. Figure 1 below shows
the ‘pin-out’ diagram of the ATmega16. This diagram is very useful, because it tells you where power and ground
should be connected, which pins tie to which functional hardware, etc. ATmega16 Pin-out diagram. Notice that some
of the pins have alternate functions (shown in parentheses).

Throughout the semester, you will need to know things about the ATmega16 (or other components)
That are not covered in the lab instructions. Therefore it is important that you become familiar with
Documentation available from various sources. Your first task is to locate the ATmega16
Manual, and save it for yourself for future reference. It can be found in a pdf format on Atmel’s

Website (www.atmel.com), AVR Freaks (http://www.avrfreaks.net/), or by searching the web. From
the manual, you can find information about the ATmega16’s features and how to use them. The At mega series has
become very popular as it was one of the first to use on-chip flash memory which could be rewritten infinite
amount of times whereas other microcontrollers used EEPROM (One time programmable ROM). It kept being
popular in homebuilt projects which involve microcontrollers. This is mainly because it’s still a cheap series of
microcontrollers with lots of functions, but it’s also because they’re relatively easy to program.

I chose this exact microprocessor merely because I could stick to the previously made program. (at the time being I
wasn’t sure I was going to be able to rewrite the program, or even design a completely new one

31

Three Dimensional Display

2.7 Pin Diagram of AT mega 16 Microcontroller:

This is the Pin Diagram of of AT mega 16 Microcontroller

32

Three Dimensional Display

3.1 Working Procedure:

How to control 64 LEDs without using 64 individual wires Multiplexing!
Running a wire to the anode of each led would obviously be impractical, and would look
really bad. One way to get around this, is to split the cube into 4 layers of 16x16 LEDs.

All the LEDs aligned in a vertical column share a common anode (+).
All the LEDs on a horizontal layer share a common cathode (-).

Now if i want to light up the LED in the upper left corner in the back (0, 0, 3), I just supply
GND (-) to the upper layer, and VCC (+) to the column in the left corner. If I only want to
light up one led at a time, or only light up more than one layer at the same time. This works
fine.

However, if I also want to light up the bottom right corner in the front (3, 3, 0), I run into
problems. When I supply GND to the lower layer and VCC to the front left column, I also
light up the upper right led in the front (3,3,3), and the lower left LED in the back (0,0,0).
This ghosting effect is impossible to work around without adding 64 individual wires.

The way to work around it is to only light up one layer at a time, but do it so fast that the eye
doesn't recognize that only one layer is lit at any time. This relies on a phenomenon
called Persistence of vision. Each layer is a 4x4 (16) image. If we flash 4 16 led images one at
a time, really fast, we get a 4x4x4 3d image

33

Three Dimensional Display

3.2 Assembly of the led’s:

Take a piece of wood and make holes of the size
of your led’s, in my case 5mm place the holes at
pins length of each other. Do this very accurately!
If you have one hole in the wrong place you’ll
have it wrong in four different layers.

Put your led’s one by one in the holes bend one
leg so it touches the leg of the other led and
solder them together. Do this for every led till
you’ve got all four levels finished.

When you’ve got them all it should look something like this. Then you’ll have to solder the
different layers together finishing the cube itself.

Now that we’ve done the easy things were going to focus on the real electronics behind this
cube. I’m not going to describe how I’ve connected each and every wire because that

34

Three Dimensional Display

would be boring. What you’re trying to do is
connect every wire to the correct pin. The
correct way is shown on the next page.

Important is that before you start this you
should make sure your desk is clean and
tidy! Otherwise you’ll soon lose track.

The circuit shown on the next page was made by
me. I did this as this uses the physical connection
of the AVR whereas
The other circuit showed the schematic connections.

35

Three Dimensional Display

3.3 Wiring is done:

What to do now? Well that’s easy you’ve
probably discovered that your led cube is not yet
lighting up. Well that’s because you’ll need a 5v
power supply. This could be anything, I’ve used a
cell phone charger as this was available to me.

You take cut of the connecter and strip the wire
for about 2 cm’s. Depending on the brand of
charger you’ll find several wires. Most of the
time you’ll gonna want to use the black and red
one. Being the
Black ground and the red one the 5V. Connect these two to the corresponding place on
the protoboard and now it should be finished.

Mind you there is always the troubleshooting. In most cases you will have connected one wire
the wrong way. Or not at all go through all the wires step by step and part by part if the cube
won’t react when you try to reach it in the next step.

