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Abstract

Reliable simulation techniques for the description of elastic deformation processes in solid
mechanics are nowadays of great importance. A reasonable model should take nonlinear
kinematics and a nonlinear material law into account and should coincide with Hooke’s
law under small loads. In addition, a numerical method should be able to simulate com-
pressible as well as (almost) incompressible material behavior. The calculation of good
stress and displacement approximations is often of particular interest.

Therefore general mixed least squares finite element methods in the context of finite hyper-
elasticity are considered in this work. They are based on the conservation of linear momen-
tum and inverse stress - strain relations and will be used for the simulation of homogeneous
isotropic and homogeneous transverse isotropic material behavior. For the minimization
of the nonlinear least squares functionals in finite dimensional spaces a Gauss- Newton
framework is applied.

In the case of a specific homogeneous isotropic Neo- Hooke model an analysis is provi-
ded which proves reliability and efficiency of the nonlinear least squares functional as
a- posteriori error estimator. The analysis remains valid in the incompressible limit and
therefore the Poisson locking effect is excluded.

The analytical results for the Neo- Hooke model are used to propose an algorithm for
model adaptivity which is based on the model of linear elasticity and the Neo-Hooke
model. The algorithm automatically decides in which subdomain the linear model should
be locally substituted by the Neo- Hooke model.

Two- and three - dimensional numerical examples for compressible and fully incompressi-
ble materials are given in order to illustrate the potential of our method. Here next - to-
lowest - order Raviart - Thomas elements for the stress approximations are combined with
conforming piecewise quadratic elements for the displacement approximations. A signifi-
cant improvement of stress approximations in comparison to conventional discretization
methods is demonstrated. In examples with corner or edge singularities almost optimal
convergence rates for the nonlinear least squares functional using adaptive refinement
strategies are achieved.

Key words:
first - order system least squares, mixed finite elements, Raviart - Thomas elements, Gauss -
Newton algorithm, finite hyperelasticity, transverse isotropy, (model-) adaptivity






Kurzzusammenfassung

Zuverladssige Simulationstechniken zur Beschreibung von elastischen Verformungsprozessen
in der Festkorpermechanik sind heutzutage von grofier Bedeutung. Ein sinnvolles Modell
sollte nichtlineare Kinematik und ein nichtlineares Materialgesetz beriicksichtigen und
mit dem Hookeschen Gesetz unter kleinen Belastungen iibereinstimmen. Ferner sollte ein
numerisches Verfahren sowohl kompressibles als auch (nahezu) inkompressibles Material-
verhalten simulieren kénnen. Die Berechnung von guten Spannungs- und Verschiebungs-
approximationen ist oftmals von besonderem Interesse.

Aus diesen Griinden werden in dieser Arbeit allgemeine gemischte Least - Squares Fini-
te- Element - Methoden im Rahmen der finiten Hyperelastizitdt betrachtet. Sie basieren
auf der Impulserhaltung und inversen Spannungs- Verzerrungs- Relationen und werden
zur Simulation homogen isotropen und homogen transversal - isotropen Materialverhaltens
benutzt. Fiir die Minimierung der nichtlinearen Least- Squares Funktionale in endlichdi-
mensionalen Rdumen wird ein Gaul- Newton - Verfahren verwendet.

Im Falle eines speziellen homogen isotropen Neo - Hooke Modells wird eine Analysis bereit-
gestellt, welche die Zuverlissigkeit und Effizienz des nichtlinearen Least- Squares Funk-
tionals als a-posteriori Fehlerschétzer beweist. Die Analysis bleibt gleichméfig giiltig im
inkompressiblen Grenzfall womit der Poisson - Locking Effekt ausgeschlossen ist.

Die analytischen Resultate fiir das Neo-Hooke Modell werden benutzt um einen Algo-
rithmus zur Modelladaptivitiat vorzuschlagen, welcher auf dem linearen Elastizitdtsmodell
und dem Neo - Hooke Modell basiert. Der Algorithmus entscheidet automatisch in welchem
Teilgebiet das lineare Modell durch das Neo - Hooke Modell lokal ausgetauscht werden soll.
Zwei - und dreidimensionale numerische Beispiele fiir kompressible und inkompressible Ma-
terialien werden betrachtet, um das Potenzial unserer Methode zu verdeutlichen. Hierbei
werden Raviart- Thomas Elemente zweitniedrigster Ordnung fiir die Spannungsapproxi-
mationen mit konformen, stiickweise quadratischen, Elementen fiir die Verschiebungsap-
proximationen kombiniert. Eine signifikante Verbesserung von Spannungsapproximatio-
nen im Vergleich zu herkémmlichen Diskretisierungsmethoden wird nachgewiesen. In Bei-
spielen mit Eck- oder Kantensingularititen werden unter Verwendung adaptiver Verfei-
nerungsstrategien nahezu optimale Konvergenzraten fiir das nichtlineare Least - Squares

Funktional erreicht.

Schliisselworter:

Least - Squares Finite- Element - Methoden basierend auf Systemen erster Ordnung, ge-
mischte Finite Elemente, Raviart - Thomas Elemente, Gaufl - Newton - Verfahren, finite Hy-
perelastizitit, transversale Isotropie, (Modell -) Adaptivitét
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1 Introduction

1.1 Motivation

Numerical simulations and methods play a major role in many economical and industrial
applications. For instance in insurance companies such methods are used for the simula-
tion of natural catastrophes (e.g. earthquakes). Other applications for numerical methods
can be found in mechanics, biomechanics, medicine and engineering. In all these fields the
so-called Finite Element Method (abbrev. FEM) is an important tool.

In solid mechanics, if materials under load are considered, one generally distinguishes
between plastic and elastic deformations. Plastic deformations are irreversible (e.g. crash
tests in car manufacturing) whereas elastic deformation processes are reversible (e.g. small
elongation of a spring). Reversible means that if one applies a load on a body, it will be
firstly deformed and if the force does not act anymore, the body turns back into its origi-
nal state. This work focuses on elastic deformations. Physical experiments show that the
frequently used linear model (Hooke’s law, cf. [Alt12]) is only valid up to a certain load.
Therefore nonlinear models which describe the material behavior better for larger loads
and correspond to the linear behavior of materials for small loads should be used.
Different discretization methods within FEM can be used to solve such problems. Ge-
nerally one is interested in the primary variable, the deformation ¢ or equivalently the
displacement u. Additionally there is often a particular interest in secondary variables,
for instance occurring strains and/or stresses. With this in mind one could distinguish
discretization methods roughly into three categories:

The first and probably simplest one approximates only the primary variable u in a stan-
dard Galerkin framework (cf. [BSO§|, [Bra07] and [HR13]) and is therefore often called
Galerkin or pure-displacement approach. In the context of this discretization method,
using standard conforming piecewise polynomial elements, an undesirable effect has been
observed in the past. It is called the Poisson locking effect and occurs if one combines
almost incompressible materials, where the Lamé constant A is very large, with a lower
order polynomial in the FEM ansatz space. In this case the solution for the displacement
within the Galerkin approach deteriorates. From a mathematical point of view Poisson
locking occurs if the constant in the error estimate depends on A and grows in the case
A — oo (cf. [Bra07] and [BS08]). This problem cannot be solved by simple mesh refine-
ment. However, there are some methods to overcome this problem. For instance one can
use nonconforming finite elements (cf. Section 11.4 in [BS08]) or higher order conforming
polynomial ansatz spaces. In [BS92| it is shown that one can eliminate the locking effect
using at least piecewise polynomials of degree 4 in two dimensions and piecewise polyno-
mials of degree 8 in three dimensions. Another problem that occurs by using the Galerkin
approach is that the conservation of linear momentum is not satisfied very well in many

cases.
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The second category considers next to the displacements further variables, usually cal-
led mixed methods. In the field of linear elasticity common mixed methods are two - field
methods for the approximation of displacements and stresses (Hellinger - Reissner princi-
ple) and three - field methods for the approximation of displacements, stresses and strains
(Hu - Washizu principle), see [BraQ7] for an overview. Other possible mixed methods are the
so- called displacement - pressure approach (cf. [BBF13] for linear elasticity, [ABadVLR05]
and [ABadVLRI10] for nonlinear elasticity). In this approach the displacement u and ad-
ditionally a scalar - valued pressure - like variable p are used as variables. A further mixed
method for nonlinear hyperelasticity, based on the Hu- Washizu principle, was developed
in [SWB11].

