Isolierung und Charakterisierung antitumoral wirkender Substanzen aus karibischer Propolis mit Schwerpunkt auf Verbindungen mit spezifischen anti-Krebsstammzellen-Eigenschaften

Inaugural-Dissertation zur Erlangung des Doktorgrades Dr. rer. nat.

der Fakultät der Biologie

an der

Universität Duisburg-Essen

vorgelegt von Ali Haydar Acikelli aus Dortmund

Dezember 2014

Die in der vorliegenden Arbeit zugrunde liegenden Experimente wurden am Institut für Anatomie des Universitätsklinikums Essen und dem Institut für molekulare Onkologie des Marienhospitals Herne durchgeführt.

1. Gutachter: Prof. Dr. Gunther Wennemuth

2. Gutachter: Prof. Dr. Dr. Herbert de Groot

Vorsitzender des Prüfungsausschusses: Prof. Dr. Markus Kaiser

Tag der mündlichen Prüfung: 10. März 2015

Aufstellung der wissenschaftlichen Veröffentlichungen

Einen Teil der in dieser Dissertation präsentierten Thematik ist in Form eines Posters bzw. einer Kurzdarstellung und als Publikation in den folgenden Journalen bereits veröffentlicht worden:

1. Poster & Kurzdarstellung

Poster

Díaz-Carballo D, Acikelli AH, Sebastian Gustmann S, Bardenheuer W and Strumberg D: Acquired resistance to cytostatics triggers cancer stem-cell-like phenotype in different tumor entities. 5. Jahrestreffen der German Society of Stem Cell Research 2010 in Lübeck

Díaz-Carballo D, Gustmann S, Acikelli AH, Bardenheuer W, Klein J, Dembinski U, Jastrow H, Gobs-Hevelke B, Erguen S and Strumberg D: **Strategy for development of second generation of antitumoral compounds against chemotherapy refractory cancer stem cells,** 5. Mildred Scheel Meeting der Deutschen Krebshilfe 2011 in Bonn

Díaz-Carballo D, Gustmann S, Acikelli AH, Bardenheuer W, Klein J, Dembinski U, Jastrow H, Gobs-Hevelke B, Erguen S and Strumberg D: Acquired resistance cytostatics triggers cancer stem cell (CSC) phenotype and enable to find rare cell populations that show a novel form of intramural cell division, 5. Mildred Scheel Meeting der Deutschen Krebshilfe 2011 in Bonn

Acikelli AH, Kohl B, Yip KT, Stoll R, Gustmann S, Díaz-Carballo D and Strumberg D: Flavonoids isolated from Caribbean propolis revealed cytotoxic activity in human cancer cell lines, CESAR-Jahrestagung 2012 an dem Universitätsklinikum Essen

Díaz-Carballo D, Gustmann S, Acikelli AH, Kohl B, Yip KT, Stoll R and Strumberg D: Multi-targeted PPAPs are major constituents and contributors to anticancer activity of Cuban propolis, CESAR-Jahrestagung 2012 an dem Universitätsklinikum Essen

Acikelli AH, Gustmann S, Klein J, Dembinski U, Nazif A, Stoll R, Ergün S, Strumberg D and Diaz-Carballo D: Isolation and identification of novel small molecules in Caribbean propolis, which displayed highly activity against CSCs, CESAR-Jahrestagung 2013 in Tübingen

Acikelli AH, Gustmann S, Bardenheuer W, Dembinski U, Klein J, Nazif A, Ergün S, Stoll R, Strumberg D and Diaz-Carballo D: **Isolation and identification of novel small molecules in Caribbean propolis, which displayed highly activity against CSCs**, 6. Mildred Scheel Meeting der Deutschen Krebshilfe 2013 in Bonn

Gustmann S, Acikelli AH, Klein J, Dembinski U, Nazif A, Stoll R, Ergün S, Strumberg D and Diaz-Carballo D: **Spherosin and A4-6 both tubulin polymerization inhibitors isolated from Caribbean propolis act against iCSC entities**, 6. Mildred Scheel Meeting der Deutschen Krebshilfe 2013 in Bonn

Díaz-Carballo D, Gustmann S, Acikelli AH, Bardenheuer W, Klein J, Dembinski U, Jastrow H and Strumberg D: **Strategy for development of second generation of antitumoral compounds against chemotherapy refractory cancer stem cells**, 7. Internationales Treffen des Kompetenznetzwerks Stammzellforschung NRW 2013 in Köln

Díaz-Carballo D, Gustmann S, Acikelli AH, Bardenheuer W, Klein J, Dembinski U, Jastrow H and Strumberg D: Acquired resistance cytostatics triggers cancer stem cell (CSC) phenotype and enable to find rare cell populations that show a novel form of intramural cell division, 7. Internationales Treffen des Kompetenznetzwerks Stammzellforschung NRW 2013 in Köln

Kurzdarstellung

Acikelli AH, Gustmann S, Bardenheuer W, Klein J, Dembinski U, Kohl B, Yip KT, Nazif A, Stoll R, Strumberg D and Díaz-Carballo D: **Flavonoids isolated from Caribbean propolis show cytotoxic activity in human cancer cell lines**. Int J Clin Pharmacol Ther. **2013 Jan**;51(1):51-3

Díaz-Carballo D, Gustmann S, Acikelli AH, Bardenheuer W, Klein J, Dembinski U, Kohl B, Yip KT, Nazif A, Stoll R and Strumberg D: **Multi-targeted polycyclic polyprenylated acylphloroglucinols are major constituents of Cuban propolis and contributors to its anticancer activity**. Int J Clin Pharmacol Ther. **2013 Jan**; 51(1):54-5

2. Publikationen in Journalen,

Díaz-Carballo D, Gustmann S, Acikelli AH, Bardenheuer W, Buehler H, Jastrow H, Ergun S, Strumberg D: **7-epi-nemorosone from Clusia rosea induces apoptosis, androgen receptor down-regulation and dysregulation of PSA levels in LNCaP prostate carcinoma cells**, Phytomedicine. **2012 Nov** 15;19(14):1298-306. doi: 10.1016/j.phymed.2012.08.004.

Díaz-Carballo D, Acikelli AH, Bardenheuer W, Gustmann S, Malak S, Stoll R, Kedziorski T, Nazif MA, Jastrow H, Wennemuth G, Dammann P, Feigel M and Strumberg D: Identification of compounds that selectively target highly chemotherapy refractory neuroblastoma cancer stem cells. Int J Clin Pharmacol Ther. **2014 Sep**; 52(9):787-801. doi: 10.5414/CP202154

Díaz-Carballo D, Gustmann S, Jastrow H, Acikelli AH, Dammann P, Klein J, Dembinski U, Bardenheuer W, Malak S, Araúzo-Bravo MJ, Schultheis B, Aldinger C and Strumberg D: **Atypical cell populations associated with acquired resistance to cytostatics and cancer stem cell features: the role of mitochondria in nuclear encapsulation.** DNA Cell Biol. **2014** Nov; 33(11):749-74. doi: 10.1089/dna.2014.2375 Für meine Eltern, deren Liebe mich soweit brachte.

Siyamed û Xecê

Inhaltsverzeichnis

1. Einleitung	11
1.1. Allgemeine Aspekte von Krebs	11
1.2. Krebsstammzellen innerhalb der Tumorzellheterogenität	12
1.2.1. Chemotherapieresistenz bei Krebsstammzellen	14
1.2.2. Targeting der Krebsstammzellen	15
1.2.3. Screening von Stoffen gegen KSZ	17
1.3. Propolis im Allgemeinen	17
1.3.1. Einige Aspekte von Propolis	18
1.3.1.1. Chemische Zusammensetzung	19
1.3.1.1.1. Flavonoide	19
1.3.1.1.2. Polyprenylierte Polyzyklische Akylphloroglukinole	21
1.3.1.2. Antibakterielle Wirkung von Propolis	22
1.3.1.3. Fungizide Wirkung von Propolis	22
1.3.1.4. Antivirale Wirkung von Propolis	22
1.3.1.5. Antiparasitäre Wirkung von Propolis	23
1.3.1.6. Immunomodulatorische Eigenschaften von Propolis	23
1.3.1.7. Antitumorale Wirkung von Propolis	23
1.4. Ziel der Arbeit	25
2. Materialien und Methoden	26
2.1. Materialien	26
2.1.1. Geräte	26
2.1.2. Analysesoftware	28
2.1.3. Pipetten	28
2.1.4. Verbrauchsmaterialen	28
2.1.5. Kits	29
2.1.6. Chemikalien	30
2.1.7. Enzyme	32
2.1.8. Nukleotide	32
2.1.9. Primer	32
2.1.10. Antikörper	34
2.1.10.1. Nicht konjugierte primäre Antiköper	34
2.1.10.2. Konjugierte Antikörper	37
2.1.11. Zytostatika	38

2.1.12. Antibiotika	38
2.1.13. Puffer und Lösungen	38
2.1.14. Verwendete Zelllinien	40
2.2. Methoden	41
2.2.1. Etablierung eines geeigneten In-vitro-Zellsystems zum Screening anti-	
tumoraler Substanzen	41
2.2.1.1. Induzierung der Krebsstammzellen mittels Zytostatika	42
2.2.2. Propolisverarbeitung	43
2.2.2.1. Separation mit der High Pressure Liquid Chromatography (HPLC)	44
2.2.3. Molekularbiologische Methoden	47
2.2.3.1. RNA Isolierung mittels TRIzol TM	47
2.2.3.2. cDNA Synthese aus der isolierten RNA	48
2.2.3.3. DNA-Amplifikation mittels Polymerase Chain Reaction (PCR)	47
2.2.3.4. Quantitave Real-Time-PCR	49
2.2.4. Zellbiologische Methoden	49
2.2.4.1. Zellkultur	49
2.2.4.2. MTT-Assay für Zytotoxizitätsanalysen	50
2.2.4.3. SRB-Assay für Zytotoxizitätsanalysen	51
2.2.4.4. Histochemische, Immunohistochemische (IHC) und Immunozyto-	
chemische (ICC) Färbungen	51
2.2.4.5. Bestrahlung von Zellen	52
2.2.5. Proteinbiochemische Methoden	53
2.2.5.1. Proteinisolierung mit RIPA-Puffer	53
2.2.5.2. SDS-PAGE und Westernblotanalyse	54
2.2.5.3. Globale Proteinexpressionsanalyse mittels Dot Blot-Technik	55
2.2.6. Aufklärung des Wirkmechanismus' der Reinsubstanzen	55
2.2.6.1. Nachweis der DNA-Interkalierung der Substanz	55
2.2.6.2. Inhibierung der DNA-Polymerase	56
2.2.6.3. Inhibierung der Topoisomerase I und II	57
2.2.6.4. Einfluss auf die Tubulinpolymerisierung	59
2.2.6.5. Einfluss der Reinsubstanzen auf die Zellzyklusdistribution	60
2.2.7. Tumor-Xenograftstudien	61
2.2.8. Strukturaufklärung	62

3. Ergebnisse	63
3.1. Etablierung eines geeigneten In-vitro-Zellsystems zum Screening anti-	
tumoraler Substanzen	63
3.1.1. Morphologische Veränderungen während der Resistenzentwicklung	63
3.1.2. Analyse der Etoposid-Resistenzcharakteristika	65
3.1.3. Vergleich der Zellteilungs- und Wachstumsraten von WT- und iCSC-	
Zelllinien	67
3.1.4. Strahlensensitivität der WT- und iCSC-Zelllinien	69
3.1.5. Unterschiede in der Marker-Expression auf RNA-Ebene	70
3.1.6. Nachweis der Veränderungen im Proteinexpressionsprofil	73
3.1.7. Resümee der Charakterisierung der iCSC-Sublinien	79
3.2. Analyse von Propolis	79
3.2.1. Analyse kubanischer Propolis	80
3.2.2. Bestimmung der IC ₅₀ -Werte der Reinsubstanzen	92
3.3. Strukturaufklärung	96
3.3.1. Strukturaufklärung der Substanzen aus Areal A	96
3.3.2. Strukturaufklärung der Substanzen aus Areal B	97
3.3.3. Strukturaufklärung der Substanzen aus Areal C	98
3.4. Aufklärung der Wirkmechanismen	99
3.4.1. Inhibition der Enzyme des Replikationsapparates	100
3.4.1.1. Inhibition der Taq-DNA-Polymerase	100
3.4.1.2. Inhibition von Topoisomerase I und II	101
3.4.2. Einfluss der Propolissubstanzen auf die Tubulinpolymerisierung	102
3.4.3. Einfluss der Propolissubstanzen auf die Expression und Phosphorylie-	
rungsstatus von Signaltransduktionselementen	104
3.4.4. Analyse der Zellzyklusdistribution mittels Durchflusszytometrie	106
3.4.5. Resümee der Studien zum Wirkungsmechanismus	109
4. Diskussion	111
4.1. Relevante Charakteristika des etablierten In-vitro-Screening-Systems	111
4.2. Isolierung und Identifizierung zytotoxischer Substanzen aus Propolis	116
4.2.1. Aufklärung der Wirkmechanismen der identifizierten Substanzen aus	
Areal A	117
4.2.2. Aufklärung der Wirkmechanismen der identifizierten Substanzen aus	
Areal B	119

4.2.3. Aufklärung der Wirkmechanismen der identifizierten Substanzen aus	
Areal C	119
4.2.4. Weitere chemisch aufgeklärte PPAP aus Areal C	121
4.2.5. Weitere nicht chemisch aufgeklärte Substanzen	121
5. Zusammenfassung	123
6. Literaturverzeichnis	125
7. Anhang	136
7.1. Abbildungsverzeichnis	136
7.2. Tabellenverzeichnis	138
7.3. Abkürzungen	139
7.4. Danksagung	142

1. Einleitung

1.1. Allgemeine Aspekte von Krebs

Krebs rangiert als Todesursache weltweit nach Herz-Kreislauf-Erkrankungen an zweiter Stelle. In den USA als Beispiel für ein industrialisiertes Land sollten 2013 laut prädiktiver Statistik und Berechnungen 1.660.290 Menschen neu erkranken und 580.350 an Krebs sterben. Geschlechtsspezifisch gesehen ist mit 29 % bei Frauen das Mamma- und bei Männern mit 28 % das Prostatakarzinom der häufigste diagnostizierte Tumor, wobei sowohl bei Männern als auch Frauen der Lungen- und Bronchialkrebs die häufigste Todesursache darstellt (28 % für Männer und 26 % für Frauen). Kolorektalkarzinome stehen bei beiden Geschlechtern sowohl in der Inzidenz als auch in der Mortalität mit je 9 % an dritter Stelle. Trotzdem ist über die letzten Jahre ein leichter Rückgang in der Todesrate und der Inzidenz zu verzeichnen (Siegel et. al., 2013). In Entwicklungsländern sieht die Rangfolge der weitverbreiteten und tödlichen Tumorarten anders aus: Bei Männern folgen sowohl in Inzidenz als auch Todesursache dem Lungenkrebs als zweites Magen- und als drittes Leberkarzinome. Bei den Frauen steht an erster Stelle Brustkrebs, gefolgt von Gebärmutterhals- und Lungen- bzw. Bronchialkrebs (Jemal et al., 2011).

Risikofaktoren für Krebs sind das Alter, Rauchen, Alkohol, Übergewicht, karzinogene Noxen (z.B. UV-Strahlung, Radioaktivität), familiäre Disposition sowie bakterielle und virale Infektionen. Das Bakterium *Helicobacter pylori* wird für Magenkarzinome und das MALT-Lymphom (mucosa associated lymphoid tissue) verantwortlich gemacht. Es gibt eine Reihe von bekannten Onkoviren, die eine Krebserkrankung verursachen können. Dazu zählen neben dem Humanen Herpesvirus 8, welches das Kaposi-Sarkom mit verursacht, auch das Hepatitis-B&C-, das Eppstein-Barr- und das Humane Papillomavirus.

Krebs ist das Resultat der Akkumulation von Defekten und Mutationen in Genstruktur, -funktion und -regulation innerhalb einer Zelle, die durch chemische oder biologische Karzinogene induziert werden können. Dieses stört das feinregulierte Gleichgewicht zwischen Wachstum, Differenzierung und Zelltod (Apoptose oder Nekrose), so dass die Zellen sich unkontrolliert vermehren und wachsen (Echmoll et al., 1997). Der so entstehende Tumor ist zellulär gesehen sehr heterogen und umfasst eine Zellpopulation so genannter Krebsstammzellen, die vermutlich für Entstehung und Metastasierung verantwortlich sind. Im weiteren Verlauf infiltrieren und invadieren die Tumorzellen Nachbargewebe und breiten sich via Lymph- und Blutbahn auf anderen Körperregionen aus, wo sie Metastasen bilden, was schließlich zum Exitus führt.

Therapeutische Optionen zur Behandlung von Neoplasien beinhalten chirurgische Interventionen, den Einsatz von Zytostatika, ionisierende Bestrahlung und Immuntherapie mit Antikörpern. Zusätzlich zu diesen traditionellen Therapieformen gewann in neuerer Zeit die Gentherapie in Forschung und Klinik mehr an Bedeutung. Die Chemotherapie ist immer noch die am häufigsten angewandte Therapieform. Allerdings bleibt das Überleben Chemotherapierefraktärer Tumorzellen nach einer Zytostatikabehandlung ein ernstes Problem in der Onkologie, denn die Chemotherapierefraktären Tumore bilden multiple Resistenz- und Kreuzresistenzmechanismen aus, die klinisch gesehen nicht mehr kontrollierbar sind. Daher ist es unabdingbar, neue Medikamente und Substanzen zu entwickeln, die sowohl in der *First Line Therapy* für noch nicht behandelte Tumore als auch in der *Second Line Therapy* für schon behandelte Tumore eingesetzt werden können. Gegenwärtige Strategien in der Zytostatikaentwicklung fokussieren sich auf Substanzen, die spezifisch auf Krebsstammzellen zielen und diese bekämpfen.

1.2. Krebsstammzellen innerhalb der Tumorzellheterogenität

Die Existenz von Krebsstammzellen (KSZ) wurde zum ersten Mal von dem deutschen Pathologen Dr. Rudolf Ludwig Karl Virchow postuliert (Virchow 1858 und Wagner 1999) und war seitdem lange umstritten. Erste zeitgenössische Hinweise auf Krebsstammzellen in menschlichen Tumoren ergaben sich aus Studien an der Akuten Myeloischen Leukämie (Bonnet et al., 1997) und später auch an soliden sowie anderen hämatologische Krebsentitäten. Krebsstammzellen zeichnen sich durch folgende inhärente Eigenschaften aus: (a) Autarkie/Selbsterneuerung, (b) Pluripotenz und unbegrenzte Fähigkeit zur Proliferation, (c) Dormanz, (d) geringe Empfindlichkeit gegenüber Chemotherapeutika, Radiotherapie und Wachstumsinhibitoren, (e) Vermeidung von Apoptose, (f) Migration, Invasion und Metastasierung (Cheng et al., 2006; Reya et al., 2001; Weissman et al., 2002; Weissman et al., 2005a; Weissman et al., 2005b; Rossi et al., 2008 und Rosen et al., 2009)

Die Dormanz ist einer der wichtigen Schutzmechanismen der Stammzellen, durch die sie ihr Erbgut vor Genveränderungen bewahren, die sich vor allem während der Zellteilung ereignen. Diese Dauerschlafseigenschaft ist vermutlich eine der Ursachen von Metastasen und Rezidiven, die erst nach langer Zeit wieder auftreten. Darüber hinaus entgehen sie in diesem Zustand auch der Attacke vieler Zellgifte, die nur auf proliferierende Zellen wirken. Krebsstammzellen bleiben in dem geeigneten Mikroambiente ihrer Nische so lange latent, bis weitere Veränderungen in ihnen selbst oder in ihrer Nische dazu führen, dass die Zellen die Umgebung verlassen oder lokal das angrenzende Gewebe infiltrieren.

Die Krebsstammzelltheorie beruhen auf folgenden zwei Befunden: zum einen ist zur Generierung von Xenograftmodellen, d.h. zu Tumorinitiation, -wachstum und - differenzierung in die jeweiligen tumorspezifischen Zelltypen, eine große Zellzahl notwendig; zum anderen behalten viele Tumore die phänotypischen Eigenschaften des Ursprungsgewebes bei. Demzufolge existieren laut Theorie nur wenigen robuste tumorinitiierende KSZ-Klone, die die nötigen günstigen biologischen Eigenschaften aufweisen, um nach der Transplantation weiterzuwachsen und einen Tumor zu entwickeln (Visvader et al., 2008 und Gangemi et al., 2009).

Außerdem berichten aktuelle Studien, dass Tumorzellen ohne Stammzelleigenschaften durch Stimulierung verschiedener Zytokine und Wachstumsfaktoren in Krebsstammzellen transformiert werden und so einen Tumor mit seiner charakteristischen Zellheterogenität initiieren können (Oshima et al., 2014).

Ein wichtiger, aber bis dato nicht vollkommen geklärter Aspekt der Krebsstammzelltheorie ist, ob Krebs aus malignisierten normalen Stammzellen entsteht.

Hinsichtlich spezifischer Tumorstammzellmarker wurde inzwischen eine Reihe von membrangebundene und zytoplasmatische Proteinen identifiziert, die eine biochemische und morphologische Typisierung der KSZ erlauben können. Hierbei sind für die "eindeutige" Charakterisierung der jeweiligen KSZ vielmehr eine Kombination von Markern anstatt ein einzelnes exprimiertes Antigen notwendig. Bei dieser Kombination von Markern handelt es sich um solche, die die physiologische Norm oder ausgewählte deregulierte Proteine betreffen und so in erster Linie die histologische Herkunft bzw. physiologischen Prozesse der normalen Zellen widerspiegeln (Klonisch et al., 2008).

Die Identifizierung und Validierung der KSZ-Marker ist zweifellos ein im Entstehen begriffener Forschungszweig und hat noch einen langen Weg vor sich. Denn streng genommen beschränkt sich die Forschung auf Sets von Antigenen, deren Expression sich in normalen Tumorzellen und KSZ unterscheidet. Die Forschung an robusten und verlässlichen tumorspezifischen KSZ-Markern, wie sie schon für normale Stammzellen existieren, beschäftigt gegenwärtig Onkologen weltweit und befindet sich in einem stetigen aber langsamen Fluss. Daher gestaltet sich die Erforschung der KSZ und die damit verbundene Heterogenität von Tumorzellpopulationen äußerst schwierig.

Der Goldstandard für KSZ-Experimente ist die hetero- und orthotope Transplantation von in Matrigel eingebetteten selektierten Tumorzellen in immundefizienten Mäusen, wobei häufig ein vollwertiges Matrigel, d.h. mit diversen Wachstumsfaktoren eingesetzt wird (Hendrix et al., 1987; Hendrix et al., 1989 und Klarmann et al., 2009). Die Erfahrungen haben gezeigt, dass dieses Verfahren mit Vorsicht zu genießen ist, da es die Genese der KSZ mehr oder weniger durch eine Transition von Nicht-KSZ zu KSZ mittels Wachstumsfaktoren aus dem Matrigel induzieren kann.

Die Zellheterogenität von KSZ beruht im wesentlichen auf i) stochastischen genetischen und/oder epigenetischen Änderungen, ii) Differenzierungsgraden in Abhängigkeit von der Mikroumgebung und somit auch iii) vom jeweiligen Krebsstammzellmodell mit seinen heterogenen Zellpopulationen.

Wie wichtig genaue Kenntnisse über diese Aspekte der Tumorheterogenität für die Diagnose, Therapie und den Verlauf von onkologischen Erkrankungen sind, lässt sich ideal am Beispiel des Neuroblastoms zeigen. Beim Neuroblastom gilt: je differenzierter ein Tumor, desto besser seine Prognose. Im Umkehrschluss bedeutet dies, dass je undifferenzierter bzw. heterogener ein Tumor in Hinblick auf seine Zellzusammensetzung ist, desto maligner, aggressiver und Chemorefraktärer ist er. Diese aberrante Heterogenität-Malignität-Aggressivität-Achse lässt sich in verschiedenen Ausprägungen auch in anderen Tumorentitäten beobachten.

1.2.1. Chemotherapieresistenz bei Krebsstammzellen

Sowohl solide als auch hämatologische Neoplasien sprechen, insbesondere während der Initialphase der Erkrankung, auf verschiedene Modalitäten einer Standardtherapie an. Bis heute ist die Chemotherapie eine der besten Behandlungsmethoden in der Onkologie; jedoch bleibt ein langfristiger Erfolg bei den meisten Tumorformen aus, da nach Monaten oder Jahren einer scheinbar erfolgreichen Behandlung Rezidive auftreten können. Der Grund für das Auftreten dieser hoch Chemorefraktären Rezidive am Primärort oder in Form eines Sekundärtumors lässt sich nach gängiger Meinung auf das Überleben der KSZ zurückführen. Die molekularen Mechanismen der Resistenz von KSZ sind multifaktoriell und ähneln jenen normaler Stammzellen oder spezifischer normaler Zellen in Geweben, bei denen eine physiologische Detoxifikation zum Schutz vor xenobiotisch bzw. physikalisch induzierten Schäden stattfindet. Hierzu zählen i) eine erhöhte Expression von MDR-Phänotypen und ii) verminderte Substanzaufnahme über die Membran, iii) Enzyme, die eine bedeutende Rolle in der intrazellulären Entgiftung spielen, iv) verstärkte Aktivierung von DNA-Reparatur-Kontrollpunkten und v) Aktivierung von antiapoptotischen Signalkaskaden (Wong et al., 2012 und Hawley et al., 2013). Der Grad der Resistenz ist dabei abhängig von dem verabreichten Medikament, der individuellen Reaktion des Patienten und der Biologie bzw. Heterogenität des Tumors. Die multiplen Resistenzmechanismen führen neben einer Panresistenz zu einer zusätzlichen biologischen Besonderheit von KSZ, nämlich der simultanen Chemo- und Bestrahlungsresistenz.

Diese Aspekte wurden unglücklicherweise in den letzten Jahren in der Onkologie nicht angemessen berücksichtigt. Während sich z. B. die meisten vergleichenden Studien über den MDR-Phänotyp mit ABC-Transportern befassen, konnten aus diesen Studien keine effektiven Therapien abgeleitet werden. MDR-Modulatoren, die sich gegen diesen Typ von Transportern richten, haben für die klinische Behandlung maligner Erkrankung keinen oder nur einen sehr limitierten Nutzen, da ABC-Transporter zum Teil auch in verschiedenen normalen Geweben und Organtrakten vorkommen und dort ebenfalls für den Efflux von exo- und endogenen Xenobiotika verantwortlich sind (Gangemi et al., 2009 und Amiri-Kordestani et al., 2012). Somit ist die Chemotherapieresistenz von Tumoren trotz intensiver Forschung weiterhin ein großes Problem.

1.2.2. Targeting der Krebsstammzellen

Die Eliminierung eines Tumors durch Chemotherapie ist in der Regel nicht dauerhaft. Die Resistenz von KSZ gegenüber herkömmlichen Krebstherapien hat zu einer Suche nach neuen zellulären Angriffspunkten für die Behandlung geführt.

Obwohl die genauen Mechanismen, welche die KSZ-Selbsterneuerung regulieren, noch nicht vollständig aufgeklärt sind, kommen hierbei die Steuerelemente zur Regulation normaler physiologischer Prozesse der Stammzellen oder der differenzierten Gewebszellen als Hilfe für eine gezielte Therapie in Frage. Diese Steuerelemente umfassen Signaltransduktionskaskaden und Transducer wie z.B. Hedgehog, Notch und Wnt, aber auch Transkriptionsfaktoren wie Sox(s), Oct(s) etc. und Oberflächenrezeptoren, die bereits mit der Pathogenese unterschiedlichster Krebstypen in Verbindung gebracht wurden und eine wichtige Rolle in der KSZ-Physiologie spielen könnten. Die Kontrolle bzw. Modulierung dieser deregulierten Mechanismen beruht aktuell in erster Linie auf der Gentherapie, spezifischen Inhibitoren und auf therapeutischen Antikörpern. Das Problem dabei ist, dass diese Elemente nicht nur in den KSZ vorhanden sind, sondern auch in der normalen Embryonalentwicklung und bei der Reparatur bzw. Regeneration von verletztem adultem Gewebe eine wichtige physiologische Rolle spielen. Dementsprechend besteht die Herausforderung bei diesen therapeutischen Ansätzen darin, normale Gewebsstammzellen, die ebenfalls diese Pfade nutzen, nicht zu schädigen und möglichst intakt zu erhalten.

Mehrere therapeutische Strategien gegen KSZ befinden sich zurzeit in den frühen Phasen der klinischen Erprobung. In AML hemmen anscheinend kleine Moleküle wie die Parthenolide und deren Derivate die NFkB-Signalübermittlung in KSZ, nicht jedoch in normalen Stammzellen (Pei et al., 2012 und Diamandi et al., 2013). Neben den Signaltransduktionskaskaden wie den oben erwähnten Hedgehog-, Notch- und Wnt-Pfaden sollten auch charakteristische molekulare und physiologische Deregulierungen, die offenbar eine entscheidende Rolle in der Genese menschlicher KSZ spielen (z. B. das BCR-ABL-Fusionsprotein in CML, die TMPRSS2-ERG-Genfusion im Prostatakarzinom, Flt3-Mutationen bei akuten Leukämien und die Her2/neu-Überexpression beim Mammakarzinom), als mögliche therapeutische Angriffspunkte untersucht werden. Substanzen, die sich gezielt gegen diese pathologischen Elemente richten, könnten die Regenerationsfähigkeit der KSZ aufheben und ihre Differenzierung induzieren. Jedoch kann es sich als schwierig erweisen, die klinische Wirkung derartiger Substanzen zu erforschen, wenn diese tatsächlich nur eine kleine Subpopulation von Zellen angreifen. Normalerweise erfassen klinische Untersuchungen in erster Linie schnelle Veränderungen im Tumor-Hauptteil anhand radiologischer oder labortechnischer Messgrößen. Demgegenüber könnten neue Biomarker und Labormethoden, die eine routinemäßige Bestimmung der Krebsstammzellen erlauben, spezifischere Anhaltspunkte bei der klinischen Untersuchung entsprechender Substanzen liefern.

Neue Strategien gegen KSZ wie z.B. interferierende RNA (einschließlich shRNA und miRNA), blockierende Peptide, spezifische Antikörper und Antagonisten der krebsspezifisch überexprimierten Elemente der Signaltransduktionskaskade bzw. Rezepto-

16

ren sind Teil intensiver Forschungsbemühung weltweit und haben das Ziel den Heilungserfolg bereits etablierter Verfahren wie Polychemo- und Bestrahlungstherapie zu verbessern.

Das langfristige Ziel sollte die Förderung von Therapien bleiben, die vorwiegend auf die spezifische molekulare Signatur der KSZ und nicht auf diejenige der normalen Stammzellen und differenzierten Gewebe wirken. In den vergangenen Jahren haben Naturstoffe wie Salinomycin, Curcumin, Sulforaphane, ein neues Vitamin-D-Analogon (BXL0124) etc. aufgrund ihrer Selektivität gegen KSZ großes Interesse innerhalb der wissenschaftlichen Gemeinschaft erregt (Gupta et al., 2009 und Parajuli et al., 2013).

1.2.3. Screening von Stoffen gegen KSZ

Zurzeit gibt es immer noch wenige Veröffentlichungen, die sich mit einem Programm zur Entwicklung spezifischer Anti-KSZ-Agenzien beschäftigen, und diesbezügliche Richtlinien sind in der onkologischen Forschung wenig bekannt. Doch Studien über natürliche oder synthetische Stoffe mit diesen Eigenschaften erscheinen zunehmend auf wissenschaftlichen Tagungen (Gupta et al., 2009).

Aus dieser naszierenden Forschungsrichtung sind bislang nur sehr wenige Stoffe hervorgegangen, die bereits in die präklinische bzw. klinische Phase eingetreten sind. Demzufolge besteht in der Onkologie immer noch die absolute Notwendigkeit, Zytostatika zu entwickeln oder weiterzuentwickeln, welche eine spezifische Aktivität gegen hoch metastasierende resistente KSZ aufweisen. Ferner ist es ein Fakt, dass die Erforschung der Chemotherapieresistenz in den vergangenen Jahren bedauerlicherweise stark abgenommen hat, obwohl die Resistenz immer noch eines der wichtigsten Probleme in der Therapie des onkologischen Patienten ist.

1.3. Propolis im Allgemeinen

Propolis – in Deutschland unter anderem auch als Bienenharz oder Kittharz bekannt – ist ein weiteres Bienenprodukt neben Wachs, Gelee Royale und Honig. Der Name Propolis setzt sich aus den griechischen Wörtern "pro" (gr: προ) für "für" und "pólis" (gr: πόλις) für "Stadt" zusammen. Im übertragenden Sinn lässt sich Propolis mit "für die Verteidigung des Bienenstaates" übersetzen. Die Bienen sammelt selektiv Harz von Rissen in der Baumborke, von Blüten und Knospen. Das zusammengetragene Material wird zerkaut und mit Speichelenzymen und Wachs vermischt. Propolis ist eine harzige braun bis gelbe Masse mit aromatischem Geruch. Bei niedrigen Temperaturen ist es brüchig, wird aber bei höheren Temperaturen zähflüssig. Propolis erfüllt mehrere Zwecke: zum einen werden damit kleine Öffnungen versiegelt, daher der Name Kittharz, zu anderem wird damit der Bienenstock hygienisch sauber gehalten, denn es herrschen dort bei hoher Temperatur und Luftfeuchtigkeit gute Bedingungen für die Ausbreitung von Krankheitserregern. Indem aber die Bienen unter anderem ihre Waben mit einem dünnen Film aus Propolis bedecken, können so schädlichen Organismen in ihrer Entwicklung gehemmt oder abgetötet werden. Da Propolis also evolutionär vor allem als Abwehrmittel gegen Pathogene entstanden ist, liegt es nahe, dieses Material auf sein pharmakologisches Potenzial hin zu untersuchen, zumal seit alters her über eine medizinische Nutzung von Propolis berichtet wird. Sie wird heute in einer Vielzahl von Produkten wie Seife oder Zahnpasta eingesetzt und unter anderem in Tablettenform gepresst oder als Tinktur verkauft.

Abbildung 1: Makroskopische Aufnahmen von Propolis. In der Nahaufnahme von unverarbeitetem Propolis erkennt man kleine Brikett-ähnliche Ausscheidungsprodukte der Bienen (rechtes Foto). Außerdem sind noch wachsartige Substanzen, Harze und Insektenteile zu sehen. Vergrößerung links 10x und rechts 20x. Der Maßstabsbalken entspricht 2 mm.