36

Three Dimensional Display

3.4 Chief selection:

The fast task is to select the chip. Here for our work we select the chip is ATmega8 and we
also determined the clock 16.000000 MHz Figure 01, below, shows the new AVR project
window within BASCOM AVR

3.5 Enabling Analogue to Digital Conversion:

Enabling the ADC is needed for use in the control functions of the device. Using the ADC is
also made simpler by using BASCOMAVR. Enabling ADC on the MCU is achieved by
ticking the ADC Enabled selection in BASCOMAVR, and then selects the use 8 bit option
and then selects the voltage reference as the voltage across the AREF pin. BASCOMAVR
also gives an option for the ADC speed, and in this case it was chosen to be the fastest
available, that being 1000.000 kHz.

37

Three Dimensional Display

4.1Circuit Diagram:

38

Three Dimensional Display

4.2 Programming:

Programming takes up lots of time. You’ll need to think of exactly how you want the
program to run. And you’ll need to tell (write down) every step you want it to do. This can
be done in multiple languages though “C” is the easiest for our purpose.

I’ve not yet learned to master this language and therefor it was impossible to design my own
program. I was however able to edit the current program more to my liking. I’ll soon go on
and will make my own patterns. It will need some time tough as there is a current problem
programming through USBasp with a 64-bit operating system.

To flash the program to the led cube you’ll need a program that allows you to write data to the
flash memory of the atmega16 on the led cube. This can be done by using AVRdude.
AVRdude is a command line tool which takes some time to get used to.

This chapter discusses how the software for this thesis was implemented into the device. The
process undertaken to reach a software solution which meets the specifications.

39

Three Dimensional Display

4.3 Program Development:
The Firmware for the controller was developed with the aid of AVR Studio, which is a
program that allows the user to write and compile BASIC programs for the Atmel AVR range
of micro-controllers. It also allows for in-system programming thus making an ideal software
development tool.

Figure: AVR Studio microcontroller development system.

40

Three Dimensional Display

Figure: AVR Studio Window Showing Chip selection Options

41

Three Dimensional Display

4.4 Output Three Dimensional Display:

Figure: This is the Output Three Dimensional Display.

42

Three Dimensional Display

4.5 Final Code:
Chip Type: ATmega 16

Program Type: Application

AVR Clock frequency: 8.000000 MHz

Memory model: 0

External RAM size: 0

Data Stack size: 8.38KB

**/

// ##

//

// 4x4x4 LED Cube project

// By Mahadee Jamil

#include <avr/io.h>

#include <avr/interrupt.h>

#include <avr/pgmspace.h>

// Define USART stuff

// CPU speed and baud rate:

#define FOSC 14745600

#define BAUD 9600

// Are used to calculate the correct USART timings

#define MYUBRR (((((FOSC * 10) / (16L * BAUD)) + 5) / 10) - 1)

// define masks used for status LEDs and input buttons.

#define LED_GREEN 0x01

43

Three Dimensional Display

#define LED_RED 0x02

#define BUTTON 0x08

// define port used for status and input.

#define LED_PORT PORTB

#define BUTTON_PORT PORTB

// define masks for the layer select.

#define LAYER1 0x80

#define LAYER2 0x40

#define LAYER3 0x20

#define LAYER4 0x10

#define LAYERS 0xf0 // All layers

#define LAYERS_R 0x0f // the inverse of the above.

#define LAYER_PORT PORTD

// define LED grid ports

// each of the grid ports are connected to two rows of leds.

// the upper 4 bits is one row, the lower 4 bits are one row.

#define GRID1 PORTC

#define GRID2 PORTA

void ioinit (void); // initiate IO on the AVR

void bootmsg (void); // blink some leds to indicate boot or reboot

void delay_ms (uint16_t x); // delay function used throughout the program

void led_red(unsigned char state); // led on or off

44

Three Dimensional Display

void led_green(unsigned char state);

void launch_effect (int effect); // effect program launcher

// *** Cube buffer ***

// The 3D image displayed on the cube is buffered in a 2d array 'cube'.

// The 1st dimension in this array is the Z axis of the cube.

// The 2nd dimension of the array is the Y axis.

// Each byte is a stripe of leds running along the X axis at the given

// Z and Y coordinates.

// Only the 4 lower bits are used, since the cube is only 4x4x4.

// This buffer design was chosen to have code compatability with a 8x8x8 cube.

// "volatile" makes the variables reachable from within the interrupt functions

volatile unsigned char cube[4][4];

// We sometimes want to draw into a temporary buffer so we can modify it

// before writing it to the cube buffer.