Mixed methods can overcome the Poisson locking effect and are well-suited for exact
conservation of linear momentum. Nevertheless the main disadvantage is that one has to
satisfy a discrete inf - sup - condition, also called Ladyzenskaja- Babuska- Brezzi condition
(abbrev. LBB condition), in order to obtain a stable formulation. This reduces the flexi-
bility in choosing finite element spaces.

Another important question in nonlinear elasticity is the determination of bifurcation
points, i.e. finding critical load values where a second solution of the problem occurs. Such
situations are physically reasonable in nonlinear elasticity (cf. examples of non - uniqueness
in [Wri0§] and [Cia88]). In [ABadVLR10] it was shown for some concrete examples that
some combinations of finite element spaces for the displacement - pressure approach fail
in the approximation of critical load values. Moreover, it was shown that the exact sa-
tisfaction of the incompressibility constraint is very important in order to achieve good
approximations.

Besides the displacement one is often interested in occurring stresses. Generally, using the
Galerkin approach (respectively the displacement - pressure approach), one can calculate
stress approximations as post - processing from displacement approximations (respective-
ly from approximations of displacements and the pressure - like variable). This procedure
leads to undesirable stress oscillations in many examples as we will see in this work.

The third category considers the so-called Least Squares Finite Element Method (ab-
brev. LSFEM). This method extends the common least squares method used in statistical
regression analysis or data fitting to partial differential equations. An introduction into
LSFEMs can be found for instance in [Jia98] and [BG09]. The method has in general some
advantageous properties:

It has a unified formulation for all types of partial differential equations (elliptic, parabo-
lic, hyperbolic) making it applicable to a wide array of problems. The stiffness matrices
that occur in the linear systems of equations are in general symmetric and positive defi-
nite which is advantageous respectively necessary for iterative solvers, e.g. the conjugate
gradient method. Another advantage is that the choice of finite element spaces is not re-

stricted to the inf - sup - condition in contrast to mixed methods. Moreover, this method



1.2 Topics and outline of the work

automatically provides a candidate for an a- posteriori error estimator which one can use
for adaptive mesh refinement. Local mesh refinement is generally desirable and often of
great importance in numerical simulations.

In the context of fluid mechanics the least squares finite element method was applied suc-
cesfully in recent works, e.g. in [CW09] for viscoelastic fluids, in [ABLT11] for two - phase
flow using Navier - Stokes equations in both subdomains and for two - phase flow in [MS11]
and [Miin12] using Stokes and Darcy flow in the different subdomains.

In the context of linear elasticity LSFEM was succesfully applied in [CS03], [CS04],
[CKS05], [SSS10] and [SSS1I]. The main differences in these works are the different weigh-
ting of the stress - strain relation and that the symmetry of the stress tensor is either taken
into account or not as additional constraint in the least squares functional. For all of these
approaches analytical results have been given.

To our best knowledge there is only one work in the context of LSFEM dealing with
nonlinear elasticity and providing a detailed analysis, namely [MMSWO0G6]. In this work a
St. Venant - Kirchhoff material is considered and norm - equivalence of the linearized least
squares functional to an appropriate norm in the case of pure displacement boundary con-
ditions is proven. In [Sch09] some numerical results for finite elasticity, using a polyconvex
stored energy function corresponding to a Neo - Hooke model and a LSFEM approach, are
given without providing a mathematical analysis. Besides the conservation of momentum
the usual stress- strain relation, without any weighting, is considered in the least squares
functional in that work.

Typically one is interested in methods which can handle very general problems. In par-
ticular in solid mechanics the methods should cover compressible, almost incompressible
(also called quasi-incompressible) and fully incompressible materials. In numerics the ca-
se of fully incompressible materials is the most difficult case, but of great importance (cf.
[ABadVLR10] and [ADH™14]).

1.2 Topics and outline of the work

This work extends the idea of [CS04] for linear elasticity to nonlinear problems in solid
mechanics. The first Piola - Kirchhoff stress tensor P as secondary variable and the displa-
cement u as primary variable are used in the proposed method. The considered models
include nonlinear kinematics as well as nonlinear stress- strain relations for a given hyper-
elastic material. All of the used stored energy functions in this work satisfy the property of
polyconvexity which is an important tool in the existence theory of Ball for the Galerkin
approach (cf. [Bal77]).

The outline of this work is as follows:

In Section [2] we introduce essential features of functional analysis. Afterwards we give a

brief introduction into the theory of mathematical elasticity including an introduction to
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different stress and strain tensors, conditions for incompressibility, material - dependent
and -independent properties, hyperelasticity and polyconvexity. General representation
formulas for homogeneous isotropic materials will be derived. As specific models throug-
hout the whole work we consider a Mooney - Rivlin and an associated Neo - Hooke model.
Conditions to obtain consistency of the considered nonlinear model with the linear one
are derived and are applied to the Mooney - Rivlin model. Polyconvexity is also proven
for this model (cp. [Sch10]). At the end of the second section some suitable finite element
spaces are introduced.

In Section 3| we explain the idea of the work [CS04] in more detail. The subsequent non-
linear extension is based on two partial differential equations, the conservation of linear
momentum and an inverse stress-strain relation. The main motivation for inverting the
stress - strain relation is the suitability to consider (quasi-)incompressible materials, simi-
lar to the linear case. We derive general least squares finite element methods for homoge-
neous isotropic materials.

We focus in particular on the Neo - Hooke model. We will see that the consideration of fully
incompressible materials, i.e. A = 00, is possible in this model and the Poisson locking ef-
fect does not occur. Moreover, we show that the incompressibility constraint for the strain
tensor according to the pair (P, u) is exactly satisfied. An analysis for the nonlinear pro-
blem will be provided. In particular we show that the nonlinear least squares functional is
a reliable and efficient a- posteriori error estimator which one can use for adaptive refine-
ment strategies. This result also implies an a- priori estimate for the error. We show that
the approximation of the Kirchhoff stress tensor becomes symmetric in convergence as long
as the nonlinear least squares functional converges to zero. We also obtain well - posedness
of the corresponding linearized problems in Hr, (div; Q)3 x H%D (2)3. The whole analysis
is valid under some regularity assumptions and for solutions sufficiently close to the origin.
For the minimization of the nonlinear least squares functional in finite dimensional spaces
we use a Gauss - Newton scheme which solves the nonlinear minimization problem through
a sequence of linearized problems.

At the end of the section we discuss several advantages and disadvantages of our approach
in comparison to the Galerkin and the displacement - pressure approach.

Section [] deals with the extension of the proposed least squares finite element approach
for homogeneous isotropic materials to anisotropic materials. Suitable models are specified
and the special case of transverse isotropic materials is studied in more detail. These ma-
terials are very important in engineering, e.g. in the context of fiber reinforced materials.
In this application one inserts a strong material into a weaker one such that the material
has a stronger load capacity in the direction of fibers. In this work a suitable nonlinear
model, based on the explanations in [Sch10] and [BSNI0], is derived in such a way that
it is consistent with an appropriate linear one. Moreover, for a special choice of material

parameters, we show that this model also covers the previous considered full isotropic case.
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In Section [5| we use the analysis of Section [3|in the context of model adaptivity. We show
under some suitable assumptions that it is possible to measure the quality of solutions of
linear elasticity with respect to the Neo- Hooke model. We establish an algorithm which
uses the model of linear elasticity as simple model at the beginning and adjusts the mo-
del appropriately to a more complex one, more precisely to the Neo- Hooke model in the
subsequent steps, if necessary. This approach leads to locally nonlinear models which tend
to describe the material behavior better.

In Section [6] we illustrate the performance of our method in two- and three - dimensional
examples. We use next - to - lowest - order Raviart - Thomas elements for the approximation
of the stresses and standard conforming piecewise quadratic polynomials for the appro-
ximation of the displacements. We show that our proposed method produces very good
stress approximations without any unphysical oscillations. We obtain almost optimal con-
vergence rates using adaptive refinement strategies. We will see that the term of linear
momentum is also conserved quite well and we obtain an improved convergence rate for
the balance of momentum in the L?(£2) - norm, similar to the results in [SSS10] and [SSST1]
for linear elasticity. The displacement and stress approximations obtained with our pro-
posed least squares formulation are compared with the results of the Galerkin method for
compressible materials and the displacement - pressure approach for fully incompressible
materials. The numerical experiments also include an example for the calculation of criti-
cal load values, some results for transverse isotropic materials and some results for model
adaptivity.