1.3.1. Einige Aspekte von Propolis

Die Phytochemie hat in der Vergangenheit zahlreiche antitumoral wirkende Naturstoffe hervorgebracht, die bereits als Chemotherapeutika im klinischen Gebrauch sind, wie z. B. Vinca-Alkaloide (Vincristin, Vinblastin), Texane (Paclitaxel) und Odophyllotoxine (Etoposid). Die Fachrichtung der Pharmakognosie benutzt in der Regel aktive Naturstoffe als Leitsubstanzen, um daraus weniger toxische oder systemisch anwendbare Derivate herzustellen. Langjährige Forschungsarbeiten unserer Arbeitsgruppe über die biologische Aktivität von Naturstoffen unterschiedlicher Herkunft (Pflanzenextrakte, Propolis, marine Organismen u. a.) haben umfangreiche Beweise für die Existenz nicht-zytotoxischer, hoch komplexer Substanzen erbracht, die antitumorale, immunmodulatorische und auch radioprotektive Wirkungen zeigen. Von besonderem Interesse sind dabei die bisherigen Befunde zu karibischer Propolis (Kuba und Florida), deren Inhaltsstoffe die genannten biologischen Aktivitäten sowohl *in vitro* als auch *in vivo* aufweisen (Popolo A et al., 2009 und Popolo A et al., 2011).

1.3.1.1. Chemische Zusammensetzung

Die chemische Komposition von Propolis spiegelt in ihrer Verschiedenartigkeit die jeweilige ökologische Herkunft wider und ist außerdem auch an die Jahreszeiten gebunden. So ergeben sich für Klimazonen und Jahreszeiten typisch Propolissorten. Die bei weitem umfangreichste Stoffgruppe, die man identifiziert hat, sind die Flavonoide, welche im Pflanzenreich allgegenwärtig sind; sie sind vermutlich ein Teil der Abwehrmechanismen der Pflanzen.

Propolis besteht grundsätzlich aus ca. 50 % Harzen, 30 % Wachsen, 10 % essentiellen Ölen und 5 % Pollen (Greenaway et al., 1990 und Tomas-Barberan et al., 1993). Bisher konnten über 300 einzelne Inhaltsstoffe identifiziert werden (Lotfy 2006), die zu unterschiedlichen Stoffklassen gehören wie etwa den Alkoholen (z.B. Zimtalkohol, Glycerin, Hydrochinon), Aldehyden (z.B. Vanillin, Benzaldehyd), aliphatischen Säuren und Estern (z.B. Essigsäure, Crotonsäure), Aminosäuren (z.B. Tyrosin, Glycin, Serin), aromatischen Säuren und Estern (z.B. Kaffeesäure, Ferulasäure, Gallussäure), Chalkone und Hydroxychalkone, Flavonen und Flavonoiden (z.B. Naringenin, Pinocembrin, Kaempferol), Hydrocarbonestern, Ethern, Hydroxy- und Ketowachsen, Wachssäuren (z.B. Palmitinsäure, Stearinsäure, Ölsäure), Ketonen (z.B. Acetophenon, Methylacetophenon), Terpenoiden (z.B. Naphthalin, P-Cymol, Xylitol), Steroiden (z.B. Ergosterol), Zuckern (z.B. Fructofuranose, Glucopyranose), Mineralien (z.B. Aluminium, Silber, Kupfer) und sonstigen Verbindungen (Seifer et al., 1989; Seifer et al., 1991; Greenaway et al., 1991; Marcucci, 1995; Bankova et al., 2002 und Popova et al., 2010).

1.3.1.1.1 Flavonoide

Flavonoide gehören zu den häufigen Inhaltsstoffen in Propolis. Sie sind eine ubiquitär in Pflanzen vorkommende Gruppe von sekundären Stoffen und machen einen Großteil der pflanzlichen Nahrung des Menschen aus. Sie dienen als Ausgangstoffe für die Biosynthese verschiedener Verbindungen. Das chemische Grundgerüst – das Flavan – besteht aus zwei aromatischen Ringen, die durch einen Tetrahydropyran-Ring verbunden sind. Von diesem Gerüst leiten sich durch verschiedene Modifikationen wie unterschiedliche Substitutionen an den aromatischen Ringen und das Anhängen von Zuckern über 8000 bekannte Verbindungen ab. Es gibt sechs große Untergruppen der Flavonoide: Chalkone, Flavone, Flavonole, Flavandiole, Anthocyanidine und kondensierte Tannine.

Pflanzen bilden die Flavone als Sekundärprodukte über den Shikimisäureweg, der in erster Linie der Synthese der proteinogenen Aminosäuren Phenylalanin, Tyrosin und Tryptophan dient. Die Pflanzen nutzen die Flavonoide als Blütenfarbstoffe und damit zur Anlockung von bestäubenden Insekten. Andere Flavonoide werden als Fraßschutz eingesetzt und schrecken potentielle Herbivoren ab. Besonders Flavone und Flavonole fungieren als Schutz gegen UV-Strahlung und kurzwelliges Licht. Manche Flavonoide haben aber auch direkt eine antivirale, antibakterielle und antifungale Wirkung (Friedmann, 2007; Orhan et al., 2010).

Abbildung 2: Grundgerüst der Flavonoide. Das Flavan bildet die Grundstruktur dieser Stoffklasse. Es besteht aus den zwei aromatischen Ringen A und B und dem heterozyklischen Ring C.

Die antitumorale Wirkung der Flavonoide wurde in verschiedenen Tumorentitäten untersucht (Chahar et al., 2011). So scheinen Isoflavone aus Sojabohnen in ostasiatischen Ländern eine protektive Wirkung gegen Krebs zu haben. Viele dieser Isoflavone wirken wie Phytoöstrogene und haben einen Einfluss auf Mamma- und Prostatakarzinome. In Mammakarzinomen sind die Isoflavone Genistein, Daidzein und Glycitein wirksam, in Prostatakrebs sind es Silibinin, Quercetin und Luteolin (Chahar et al., 2011). Zu bedenken ist jedoch, dass die Flavonoide im Körper schnell metabolisiert werden und daher pharmakologisch wenig effektiv sind.

1.3.1.1.2. Polyprenylierte Polyzyklische Akylphloroglukinole

Die Polyprenylierten Polyzyklischen Akylphloroglukinole (engl: polyprenylated acylphloroglucinols oder polyprenylated polycyclic acylphloroglucinols, kurz PPAP) sind eine Gruppe sekundärer Pflanzenmetaboliten, die bisher nur in der Pflanzenfamilie *Clusiaceae* nachgewiesen worden sind. Die *Clusiaceae*-Familie besteht aus über 1600 Arten, die von den Tropen bis in die gemäßigten Zonen vorkommen (Gustafsson et al., 2002). Das PPAP-Grundgerüst ist das Bicyclo-[3.3.1.]-nonan-2,4,9-trion-Motiv, dass mit verschiedene Seitenketten wie Prenyl oder Geranyl verbunden ist. Ausgehend von dieser Grundstruktur lassen sich drei Klassen an PPAP unterscheiden. Einige PPAP besitzen durch einen Ringschluss zwischen dem β-Diketon und einem Alken einen dritten Ring. Auf diese Weise können diese PPAP Adamantanstrukturen enthalten. Bisher wurden knapp über hundert PPAP-Verbindungen identifiziert, von denen lediglich drei zu Klasse C gehören (Ciochina 2006).

Abbildung 3: Klassifizierung der PPAP. Neben dem Grundgerüst unterscheiden sich die drei Klassen durch ihre Substituenten und die Position der Acylgruppe, die in der Klasse A bei C1, bei Klasse B bei C3 und bei Klasse C bei C5 sitzt (Abbildung nach Ciochina 2006 S. 2 modifiziert).

Die Biosynthese der PPAP erfolgt aus den weniger komplexen Monozyklischen Polyprenylierten Akylphloroglukinolen (MPAP), die wiederum aus der enzymatischen Kondensation von drei Malonyl-CoA mit einem Acyl-CoA wie z.B. Isobutyryl-CoA und anschließender Zyklisierung und Geranylisierung bzw. Prenylisierung entstehen (Dakanali und Theodorakis, 2011).

PPAP sind zweifellos aufgrund ihrer hohen antitumoralen Aktivität und geringen Zytotoxizität gegenüber normalen Zellen bzw. *in vivo* exzellente Kandidaten für Krebsmedikamente. Gegenwärtig arbeiten zahlreiche Gruppen in der synthetischen Chemie intensiv an der Herstellung verschiedener Vertreter dieser Stoffklasse (Zhang et al., 2010; Zhang et al., 2011 und Biber et al., 2011).

1.3.1.2. Antibakterielle Wirkung von Propolis

Propolis dient vor allem als Biozid gegen Bakterien, Viren, Pilze und andere Pathogene. Daneben wirkt es auch anti-inflammatorisch, antiparasitär und zytotoxisch.

Es gibt viele Studien über die antibakterielle Aktivität. So hemmt Propolis das Wachstum von *Paenibacillus larvae*, welches Bienenkolonien befallen kann (Mihai et al., 2012). Drago et al. testeten 320 Bakterienstämme auf ihre Sensitivität gegen europäische Propolis und erzielten gute Ergebnisse gegen *Streptococcus pneumoniae*, *Haemophilus influenzae* und *Moraxella catarrhalis* (Drago et al., 2000). Andere Arbeiten zeigten, dass Propolis das Wachstum von *Pseudomonas aeruginosa*, *Bacillus subtilis* und *Streptococcus* β -*haemolyticus* hemmen kann (Grange et al., 1990). Die antibakterielle Wirkung ließ sich in den Untersuchungen hauptsächlich auf den Effekt der Flavonoide zurückführen. Am effektivsten stellten sich dabei die Flavonoide Galangin, Pinocembrin und Pinostrobin heraus (Grange et al., 1990).

1.3.1.3. Fungizide Wirkung von Propolis

Mehrere Forschergruppen untersuchten die Wirkung von Propolis auf verschiedene pathogene Pilzarten und konnten eine toxische Wirkung auf *Candida*-Arten und anderen Dermatophyten nachweisen (Fernandes Junior et al., 1994 und Cafarchia et al., 1999).

1.3.1.4. Antivirale Wirkung von Propolis

Wie oben erwähnt, wirkt Propolis auch antiviral. Amoros et al. untersuchten den Effekt von Propolis auf DNA- und RNA-Viren, darunter Herpes simplex Typ 1 und Typ 2, Adenovirus Typ 2, vesikuläres Stomatitis-Virus und Poliovirus Typ 2. Eine deutliche Inhibition konnte bei dem Poliovirus beobachtet werde, während die Adeno- und Stomatitisviren unempfindlicher waren (Amoros et al., 1992 und Amoros et al., 1994). Es wurde auch eine Aktivität von Propolis gegen HIV I erwähnt. Der Effekt auf die Infektiosität des Virus wurde mittels Messung der Expression des p24-Antigens bestimmt (Harish et al., 1997). Unsere Arbeitsgruppe um Díaz-Carballo konnte mit karibischer Propolis die Replikation des HI-Virus als auch die Aktivität der Reversen Transkriptase des HTL-Virus II hemmen (Díaz-Carballo et al., 2010).

1.3.1.5. Antiparasitäre Wirkung von Propolis

Propolis wirkt auch gegen Parasiten wie *Leishmania amazonensis* und *Trichomonas vaginalis* (Ayres et al., 2007 und Monzote Fidalgo et al., 2011). Mit Hilfe von Propolis konnten David et al. die Proliferation des Dünndarmparasiten *Giardia duodenalis* inhibieren (David et al., 2012). Bulgarische Propolis konnte durch einen Effekt auf Mitochondrien und Reservosome die Ausbreitung von *Trypanosoma cruzi* in menschlichen Muskelzellen stark einschränken (Dantas et al., 2006). Weitere Arbeiten zeigen eine Wirkung gegen die parasitäre Amöbenart *Acanthamoeba castellanii* (Topalkara et al., 2007).

1.3.1.6. Immunmodulatorische Eigenschaften von Propolis

Propolisextrakt wirkte bei Ratten mit Arthritis entzündungshemmend und schmerzlindernd. Der analgetische Effekt ließ sich dabei mit Schmerzmitteln wie Prednisolon und Acetylsalicylsäure vergleichen (Park und Kahng, 1999). Kaffeesäurephenylethylester (englische Abkürzung: CAPE) hat anti-inflammatorische Eigenschaften und inhibiert die Aktivierung der T-Zellen, die in der Entzündungsentwicklung eine große Rolle spielen (Márquez et al., 2004). CAPE an sich scheint noch andere Eigenschaften zu haben: Es relaxiert Gefäße (Cicala et al., 2003) und ist neuroprotektiv (Wei et al., 2004). Weitere Erkenntnisse zu der antiinflammatorischen und immunmodulatorischen Wirkung von Propolis lieferten unter anderem Volpert und Elstner (1996), Frenkel et al. (1993), Miyataka et al. (1997) und Menezes et al. (1999).

1.3.1.7. Antitumorale Wirkung von Propolis

Neben all diesen Pathogenen, die die Bienenstöcke und damit auch die Bienen selber befallen können, wurde die Wirkung von Propolis in zahlreichen Untersuchungen auch auf Tumorzelllinien untersucht. So wurde die zytostatische Wirkung von Propolisextrakten auf menschlichen Tumorzelllinien HeLa (Zervixkarzinom) und KB (Nasopharynxkarzinom) geprüft (Hladoń et al., 1980). Grunberger et al. beschrieben CAPE als den Bestandteil, der hauptsächlich für die antitumorale Aktivität gegen verschiedene Krebszelllinie wie CREF-, MCF- (Mammakarzinom) und SK-MEL-28 (Melanom) verantwortlich ist (Grunberger et al., 1988). Einige Kaffeesäurederivate wie Methylkoffeat, Phenethylkoffeat und Pentylethyldiphenylkoffeat sind von der Forschergruppe um Rao in HT29 und HCT116 – beides Kolonkarzinome – geprüft worden (Rao et al., 1992). Ergebnisse der Versuche mit brasilianischer Propolis an menschlichen HuH- (hepatozelluläres Karzinom), HLC2- (Lungenkarzinom) sowie HeLa-, KB- und W3Y-Zelllinien sind von Matsuno et al. veröffentlich worden (Matsuno et al., 1997). Schneller et al. zeigten eine antitumorale Aktivität von ethanolischem Propolisextrakt in Mäusen, die einen Ehrlichs-Aszites-Tumor trugen (Scheller et al., 1989). Orsolics Forschergruppe demonstrierte einen antimetastatischen Effekt von wässrigem Propolisextrakt in tumortragenden Mäusen (Orsolic et al., 2003 und Orsolic et al., 2005). Zwei Phenylallylflavone aus mexikanischer Propolis konnten das Wachstum von PanC1 (Pankreaskarzinom) inhibieren (Li et al., 2011). Artepillin C aus brasilianischer Propolis erwies sich als wirksames Mittel gegen solide Tumore und Leukämien. Neben seiner direkten Auswirkungen auf die Tumorzellen (Einleitung der Apoptose und Nekrose) stimulierte es anscheinend auch das Immunsystem (Kimoto et al., 1998)

In-vivo-Studien an Mäusen haben gezeigt, dass Propolissorten aus dem karibischen Raum eine erhebliche antitumorale Aktivität haben (Díaz-Carballo et al., 2010). Aus der komplexen Stoffmischung karibischer Propolis, die aus ca. 300 bis 400 verschiedenen chemischen Verbindungen besteht, konnte die Arbeitsgruppe im Rahmen eines langfristigen Durchmusterungsprojekts einige antitumoral wirksame Einzelsubstanzen in Reinform isolieren.

Drei Hauptstoffklassen mit hoher Aktivität sind in karibischen Propolissorten in relativ niedriger Menge zu finden: Flavonoide, Isoflavone und Polyprenylierte Polyzyklische Akylphloroglukine (PPAP), eine Stoffklasse, die erstmals von unserer Arbeitsgruppe als Wirkstoffe für die Onkologie diskutiert wurde. Zu den PPAP gehören z.B. Nemoroson (ein Klasse-A-PPAP) und seine zahlreichen Derivate, welche ursprünglich aus der Pflanzenfamilie der *Clusiaceae* (*Clusia rosea, Clusia nemorosa* oder *Clusia grandiflora*) isoliert wurden (Díaz-Carballo et al., 2003; Díaz-Carballo et al., 2008a; Díaz-Carballo et al., 2008b; Díaz-Carballo et al., 2010 und Díaz-Carballo et al., 2012).

Die Liste ließe sich noch weiter fortführen, aber man erkennt, dass Propolis als Naturquelle von medizinisch relevanten und aktiven Substanzen ein großes Potential hat. Durch die weltweit existierenden Propolissorten, die ein spezifisches klimatisches und ökologisches Profil repräsentieren, ist es möglich neue Medikamente für die Therapie von Krebs zu entdecken.

1.4. Ziel der Arbeit

Aktuell widmet sich die weltweite onkologische Forschung der Entwicklung antineoplastischer Substanzen spezifisch gegen Krebsstammzellen, weil diese mutmaßlich eine entscheidende Rolle bei der Entstehung und Metastasierung von Tumoren spielen. Auch unsere Arbeitsgruppe hat sich in den letzten Jahren auf dieses Thema konzentriert und dabei gezielt nach Substanzen aus Naturguellen gesucht, die Anti-KSZ-Aktivität besitzen. Neben der Erforschung von Extrakten aus marinen Organismen und Pflanzen ist die Untersuchung von Propolis aus verschiedenen Regionen der Welt ein weiterer Schwerpunkt der Arbeitsgruppe. Propolis als hochkomplexes Stoffgemisch bietet sich als exzellente Quelle für die Isolierung und Identifizierung unbekannter antitumoraler Substanzen an. Vorherige Untersuchungen haben gezeigt, dass kubanische Propolis eine antitumorale Aktivität in vivo aufweist. Die chemische Zusammensetzung dieses Bienenharzes ist außerordenlicht vielfältig, und eine vollständige Analyse seiner biologischen Aktivität wurde noch nie durchgeführt. Unsere Gruppe hat als erste in dieser Propolissorte Vertreter einer neuen Stoffklasse mit antitumoraler Aktivität identifiziert und näher charakterisiert: es handelt sich dabei um Nemoroson aus der Gruppe der Polyprenylierten Polyzyklischen Akylphloroglukine (PPAP). Von dieser Stoffklasse wurden bis jetzt mehr als 100 Verbindungen aus verschiedenen Pflanzen und Baumarten der Familie Clusiaceae chemisch analysiert; sie zeichnet sich durch eine komplexe chemische Architektur und reiche biologische Aktivität aus.

Neben den schon bekannten PPAP enthält die kubanische Propolisspezies noch ein breites Spektrum nicht identifizierter verwandter Stoffe mit zytotoxischer Aktivität, die im Rahmen dieser Dissertation identifiziert und biochemisch möglichst gut charakterisiert werden sollten.

Das Ziel dieser Arbeit ist die Durchmusterung kubanischer Propolis auf neue und noch nicht charakterisierte antitumoral wirkende Substanzen mit Fokus auf jenen, die spezifisch gegen Tumorzellen mit einem KSZ-Phänotyp wirken.

2. Materialien und Methoden

2.1. Materialien

2.1.1. Geräte

<u>HPLC-Anlage:</u>	
e2695 Separationsmodul	Waters, USA
2995 Photodiodenarray (PDA)	Waters, USA
BioFrac [™] Collector	BioRad, USA
Nucleodur 250/4 c18 Säule	Machery-Nagel, Düren
Nucleodur 250/10 c18 Säule	Machery-Nagel, Düren

<u>Mikroskope:</u>

Nikon eclipse TS100 Lichtmikroskop	Nikon, Japan
 Digital Sight DS-Vi1 Farbkamera 	Nikon, Japan
Digital Sight DS-U3 USB-Schnittstelle	Nikon, Japan
Nikon eclipse 50i Fluoreszenzmikroskop	Nikon, Japan
Intensilight c-HGFI Lichtquelle	Nikon, Japan
Digital Sight DS-Fi1c Kamera	Nikon, Japan
Digital Sight DS-U3 USB-Schnittstelle	Nikon, Japan

Rotationsverdampferanlage:

RV10 basic Verdampfer	IKA, Staufer
HB10 basic Wasserbad	IKA, Staufer
RV10 digital Verdampfer	IKA, Staufer
HB10 digital Wasserbad	IKA, Staufer
Minichiller-NR Umwälzkühler	Huber, Offenburg
PM2 0404-820.3 Pumpe	VWR, USA

Vakuumkonzentrator:	
miVac Duo Konzentrator	GeneVac, USA
Festwinkelrotor	GeneVac, USA
miVac Kühlfalle	GeneVac, USA

miVac Duo Pumpe

Zellkulturausrüstung: Hera safe Typ HS12/2 Sterilbank Hera Cell Brutschrank Typ 1004 Wasserbad TC10[™] Automated Cell Counter Wärmeschrank

Zentrifugen:

Centrifuge 5810 R Centrifuge 5415 R Centrifuge 5430 Centrifuge 5702 MiniSpin Rotixa/RP Rotixa/TR MiniStar Silverline

Weitere Geräte: BioSpectrometer Captair Bio Arbeitsbank ChemiDoc XRS+ Dampfgarer DG1218CB DSG 304/M4 Plattenschüttler FC500 Durchflusszytometer Feinwaage A200S Infinite M200 ELISA-Reader iQ5 Thermocycler Mastercycler gradient Microson[™] XL2007 MR Hei-Standard Magnetrührer Pantak X Röntgenstrahler PCB 1000-2 Waage GeneVac, USA

Heraeus, Hanau Heraeus, Hanau GFL, Burgwedel BioRad, USA Memmert, Schwabach

Eppendorf, Hamburg Eppendorf, Hamburg Eppendorf, Hamburg Eppendorf, Hamburg Eppendorf, Hamburg Hettich, Tuttlingen Hettich, Tuttlingen VWR, USA

Eppendorf, Hamburg erlab, Frankreich BioRad, USA Bomann, Kempen Heidolph, Schwabach Beckman Coulter, USA Sartorius, Göttingen Tecan, Schweiz BioRad, USA Eppendorf, Hamburg Misonix, USA Heidolph, Schwabach Pantak, USA Kern, Balingen

Protean IEF Cell PowerPac Basic PowerPac HC RMS-01 Magnetrührer Seven easy pH-Meter SRT9D Rollmischer Thermomixer comfort VF2 Vortexer Vortex-Genie 2 WT16 Schüttler

BioRad, USA BioRad, USA BioRad, USA Phoenix Mettler Toledo, Gießen Stuart Eppendorf, Hamburg Janke & Kunkel IKA-Werk Scientific Industries Biometra

Beckman Coulter,

Tecan, Schweiz

Nikon, Japan

Nikon, Japan

BioRad, USA

Waters, USA

BioRad, USA

Systat Inc., USA

USA

2.1.2. Analysesoftware

CXP Version 2.0

für Zytometrie

für ELISA-Reader

für Mikroskope

für Mikroskope

für HPLC

für qPCR

für Statistik

für ChemiDoc XRS+

i-control Version 1.6 **NIS-Elements Advanced** NIS-Elements Basic Research Image Lab Version 2.0.1 **Empower Version 2.0** iQ5 Software Version 2.1 SigmaPlot ® 12

2.1.3. Pipetten

Pipetus Research plus Set $(0,1 \ \mu l \text{ bis } 5 \ m l)$ Eppendorf, Hamburg Eppendorf Xplorer Set (10 µl bis 1 ml) Eppendorf, Hamburg Eppendorf Xplorer Multikanal 1200 µl Eppendorf, Hamburg Ripette

2.1.4. Verbrauchsmaterialen

Deckgläser (18x18 mm und 24x40 mm) FACS Test Tubes 4 ml

Hirschmann, Eberstadt Ritter, Schwabmünchen

Thermo Scientific, GB Beckman Coulter, USA

FP30 Sterilfilter (0,20 und 0,45 µm Porengröße) Glaspasteurpipetten 230 mm Kanülen 100 Sterican (0,55x25 mm) Kanülen BD Microlance 3 (0,90x40 mm) Mikroschraubröhre (0,5 bis 2,0 ml) Minireagiergefäße (0,5 bis 2,0 ml) Mini-Protean TGX Precast Fertiggel (4-15 %) Objektträger Superfrost (25x75 mm) Omnifix F Spritzen 1 ml Petrischalen (6 und 10 cm \emptyset) Petrischalen (100x100x20 mm) Pipettenspitze (10 bis 1000 µl) Protran BA83 0,2 µm Ø Nitrozellulosemembran Röhren 5 ml, 75x12 mm Safeseal Tips (10 bis 1000 µl) Schraubröhrchen Spitzboden (15 und 50 ml) Serologische Pipette (5 bis 25 ml) Spitzen ritips professional 2,5 ml Spitzen ritips professional 5,0 ml TC10 System Counting Slides, Dual Chamber UV-Küvetten (12,5x12,5x45 mm) Zellkulturflaschen (25 bis 150 cm²) Zellkulturtestplatten flach (6 bis 96 well) Verschiedene Einwegskalpelle

2.1.5. Kits

RNeasy Mini Kit QuantiTect Reverse Transcription Kit TeloTAGGG Telomerase PCR ELISA Tubulinassay Pierce BCA Protein Assay Kit Whatman, GB VWR, USA B.Braun, Melsungen BD, USA Sarstedt, Nümbrecht Sarstedt, Nümbrecht BioRad, USA Thermo Scientific, GB B.Braun, Melsungen Sarstedt, Nümbrecht Sarstedt, Nümbrecht Sarstedt, Nümbrecht Whatman, GB Sarstedt, Nümbrecht Biozym, Hess. Oldendorf Sarstedt, Nümbrecht Sarstedt, Nümbrecht Ritter, Schwabmünchen Ritter, Schwabmünchen BioRad, USA Sarstedt, Nümbrecht TPP, Schweiz TPP, Schweiz B.Braun, Melsungen

Qiagen, Hilden Qiagen, Hilden Roche, Schweiz Cytoskeleton Inc, USA Thermo Scientific, GB

2.1.6. Chemikalien

Acetonitril für HPLC (ACN) Agarose LE Albumin Fraktion V pH7 Ammoniumformiat (AF) Ammoniumperoxodisulfat ≥ 98% TLC Beta-Mercaptoethanol 99,9% Bis-Benzimid-Trihydrochlorid (Hoechst 33258) Borsäure Bromdesoxyuridin (BrdU) > 99% HPLC Brilliant Blue R250 Bromophenolblau CHAPS Pufferan \geq 98% Complete Mini EDTA free Proteaseinhibitor Coulter Clenz cleaning agent 1,4-Dithiothreitol (DTT) für Mol Bio Dimethylsulfoxid (DMSO) Dulbecco modified Eagle's minimal essential medium (DMEM) Ethylendiamintetraacetat (EDTA) Essigsäure 100% (Eisessig) pa Ethanol 99,8% pa Ethidiumbromidlösung 1% Fetale Bovine Serum (FBS) Superior Formaldehyd 4,5 % GeneRuler[™] 100bp DNA Ladder GeneRuler[™] 50bp DNA Ladder Glycerin 99,5% pa wasserfrei Glycin \geq 99% Harnstoff ≥ 99.5% Ultra Qualität Iodacetamid Sigma Ultra Isoflow[™] Sheat Fluid Isofluran Kaliumchlorid

JTBaker, Niederlande Biozym, Hess. Oldendorf AppliChem, Gatersleben Sigma-Aldrich, USA Roth, Karlsruhe Roth, Karlsruhe Sigma-Aldrich, USA Roth, Karlsruhe Sigma-Aldrich, USA Roth, Karlsruhe Merck, Darmstadt Roth, Karlsruhe Roche, Schweiz Beckman Coulter, USA AppliChem, Gatersleben JTBaker, Niederlande

Biochrom, Berlin Roth, Karlsruhe Roth, Karlsruhe Roth, Karlsruhe Roth, Karlsruhe Biochrom, Berlin Roth, Karlsruhe Fermentas, USA Fermentas, USA Roth, Karlsruhe Roth, Karlsruhe Roth, Karlsruhe Sigma-Aldrich, USA Beckman Coulter, USA Actavis, München Roth, Karlsruhe

Magermilchpulver Magnesiumchlorid-Hexahydrat \geq 99% cellpure Methanol für HPLC (MeOH) Natriumdeoxycholat Natriumhydrogenphosphat-Dihydrat \geq 99% pa Natriumhydroxid \geq 99% pa ISO PageRuler[™] Prestained Protein Ladder Paraformaldehyd 4,5% Phosphate buffered saline (PBS) Propidiumiodid 95% PhosSTOP (Phosphatase Inhibitor) Rotiphorese Gel 30 (37,5:1) RNase AWAY Salzsäure 37-38% Salzsäure (2N) SDS Natriumlaurylsulfat Serva blue G tablets (Brillant Blau G 250) Sulforhodamine B Sodium salt SYBER® Green Supermix Thiazolyl Blue Tetrazolium Bromide approx 98% Thiazolylblau Thioharnstoff pa Trichloressigsäure Tris ≥ 99,9% pa Tris Pufferan ≥ 99,3% pa Tris-Hydrochlorid \geq 99% Triton X100 TRIzol® Trypanblau Trypsin/EDTA (0,05 %, 0,02 % (w/v)) Tween 20 TEMED (NNNN-Tetramethylethylendiamin) Western Lightning Plus-ECL **Xylencyanol FF**

AppliChem, Gatersleben Roth, Karlsruhe JTBaker, Niederlande Roth, Karlsruhe Roth, Karlsruhe Roth, Karlsruhe Thermo Scientific, GB Roth, Karlsruhe Biochrom, Berlin Roth, Karlsruhe Roche, Schweiz Roth, Karlsruhe Roth, Karlsruhe JTBaker, Niederlande Merck, Darmstadt Roth, Karlsruhe Serva, Heidelberg Sigma-Aldrich, USA BioRad, USA Sigma-Aldrich, USA Roth, Karlsruhe AppliChem, Gatersleben Roth, Karlsruhe Roth, Karlsruhe Roth, Karlsruhe Roth, Karlsruhe Roth, Karlsruhe Invitrogen, USA Roth, Karlsruhe Biochrom, Berlin AppliChem, Gatersleben Merck, Darmstadt Perkin Elmer, USA Serva, Heidelberg

Xylol-Ersatz-Lösung

Thermo Scientific, GB

2.1.7. Enzyme

Topoisomerase I (Rekombinant, human)	TopoGEN, USA
Topoisomerase II α (Rekombinant, human)	TopoGEN, USA
Reverse Transkriptase	Qiagen, Hilden
Taq-DNA-Polymerase	NEB, USA

2.1.8. Nukleotide

pBR322 DNA	TopoGEN, USA
Kinetoplast DNA	TopoGEN, USA

2.1.9. Primer

Die Primer wurden mit Hilfe der Software Primer3 (www.frodo.wi.mit.edu) basierend auf den Gensequenzen der Datenbank der National Center for Biotechnology Information NCBI (www.ncbi.nlm.nih.gov; Maryland, USA) entworfen. Die gewünschte Annealingtemperatur wurde auf 60 °C festgelegt; die Länge der Primer sollte höchstens 20 Nukleotide und die Größe der PCR-Produkte um die 220 Basenpaare betragen. Die Primer wurden dann bei der Firma Operon/Eurofins in Auftrag gegeben. Die Sequenzen und Polarität der Primer sind in der nachfolgenden Tabelle dargestellt:

Tabelle 1: Verwendete Primer für die PCR-Experimente. s = sense und as = antisense.

