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Mathematical Catastrophe Revisited
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Different models of mathematical catastrophes of single variable have been
studied, and finally from the substance we have found a mathematical analysis
of mathematical catastrophe. Two mathematical catastrophes viz, fold
catastrophe and cusp catastrophe are broadly discussed in order to find some
results newly in both the cases.
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1. Introduction:

A mathematical catastrophe is a point in a model of an input-output
system, where a diminutive change in the
input can produce a large change in the
output.
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For instance the system where a ball, free to
cusnany oIl under gravity in a double-well container,
en...nght may be a mathematical catastrophe if there is
3. 80 a tilt from one side to the other. Here the input

-t ; 7 5 s
al b is the tilt of the container, and the output is the
I position of the ball.

»
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pattern labeled 2 (figure 1.1). This is the point
7. where the ball is just poised to fall to the left,
cegroes) but is still balanced on the right side of the
well. If the ball is exactly at that point, the
tiniest additional tilt will cause a large
displacement of the ball which is shown in the
figure by the arrow. A symmetrical catastrophe
is labeled 6 (Figure 1.1).

Y There is one catastrophe just beyond the
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Figure 1.1: A ball free to roll
under gravity in a double-well
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The catastrophe in this system is a one-parameter catastrophe, i.e. one
controlling variable ilt
output is determined by a mechanism that seeks the lowest possible position
compatible with the constraint, i.e. gravity in this case [AMC 2007] .

2. An Algebraic Version of the Double Well
It is inept to calculate precisely the angle at which the catastrophe happens in

the double-well.
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of the well'. In other mathematical catastrophes the

In figure 2.1 the ball s
constrained to roll on the graph of
the function y = x* —x? Instead of
filting the graph we perturb the
function by adding a linear term
ax so as to raise one well and

lower the other.

Figure 2.1 : Graph of the function y = x* —x?

0.6
0.4
0.2

1,5 ¥ 0.5 : 05 1
0.4 f

The graph of of y=x* -x* +3x
is shown,in the figure 2.2 where
if the ball had started on the
right, it would still be on the
right.

Figure 2.2 : Graph of the function y = x* —x? +.3x
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Figure 2.3 is representing the
graph of y=x*-x*+.6x. The
ball would have rolled over to
the left. The exact point at which
this happens can be reckoned to

be .ct=i -1—=.5443......
3V6
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Figure 2.3 : Graph of the function y = x* —x? +.6x

The corresponding negative values o=-.3, a=-.6 give graphs where the left
well grows higher than the right.

0.6 In figure 2.4 the graph of y=x*-x*-3x

0.4 stands at a= -.3 where if the ball

0.2 had started on the left, it would still
4.5 -1 0.5 0.5 1 1.5 beontheleft

-0.2

-0.4

Figure 2.4 : Graph of the function y =x* —x? —3x

1.5 Here is the graph of y =x* —x* —.6x .
1 The ball would have rolled over to the
- right. The exact point at which it happens
' can be reckoned to be
-1.5 =1 -0.5 0.5 Sl B 4 |1
0.5 a= 5 g = . I TR

Figure 2.5 : Graph of the function y = x* —x* —.6x

These values and the initial a=0 generate a family of figures exactly analogous
from configurations 1 to configurations 9 in figure 1.1 of the original double
well. The perturbation parameter plays the role of the angle of filt.

3. Cusp Catastrophe
The Cusp Catastrophe corresponds to the perturbation of ¥ = x* by the addition
of a quadratic function: y = x* + ax* +bx-

Case l: b=0 If o= 0, the graph has only one minumum (local and global too ) ot x = 0
If a > 0 this extremum remains unchanged
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If @ < O this extremum changes info three - one local maximum ot x = 0 and
two local minima and graphs look like a " W " symmetric about the y - axis.
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Figure3.1: Graph of y=x*+ax®+bx atb=0

Casell:a=0

If b= 0, the graph has only one minumum (local and global too ) atx = 0
For b > O the minimum goes to the left side of the y - axis.

For b < 0 the minimum goes to the right side of the y - axis.

b=-06 b=0 B=0.6

=1 1

=1 x

Figure 3.2: Graph of y = x* +ax’ +bx ata=0

Caselll: a#0and b=0

y=x*+ax’ +bx

For extrema %=0 or 4x° +2ax+b=0........... (1)
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But at this stage we are interested in values of a and b, i.e. we need to solve a
and b in terms of x and want to find the relation between them.

A parametric solution of the equation (1) is obtained when a=-6x*, b=-8x’

a=(=3375) b*
wherefrom we get 1
b= 1‘3 = (—a)% , exists only when a<0

Therefore, we conclude: in y=x*+ax?+bx , a must be negative if we expect
any extremum.