In Section [7] a short conclusion, summarizing the main results, is given. Open questions

which arose during this work are specified for further research in the outlook.



2 Preliminaries

In this chapter the essential tools for this work are provided, briefly speaking the funda-
ment is presented. It contains basics in functional analysis and a general introduction into
(nonlinear) elasticity theory. Moreover we consider a special class of models and introduce

some finite element spaces at the end of this chapter.

2.1 Basics in functional analysis
2.1.1 Fréchet and Gateaux derivative

Fréchet and Gateaux derivatives are important tools in functional analysis. They generalize
the total and directional differentiability of functions g : R — R™ to operators f : V — W
between two arbitrary normed spaces V' and W. In the following these derivatives will be
introduced based on Section 5.3 in [AH09].

Let K be a subset of an arbitrary normed space V with norm || - ||y and f: K CV — W
an operator, which maps an element of V' into an element of a normed space W with norm
| llw. Further we assume that v is an interior point of K, i.e. there exists r > 0 such that
the ball B(ug,r) := {u € V : ||u — ug|ly < r} centered at up with radius r is a subset of
K. As a common abbreviation we use £(V, W) in the following as the set of all continuous

linear operators from V to W.

Definition 2.1: (Fréchet derivative)
The operator f is Fréchet differentiable at ug € K if and only if there exists A € L(V, W)
such that

fuo +v) = f(uo) + A(v) + o([[v]lv)

for v — 0, where o(+) describes the common little o-notation (see Appendix |A)).

The map A is called the Fréchet derivative of f at ug and we write A = 9f(up). If f is
Fréchet differentiable at all points Ky C K, f is called Fréchet differentiable on the set
K¢ with derivative 0f : Ko C V. — L(V,W).

Remark 2.2:

(a) The Fréchet derivative Jf(ug) is unique (cf. Section 5.3 in [AHO9] below Definition
5.3.1).

(b) If f: K CV — W is m times Fréchet differentiable on K and each derivative is
continuous, we say that f is m times continuously differentiable on K and denote it
by f e C™(K,W).

Definition 2.3: (Gateaux derivative)

The Gateaux derivative f’(ug)[v] of the operator f at ug in an arbitrary direction v € V'
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is defined as

f/(U())[U] — }% f(UO + tvt) - f(u(]) — %f(u(] +tv)|t:0’

as long as the limit exists. If the limit exists for all elements in Kg C V', we say that f is
Gateaux differentiable on Ky with Gateaux derivative f’: Ko C V — L(V,W).

Lemma 2.4: (Relation between Fréchet and Gateaux derivative)

(a) If f is Fréchet differentiable at ug, then f is also Gateaux differentiable at ug and it
holds

0f (uo)(v) = f'(uo)[v] Vv e V\{0}. (2.1)

(b) If f is Gateaux differentiable at uy and the Gateaux derivative is continuous at uyg,
then f is also Fréchet differentiable at ug.

Proof:

(a) Due to the assumption that f is Fréchet differentiable at wg it follows by Definition
2.0 that f(uo 4+ v) = f(uo) + 0f(uo)(v) + o(||Jv|lv) for v € V with v — 0. We split an
arbitrary v € V' into v = t o with ¢ := ||v|ly and 0 := IIlev' With this choice it holds

|0]lv = 1 and we obtain f(ug + t0) = f(uo) + 0f (uo)(tv) + o(|t|) for t — 0, which is

equivalent to

lim f(uo +t0) — f(uo) — t0f (uo)(v) _ 0% Tim f(uo +t0) — f(uo)
t—0 ]t’ t—0 t

= 0f(uo)(0),
i.e. Of(up)(0) = f'(up)[0] V0 € V '\ {0}. The statement follows immediately.

(b) see proof of Theorem III. 5.4 (c) in [Wer(5]

Remark 2.5:

If we know that a function f is Fréchet differentiable we know by this lemma that it is also
Gateaux differentiable. Furthermore we know that both derivatives are unique and coincide
via . Under the assumption of Fréchet differentiability it is sufficient to determine the
Gateaux derivative, because then the Fréchet derivative must be given through equation
. Due to this reason we are determining in this work often only the Gateaux derivative
of a function f, because the notation is more pleasant and the Gateaux derivative is in

general simpler to determine.

For the derivations in the following sections some calculation rules for the derivatives are

needed. These rules are taken from [AHQ09] in a slightly different notation.
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Definition 2.6: (partial Fréchet and Gateaux derivative)

Let U, V, W be Banach spaces and f : K1 x Ko C U xV — W an operator on the product
space U x V. Assume that (ug,vg) is an interior point of Ky x Kj.

For fixed vy € K2, f(u,vp) is a function of u € K;. Then we call 9, f(ug,vo) € LU, W)

the partial Fréchet derivative with respect to u of f(u,vg) at wg, if it exists, and it holds
by Definition

f(uo +ur,v0) = f(uo,v0) + Ouf(uo,vo)(u1) + of[Jurl[v), w1 — 0.
The expression

£ (o, v0) ] = i L0+ P, 00) = F (o, o)

Vup € U,
t—0 t

if the limit exists, is called partial Gateaux derivative of f with respect to u at ug.

For fixed ug € Ki, f(ug,v) is a function of v € Ks. Then we call 0, f(ug,vg) € L(V,W)
the partial Fréchet derivative with respect to v of f(ug,v) at vp, if it exists, and it holds
by Definition [2.1

f(uo,vo +v1) = f(uo, v0) + O f(uo, vo)(v1) + o(|[v1[v), v1 — 0.
The expression

£ (w0, v0)[on] = lim L0 ¥0 1) = F(uo, vo)

Vv €V,
t—0 t

if the limit exists, is called partial Gateaux derivative of f with respect to v at vy.
Remark 2.7:

a) If f: K1 x Ko CU xV — W is Fréchet differentiable at (ug,vg) € K1 x Ko, then the
partial Fréchet derivatives 0, f(ug,vo) and 0, f (ug, vo) exist and it holds

0 f (uo,vo)(u1,v1) = Oy f(uo, vo)(u1) + O f(ug, vo)(v1) (2.2)
for all u; € U and v; € V (see Proposition 5.3.15 in [AHQ09]).

b) If f: K1 x Ko C U xV — W is Gateaux differentiable at (ug,v9) € K1 x Kj, then the

partial Gateaux derivatives f/ (ug,vo)[u1] and f (up,vo)[v1] exist and it holds
f'(uo, vo)[ur, v1] = fi,(uo, vo)[wr] + f; (uo, vo)[v1]
forall u; € U and v € V.

c) If conversely 0, f(u,v) and 9, f(u,v) exist in a neighborhood of (ug,vy) and are con-
tinuous at (ug,vp), then f is Fréchet differentiable at (ug,vp) and the equation ([2.2)
holds (see Proposition 5.3.15 in [AHQ09]).
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d) These results can be generalized in the same way for operators f : Kj x ... x K, C
Vi x...xV, =- W with Banach spaces V1,...,V,, W.

Proposition 2.8: (Linearity of the Fréchet and Gateaux derivative)
Let V, W be two normed spaces and f,g: K C V — W Fréchet or Gateaux differentiable
at ug € K. Then for any scalars «, 8 the operator af + Bg is Fréchet differentiable,

respectively Gateaux differentiable, at ug.
For the Fréchet differentiable case it holds

O af + Bg)(uo) = adf(uo) + BIg(uo).

For the Gateaux differentiable case it holds (a.f + 89) (uo)[v] = af’ (uo)[v] + B¢ (up)[v] for
allv e V.

Proposition 2.9: (Product rule for the Fréchet and Gateaux derivative)
Let V, V1, V5 and W be normed spaces. If f: K CV — Vi and g : K CV — V5 are Fréchet
or Gateaux differentiable at ug € K, and b : V4 x Vo — W is a bounded bilinear form,

then the operator h(u) := b(f(u),g(u)) is Fréchet differentiable, respectively Gateaux
differentiable, at ug.
For the Fréchet differentiable case it holds

Oh(uo)(v) = b(9f(uo)(v), g(uo)) + b (f(uo), dg(uo)(v)) Vv eV.