Primername	Sequenz 5'-3' und Polarität (s/as)
Androgen Rezeptor	tag ctg cag cga cta ccg c
	ctg gat cac ttc gcg cac g
BAD	cct ccc agt gac ctt cgc t
	ttc aca cgc acc gga agg g
BAX	atg att gcc gcc gtg gac a
	gat ggt cac ggt ctg cca c
β-Aktin	gga ctt cga gca aga gat gg
	agc act gtg ttg gcg tac ag

BCL2	gct acg agt ggg atg cgg g
	gcg gcg gga gaa gtc gtc
BCLXL	caa gcg ctg agg gag gca g
	gct gcg atc cga ctc acc a
CD133	gcc agc ctc aga cag aaa ac
	cca agc ctt agg agc atc tg
CD34 v1	aaa acg tgt tgc ctt gaa cc
	tgg ccc cag aga gac tag aa
CD34 v2	gca agc cac cag agc tat tc
0D34 V2	tgc atg tgc aga ctc ctt tc
	agc aac caa gag gca aag aaa
	gtg tgg ttg aaa tgg tgc ctg
	aag gtg gag caa aca caa cc
GD44 V2	agc ttt ttc ttc tgc cca ca
c-kit	ggt gct gga gct ttc ggg a
	cag ggt ggg ccc tcc aat g
c-muc	gga aaa gat ggg gag gag ag
С-шус	cac ttc caa ttc agc aag ca
CXCR4 v1	gga aaa gat ggg gag gag ag
	cac ttc caa ttc agc aag ca
CXCR4 v2	ggt ggt cta tgt tgg cgt ct
	tgg agt gtg aca gct tgg ag
Frk1	gac att ctg cgg gcg tcc a
	gat cgg caa tcc ggg cca
GaPDH	tcc atg gca ccg tca agg c
	cca cga cgt act cag cgc c
	tcg ctc tct ttg cca cag g
	tcc ttg gaa cgg cca cag g
MDB3	acg ttt ggg aaa gct ggc g
	tcc ttg gac ttg ggc agc a
MBP1	ccg ggc cgc aga tct taa a
ועותר ו	ggc agt gac aaa cag cag c

acc tccggagag gac acc c
gcg ttc ttg gga cgc aca g
aac agc gac gga ggt ctc ta
ttc tct tgt ccc gca gac tt
agg atg aga cga ctg ggc g
acc gtg taa tccaac ggc c
acg agt ccg gga t
cct cag gcg cca ca
ctg agc ctg ccg aga ttc c
ctc ttt gtg ctg gca cgg g
tga gag ctc gct ttg agt ga
cac cag gac ctt ctg tgg at
cta gtc aag tgc gtc cac ga
gga cac acc aca gca caa ac
tct cgg gcc cac agt cac c
gtg ccg gtg ttc tcg atc t
cgc gtc tgt gga gaa gcg g
cca tgg tga cgg tcg tga a
tgc tgc cat tac ctt ggc a
ctt tcc gct ggc cag gtt t

2.1.10. Antikörper

2.1.10.1. Nicht konjugierte primäre Antiköper

Name	Spezies	Katalognr.	Firma
ABCG	Mouse	MAB995	R&D, Minneapolis, USA
Akt	Rabbit	9272	Cell Signaling, Danvers, USA
Androgen Receptor	Rabbit	3202	Cell Signaling, Danvers, USA
Anti-BrdU	Mouse	347583	BD, San Jose, USA

β-Aktin	Rabbit	4970	Cell Signaling, Danvers, USA
β-Catenin	Rabbit	9582	Cell Signaling, Danvers, USA
Bad	Rabbit	9239	Cell Signaling, Danvers, USA
Bax	Rabbit	5023	Cell Signaling, Danvers, USA
BCL-2	Rabbit	2870	Cell Signaling, Danvers, USA
BCL-XL	Rabbit	2764	Cell Signaling, Danvers, USA
CD34	Rabbit	ab81289	abcam, Cambridge, UK
CD44	Mouse	ABIN94121	AOL, Aachen, BRD
CD44 Variante 3	Rabbit	ab78962	abcam, Cambridge, UK
CD44 Variante 5	Mouse	ab34235	abcam, Cambridge, UK
CD44 Variante 6	Rabbit	ab78691	abcam, Cambridge, UK
CD44 Variante 7	Rabbit	ab78469	abcam, Cambridge, UK
CD44 Variante 10	Mouse	ab30442	abcam, Cambridge, UK
CD133	Rabbit	orb18124	biorbyt, Cambridge, UK
CDH13	Rabbit	NB100-92444	Novus Biologicals, Cambridge, UK
CDK1	Mouse	ab18	abcam, Cambridge, UK
CDK4	Mouse	2906	Cell Signaling, Danvers, USA
CDK6	Mouse	3136	Cell Signaling, Danvers, USA
c-kit	Mouse	3308	Cell Signaling, Danvers, USA
c-myc	Rabbit	5605	Cell Signaling, Danvers, USA
c-raf	Rabbit	9422	Cell Signaling, Danvers, USA
CXCR4	Rabbit	MAB172	R&D, Minneapolis, USA
Cyclin A	Mouse	4656	Cell Signaling, Danvers, USA
Cyclin B1	Rabbit	4138	Cell Signaling, Danvers, USA
Cyclin D1	Rabbit	2978	Cell Signaling, Danvers, USA
Cyclin D2	Rabbit	3741	Cell Signaling, Danvers, USA
Cyclin D3	Mouse	2936	Cell Signaling, Danvers, USA

Cyclin E	Mouse	4129	Cell Signaling, Danvers, USA
E-Cadherin	Rabbit	3195	Cell Signaling, Danvers, USA
EGF-Rezeptor	Rabbit	2085	Cell Signaling, Danvers, USA
Erk1/2	Rabbit	4695	Cell Signaling, Danvers, USA
FAK	Mouse	MAB4467	R&D, Minneapolis, USA
FLIP	Rabbit	orb18031	biorbyt, Cambridge, UK
GSK-3β	Rabbit	9315	Cell Signaling, Danvers, USA
Integrin α6	Rabbit	3750	Cell Signaling, Danvers, USA
Integrin β1	Rabbit	4706	Cell Signaling, Danvers, USA
Ki67	Rabbit	ab15580	abcam, Cambridge, UK
MEK1/2	Mouse	4694	Cell Signaling, Danvers, USA
MRP1	Mouse	ab21402	abcam, Cambridge, UK
MRP2	Rabbit	4446	Cell Signaling, Danvers, USA
Nestin	Mouse	ab22035	abcam, Cambridge, UK
N-Myc	Rabbit	9405	Cell Signaling, Danvers, USA
P-Glykoprotein	Mouse	ab3364	abcam, Cambridge, UK
p21	Rabbit	2947	Cell Signaling, Danvers, USA
p27	Rabbit	3686	Cell Signaling, Danvers, USA
p53	Rabbit	2527	Cell Signaling, Danvers, USA
p75NFG-Rezeptor	Mouse	MAB367	R&D, Minneapolis, USA
Pan-Cadherin	Rabbit	4068	Cell Signaling, Danvers, USA
PCNA	Mouse	2586	Cell Signaling, Danvers, USA
Phospho-MEK1/2	Rabbit	9121	Cell Signaling, Danvers, USA
Phospho-c-raf	Rabbit	9431	Cell Signaling, Danvers, USA
Phospho-GSK-3α/β	Rabbit	9331	Cell Signaling, Danvers, USA
Phospho-Erk1/2	Rabbit	4370	Cell Signaling, Danvers, USA
PTCH1	Rabbit	2468	Cell Signaling, Danvers, USA
PTCH2	Rabbit	2464	Cell Signaling, Danvers, USA
--------------------	--------	---------	------------------------------
Rb	Rabbit	ab6075	abcam, Cambridge, UK
SDF1	Rabbit	3530	Cell Signaling, Danvers, USA
SUZ12	Rabbit	3737	Cell Signaling, Danvers, USA
Telomerase	Mouse	ab5181	abcam, Cambridge, UK
Topoisomerase I	Rabbit	2012-2	TopoGEN, Port Orange, USA
Topoisomerase II α	Rabbit	2011-1	TopoGEN, Port Orange, USA
Topoisomerase II β	Rabbit	2010-3	TopoGEN, Port Orange, USA
TRA-1-60(s)	Mouse	4746	Cell Signaling, Danvers, USA
TrkB	Rabbit	ab51190	abcam, Cambridge, UK
Vimentin	Rabbit	5741	Cell Signaling, Danvers, USA

2.1.10.2. Konjugierte Antikörper

Tabelle 3: In dieser Arbeit verwendete konjugierte Antikörper

Name	Spezies	Katalognr.	Firma
Anti-BrdU-FITC gekoppelt	Mouse	347583	BD, USA
Anti-mouse IgG Alexa 555	Rabbit	4409	Cell Signaling, USA
Anti-mouse IgG-HRP gekoppelt	Rabbit	7076	Cell Signaling, USA
Anti-rabbit IgG Alexa 488	Goat	4412	Cell Signaling, USA
Anti-rabbit IgG Alexa 555	Goat	4413	Cell Signaling, USA
Anti-rabbit IgG HRP gekoppelt	Mouse	7074	Cell Signaling, USA

2.1.11. Zytostatika:

Name	Wirkstoffklasse	Konz. Stlsg.	Firma
5-Fluoruracil	Antimetabolit	50 mg/ml	Medac, Wedel
Cisplatin	Interkalant	1 mg/ml	TEVA, Israel
Doxorubicin	Antibiotikum	50 mg/ml	NeoCorp AG
Etoposid	Topoisomerasehemmer	20 mg/ml	TEVA, Israel
Paclitaxel	Taxan	6 mg/ml	Fresinius, Bad Homburg
Vinblastin	Vinca-Alkaloid	1 mg/ml	TEVA, Israel

Tabelle 4: In dieser Arbeit verwendete Zytostatika

2.1.12. Antibiotika

Doxycyclin SF	(20 mg/ml)	Hexal, Holzkirchen
Ciprofloxacin	(2 mg/ml)	Bayer, Leverkusen

2.1.13. Puffer und Lösungen

Zellkulturmedium:

•	DMEM-Medium	500 ml
•	10 % FBS (30 min bei 56 °C Hitzeinaktiviert)	50 ml
•	10 μg/ml Ciprofloxacin	3 ml

- DMEM Medium: Biochrom, Berlin
 - \circ NaHCO₃ 3,7 g/L
 - o D-Glukose 4,5 g/L
 - Na-Pyruvat
 - o Glutamin

SDS -PAGE-Laufpuffer:

- Glycin 20 mM
- Tris-Base 2,5 mM
- SDS 0,1 %

Western Blot Transferpuffer:

•	Glycin	192 mM
•	Tris	25 mM

Methanol 10 %

Lämmlipuffer für Gelelektrophorese:

%
,

- Tris 125 mM
- SDS 4 %
- Glycerin 20 %

Vor Gebrauch 1:20 DTT hinzugeben

DNA-Ladepuffer für Agarosegele:

•	Bromphenolblau	0,025 %
•	EDTA	100 mM
•	Xylencyanol	0,025 %

TBE-Puffer für Interkalierungsexperimente:

•	Tris		89 mM

•	EDTA	2,6 mM

• Borsäure 89 mM

RIPA-Puffer für Proteinisolierung:

•	Tris HCl pH 7,4	50 mM
---	-----------------	-------

- NaCl 150 mM
- EDTA 1 mM
- Triton-x-100 1 %
- Natriumdeoxycholat 1 %

10 ml des RIPA-Puffers werden mit je einer Tablette CompleteMiniEDTAfree (Proteaseinhibitor) und PhosSTOP (Phosphataseinhibitor) versetzt

Reaktionspuffer für Topoisomerase I:

•	TrisCl, pH 7,9	100 mM
•	NaCl	1,5 M
•	EDTA	10 mM
•	BSA	1 %
•	Spermidin	1 mM
•	Glycerin	50 %

Reaktionspuffer für Topoisomerase II:

•	TrisCl, pH 8,0	50 mM
•	NaCl	150 mM
•	MgCl ₂	10 mM
•	ATP	2 mM
•	Dithiothreitol	0,5 mM
•	BSA	3%

Stopplösung für Topoisomeraseexperimente:

•	Sarkosyl	5 %
•	Bromophenolblau	0,0025 %
•	Glycerin	25 %

Acrylamidgel ohne denaturierendes SDS für Interkalierungsexperimente:

- Acrylamid (30 %) 3 ml
- TBE-Puffer 1x
- APS 150 μl
- TEMED 20 μl

2.1.14. Verwendete Zelllinien

Bei unseren Studien wurde ein Panel von Zelllinien gewählt, das möglichst verschiedene und häufige Tumorarten repräsentiert. So kann man neben allgemein wirksamen antitumoralen Substanzen auch Substanzen finden, die nur spezifisch bei einer Tumorart wirken. Neben Tumorzelllinien wurden auch normale nicht tumorale Zelllinien benutzt. Die Zelllinien stammen teilweise aus der Zell- und Tumorbank des Westdeutschen Krebszentrums in Essen/NRW und dem Institut für Zellbiologie der Universitätsklinik Essen. Zelllinien wie REC wurden unsererseits etabliert.

Tabelle 5: Verwendete Zelllinien. Aufgelistet sind die in dieser Arbeit benutzten Zelllinien. Neben verschiedenen Tumorzelllinien wurden zur Kontrolle auch normale nicht tumorale Zelllinien benutzt (die letzten vier).

Zellliniebezeichnung	Histologische Herkunft	ATCC Nummer
79HF6	Glioblastom	Nicht vorhanden
A549	Lungenkarzinom	CCL 185
HCT8	kolorektales Adenokarzinom	CCL 244
HT29	Kolonkarzinom	HTB 38
LAN1	Neuroblastom	Nicht vorhanden
MCF7	Mammakarzinom	HTB22
Pan C1	Pankreaskarzinom	CRL 1469
PC3	Prostatakarzinom	CRL 1435
Amnion	humane Amnionzellen	Nicht vorhanden
HuVEC	humane Epithelzellen	PCS 100-010
REC	Rattenepithelzellen	Nicht vorhanden

2.2. Methoden

2.2.1. Etablierung eines geeigneten *In-vitro*-Zellsystems zum Screening antitumoraler Substanzen

Die Identifikation zytotoxischer und antitumoraler Substanzen aus Naturquellen erfordert die Durchmusterung der Reinsubstanzen mit Hilfe eines breiten Panels aus verschiedenen häufigen Tumorzelllinien. Zu dem Panel gehören auch chemotherapierefraktäre Sublinien, die gegen die in der Klinik gebräuchlichen Zytostatika resistent sind. Die Absicht dahinter ist es, von Anfang an Substanzen zu identifizieren, die in der Klinik sowohl als *First-Line-* als auch als *Second-Line-*Medikament eingesetzt werden können. Ferner enthalten solche Panels normale nicht tumorale Zelllinien zur Untersuchung einer möglichen Toxizität gegenüber normalen Geweben. Das System hat sich in der Vergangenheit bei der Entwicklung neuer antineoplastischer Substanzen bewährt. Allerdings richten sich die in der Klinik gebräuchlichen Zytostatika nur gegen die hoch teilungsaktiven Zellpopulationen, nicht jedoch gegen die Krebsstammzellen, welche aufgrund aktueller klinischer Beobachtungen und Forschungen für die Entstehung und Metastasierung eines Tumors verantwortlich gemacht werden.

Zurzeit verschiebt sich sowohl in der universitären Forschung als auch in der Pharmaindustrie der Schwerpunkt der Suche nach Pharmaka auf jene mit Anti-Krebsstammzell-Eigenschaften. Um solche Substanzen testen zu können, muss man entweder Krebsstammzellen isolieren oder induzieren. Die Isolierung von Krebsstammzellen direkt aus dem Tumor ist aufgrund ihrer begrenzten Zahl wenig praktikabel für solche Durchmusterungen. Daher ging man dazu über, induzierte Krebsstammzellen in die Studien einzubinden. Eine Methode zur Gewinnung induzierter Krebsstammzellen, die sich in letzter Zeit durchgesetzt hat, beruht auf der Induzierung solcher Zellentitäten mittels Zytostatika. Zytostatika beseitigen wie oben schon erwähnt den Großteil der Tumorzellen und lassen nur die resistenten Populationen mit Krebsstammzelleigenschaften übrig.

Unsere Arbeitsgruppe hat in den letzten Jahren eine effiziente Methodik entwickelt und etabliert, um resistente Krebsstammzell-ähnliche Subtypen verschiedener Tumorentitäten im Labor zu induzieren und zu kultivieren. Dadurch ist es möglich, eine ausreichende Zahl von Krebsstammzellen für das langwierige Screeningverfahren zu erhalten.

2.2.1.1. Induzierung der Krebsstammzellen mittels Zytostatika

Für die Entwicklung resistenter Tumorzellen wurden zwei Methoden angewendet: i) eine Zytostatikaexposition mit stufenweise ansteigenden Konzentrationen und ii) zyklische Zytostatikaexposition bei gleichbleibender Konzentration. Beide Methoden ergeben mittels Induzierung stabil resistente Tumorzelllinien. Der Prozess der Resistenzentwicklung benötigt mehrere Monate und simuliert bei beiden Methoden die Chemotherapiebehandlung beim Patienten. Für unsere Studien wurde das Zytostatikum Etoposid eingesetzt. Durch die Behandlung mit ansteigenden Zytostatikakonzentrationen wurde in allen Zelllinien eine erworbene Resistenz entwickelt. Vor der Etoposidbehandlung wurde der IC₅₀-Wert der Zelllinien bestimmt.

i) Exponentiell wachsende Zellen wurden dann 24 Stunden der zweifachen IC_{50} ausgesetzt. Danach folgte eine Erholungsphase für die Zellen, in dem das zytostatikahaltige Medium gegen normales Medium ausgetauscht wurde. Nachdem die Zellen wieder eine gewisse Dichte erreicht hatten, wurde die Zytostatikakonzentration verdoppelt. Dieser Vorgang wurde solange wiederholt, bis das 64-fache des IC_{50} -Wertes erreicht wurde. Die überlebenden Zellen wurden einer Resistenzselektion ausgesetzt, indem sie für 24 Stunden mit einer Konzentrationsreihe (16-fach bis 512-fach) der Zytostatika inkubiert wurden. Diejenigen Zellen, die unter hohen Zytostatikakonzentrationen weiterhin proliferierten, galten als chemorefraktäre und wurden anschließend mit Zellmedium kultiviert, das die zehnfache IC_{50} enthielt. Nach einigen Wochen wurde dann der Resistenzfaktor (RF) als Quotient aus IC_{50} -Resistent und IC_{50} -Wildtyp bestimmt.

ii) Exponentiell wachsende Zellen wurden 24 Stunden der zweifachen IC_{50} ausgesetzt. Nach 24 Stunden wurde das Medium gegen zytostatikafreies Medium ausgetauscht. Sobald die Zellen eine gewisse Konfluenz erreichten, startete ein neuer 24-Stundenzyklus mit der zweifachen IC_{50} . Dieser Vorgang wurde sukzessiv acht bis zehnmal wiederholt, und anschließend verblieben die Zellen in zytostatikafreiem Medium.

Zusätzlich zum Resistenzfaktor wurden noch die IC₅₀-Werte für Adriamycin, Cisplatin und 5FU mit Hilfe des MTT-Assays bestimmt, um eine eventuelle Kreuzresistenz nachzuweisen

2.2.2. Propolisverarbeitung

Propolis als Rohstoff ist eine zähe harzige Masse. Zum Aufschluss wurden 200 g Propolis zerkleinert und in 800 ml 100 % Ethanol für mindestens zwei Wochen inkubiert. Nach der Inkubation wurde der Überstand mit gelöster Propolis abgenommen, und die unlöslichen Partikel wurden mit Filterpapier entfernt. Anschließend wurde die Konzentration des Extraktes bestimmt. Dazu wurden 0,5 ml der Lösung in einem vorher gewogenen Minireagiergefäß komplett eingetrocknet und gewogen. Die Trockenmasse wurde durch die Differenz zwischen beladenem und nicht beladenem Minireagiergefäß bestimmt. Der nicht gelöste Bodensatz wurde dann noch für zwei Wochen in 75 % Ethanol aufgenommen, um mehr hydrophile Substanzen herauszulösen. Am Ende der Extraktion blieben unlösliche Stoffe wie Wachse oder Pollen zurück. Alle nachfolgenden Arbeiten wurden mit diesen ethanolischen Extrakten durchgeführt. Die in dieser Arbeit verwendeten Propolissorten stammen aus verschiedenen Ländern und damit verschiedenen Ökosystemen und Klimazonen.

Abbildung 4: Herkunft der verschiedenen Propolissorten. Die in dieser Studie benutzen Propolissorten stammen aus verschiedenen Ländern (grau markiert), die in unterschiedlichen Klimazonen liegen und verschiedene Floren beherbergen.

2.2.2.1. Separation mit der High Pressure Liquid Chromatography (HPLC)

Propolis ist ein hochkomplexes Gemisch aus unterschiedlichen unbekannten Stoffen. Um die einzelnen Substanzen zu isolieren, bedienten wir uns der Reverse Phase High Pressure Liquid Chromatography, kurz RP-HPLC. Mit dieser Technik und einer geeigneten Säule ist es möglich, einzelne Substanzen in einem Gemisch aufgrund chemo-physikalischer Eigenschaften und Verhalten voneinander zu trennen. Das Prinzip beruht auf den Eigenschaften der stationären und mobilen Phasen.

Als stationäre Phase wurden die Säulen Nucleodur 250/4 C18 und Nucleodur 250/10 C18 und als mobile Phase eine Mischung aus Ammoniumformiat, Acetonitril und Methanol entweder als Gradient oder als isokratisches System verwendet. Die Säulen wurden konstant auf 40 °C gehalten. Das HPLC-System bestand aus einem Separator "Alliance e2250" und dem 2998 Photodiodenarray-Detektor (Fa. Waters), der die Absorption im UV-Bereich (λ 200 bis 400 nm) messen kann. Das HPLC-System wurde mit der Empower2-Software der Fa. Waters gesteuert. Die Analysen der Spektren und Chromatogramme wurden ebenfalls mit der Software durchgeführt. Die verschiedenen Propolissorten wurden mit dem Standardprotokoll **Propolis1** analysiert. Dazu wurden zwischen 30 und 40 mg Propolisextrakt pro Lauf injiziert. Die Flussrate des Protokolls **Propolis1** betrug 2 ml/min und die Länge 120 min; die Propolis wurde mit Hilfe des Fraktionssammlers BioLogic der Fa. BioRad in Dreiminuten-Fraktionen aufgetrennt.

Tabelle 6: Protokoll zur Auftrennung von Propolis. Das ethanolische Propolisextrakt wurde mit einem Gradientensystem aufgetrennt. Bis Minute 90 steigt der Methanolanteil linear an. Hydrophile Substanzen eluieren in diesem System früh. Zwischen Minute 90 und 100 gibt es eine Plateauphase, um noch gebundene Substanzen auszuwaschen. In den letzten 20 Minuten findet die Regenerationsphase statt, in der die Anfangsbedingungen wiederhergestellt werden.

Zeitpunkt (min)	AF (%)	MeOH (%)	ACN (%)
0	60	30	10
90	10	80	10
100	10	80	10
110	5	85	10
120	60	30	10

Für weitere Aufreinigungsschritte wurden verschiedene isokratische Protokolle entwickelt, die in der nachfolgenden Tabelle beschrieben werden.

Tabelle 7: Verwendete isokratische Systeme. Für die Gewinnung einzelner Reinsubstanzen wurden verschiedene isokratische Protokolle entwickelt. Die große Säule ist die Nucleodur 250/10 c18 und die mittlere die Nucleodur 250/4 c18.

System	H ₂ O (%)	MeOH (%)	ACN (%)	Flussrate (ml/min)	Laufzeit (min)	Säule
A3+A4	55	45	0	2	110	Groß
A3-2	35	0	65	1	5	Mittel
A4	65	0	35	2	30	Groß
A5	50	0	50	2	15	Groß
A6	10	30	60	2	15	Groß
C4-1	25	0	75	1	10,25	Mittel
C4-2	20	0	80	2	12	Groß
CZ4	35	0	65	2	44	Groß
CZ4-1	25	0	75	1	30	Mittel
CZ5	25	0	75	2	40	Groß
CZ6	25	0	75	2	100	Groß

Für andere Aufreinigungsschritte waren jedoch Gradientensysteme notwendig, die nachfolgend aufgelistet werden.

Minuton	AF	MeOH	ACN
windlen	(%)	(%)	(%)
0	60	30	10
5	60	30	10
7	50	40	10
70	10	80	10
80	5	85	10
100	0	85	15
110	60	30	10
120	60	30	10
Flussrate (ml/min)		2	
Laufzeit (mi	n)	120	
Säule		Groß	

Tabelle 8: System Areal A+C. Gradientensystem für Areal A und Areal C für beide Propolissorten PK1 und PK1 pool. Die Große Säule ist die Nucleodur 250/10 c18.

Tabelle 9: Gradientensystem A2 und A2-3. System für Areal A2 (links) und Areal A2-3 (rechts) für beide Propolissorten PK1 und PK1 pool. Die mittlere Säule ist die Nucleodur 250/4 c18.

Minuten	AF/ H ₂ O	MeOH	ACN	Minuten	AF/ H ₂ O	MeOH	ACN
	(%)	(%)	(%)	Minuten	(%)	(%)	(%)
0	65	35	0	0	90	0	10
120	65	35	0	32	40	0	60
130	5	85	10	33	10	0	90
140	5	85	10	38	10	0	90
150	65	35	0	40	90	0	10
160	65	35	0	45	90	0	10
Flussrate (ml/min)		1		Flussrate (ml/min)	1	
Laufzeit (min)		160		Laufzeit (min)		45	
Säule		Mittel		Säule		Mittel	

Tabelle 10: Gradientensystem A3-2 und C4. System für Areal A3-2 (links) und Areal C4 (rechts) für die Propolissorte PK1. Die mittlere Säule ist die Nucleodur 250/4 c18.

Minuten	AF (%)	MeOH (%)	ACN (%)
0	90	0	10
5	90	0	10
6	20	0	80
10	20	0	80
11	90	0	10

Minuten	H₂O (%)	MeOH (%)	ACN (%)
0	25	65	10
55	25	65	10
60	0	85	10
70	0	85	10
75	25	65	10

18	90	0	10	80	25	65	10
Flussrate (ml/min)		1		Flussrate (ml/min)	1	
Laufzeit (min)		18		Laufzeit (min)		80	
Säule		Mittel		Säule		Mittel	

Für die Toxizitätstests wurden von den Fraktionen einer Produktion aus zehn Läufen 2 ml abgenommen und in 4-ml-Röhrchen in einem Vakuumkonzentrator eingetrocknet. Die eingetrockneten Fraktionen wurden in 200 μ l Methanol (100 %) gelöst und in 500 μ l große Schraubröhrchen überführt. Nach nochmaligem Eintrocknen wurden die Fraktionen in 100 μ l Methanol (100 %) gelöst. Diese Fraktionen konnten nun für weitere chemische oder biochemische Studien und Experimente genutzt werden.

2.2.3. Molekularbiologische Methoden

2.2.3.1. RNA Isolierung mittels TRIzol[™]

Zellen in exponentieller Wachstumsphase wurden bei einer Konfluenz von circa 70 % geerntet, indem man sie 5 min mit 3 ml Trypsin-EDTA (bei 75 cm² Fläche) inkubierte. Anschließend wurden die Zellen abgespült und 3 min bei 300 g zentrifugiert. Das Pellet wurde dann in 1 ml TRIzol[™] aufgenommen und resuspendiert. Nach 5 min Inkubation bei RT wurden pro 1 ml TRIzol[™] 200 µl Chloroform hinzugegeben. Nach 15 Sekunden manuellen Schüttelns wurde der Ansatz 3 min stehen gelassen. Danach erfolgte eine Zentrifugation bei 10.000 g für 5 min bei 4 °C. Nach der Zentrifugation erhielt man eine untere Chloroformphase, eine Interphase und eine wässrige obere Phase mit der RNA. Diese wurde vorsichtig abgenommen und in ein neues Minireagiergefäß überführt. Nun wurden pro 1 ml eingesetztem TRIzol[™] 500 µl eiskaltes Isopropanol hinzugefügt und der Ansatz 10 min bei RT inkubiert. Anschließend wurde der Ansatz 10 min bei 4 °C und 10.000 g zentrifugiert. Die RNA setzte sich dabei als Pellet ab. Nach Verwerfen des Überstands wurde das RNA-Pellet mit 1 ml Ethanol (75 %) gewaschen. Das Ethanol wurde durch Zentrifugation bei 7.500 g und 5 min entfernt. Das RNA-Pellet wurde luftgetrocknet und dann in 50 µl RNase freiem Wasser aufgenommen.

Sowohl die Qualität anhand der Ratio_{260/280} als auch die Konzentration der isolierten RNA wurde mit dem BioSpektrometer bestimmt. Zusätzlich wurde die Integrität mit einem 1,7-prozentigen Agarosegel überprüft.

2.2.3.2. cDNA-Synthese aus der isolierten RNA

Die RNA wurde mittels des QuantiTec-Reverse-Transcription-Kits der Firma Qiagen nach Herstellerangaben in zwei Schritten in copyDNA (kurz cDNA) umgeschrieben. Im ersten Schritt wurden 2 µg RNA mit gDNA Wipeout Puffer (Eliminierung restlicher genomischer DNA) 2 min bei 42 °C inkubiert. Im zweiten Schritt wurde die RNA mit der Reversen Transkriptase und den nötigen Komponenten 15 min bei 42 °C inkubiert. Anschließend wurde die Reverse Transkriptase durch eine 3-minütige Inkubation bei 95 °C deaktiviert.

2.2.3.3. DNA-Amplifikation mittels Polymerase Chain Reaction (PCR)

Die PCR ist eine Standardmethode, um DNA-Abschnitte von Interesse zu vervielfältigen und nachzuweisen. Dadurch wird es unter anderem möglich, die genetischen Expressionsmuster unterschiedlicher Zelltypen miteinander zu vergleichen. Grundlage der PCR ist die zyklische Amplifikation von Gensequenzen mit der thermoresistenten Taq-DNA-Polymerase. Die Primer für die relevanten Gene wurden nach den Datenbänken des NCBI und dem Softwareprogramm Primer3 modelliert (Siehe Punkt **2.1.9.**). Die Template-cDNA wird mit Nukleotiden, Primern und der Taq-Polymerase zusammenpipettiert:

	Endkonzentration
Puffer mit MgCl ₂	1,5 mmol
Primer forward	500 nmol
Primer reverse	500 nmol
dNTP	50 μmol
cDNA	0,50 μ l (aus der umgeschriebenen RNA)
Taq-Polymerase	0,65 Units

Der Ansatz wurde mit Wasser auf 20 µl aufgefüllt.

Das zu untersuchende Gen wurde dann in mehreren Zyklen von Denaturierung, Annealing und Elongation amplifiziert. Das genaue Programm sah wie folgt aus:

Schritt	Name	Dauer	Temperatur	
1)	Denaturierung	60 sec	94 °C	
2)	Annealing	60 sec	60 °C	39 mal
3)	Elongation	60 sec	72 °C	

4)	Finale Elongation	420 sec	72 °C
5)	Pause	∞	8 °C

2.2.3.4. Quantitave Real-Time-PCR

Die quantitave Real-Time-PCR (kurz: qPCR) ermöglicht eine Quantifizierung der entstandenen PCR-Produkte und so auch eine genauerer Charakterisierung der Unterschiede zwischen den WT- und den iCSC-Subzelllinien. Die Quantifizierung gelingt über die Messung der Fluoreszenz des Farbstoffes SYBR-Green, der an doppelsträngige DNA bindet. Für die Versuche wurde der iQ[™] SYBER® Green Supermix der Fa. BioRad nach Herstellerangabe verwendet. Der Versuchsansatz für eine qPCR sah wie folgt aus:

0	cDNA	0,5 μ l (aus der umgeschriebenen RNA)
0	SYBR-Green Mix	1x
0	Fw Primer	500 nmol
0	Rv Primer	500 nmol
	Endvolumen	25 μΙ

Der Versuch wurde in Tripletts ausgeführt. Neben einen Triplett mit Wasser anstatt cDNA als Negativkontrolle wurde auch eine Eichkurve erstellt. Die Eichkurve bestand aus 4 Punkten mit definierten Mengen an β-Aktin-cDNA (0,1; 1; 10 und 100 pg). Alle Ansätze wurden in einer 96-well-Platte angesetzt und mit einer Folie zugeklebt. Als Thermocycler wurde der iQ5 der Firma BioRad benutzt. Als PCR-Programm wurde das gleiche Protokoll wie bei der RT-PCR genommen. Nach Ablauf des Programms wurde noch eine Schmelzkurvenanalyse durchgeführt, um eventuelle Kontaminationen auszuschließen. Die Quantifizierung der PCR-Produkte wurde mit Hilfe der iQ5 Software Version 2.1 durchgeführt.

2.2.4. Zellbiologische Methoden

2.2.4.1. Zellkultur

Die Zelllinien wurden bei 37 °C und 5 % CO₂ im Brutschrank inkubiert. Das Medium bestand aus DMEM mit 10 % hitzeinaktiviertem FCS und dem Breitbandantibiotikum Doxycyclin (Endkonzentration 20 µg/ml) oder Ciprofloxacin (Endkonzentration

10 µg/ml). Erreichten die Zellen eine bestimmte Konfluenz oder wurden sie für Experimente gebraucht, wurde das Medium abgesaugt und die Zellen für 5 Minuten mit 3 ml Trypsin pro 75 cm² inkubiert. Nach der Inkubation wurden die Zellen mit Medium abgespült und in ein Röhrchen überführt. Dann erfolgte eine Zentrifugation bei 300 g für 3 Minuten. Anschließend wurde der Überstand abgesaugt und das Pellet in 5 ml Medium resuspendiert.

2.2.4.2. MTT-Assay für Zytotoxizitätsanalysen

Die zytotoxische Aktivität von Propolissubstanzen wurde in einem MTT-Assay bestimmt. MTT (3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazoliumbromid) ist eine gelbe Substanz, die durch die Succinat-Dehydrogenase der Mitochondrien lebender Zellen zu violetten wasserunlöslichem Formazan umgewandelt wird. Durch diesen Farbumschlag ist es möglich, die Rate der überlebenden Zellen zu ermitteln.

Abbildung 5: Reaktion des MTT-Assays. Durch eine Reduktion des positiv geladenen Stickstoffatoms im zentralen Ring entsteht aus dem gelben MTT das violette Formazan.

Zellen wurden trypsiniert und geerntet. Dann wurde mit dem Cellcounter TC10 der Firma BioRad die Zellzahl bestimmt, und die Zellen wurden gemäß ihrer Wachstumskinetik in 100 μ l DMEM in 96-Well-Plates ausplattiert. Nach 24 Stunden wurde die zu testende Substanz auf die Zellen gegeben. Sollten Propolisfraktionen getestet werden, so wurden diese in einer Endverdünnung von 1:100 in zwei Wells aufgetragen (Duplett). Sollte aber der IC₅₀-Wert einer Reinsubstanz bestimmt werden, so wurde die Substanz in einer Verdünnungsreihe (1:2 ab 100 μ g/ml) in 100 μ l auf 8 Wells gegeben, die einer Spalte der Platte entsprechen.

Nach 72 Stunden Inkubation wurden in jedes Well 50 µl einer 5mg/ml MTT-Lösung gegeben. Die MTT-Endkonzentration in den Wells betrug 1mg/ml. Nach einer Inku-

bationszeit von drei Stunden bei 37 °C im Brutschrank wurde der Überstand der Zellen abgesaugt. Als nächstes kamen 100 µl einer DMSO-SDS-Lösung (10 % SDS mit 0,6 % Essigsäure in DMSO) zum Lösen der violetten Formazankristalle auf die Platte. Nach 5 min Schütteln und einer 30-minütigen Inkubation in einem Wärmeschrank bei 37 °C wurde die Formazanmenge mit dem Infinite M200 ELISA-Reader bei einer Wellenlänge von 570 nm gemessen.

Die Ergebnisse wurden in Form eines Diagramms Extinktion OD₅₇₀ gegen die überlebende Zellzahl in Prozent aufgetragen. Diese Diagramme stellten dann ein Aktivitätsprofil der Propolisfraktionen dar.

2.2.4.3. SRB-Assay für Zytotoxizitätsanalysen

Sulforhodamin B färbt im Gegensatz zu MTT alle Proteine der Zellen. Durch die Menge an gefärbten Proteinen kann so auch der Prozentanteil der noch lebenden Zellen bestimmt werden. Nach der Inkubation der Zellen mit den Substanzen wurde das Medium abgesaugt, und die Zellen wurden mit 50 μ l kaltem TCA (10 %) für eine Stunde bei 4 °C fixiert. Nach der Inkubation wurde das TCA durch dreimaliges Waschen mit 200 μ l Aqua dest. ausgespült. Das Anfärben der Proteine geschah durch eine Inkubation mit 50 μ l einer 0,4-prozentigen SRB-Lösung pro Well für 30 Minuten bei RT. Danach wurden die Zellen dreimal 10 Minuten mit 1 % Essigsäure gewaschen. Durch Zugabe von 50 μ l 10 mM Tris (pH 10,5) wurde das SRB in Lösung gebracht. Die Zellen wurden 5 Minuten geschüttelt. Zum Schluss wurde die Intensität der Färbung mit dem Infinite M200 ELISA-Reader bei 570 nm gemessen.