=-0.6 b=0.6

Figure 3.3: Graph of y=x*+ax®+bx ata=-1 and b varies.

But then if keeping a at -1, b is moved towards negative values, the missed
bifurcation will manifest itself in a "catastrophic" jump to the right-hand local
minimum,

A little calculus shows that the system has a single minimum unless
—0.5443(~b)”? < a < 0.5443(-b)”* . When the discontinuity locus

a= 10.5443(4.5)% is graphed in the control space, with coordinates a and b,
the plot shows the cusp shape characteristic of this catastrophe
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Figure 3.5: Locus of Cusp bifurcations.
Figure 3.4: Diagram of Cusp Catastrophe

The above figure 3.4 is showing curves of x satisfying for parameters (a,b),
drawn for parameter b continuously varied, for several values of parameter a.
Outside the cusp locus of bifurcations (blue), for each point (a,b) in parameter
space there is only one extremising value of x. Inside the cusp, there are two
different values of x giving local minima of y(x) for each (a,b), sefparated by a
value of x giving a local maximum [ FSF 2002 ].

But the bifurcation curve loops
back on itself, giving a second
branch where this alternate
solution itself loses stability, and
will make a jump back to the
original solution set.

Figure 3.6 : 3D picture of cusp cafastrophe

By repeatedly increasing b and then decreasing it, one can therefore observe
hysteresis loops, as the system alternately follows one solution, jumps to the
other, follows the other back, then jumps back to the first.

However, this is only possible in the region of parameter space a<0. As a is
increased, the hysteresis loops become smaller and smaller, until above a=0
they disappear altogether (the cusp catastrophe), and there is only one stable
solution.
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One can also consider what happens if one holds b constant and varies a. In
the symmetrical case b=0, one observes a pitchfork bifurcation as a is
reduced, with one stable solution suddenly splitting into two stable solutions
and one unstable solution as the physical system passes to a<0 through the
cusp point a=0, b=0 (an example of spontaneous symmetry breaking). Away
from the cusp point, there is no sudden change in a physical solution being
followed: when passing through the curve of fold bifurcations, all that happens
is an alternate second solution becomes available [2 ].

In figure 12 a 3D picture of cusp catastrophe is shown which can occur for
two control factors and one behavior axis.

4. The Fold Catastrophe

0.02 Germ: p=x
0.01
It has no extremum but a degenerate critical
= Y 0.5 1
il point at (0,0). Ths point is also aninflexion
.2

point.

Figure 4.1 : graph of y =x°

Potentiat y=x’+ax’; a#0

, . 2
Figure 4.2: y =x’ —2x Figure 4.3: y =x’ +2x’

Case |: a>0
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The inflexion point bifurcates into one local minimum at the origin and one
local maximum in the 2nd quadrant (in figure 4.2)
Case ll: a<O0

The inflexion point bifurcates into a local maximum at the origin and a local
maximum in the 4th quadrant (in figure 4.3).

0.6

0.4 The most interesting thing is to note

0.2 the behavior of the point (0,0). It
oy o5 G ) A remains as a local maximum so

i o long as a remains negative, but

0.4 ¥_% :

oy becomes local minimum if a

becomes positive, and vice versa.
g 2
Fig 4.4: x= ——3—a

To investigate the other extrimum we have
D o220 i.e, x becomes a decreasing linear
dx .

function of a.

=3x+2ax=0 :xz—%a

Thus the abscissa of the extremum changes its position with that of
parameter 'a' but its value always bears a constant ratio with the valuve of
'‘a". Hence this situation can't be termed a catstrophe. We observe that for
any y=x"+ax"™; n=357,..2n+1, similar conditions hold. But if nis very

very big, we can take x= L O example,

n
y=x_-27x" will have an extrimum when x=27.

Potential : y=x’+ax; a#0

=
B

dy

Putting e 3x? +2ax = 0 we get the parametric solufion a=-3x* or x=%
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which confirms that 'a' must be -'ve if the potential should possess an
extrimum.

O a
X1 0.8 -0.6 -0.4 -0.2

0.
2
-0.3
0.4
0.5

X1 08 06 04 02 a

J-a
A—a Figue4.6: x =—
o 5

Figure4.5: x =
NE)

In figure 4.5, if any particle is pulled backwards along the curve and then released,
it will turn back to its previous position and then always tends to go to the position
(0, Q). It means that the particle is at its minimum point, and this extremum cannot
be called a catastrophe.

On the other hand, in figure 4.6, if a particle is pulled along the curve in the -'ve
direction of 'a' and then released, it never comes back. It means that the particle is
at the maximum point, and this extremum is certainly a catastrophe, or we may say
that there always exists a change of a catstrophe.