For the Gateaux differentiable case it holds

W (uo)[o] = b (£ (uo) o], gluo)) +b (£(uo). g/ (wo)[e]) Vv e V.

Proposition 2.10: (Chain rule for the Fréchet and Gateaux derivative)

Let U, V,W be normed spaces and f: K CU =V, g: L CV — W given operators with
f(K) C L. Assume that v is an interior point of K, f(up) is an interior point of L.

If Of (up) and Ag(f(up)) exist as Fréchet derivatives, then the operator

h(u) := g(f(u)) = (g o f)(u) is Fréchet differentiable at ug with

Oh(ug) = 9g(f(u0))(0f (uo))-

If the Gateaux derivative f’(ug) and the Fréchet derivative Og(f(ug)) exist, then the

operator h is Gateaux differentiable at ug with

W (uo)[v] = o/ (F(uo)) [f (w) o] Vv e V.

The following theorem, which guarantees local invertibility, can be found for instance in
Theorem 1.2-4 in [Cia88] or in Section VII in [AE06b] (Theorem 7.3). This theorem will be

of great importance for the derivation of our finite element approach in nonlinear elasticity.
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Theorem 2.11: (Local inversion theorem)
Let V, W be two Banach spaces, K5 an open subset of W with as € Ko, g: Ko CW =V

an operator satisfying

® gc Cl(K27V>7
e Jg(asz) is an isomorphism from W to V.

Then for a; := g(az2) there exist open subsets O1, 02 of the spaces V,W with (aj,a2) €
01 X O3, Oy C K5, and an implicit function f: Oy C V — O C W such that

(i) {(z1,22) € O1 x Oz : 21 = g(x2)} = {(x1,22) € O1 X O : 3 = f(x1)}
(i) Oy = f(O1) and f: 01 CV — Oy C W is a C* - diffeomorphism
(iii) The Fréchet derivative 0f : O1 C V — L(V, W) can be determined via

8f(.731) = 8g(f(x1))’1 Va1 € O1.

Proof:
see Theorem 7.3 in [AEOGD] O

Remark 2.12:

Theorem guarantees under some regularity assumptions the existence of a local inverse

and provides a general formula to calculate the derivative of the inverse g~! := f with the
help of the inverse of the derivative of g. For the Gateaux derivative of the inverse g~! we

obtain the formula

(7)) (1)[h] = ¢'(g7 (=1)) " [h] Va1 €Oy and h € V.

2.1.2 The Hilbert space VV = R"*™

One of the basic vector spaces in this work is the vector space V' = R™*™ of all n x m matri-
ces over R equipped with the standard addition of matrices and the scalar multiplication.
On this vector space it is usual to define the inner product

A:B:= tr(ATB) = Z Z ai;bi;, A,B¢ R™*™, (2.3)
i=1j=1

n m 2
with induced norm |A| := (A : A)l/2 =1 > > a%) . This norm is often called Frobe-
i=1j=1
nius norm in literature, is submultiplicative and consistent with the Euclidean norm. It

is also well known that this vector space with inner product defined by (2.3) is a Hilbert
space.

Obviously for vectors u,v € R" the inner product u : v is exactly the Euclidean inner

10
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1
product, i.e. u-v := ulv = i wiv; = u: v, and |v| = <ivf) i is the length of the
vector v respectively the Euclzigelan norm. =

It is simple to verify that the definition of A : B above satisfies the three axioms (linearity,
symmetry, positive definiteness) of an inner product. This Hilbert space, equipped with

the inner product and the induced norm, is indispensable for elasticity theory.

2.1.3 Gradient of f: K C R™"™ > R

If an operator f: K C V — W is Fréchet differentiable on K we have 0f : K — L(V, W)
by Definition For W =R we get 0f(ug) € L(V,R) for all ug € K, i.e. df(up) is in the
dual space of V.

If V is additionally a Hilbert space with inner product (-,-)y, we know by the Riesz
representation theorem (see Theorem 2.4.2 in [BS08]) that there exists a unique u € V
with

Af (ug)(v) = (u,v)y YveV.

For the Hilbert space V = R™ ™ with inner product defined by (2.3) and an operator
f: K CR™" —» R A~ f(A), that is Fréchet differentiable on K, we therefore get a
unique matrix da f(A) € R™*™ such that

Of(A)(E) = daf(A): E VE € RV, (2.4)

In the next theorem we will show that the entries of the matrix da f(A) are exactly the

partial derivatives %(A), where a;; denotes the entries of the matrix A. It becomes
ij

clear that the matrix da f(A) is the extension of the usual gradient Vf in R™ to R™*"™.

Another common notation for the gradient is 81(;(:). Both notations are used in this work.

Altogether we have a relation between the Fréchet derivative and the gradient of such an

operator.

Theorem 2.13: (Gradient in R™*"™)
Let f: K C R"™™ — R be Fréchet differentiable in A € K and let E(2) € R"™ ™ he the

matrix with exactly one nonzero element in the i-th row and j - th column, more precisely

(E(m ))ij = 1 and everywhere else zero.
With the partial derivatives

Of(A) . f(A+tEW)) — F(A) i)
aaij T tlg% t =/ (A) [E ! :|
it holds
OafA), = U B cicni<jm

11
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Proof:

With the definition of E(*) we can decompose an arbitrary matrix E € R™ ™ into the

sum E = Y 3 ¢;;E(), where e;; denotes the entry of E in the i-th row and j-th
i=1j=1
column. Due to Lemma (a) it holds Of(A) (EG:Y) = f/(A) [EGD)] = 97 (A). With

80,7;]'

the equation (2.4)) and the definition of the inner product in R™*™ we get

Oaf(A): B =0f(A)(E) = 0f(A) | YD EWey; | =3 0f(A) (EW)) e,

i=1lj=1 i=1j=1
n m
of(A
DO TEEERE
— — Oayj
1=15=1
for all E € R™™ and a matrix M with entries m;; = agé‘:_‘), i.e. the statement holds.

2.1.4 Function spaces

The basic function spaces dealing with partial differential equations are the so called
Sobolev spaces W*P(Q). A detailed introduction is for example given in [AF03]. The
Sobolev spaces are based on the Lebesgue spaces LP(f2). In this work N := {0,1,2,...}
denotes the set of all nonnegative integers and {2 a nonempty, open, bounded and connected
subset in R%.

For 0 < p < oo we define the function space

3=

LP(Q) := {v : Q@ — R|v measurable on Q, |[v||rrq) = /\v(a:)|p dr | <oo}.
Q

For p = oo we define the function space
L>(Q) := {v: Q — R|v measurable on €, |[v][e~(q) < oo}

with [|[v]| e () := esssup |[v(x)| ;==  inf sup |v(x)|.
=R} meas(Q’):0$€Q\Q/
More precisely we have to note that each of these function spaces consist actually of

equivalence classes of functions, where a class is made of functions that differ from each
other only on a subset of ) with measure zero, i.e. these functions are equal almost
everywhere on 2. For p € [1,00], LP(Q2) is a Banach space (cf. Theorem 2.16 in [AF03]).
L?(9) is even a Hilbert space (cf. Corollary 2.18 in [AF03]) with inner product

(u,v)r2(0) = /u(:x)v(:x) dx for u,v € L*(Q).
Q

For 0 < p < 1 the mapping ||| zr(q) : LP(£2) — R > is no longer a norm, since the triangle

inequality does not hold in this case. However it is still a quasi-norm.

12
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nxm

For vector - valued functions u € LP(2)" or matrix - valued functions A € LP(2) , l.e.

each component of these functions are in LP(2), we define the norms

1

1
lll e == (Zuuznm) Al = [ 3 gl

i=1 i=1j=1
for p € [1, 00).
For u € L*(2)™ and A € L>(Q)"*"™, i.e. p= oo, we define the norms

ey i= max ullieo, [Alze@ = max  max fagleo.