2.2.4.4 Histochemische, immunhistochemische (IHC) und immunzytochemische (ICC) Färbungen

Die IHC- und ICC-Färbungen wurden nach den Standardprotokollen mit geringen Modifikationen durchgeführt. Für ICC wurden die Zellen auf runden Glasplättchen bis zu einer gewissen Dichte kultiviert, mit 1x PBS gewaschen, mit 4 % Formaldehyd für 20 min fixiert und danach zweimal mit PBS für 5 min gewaschen. Anschließend erfolgte eine Blockierung mit 10 % Normal Goat Serum (AbD Serotech, England) bei RT für 60 min. Für die IHC wurden Gewebe mit 4 % Formaldehyd fixiert und in Paraffin eingebettet. Vier Mikrometer dicke Schnitte des Paraffinblockes wurden nach dem Aufziehen auf die Objektträger über Nacht bei 60 °C gebacken. Nach dem Backen wurden die Schnitte entparaffiniert, indem sie zweimal in Xylol-Ersatz-Lösung

(Thermo Scientific, England) für 10-15 min inkubiert und dann in einer absteigenden Ethanolreihe rehydriert wurden (100%, 100%, 95%, 70%, 50% für je 3 min). Hämatoxylin-Eosin-Färbungen wurden mit den konventionellen Methoden durchgeführt. Für die IHC wurden die Antigene demaskiert, indem die Schnitte in Natriumcitratpuffer (10 mM, pH 9) für 30 min bei 95 °C in einem haushaltsüblichen Dampfgarer erhitzt werden. Die Schnitte wurden dann zweimal je 5 min in PBS gewaschen und anschließend mit 10 % Normal Goat Serum (AbD Serotec, England) bei RT für 60 min blockiert. Alle primären Antikörper wurden nach Herstellerangaben oder anhand eigener Erfahrung mit dem jeweiligen Antikörper verwendet. Die Schnitte wurden über Nacht mit den primären Antikörpern in PBS mit 0,05 % Tween 20 und 1,5 % Goat Serum inkubiert. Am nächsten Tag wurden die Präparate dreimal in PBST (PBS mit 0,05 % Tween 20) 10 min gewaschen. Der konjugierte Sekundärantikörper wurde in PBS-T mit 2,5 % Goat Serum verdünnt und für 120 min mit den Schnitten bei RT inkubiert. Nach diesem Schritt wurden die Proben zur Markierung der Zellkerne mit 10 µg/ml Propidiumiodid oder Hoechst 33258, welche in PBS verdünnt waren, für 15 min inkubiert. Die Schnitte wurden dann dreimal für 5 min in PBST gewaschen und mit Mounting-Medium eingedeckelt. Die so gefärbten Schnitte wurden mit dem Mikroskopsystem Nikon Eclipse 50i mit DS-Fi1c Kamera untersucht sowie mit der Software NIS-Elements dokumentiert und ggf. bearbeitet.

2.2.4.5. Bestrahlung von Zellen

Krebsstammzellen besitzen neben ihrer Resistenz gegen Zytostatika auch eine Resistenz gegen Bestrahlung. Ob die iCSC-Sublinien auch eine höhere Toleranz gegen Bestrahlung haben, sollte mit diesem Versuch geklärt werden. Dazu wurden Zellen der WT- und iCSC-Sublinien in den Zellzahlen 250, 500 und 1.000 auf einer 96-Well-Platte ausgesät. Nach 24 Stunden wurden die Platten mit dem Pantak X Röntgenstrahler (Pantak, Connecticut, USA) aus einer Entfernung von 75 cm bestrahlt. Die Strahlendosis betrug 5 und 20 Gray (2,7 Gray/min). Die dritte Platte wurde nicht bestrahlt und diente als Kontrolle (0 Gray). Nach 96 Stunden Ruhezeit wurden die Platten mit MTT versetzt und wie oben beschrieben ausgewertet. Die Ergebnisse wurden in Form von Balkendiagrammen dargestellt.

Abbildung 6: Plattenbelegung für das Strahlenexperiment. Die WT- und iCSC-Sublinien wurden in unterschiedlicher Zellzahl ausgebracht.

2.2.5. Proteinbiochemische Methoden

2.2.5.1. Proteinisolierung mit RIPA-Puffer

Zu 70 % konfluente Zellen wurden geerntet, indem sie mit 3 ml Trypsin 5 min bei 37 °C inkubiert wurden. Nach dem Ablösen der Zellen durch Spülen mit 5 ml Medium wurden die Zellen 3 min lang bei 300 g pelletiert. Das Zellpellet wurde zweimal mit 5 ml PBS gewaschen, um alle Proteine aus dem Kulturmedium zu beseitigen. Das gewaschene Pellet wurde in 1 ml RIPA-Puffer resuspendiert und in ein 1,5-ml-Reaktionsgefäß überführt. Die Lösung wurde 30 min lang auf Eis inkubiert und jede zehnte Minute mit dem Vortexter aufgerüttelt. Nach der Inkubation wurde die Lösung mit 5 Ultraschallpulsen (je Puls mit einer Leistung von 22 KHz und 2 sec lang) aus dem Microson[™] XL2007 beschallt. Das Zelllysat wurde danach weitere 10 min auf Eis gelassen und dann 15 min bei 14.000 g und 4 °C zentrifugiert. Zellreste setzten sich als Pellet ab, Lipide und Membranreste schwammen an der Oberfläche und die Proteine befanden sich in Lösung. Der Überstand wurde möglichst ohne das Pellet aufzuwirbeln in ein neues 1,5-ml-Reaktionsgefäß überführt.

Die Konzentrationsbestimmung erfolgte mit dem Pierce BCA Protein Assay Kit der Firma Thermo Scientific. Dafür wurde das Lysat 1 zu 20 in Wasser verdünnt und je 25 µl der Verdünnung auf eine 96-Well-Platte pipettiert. Dazu kamen die 200 µl der Reagenzien A und B aus dem Kit, gemischt in einem Verhältnis 1:50. Der Ansatz wurde 30 min bei 37 °C inkubiert und anschließend einige Minuten bei Raumtemperatur stehen gelassen. Die Proteinquantifzierung geschah durch die Vernetzung und Verfärbung von Bicinchoninsäure (Lösung B) mit reduzierten Kupferionen (Lösung A), die an Proteine gebunden waren. Danach wurde die Absorption bei einer Wellenlänge von 562 nm im Infinite M200 ELISA-Reader gemessen. Die Errechnung der Konzentration erfolgte über eine Eichkurve, die vorher mit BSA erstellt worden war.

2.2.5.2. SDS-PAGE und Westernblotanalyse

Zur elektrophoretischen Auftrennung von Proteinen unter denaturierenden Bedingungen wurden SDS-Polyacrylamid-Gele nach Laemmli (1970) verwendet. Die Elektrophorese erfolgte in einer Mini-Protean II Zelle (Biorad) nach Herstellerangaben. Je nach der gesuchten Proteingröße wurden kommerzielle Gele der Fa. Biorad in unterschiedlichen Konzentrationen von 4 bis 12 % verwendet. Die Proteinlysate wurden 1:4 mit denaturierendem Ladepuffer versetzt und 5 min bei 95 °C inkubiert, um alle Proteine zu denaturieren. Pro Tasche wurden dann maximal 30 µg Proteinlysat aufgetragen, und das Gel wurde bei 80 Volt laufen gelassen. Erreichte die Farbfront das Trenngel, wurde die Spannung auf 100 Volt gesteigert.

Proteintransfer und -detektion

Die Proteine wurden aus der SDS-PAGE unter Verwendung eines gekühlten Criterion Blotter-Nasstanks der Fa. BioRad auf Nitrozellulosefolie (Porengröße 0,45 µm oder 0,2 µm) transferiert. Der Transfer erfolgte für 60 min bei 100 Volt. Nach dem Transfer wurden die freien Bindestellen auf der Membran mit 5 % (w/v) Milchpulver in PBST (PBS mit 0.05 % Tween 20) geblockt, bevor die Membran mit den primären Antikörpern und den von den Herstellern empfohlenen Verdünnungen in 2,5 % (w/v) Milchpulver in PBST über Nacht bei 4 °C inkubiert wurde. Am nächsten Tag wurde die Membran dreimal 10 min mit PBST gewaschen. Der sekundäre Antikörper wurde 1:2.000 in 1,25 % (w/v) Milchpulver in PBST für 2 Stunden bei Raumtemperatur zusammen mit der Membran inkubiert. Danach folgten wie bei dem Primärantikörper drei Waschschritte mit PBST für 10 Minuten. Die Membran wurde mit dem Kit Western Lightning Plus ECL der Firma PerkinElmer entwickelt. Das Prinzip beruht auf der Oxidierung des Luminols durch die HRP-Peroxidase. Das so aktivierte Luminol fluoresziert unter UV-Licht (Chemilumineszenz). Die Membran wurde dafür auf eine Klarsichtfolie gelegt und 1 min lang mit der Entwicklerlösung (1:1 Enhanced Luminol Reagent Plus und Oxidizing Reagent Plus) aus dem Kit inkubiert. Dann wurde die

Membran mit einer anderen Klarsichtfolie abgedeckt und mit dem ChemiDoc XRS+ fotografiert. Weitere Analysen wurden mit der ImageLab-Software der Fa. BioRad durchgeführt.

2.2.5.3. Globale Proteinexpressionsanalyse mittels Dot Blot-Technik

Diese Technik eignet sich gut für eine schnelle Analyse der Proteinexpression in verschiedenen Zelllinien. Dazu wurde Proteinlysat – Proteine gelöst in RIPA – in den Konzentrationen 2 und 1 µg in 2 µl große Tropfen auf Nitrocellulosemembran aufgebracht. Zusätzlich kamen noch zwei je 2 µl große Tropfen RIPA als Kontrolle hinzu. Nachdem die Tropfen eingetrocknet waren, wurde die Membran in einem Reaktionsgefäß mit 10 ml BSA (3 %) für 30 min inkubiert. Danach erfolgte die Inkubation mit dem primären Antikörper (1:1.000 in 1 % BSA gelöst) über Nacht bei 4 °C. Am nächsten Tag wurde die Membran dreimal 10 min mit PBST gewaschen. Der mit HRT gekoppelte sekundäre Antikörper wurde 1:2000 in 2 % BSA gelöst und zusammen mit der Membran für 2 Stunden bei Raumtemperatur inkubiert. Danach folgten wieder drei Waschschritte mit PBST für 10 Minuten.

Die Membran wurde mit dem Kit Western Lightning Plus ECL der Firma PerkinElmer entwickelt: dafür wurde sie auf eine Klarsichtfolie gelegt und 1 min lang mit der Entwicklerlösung aus dem Kit inkubiert. Dann wurde die Chemilumineszenz mit Hilfe des ChemiDoc XRS+ und der dazugehörigen Software dokumentiert und die Signalintensität analysiert.

2.2.6. Aufklärung des Wirkmechanismus der Reinsubstanzen

2.2.6.1. Nachweis der DNA-Interkalierung der Substanz

Diese von unserer Arbeitsgruppe entwickelte Methode ist eine einfache und schnelle Möglichkeit, um festzustellen, ob eine Substanz interkaliert oder nicht. Interkalierende Substanzen können die Replikation unterbrechen, indem sie Enzyme des Replikationsapparates wie die DNA-Polymerase oder die Topoisomerasen daran hindern, an die DNA zu binden.

Im ersten Schritt wurde mittels PCR das Gen für GAPDH amplifiziert, das als Substrat zur Testung der Substanzen diente. In einer absteigenden Verdünnungsreihe beginnend bei 100 μ g/ml Substanz wurden 8 μ l GAPDH-DNA und 2 μ l der Substanz zusammenpipettiert.

Die Versuchsansätze setzten sich so zusammen:

- Verdünnungsreihe mit 5 Schritten ab 100 μg/ml in 1:2-Schritten bis auf 6,25 μg/ml.
- Vehikelkontrolle mit 8 µl GAPDH-DNA und 2 µl Methanol
- Positivkontrolle mit 8 μl GAPDH-DNA und 2 μl Doxorubicin (Endkonzentration 0,3 μg/ml)

Alle Ansätze wurden auf Eis zusammenpipettiert und anschließend 2 Stunden bei 37 °C in einem Thermoblock inkubiert. Nach dieser Inkubation wurden die Proben auf ein modifiziertes 6-prozentiges PAGE-Gel ohne SDS aufgetragen, da das denaturiende SDS die interkalierten Substanzen eventuell wieder herausgelöst hätte. Die Proben wurden mit 2,5 µl H₂O und 2,5 µl Ladepuffer versetzt, danach kurz gevortextet und abzentrifugiert. 12 µl des Ansatzes wurden auf das Gel aufgetragen. In die erste und letzte Tasche wurden je 6 µl des PageRuler™ Proteinsmarkers pipettiert. Das Gel wurde bei 80 Volt laufen gelassen. Sobald die Farbfront das untere Ende erreichte, wurde der Lauf gestoppt. Um die DNA auf dem Gel sichtbar zu machen, wurde das Gel in einer Schale mit einer Ethidiumbromidlösung [5 µl Ethidiumbromid (10 mg/ml) auf 100 ml TBE-Puffer] für 30 Minuten auf einem Schüttler inkubiert. Danach folgten drei Waschschritte mit Aqua dest. für je 10 Minuten. Am Ende wurde mit dem Chemidoc XRS+ das Gel unter UV-Licht dokumentiert.

2.2.6.2. Inhibierung der DNA-Polymerase

Mit diesem Test lässt sich eine mögliche DNA-Polymerase-Inhibierung durch eine Verbindung nachweisen. Dazu wurden acht PCR-Ansätze mit Primern für das Gen GAPDH angesetzt. Die zu testenden Substanzen wurden in einer absteigenden Konzentrationsreihe in 1:2-Schritten von 100 bis 3,125 µg eingesetzt. Neben einer Vehikelkontrolle wurde noch eine Negativkontrolle ohne cDNA gemacht.

	Endkonzentration
Puffer mit MgCl ₂	1,5 mmol
Primer forward	500 nmol
Primer reverse	500 nmol
dNTP	50 μmol
cDNA	0,50 μl (aus der umgeschriebenen RNA)

Taq-Polymerase0,65 UnitsGesamtvolumen15 μlSubstanz oder Vehikel5 μl

Die Ansätze wurden mit dem unter Punkt **2.2.5.** aufgeführten PCR-Programm amplifiziert. Die Proben wurden dann mit Probenpuffer versetzt, auf ein 1,5-prozentiges Agarosegel mit Ethidiumbromid aufgetragen und mit 80 Volt gefahren.

2.2.6.3. Inhibierung der Topoisomerase I und II

Topoisomerasehemmer werden in der Onkologie als Zytostatika eingesetzt. Beispiele dafür sind Topotecan und Etoposid. Neu entwickelte antitumorale Stoffe mit einem unbekannten Wirkmechanismus sollten auf mögliche Topoisomerasehemmereigenschaften hin untersucht werden. Mechanistisch gesehen bilden sich bei einer Inhibierung der Topoisomerasen ein Cleavagekomplex mit der DNA und dadurch ein Verhinderung der nachfolgenden Replikationsschritte, was in sich teilenden Zellen zu apoptotischen Prozesse führt. Solche künstliche Screeningverfahren sollten immer im Zusammenhang mit einer direkten Interkalierung der Substanz mit der DNA betrachtet werden.

In-vitro-Inhibierung der Topoisomerase I

Topoisomerase I überführt durch Einzelnstrangbrüche supercoiled DNA in eine topologisch relaxierte Form und ermöglicht dadurch den Beginn des Replikationsprozesses. Um den Einfluss von Substanzen auf die Aktivität der Topoisomerase I *in vitro* zu erforschen, wurde der Einfluss der Substanzen auf die Relaxierung eines supercoiled Plasmids (pBR322) untersucht. Die Isoformen des Plasmids wurden auf einem Agarosegel verfolgt.

Die Reinsubstanz wurde in einer Reihe aus 1:2-Schritten von 100 bis 3,125 μ g/ml Endkonzentration in Anwesenheit der Topoisomerase und pBR322 eingesetzt. Als Kontrollen dienten das supercoiled Plasmid ohne Topoisomerase I (Plasmidkontrolle), das supercoiled Plasmid mit 2 Einheiten humaner Topoisomerase I und dem Lösungsmittel der Reinsubstanzen (Vehikelkontrolle) und das supercoiled Plasmid mit 2 Einheiten humaner Topoisomerase und Doxorubicin (0,3 μ g/ml) als Positivkontrolle für die Inhibierung.

Plasmidkontrolle:

- 5 µl Plasmid (pBR322)
- 5 µl Puffer
- 10 µl Wasser

Vehikelkontrolle:

- 5 μl Plasmid (pBR322)
- 5 μl Puffer
- 5 μl Topoisomerase I (4 u/μl)
- 5 μl Vehikel

Ansatz für Reinsubstanz:

- 5 μl Plasmid (pBR322)
- 5 µl Puffer
- 5 μl Topoisomerase I (4 u/μl)
- 5 µl Substanz

Doxorubicinkontrolle:

- 5 µl Plasmid (pBR322)
- 5 µl Puffer
- 5 μ l Topoisomerase I (4 u/ μ l)
- 5 µl Doxorubicin (10 µg/ml)

In-vitro-Inhibierung der Topoisomerase II

Die Topoisomerase II induziert Doppelstrangbrüche benötigt aber dafür im Gegensatz zu Topoisomerase I Energie in Form von ATP. Für die Untersuchung des Einflusses einer Reinsubstanz auf die Aktivität der Topoisomerase II wird Kinetoplast DNA (kDNA) als Substrat benutzt, das durch die Topoisomerase II in einzelne Plasmide aufgebrochen wird. Die Substanzen wurden in den gleichen Konzentrationen wie oben aufgeführt eingesetzt. Als Kontrollen dienten kDNA ohne Topoisomerase II (kDNA-Kontrolle), kDNA mit 2 Units humane Topoisomerase II und Vehikel (Vehikelkontrolle) und als dritte Kontrolle kDNA mit 2 Units humaner Topoisomerase II und Doxorubicin (0,3 μ g/ml) als Positivkontrolle. Alle Ansätze wurden im spezifischen dazugehörigen ATP-haltigen Puffer angesetzt.

kDNA-Kontrolle:

- 5 µl kDNA
- 5 µl Puffer
- 10 µl Wasser

Vehikelkontrolle:

- 5 μl kDNA
- 5 μl Puffer
- 5 μl Topoisomerase II (10 u/μl)
- 5 µl Vehikel

Doxorubicinkontrolle:

- 5 μl kDNA
- 5 µl Puffer
- 5 μl Topoisomerase II (10 u/μl)
- 5 µl Doxorubicin (10 µg/ml)

Ansatz für Reinsubstanz:

- 5 μl kDNA
- 5 μl Puffer
- 5 μl Topoisomerase II (10 u/μl)
- 5 µl Substanz

Alle Ansätze wurden auf Eis angesetzt und dann 30 Minuten bei 37 °C inkubiert. Nach der Inkubation wurden die Ansätze auf Eis gestellt und die Enzymreaktion durch Hinzufügen von 5 µl Stopplösung, die Sarkosyl und Ladepuffer enthielt, gestoppt.

Die Ansätze wurden auf einem 1,7-prozentigen Agarosegel bei 80 Volt aufgetrennt. Anschließend wurde das Gel 30 Minuten lang in eine TAE-Puffer-Lösung mit 5 µl Ethidiumbromid pro 100 ml unter Schütteln eingelegt. Das nun gefärbte Gel wurde unter UV-Licht mit dem ChemiDoc XRS+ dokumentiert.

2.2.6.4. Einfluss auf die Tubulinpolymerisierung

Das Zytoskelett einer Zelle erfüllt neben der Formgabe, Motilität und Stabilität auch die Aufgabe, dass die Mitose korrekt abläuft. Insbesondere Tubulin ist wichtig, da es den Spindelapparat formt, der für die Separierung der Chromatiden notwendig ist. Tubulin existient in zwei Isoformen (Tubulin α und Tubulin β). Beide Formen polymerisieren und bilden Mikrotubuli aus. Medikamente wie Vinblastin oder Paclitaxel greifen in diesen Prozess ein und verhindern den Aufbau (Vinblastin) oder den Abbau (Paclitaxel) des Spindelapparates. In diesem Ansatz wurde die Polymerisierung der Mikrotubuli unter dem Einfluss der Reinsubstanzen beobachtet. Benutzt wurde das Tubulin Polymerization Assay Kit der Firma Cytoskeleton, welches auf dem Prinzip von Bonne et al. basiert. Der Nachweis der Polymerisation erfolgte durch den Einbau eines Fluoreszenzsreporters in die Mikrotubuli. Die Anregung erfolgte bei 360 nm und die Emission bei 420 nm. Die Ansätze wurden auf einer 96-Well-Platte zusammenpipettiert. Die Polymerisierung erfolgte für 60 min und 37 °C im Tecan Infinite M200 ELISA-Reader. Die Emission wurde jede Minute gemessen und der Verlauf der Polymerisierung graphisch dargestellt. Ein Ansatz enthielt 55 µl und setzte sich wie folgt zusammen:

Reinsubstanz	200 µg/ml
Puffer I	1x
Tubulin-Glycerin-Puffer	1x
GTP-Stock	1 mM
Tubulin-Stock	2 μg/μl

Zusätzlich wurden als Kontrollen anstatt einer Reinsubstanz Vinblastin, Paclitaxel und Wasser eingesetzt.

2.2.6.5. Einfluss der Reinsubstanzen auf die Zellzyklusdistribution

Die einzelnen Elemente der Zellzyklusmaschinerie dienen als Angriffspunkte vieler Gifte und Zytostatika. Die Distribution des Zellzyklus nach Inkubation mit einer Reinsubstanz liefert globale Informationen darüber, wo möglicherweise die Angriffspunkte einer Substanz liegen. Darüber hinaus liefert die Analyse Informationen zum Replikationsstatus einer bestimmten Zellpopulation.

Die Zellzyklusanalysen erfolgten mit einem Durchflusszytometer nach einem modifizierten Protokoll von Tsugita et al von 1991. Im Einzelnen wurden Zellen in einer 25cm²-Kulturflasche 24 Stunden mit einer Reinsubstanz inkubiert. Mindestens zwei Stunden vor Ende der Inkubation wurde dem Medium 50 μ l BrdU – ein Thymidin-Analogon – zugegeben (Endkonzentration 10 μ mol). Das BrdU wird von den Zellen während der Mitose in die DNA eingebaut und kann später mit einem Antikörper markiert werden.

Nach dem Ende der Inkubation wurden die Zellen geerntet und einmal mit kaltem PBS gewaschen. Danach wurde das PBS komplett abgesaugt und das Pellet mit 1 ml kaltem Methanol über Nacht bei 4 °C fixiert. Am nächsten Tag wurden die Zellen 5 min bei 500 g zentrifugiert und das Methanol abgenommen. Dann folgte ein Waschschritt mit 1 ml Waschlösung (1 % BSA und 0,5 % Tween 20 in PBS). Die Lösung wurde dann wieder 5 min bei 500 g zentrifugiert und der Überstand verworfen. Als nächstes wurde das Pellet mit 1 ml 2 N HCl mit 0,5 % Triton zwischen 30 und 60 min bei RT inkubiert. Dieser Schritt sorgte für die Denaturierung der DNA-Stränge und Permeabilisierung der Membranen. Nach der Inkubation folgte die Neutralisierung der Säure durch zweimaliges Waschen mit 1 ml der Waschlösung. Als nächstes wurde das Pellet mit 20 µl pro 50 µl Ansatz einer RNase-A-Lösung (1 mg/ml) für 60 min bei 37 °C inkubiert, um die RNA in den Proben zu eliminieren. Anschließend wurde die RNase A in 1 ml Waschlösung verdünnt und die Lösung 5 min bei 500 g zentrifugiert. Das Pellet wurde dann in zwei Teile aufgeteilt, wobei ein Aliquot nicht mit dem Anti-BrdU-Antikörper inkubiert wurde und so als Negativkontrolle für die spätere Messung diente. Auf das restliche Pellet wurden 30 µl eines FITC-konjugierten Anti-BrdU-Antikörpers (1:10 in 1:10 verdünnter Waschlösung) gegeben. Die Inkubation geschah im Dunkeln und dauerte 60 min. Anschließend wurde der Antikörper mit 1 ml Waschlösung verdünnt und 5 min bei 500 g zentrifugiert. Das Pellet wurde in 1 ml PBS aufgenommen. Zuletzt wurden pro ml 5 μl Propidiumiodid zum Anfärben der gesamten DNA hinzugegeben (Endkonzentration 1 μg/ml). Die Messung mit dem Durchflusszytometer konnte nach 10 min Inkubation mit dem Propidiumiodid starten. Für die Zellzyklusanalysen wurden das Durchflusszytometer FC500 der Firma Beckman Coulter benutzt. Das Gerät besitzt einen Argon-Laser mit einer Anregungswellenlänge von 488 nm. Die Zellen werden in einem Mantelstrom durch eine Messküvette geleitet und mit dem Laser bestrahlt. Das Streulicht und das Fluoreszenzlicht werden durch fünf optische Filter mit je einem Detektor geleitet, so dass theoretisch eine fünffache Markierung möglich ist. Seitwärtsstreulicht (eng: side scatter, SSC) und Vorwärtsstreulicht (eng: forward scatter, FSC) liefern Informationen über die Granularität und Größe der Zellen.

Der BrdU-FITC-Antikörper hat sein Emissionsmaximum bei 520 nm und Propidiumiodid bei 620 nm. Daher wird man das beste Signal für den Antikörper in Kanal 2 und für Propidiumiodid in Kanal 4 sehen. Der BrdU-Antikörper gibt Informationen über den Anteil der sich teilenden Zellen innerhalb der Population, während das Propidiumiodid eine globale Übersicht des DNA-Gehalts liefert.

2.2.7. Tumor-Xenograftstudien

Zur Beobachtung des Metastasierungs- bzw. Disseminierungspotentials des Tumors wurden 8-10 Wochen alte weibliche pathogenfreie und immuninkompetente Mäuse des Stammes NMRI nu/nu benutzt. Die Tiere wurden in semisterilen pathogenfreien Käfigen mit einem zwölfstündigen Rhythmus von Licht und Dunkelheit sowie Wasser und Nahrung ad libitum gehalten. 1 x 10⁶ Tumorzellen, suspendiert in 100 µl Medium, wurden unter Narkose im retrookkularen Raum deponiert. Nach einer Woche waren Metastasen in Lunge nachweisbar. Die Tiere wurden mit Isofluran (Actavis) narkotisiert, und es wurde zuerst das Blut entnommen. Danach wurden sie durch zervikale Dislokation getötet und die Organe zur Untersuchungen anschließend ext-rahiert. Gewebe wurden fixiert oder für eine spätere Verwendung eingefroren.

Für die Haltung und Gewinnung von Tumormassen wurden die Zellen subkutan implantiert und nach dem oben beschrieben Verfahren extrahiert. Alle Tierexperimente wurden im Rahmen des Deutschen Tierschutzgesetzes durchgeführt und beruhen auf dem Tierantrag mit dem Aktenzeichen AZ 87-51.04.2010.A210.

2.2.8. Strukturaufklärung

Die Strukturaufklärung erfolgte in Kooperation mit den Arbeitsgruppen von Prof. Raphael Stoll der Abteilung Biochemie II: AG Biomolekulare Spektroskopie der Ruhr-Universität Bochum und Prof. John Porco des Departments of Chemistry der University of Boston in den USA. Sie hatten die Aufgabe, mittels spektroskopischer Techniken wie 2D-NMR und Massenspektrometrie die endgültige Struktur der isolierten aktiven Verbindungen aufzuklären und zu rekonstruieren.

3. Ergebnisse

3.1. Etablierung eines geeigneten *In-vitro*-Zellsystems zum Screening antitumoraler Substanzen

Mittels der auf Punkt **2.2.1.1.** basierenden Methode haben wir ein kleines Panel verschiedene Tumorzellentitäten aufgebaut, die Krebsstammzelleigenschaften besitzen. Diese induzierten Krebsstammzellsubklone (kurz iCSC) wurden für die Durchmusterung der Propolisfraktionen auf Anti-Krebsstammzell-Wirkstoffe eingesetzt. Die selektierten Tumorzellen wurden sowohl morphologisch als auch molekularbiologisch gründlich charakterisiert, um die Stabilität des Prüfverfahrens zu gewährleisten. In den folgenden Abschnitten werden die wichtigsten Merkmale und Charakteristika der induzierten Krebsstammzellen dargestellt.

3.1.1. Morphologische Veränderungen während der Resistenzentwicklung

Die Inkubation mit Etoposid über einen längeren Zeitraum führt schon nach kurzer Zeit zu morphologischen Veränderungen in den Tumorzellpopulationen. In der ersten Phase treten hypertrophe Zellen mit vergrößerten Vesikeln und Vakuolen auf. In der Regel kann man in allen Zelllinien eine metaplastische Phase beobachten. Nach einer Gewöhnungsphase gehen die meisten dieser Zellen zu Grunde, während sich andere, die morphologisch eher unauffällig sind, durchsetzen. Abhängig vom Zelltyp kann es zudem zu einer Änderung des Wachstumsverhaltens kommen. So verschwindet bei manchen Zelltypen z.B. das gleichmäßige Flächenwachstum der WT-Zellen zugunsten netzwerkartiger Strukturen, es können Zellhaufen entstehen, die durch Zellausläufer miteinander verbunden zu sein scheinen. In neuronalen Zelllinien wie 79HF6 oder LAN1 wurde zudem die Bildung von Neurosphären beobachtet. Die folgenden Abbildungen **7** bis **9** zeigen eine Auswahl der transienten und permanenten Veränderungen in der Morphologie.

Abbildung 7: Vergleich von A549 WT und iCSC – frühe Phase der Resistenzentstehung. Die A549 iCSC-Zellen sind stark vergrößert und enthalten viele Vakuolen; die Nukleoli sind deutlich zu erkennen, was auf höhere rRNA-Produktion hindeutet. Weniger gut zu erkennen ist die erhöhte Zahl an Mitochondrien, was ein Anzeichen für gesteigerten Metabolismus ist. Vergrößerung: 100fach, Maßstab = 100 μ m.

Abbildung 8: Vergleich von PC3 WT und iCSC – verändertes Zellwachstum. Das Wachstumsverhalten ist nicht mehr flächig und gleichmäßig wie beim WT, der iCSC-Subtyp wächst in isolierten Haufen, die netzartig untereinander verbunden sind. PC3 iCSC sind nun spindelförmig, wie es typisch für neuronale Zellen ist. Vergrößerung: 100fach, Maßstab = 100 µm.

Abbildung 9: Vergleich von LAN1 WT und iCSC . LAN1 iCSC zeigen eine Bildung von Neurosphären. Vergrößerung: 100fach, Maßstab = $100 \ \mu m$.

Die Größenzunahme des Kernes und der Zellen selbst wurde in den Zelllinien 79HF6 und LAN1 über einen langen Zeitraum vermessen und statistisch ausgewertet. Man erkennt eine Phase signifikanter Größenzunahme und -abnahme.

Abbildung 10: Globale Änderung der Kernfläche in LAN1-Neuroblastomzelllinien. Nach Behandlung mit bis zu 2 μg/ml Etoposid ist eine Flächenzunahme der Kerngröße innerhalb der Zelllinien zu beobachten. Dieses Phänomen stellt allerdings auf längere Sicht ein transientes Ereignis dar, da die über viele Generationen stabil Etoposid-resistenten (iCSC) Subtypen, gesehen auf die Gesamtpopulation, weitgehend zur Ursprungsfläche der Wildtyp(WT)-Zelllinie zurückkehrt. Für die Messreihe ergab der Kruskal-Wallis-Test (*ANOVA on Ranks*) einen hoch signifikanten Unterschied zwischen den einzelnen Gruppen (p<0,001). Alle Resistenzstadien der Analyse sind bezogen auf den jeweiligen WT in den paarweisen Vergleichen mittels Dunn's Test signifikant unterschiedlich (p<0,05). WT: Wildtyp, iCSC: induzierte Krebsstammzellen.

3.1.2. Analyse der Etoposid-Resistenzcharakteristika

Nach Ausprägung der Resistenz gegen Etoposid wurden die Zelllinien auf ihr Resistenzverhalten untersucht. Typischerweise liegt der Resistenzfaktor eines WT/iCSC-Paars zwischen 6 und 70 (s. **Abb. 11**). Die resistenten Zellen zeigen auch eine höhere Toleranz gegenüber Zytostatika anderer Wirkstoffklassen (**Tab. 11**). Dieses als Kreuzresistenz bekannte Phänomen wird durch die erhöhte Expression der klassischen "Multi drug resistance"-Gene – kurz MDR-Gene – ermöglicht. Diese Gene exprimieren ATP-getriebene Membranpumpen, die Zytostatika und andere Toxine aus der Zelle befördern. Zu dieser Klasse gehören die Proteine MDR1, MDR3 und MRP.

Abbildung 11: Resistenzverhalten verschiedener Zelllinien. Die iCSC-Zelllinien tolerieren größere Mengen an Etoposid, einem Topoisomerasehemmer und oft benutzten Krebsmedikament. Der IC₅₀-Wert der LAN1 iCSC beträgt 6,17 gegenüber 0,57 μ g/ml (Resistenzfaktor RF: 10,8). Der IC₅₀-Wert der LAN1 iCSC beträgt 3,04 gegenüber 0,31 μ g/ml (Resistenzfaktor RF: 9,8).

Tabelle 11: Kreuzresistenz. Resistenzverhalten der iCSC-Zelllinien gegenüber anderen gebräuchliche Zytostatika verschiedener Substanzklassen. Gezeigt sind die Resistenzfaktoren (RF). Je nach Zellart und Wirkungsweise der Zytostatika entstehen unterschiedlich starke Kreuzresistenzen.

	79HF6 iCSC / WT	HCT8 iCSC / WT	LAN1 iCSC / WT	PC3 iCSC / WT
5-Fluoruracil	58,8	2,2	0,2	1,3
Cisplatin	1,3	6,5	0,2	1,2
Doxorubicin	37,3	103	27,2	52
Etoposid	69,6	14,5	6,2	54,8
Paclitaxel	142,2	38,4	35,8	48
Vinblastin	384,6	7,5	1,2	1,5

3.1.3. Vergleich der Zellteilungs- und Wachstumsraten von WT- und iCSC-Zelllinien

Vergleicht man die Teilungsraten von WT- und iCSC-Zelllinien *in vitro*, so findet man für alle Krebsarten, dass sich die resistenten Zelllinien langsamer teilen (**Abb. 6**). Daher müssen von den iCSC-Zellen bei den Zelltoxizitätsassays entsprechend mehr Zellen zu Beginn des Experiments ausplattiert werden, um zum Zeitpunkt der Messung vergleichbare Werte zu erhalten. Auch *in vivo* im Maus-Xenograft-Modell wachsen die iCSC-Zellen langsamer (**Abb. 13**); dabei zeigten die iCSC-basierten Tumoren eine deutlich erhöhte Zelldichte bei geringerer Stroma-Entwicklung (**Abb. 14**). In **Abbildung 15** ist zu erkennen, dass die iCSC-Zellen im Xenograft-Modell ein höheres Metastasierungspotenzial besitzen als die WT-Zellen.

Abbildung 12: Wachstumsverhalten. MTT-Assay von LAN1 WT- und iCSC-Zellen 96 Std. nach Aussaat. Zu Beginn des Experiments wurden unterschiedliche Zellzahlen ausplattiert. Die iCSC-Zelllinien zeigen ein verlangsamtes Wachstum.

Abbildung 13: Vergleich des Tumorgewichts von LAN1 WT und iCSC. Das *In-vivo*-Wachstum der iCSC-Zelllinie ist deutlich langsamer als das des WTs. Zur Erzeugung des Tumors wurden pro immundefizienter NMRI nu/nu-Maus 20 Millionen Tumorzellen subkutan gespritzt. Nach dem Sichtbarwerden wurden alle Tumore entnommen, gewogen und gemessen. Die Mittelwerte waren beim WT 10,84±0,18 g und beim iCSC 7,22±0,34 g. Der Unterschied ist hoch signifikant (p-Wert = 0,0009).