// e.g. invert, flip, reverse the cube..

volatile unsigned char tmpcube[4][4];

// What layer the interrupt routine is currently showing.

volatile unsigned char current_layer;

// Low level geometric functions

#include "draw.c"

// Static animation data

#include "frames.c"

45

Three Dimensional Display

// Fancy animations to run on the cube

#include "effect.c"

int main (void)

{

// Initiate IO ports and peripheral devices.

ioinit();

// Indicate that the device has just booted.

bootmsg();

int x;

int i;

int z;

// Set the layer to start drawing at

current_layer = 0x00;

// Enable interrupts to start drawing the cube buffer.

// When interrupts are enabled, ISR(TIMER2_COMP_vect)

// will run on timed intervalls.

sei();

// Main program loop.

while (1)

46

Three Dimensional Display

{

for (i=0;i<13;i++)

{

launch_effect(i);

}

// Comment the loop above and uncomment the line below

// if you want the effects in random order (produced some bugs..)

//launch_effect(rand()%13);

}

}

// Launches one of those fancy effects.

void launch_effect (int effect)

{

switch (effect)

{

// Lights all the layers one by one

case 0:

loadbar(1000);

break;

// A pixel bouncing randomly around

case 1:

// blink

boingboing(150,500,0x03,0x01);

break;

47

Three Dimensional Display

// Randomly fill the cube

// Randomly empty the cube

case 2:

fill(0x00);

random_filler(100,1,500,1);

random_filler(100,1,500,0);

break;

// Send voxels randomly back and forth the Z axis

case 3:

sendvoxels_rand_z(150,500,2000);

break;

// Spinning spiral

case 4:

effect_spiral(1,75,1000);

break;

// A coordinate bounces randomly around the cube

// For every position the status of that voxel is toggled.

case 5:

// toggle

boingboing(150,500,0x03,0x02);

break;

// Random raindrops

48

Three Dimensional Display

case 6:

effect_rain(20,5000,3000,500);

break;

// A snake randomly bounce around the cube.

case 7:

// snake

boingboing(150,500,0x03,0x03);

break;

// Spinning plane

case 8:

effect_spinning_plane(1,50,1000);

break;

// set x number of random voxels, delay, unset them.

// x increases from 1 to 20 and back to 1.

case 9:

random_2();

break;

// Set all 64 voxels in a random order.

// Unset all 64 voxels in a random order.

case 10:

random_filler2(200,1);

delay_ms(2000);

random_filler2(200,0);

49

Three Dimensional Display

delay_ms(1000);

break;

// bounce a plane up and down all the directions.

case 11:

flyplane("z",1,1000);

delay_ms(2000);

flyplane("y",1,1000);

delay_ms(2000);

flyplane("x",1,1000);

delay_ms(2000);

flyplane("z",0,1000);

delay_ms(2000);

flyplane("y",0,1000);

delay_ms(2000);

flyplane("x",0,1000);

delay_ms(2000);

break;

// Fade in and out at low framerate

case 12:

blinky2();

break;

}

}

// ** Diagnostic led functions **

50

Three Dimensional Display

// Set or unset the red LED

void led_red(unsigned char state)

{

if (state == 0x00)

{

LED_PORT &= ~LED_RED;

} else

{

LED_PORT |= LED_RED;

}

}

// Set or unset the green LED

void led_green(unsigned char state)

{

if (state == 0x00)

{

LED_PORT &= ~LED_GREEN;

} else

{

LED_PORT |= LED_GREEN;

}

}

// Cube buffer draw interrupt routine

51

Three Dimensional Display

ISR(TIMER2_COMP_vect)

{

// AND the reverse bitmask onto the layer port.

// This disables all the layers. rendering all the leds off.

// We don't want to see the cube updating.

LAYER_PORT &= LAYERS_R;

// Take the current 2D image at the current layer along the Z axis

// and place it on the LED grid.

GRID1 = (0x0f & cube[current_layer][0]) | (0xf0 & (cube[current_layer][1] << 4));

GRID2 = (0x0f & cube[current_layer][2]) | (0xf0 & (cube[current_layer][3] << 4));

// Enable the apropriate layer

LAYER_PORT |= (0x01 << (7 - current_layer));

// The cube only has 4 layers (0,1,2,3)

// If we are at layer 3 now, we want to go back to layer 0.

if (current_layer++ == 3)

current_layer = 0;

}

void ioinit (void)

{

// ### Initiate I/O

// Data Direction Registers

52

Three Dimensional Display

// Bit set to 1 means it works as an output

// Bit set to 1 means it is an input

DDRA = 0xff; // Inner cube byte

DDRB = 0xf7; // ISP and 0-1: led. 3: button

DDRC = 0xff; // Outer cube byte

DDRD = 0xff; // Layer select

// Set all ports OFF, and enable pull up resistors where needed.