For the case p = 2 we can also define an inner product for vector - valued functions u,v €
L?(2)™ and matrix - valued functions A, B € L?(Q)"*™ as

n

(W, v)r2) = Z(Uivvz‘)m(g), (A,B)r2q) := Z Z(aijabij)w(ﬂ)-

i=1 i=1j=1

Remark 2.14: (Alternative definition of LP({2)- norms for matrix - valued func-

tions)

For matrix - valued functions A € LP(2)"*" one can easily prove that

1
P
HAuLp(ms(/ rA<a:>|de) <Al pe L),

1Al 0) S esssup|A@)] S [ AllL=@, P =00,
z€Q

ie. Aisin LP(Q)"*™ if and only if |A|is in LP(2), p € [1, o0]. Here < stands for inequalities

up to positive constants. Hence an alternative definition of the LP({2)-norms in form of
HA”LP(Q) = |||A|||LP(Q)7 p € [1,00],

for matrix - valued functions A € LP(Q2)™*™ is possible and both definitions are equivalent.

Remark 2.15: (Relation between the inner products A : B and (A, B);2(q))
Let A,B € L?(Q)™ ™ be two matrix- valued functions. Then it holds

(A,B)r2( ZZ (aij, bij) 120 /ZZawbl]dx—/A B dx

i=lj=1 i=1j=1
and therefore
1 1
1 2 9 2
Al L2(0) = (A A) o) = (/QA : Adm) = (/Q |A| da:)
1
The relations (u,v)r2q) = [ou : vdz = [qulvdz and |[uf 2@ = ([ [ul*dz)? for

vector - valued functions u, v € L?(Q)" are an immediate consequence.

13



2 PRELIMINARIES

With the help of the Lebesgue spaces we can now define the Sobolev spaces WP (©2) and
additionally for vector - valued functions we can introduce the function space WP?(div; ()
which generalizes the function space H(div; Q) (cf. [BBF13]). These spaces are based on
the terms ,weak derivative* and , weak divergence“. A more detailed introduction into
weak derivatives, which extend the term of the (classical Fréchet) derivative and is crucial
for the definition of the function spaces below, can be found for example in Chapter 7
of [AHQ9]. In the following definition we have used the fact that LP(Q2) is a subspace of
locally integrable functions (cf. Corollary 2.15 in [AF03]).

Definition 2.16: (Weak derivative and weak divergence in L”({2))
Let 1 <p< oo a = (a,a2,...,0q) € N? be an arbitrary multi-index of order d with
length |o| = Z aj € N.

j=1
A function w € LP(Q) is called o'* weak derivative of v € LP(Q) if

/Qv(x)aa (x)dz = ( |°‘|/ dz, e C(Q).

In this case we write w = 9%v.

Consequently a function @ € LP(Q) is called weak divergence of v € LP(Q)? if

[ v@) Vo) do =~ [ a@)pla)ds, ¢ e CF@).
Q Q
In this case we write w = divv.

Definition 2.17: (Sobolev spaces W*?(())
Let k € N, p € [1, 0] and o = (a1,9,...,aq) € N? be an arbitrary multi-index of order

d with length |o| = Z a; € N. Then we define the Sobolev space W*?(Q) as
j=1

WEP(Q) := {v € LP(Q) : 8% € LP(Q) for all a with |a| < k}

under the assumption that all possible weak derivatives 0%v of v exist.

We equip this space, as usual, with norm and semi-norm

1
p
S 0l | 1<p<oo
[vllwrr@) = lal <k
Ig‘%!\a‘*v\lmm) ,p =00,
1
p
% 100l ) 1<p <o
vl ) = lo| =
ll"f‘léiXH@ vl Lo (@) » P = 00.

For k = 0 we have WOP(Q) = LP(Q). For p = 2 we generally write H*(Q) := W*2(Q)
with norm |[v|| & (q) and semi-norm [v[gk(q). Obviously it holds HO(Q) = L?(Q).

14
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For the special case k = 1 in the general definition above we obtain the norm
1

(Il + 190050y ) 1P <00

[vllwir@) ==
max { [|v]| oo (), VOl Loy} 2= 0.

The definitions can be generalized to vector - or matrix - valued functions similar as above
for the Lebesgue spaces.

Due to Theorem 7.2.3 and Corollary 7.2.4 in [AH09] we know that the Sobolev spaces
WkP(Q) are Banach spaces and for p = 2 they are actually Hilbert spaces.

Definition 2.18: (WP?(div;(2))
For p € [1, 00| we define

WP(div; Q) := {v e LP(Q)? : divv € LP(Q)}

under the assumption that divv exists in the weak sense and equip this space with the

norm

1
I llwra: ) = (V170 + v vl2yg)”  1<p< o
iv; =

max {||v|| g (@), [div vz} p= o0

Remark 2.19:

(a) For p =2 we get the space H(div; ) (cf. Section 2.1.1 in [BBF13]).

(b) For p > 2 it holds WP(div;Q) C H(div; ), since LP(2) C L%*(Q) for p > 2 (cf.
Theorem 2.14 in [AF03]).
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2.2 Basics in elasticity theory

The aim of this work is to develop a new discretization method for nonlinear elastostatic
deformation processes. Since the often used linear elasticity theory has its validity only up
to a certain load and therefore does not cover real life problems in general we use nonlinear
models. This generally leads to a physically more realistic consideration of such problems
and therefore to more suitable results. A nice mathematical and detailed introduction
into the elasticity theory can be found in [Cia8§|. In this section the essential basics of
nonlinear elasticity theory, based on this book, will be described briefly. These basics are

crucial for the following chapters and the development of our new discretization scheme.

2.2.1 Description of a deformation problem

The initial situation is given by a nonempty, open, bounded and connected subset Q C R3
with Lipschitz - continuous boundary I' := 9. In practice the subset 2 is a given body
which will be deformed through some applied forces. We split the boundary I' into two
non - overlapping open subsets I'p and I'yy, i.e. [ pULy =T and TpNTy = 0. For T'y = 0,
we have a pure displacement problem and for I'p = () we have a pure traction problem.
For practical purposes one usually considers a mixed problem, i.e. neither I'p nor I'y is
empty.

If the body € is unloaded, respectively undeformed, it is called the reference configura-
tion. Now we can apply some forces on the given body. On the one hand we have volume
forces, for example gravity, which act on the whole body. Mathematically, the volume
forces are described by a given density function f :  — R3 representing the applied force
per unit volume. On the other hand we can apply surface forces, which act only on the
part I'y of the boundary. Examples for surface forces are traction and pressure forces.
The surface forces are given mathematically through a density function g : 'y — R3
representing the applied force per unit area.

After applying these forces we get the so- called deformed configuration. A visualiza-
tion of this deformation process under given forces can be seen in Figure

The aim is now to determine the deformation ¢ : ) — R3, i.e. the mapping from the
reference to the deformed configuration. This mapping must be injective in €2 and orien-
tation - preserving in  to be physically acceptable (see Section 1.4 in [Cia88]).

Obviously one can split the deformation ¢ into
p=id+u

with the pointwise displacement u : Q — R3.

If ¢ is Fréchet differentiable, we can define the deformation gradient F as

F:=Ve=V(id+u)=I+Vu=:F(u).
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forces

Y7774

Q RN ¢ (

©

reference configuration deformed configuration

Figure 2.1: Schematical visualization of a deformation process

Here the common gradient operator V is applied to each component of ¢ (respectively id
and u) and forms the corresponding row of F. id : Q — R? is the identity mapping, i.e.
id(x) = x for x € Q, and I denotes the identity matrix. We use the notation I € R"*" for
the identity matrix in the whole work, in each case with proper dimension n € N\ {0},
i.e. here n = 3.

Note that it holds det F > 0 in each point = € , since ¢ is orientation - preserving.
Besides the deformation ¢, engineers are also interested in the stresses that occur in the

body. In this work the later determined stresses are mappings from Q to R3*3

, l.e. one
obtains for each = € ) a stress tensor which describes the mechanical stresses in this point.
On the diagonal elements one has the normal stresses and on the nondiagonal elements
one has the shear stresses (see Figure for a visualization of a stress tensor P with its

matrix entries).