Abbildung 14: Vergleich von PC3 WT- und iCSC-Primärtumoren im Xenograftmodell. Histologischer Schnitt durch das Tumorgewebe nach Etablierung von Tumoren der Prostatakarzinomzelllinien LNCap WT und iCSC. Die Zelldichte der iCSC-basierten Tumoren ist gegenüber den WT-basierten Tumoren deutlich erhöht, die Entwicklung von Stroma ist dagegen schwächer. Vergrößerung: 40fach, Maßstab = 200 μ m. (Repräsentative Aufnahme).

Abbildung 15: Vergleich des Metastasierungspotenzials von PC3 WT- und iCSC-Zellen. Histologischer Schnitt durch Lungengewebe von Mäusen nach Etablierung von Tumoren aus der Prostatakarzinomzelllinie PC3. Die iCSC-basierten Tumoren zeigen ein deutlich erhöhtes Metastasierungspotenzial gegenüber den WT-Tumoren. Vergrößerung: 40fach, Maßstab = 200 μ m. (Repräsentative Aufnahme).

3.1.4. Strahlensensitivität der WT- und iCSC-Zelllinien

Neben ihrer Widerstandsfähigkeit gegen Zytostatika zeigte sich als weitere Eigenschaft der iCSC-Zelllinien eine erhöhte Resistenz gegenüber Bestrahlung, ein Merkmal, das auch bei KSZ zu beobachten ist. **Abbildung 16** und **17** zeigen 96 Std. nach Bestrahlung höhere Überlebensraten bei LNCaP und LAN1 iCSC als bei der WT-Parentalzelllinie. Ähnliche Ergebnisse ließen sich auch bei den anderen iCSC-Zelllinien wie PC3, 79HF6 und MCF7 zeigen.

Abbildung 16: Bestrahlungsresistenz von PC3 bei 20 Gray. Dargestellt ist der Anteil der überlebenden Zellen 96 Stunden nach Bestrahlung mit 20 Gray. Bei dieser höheren Strahlendosis überleben signifikant mehr iCSC- als WT-Zellen. Die einzelnen Werte sind: 250 Zellen = 10,85±2,60 % (WT) gegen 33,06±1,87 % (iCSC) mit einem p-Wert=0,01. 500 Zellen = 14,28±3,04 % (WT) gegen

24,77±0,95 % (iCSC) mit einem p-Wert=0,01. 1000 Zellen = 11,98±2,15 % (WT) gegen 26,52±1,74 % (iCSC) mit einem p-Wert=0,02. Die Prozentwerte beziehen sich auf unbestrahlte Kontrollzellen (n=3).

Abbildung 17: Bestrahlungsresistenz von LAN1 bei 20 Gray. Dargestellt ist der Anteil der überlebenden Zellen 96 Stunden nach Bestrahlung mit 20 Gray. Bei dieser Strahlendosis überleben doppelt so viele iCSC- wie WT-Zellen. Die einzelnen Werte sind: 250 Zellen = 20,68±3,99 % (WT) gegen 43,91±6,96 % (iCSC) mit einem p-Wert=0,01. 500 Zellen = 14,75±3,57 % (WT) gegen 31,48±7,87 % (iCSC) mit einem p-Wert=0,05. 1000 Zellen = 12,29±2,76 % (WT) gegen 22,01±3,84 % (iCSC) mit einem p-Wert=0,03. Die Prozentwerte beziehen sich auf unbestrahlte Kontrollzellen (n=3).

3.1.5. Unterschiede in der Marker-Expression auf RNA-Ebene

Zur weiteren Charakterisierung der WT- und iCSC-Zelllinien wurde die Expressionsstärke verschiedener Marker auf RNA- und auf Proteinebene untersucht. Bei der Analyse von Markern, deren Expression auf mögliche Stammzelleigenschaften der Zellen hindeuten, konnte eine differentielle Expression auf RNA-Ebene nachgewiesen werden. Zunächst wurde die Expression von MDR1 überprüft. Das Genprodukt von MDR1 ist eine Membranpumpe, die in der Lage ist, Zellgifte aus der Zelle zu befördern. Die Expression von MDR1 ist bei den meisten Chemotherapierefraktären Krebszellen erhöht. Wie zu erwarten, war die Expression von MDR1 in den iCSC-Zellen stark erhöht (**Abb. 18**). Als andere Mechanismen für die Resistenzentwicklung kommen veränderte Stoffwechselwege, Änderung der Permeabilität der Zellmembran oder Mutationen an den Bindestellen der Zytostatika in Frage.

Abbildung 18: Expression von MDR1-mRNA in LAN1 WT und iCSC. Mittels Real-Time-PCR konnte die Überexpression des MDR1-Genes gezeigt werden. Diagramm repräsentativ für drei unabhängige Experimente mit p-Wert=0,00016 (WT: 0,000086±0,000014 gegen iCSC: 0,001578±0,00031).

Abbildung 19: RT-PCR von Stammzellmarkern bei LAN1 WT und iCSC. Deutlich erkennbar ist die differentielle Expression einiger Stammzellmarker in LAN1 WT und iCSC. Erstmal konnten wir eine Überexpression des Neutrophinrezeptors p75 NTR in resistenten LAN1 iCSC nachweisen. Diese deskriptiven Gelfotos sind repräsentativ für drei Versuche.

Abbildung 20: Expression des Stammzellmarkers p75^{NTR} in LAN-1 WT- und iCSC-Modellen. Die *In-vitro*-Selektion von KSZ-ähnlichen Populationen induziert eine hohe Expression von p75^{NTR} (oben), welche auch in Xenograftmodellen deutlich erkennbar ist (unten). qPCR (n = 3) aus verschiedenen biologischen Replikaten mit p-Wert=0,000066. IHC, deskriptives Bild (n = 4). Vergrößerung: 40fach, Maßstab = 200 μ m.

Bei der Analyse von Markern, deren Expression auf mögliche Stammzelleigenschaften der Zellen hindeutet, konnte eine differentielle Expression auf RNA-Ebene nachgewiesen werden. So zeigte sich das Expressionslevel der Oberflächenmarker CXCR4 und p75^{NTR} in LAN1 iCSC erhöht, während SDF1, der Ligand von CXCR4, weniger stark exprimiert wurde. Im Fall des Rezeptors p75^{NTR} konnte das Anschalten der Expression durch die Etablierung der Etoposidresistenz beobachtet werden, ein Vorgang, der hier zum ersten Mal nachgewiesen wurde (**Abb. 20**).
3.1.6. Nachweis von Veränderungen im Proteinexpressionsprofil

Zum Nachweis von Unterschieden in der Expressionsstärke von Proteinen wurden mehrere Methoden angewendet. Um einen groben Überblick über differentielle Expressionsmuster zu erhalten, wurde zunächst mittels Dot-Blot-Technik eine Charakterisierung der Zelllinien auf Proteinebene vorgenommen. Diese Methode erlaubt, mit wenig Aufwand eine Vielzahl von Proteinen gleichzeitig zu untersuchen. Dieser Ansatz beinhaltete 58 Proteine, die bei Apoptose, Signaltransduktion, Zellzyklus, Resistenz und/oder Zelladhäsion eine Rolle spielen. Zudem wurde die Expression der Stammzellmarker CD44 und CXCR4 sowie des CXCR4-Liganden SDF1 untersucht.

Tabelle 12: Liste der untersuchten Proteine – Die Liste enthält 58 Proteine, die grundlegende Mechanismen und Prozesse innerhalb der Zelle steuern.

Zellzyklus	Signaltransduktion	Adhäsion	Apoptose	Zytokine	Resistenz
CDK1	Akt	CDH13	Bad	CD44 Pan	ABCG2
CDK4	β-Catenin	E-Cadherin	Bax	CD44v3	MDR1
CDK6	CD133	EGF-Rezeptor	BCL-2	CD44v5	MRP1
Cyclin A	CXCR4	FAK	BCL-XL	CD44v6	MRP2
Cyclin B1	c-Raf	Integrin α6	с-Мус	CD44v7	
Cyclin D1	GSK-3β	Integrin β1	Flip	CD44v10	
Cyclin D2	MEK 1/2	Pan-Cadherin	N-Myc		
Cyclin D3	p44/42	PTCH1			
Cyclin E	P-c-Raf	PTCH2			
Ki67	P-GSK-3α/β	Tra-1-60s			
p21	P-MEK 1/2	Vimentin			
p27	P-p44/42				
p53	SDF1				
PCNA	TrkB				
Rb					
Suz12					

Ergebnisse

Abbildung 21: Proteinexpressionsanalyse von MDR1 in iCSC- und WT-Zelllinien mittels Dot Blot-Technik. Dargestellt ist die Expression des MDR1-Proteins in verschiedenen Zelllinien. Das Resistenzprotein wird in den iCSC-Zellen deutlich stärker exprimiert. Repräsentatives Blotfoto.

Mit Hilfe der Image Lab-Software wurde die Intensität der Signale gemessen und die Veränderung der Expression in Prozent angegeben. Abbildung 22 zeigt die Expression von MDR1 in allen iCSC-Zelllinien im Vergleich zur jeweiligen WT-Zelllinie. Alle iCSC-Zelllinien exprimieren MDR1 stärker als die zugehörigen WT-Zellen, wobei die Uberexpression im Fall von HT29 relativ schwach ist. Dies könnte ein Hinweis darauf sein, dass andere Membranpumpen aus der MDR-Familie überexprimiert sind oder andere nicht klassische Resistenzmechanismen zugrunde liegen. Die Abbildungen 23 und 24 zeigen in einer Zusammenfassung die Expressionsunterschiede für die verschiedenen Proteine in den getesteten Tumoren. Dabei wurden signifikante Herunter- oder Hinaufregulierungen in den iCSC-Sublinien in Bezug zum WT in Prozent dargestellt. Der Übersichtlichkeit halber wurden sehr große Werte gestaucht. Die Ergebnisse zeigen für die Zelllinien individuelle Muster, so dass man bei der Bekämpfung des Krebses stets die Expressionsmuster der jeweiligen Tumore analysieren sollte. Der Dot Blot liefert wertvolle Hinweise auf deregulierte Proteine, die man dann mit weiterführenden Methoden untersuchen kann. Aus den durchgeführten Experimenten lassen sich Proteine herauslesen, die in allen analysierten Zelllinien dereguliert sind. Die hoch regulierten Proteine sind das Resistenzprotein MDR1, der Stammzellmarker CD133, die CD44 Varianten 3 und 6, Cyclin B1, der Tumorsupressor p53, das Rezeptorprotein TrkB und die Kinase p44/42 (ERK1/2). Proteine, die im Großteil der Linien reguliert waren, sind der Transkriptionsfaktor N-Myc, der CDK-Inhibitor p21 und die Cyline D1 und E. Diese Ergebnisse waren über verschiedene biologische Replikate hinweg stabil.

74

Abbildung 22: Proteinexpressionsanalyse von MDR1 in iCSC- und WT-Zelllinien. Dargestellt ist die Expression des MDR1-Proteins in verschiedenen iCSC-Zelllinien in Prozent, wobei WT = 100 % (rote Linie); (n=3)

Auch immunzytochemische Untersuchungen (ICC) an den resistenten Tumorzelllinien sowie immunhistochemische Analysen (IHC) an Xenograftmodellen zeigten eine differentielle Proteinexpression für verschiedenen Stammzellmarker (**Abb. 25** und **26**). Ferner wurden diese Expressionsmuster einiger verwendeter Marker in IHCs von Patientenmaterial nachgewiesen. Die Untersuchungen zeigen, dass die iCSC-Zelllinien sowohl molekulare als auch biologische Charakteristika von KSZ aufweisen. Damit steht nun ein geeignetes Screening-System für die Identifizierung von Verbindungen zur Verfügung, die als Kandidaten für die Entwicklung von Chemotherapeutika der zweiten Generation in Frage kommen.

Abbildung 23: Unterschiede in der Proteinexpression zwischen LAN1 iCSC und WT. Dargestellt ist die mittlere Abweichung der Proteinexpression im iCSC gegenüber dem WT in Prozent (n=3).

Abbildung 24: Unterschiede in der Proteinexpression zwischen PC3 iCSC und WT. Dargestellt ist die mittlere Abweichung der Proteinexpression in iCSC gegenüber dem WT in Prozent (n=3).

Abbildung 25: Proteinexpressionsanalyse von CXCR4 und CD117 in LAN1 mittels Immunzytochemie (ICC). Beide Proteine sind in LAN1 iCSC überexprimiert. Sekundärantikörperfärbung mit FITC. Vergrößerung: 100fach, Maßstab = $100 \mu m$.

Abbildung 26: Differenzielle Expression von CXCR4 und dessen Liganden SDF-1 α im Prostatakarzinom PC3 WT und dessen iCSC Subklon. Die Ergebnisse korrelieren mit den Ergebnissen der RNA- und Western Blot Analysen. ICC, deskriptive Bild (n = 3). Vergrößerung: 100fach, Maßstab = 100 μ m.

3.1.7. Resümee der Charakterisierung der iCSC-Sublinien

Durch verschiedene Experimente konnten wir bei den Etoposid-resistenten Zelllinien mehrere Eigenschaften von Krebsstammzellen nachweisen. Dazu gehörten veränderte Eigenschaften, wie verlangsamtes Wachstum *in vitro* und *in vivo*, veränderte Zellmorphologie, Kreuzresistenz gegen Zytostatika verschiedener Stoffklassen, erhöhte Toleranz gegenüber ionisierender Strahlung und Veränderungen der Expression auf Gen- und Proteinebene. All diese Charakteristika zeigen, dass die resistenten Zelllinien sich als Modell für Krebsstammzellen eignen und bei der Durchmusterung von Propolis auf antitumorale Substanzen eingesetzt werden können.

3.2. Analyse von Propolis

Die Erforschung von Propolis auf antitumoral wirksame Substanzen läuft bereits seit mehreren Jahren. Einige Propolissorten, so z.B. die deutschen und die brasilianischen, sind bereits teilweise analysiert. Daher konzentriert sich unsere Arbeitsgruppe auf die Untersuchung von Propolissorten, die bislang wenig untersucht wurden. Dazu wurden Zellen in bestimmten Zellzahlen auf 96er-Mikrotiterplatten ausgebracht und nach 24 Stunden mit Propolisextrakten in einer absteigenden Konzentrationsreihe ab 100 μ g/ml für 72 Stunden inkubiert. Mit Hilfe des MTT-Assays wurden die IC₅₀-Werte verschiedener Propolissorten in den Zelllinien LAN1, LNCaP und PC3 bestimmt. Als Kontrolle bzw. Vergleich zu nicht tumoralen Zelllinien wurden humane Amnion- und REC-Zellen eingesetzt. Entscheidend für die Auswahl der Propolissorte waren eine hohe antitumorale Aktivität und damit einhergehend niedrige IC₅₀-Werte von unter 25 μ g/ml. Idealerweise sollte auch schon eine *In-vivo*-Aktivität im Tiermodell vorliegen und genügend viel Rohsubstanz (mehr als 1 kg) vorliegen.

Tabelle 13: Verschiedene Propolissorten mit IC₅₀**-Werten.** 10 Propolissorten aus unterschiedlichen Regionen der Welt wurden auf ihre Toxizität hin untersucht. Als vielversprechende Kandidaten stellte sich neben den kubanischen Sorten auch Propolis aus der Türkei und Chile heraus. Die MW-Werte sind in μ g/ml angegeben und repräsentieren n=3 Experimente (MW = Mittelwert; SD = Standardabweichung).

Urenrungeland	LAN1 WT		LAN1	iCSC	LNCa	P WT	LNCaP iCSC		
orsprungsland	MW	SD	MW	SD	MW	SD	MW	SD	
Chile	17	3,89	57,63	0,53	66,25	10,96	79,75	3,18	
Florida/USA	33,38	1,24	70	11,67	32,63	0,88	39,38	5,48	
Indonesien	16,75	2,83	56,88	0,18	15,38	5,13	58,1	19,94	
Kroatien	38,58	9,63	36,5	3,89	16,63	2,3	19,95	3,61	
Kuba schwarz	4,7	2,19	25,25	2,47	13,88	3,36	16,75	3,18	
Kuba rot	23	1,41	56,13	7,6	22,35	7,99	20,25	6,72	
Südafrika	56,13	9,37	55	7,07	33,63	5,13	44,88	8,31	
Südkorea	23	2,83	36,75	1,89	5,5	0	48	9,19	
Türkei	58,75	2,47	53,5	28,71	27,5	3,54	20,88	0,53	
Uruguay	31,75	1,41	30,25	4,6	15,23	0,04	24,4	0,85	
Urenrungeland	PC3	WТ	PC3	iCSC	Amr	nion	RE	C	
Ursprungsland	PC3 MW	WT SD	PC3 MW	i CSC SD	Amr MW	nion SD	RE MW	SD	
Ursprungsland Chile	PC3 MW 22,63	WT SD 0,53	PC3 MW 54,25	iCSC SD 1,77	Am r MW 20,6	nion SD 2,13	RE MW 39	EC SD 11,31	
Ursprungsland Chile Florida/USA	PC3 MW 22,63 37,5	WT SD 0,53 1,41	PC3 MW 54,25 62,88	iCSC SD 1,77 0,18	Amr MW 20,6 30,88	nion SD 2,13 3,01	RE MW 39 62,13	EC SD 11,31 5,13	
Ursprungsland Chile Florida/USA Indonesien	PC3 MW 22,63 37,5 8,65	WT SD 0,53 1,41 4,45	PC3 MW 54,25 62,88 42	iCSC SD 1,77 0,18 0	Amr MW 20,6 30,88 13,25	nion SD 2,13 3,01 2,12	RE MW 39 62,13 31	EC SD 11,31 5,13 0,71	
Ursprungsland Chile Florida/USA Indonesien Kroatien	PC3 MW 22,63 37,5 8,65 10,84	WT <u>SD</u> 0,53 1,41 4,45 1,61	PC3 MW 54,25 62,88 42 24,5	iCSC SD 1,77 0,18 0 6,36	Amr MW 20,6 30,88 13,25 20,77	nion SD 2,13 3,01 2,12 1,34	RE MW 39 62,13 31 26,27	EC SD 11,31 5,13 0,71 1,62	
Ursprungsland Chile Florida/USA Indonesien Kroatien Kuba rot	PC3 MW 22,63 37,5 8,65 10,84 21,88	WT SD 0,53 1,41 4,45 1,61 1,59	PC3 MW 54,25 62,88 42 24,5 59,38	iCSC SD 1,77 0,18 0 6,36 0,18	Amr MW 20,6 30,88 13,25 20,77 19,7	nion SD 2,13 3,01 2,12 1,34 1,84	RE MW 39 62,13 31 26,27 41	EC SD 11,31 5,13 0,71 1,62 14,14	
Ursprungsland Chile Florida/USA Indonesien Kroatien Kuba rot Kuba schwarz	PC3 MW 22,63 37,5 8,65 10,84 21,88 16,25	WT <u>SD</u> 0,53 1,41 4,45 1,61 1,59 1,06	PC3 MW 54,25 62,88 42 24,5 59,38 23,25	iCSC SD 1,77 0,18 0 6,36 0,18 11,67	Amr MW 20,6 30,88 13,25 20,77 19,7 18,88	nion SD 2,13 3,01 2,12 1,34 1,84 1,84 1,59	RE MW 39 62,13 31 26,27 41 22,38	E SD 11,31 5,13 0,71 1,62 14,14 1,59	
Ursprungsland Chile Florida/USA Indonesien Kroatien Kuba rot Kuba schwarz Südafrika	PC3 MW 22,63 37,5 8,65 10,84 21,88 16,25 37,75	WT SD 0,53 1,41 4,45 1,61 1,59 1,06 1,77	PC3 MW 54,25 62,88 42 24,5 59,38 23,25 41,5	iCSC SD 1,77 0,18 0 6,36 0,18 11,67 3,5	Amr MW 20,6 30,88 13,25 20,77 19,7 18,88 30	nion SD 2,13 3,01 2,12 1,34 1,34 1,84 1,59 0,71	RE MW 39 62,13 31 26,27 41 22,38 41,75	E SD 11,31 5,13 0,71 1,62 14,14 1,59 1,06	
Ursprungsland Chile Florida/USA Indonesien Kroatien Kuba rot Kuba schwarz Südafrika Südkorea	PC3 MW 22,63 37,5 8,65 10,84 21,88 16,25 37,75 18,75	WT SD 0,53 1,41 4,45 1,61 1,59 1,06 1,77 1,77	PC3 MW 54,25 62,88 42 24,5 59,38 23,25 41,5 35,75	iCSC SD 1,77 0,18 0 6,36 0,18 11,67 3,5 7,42	Amr MW 20,6 30,88 13,25 20,77 19,7 19,7 18,88 30 19,92	nion SD 2,13 3,01 2,12 1,34 1,84 1,59 0,71 0,88	RE MW 39 62,13 31 26,27 41 22,38 41,75 17,38	E SD 11,31 5,13 0,71 1,62 14,14 1,59 1,06 0,18	
Ursprungsland Chile Florida/USA Indonesien Kroatien Kuba rot Kuba schwarz Südafrika Südkorea Türkei	PC3 MW 22,63 37,5 8,65 10,84 21,88 16,25 37,75 18,75 18,75 12,13	WT SD 0,53 1,41 4,45 1,61 1,59 1,06 1,77 1,77 0,53	PC3 MW 54,25 62,88 42 24,5 59,38 23,25 41,5 35,75 22,25	CSC SD 1,77 0,18 0 6,36 0,18 11,67 3,5 7,42 1,77	Amr MW 20,6 30,88 13,25 20,77 19,7 18,88 30 19,92 21,75	nion SD 2,13 3,01 2,12 1,34 1,34 1,59 0,71 0,88 1,06	RE MW 39 62,13 31 26,27 41 22,38 41,75 17,38 11,63	C SD 11,31 5,13 0,71 1,62 14,14 1,59 1,06 0,18 1,59	

3.2.1. Analyse kubanischer Propolis

Unter den Proben, die diesen Kriterien genügten, fiel die Wahl auf verschiedene Propolissorten aus Kuba, da sie die Kriterien erfüllte: Hohe Aktivität, genügend Masse und in vivo Wirksamkeit (Díaz-Carballo et al., 2008c). Zudem zeigte das HPLC Chromatogramm der ausgewählten kubanischen Propolis, eine Komplexität, die die Identifizierung und Isolierung von neuen Substanzen wahrscheinlich machte (**Abb. 27**). Die verwendeten Propolissorten werden im Folgenden als PK1 und PK1 pool (für **P**ropolis aus **K**uba; bei PK1 pool handelt es sich um ein Gemisch von zwei kubanischen Propolissorten aus der gleichen Region, aber zu unterschiedlichen Jahreszeiten gesammelt) bezeichnet. Zur Identifizierung und Isolierung antitumoraler Substanzen wurden ethanolische Propolisextrakte mit Hilfe der reversen HPLC gemäß

Protokoll 1 nach Polarität fraktioniert. Aus vorherigen Analysen unserer Arbeitsgruppe war bereits bekannt, dass bei Minute 58-70 Nemoroson eluiert und daher als Referenzpunkt des Chromatogramms diente. So wurden die Fraktionen in drei Bereiche aufgeteilt: Areal A (0-57 Min.) für alle Fraktionen, die vor Nemoroson eluieren, Areal B (58-70 Min.) für Nemoroson und Nemoroson-ähnliche Substanzen und Areal C (71-120 Min.) für die Fraktionen, die nach Nemoroson eluieren. Vor Durchführung der Zytotoxizitätstests wurden die IC₅₀-Werte der Fraktionen in WT- und iCSC-Zelllinien sowie bei Kontrollzelllinien nicht tumoralen Ursprungs bestimmt. **Abbildung 28** zeigt beispielhaft ein Zytotoxizitätsprofil für PC3 WT und iCSC.

Nemoroson und 7-epi-Nemoroson aus Bereich B wurden nach den etablierten Verfahren (Díaz-Carballo et al., 2008a) aufgereinigt und für Derivatisierungsstudien zur Verbesserung der Wasserlöslichkeit und Steigerung der Aktivität im Mausmodell zu unserem Kooperationspartner John Porco nach Boston, USA, geschickt. Dieser stellte bei seiner Analyse fest, dass PK1 Areal B neben 7-epi-Nemoroson zwei neue mit Nemoroson verwandte (eventuell Zwischenprodukte aus der Nemorosonbiosynthese) Substanzen enthält, die wir als Red Nemorosone (RN) und als Red Nemorosone Pigment (RNP) bezeichnen. Die Areale A und C wurden schrittweise bis zur Isolierung von antitumoral wirksamen Einzelsubstanzen analysiert: PK1 Bereich A z.B. enthält fünf interessante Areale A0 bis A4 (Abb. 29). Deren Analyse ergab die Unterbereiche A4-3 und A4-5 bis A4-7, aus denen sich vier Einzelsubstanzen isolieren ließen (Abb. 30). Mit diesem Verfahren, also durch sukzessive Runden von HPLC-Fraktionierungen und zytotoxische Untersuchungen an Tumorzelllinien, gelang es uns, aus dem komplexen Stoffgemischen PK1 und PK1 pool insgesamt 18 bisher von unserer Gruppe noch nicht identifizierte neue antitumoral wirksame Einzelsubstanzen zu isolieren: acht aus Areal A, zwei aus Areal B und acht aus Areal C. Die Abbildungen 31 bis 34 geben einen Überblick über die Vorgehensweise zur Isolierung der Substanzen bis zur Reinform.

Abbildung 27: HPLC-Chromatogramm kubanischer Propolis. Ein ethanolisches Extrakt kubanischer Propolis wurde mittels HPLC-Gradientensystem aufgetrennt und bei 254 nm gemessen. Die Linien geben die Mengenverhältnisse der Lösungsmittel – Wasser (hellblau), Methanol (dunkelblau) und Acetonitril (grün) – während der Auftrennung wieder.

Abbildung 28: Toxizitätsprofil vs. Fraktionierung von PK1-Fraktionen. Dargestellt ist das Überleben der PC3-Zellen relativ zur Kontrolle (blaue Linie), Angaben in Prozent. Dieses Profil wurde mit dem HPLC-Chromatogramm (Fraktionierung nach Dauer in Minuten) hinterlegt. Die Profile von PC3 WT und PC3 iCSC verlaufen ähnlich; das Chromatogramm diente als Grundlage für die Aufteilung von PK1 in die Bereiche A (3-57 Min.), B (57-70 Min.) und C (70-120 Min.).

Abbildung 29: Toxizitätsprofil vs. Fraktionierung von PK1 Areal A. Es wurden fünf Unterbereiche A0 (6-9), A1 (12-15), A2 (18-25,5), A3 (27-30) und A4 (31,5-37,5) definiert. Nicht jeder chromatographische Peak ist einer zytotoxischen Aktivität zuzuordnen (s. A2). Zudem ist erkennbar, dass es Fraktionen gibt, die stärker auf PC3 WT wirken als auf PC3 iCSC (A1 und A2); n=3

Abbildung 30: Toxizitätsprofil vs. Fraktionierung von PK1 A4. Dargestellt ist die Auftrennung von A4 in die Unterbereiche A4-3 und A4-5 bis A4-7, von denen jeder einer zytotoxisch aktiven Reinsubstanz entspricht.

Abbildung 31: Analyse von PK1 Areal A mittels HPLC und Zytotoxizitätstests mit PC3 WT und iCSC. Insgesamt konnten fünf Einzelsubstanzen isoliert werden: A2-3, A4-3, A4-5, A4-6 und A4-7, wobei A4-5, A4-6 und A4-7 sich auch in der Analyse von PK1 pool Bereich A wiederfindet (Abb. 29). Grau unterlegte Fraktionen wurden bislang wegen zu geringer Substanzausbeute oder wegen zu großer Strukturkomplexität nicht weiter untersucht.

Abbildung 32: Analyse von PK1 Areal C mittels HPLC und Zytotoxizitätstests mit PC3 WT und iCSC. Insgesamt konnten zwei Einzelsubstanzen isoliert werden: C4-2-1 und C4-2-2. Grau unterlegte Fraktionen wurden bislang wegen zu geringer Substanzausbeute oder wegen zu großer Strukturkomplexität nicht weiter untersucht.

Abbildung 33: Analyse von PK1 pool Areal A mittels HPLC und Zytotoxizitätstests mit PC3 WT und iCSC. Es wurden sechs Einzelsubstanzen isoliert. A4-5, A4-6 und A4-7 waren bereits von Analyse von PK1 Areal A bekannt (Abb. 27). Neu sind A3-2, A5-3 und A6. Grau unterlegte Fraktionen wurden bislang wegen zu geringer Substanzausbeute oder wegen zu großer Strukturkomplexität nicht weiter untersucht.

Abbildung 34: Analyse von PK1 pool Areal C mittels HPLC und Zytotoxizitätstests mit PC3 WT und iCSC. Es wurden bis zum gegenwärtigen Zeitpunkt sechs Reinsubstanzen (CZ4-1-1, CZ4-1-2, CZ4-2, CZ4-3, CZ5 und CZ6) isoliert. Grau unterlegte Fraktionen wurden bislang wegen zu geringer Substanzausbeute oder wegen zu großer Strukturkomplexität nicht weiter untersucht.

Zur Charakterisierung der isolierten Substanzen und der Bestimmung ihres Reinheitsgrades wurden spektroskopische Analysen vorgenommen (**Abb. 35** bis **42**).

Abbildung 35: Reinsubstanzen PK1 A2-3 und PK1 pool A3-2. Dargestellt sind von links nach rechts Chromatogramm, 3D-Spektrogramm und 2D-Spektrogramm. Protokolle: Für A2-3 A2-3 (Gradient) und für A3-2 H₂O: 35%, MetOH: 65%

Abbildung 36: Reinsubstanzen PK1 pool A5-3 und PK1 pool A6. Dargestellt sind von links nach rechts Chromatogramm, 3D-Spektrogramm und 2D-Spektrogramm. Protokolle: A5-3 = H_2O : 50%, MetOH: 50% und A6 = H_2O :10%, MetOH: 80%, ACN: 10%

Abbildung 37: Reinsubstanzen PK1 A4-3 und PK1 A4-5. Dargestellt sind von links nach rechts Chromatogramm, 3D-Spektrogramm und 2D-Spektrogramm. Protokolle: A4-3= H_2O : 65%, ACN: 35% und A4-5 = H_2O : 65%, ACN: 35%

Abbildung 38: Reinsubstanzen PK1 A4-6 und PK1 A4-7. Dargestellt sind von links nach rechts Chromatogramm, 3D-Spektrogramm und 2D-Spektrogramm. Protokolle: A4-6= H_2O : 65%, ACN: 35% und A4-7 = H_2O : 65%, ACN: 35%

Abbildung 39: Reinsubstanzen PK1 pool CZ4-1-1 und PK1 CZ4-1-2. Dargestellt sind von links nach rechts Chromatogramm, 3D-Spektrogramm und 2D-Spektrogramm. Protokolle: CZ4-1-1= H_2O : 25%, ACN: 75% und CZ4-1-2 = H_2O : 25%, ACN: 75%

Abbildung 40: Reinsubstanzen PK1 pool CZ4-2 und PK1 pool CZ4-3. Dargestellt sind von links nach rechts Chromatogramm, 3D-Spektrogramm und 2D-Spektrogramm. CZ4-2= H_2O : 25%, ACN: 75% und CZ4-3 = H_2O : 25%, ACN: 75%

Abbildung 41: Reinsubstanzen PK1 pool CZ5 und PK1 pool CZ6. Dargestellt sind von links nach rechts Chromatogramm, 3D-Spektrogramm und 2D-Spektrogramm. CZ5= H_2O : 25%, ACN: 75% und CZ6 = H_2O : 25%, ACN: 75%

Abbildung 42: Reinsubstanzen PK1 C4-2-1 und PK1 C4-2-2. Dargestellt sind von links nach rechts Chromatogramm, 3D-Spektrogramm und 2D-Spektrogramm. C4-2-1= H_2O : 20%, ACN: 80% und C4-2-2 = H_2O : 20%, ACN: 80%

Die Strukturaufklärung der Propolissubstanzen wird im Rahmen einer Kooperation mit Prof. Raphael Stoll vom Lehrstuhl für Biomolekulare NMR der Ruhr-Universität-Bochum vorgenommen. Die dazu erforderlichen Mengen konnten per präparativer HPLC gewonnen werden. Die bislang erhaltenen Resultate sind in 3.3 dargestellt (**Abb. 45** und **47**). Die aufgeklärten Strukturen der anderen Substanzen lagen beim Abschluss dieser Arbeit noch nicht vor, wobei einige Substanzen aus Areal C aufgrund ihrer höheren Komplexität bisher nur mit ca. 80-prozentiger Wahrscheinlichkeit vorhergesagt werden können. Parallel zur Strukturaufklärung wurde der IC₅₀-Wert der Reinsubstanzen mittels Toxizitätstests ermittelt.

3.2.2. Bestimmung der IC₅₀-Werte der Reinsubstanzen

Nach der Isolierung der Reinsubstanzen wurden ihre IC₅₀-Werte in verschiedenen iCSC/WT-Krebszelllinien und normalen Kontrollzelllinien nach 72 Std. Inkubation bestimmt. Dabei zeigte sich, dass einige Substanzen unterschiedlich stark auf die WTund iCSC-Zelllinien wirken. Die Abbildungen 43 bis 44 zeigen Beispiele für Dosis-Wirkkurven einiger Propolissubstanzen in verschiedenen WT- und iCSC-Krebszelllinien. Interessant sind insbesondere diejenigen Substanzen, deren IC₅₀-Werte in den iCSC-Zelllinien niedriger als in den parentalen WT-Zellen sind, denn die differentielle Toxizität der Substanzen und ihre Spezifität könnte die Grundlage für die Entwicklung von Therapeutika bilden, die gegen klinisch austherapierte Chemotherapierefraktäre Rezidive wirksam sind. Die gemessenen IC₅₀-Werte der Reinsubstanzen sind in den **Tabellen 14** und **15** aufgeführt, wobei diejenigen IC₅₀-Werte fett hervorgehoben sind, bei denen die iCSC-Zellen sensibler als die entsprechenden WT-Zellen reagieren. Es sei noch angemerkt, dass die hier ermittelten IC₅₀-Werte eher höher als die tatsächlichen Werte ausfallen, da die Substanzen möglicherweise beim schonenden Trocknen bei 35°C nach der Reinigung nicht restlos von Flüssigkeit befreit werden konnten.

Abbildung 43: Dosis-Wirkkurven von Propolissubstanzen aus Areal A in verschiedenen Zelllinien. Die Zellen wurden jeweils 72 Std. mit den Reinsubstanzen inkubiert. Die Beispiele zeigen die differentielle Wirkung der Substanzen auf die Krebszelllinien.