Example: y=x’-12.25x, In this case, a = -12.25 and therefore, an extrimum
does exist at which
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According to the argument given above the pmnt(73;~—

} is a fold catastrophe.

f\l
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Here we can see the reason for the name "Fold Catastrophe." If the graph is
projected onto the y-axis, the catastrophe corresponds to the appearance or
disappearance of a pair of folds [ 1 ].

As in the fold case, the system will have a
discontinuous response at points where a
local minimum appears or disappears.
[2]. When the right-hand fold is
approached from the left, or vice-versa,
the output is forced to jump to the other
Figure 4.8: A fold catastrophe sheet. The membrane in the middle

corresponds to the local maximum and is

inaccessible.

The figure 4.8 showing a 3D picture of
fold catastrophe which can occur for one
control factor and one behavior axis.

Figure 4.9: 3D picture of Fold Catastrophe

5. Swallowtail catastrophe

The swallowtail Catastrophe corresponds to the perturbation of ¥ =x" b by the
addition of a 3™ degree function: y=x’+ax +bx" +cx

The control parameter space is three dimensional. The bifurcation set in
parameter space is made up of three surfaces of fold bifurcations, which meet
in two lines of cusp bifurcations, which in turn meet at a single swallowtail
bifurcation point.
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As the parameters go through the surface of fold bifurcations, one minimum
and one maximum of the potential function disappear. At the cusp
bifurcations, two minima and one maximum are replaced by one minimum;
beyond them the fold bifurcations disappear. At the swallowtail point, two
minima and two maxima all meet at a single value of x. For values of a>0,
beyond the swallowtail, there is either one maximum-minimum pair, or none at
all, depending on the values of b and c. Two of the surfaces of fold
bifurcations, and the two lines of cusp bifurcations where they meet for a<0,
therefore disappear at the swallowtail point, to be replaced with only a single
surface of fold bifurcations remaining [Thomson 1982].

Figure 5.1: 3D picture of swallowtail Catstrophe

A catastrophe which can occur for three control factors and one behavior axis.
The swallowtail catastrophe is the universal unfolding of singularity  with
codimension 3, i.e. in three unfolding parameters
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6. Butterfly catastrophe

The butterfly ~ Catastrophe
corresponds to the perturbation of
y=x° by the addition of a fourth degree

function : y=x*+ax® +bx’ +cx’ +dx:

Figure 6.1: 3D picture of butterfly Catastrophe

A catastrophe which can occur for four control factors and one behavior axis.
The butterfly catastrophe is the universal unfolding of the singularity fx)=x°
of codimension 4, i.e. with four unfolding parameters. It has the form
F(x,u,v,w,t)=x° +ux* +vx’ + wx® +1x.

Depending on the parameter values, the potential function may have three,
two, or one different local minima, separated by the loci of fold bifurcations.
At the butterfly point, the different 3-surfaces of fold bifurcations, the 2-
surfaces of cusp bifurcations, and the lines of swallowtail bifurcations all meet
up and disappear, leaving a single cusp structure remaining when a>0

[Thomas 1989].

7. Utility of Mathematical Catastrophy

It has been observed that mathematical catastrophe has its application in
explaining happenings in nature even in the behaviour of animals some of
which are summarised in what follows.

Small changes in certain parameters of a nonlinear system can cause
equilibria to appear or disappear, or to change from aftracting to repelling
and vice versa, leading to large and sudden changes of the behaviour of the
system. However, examined in a larger parameter space,
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catastrophe theory reveals that such bifurcation points tend to occur as
part of well-defined qualitative geometrical structures [Poston 1998] .

In mathematics, catastrophe theory is a branch of bifurcation theory in the
study of dynamical systems; it is also a particular special case of more
general singularity theory in geometry .

Fold bifurcations and the cusp geometry are by far the most important
practical consequences of catastrophe theory. They are patterns which
reoccur again and again in physics, engineering and mathematical
modelling .

A famous suggestion is that the cusp catastrophe can be used to model
the behaviour of a stressed dog, which may respond by becoming cowed
or becoming angry. The suggestion is that at moderate stress (a>0), the
dog will exhibit a smooth transition of response from cowed to angry,
depending on how it is provoked. But higher stress levels correspond to
moving to the region (a<0). Then, if the dog starts cowed, it will remain
cowed as it is irritated more and more, until it reaches the fold' point,
when it will suddenly, discontinuously snap through to angry mode. Once
in ‘angry’ mode, it will remain angry, even if the direct irritation parameter
is considerably reduced [Postle 1980].

To be very practical, Bangladesh is a land of disasters. Floods, hurricane,
abrupt rainfalls often occur here. Sudden inflexion, big-scale rise and fall
in share markets are very common features. Proper mathematical
modelling will help analyse these catastrophes.
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