Figure 2.2: Schematical visualization of a stress tensor P in a small volume element
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For the general elasticity theory two sets of equations are fundamental. The first set con-
sists of the so-called equations of equilibrium that will be specified in Section [3] The
second fundamental set of equations is the constitutive equation/material law. The ma-
terial law describes a relation between stresses and strains. It is possible to describe the
problem either with respect to the reference configuration (Lagrangian description) or the
deformed configuration (Eulerian description). The Eulerian description has the disad-
vantage that it is expressed in the unknown ¢(x). With the help of the so- called Piola
transform the occurring equations can be transformed into the reference configuration,
which is then independent of the deformation ¢. For a detailed introduction, distinction

and derivation we refer to [Cia88| and [Sim98].

2.2.2 Stress and strain tensors, rigid body motions

For later purposes we define some stress and strain tensors which will appear in this work.

Stress tensors:

In this work we use the non - symmetric first Piola- Kirchhoff stress tensor P : Q — R3%3

and the symmetric second Piola- Kirchhoff stress tensor 3 :  — R3*3 related by
> =F'P. (2.5)

Both Piola- Kirchhoff stress tensors are defined in the reference configuration. Another
important stress tensor is the so-called Kirchhoff stress tensor 7. It is defined on the

deformed configuration and is related to the Piola- Kirchhoff stress tensors by
T =PF’ = FXF7.

A detailed introduction/derivation into the different stress tensors can be found again in
[Cia88] and [Sim98].

Strain tensors:

For a given Fréchet differentiable deformation ¢ = id + u with deformation gradient

F = Ve =1+ Vu=F(u) we define the following strain tensors
e B :=FF7 (left Cauchy- Green strain tensor),
e C:=FTF (right Cauchy - Green strain tensor),
e E:= (C —1I) (Green-St. Venant strain tensor),

which are nonlinear in u.

If we linearize E(u) about u = 0 we obtain

B(0 +v) ~ B(0) + B(0)v] = 0+ ;C'(O)lv] = (i [(F(0 + tv))TF(0 + tv)] |t0>

= LTV TR() + (F(0))7Vv) = L (Vv + (F9)7) =t e(w)
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Here e(v) is the well - known strain tensor from linear elasticity theory.
The definition of C is motivated by the following considerations (see Section 1.8 in [Cia88)]):
If we consider an infinitesimal change of a point x € Q to x 4+ éx € Q and have a Fréchet
differentiable deformation ¢ : Q — R3, we get by Definition

(x + 6%) = p(x) + Vep(x)x + o(|3x]),

where Vi (x) € R3*3 here denotes the corresponding matrix representation of the Fréchet
derivative Op(x) € L(R3,R3) of ¢, i.e. the row - wise applied gradient of ¢.

Therefore the points x and x + dx have the distance

|Vep(x)0x + o(|6x])|*

= [Vo(x)8x[* + 2 (Ve (x)8x)" o(|8x]) + [o(|6x])|?

= (Vep(x)0x)" Vip(x)0x + 0(|0x[*) = (6x)" Cox + o(|dx|*)

lp(x + 6%) — p(x)[°

after its deformation. In the next - to - last identity we have used the fact that the Frobenius
norm is consistent with the Euclidean norm. Hence the tensor C is involved in transforming
the distance of two points due to a deformation ¢ and measures therefore how the points

are ,strained* after the deformation.

Rigid body motions:

Another important term in the context of strains are the so- called rigid body motions. A
deformation ¢ # id is called a rigid body motion (or rigid deformation) if it is of the

form
p(x) = a+ Qx (2.6)
with a translation a € R? and a rotation Q € O := {R € R¥3 : RTR =1 =
RR”,detR = 1} about the origin. If we provide det V¢ > 0, which is physically rea-
sonable, and assume that ¢ € C1(Q,R?) then we get
@ is a rigid body motion < @(x) =a+ Qx ¥x € Qe C= (V) Ve =1 Vx e

with a translation a € R? and a rotation Q € Q. This equivalence could be understood
as the characterization of a rigid body motion. If the mapping ¢ is even continuously
differentiable on €2 then the statements mentioned here hold for all x € Q. Note that due
to

C= (Vo) B(Vp) " & B=(Ve) "C(Ve)"
it holds C =1 if and only if B =1.

Another remarkable observation for two deformations ¢, € C'(2,R?), which are injec-

tive in Q and orientation - preserving in €, is
¢ and 1) have the same strain tensor C everywhere in the body
& (V) Ve = (Vi) IVvy VxeQ (2.7)
& p(x) =a+ Qy(x) VxeQwith ae R and rotation Q € O.
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Note that all these considerations are not restricted to the case n = 3 and thus are valid for
an arbitrary dimension n € N\ {0}. For proofs and further details to rigid body motions
we refer to Section 1.8 in [Cia88].

An immediate consequence of is that if two deformations differ only in a rotation and a
translation, then the corresponding strain tensors and also the stress tensors coincide (due
to the given stress- strain relation). Logically the uniqueness of solutions is problematic if
rigid body motions are not eliminated. For practical purposes the rigid body motions are
eliminated by suitable boundary conditions. After eliminating all rigid body motions we
know that C =1 if and only if ¢ = id or equivalently u = 0.

In three dimensions we have six rigid body motions, the three translations

1 0 0
a; =10, a,=11], a.=|0],
0 0 1

in -, y- and z-direction and the three rotations

1 0 0 cos 0 sing cosy —siny 0
Q:=1]0 cosa —sina|, Q= 0 1 0 , Q.= | siny cosy 0
0 sina Cos —sinf 0 cosf 0 0 1

about the z -, y- and z- axis with arbitrary rotation angles «, 3,7 € [0, 27). Each deforma-
tion ¢ = a+ Qx, ¢ # id, with a € span{a,, a,,a.} and Q an arbitrary matrix product of
the set {I, Qu, Qy, Q.} satisfies C = (V)T Ve =TI and is therefore a rigid body motion
by the characterization above.

At the end of this section we remark that the strain tensor E is a measure of the deviation

between a rigid body motion and a given deformation. By definition of E it holds

@ is a rigid body motion < C = (V) Ve =Iforallx € Q< E =0 for all x € Q.

2.2.3 Lamé constants and incompressibility

In this section we will introduce the Lamé constants A and p based on the explanations
in [Dem03] and [Cia88]. The Lamé constants will appear in our material law models later.
One requirement of our discretization scheme is that it should be reliable for (quasi-)
incompressible materials. In the following we will motivate the fact that A — oo is an
indicator for (quasi-) incompressible materials in linear elasticity.

To introduce the Lamé constants and motivate that a large value of A corresponds to
an almost incompressible material we consider an uniaxial tension test on a rectangular
cuboid with length I, thickness and height d and thus area cross section q := d?.

A visualization of this tension test is depicted in Figure where the reference configura-

tion is drawn in blue and the deformed configuration is drawn in orange. The experiment
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is configured in such a way that the displacement in x-direction on the right face, the
displacement in y - direction on the back face and the displacement in z - direction on the

bottom face is zero.

PV +p

Figure 2.3: Visualization of an uniaxial tension test

For a traction force in x - direction the cuboid becomes longer and thinner. Conversely, for
an applied force which compresses the body in x - direction, the cuboid becomes smaller

and thicker. In the following Ad denotes the change of thickness and Al denotes the change

of length (see Figure [2.3)).
The initial volume of the body is V; = d? - 1. The volume after the deformation is given by

Vo = (d + Ad)? - (1 + Al). The change of volume is therefore

AV :=Vy — Vi = (d+ Ad)* - (I + Al) — d*l
= (d* + 2dAd + (Ad)?) - (1 4+ Al) — d?1
= d?Al + 2dIAd + 2dAdAL 4 (Ad)? - (1 + Al).

For small Al, Ad << 1 we can neglect the higher order terms in the last two summands

and obtain approximately

AV =~ d2Al + 2dIAd.

Dividing this equation by V = d?I leads to
AV d?Al + 2dIAd _ Al +2ﬂ
v 2l S d’

In mechanics, Poisson’s ratio v is defined as the negative quotient of the relative change

of thickness and the relative change of length, i.e.

Ad
d

V= —E
l
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Obviously v is a dimensionless physical quantity. With this definition and the relative

change of length ¢, := Tl in x - direction we get

Ad
AVV ~ % (1 +2Ajl> =e(1—2v).
Applying a traction force on the body, the physical intuitive and normal behavior of a
material is that the volume becomes larger, the length increases and the thickness decre-
ases, i.e. AV >0, Al > 0 and Ad < 0. Therefore we obtain 0 < v < % If we apply a force
which compresses the body, the length shrinks, the thickness increases and the volume
decreases, i.e. Al < 0, Ad > 0 and AV < 0. Also in this case we get 0 < v < % For v = %
the body does not change its volume, i.e. v — % is characteristic for an incompressible
material in linear elasticity.