Abbildung 44: Dosis-Wirkkurven von Propolissubstanzen aus Areal C in verschiedenen Zelllinien. Die Zellen wurden jeweils 72 Std. mit den Reinsubstanzen inkubiert. Die Beispiele zeigen die differentielle Wirkung der Substanzen auf die Krebszelllinien. Die IC₅₀-Werte von CZ4-2, CZ4-3 und C4-2-2 sind bei LAN1 iCSC niedriger als bei LAN1 WT.

Tabelle 14: IC₅₀-Werte und Kreuzresistenz der Substanzen aus Areal A. IC₅₀-Werte in µg/ml; KR: Kreuzresistenz (mehr als 10 %); kA = keine Angabe (aufgrund fehlender Werte); fett = IC₅₀-Werte, die für iCSC deutlich kleiner sind als für WT; n≥3. (Wegen der Knappheit der Reinsubstanzen konnten bei einigen Zelllinien keine oder nicht genügend Experimente durchgeführt werden. Der Vollständigkeit halber sind diese Ergebnisse mit aufgeführt).

PK1 und P	K1 pool Areal A	A3-2	A4-6	A4-7	A5-3	A6
	WT	5,70 ± 0,28	9,90 ± 0,74	21,90 ± 1,21		10,31 ± 0,76
79HF6	iCSC	31,4 ± 3,82	32,80 ± 1,66	23,35 ± 0,78		4,43 ± 0,21
	KR	Mehr	Mehr	Gleich		Weniger
	WT	1,43 ± 0,61	10,97 ± 1,41	21,15 ± 1,77	3,15 ± 0,92	2,93 ± 0,21
НСТ8	iCSC	2,67 ± 0,21	9,43 ± 1,34	28,10 ± 2,83	0,98 ± 0,60	12,07 ± 2,45
	KR	Mehr	Weniger	Mehr	Weniger	Mehr
	WT	4,24 ± 1,06	5,03 ± 0,59	11,28 ± 0,93	6,80	6,81 ± 0,90
LAN1	iCSC	5,07 ± 0,71	12,10 ± 0,32	34,87 ± 1,33	3,97 ± 1,75	6,49 ± 0,27
	KR	Mehr	Mehr	Mehr	kA	Gleich
	WT		18,33 ± 0,21	44,13 ± 1,50		
MCF7	iCSC	4,80 ± 0,28	8,75 ± 0,49	23,20 ± 3,39		
	KR	kA	Weniger	Weniger		
	WT	3,53 ± 0,98	6,30 ± 1,53	11,54 ± 0,69		
PanC1	iCSC	3,50 ± 0,92	7,65 ± 1,46	19,20 ± 1,44		
	KR	Gleich	Mehr	Mehr		
	WT	$2,02 \pm 0,40$	9,17 ± 0,07	11,15 ± 0,65	5,35 ± 1,34	9,65 ± 0,49
PC3	iCSC	2,66 ± 0,49	4,98 ± 0,96	12,28 ± 2,82	5,70 ± 2,12	7,90 ± 0,52
	KR	Mehr	Weniger	Mehr	Gleich	Weniger
Amnion	transformiert	1,94 ± 0,30	3,94 ± 0,22	23,16 ± 1,24	8,90 ± 1,23	
HuVEC	normal	3,37 ± 0,90	9,10 ± 2,43	47,07 ± 3,74	11,30 ± 0,42	

Tabelle 15: IC₅₀-Werte und Kreuzresistenz der Substanzen aus Areal C. IC₅₀-Werte in µg/ml; KR: Kreuzresistenz (mehr als 10 %); kA = keine Angabe (aufgrund fehlender Werte); fett = IC₅₀-Werte, die für iCSC deutlich kleiner sind als für WT; n≥3. (Wegen der Knappheit der Reinsubstanzen konnten bei einigen Zelllinien keine oder nicht genügend Experimente durchgeführt werden. Der Vollständigkeit halber sind diese Ergebnisse mit aufgeführt).

PK1 und Are	PK1 pool al C	CZ4-1-1	CZ4-1-2	CZ4-2	CZ4-3	CZ5	CZ6	C4-2-1	C4-2-2
	WT	11	10,2 ± 0,6	11,0 ± 0,6	12,3 ± 2,4	25	45,2 ± 0,2		
79HF6	iCSC	20,1	21,7	19,8	21,8	25	95,5 ± 6,4		
	KR	kA	kA	kA	kA	kA	Mehr		
	WT	9,2 ± 0,7	9,5 ± 0,5	11,6 ± 0,3	11,0 ± 0,3	24,0 ± 1,4	39,2 ± 2,6	14,3	4,5
HCT8	iCSC	10,6 ± 1,1	8,4 ± 0,7	11,0± 1,6	9,6 ± 1,9	23,7 ± 1,9	54,9 ± 3,8	16,2	9,0
	KR	Mehr	Weniger	Gleich	Gleich	Gleich	Mehr	kA	kA
	WT	11,2 ± 0,9	15,5 ± 3,0	20,7 ± 1,2	18,9 ± 0,6	25	22,50 ± 1,57	25	26,9
LAN1	iCSC	4,8 ± 0,5	3,8 ± 0,4	2,1 ± 0,2	6,9±1,4	1,97 ± 0,3	19,27 ± 2,36	8,0	2,6
	KR	Weniger	Weniger	Weniger	Weniger	kA	Weniger	kA	kA
	WT			11,0	14,1		33,60 ± 2,26	14,4	9,4
MCF7	iCSC	7,6	5,4	9,1	9,7		18,3	22,8	30,8
	KR	kA	kA	kA	kA		kA	kA	kA
	WT	28,4	21	48,8	42,8		52,00 ± 3,66		
PanC1	iCSC	5	2,4	2,3	26,8		32,40 ± 1,95		
	KR	kA	kA	kA	kA		Weniger		
	WT	2,2 ± 0,5	2,0 ± 0,2	1,4 ± 0,2	3,4 ± 1,1		8,08 ± 0,50	6,1	1,1
PC3	iCSC	3,3 ± 1,1	2,1±0,7	1,3 ± 0,1	2,7 ± 0,6		14,23 ± 0,93	11,5	3,8
	KR	Mehr	Gleich	Gleich	Weniger		Mehr	kA	kA
Amnion	transf	2,8 ± 0,4	2,0 ± 0,4	1,3 ± 0,2	1,3	3,9 ± 0,8	29,43 ± 3,79		
HuVEC	normal	7,6 ± 1,8	9,0 ± 0,2	10,4 ± 1,4	25	10,5 ± 0,9	45,97 ± 1,07		

3.3. Strukturaufklärung

3.3.1.Strukturaufklärung der Substanzen aus Areal A

Die Substanzen, die bei der Bestimmung der IC_{50} -Werte am vielversprechendsten erschienen und in ausreichende Mengen isoliert werden konnten, wurden zur Strukturaufklärung mittels NMR und Massenspektroskopie im Rahmen einer Kooperation an Prof. Raphael Stoll vom Lehrstuhl für Biomolekulare NMR an der Ruhr-Universität Bochum gesendet. Bisher konnten die Strukturen von fünf Substanzen aus Areal A aufgeklärt (**Abb. 45**).

	Interne Bezeichnung:
	Trivialname:
	Laxifloran
	Molekularmasse:
о он	 302,11 Da
	Molekularformel:
CH ₃	• C ₁₇ H ₁₈ O ₅
IUPAC: 3-(4-hydroxy-2,3-dimethoxyphenyl)-3,4-dihydro-2 <i>H</i> -chromen-7-ol	
HO,O,	Interne Bezeichnung:
B	• A4-6
	I rivialname:
	Conterol A
ОН	Molekularmasse:
О. ~ .ОН	• 288,30 Da
ĊH₃	
	• $G_{16}H_{16}O_5$
IUPAC: 3-(4-hydroxy-2-methoxyphenyl)-3,4-dihydro-2H-chromene-4,7-diol	
	Interne Bezeichnung:
	• A4-7
	Trivialname:
	•
	Molekularmasse:
	• 244,29 Da
0.130 0.13	Molekularformel:
	• C ₁₅ H ₁₆ O ₃
IUPAC: 3-hydroxy-1,1-dimethyl-1,2,3,9a-tetrahydro-9H-xanthen-9-on	
	Interne Bezeichnung:
	• A5-3
	Trivialname:
	 Sativan
	Molekularmasse:
	 286,12 Da
	Molekularformel:
	• C ₁₇ H ₁₈ O ₄
IUPAC: 3-(2,4-dimethoxyphenyl)-3,4-dihydro-2H-chromen-ol	

Abbildung 45: Strukturvorschläge für die Substanzen aus Areal A. Abgebildet sind die Strukturen der Substanzen A3-2, A4-6, A4-7, A5-3 und A6.

Von den fünf aufgeklärten Strukturen konnten vier (A3-2, A4-6, A5-3 und A6) einem Namen zugeordnet werden. A4-7 kann eine noch nicht benannte und daher neue Substanz darstellen. A3-2, A4-6 und A5-3 gehören zur Gruppe der Flavonoide, A4-7 zur Gruppe der Xanthone, die als Farb-, Duft- und Geschmacksstoffe von Pflanzen synthetisiert werden. Die Substanz A6 ist ein Derivat der Isoflavonoide und gehört zu den Pterocarpanen.

3.3.2. Strukturaufklärung der Substanzen aus Areal B

Areal B aus PK1 und PK1 pool enthielt 7-epi-Nemoroson (siehe **Abb. 46**). Seine antitumoralen Eigenschaften wurden in den vergangenen Jahren bereits durch unsere AG eingehend untersucht. Neben 7-epi-Nemoroson konnten aber auch eine rötliche Fraktion, die wir Red Nemoroson (RN) nannten. isoliert werden. Unser Kooperationspartner John Porco in Boston, USA hat das Red Nemoroson näher untersucht und daraus ein weitere Unterfraktion – das Red Nemoroson Pigment (kurz RNP) isoliert. RN ist mit 522 Dalton schwerer als das 7-epi-Nemoroson (503 Dalton).

Abbildung 46: Identifizierte Substanzen aus Areal B. Aus Areal B wurde im großen Maßstab 7-epi-Nemoroson isoliert. Das rote Pigment wurde als das Isoflavan Retusapurpurin A identifiziert.

3.3.3. Strukturaufklärung der Substanzen aus Areal C

Aus dem Bereich C wurden die Substanzen C4-2-1, CZ4-1-1, CZ4-1-2, CZ4-2, CZ4-3 und CZ6 zur Strukturaufklärung gegeben. Die Mengenausbeute der CZ4-Substanzen war gering, sodass sich die Strukturaufklärung, für die mindestens 10 mg benötigt werden, schwierig gestaltete. Erste Messungen zeigten allerdings, dass die CZ4-Strukturen zur Klasse der polyzyklischen polyprenylierten Acylphloroglucinolen (PPAP) gehören. Daher sind sie weitaus komplexer als die Substanzen aus Areal A, was wiederum die Modellierung der Struktur komplizierter macht. An der Strukturaufklärung dieser Stoffe war neben Prof. Stoll auch Prof. Porco beteiligt. Einzig von C4-2-1 lag eine Struktur vor, die namentlich als Propolon A identifiziert wurde. Substanz CZ6 oder Bis(2-ethylhexyl)benzen-1,2-dicarboxylat, auch unter der Abkürzung DEHP bekannt, ist ein Pflanzeninhaltsstoff, der als Weichmacher in der Kunststoffindustrie Verwendung findet.

Abbildung 47: Strukturvorschläge für die Substanzen aus Areal C. Abgebildet sind die wahrscheinlichen Strukturen der Substanzen aus Bereich C, von denen vier zur Klasse der PPAP gehören. Namentlich Propolon A gehört wie 7-epi-Nemoroson zur Stoffklasse der PPAP. Die Verbindungen CZ4-2 und CZ4-3 eluieren sehr dicht hintereinander und sind Konformationsisomere. Der genaue Unterschied konnte aus Mangel an Reinsubstanz nicht ermittelt werden. CZ6 gehört zur Klasse der Phthalsäureester.

3.4. Aufklärung der Wirkmechanismen

Die Aufklärung der Wirkmechanismus und Targets ist ein wichtiger Schritt in der Entwicklung einer Substanz zu einem Medikament. Um erste Anhaltspunkte zur Wirkung der einzelnen Substanzen zu gewinnen, wurden zytotoxische Studien an verschiedenen Zelllinien durchgeführt und die berechneten IC₅₀-Werte als Referenzpunkte für weitere molekularbiologische Experimente in Zellen und *in vitro* genutzt. Dazu gehörte die *In-vitro*-Untersuchung des Einflusses der Propolissubstanzen auf die Aktivität der DNA-Polymerase, der Topoisomerasen I und II, der Tubulinformation (Aufbau des Spindelapparates), ebenso wie die Fähigkeit der Substanzen, in die DNA zu interkalieren. Zusätzlich wurden in Zellexperimenten Schlüsselelemente der Signaltransduktion und die Zellzyklusdistribution näher untersucht.

Grundlage der molekularbiologischen Zellexperimente war die 24-stündige Inkubation der Zellen mit unterschiedlichen Vielfachen (zweifach und dreifach) des IC₅₀-Wertes und die anschließende Extraktion von RNA und Proteinen aus den Zellen.

3.4.1. Inhibition der Enzyme des Replikationsapparates

3.4.1.1. Inhibition der Taq-DNA-Polymerase

Da das aktive Zentrum sämtlicher DNA-Polymerasen evolutionär nur wenig Variation aufweist, lassen sich mit einer PCR mittels Taq-DNA-Polymerase auf einfache Art Hinweise auf die Fähigkeit der Propolissubstanzen gewinnen, die DNA-Synthese zu inhibieren. Dazu gibt man die zu untersuchenden Substanz in steigenden Konzentrationen zu PCR-Ansätzen und trennt die PCR-Produkte auf einem Agarosegel auf. Die Intensität der Fragmente, die unter dem Einfluss der Propolissubstanzen im Vergleich zu den unbehandelten Kontrollen entstanden sind, gibt dann Aufschluss über die inhibitorische Wirkung der jeweiligen Substanz (**Abb. 48**).

Abbildung 48: Inhibition der Taq-DNA-Polymerase. Die Substanz **CZ6** inhibiert die DNA-Polymerase bei einer Konzentration von 12,50 μ g/ml zu beinahe 50 % (repräsentative Darstellung aus n=3).

3.4.1.2. Inhibition von Topoisomerase I und II

Topoisomeraseinhibitoren wie Etoposid und Adriamycin finden breite Anwendung in der Tumortherapie. Demzufolge ist die Suche nach weiteren Inhibitoren dieser Art immer noch aktuell in der Entwicklung neuer Zytostatika. Dafür existiert ein standardisiertes Assay zur Detektion der Inhibition der Topoisomerasen durch Stoffe. Zur Untersuchung wurde humane Topoisomerase I oder II in Anwesenheit der jeweiligen Substraten (pBR322-Plasmid für Topoisomerase I und Kinetoplast-DNA für Topoisomerase II) in Gegenwart steigender Konzentrationen der Wirksubstanzen durchgeführt. Die **Abbildungen 49** und **50** zeigen beispielhaft einen Topoisomeraseinhibition durch die Substanz CZ6. Bei extrazellulären Untersuchungen wie dem Topoisomerase-Assay zeigten Erfahrungen mit den etablierten Topoisomeraseinhibitoren einen hemmenden Effekt bei Stoffkonzentrationen, die bis zu 200fach höher als die IC₅₀-Werte in den Zelllinien sind. Unsere Substanzen hingegen zeigen in Relation zu ihren IC₅₀-Werten schon bei viel niedrigeren Konzentrationen einen hemmenden Effekt.

Abbildung 49: Inhibierung der humanen Topoisomerase I mit Substanz CZ6. Das Plasmid pBR322 kann in gewundener und in relaxierter Form vorliegen. Die relaxierte Form ist größer und wandert langsamer. Wird das Plasmid durch Topoisomerase I relaxiert, legt es also eine kürzere Strecke im Gel zurück. Positivkontrolle: Plasmid plus aktive Topoisomerase I; Negativkontrolle: Plasmid + Topoisomerase I + Topoisomerasehemmer Doxorubicin (5 µg/ml). CZ6 inhibiert Topoisomerase I bei einer Konzentration von 200 µg/ml fast vollständig (Gelektrophorese in 1,8-prozentiger Agarose). Repräsentative Darstellung aus n=3.

Abbildung 50: Inhibierung der humanen Topoisomerase II mit Substanz CZ6. Substrat für die Topoisomerase II ist kDNA, die in nativer Form Konkatemere bildet. Topoisomerase II löst die Konkatemere auf, so dass die kDNA im Agarosegel schneller migrieren kann (siehe Positivkontrolle). Negativkontrolle: kDNA + Topoisomerase II + Topoisomerasehemmer Doxorubicin (5 μ g/mI). Doxorubicin verhindert das Einwandern der hochmolekularen kDNA ins Gel. CZ6 inhibiert Topoisomerase II ab einer Konzentration von 25 μ g/mI (Gelektrophorese in 1,8-prozentigerAgarose). Repräsentative Darstellung aus n=3.

3.4.2. Einfluss der Propolissubstanzen auf die Tubulinpolymerisierung

Tubulinpolymerisationsinhibitoren wie Vinblastin werden in der Tumortherapie als Tumorwachstumshemmer eingesetzt. Um zu überprüfen, ob die antitumoral wirksamen Propolissubstanzen die Fähigkeit besitzen, die Tubulinpolymerisierung zu inhibieren, wurde ein *In-vitro*-Tubulipolymerisierungsassay in Gegenwart von 20 μ g/ml der jeweiligen Substanz durchgeführt. Die eingesetzte Substanzmenge ist ein Schätzwert und entspricht dem zwei- oder dreifachen der entsprechenden IC₅₀-Werte. Als Inhibitor der Polymerisierung wurde Vinblastin und als Aktivator der Polymerisierung Paclitaxel benutzt. Die Substanzen A3-2 und A4-6 aus Bereich A hemmen die Tubulinpolymerisierung stärker als die Kontrollsubstanz Vinblastin, während die Substanzen aus Bereich C keine Aktivität aufweisen (**Abb. 51** und **52**).

Abbildung 51: Tubulin-Polymerisierungsassay in Gegenwart verschiedener Propolissubstanzen aus Bereich A. Es wurden jeweils 20 µg/ml der Substanzen für den Assay eingesetzt; die Messung erfolgte alle 5 Minuten über eine Stunde hinweg. Paclitaxel (3 µM): Aktivator der Tubulinsynthese; Vinblastin (3 µM): Inhibitor der Tubulinsynthese; H₂O als Negativkontrolle. (Repräsentatives Ergebnis).

Abbildung 52: Tubulin-Polymerisierunsassay in Gegenwart verschiedener Propolissubstanzen aus Bereich C. Es wurde jeweils 20 μ g/ml der Substanzen für den Assay eingesetzt; die Messung erfolgte minütlich über eine Stunde hinweg. Paclitaxel (3 μ M): Aktivator der Tubulinsynthese; Vinblastin (3 μ M): Inhibitor der Tubulinsynthese; H₂O als Negativkontrolle. (Repräsentatives Ergebnis).

3.4.3. Einfluss der Propolissubstanzen auf Expression und Phosphorylierungsstatus von Signaltransduktionselementen

Da die Menge an Substanzen begrenzt war, wurden diese Untersuchungen in erster Linie an PC3 WT und iCSC durchgeführt. In vivo weist die iCSC dieser Prostatakarzinomzelllinie im Vergleich zum WT ein deutlich stärkeres Metastasierungspotenzial auf (siehe **Abb. 15**). Darüber hinaus lieferte diese Zelllinie die niedrigsten IC₅₀-Werte, was den Verbrauch der Reinsubstanzen minimierte. Vom onkologischen Standpunkt aus ist die Neuroblastomzelllinie LAN1 ein hoch relevantes System für die Durchmusterung der Substanzen, da die hoch Chemotherapie- und Strahlungs-refraktäre LAN1 iCSC auf mehrere Substanzen aus Areal C im Vergleich zu LAN1 WT sensitiver reagiert. Da aber die IC₅₀-Werte des LAN1 WT um ein Vielfaches höher sind als für LAN1 iCSC, bräuchte man für die Versuche große Mengen der isolierten Reinsubstanzen (siehe Abb. 44 und Tab. 14). Zudem zeigen die Ergebnisse, dass PC3 und LAN1 bei gleichem Metastasierungspotential in vivo unterschiedliche Resistenzmechanismen entwickelt haben, was die Analyse der Wirkmechanismen in beiden Zelllinien hochinteressant macht. Auf Proteinebene wurden Schlüsselelemente pro- und antiapoptotischer Wege und Zellzyklus-relevante Signaltransduktionskaskaden analysiert. Beispielhaft für diese Analysen zeigt Abbildung 53 den Expressionsund den Phosphorylierungsstatus von Proteinen des MAK/ERK-Signalwegs.

A3-2	0x	PC3 1x	WT 2x	3x	0x	PC3 id 1x	CSC 2x	3x	A4-6	0x	PC3 1x	WT 2x	3x	0x	PC3 1x	iCSC 2x	3x
c-Raf			Rent Land	and the second second	-	-	-		c-Raf						-		And the second
p c-Raf (Ser289/296/301)	-	-	-	-	-	-	-	-	p c-Raf (Ser289/296/301)	-		-		-	-	-	-
Aktin	-	-	-	-	-	-	-	-	Aktin	-	-	-	-	-	-	-	1
A3-2	0x	PC3 1x	WT 2x	3x	0x	PC3 i 1x	CSC 2x	3x	A4-6	0x	PC3 1x	WT 2x	3x	0x	PC3 1x	iCSC 2x	3x
MEK1/2	-	-	-	-	-	-	-	-	MEK1/2	-	-	-	-	-	-	-	1
pMEK1/2 (Ser217/221)	-				-	-		-	pMEK1/2 (Ser217/221)	-	-	_	-	-	-	-	1
Aktin	-	-	-	-	-	-	-	-	Aktin	1	-	-	-	-	-	-	1
A3-2	0x	PC3 1x	WT 2x	3x	0x	PC3 i 1x	CSC 2x	3x	A4-6	0x	PC3 1x	WT 2x	3x	0x	PC3 1x	iCSC 2x	3x
Erk1/2	-	-	_	_	=	=	=	=	Erk1/2	=	=	=	=	=	=	=	=
pErk1/2 (Thr202/Tyr204)	-	_	=	_	=	=	=	=	pErk1/2 (Thr202/Tyr204)				_	=	=	=	=
Aktin	-	-	-	-	-	_	_	-	Aktin)	-	-	-	_	-	_	-
CZ4-1-2	0x	PC3 1x	WT 2x	3x	0x	PC3 id 1x	CSC 2x	3x	CZ4-2	0x	PC3 1x	WT 2x	3x	0x	PC3 1x	iCSC 2x	3x
CZ4-1-2 c-Raf	0x	PC3 1x	WT 2x	3x	0x	PC3 id 1x	CSC 2x	3x	CZ4-2 c-Raf	0x	PC3 1x	WT 2x	3x	0x	PC3 1x	iCSC 2x	3x
CZ4-1-2 c-Raf p c-Raf (Ser289/296/301)	0x	PC3 1x	WT 2x	3x	0x	PC3 id 1x	CSC 2x	3x	CZ4-2 c-Raf p c-Raf (Ser289/296/301)	0x	PC3 1x	WT 2x	3x	0x	PC3 1x	iCSC 2x	3x
CZ4-1-2 c-Raf p c-Raf (Ser289/296.301) Aktin	0x	PC3 1x	WT 2x	3x	0x	PC3 id 1x	CSC 2x	3x	CZ4-2 c-Raf p c-Raf (Ser289/296/301) Aktin	Ox	PC3 1x	WT 2x	3x	Ox	PC3 1x		3x
CZ4-1-2 c-Raf (Ser289296.301) Aktin CZ4-1-2	0x	PC3 1x PC3 1x	WT 2x WT 2x	3x 	0x	PC3 id 1x PC3 id PC3 id 1x	CSC 2x CSC 2x	3x 3x	CZ4-2 c-Raf p c-Raf (Ser289/296/301) Aktin CZ4-2	0x	PC3 1x PC3 1x	WT 2x WT 2x	3x 3x	0x	PC3 1x PC3 1x	iCSC 2x iCSC 2x	3x 3x
CZ4-1-2 c-Raf (Ser289/296,301) Aktin CZ4-1-2 MEK1/2	0x	PC3 1x PC3 1x	WT 2x WT 2x	3x 3x 3x	0x 0x	PC3 id 1x PC3 id 1x	CSC 2x CSC 2x	3x 	CZ4-2 c-Raf p c-Raf (Ser289/296/301) Aktin CZ4-2 MEK1/2	Ox Ox	PC3 1x PC3 1x	WT 2x WT 2x	3x 3x	0x	PC3 1x 	iCSC 2x iCSC 2x	3x
CZ4-1-2 c-Raf p c-Raf (Ser289/296/301) Aktin CZ4-1-2 MEK1/2 (Ser217221)	Ox Ox	PC3 1x PC3 1x	WT 2x WT 2x	3x 3x	0x	PC3 if	CSC 2x	3x 3x 3x	CZ4-2 c-Raf (Ser289/296/301) Aktin CZ4-2 MEK1/2 (Ser217/221)	Ox Ox	PC3 1x PC3 1x	WT 2x WT 2x	3x	0x	PC3 1x	iCSC 2x iCSC 2x	3x 3x
CZ4-1-2 c-Raf p c-Raf (Ser289/296/301) Aktin CZ4-1-2 MEK1/2 (Ser217/221) Aktin	Ox Ox	PC3 1x PC3 1x	WT 2x WT 2x	3x 3x	0x 0x	PC3 if	CSC 2x	3x 3x	CZ4-2 c-Raf p c-Raf (Ser289/296/001) Aktin CZ4-2 MEK1/2 (Ser217/221) Aktin	0x	PC3 1x PC3 1x	WT 2x WT 2x	3x 3x	0x	PC3 1x	iCSC 2x iCSC 2x	3x 3x
CZ4-1-2 c-Raf p c-Raf (Ser289/296.301) Aktin CZ4-1-2 MEK1/2 (Ser217/221) Aktin CZ4-1-2	Ox Ox Ox	PC3 1x PC3 1x PC3 1x	WT 2x WT 2x WT 2x WT 2x	3x 3x 3x	0x 0x 0x	PC3 if 1x PC3 if 1x PC3 if 1x	CSC 2x CSC 2x CSC 2x	3x 3x 3x 3x	CZ4-2 c-Raf (Ser299296/301) Aktin CZ4-2 MEK1/2 (Ser217221) Aktin CZ4-2	Ox Ox Ox	PC3 1x PC3 1x PC3 1x PC3 1x	WT 2x WT 2x WT 2x WT 2x	3x 3x 3x 3x	0x 0x 0x	PC3 1x PC3 1x PC3 1x	iCSC 2x iCSC 2x iCSC 2x	3x 3x 3x
CZ4-1-2 c-Raf p c-Raf (S#289296/301) Aktin CZ4-1-2 MEK1/2 (S#7217/221) Aktin CZ4-1-2 Erk1/2	0x 0x	PC3 1x PC3 1x PC3 1x	WT 2x WT 2x WT 2x	3x 3x 3x	0x 0x 0x	PC3 id 1x PC3 id 1x	CSC 2x CSC 2x CSC 2x	3x 3x 3x 3x	CZ4-2 c-Raf (Ser289/296/301) Aktin CZ4-2 MEK1/2 (Ser217/221) Aktin CZ4-2 Erk1/2	Ox Ox Ox	PC3 1x PC3 1x PC3 1x PC3 1x	WT 2x WT 2x WT 2x	3x 3x 3x	Ox Ox Ox Ox	PC3 1x PC3 1x PC3 1x PC3 1x	iCSC 2x iCSC 2x iCSC 2x	3x 3x 3x 3x
CZ4-1-2 c-Raf p c-Raf (Ser289296/301) Aktin CZ4-1-2 MEK1/2 (Ser217/221) Aktin CZ4-1-2 Erk1/2 (Thr2027/y204)	Ox Ox Ox	PC3 1x PC3 1x PC3 1x	WT 2x WT 2x WT 2x	3x 3x 3x	0x 0x 0x	PC3 if 1x PC3 if 1x PC3 if 1x	CSC 2x CSC 2x CSC 2x	3x 3x 3x 3x	CZ4-2 c-Raf p c-Raf (Ser289296,001) Aktin CZ4-2 MEK1/2 pMEK1/2 (Ser217/221) Aktin CZ4-2 Erk1/2 Erk1/2 (Thr202Tyr204)	0x 0x 0x	PC3 1x PC3 1x PC3 1x	WT 2x WT 2x WT 2x	3x 3x 3x	Ox Ox Ox	PC3 1x PC3 1x PC3 1x PC3 1x PC3 1x	iCSC 2x iCSC 2x iCSC 2x	3x 3x 3x

Abbildung 53: Einfluss der Substanzen A3-2, A4-6, CZ4-1-2 und CZ4-2 auf die MAK/ERK-Signaltransduktionskaskade in PC3 WT und iCSC. Hier kann man anhand des Phosphorylierungsstatus des downstream liegenden Erk1/2 beobachten, dass eine Inhibition der MEK1/2 stattgefunden hat.

3.4.4. Analyse der Zellzyklusdistribution mittels Durchflusszytometrie

Der Zellzyklus besteht aus zwei Phasen, der Interphase (I) und der Mitose (M). Die Interphase wiederum ist in die Phasen G1 (Gap 1), S (Synthese) und G2 (Gap 2) unterteilt. Der Zellzyklus ist einer strengen Kontrolle unterworfen, um eine fehlerfreie Replikation der Zelle zu gewährleisten. Zellen, die ihre Teilung eingestellt haben, befinden sich quasi außerhalb des Zellzyklusses, in der G0-Phase. Bei diesen Versuchen wurde eine bestimmte Zahl von PC3- und HCT8-Zellen ausgesät. Getestet wurden Reinsubstanzen, die in genügend großen Mengen vorlagen und hoch aktiv waren. PC3 wurde nach 24 Stunden mit der dreifachen IC₅₀-Menge der Substanz CZ6 und HCT8 mit Substanz A3-2 inkubiert. Nach 22 Stunden Inkubation wurden die Zellen mit BrdU behandelt und 2 Stunden später geerntet. Die Zellen wurden dem Protokoll entsprechend behandelt und am FC500 gemessen. Nachfolgend werden die Ergebnisse gezeigt.

Abbildung 54: Zellzyklusanalyse mit HCT8 WT und A3-2. Dargestellt ist der behandelte WT gegenüber dem unbehandelten WT. Die Unterschiede zwischen den behandelten und unbehandelten Zellen sind nicht groß. Auffallend sind mehr tote Zellen im behandelten WT. Abbildung repräsentativ für n=3 Experimente.

Abbildung 55: Zellzyklusanalyse mit HCT8 iCSC und A3-2. Dargestellt sind die behandelten gegenüber den unbehandelten iCSC. Der Einfluss der Reinsubstanz A3-2 auf die iCSC ist enorm. Es tritt ein G2/M-Zellarrest auf. Abbildung repräsentativ für n=3 Experimente.

Abbildung 56: Zellzyklusanalyse mit PC3 WT und CZ6. Dargestellt ist der behandelte gegenüber dem unbehandelten WT. Die Unterschiede zwischen den behandelten und unbehandelten Zellen sind

nicht groß. Auffallend sind mehr tote Zellen im behandelten WT. Abbildung repräsentativ für n=3 Experimente.

Abbildung 57: Zellzyklusanalyse mit PC3 iCSC und CZ6. Dargestellt sind die behandelten gegenüber den unbehandelten iCSC. Der Einfluss der Reinsubstanz CZ6 auf die iCSC ist gering. Abbildung repräsentativ für n=3 Experimente.

Der Übergang von einer Phase zur anderen wird erst dann eingeleitet, wenn die vorherige Phase ordnungsgemäß abgeschlossen wurde. Wird an einem dieser Kontrollpunkte (im Englischen Checkpoint) festgestellt, das Fehler vorliegen, tritt entweder ein Arrest oder Apoptose ein. So gewährleistet die Zelle eine gesunde und korrekte Zellteilung. Wie in **Abb. 51** zu erkennen ist, tritt ein Zellarrest ein und es findet kein Übergang von G2/M nach G1 statt. Die einzelnen Werte der BrdU/PI-Markierung sind in der folgenden Tabelle aufgelistet.

 Tabelle 16: Zellzyklusdistribution nach Inkubation mit Reinsubstanz.
 Aufgelistet sind die f
 ür die einzelnen Zelllinien berechneten Mittelwerte und Phasen in Prozent.
 Output
 Output</th

	C	Ohne Substan	z	Mit Substanz					
Phase	G0 G1	G2 M	S	G0 G1	G2 M	S			
HCT8 WT	46,66±3,17	8,03±1,27	36,93±5,83	30,33±2,52	7,00±3,89	31,50±1,55			
HCT8 iCSC	49,19±0,71	8,64±0,64	38,48±1,07	3,96±0,40	71,61±4,26	19,17±3,76			
PC3 WT	71,55±1,99	5,33±0,61	16,23±3,13	75,30±4,82	5,46±0,51	6,41±3,05			
PC3 iCSC	67,53±3,02	8,54±2,21	14,84±6,49	64,60±1,77	14,95±1,92	12,90±5,56			
3.4.5. Resümee der Studien zum Wirkmechanismus

Die Darstellung aller durchgeführten Versuche würde aufgrund der Datenmenge den Rahmen dieser Dissertation sprengen. Daher sei an dieser Stelle ein Überblick über die wichtigsten und interessantesten Ergebnisse gegeben, die auf mögliche Wirkungsmechanismen der isolierten Substanzen hinweisen könnten (**Tab. 16**). Die Studien wurden in erster Linie auf RNA- und Proteinexpressionsebene durchgeführt. So wurde auf RNA-Ebene die Zellzyklusmaschinerie untersucht, darunter der Expressionsstatus mehrerer Cycline und CDK. Auf Proteinebene wurden Schlüsselelemente pro- und antiapoptotischer Signaltransduktionskaskaden analysiert. Außerdem liegen Ergebnisse zum Expressionsstatus wichtiger replikativer Effektoren wie z.B. Topoisomerase II α/β , Telomerase und PCNA vor.