PORTA = 0x00;

PORTC = 0x00;

PORTB = 0x08; // Enable pull up button.

PORTD = 0x00;

// ### Initiate timers and USART

// Frame buffer interrupt

TCNT2 = 0x00; // initial counter value = 0;

TIMSK |= (1 << OCIE2); // Enable CTC interrupt

// Every 1024th cpu cycle, a counter is incremented.

// Every time that counter reaches 15, it is reset to 0,

// and the interrupt routine is executed.

// 14745600/1024/15 = 960 times per second

// There are 4 layers to update..

// 14745600/1024/15/4 = 240 FPS

// == flicker free :)

OCR2 = 15; // interrupt at counter = 15

53

Three Dimensional Display

TCCR2 = 0x05; // prescaler = 1024

TCCR2 |= (1 << WGM01); // Clear Timer on Compare Match (CTC) mode

// Initiate RS232

// USART Baud rate: 9600

UBRRH = MYUBRR >> 8;

UBRRL = MYUBRR;

// UCSR0C - USART control register

// bit 7-6 sync/ascyn 00 = async, 01 = sync

// bit 5-4 parity 00 = disabled

// bit 3 stop bits 0 = 1 bit 1 = 2 bits

// bit 2-1 frame length 11 = 8

// bit 0 clock polarity = 0

UCSRC = 0b10000110;

// Enable RS232, tx and rx

UCSRB = (1<<RXEN)|(1<<TXEN);

UDR = 0x00; // send an empty byte to indicate powerup.

}

// Blink the status LEDs a little to indicate that the device has just booted.

// This is usefull to see if an error is making the device reboot when not supposed to.

// And it looks cool.

void bootmsg (void)

{

int i;

LED_PORT |= LED_GREEN;

54

Three Dimensional Display

for (i = 0; i < 2; i++)

{

// Blinky

delay_ms(1000);

LED_PORT &= ~LED_GREEN;

LED_PORT |= LED_RED;

// Blink

delay_ms(1000);

LED_PORT &= ~LED_RED;

LED_PORT |= LED_GREEN;

}

delay_ms(1000);

LED_PORT &= ~LED_GREEN;

}

// Delay function used in graphical effects.

void delay_ms(uint16_t x)

{

uint8_t y, z;

for (; x > 0 ; x--){

for (y = 0 ; y < 90 ; y++){

for (z = 0 ; z < 6 ; z++){

asm volatile ("nop");

}

}

}

}

55

Three Dimensional Display

5.1Conclusion:

I’ve created a led cube which works and does exactly what the one on intractable net does.
I think it looks pretty too. I’m quite happy with it even though I’ve not been able to
program different behavior yet. I hope to be able to do this later.

56

Three Dimensional Display

5.2 Future Developments and Improvements:
There are a number of ways in which this device could be improved in any future

development.

In future we want to add humidity sensor to measure the humidity at room.

Humidity sensor needed to control the humidity at room.

Temperature sensor needed to control the temperature.

More efficient software would also benefit the device and the means of upgrading the
software on the MCU has been catered for our project.

Using Triac instead relay that can be provided low power consume and given the more
efficiency. Reducing the power losses in the system would increase the efficiency of the
device .In future we use 4*3 keypad for password based door lock protection.

One last major improvement would be to use as many surface mounted components as
possible, particularly using a surface mounted MCU and resistors and as many other
components that could be replaced with surface mounted equivalents. Future we will design a
better & compact PCB and good quality circuit by using surface mounted component.

57

Three Dimensional Display

5.3 Discussion:
Even though I’m completely happy about the whole project I reckon there are things I
could’ve done better.

Like:

- I could’ve let someone recheck the way I soldered the lets together, this would
have saved me multiple hour of work and troubleshooting.

- I should have used multiple colors of wires making troubleshooting easier.
- I should have bought the USBasp directly as the serial ports are really outdated

and are therefore not supported anymore.
- I should have made the report directly after the project or even while working on

the project.

58

Three Dimensional Display

Reference:

http://www.instructables.com/id/LED-Cube-4x4x4/

http://www.dickbest.nl/webshop/index.php

http://www.topled.nl/

http://www.circuitsonline.net/schakelingen/112/computer-en-
microcontroller/avr-programmer.html

http://www.zegeniestudios.net/ldc/