Another characteristic parameter for materials is the so- called Young’s modulus. If we
assume linear elastic behavior and apply an uniaxial force in x - direction then by Hooke’s

law the stress o, is proportional to the elongation ¢, i.e.
0y = Eey (see Section 6.2 in [Dem03)).

The constant FE in this equation is Young’s modulus and can be determined by such simple
physical experiments. For given traction stress o, := % and relative elongation e, = %

one can measure Al and determine F through

F 1
= . A

Here F' describes the value of a given force in x - direction. Obviously the physical SI unit
of E is [%]

For positive F' we have Al > 0 and for negative F’ we have Al < 0. In both cases we obtain
E>0.

Altogether the characteristic parameters £ > 0 and 0 < v < % of any material can be
determined by simple uniaxial tension experiments. For given Young’s modulus £ and

Poisson’s ratio v we define the Lamé constants A, i as

Ev E

A ATy M)

Obviously, both quantities have the physical SI unit [%] Furthermore for £ > 0 and
O<rv< % it holds A, > 0 and A — oo if and only if v — % Thus characteristical for an
incompressible material is v — % or equivalently A — oo.

For given Lamé constants we can determine E and v by

2
A - H2rt3N)

ST (TS Y A
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Next to A — oo a further reasonable condition for an incompressible material is the
constraint det F = det Vo = 1 in the whole body, since then it holds for the deformation
@: 0= Q0 CR3 Q) = 0% and f: Q¥ = R,x¥ > 1, with the help of integration by
substitution

vol(Q¥) = / dz¥ = . f(x7) dx? = /Q

| det Vp| dx = / dx = vol(Q), (2.8)
Q

flp(x)) )
=1 = @

i.e. the volume of the reference configuration € and the volume of the deformed configu-
ration ¥ are equal. Physically, this means that the material is incompressible.

If we assume vice versa that the volume of each subdomain A C € with corresponding
subdomain A% = ¢(A) C Q¥ in the deformed configuration is preserved, i.e. each sub-
domain is incompressible with vol(A¥) = vol(A), we get with vol(4¥) = [, det F dz and
vol(A) = [, 1dx the condition

/ (det F — 1)dx = 0 for an arbitrary A C (.
A

Therefore it holds det F = 1 for all x € Q.

The condition

’detF =det Vo =1 for all x € Q (2.9)

to the given deformation ¢ is called incompressibility constraint.

At the end of this excursion to the Lamé constants please note that the usage of these
constants in nonlinear models are only reasonable if they are consistent with the linear
elasticity model. For the consistency of nonlinear models with linear elasticity see Section
2.4.5

2.2.4 Possible nonlinearities

In linear elasticity the strain tensor € := e(u) is linear in u and the material law
o(e) =2ue+ Mr(e)l =: Ce (2.10)

with constants A, > 0 is linear in . Our aim in this work is to consider nonlinear

problems. Therefore we introduce the following possible nonlinearities:

1. Nonlinear kinematics:

The relation between the considered strain tensor and the displacement u is nonli-
near, e.g. the strain tensors B(u), C(u), E(u) are nonlinear in u.
An example is the St. Venant - Kirchhoff material where indeed a linear stress- strain
relation

X(E)=2uE + A tr(E)I (2.11)

is used, but nonlinear kinematics are taken into account.
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2. Nonlinear material law:

The relation between stress and strain is nonlinear, e.g. 3(E) is nonlinear in E.
Practical nonlinear material laws are for instance Neo - Hooke - and Mooney - Rivlin

models. These models will be introduced later and discussed in more detail.

Note that also other nonlinearities can additionally occur, see Section 5.9 in [Cia88]. Ho-

wever the examples in Section [0] are restricted to the two mentioned nonlinearities.

2.2.5 Hyperelasticity and important properties

In this section we are introducing the terms ,elasticity” and , hyperelasticity mathema-
tically. We further introduce an important material independent property, the material
frame - indifference, which must be satisfied due to physical reasons, and two material de-
pendent properties (homogeneity and isotropy) that a given material can possess.

Let us start with the definition of an elastic material. In mathematical elasticity theory
a material is elastic (cf. Section 3.1 in [Cia88]) if the two Piola- Kirchhoff stress tensors

P, : Q — R3*3 can be expressed in terms of x and F = V¢ by

A~ A~

P(x) =P(x,F), 3(x)=X(x,F) VxeQ. (2.12)

The functions 13, 30 x M — R3*3 are called response functions and characterize the
material. Here M := {F € R3*3 : det F > 0} is the set of all three- dimensional quadratic
matrices with positive determinant. In this work we are dealing with so - called hyperelastic

materials, following the definition of Section 4.1 in [Cia88]:

Definition 2.20: (Hyperelastic material)

Let an elastic material with response function P:QOxM— R3>3 be given, such that
the first Piola- Kirchhoff stress tensor is expressed by P(x) = P(x,F), x € Q. Then
this material is called hyperelastic if there exists a function 1,/} : 1 x M — R, Fréchet
differentiable with respect to F € M, such that

P(x,F) = 0p(x,F), xeQ,FeM. (2.13)

The function 1[1 is called stored energy function.

Definition 2.21: (Cofactor of a matrix)
Let A € C™*" be an arbitrary matrix with n > 2. Then the cofactor of A is defined as

the matrix Cof A € C™*"™ with matrix entries

(Cof A); ; = (—1)"" det A

Z7j ’

1<4,5 <n,

where A;J e C(n=1x(n=1) denotes the matrix obtained by deleting the i - th row and j - th
column of A.

If A is additionally invertible we have the representation (see Section 1.1 in [Cia88])

Cof A = (det A)A™T. (2.14)
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Remark 2.22:

The cofactor of a matrix A € C3*3, whether invertible or not, has the representation

AgoAzz — Aoz Azg Az Azi — Ax1Azz A1 Aszy — AxAsy
Cof A = | Aj3A30 — A19Az3 A11Ass — A13Az1 AipAs — AnAse | - (2.15)
A19Ag3 — A13Aze  A13Az1 — A1z A11Ax — ApAo

Remark 2.23: (Suitable properties of the stored energy function)

Physically reasonable requirements of the stored energy function 1& : Q0 x M — R are (see
Section 4.6 in [Cia88]):

1. det F — 0= ¢(x,F) — 00, F € M, x €
Roughly speaking this condition says that an infinitely large energy is necessary to

compress the body to the volume 0.

2. (|JF| + |Cof F| + det F) — 0o = 9)(x,F) = oo, F € M,x € Q
Roughly speaking this condition says that an infinitely large energy is necessary to get

extreme strains.

Material frame - indifference:

After these definitions and remarks we come to an important material - independent pro-
perty, the material frame - indifference. This introduction is based on the explanations
in [EGK11]. Roughly speaking material frame - indifference demands that the material be-
havior must not depend on the observer. Therefore scalar-, vector- and matrix- valued
functions must be transformed in an appropriate way if one changes the coordinate sy-
stem. Since every observer can be identified by an own coordinate system this property
is also called observer invariance in literature. This property is generally physical-
ly necessary, since for instance the temperature of a body has to be clearly indepen-
dent of the observer. For this purpose we consider two arbitrary orthonormal and posi-
tive oriented coordinate systems in the three-dimensional Euclidean space, spanned by
BT :={e],e},e}} and B* := {e}, e}, e;} with origins O™ and O*.