Tabelle 17: Übersicht über die Experimente zur Identifizie	erung des Wirkmechanismus der anti-
tumoral wirksamen Propolissubstanzen	

Untersuchung	DNA- Polymerase	Topoisomerase I	Topoisomerase II	DNA-Interkalierung	Tubulinpolymerisierung	Zellzyklusmaschinerie	Signaltransduktionskaskade	Zellzyklusmessung
A3-2	Negativ	Negativ	Negativ	Negativ	Positiv			G2/M Arrest
A4-6	Negativ	Negativ	Negativ	Negativ	Positiv			
A4-7	Negativ	Negativ	Negativ	Negativ	Negativ			
A6	Negativ	Negativ	Negativ	Negativ	Negativ			
CZ4-1-1	Negativ	Negativ	Negativ	Negativ	Negativ			
CZ4-1-2	Negativ	Negativ	Negativ	Negativ	Negativ			
CZ4-2	Negativ	Negativ	Negativ	Negativ	Negativ	↓CDK2/6	↓pERK1/2	
CZ4-3	Negativ	Negativ	Negativ	Negativ	Negativ			

C76	Positiv	Positiv	Positiv	Negativ	Negativ	 	G0/G1
020				- 3	- 3		Arrest
C4-2-1	Negativ	Negativ	Negativ	Negativ	schwach	 	
C4-2-2	Negativ	Negativ	Negativ	Negativ	Negativ	 	

4. Diskussion

Die Behandlung bösartiger Neoplasien mit Zytostatika ist immer noch einer der wichtigsten Bestandteile fast aller Interventionen in der Krebstherapie. Die Entwicklung einer Chemotherapieresistenz nach zunächst wirksamen Therapieverfahren mittels aktuell in der Klinik verwendeter antineoplastischer Substanzen ist die Hauptursache von Rezidiven bzw. Metastasen und der dadurch bedingten hohen Letalität bei Krebserkrankungen. Daher sind entweder neue Kombinationen der bekannten Zytostatika oder aber die Entwicklung neuer Substanzen absolut notwendig, um die Heilungsrate und die Lebensqualität während der Chemotherapie zu verbessern.

Bis vor kurzem wurden Zytostatika entwickelt, die sich unspezifisch gegen alle Zellpopulationen eines Tumors richten. Heutzutage jedoch basiert die Strategie darauf, Stoffe zu entwickeln, die nicht nur die sich stark teilenden Zellen, sondern auch die Krebsstammzellen (KSZ) angreifen.

4.1. Relevante Charakteristika des etablierten In-vitro-Screeningsystems

Das von uns etablierte Screeningsystem umfasst ein Panel verschiedener Tumorentitäten, die repräsentativ für die häufigen Tumorarten beim Menschen sind. Darüber hinaus haben wir auch Tumore aufgenommen, die zwar nicht so häufig, aber wegen ihrer inhärenten hochkomplexen Molekularbiologie kaum therapierbar sind und demzufolge eine schlechte Prognose aufweisen wie z.B. Glioblastom und Neuroblastom. Jüngere Studien haben gezeigt, dass durch Zytostatikaexposition eine Selektion bestimmter Populationen mit Krebsstammzellphänotyp möglich ist. So konnten Barr et al. via Cisplatininkubation eine Tumorzellpopulation mit einem hohen Anteil von Krebsstammzelleigenschaften gewinnen (Barr et al., 2013). Mittels Etoposidinkubation haben wir Tumorzellpopulationen induziert, die den Phänotyp von Krebsstammzellen aufweisen und in Konkordanz mit den Ergebnissen in der Literatur sind. Die Durchmusterung antineoplastischer Verbindungen basiert auf der Testung der Substanzen in einem breiten gut charakterisierten Tumorzellpanel. Im Rahmen dieses Vorhabens wurde eine Vielzahl verschiedener Tumorzellmodellen mit einem hohen Anteil an KSZ analysiert, um Substanzen mit einem breiten Wirkungsspektrum zu finden.

Wir haben bei jeder induzierten Krebsstammzellentität, die in dieser Arbeit benutzt wurde, eine ausführliche Charakterisierung auf Krebsstammzelleigenschaften vorgenommen. Diese Charakterisierung beinhaltete die Analyse der Zellmorphologie, der Wachstumsformen, der Kreuzresistenz gegen verschiedene Zytostatika, Bestrahlungsresistenz, die Tumorwachstumskinetik, das Metastasierungspotential und die Expression von oberflächlichen gewebespezifischen Krebsstammzellmarkern mittels PCR, Westernblot, ICC und IHC.

Zellmorphologie und Wachstumsformen in den resistenten Entitäten

Unter dem Einfluss eines Zytostatikums zeigen Tumorzellen verschiedene transiente oder permanente morphologische Änderungen. Diese Änderungen sind abhängig von der jeweiligen Tumorzelllinie, wobei es allgemeine Charakteristika gibt, z.B. Methuosis (schaumartiges Auftreten von Vesikeln im perinukleären Raum; **Abb. 7**), eine neuronenartige spindelförmige (**Abb. 8**) bzw. sphärische Morphologie (**Abb. 9**) und Hyperthrophie des Kern- und Zellvolumens (**Abb. 10**). Die Zellmorphologie und Wachstumsarten in den KSZ-Populationen nach Zytostatikaexposition sind sehr heterogen, wobei Formen wie Synzytien, eine Anordnung der Kerne in Spiralform oder Plasmodien beobachtet wurden, die nicht in dieser Arbeit aufgeführt sind, aber parallel dazu von unserer Arbeitsgruppe beschrieben und publiziert wurden (Díaz-Carballo et al., 2014).

Kreuzresistenz

Die selektierten Populationen weisen eine breite Kreuzresistenz gegenüber zahlreichen in der Klinik gebräuchlichen Zytostatika auf. **Tabelle 11** und **Abb. 11** geben einen Überblick dieser permanenten Panresistenz verschiedener iCSC-Subtypen. Verantwortlich für die Kreuzresistenz ist in erster Linie die Expression von MDR-Phänotypen, wie z.B. MDR1, eine Membranpumpe, die unspezifisch Xenobiotika aus der Zelle ausschleust. Die Expression von MDR1 konnte per Dot-Blot-Technik gezeigt werden (**Abb. 21**). Die Kreuzresistenz und Expression des MDR-Phänotyps ist charakteristisch für Stammzellen und KSZ (Reya et al., 2001 und Rosen et al., 2009).

Tumorwachstumskinetik und Metastasierungspotential

Die Tumorwachstumskinetik zeigt im Laufe der Resistenzentwicklung verschiedene Muster. In den ersten zwei Monaten der Entwicklung ist das Wachstum im Vergleich zu den WT-Zellen verlangsamt. **Abb. 12** zeigt das verlangsamte Wachstum von iCSC in der Zelllinie LAN1. Dieses Wachstumsverhalten kann man auch anhand der Differenz in den Tumormassen von iCSC und WT in den Xenograftmodellen beobachten (**Abb. 13**). Weitere unserer induzierten KSZ aus verschiedenen Tumorentitäten weisen das gleiche Wachstumsverhalten auf. Es ist bekannt, dass KSZ in eine Dauerschlafphase eintreten und erst Jahre nach einer "erfolgreichen" Behandlung für das Auftreten von Rezidiven und Metastasen verantwortlich sind (Weissman et al., 2005a).

Das Metastasierungspotenzial von Neuroblastommodellen lässt sich experimentell nur schlecht nachweisen. Die geeignete Methode dafür beruht auf einem orthotopen Modell, wo ein kleines Stück des Tumors an die Glandula suprarenalis einer Maus angenäht wird. Um dieses Problem zu umgehen, haben wir eine reproduzierbare und messbare Methode benutzt, wie es in dem Fall von den iCSC in Prostatakarzinomen gewesen ist. Andere Tumormodelle liefern für diese Zwecke ähnliche Ergebnisse. Die iCSC-Zellen bilden in Xenograftmodellen Tumore aus, die sich durch ihre höhere Zelldichte und Metastasierungspotenzial von den jeweiligen ursprünglichen WT unterscheiden (**Abb. 14** und **15**).

Bestrahlungsresistenz

Fachpublikationen berichten, dass die KSZ neben ihrer Resistenz gegen Zytostatika auch eine erhöhte Resistenz gegen ionisierende Strahlung zeigen (z.B. Rosen et al., 2009). Wir konnten in mehreren Versuchen eine hoch signifikante Bestrahlungsresistenz in verschiedenen induzierten KSZ nachweisen (**Abb. 16** und **17**).

Phänotypisierung der iCSC-Modelle anhand der Expression spezifischer Krebsstammzellmarker

Je nach dem histologischen Ursprung der Tumorentitäten exprimieren die KSZ ein spezifisches Set an Markern, die nach der aktuellen Literatur einen Krebsstammzellphänotypen definieren.

Jüngere Veröffentlichungen schlagen p75^{NTR} als möglicher Krebsstammzellmarker verschiedener Tumoren des Gastrointestinaltraktes vor (Huang et al., 2009; Li et al., 2012). Dagegen ist es bislang ungeklärt, ob es in Neuroblastomentitäten eine Relation zwischen der Überexpression von p75^{NTR} und KSZ gibt. In unseren Untersuchungen haben wir festgestellt, dass in den hoch resistenten Subtypen eine Überexpression dieses Rezeptors sowohl *in vitro* als auch im Xenograftmodell nachweisbar ist (**Abb. 19** und **20**).

Etoposid-induzierte LAN1-KSZ weisen eine Reihe wichtiger KSZ-Charakteristika auf, darunter Chemotherapie- und Bestrahlungsresistenz, Zellheterogenität und die Überexpression des KSZ-Markers c-kit (**Abb. 25**). In diesem Kontext spricht die Überexpression von p75^{NTR} in der Tat dafür, dass es sich um einen sehr spezifischen Krebsstammzellmarker für diese Tumorentität handelt, was in Kongruenz mit den Studien von Huang und Li stünde.

Unsere Studie zeigt, dass eine enge Relation zwischen den KSZ-Phänotypen und der Regulierung verschiedener Zellmarker besteht. Zu den prominenten zählt die Membranpumpe MDR1 (Pgp), der Stammzellmarker CD133, die CD44 Varianten 3 und 6, Cyclin B1, der Tumorsupressor p53, das Rezeptorprotein TrkB und die Kinase p44/42 (ERK1/2). Proteine, die in den meisten Sublinien dereguliert waren, sind der Transkriptionsfaktor N-Myc, der CDK-Inhibitor p21^{CIP1}, die Cyline D1 und E sowie die Achse CXCR4-SDF1α (**Abb. 23** bis **24**).

Eine ausführliche Untersuchung aller aufgelisteten Proteine und ihrer Implikationen in der Entstehung von KSZ und Metastasierung war aufgrund der zeitlichen Limitierung und der Ausrichtung der Arbeit nicht möglich. Wir haben uns daher auf jene Proteinen konzentriert, die laut Literatur als valide Krebsstammzellmarker gelten können oder in Prozessen wie Metastasierung und Invasion involviert sind.

CD133 ist ein häufig benutzter Stammzellmarker, wobei jedoch jüngere Studien behaupten, dass dieser Marker für sich alleine nicht optimal für die Typisierung von Stammzellen geeignet ist, sondern in Kombination mit anderen KSZ-Markern benutzt werden sollte (Irollo et al., 2013).

Das multifunktionelle Membranprotein CD44 hat sich als valider Marker für verschiedene Tumore etabliert. CD44 existiert in mehreren Varianten, deren funktionelle Bedeutung in resistenten Tumorentitäten eine aktuelle Fragestellung der Onkologie ist. In unseren induzierten KSZ dominiert die Expression der Varianten 3 und 6. Wir vermuten, dass diese Varianten eine wichtige Rolle in der Entstehung der KSZ und Metastasierung in Organe spielen, in denen CD44-Liganden stark exprimiert werden, wie z.B. Osteopontin in Knochen, Lunge, Leber etc. (**Abb. 58**).

Abbildung 58: Schematische Darstellung einer CD44⁺-Zelle und ihrer Metastasierung ins Zielgewebe. Hypothese: Krebsentitäten exprimieren distinkte CD44-Varianten, die eine bestimmte Affinität für den Liganden Osteopontin zeigen. Osteopontin wird in einer Vielzahl von Gewebetypen verschiedener Metastasierungszielorgane exprimiert.

Eine andere interessante deregulierte Achse ist CXCR4-SDF1α. Auch diese Achse ist bekanntlich stark im Metastasierungsprozess involviert. Vermutlich induziert SDF1α eine autokrine Regulation in CXCR4-positiven Zellen. Fehlt diese Regulation, weil das CXCR4 hoch- und das SDF1α herunterreguliert ist, migrieren die Zellen Richtung SDF1α-sezernierende Zellen bzw. Gewebe, wie in **Abb. 59** darstellt.

Studien haben gezeigt, dass die Überexpression von CXCR4 in verschiedenen Tumorentitäten als ein Stammzellmarker in Betracht kommt und in Invasions- und Metastasierungsprozessen involviert ist (Domanska et al., 2013 & Shi et al., 2014). Es ist uns gelungen, eine starke Überexpression des Proteins in unseren iCSC-Modellen nachzuweisen (**Abb. 25** und **26**). Einen Zusammenhang zwischen Überexpression dieses Rezeptors und erhöhter Migration bzw. Metastasierung lässt sich im Prostatakarzinommodell PC3 zeigen (**Abb. 15**).

Abbildung 59: Achse CXCR4-Rezeptor und seines Liganden SDF-1*α***.** Schematische Darstellung des hypothetischen physiologischen Prozesses der Achse CXCR4-SDF-1α, die nach unserer Hypothese die mögliche Migration, Invasion bzw. Metastasierung anhand eines Zytokingradient in unseren resistenten Tumorzellen illustriert.

Zusammenfassend können wir sagen, dass die von uns etablierten Tumorsubzelllinien des *In-vitro*-Screeningsystems die erforderlichen Eigenschaften von KSZ, die in der Tabelle aufgelistet sind, erfüllen.

Krebsstammzellcharakteristika
Verlangsamtes Wachsen in vitro und in vivo
Änderungen in der Zellmorphologie und Wachstumsform
Erhöhte Metastasierung
Resistenz gegenüber Zytostatika
Resistenz gegenüber ionisierender Bestrahlung
Expression mehrerer Krebsstammzellmarker

4.2. Isolierung und Identifizierung zytotoxischer Substanzen aus Propolis

Kubanische Propolis ist aufgrund ihrer chemischen Komplexität eine geeignete Quelle neuer antitumorale Substanzen. Diese Arbeit beschreibt die chemische Fraktionierung und Identifizierung von insgesamt 18 Substanzen, die eine zytotoxische Wirkung in verschiedenen Krebsentitäten zeigen. Insbesondere wurden diese Substanzen in hoch resistenten induzierten Krebsstammzellen auf ihre Wirksamkeit hin getestet.

Für eine umfangreiche chemische Strukturaufklärung niedermolekularer Verbindungen, die in Propolis vorkommen, braucht man circa 20 mg der Reinsubstanz. Aufgrund des geringen Anteils mancher Substanzen an der Gesamtmasse war es für diese nicht möglich, eine detaillierte Studie der Strukturisomerie durchzuführen, da ein Großteil der gewonnen Substanzen für die biologischen Studien verbraucht wurde.

Von den zwölf strukturell identifizierten Substanzen dominieren in Areal A Flavonoide und ähnliche Verbindungen, während in Areal B und C fast ausschließlich PPAP vorkommen, welche für ihre vielfältige chemische Architektur bekannt sind.

4.2.1. Aufklärung der Wirkmechanismen der identifizierten Substanzen aus Areal A

Laxifloran (A3-2)

Diese Verbindung zeigte eine hohe Zytotoxizität sowohl in allen getesteten Tumorzelllinien als auch in den nicht tumoralen Zelllinien. Besonders sensitiv waren das Kolorektalkarzinom HCT8 und das Prostatakarzinom PC3 mit IC₅₀-Werten (WT/iCSC) von 1,43 ± 0,61 gegenüber 2,67 ± 0,21 µg/ml und 2,02 ± 0,40 gegenüber 2,66 ± 0,49 µg/ml. Diese Substanz zeigt keine Kreuzresistenz in den Chemotherapierefraktären Krebsentitäten (siehe Tabelle 4).

Laxifloran zeigt in *In-vitro-*Studien eine starke Inhibition der Tubulinpolymerisierung bei 20 µg/ml, welches der zehnfachen Menge der IC₅₀ entspricht. Dabei ist Laxifloran noch wirksamer als die Vinblastinkontrolle, die im gleichen Verhältnis eingesetzt wurde (**Abb. 47**). Die Inhibition der Tubulinpolymerisierung durch Laxifloran könnte den deutlichen G2/M-Zellarrest in HCT8 iCSC erklären (**Abb. 55**), was wohl der Hauptgrund für die Zytotoxizität sein dürfte.

Neuere Forschungsergebnisse berichten über die Auswirkungen von Flavonoiden auf den Tubulinapparat, insbesondere die Hemmung der Tubulinpolymerisierung Dazu gehört das Flavonoid Tamarixetin, welches sowohl die Tubulinpolymerisierung inhibiert als auch ein G2/M-Arrest in Leukämiezellen verursacht (Nicolini et al., 2013). Eine andere Studie konnte mit synthetischen Chalkonen, die eine der Hauptgruppen der Flavonoide bilden, ebenfalls die Tubulinpolymerisierung *in vitro* inhibieren und die Apoptose in Leukämiezellen induzieren (Aryapour et al., 2012).

Aufgrund der hohen zytotoxischen Aktivität sowohl in parentalen als auch in resistenten Tumorzelllinien mit Stammzelleigenschaften könnte Laxifloran ein interessantes Leitmolekül für neuartige antineoplastische Pharmaka sein.

Conferol A (A4-6)

Bei der Verbindung A4-6 handelt es sich um das Flavonoid Conferol A, welches ähnliche Eigenschaften wie Laxifloran aufweist. Es zeigt starke und spezifische zytotoxische Effekte in den Zelllinien A549, LAN1, PanC1 und PC3 (**Tabelle 14**). Im Tubulin-Polymerisierungsassay zeigt es ebenso wie A3-2 eine sehr starke hemmende Wirkung, die das Vinblastin übertrifft (**Abb. 51**).

Sativan (A5-3)

Sativan gehört innerhalb der Flavonoide zu den Isoflavanen und kommt unter anderem in Veilchengewächsen und Hülsenfrüchtlern vor (Yoon JS et al., 2004 und Moon HI et al., 2006). Bisherige Forschungen mit Sativan bezogen sich nicht auf Krebs; somit ist diese Arbeit ein erster Schritt, um Sativan als mögliches Therapeutikum in der Onkologie zu diskutieren. Sativan zeigte keine Kreuzresistenz und war in den nicht tumoralen Zelllinien weniger toxisch. Zur Untersuchung der Wirkmechanismen sind umfangreiche Studien nötig, konnten aber aufgrund der geringen Ausbeute an Substanz im Rahmen dieser Arbeit nicht durchgeführt werden.

Medicarpin (A6)

Auch für das Pterocarpan Medicarpin sind aufgrund der geringen in Propolis enthaltenen Mengen keine umfangreichen Studien zum Wirkmechanismus durchgeführt worden. Sehr interessant ist allerdings die Tatsache, dass diese Substanz eine starke Wirkung auf iCSC der Glioblastomzelllinie 79HF6 hat. Da Glioblastomatumore im Allgemeinen nach Chemotherapie hoch resistent sind, würde Medicarpin eine interessante Substanz für die Onkologie darstellen. Aufgrund ihres Zytotoxizitätspektrums zeigt diese Substanz mit Ausnahme der Kolonkarzinomzelllinie HCT8 in den verschiedenen Tumorentitäten keine Kreuzresistenz. Vermutlich ist diese Substanz ein Substrat von MRP, welches in HCT8 iCSC extrem hoch exprimiert wird (Díaz-Carballo et al., 2008b).

Medicarpin wurde bereits in früheren Arbeiten in kubanischen Propolissorten nachgewiesen. Bislang wurden nur sehr wenige Untersuchungen in Bezug auf die Zytotoxizität des Moleküls bei Krebs durchgeführt. Die Arbeitsgruppe um Gatouillat testete Extrakte der Luzerne (*Medicago sativa*) an parentaler als auch Doxorubicinresistenter muriner Leukämie und erzielten unter anderem mit Medicarpin zytotoxische Effekte (Gatouillat et al., 2014).

4.2.2. Aufklärung der Wirkmechanismen der identifizierten Substanzen aus Areal B

7-epi-Nemoroson (B1)

7-epi-Nemoroson, ein PPAP der Klasse A, wurde bereits in einigen Arbeiten auf seine zytotoxischen und antineoplastischen Eigenschaften untersucht (Díaz-Carballo et al., 2008a; Díaz-Carballo et al., 2008b und Popolo et al., 2011) und war daher im Rahmen dieser Arbeit kein Gegenstand weiterer Forschungen.

Retusapurpurin A (RN)

Dieses rötliche Isoflavan eluierte zusammen mit 7-epi-Nemoroson in Areal B. Es wurde aber nicht weiter untersucht, weil diese Substanz keine Zytotoxizität in den geprüften Tumorzelllinien zeigte. Auch in der Literatur finden sich keine Arbeiten mit Retusapurpurin A in Zusammenhang mit Krebs.

4.2.3. Aufklärung der Wirkmechanismen der identifizierten Substanzen aus Areal C

Propolon A (C4-2-1)

Propolon A wurde in geringen Mengen aus der Propolisquelle isoliert. Die relevantesten Ergebnisse beschränken sich auf die spezifische Aktivität in LAN1 iCSC-Neuroblastom, wodurch Propolon A ein sehr interessantes Molekül für die Kinderonkologie ist, da diese Tumorentitäten mit Zytostatika nur schlecht zu behandeln sind. Allerdings ist diese Substanz in den Chemotherapierefraktären Zelllinien MCF7 und PC3 weniger aktiv.

Bislang gibt es keinen publizierten Studien über die Wirksamkeit des Propolons A bei Krebs.

Bis(2-ethylhexyl)benzen-1,2-dicarboxylat (CZ6)

Bis(2-ethylhexyl)benzen-1,2-dicarboxylat (kurz: DEHP) gehört zu den Phthalsäureestern, wird industriell im großen Maßstab produziert und als Weichmacher eingesetzt. Daher könnte es sich hier vielleicht um eine Kontamination aus einem Plastikschlauch der HPLC-Anlage handeln. Doch dagegen sprechen mehrere Punkte: Die ölige Substanz konnte in großen Mengen gewonnen werden (170 mg) und kam nur in einer Fraktion vor (Areal C von PK1 Pool, siehe **Abb. 34**). Daneben spricht auch der hohe Standard der HPLC-Anlage gegen minderwertiges Plastik, und zu guter letzt kommt DEHP auch in natürlichen Quellen vor. Die Gruppe um Katade et al. konnte es aus den Samen von *Sterculia guttata* isolieren, die zu der tropischen Gattung der Stinkbäume zählt (Katabe et al., 2006). Die Gruppe von Moushumi Priya und Jayachandran haben diese niedermolekulare Substanz aus dem marinen Bakterium *Bacillus pumilus* isoliert (Moushumi Priya und Jayachandran 2012).

Die zytotoxische Aktivität in malignen Entitäten wurde bereits in den Arbeiten von Moushumi Priya und Jayachandran an der Leukämiezelllinie K562 beschrieben. Au-Berdem stellte die Gruppe von Angelini fest, dass eine Behandlung von Doxorubicinresistenten Sarkomzellen mit DEHP die Zellen für Doxorubicin sensitiver und damit anfälliger macht (Angelini et al., 2011).

In dieser Arbeit zeigte DEHP in unserem Zellpanel lediglich bei PC3 eine milde Zytotoxizität (8,08 \pm 0,50 in PC3 WT gegenüber 14,23 \pm 0,93 µg/ml PC3 iCSC), allerdings mit einer deutlichen Kreuzresistenz (**Tabelle 14**). Bei den verschiedenen Experimenten zur Aufklärung des Wirkmechanismus konnte in PC3 WT ein leichter Zellzyklusarrest bei G0/G1 festgestellt werden, was sich mit den Befunden von Moushumi Priya und Jayachandran deckt.

Hoch interessant ist die Tatsache, dass diese Verbindung eine starker Inhibitior sowohl der DNA-Polymerase (**Abb. 48**) als auch der Topoisomerasen I und II (**Abb. 49** und **50**) ist. Topoisomerasenhemmer sind in der Onkologie keine seltene Medikamentenklasse; dazu zählen Etoposid und Anthrazykline. Durch diese Eigenschaften ist DEHP ein mögliche Ausgangssubstanz für die Generierung neuer Zytostatika.

4.2.4. Weitere chemisch aufgeklärte PPAP aus Areal C

Folgende PPAP wurden im Rahmen dieser Arbeit isoliert, für die keine Trivialnamen in der Literatur zu finden sind und die daher möglicherweise neue Vertreter dieser Substanzfamilie darstellen: CZ4-1-1 und die isomeren Verbindungen CZ4-2 und CZ4-3 (**Abb. 47**). Aus der Struktur wird ersichtlich, dass CZ-1-1 zwei Isoprenyleinheiten an den Positionen C3 und C7 enthält und eine zyklische Struktur zwischen den Positionen C8 und C1 (s. **Abb. 3** für die Anordnung der C-Atome) aufweist. In den Strukturen CZ4-2 und CZ4-3 liegen die Isoprenyleinheiten an C1 und C3. Zwischen C7 und C8 befindet eine zyklische Struktur. Für diese isomeren Moleküle sind keine Stereoisomeriestudien durchgeführt worden; daher können wir nur vermuten, dass die Anordnung der Isoprenyleinheiten in Relation zur Molekülebene (Endo- und Exoprojektion) den Unterschied ausmacht, weil die restlichen Ringstrukturen rigide und wenig beweglich sind. Dies ist auch der Grund, warum die beiden Isomere chromatografisch aufgetrennt werden konnten.

Die biologische Aktivität dieser PPAP-Vertreter lässt sich anhand ihrer Zytotoxizität analysieren. Im Allgemeinen sind alle drei Verbindungen extrem selektiv in der hoch resistenten Sublinie LAN1 iCSC, im Vergleich zum parentalen Zelllinie teilweise bis zu zehnmal aktiver (**Tab. 15**). Diese spezifische Aktivität in resistenten Zelllinien lässt sich im Mammakarzinom MCF7 und im Pankreaskarzinom PanC1 beobachten, wobei hier es allerdings nur um eine Tendenz handelt. Eine hohe zytotoxische Aktivität lässt sich in der Prostatakarzinom PC3 WT und iCSC zeigen.

In PC3 lässt sich zwischen WT und iCSC eine starke Differenzierung in der Expression und im Phosphorylierungsstatus von c-Raf und ERK1/2 beobachten (**Abb. 53**), die in den resistenten Zellen höher exprimiert sind. Die Inkubation der PC3-Zellen mit der doppelten IC₅₀-Dosis an CZ4-2 führt zu einer erheblichen Inhibition dieser Signaltransduktionkaskade in den Zellen (**Abb. 53**). Diese Wirkung, die auch bei anderen PPAP wie Nemoroson beobachtet wurde (Díaz-Carballo et al, 2012), könnte die zytotoxische Aktivität der Substanz erklären.

4.2.4. Weitere nicht chemisch aufgeklärte Substanzen

Initiale Ergebnisse der Strukturaufklärung von CZ4-1-2 und CZ5 zeigen anhand der gewonnenen NMR-Spektren, dass beide Substanzen zur Klasse der PPAP gehören. Endgültige Strukturen lagen zum Zeitpunkt dieser Arbeit noch nicht vor.

Beide Substanzen zeigen im Allgemeinen keine Kreuzresistenz und eine erhebliche Wirkung in der resistenten Sublinie LAN1 iCSC, wie es für die anderen PPAP auch beobachtet wurde (siehe **4.2.3.**).

Die Signaltransduktionselemente Raf, ERK1/2 und MEK1/2 waren in den Zellen nach einer Behandlung mit der dreifachen IC₅₀-Dosis von CZ4-1-2 abgeschaltet. Damit ähnelt die Wirkung dem bereits oben beschriebenen Mechanismus von CZ4-2 (**Abb. 53**).

5. Zusammenfassung

Ziel dieser Arbeit war die Isolierung von antitumoral wirksamen Substanzen aus kubanischer Propolis, die in Tieren eine antitumorale Aktivität aufweist. Diese Substanzen kommen als Kandidaten für die Entwicklung von Chemotherapeutika in Betracht, die Chemotherapie-refraktäre Krebsstammzellen spezifisch angreifen können. Für diese Absicht wurden als biologisches Untersuchungssystem Chemotherapieresistente und nicht resistente Zelllinien unterschiedlicher Krebsarten etabliert, wobei die resistenten Zelllinien eine Reihe von Charakteristika von Krebsstammzellen aufweisen. Mit diesem System konnten 18 wirksame Substanzen in Reinform isoliert werden.

Aufgrund der chemischen Komplexität der kubanischen Propolisspezies wurde sie in drei Areale aufgetrennt, wobei in A acht, in B zwei und in C wiederum acht wirksame Substanzen gefunden worden sind. Areal A enthielt fünf Substanzen, deren Struktur und Namen bereits bekannt sind, dazu eine bisher unbekannte und zwei weitere Verbindungen, bei denen keine Strukturaufklärung möglich war. Die identifizierten Substanzen gehören zu den Flavonoiden, Isoflavonoiden und Chalkonen. In Areal B wurden Nemoroson und Retusapurpurin A identifiziert. In Areal C sind die allermeisten Verbindungen der Gruppe der PPAP zuzuordnen. Das Areal enthält die bereits bekannten Substanzen Propolon A und DEHP, drei bisher unbekannte PPAP, deren Struktur aufgeklärt werden konnte, und drei PPAP-ähnliche Substanzen, von denen aber keine endgültigen Strukturen vorliegen.

Molekularbiologische Analysen zur Aufklärung der Wirkmechanismen der isolierten Verbindungen ergaben, dass Laxifloran und Conferol A aus Areal A starke Tubulinpolymerisierungshemmer sind. Die Wirkmechanismen der restlichen Substanzen bleiben offen. Die Wirkmechanismen der Verbindungen aus Areal B sind in der Literatur gut beschrieben und lagen daher nicht im Fokus dieser Arbeit. In Areal C wurde DEHP als starker Hemmer der Topoisomerasen I und II sowie die DNA-Polymerase identifiziert. Für zwei PPAP (CZ4-1-2 und CZ4-2) wurde in den Zellen eine Inhibition der enzymatischen Aktivität der Signaltransduktionselemente c-Raf, MEK1/2 und ERK1/2 beobachtet, was ein wichtiger Wirkmechanismus für diese Substanzen darstellen könnte. Für die restlichen Substanzen konnten bislang keine Wirkmechanismen entschlüsselt werden.

Ein bedeutsames Ergebnis dieser Arbeit ist die Identifizierung von neun Verbindungen, die eine deutliche Wirkung in hoch Chemotherapie-refraktären Krebszellen zeigen. Diese Eigenschaft ist klinisch relevant, weil solche Substanztypen in Patienten zum Einsatz kommen könnten, die eine Resistenz gegen die Standardtherapien entwickelt haben. Außerdem könnten diese Verbindungen als Leitsubstanzen für die Entwicklung neuartiger Medikamente benutzt werden.

Die detaillierte Aufklärung der Wirkweise der Substanzen und die Analyse ihrer Zielstrukturen sollen zukünftige Forschungsschwerpunkte sein, ebenso wie die Untersuchung ihrer akuten und chronischen Toxizität sowie ihrer antitumorale Aktivität im Tiermodell.

6. Literaturverzeichnis

Amiri-Kordestani L, Basseville A, Kurdziel K, Fojo AT & Bates SE: Targeting MDR in breast and lung cancer: discriminating its potential importance from the failure of drug resistance reversal studies, **2012**, *Drug Resist Updat 15(1-2): 50-61*

Amoros M, Sauvager F, Girre L & Cormier M: In vitro antiviral activity of Propolis, 1992, *Apidologie 23, 231-240*

Amoros M, Lurton E, Boustie J, Girre L, Sauvager F & Cormier M: Comparison of the anti-herpes simplex virus activities of Propolis and 3-methylbut-2-enyl caffeate, 1994, *J Nat Prod 57, 644-647*

Angelini A, Centurione L, Sancilio S, Castellani ML, Conti P, Di Ilio C, Porreca E, Cuccurullo F & Di Pietro R: The effect of the plasticizer diethylhexyl phthalate on transport activity and expression of P-glycoprotein in parental and doxo-resistant human sarcoma cell lines, **2011**, *J Biol Regul Homeost Agents 25(2), 203-211*

Aryapour H, Riazi GH, Ahmadian S, Foroumadi A, Mahdavi M & Emami S: Induction of apoptosis through tubulin inhibition in human cancer cells by new chromene-based chalcones, **2012**, *Pharm Biol 50(12)*, *1551-1560*

Ayres DC, Marcucci MC & Giorgio S: Effects of Brazilian propolis on Leishmania amazonensis, 2007, *Mem Inst Oswaldo Cruz 102(2), 215-220*

Bankova V, Popova M, Bogdanov S & Sabatini AG: Chemical composition of European propolis: expected and unexpected results, 2002, *Z Naturforsch C 57(5-6), 530-533*

Barr MP, Gray SG, Hoffmann AC, Hilger RA, Thomale J, O'Flaherty JD, Fennell DA, Richard D, O'Leary JJ & O'Byrne KJ: Generation and characterisation of cisplatin-resistant non-small cell lung cancer cell lines displaying a stem-like signature, 2013, *PLoS One 8(1)*

Biber N, Möws K & Plietker B: The total synthesis of hyperpapuanone, hyperibone L, epi-clusianone and oblongifolin A, **2011**, *Nat Chem 3(12), 938-942*

Bonnet D & Dick JE: Human acute myeloid leukemia is organized as a hierarchy that originates from a primitive hematopoietic cell, **1997**, *Nat Med 3(7), 730-737*

Chahar MK, Sharma N, Dobhal MP & Joshi YC: Flavonoids: A versatile source of anticancer drugs, 2011, *Pharmacogn Rev 5(9), 1-12*

Cheng C & Sharp PA: Regulation of CD44 alternative splicing by SRm160 and its potential role in tumor cell invasion, **2006**, *Mol Cell Biol 26(1), 362-370*

Cicala C, Morello S, Iorio C, Capasso R, Borrelli F & Mascolo N: Vascular effects of caffeic acid phenethyl ester (CAPE) on isolated rat thoracic aorta, **2003**, *Life Sci 73(1), 73-80*

Ciochina R: Studies towards synthesis of polycyclic polyprenylated acylphloroglucinols, **2006**, *PhD Thesis, University of Kentucky*

Dakanali M & Theodorakis EA: "Polyprenylated Phloroglucinols and Xanthones" Kapitel 12 aus Biomimetic Organic Synthesis, **2011**, Wiley-VCH Verlag GmbH & Co. KgaA, Weinheim, Deutschland

Dantas AP, Salomão K, Barbosa HS & De Castro SL: The effect of Bulgarian propolis against Trypanosoma cruzi and during its interaction with host cells, 2006, *Mem Inst Oswaldo Cruz 101(2), 207-211*

David EB, de Carvalho TB, Oliveira CM, Coradi ST, Sforcin JM & Guimarães S: Characterisation of protease activity in extracellular products secreted by Giardia duodenalis trophozoites treated with propolis, **2012**, *Nat Prod Res 26(4), 370-374*

Diamanti P, Cox CV, Moppett JP & Blair A: Parthenolide eliminates leukemiainitiating cell populations and improves survival in xenografts of childhood acute lymphoblastic leukemia, **2013**, *Blood 121(8)*, *1384-1393* Díaz-Carballo D, Seeber S, Strumberg D & Hilger RA: Novel antitumoral compound isolated from Clusia rosea, 2003, *Int J Clin Pharmacol Ther 41(12), 622-623*

Díaz-Carballo D, Malak S, Freistühler M, Elmaagacli A, Bardenheuer W & Reusch HP: Nemorosone blocks proliferation and induces apoptosis in leukemia cells, 2008a, *Int J Clin Pharmacol Ther 46(8), 428-439*

Díaz-Carballo D, Malak S, Bardenheuer W, Freistuehler M & Reusch HP: Cytotoxic activity of nemorosone in neuroblastoma cells, 2008b, *J Cell Mol Med* 12(6B), 2598-2608

Díaz-Carballo D, Malak S, Bardenheuer W, Freistuehler M & Peter Reusch H: The contribution of plukenetione A to the anti-tumoral activity of Cuban Propolis, 2008c, *Bioorg Med Chem 16(22), 9635-43*

Díaz-Carballo D, Ueberla K, Kleff V, Ergun S, Malak S, Freistuehler M, Somogyi S, Kücherer C, Bardenheuer W & Strumberg D: Antiretroviral activity of two polyisoprenylated acylphloroglucinols, 7-epi-nemorosone and plukenetione A, isolated from Caribbean Propolis, **2010**, *Int J Clin Pharmacol Ther 48(10), 670-677*

Díaz-Carballo D, Gustmann S, Acikelli AH, Bardenheuer W, Buehler H, Jastrow H, Ergun S & Strumberg D: 7-epi-nemorosone from Clusia rosea induces apoptosis, androgen receptor down-regulation and dysregulation of PSA levels in LNCaP prostate carcinoma cells, **2012**, *Phytomedicine 19(14)*, *1298-1306*

Díaz-Carballo D, Gustmann S, Jastrow H, Acikelli AH, Dammann P, Klein J, Dembinski U, Bardenheuer W, Malak S, Araúzo-Bravo MJ, Schultheis B, Aldinger C & Strumberg D: Atypical Cell Populations Associated with Acquired Resistance to Cytostatics and Cancer Stem Cell Features: The Role of Mitochondria in Nuclear Encapsulation, 2014, *DNA Cell Biol. 33(11), 749-74* Domanska UM, Kruizinga RC, Nagengast WB, Timmer-Bosscha H, Huls G, de Vries EG & Walenkamp AM: A review on CXCR4/CXCL12 axis in oncology: no place to hide, 2013, *Eur J Cancer.* 49(1), 219-30

Drago L, Mombelli B, De Vecchi E, Fassina MC, Tocalli L & Gismondo MR: In vitro antimicrobial activity of propolis dry extract, **2000**, *J Chemother 12(5), 390-395*; Erratum **2001** in *J Chemother 13(1), 102*

Echmoll HJ, Höffken K & Possinger K: Kompendium Internische Onkologie, Teil 1, 1997, Heidelberg: Springer-Verlag; S.5-43

Fernandes Junior A, Sugizaki MF, Fogo ML, Lopes CAM & Funari SRC: In vitro susceptibility of candida albicans to Propolis, **1994**, *Proc. IV Iberoamerican Meeting Apic.*, Ministerio de Agricultura, Ganadería y Recursos renovables. Río Cuarto. Argentina, 209-211

Frenkel K, Wei H, Bhimani R, Ye J, Zadunaisky JA, Huang MT, Ferraro T, Conney AH & Grunberger D: Inhibition of tumor promoter-mediated processes in mouse skin and bovine lens by caffeic acid phenethyl ester, **1993**, *Cancer Res 53(6)*, *1255-1261*

Friedman M: Overview of antibacterial, antitoxin, antiviral, and antifungal activities of tea flavonoids and teas, **2007**, *Mol Nutr Food Res. 51(1):116-34*.

Gangemi R, Paleari L, Orengo AM, Cesario A, Chessa L, Ferrini S & Russo P: Cancer stem cells: a new paradigm for understanding tumor growth and progression and drug resistance, **2009**, *Curr Med Chem 16(14)*, *1688-1703*

Gatouillat G, Magid AA, Bertin E, Okiemy-Akeli MG, Morjani H, Lavaud C & Madoulet C: Cytotoxicity and apoptosis induced by alfalfa (Medicago sativa) leaf extracts in sensitive and multidrug-resistant tumor cells, **2014**, *Nutr Cancer. 2014; 66(3):483-91*

Grange JM & Davey RW: Antibacterial properties of propolis (bee glue), 1990, J R Soc Med 83(3), 159-160

Greenaway W, May J, Scaysbrook T & Whatley FR: Identification by gas chromatography of 150 compounds in Propolis, 1991, *Z Naturforsch 46C, 111-121* Grunberger D, Banerjee R, Eisinger K, Oltz EM, Efros L, Caldwell M, Estevez V & Nakanishi K: Preferential cytotoxicity on tumor cells by caffeic acid phenethyl ester isolated from propolis, 1988, *Experientia. 44(3) 230-232*

Gupta PB, Onder TT, Jiang G, Tao K, Kuperwasser C, Weinberg RA & Lander ES: Identification of selective inhibitors of cancer stem cells by high-throughput screening, 2009, *Cell 138(4), 645-659*

Gustafsson MHG, Bittrich V & Stevens PF: Phylogeny of Clusiaceae Based on rbcL sequences, **2002**, *Int J Plant Sci 163(6), 1045-1054*

Harish Z, Rubinstein A, Golodner M, Elmaliah M & Mizrachi Y: Suppression of HIV-1 replication by Propolis and its immunoregulatory effects, 1997, *Drugs Exp Clin Res 23:2, 89-96*

Hawley TS, Riz I, Yang W, Wakabayashi Y, Depalma L, Chang YT, Peng W, Zhu J & Hawley RG: Identification of an ABCB1 (P-glycoprotein)-positive carfilzomibresistant myeloma subpopulation by the pluripotent stem cell fluorescent dye CDy1, 2013, *Am J Hematol 88(4), 265-272*

Hendrix MJ, Seftor EA, Seftor RE & Fidler IJ: A simple quantitative assay for studying the invasive potential of high and low human metastatic variants, **1987**, *Cancer Lett 38(1-2), 137-147*

Hendrix MJ, Seftor EA, Seftor RE, Misiorowski RL, Saba PZ, Sundareshan P & Welch DR: Comparison of tumor cell invasion assays: human amnion versus reconstituted basement membrane barriers, **1989**, *Invasion Metastasis 9(5), 278-297*

Hladoń B, Bylka W, Ellnain-Wojtaszek M, Skrzypczak L, Szafarek P, Chodera A & Kowalewski Z: In vitro studies on the cytostatic activity of propolis extracts, 1980, *Arzneimittelforschung 30(11), 1847-8*

Huang SD, Yuan Y, Liu XH, Gong DJ, Bai CG, Wang F, Luo JH & Xu ZY: Selfrenewal and chemotherapy resistance of p75NTR positive cells in esophageal squamous cell carcinomas, **2009**, BMC Cancer 10;9:9

Irollo E & Pirozzi G: CD133: to be or not to be, is this the real question?, 2013, Am J Transl Res 5(6), 563-581

Jemal A, Bray F, Center MM, Ferlay J, Ward E & Forman D: Global cancer statistics 2011, 2011, CA Cancer J Clin 61(2), 69-90

Katade SR, Pawar PV, Tungikar VB, Tambe AS, Kalal KM, Wakharkar RD & **Deshpande NR:** Larvicidal activity of bis(2-ethylhexyl) benzene-1,2-dicarboxylate from Sterculia guttata seeds against two mosquito species, **2006**, *Chem Biodivers. Jan 3(1), 49-53*

Kimoto T, Arai S, Kohguchi M, Aga M, Nomura Y, Micallef MJ, Kurimoto M & Mito K: Apoptosis and suppression of tumor growth by artepillin C extracted from Brazilian propolis, **1998**, *Cancer Detect Prev 22(6), 506-15*

Klarmann GJ, Hurt EM, Mathews LA, Zhang X, Duhagon MA, Mistree T, Thomas SB & Farrar WL: Invasive prostate cancer cells are tumor initiating cells that have a stem cell-like genomic signature, **2009**, *Clin Exp Metastasis 26(5), 433-446*

Klonisch T, Wiechec E, Hombach-Klonisch S, Ande SR, Wesselborg S, Schulze-Osthoff K & Los M: Cancer stem cell markers in common cancers - therapeutic implications, 2008, *Trends Mol Med* 14(10), 450-460

Li F, He YM, Awale S, Kadota S & Tezuka Y: Two new cytotoxic phenylallylflavanones from Mexican propolis, 2011, *Chem Pharm Bull (Tokyo) 59(9),* 1194-1196

Li X, Shen Y, Di B, Li J, Geng J, Lu X & He Z: Biological and clinical significance of p75NTR expression in laryngeal squamous epithelia and laryngocarcinoma, **2012**, *Acta Otolaryngol 132(3), 314-324*

Marcucci MC: Propolis: chemical composition, biological properties and therapeutic activity, **1995**, *Apidologie 26, 83-99*

Márquez N, Sancho R, Macho A, Calzado MA, Fiebich BL & Muñoz E: Caffeic acid phenethyl ester inhibits T-cell activation by targeting both nuclear factor of activated T-cells and NF-kappaB transcription factors, **2004**, *J Pharmacol Exp Ther 308(3)*, *993-1001*

Matsuno T, Jung SK, Matsumoto Y, Saito M & Morikawa J: Preferential cytotoxicity to tumor cells of 3,5-diprenyl-4-hydroxycinnamic acid (artepillin C) isolated from propolis, **1997**, *Anticancer Res 17(5A), 3565-3568*

Menezes H, Alvarez JM & Almeida E: Mouse ear edema modulation by different propolis ethanol extracts, **1999**, *Arzneimittelforschung 49(8)*, *705-707*

Mihai CM, Mărghitaş LA, Dezmirean DS, Chirilă F, Moritz RF & Schlüns H: Interactions among flavonoids of propolis affect antibacterial activity against the honeybee pathogen Paenibacillus larvae, **2012**, *J Invertebr Pathol 110(1), 68-72*

Miyataka H, Nishiki M, Matsumoto H, Fujimoto T, Matsuka M & Satoh T: Evaluation of propolis. I. Evaluation of Brazilian and Chinese propolis by enzymatic and physico-chemical methods, **1997**, *Biol Pharm Bull 20(5), 496-501*

Monzote Fidalgo L, Sariego Ramos I, García Parra M, Cuesta-Rubio O, Márquez Hernández I, Campo Fernández M, Piccinelli AL & Rastrelli L: Activity of Cuban propolis extracts on Leishmania amazonensis and Trichomonas vaginalis, 2011, *Nat Prod Commun 6(7), 973-976*

Moon HI, Kim EJ, Lee J, Lee HK & Chung JH: The effect of sativan from Viola verecunda A. Gray on the expressions of matrix metalloproteinase-1 caused by

ultraviolet irradiated cultured primary human skin fibroblasts, **2006**, *J Ethnopharmacol* 104(1-2), 12-17

Moushumi Priya A & Jayachandran S: Induction of apoptosis and cell cycle arrest by Bis (2-ethylhexyl) phthalate produced by marine Bacillus pumilus MB 40, **2012**, *Chem Biol Interact 195(2), 133-143*

Nicolini F, Burmistrova O, Marrero MT, Torres F, Hernández C, Quintana J & Estévez F: Induction of G2 /M phase arrest and apoptosis by the flavonoid tamarixetin on human leukemia cells, 2013, *Mol Carcinog*

Orhan DD, Ozçelik B, Ozgen S & Ergun F: Antibacterial, antifungal, and antiviral activities of some flavonoids, **2010**, *Microbiol Res. 165(6):496-504*

Orsolić N, Sver L, Terzić S, Tadić Z & Basić I: Inhibitory effect of water-soluble derivative of propolis and its polyphenolic compounds on tumor growth and metastasizing ability: a possible mode of antitumor action, **2003**, *Nutr Cancer 47(2)*, *156-163*

Orsolić N & Basić I: Antitumor, hematostimulative and radioprotective action of water-soluble derivative of propolis (WSDP), **2005**, *Biomed Pharmacother 59(10)*, *561-570*

Oshima N, Yamada Y, Nagayama S, Kawada K, Hasegawa S, Okabe H, Sakai Y & Aoi T: Induction of cancer stem cell properties in colon cancer cells by defined factors, 2014, *PLoS One 9(7)*

Parajuli B, Shin SJ, Kwon SH, Cha SD, Chung R, Park WJ, Lee HG & Cho CH: Salinomycin Induces Apoptosis via Death Receptor-5 Up-regulation in Cisplatinresistant Ovarian Cancer Cells, **2013**, *Anticancer Res 33(4), 1457-1462*

Pei S & Jordan CT: How close are we to targeting the leukemia stem cell?, **2012**, *Best Pract Res Clin Haematol 25(4), 415-418*

Popolo A, Piccinelli LA, Morello S, Cuesta-Rubio O, Sorrentino R, Rastrelli L & Pinto A: Antiproliferative activity of brown Cuban propolis extract on human breast cancer cells, 2009, *Nat Prod Commun* 4(12), 1711-1716

Popolo A, Piccinelli AL, Morello S, Sorrentino R, Osmany CR, Rastrelli L & Pinto A: Cytotoxic activity of nemorosone in human MCF-7 breast cancer cells, 2011, *Can J Physiol Pharmacol 89(1), 50-57*

Popova MP, Graikou K, Chinou I & Bankova VS: GC-MS profiling of diterpene compounds in Mediterranean propolis from Greece, **2010**, *J Agric Food Chem 58(5)*, *3167-3176*

Rao CV, Desai D, Kaul B, Amin S & Reddy BS: Effect of caffeic acid esters on carcinogen-induced mutagenicity and human colon adenocarcinoma cell growth,
1992, Chem Biol Interact 84(3), 277-290

Reya T, Morrison SJ, Clarke MF & Weissman IL: Stem cells, cancer, and cancer stem cells, 2001, *Nature 414(6859), 105-111*

Rosen JM & Jordan CT: The increasing complexity of the cancer stem cell paradigm, 2009, *Science 324(5935), 1670-1673*

Rossi DJ, Jamieson CH & Weissman IL: Stems cells and the pathways to aging and cancer, 2008, *Cell 132(4), 681-696*

Scheller S, Gazda G, Krol W, Czuba Z, Zajusz A, Gabrys J & Shani J: The ability of ethanolic extract of propolis (EEP) to protect mice against gamma irradiation,1989, *Z Naturforsch C 44(11-12), 1049-1052*

Seifer M & Haslinger E: Über die Inhaltsstoffe des Propolis.I, 1989, Liebigs Ann Chem 1123-1126

Seifer M & Haslinger E: Über die Inhaltsstoffe des Propolis.II, 1991, Liebigs Ann Chem 181-203

Shi J, Wei Y, Xia J, Wang S, Wu J, Chen F, Huang G & Chen J: CXCL12-CXCR4 contributes to the implication of bone marrow in cancer metastasis, **2014**, *Future Oncol. 10(5)*, *749-59*

Siegel R, Naishadham D & Jemal A: Cancer statistics 2013, 2013, CA Cancer J Clin 63, 11-30

Topalkara A, Vural A, Polat Z, Toker MI, Arici MK, Ozan F & Cetin A: In vitro amoebicidal activity of propolis on Acanthamoeba castellanii, **2007**, *J Ocul Pharmacol Ther 23(1), 40-5*

Virchow R: Die Cellularpathologie in ihrer Begründung auf physiologische und pathologische Gewebelehre, **1858**, Hirschwald, Berlin, Kapitel 3, 4, 20, 21 und 22 der 4. Auflage von 1871

Visvader JE & Lindeman GJ: Cancer stem cells in solid tumours: accumulating evidence and unresolved questions, 2008, *Nat Rev Cancer 8(10), 755-768*

Volpert R & Elstner EF: Interactions of different extracts of propolis with leukocytes and leukocytic enzymes, **1996**, *Arzneimittelforschung 46(1), 47-51*

Wagner RP: Anecdotal, historical and critical commentaries on genetics. Rudolph Virchow and the genetic basis of somatic ecology, **1999**, *Genetics 151(3), 917-920*

Weissman IL: The road ended up at stem cells, 2002, Immunol Rev 185, 159-174

Weissman IL: Stem cell research: paths to cancer therapies and regenerative medicine, 2005a, *Jama 294(11), 1359-1366*

Weissman IL: Normal and neoplastic stem cells, **2005b**, *Novartis Found Symp 265:* 35-50; discussion 50-34, 92-37

Wei X, Zhao L, Ma Z, Holtzman DM, Yan C, Dodel RC, Hampel H, Oertel W, Farlow MR & Du Y: Caffeic acid phenethyl ester prevents neonatal hypoxicischaemic brain injury, 2004, *Brain 127, 2629-2635*

Wong RS & Cheong SK: Leukaemic stem cells: drug resistance, metastasis and therapeutic implications, **2012**, *Malays J Pathol 34(2), 77-88*

Yoon JS, Sung SH, Park JH & Kim YC: Flavonoids from Spatholobus suberectus, 2004, Arch Pharm Res 27(6), 589-592

Zhang Q, Mitasev B, Qi J & Porco JA Jr: Total synthesis of plukenetione A, 2010, J Am Chem Soc 132(40), 14212-14215

Zhang Q & Porco JA Jr: Total synthesis of (±)-7-epi-nemorosone, **2012**, *Org Lett 14(7)*, *1796-1799*

7. Anhang

7.1. Abbildungsverzeichnis

Abbildung 1: Makroskopische Aufnahmen von Propolis	18
Abbildung 2: Grundgerüst der Flavonoide	20
Abbildung 3: Klassifizierung der PPAP	21
Abbildung 4: Herkunft der verschiedenen Propolissorten	44
Abbildung 5: Reaktion des MTT-Assays	50
Abbildung 6: Plattenbelegung für das Strahlenexperiment	53
Abbildung 7: Vergleich von A549 WT und iCSC – frühe Phase der Resistenz-	
entstehung	64
Abbildung 8: Vergleich von PC3 WT und iCSC – verändertes Zellwachstum	64
Abbildung 9: Vergleich von LAN1 WT und iCSC	64
Abbildung 10: Globale Änderung der Kernfläche in LAN1 Neuroblastomzelllinien	65
Abbildung 11: Resistenzverhalten verschiedener Zelllinien	66
Abbildung 12: Wachstumsverhalten	67
Abbildung 13: Vergleich des Tumorgewichts von LAN1 WT und iCSC	68
Abbildung 14: Vergleich von PC3 WT- und iCSC-Primärtumoren im	
Xenograftmodell	68
Abbildung 15: Vergleich des Metastasierungspotenzials von PC3 WT- und	
iCSC-Zellen	69
Abbildung 16: Bestrahlungsresistenz von PC3 bei 20 Gray	69
Abbildung 17: Bestrahlungsresistenz von LAN1 bei 20 Gray	70
Abbildung 18: Expression von MDR1-mRNA in LAN1 WT und iCSC	71
Abbildung 19: RT-PCR von Stammzellmarkern bei LAN1 WT und iCSC	71
Abbildung 20: Expression des Stammzellmarkers p75 ^{NTR} bei LAN-1 WT und	
iCSC-Modellen	72
Abbildung 21: Proteinexpressionsanalyse von MDR1 in iCSC- und WT-Zelllinien	
mittels Dot Blot-Technik	74
Abbildung 22: Proteinexpressionsanalyse von MDR1 in iCSC- und WT-Zelllinien	75
Abbildung 23: Unterschiede in der Proteinexpression zwischen LAN1 iCSC	
und WT	76
Abbildung 24: Unterschiede in der Proteinexpression zwischen PC3 iCSC	
und WT	77
Abbildung 25: Proteinexpressionsanalyse von CXCR4 und CD117 bei LAN1 mittels	
Immunzytochemie (ICC).	78

Abbildung 26: Differenzielle Expression von CXCR4 und dessen Liganden SDF-1 α	
bei dem Prostatakarzinom PC3 WT und dessen iCSC Subklon	78
Abbildung 27: HPLC-Chromatogramm kubanischer Propolis	82
Abbildung 28: Toxizitätsprofil vs. Fraktionierung von PK1-Fraktionen	82
Abbildung 29: Toxizitätsprofil vs. Fraktionierung von PK1 Areal A	83
Abbildung 30: Toxizitätsprofil vs. Fraktionierung von PK1 A4	83
Abbildung 31: Analyse von PK1 Areal A mittels HPLC und Zytotoxizitätstests	
mit PC3 WT und iCSC	84
Abbildung 32: Analyse von PK1 Areal C mittels HPLC und Zytotoxizitätstests	
mit PC3 WT und iCSC	85
Abbildung 33: Analyse von PK1 pool Areal A mittels HPLC und Zytotoxizitätstests	
mit PC3 WT und iCSC	86
Abbildung 34: Analyse von PK1 pool Areal C mittels HPLC und Zytotoxizitätstests	
mit PC3 WT und iCSC	87
Abbildung 35: Reinsubstanzen PK1 A2-3 und PK1 pool A3-2	88
Abbildung 36: Reinsubstanzen PK1 pool A5-3 und PK1 pool A6	88
Abbildung 37: Reinsubstanzen PK1 A4-3 und PK1 A4-5	89
Abbildung 38: Reinsubstanzen PK1 A4-6 und PK1 A4-7	89
Abbildung 39: Reinsubstanzen PK1 pool CZ4-1-1 und PK1 CZ4-1-2	90
Abbildung 40: Reinsubstanzen PK1 pool CZ4-2 und PK1 pool CZ4-3	90
Abbildung 41: Reinsubstanzen PK1 pool CZ5 und PK1 pool CZ6	91
Abbildung 42: Reinsubstanzen PK1 C4-2-1 und PK1 C4-2-2	91
Abbildung 43: Dosis-Wirkkurven von Propolissubstanzen aus Areal A bei	
verschiedenen Zelllinien	92
Abbildung 44: Dosis-Wirkkurven von Propolissubstanzen aus Areal C bei	
verschiedenen Zelllinien	92
Abbildung 45: Strukturvorschläge für die Substanzen aus Areal A	97
Abbildung 46: Identifizierte Substanzen aus Areal B	98
Abbildung 47: Strukturvorschläge für die Substanzen aus Areal C	99
Abbildung 48: Inhibition der Taq-DNA-Polymerase	100
Abbildung 49: Inhibierung der humanen Topoisomerase I mit Substanz CZ6	101
Abbildung 50: Inhibierung der humanen Topoisomerase II mit Substanz CZ6	102
Abbildung 51: Tubulin-Polymerisierungsassay in Gegenwart von Propolissubstanzen	
aus dem Areal A	103
Abbildung 52: Tubulin-Polymerisierunsassay in Gegenwart von Propolissubstanzen	
aus dem Areal C	103
Abbildung 53: Einfluss der Substanzen A3-2, A4-6, CZ4-1-2 und CZ4-2 auf die	

MAK/ERK-Signaltransduktionskaskade in PC3 WT und iCSC	105
Abbildung 54: Zellzyklusanalyse mit HCT8 WT und A3-2	106
Abbildung 55: Zellzyklusanalyse mit HCT8 iCSC und A3-2	107
Abbildung 56: Zellzyklusanalyse mit PC3 WT und CZ6	107
Abbildung 57: Zellzyklusanalyse mit PC3 iCSC und CZ6	108
Abbildung 58: Schematische Darstellung einer CD44 ⁺ -Zelle und ihrer Metastasierung	
ins Zielgewebe	115
Abbildung 59: Achse CXCR4-Rezeptor und seines Liganden SDF-1 α	116

7.2. Tabellenverzeichnis

Tabelle 1: Verwendete Primer f	32
Tabelle 2: In dieser Arbeit verwendete primäre Antikörper	34
Tabelle 3: In dieser Arbeit verwendete konjugierte Antikörper	37
Tabelle 4: In dieser Arbeit verwendete Zytostatika	38
Tabelle 5: Verwendete Zelllinien	41
Tabelle 6: Protokoll zur Auftrennung von Propolis	45
Tabelle 7: Verwendete isokratische Systeme	45
Tabelle 8: System Areal A+C	46
Tabelle 9: Gradientensystem A2 und A2-3	46
Tabelle 10: Gradientensystem A3-2 und C4	46
Tabelle 11: Kreuzresistenz	66
Tabelle 12: Liste der untersuchten Proteine	73
Tabelle 13: Verschiedene Propolissorten mit IC ₅₀ -Werten	80
Tabelle 14: IC ₅₀ -Werte und Kreuzresistenz der Substanzen aus Areal A	94
Tabelle 15: IC ₅₀ -Werte und Kreuzresistenz der Substanzen aus Areal C	95
Tabelle 16: Zellzyklusdistribution nach Inkubation mit Reinsubstanz	108
Tabelle 17: Übersicht über die Experimente zur Identifizierung des Wirkmechanismus	
der antitumoral wirksamen Propolissubstanzen	109
Tabelle 18: Krebsstammzelleigenschaften	116

7.3. Abkürzungen

A. dest.	Destilliertes Wasser
Abb.	Abbildung
AK	Antikörper
ATP	Adenosintriphosphat
bp	Basenpaare
BrdU	Bromodeoxyuridin
BSA	engl.: Bovine serum albumin, (Rinderserumalbumin)
bzw.	beziehungsweise
ca.	circa
CHAPS	(3-[(3-Cholamidopropyl)dimethyammonio]-1-Propan-Sulfonat
CD	engl.: Clusters of differentiation
cDNA	engl.: Complementary DNA
CSC	engl.: Cancer stem cell
d.h.	das heißt
DIG	Digoxigenin
DMEM	engl.: Dulbeccos modified eagle medium
DMSO	Dimethylsulfoxid
DNS	Desoxyribonukleinsäure
dNTP	Desoxynukleosidtriphosphat
DTT	Dithiothreitol
EDTA	engl.: Ethylenedinitrilotetraacetic acid
	(Ethylendiamintetraessigsäure)
ELISA	engl.: Enyzme linked immunosorbent assay
HPLC	engl.: High performance liquid chromatography
FBS	engl.: Fetal Bovine Serum (Fötales Rinderserum)
fw	engl.: Forward (Vorwärts)
g	Erdbeschleunigung
GFP	engl.: Green Fluorescent Protein (Grün fluoreszierendes Protein)
GTP	Guanosintriphosphat
HEPES	4-(2-hydroxyethyl)-piperazin-1-ethan-Sulfonsäure
IC ₅₀	engl.: 50% inhibitory concentration (Halbmaximale inhibitorische
	Konzentration)

lgG	Immunglobulin G
kDa	Kilodalton
LB-Medium	Luria-Bertani-Medium
μΙ	Mikroliter
μΜ	Mikromolar
mg	Milligramm
Min.	Minute
ml	Milliliter
mM	Millimolar
mRNA	engl.: Messenger RNA
NaCl	Natriumchlorid
OD	optische Dichte
PAGE	engl.: Polyacrylamid gel electrophoresis
PBS	engl.: Phosphate buffered saline (phosphatgepufferte Salzlö-
	sung)
PCR	engl.: Polymerase Chain Reaction (Polymerase-Kettenreaktion)
PFA	Paraformaldehyd
RIPA	engl.: Radioimmunoprecipitation Assay
RNS	Ribonukleinsäure
rpm.	engl.: rounds per minute (Umdrehungen pro Minute)
RT	Raumtemperatur
rv	engl.: reverse (entgegengesetzt)
S	Sekunde
SDS	engl.: Sodium dodecyl sulfate (Natriumdodecylsulfat)
Strep	Streptomycin
Tab	Tabelle
TBE-Puffer	Tris-Borsäure-EDTA-Puffer
TCA	engl.: Trichloroacetic acid (Trichloressigsäure)
TE-Puffer	Tris-EDTA-Puffer
Tris-Puffer	Tris(hydroxymethyl)aminomethan-Puffer
TRP	engl.: Transient receptor potential
Tween20	Polyoxyethylenesorbitan 20
u.a.	unter anderem
UV	Ultraviolett

z.T.	zum Teil
Ø	Durchmesser
(w/v)	engl.: weight/volume, (Gewicht/Volumen)
(v/v)	engl.: volume/volume, (Volumen/Volumen)
O°	Grad Celsius

7.4. Danksagung

Diese Arbeit wäre ohne die Hilfe und Unterstützung einiger wichtiger Personen nicht zustande gekommen. Ich möchte mich an dieser Stelle bei diesen Menschen bedanken. Meinen Doktorvater Prof. Dr. Gunther Wennemuth danke ich für die Betreuung und Ermöglichung meiner Dissertation. Prof. Dr. Dirk Strumberg, Direktor der Hämatologie/Onkologie des Marienhospitals Herne, danke ich für die Möglichkeit, an seinem Institut zu arbeiten, wo ein Großteil der Experimente durchgeführt wurde.

Besonders bedanken will ich mich bei meinem Betreuer Dr. David Díaz-Carballo, der mich mit seinem großen Wissen, Erfahrung und Hilfe durch die Promotion begleitete. Auch das restliche Team unserer Arbeitsgruppe – bestehend aus Jacqueline Klein, Ulrike Dembinski und Dr. Sebastian Gustmann – hat mich mit Rat und Tat unterstützt. Zusammen mit den Mitgliedern der Arbeitsgruppen der Strahlenmedizin und der Gynäkologie am Medical Research Center des Marienhospitals Herne haben sie für eine kollegiale und hilfreiche Atmosphäre gesorgt.

Mein größter Dank gilt meinen Eltern, Geschwistern und meiner Familie, die mir mit ihrer Liebe, Geduld und Hilfe diesen Abschluss ermöglichten.

Diese Arbeit wurde durch die Dr.-Mildred-Scheel-Stiftung der Deutschen Krebshilfe e.V. unter der Projektnr. 108608 finanziell gefördert.

Lebenslauf

Persönliche Daten

Name:	Ali Haydar Acikelli
Geburtsdatum:	22.04.1981
Geburtsort:	Dortmund
Staatsangehörigkeit:	deutsch
Familienstand:	ledig
Studium	
10/2001 - 06/2008	Biologiestudium an der Ruhr-Universität Bochum
06/2007 – 06/2008	Diplomarbeit: Signaltransduktion von Geruchsrezeptoren menschlichen nicht neuronalen Zellen Gesamtnote Diplom: 1,9
Seit 06/2009	Dissertation mit dem Thema: "Isolierung und Charakteri- sierung antitumoral wirkender Substanzen aus karibischer Propolis mit Schwerpunkt auf Verbindungen mit spezifi- schen anti-Krebsstammzellen-Eigenschaften" am Lehr- stuhl für Anatomie der Universitätsklinik Essen unter Prof. Dr. Süleyman Ergün und später Prof. Dr. Gunther Wen- nemuth
Berufstätigkeit	
06/2000 - 12/2000	Aushilfe in der Möbelabteilung bei der METRO AG in

06/2000 - 12/2000	Aushilfe in der Mobelabteilung bei der METRO AG in
	Dortmund
11/2001 - 12/2001	Aushilfe als Kassierer in der METRO AG in Dortmund
08/2002 - 09/2002	Aushilfe in der Qualitätssicherung der Firma QRS für die
	Adam Opel AG in Bochum
04/2004 - 05/2004	Studentische Hilfskraft in der Abteilung für Hygiene-,
	Sozial- und Umweltmedizin der Ruhr-Universität Bochum
03/2005 - 05/2005	Studentische Hilfskraft am Lehrstuhl für Pflanzenphysiolo-
	gie der Ruhruniversität Bochum
07/2007 - 11/2007	Studentische Hilfskraft am Lehrstuhl für Zellphysiologie
	der Ruhr-Universität Bochum
11/2006 - 01/2007	Aushilfe in der Firma C&A in Bochum

03/2007 - 03/2007	Aushilfe in der Firma C&A in Bochum
12/2007 - 02/2008	Aushilfe in der Firma C&A in Bochum
09/2008	Aushilfe in der Firma C&A in Bochum
06/2009 - 07/2010	Stipendiat am Lehrstuhl für Anatomie der Universitätsklinik
	Essen
08/2010 - 07/2013	Wissenschaftlicher Mitarbeiter am Marienhospital Herne
	der Ruhr-Universität Bochum
Seit 08/2014	Wissenschaftlicher Mitarbeiter am Marienhospital Herne
	der Ruhr-Universität Bochum

Ausbildung

06/1987 – 06/1991	Holte Grundschule in Dortmund Lütgendortmund
08/1991 - 06/2000	Reinoldus und Schiller Gymnasium in Dortmund Dorstfeld
	Gesamtnote Abitur: 1,8

Wehr- und Zivildienst

02/2001-12/2001	Zivildienst in der Jugendfreizeitstätte "Come in" in Dort-
	mund Eving

Zusatzqualifikationen

Sprachkenntnisse: Englisch: fließend Türkisch: fließend Kurdisch: gut Latinum

EDV: Microsoft Office: Gute Kenntnisse Corel Draw: Grundkenntnisse Kenntnisse in diversen anderen Programmen, die in dieser Dissertation benutzt worden sind.
Erklärung:

Hiermit erkläre ich, gem. § 6 Abs. 2, f der Promotionsordnung der Math.-Nat. Fakultäten zur Erlangung der Dr. rer. nat., dass ich das Arbeitsgebiet, dem das Thema "Isolierung und Charakterisierung antitumoral wirkender Substanzen aus karibischer Propolis mit Schwerpunkt auf Verbindungen mit spezifischen anti-Krebsstammzellen-Eigenschaften" zuzuordnen ist, in Forschung und Lehre vertrete und den Antrag von Ali Haydar Acikelli befürworte.

Essen, den 11. Dezember 2014

Prof. Dr. Gunther Wennemuth

Erklärung:

Hiermit erkläre ich, gem. § 7 Abs. 2, c und e der Promotionsordnung der Math.-Nat. Fakultäten zur Erlangung des Dr. rer. nat., dass ich die vorliegende Dissertation selbständig verfasst und mich keiner anderen als der angegebenen Hilfsmittel bedient habe und alle wörtlich oder inhaltlich übernommenen Stellen als solche gekennzeichnet habe.

Essen, den 11. Dezember 2014

Ali Haydar Acikelli

Erklärung:

Hiermit erkläre ich, gem. § 7 Abs. 2, d und f der Promotionsordnung der Math.-Nat. Fakultäten zur Erlangung des Dr. rer. nat., dass ich keine anderen Promotionen bzw. Promotionsversuche in der Vergangenheit durchgeführt habe, dass diese Arbeit von keiner anderen Fakultät abgelehnt worden ist, und dass ich die Dissertation nur in diesem Verfahren einreiche.

Essen, den 11. Dezember 2014

Ali Haydar Acikelli