For these given bases we can compute a vector a € R? and a rotation Q € O such that

3 3
O" — 0* = .Zlajej and e] = 'Z1Qije?’ j = 1,2,3. We can express an arbitrary point
j= i=
x € R3 through

3 3
x:OT+§ x;e;-andx:o*qLE x;e;f
j=1 j=1

with coordinate/coefficient vectors x™ = (27, 23, %) and x* = (zF, 23, 23) according to the

two given coordinate systems. Both coordinate vectors are then related by x* = a4+ Qx",
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since
3 3
xp = (ef)" Y ajel = (ef)" (0T —0O") + (ef)" Y afej
i=1 i=1
3 3 3
= (e)" > ajei+ > aj(ef)" Y Qe
j=1 j=1 i=1

3
=ar+ Y Qurf =ap+(Qx7), = (a+Qx"),, k=123
j=1
Below we interpret the coordinate vectors x” = ¢7(x) and x* = ¢*(x) as Eulerian coor-
dinates over the same reference configuration with coordinates x and invertible mappings
@7, p* : R?> = R3. For a scalar-valued function 7' : R* — R, defined on the reference
configuration, and a fixed point x € R? with Eulerian coordinates x” and x* the axiom of

material frame - indifference states
T7(x") = T*(x") with x* =a+ Qx”.

Here T7(x7) := T ((¢7) ' (x7)), T*(x*) := T ((¢*) " *(x*)) are the corresponding scalar -
valued functions to T', expressed in the Eulerian coordinates.

For an arbitrary vector-valued function v : R? — R? and an arbitrary point x € R3,
we consider the vector q := v(x). With the Eulerian coordinates x* and x” to x, we
can find analogously as above corresponding vector-valued functions v* and v” with

v*(x*) = q = v7(x7). We express the vector q in the two different coordinate systems as

3 3
q= Z ¢;(x")e; and q= Z qj(x")e;, x"=a+Qx,
i=1 i=1

with coefficient vectors q*(x*) := (¢7(x¥), ¢5(x*), ¢5(x*)) and q"(x") := (¢] (x7), ¢5(x"),
¢5(x7)), related by

Q' (x")=Qq"(x7), x*=a+Qx". (2.16)
The relation between q*(x*) and q7(x”) can be proven similarly as above and is
the condition of material frame - indifference for vector - valued functions.
For corresponding tensors a7 (x7), o*(x*) to a given mapping o : R? — R3*3 and vectors

n”(x7), n*(x*) to a given mapping n : R? — R3, related by
n*(x*) = Qn’(x7) & n"(x") = Qn*(x*), x*=a+Qx", (2.17)

we define the vector - valued functions q"(x7) := (o7 (x7)) - n” (x”) and
q*(x*) := (*(x*)) - n*(x*), insert it into condition (2.16]) of material frame - indifference

of vectors and obtain

(07(x")) n*(x") = (Qo"(x)) 0" (x7) = (Qo7(x7)Q") - n*(x")
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for arbitrary n*(x*). This results in the condition of material frame - indifference of matrix -

valued functions,
o*(x") = Qo7 (x)QT, X" =a+Qx'.

In elasticity theory one assumes now the material frame-indifference for the so- called
Cauchy stress vector using (2.16)) and (2.17)) (cf. Axiom 3.3-1 in [Cia88]). This is equivalent

to the requirement
P(x,QF) = QP(x,F)VFeM,x € Q < 3(x,QF) = X(x,F)VF € M,x €

for the response functions of the Piola- Kirchhoff stress tensors with arbitrary rotations
Q € O (cf. Section 3.3 in [Cia8§]).
A hyperelastic material with stored energy function 1& satisfies the property of material

frame - indifference if and only if

P(x,QF) =¢(x,F), FeMQecO,xc. (2.18)
If we assume a hyperelastic material with the material frame - indifferent property (2.18)
for the corresponding stored energy function ¢ there exists a function 1 : Q x Rfyxn‘f - R
with

~

¥(x,C) =¢(x,F), C=F'F, FecM. (2.19)

For a proof of (2.18) and (2.19) we refer to Theorem 4.2-1 in [Cia88]. A more detailed

introduction into the Cauchy stress vector and the fact of material frame - indifference for

elastic and hyperelastic materials can be found in Chapters 2, 3 and 4 of [Cia88].
The next purpose is to derive a relation between the second Piola- Kirchhoff stress tensor

3% and the gradient of ¢ with respect to C. Firstly, we state a simple lemma:

Lemma 2.24:
Let A, B € R™ " be matrices and A symmetric. Then it holds
tr (A (B+B”") A) =2tr(ABA)
tr (A (B+B”)) = 2tr(AB).
Proof:

With the calculation rules of the trace operator and the assumption A = A” it holds

tr (A(B+B")A)

tr (ABA) + tr (ABTA) = tr (ABA) + tr (A"BAT)
tr (ABA) + tr (ABA) = 2tr(ABA),

tr (AB) + tr (AB”) = tr (AB) + tr (BA”)

tr (AB) + tr (BA) = tr (AB) + tr (AB) = 2tr(AB).

tr (A(B + B”))

O
With the help of this lemma we obtain secondly the following lemma for a hyperelastic

material with the property of frame - indifference:
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Lemma 2.25:
Let ¢ : O xM — R and 1 : Q x ]Rg;rg — R be Fréchet differentiable with respect to F € M
(respectively C € R3%%) and 4(x, C) = Y(x,F) for C = FTF, F € M. Then it holds for

the Piola- Kirchhoff stress tensors P, X in each x € Q
P(X) = 8]5‘72)()(’ F) = QFOCUJ(Xa C) A E(X) = 260¢(X¢ C)

Proof:
The mapping F — FTF is Fréchet differentiable with derivative H'F + FTH, since

F+HT(F+H) =F'F+H'F+F'H+H'H=F'F+H'F+FH+o(H|).
With the function h(F) := v(x,C) = ¢(x,FTF) for F € M it holds by the chain rule
(Proposition [2.10]), combined with Lemma and equation (2.4]

K (F)[H] = ¢'(x,C)[H"F + F'H] = dct(x,C) : [H'F + F'H|

= 20c(x,C) : FTH = 2Fdcy(x,C) : H

for an arbitrary x € €. Here we have used the fact that one can assume the symmetry of
dcy(x, C) (see Section 4.2 in [Cia88] for a more detailed discussion).

Due to h(F) = (x,C) = ¢)(x,F) by assumption it holds #'(F)[H] = ¢/(x,F)[H] =
8F1/3(X,F) : H. Altogether we get

op(x,F) : H = 2Fdc(x,C) : H, H e M,

and therefore P(x) = P(x,F) = dptp(x, F) = 2Fdct)(x, C). By relation (2.5) we also
obtain ¥(x) = F~!P(x) = 20ct(x, C).
g

Material - dependent properties are homogeneity and isotropy (respectively anisotropy).

The following explanations are again based on [Cia88| and [EGK11]:

Homogeneity:

A material in the reference configuration 2 is called homogeneous, if the response func-
tions 15, 3 do not depend explicitly on x € €. In this case equation {i reduces for both

Piola - Kirchhoff stress tensors to
P=P(F), X=3(F).
For hyperelastic materials equation (2.13)) reduces to

P(F) = 0p¢(F), FeM.

Keep in mind that the deformation gradient F still depends implicitly on x € €.
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Isotropy:

The behavior of materials under loads often depends on the direction of the acting forces.
For example if we consider wood we have a higher strength in direction of the wood fibers
than in the direction orthogonal to these fibers. Therefore the behavior is for instance
different if we apply forces in the fiber direction instead of its orthogonal direction. Such
direction dependent materials are called anisotropic. If the behavior of the material in a
point is the same no matter from which direction the forces act, we call them isotropic.
Isotropy is therefore a property for materials which do not depend on the direction. The
assumption of isotropy is an idealization, since the most materials in the real world are
anisotropic. However the assumption of isotropy is often used in nonlinear material models
and simplifies the model significantly.

Mathematically a material is called isotropic in x € € if the response functions f’, 3 to
the Piola- Kirchhoff stress tensors P, 3 satisfy

P(x,FQ) = P(x,F)Q VF e M,

. X (2.20)
S(x,FQ) =Q'Y(x,F)IQ VYFeM

with arbitrary rotations Q € Q. An elastic material is called isotropic if it is isotropic at
all points in Q (cf. Section 3.4 in [Cia88]).
In hyperelasticity a material with stored energy function @ZA) : Q0 x M — R is isotropic in

x € Q if and only if

~ ~

b(x,F) = $(x,FQ) VFeM

and rotations Q € O (cf. Theorem 4.3-1 in [Cia88]).

2.2.6 Polyconvexity

The stored energy function @Z(X, F) for a matrix F € R3*3 with positive determinant,
which was introduced in Section for a hyperelastic material, must not be convex in
general. For instance for strictly convex real - valued minimization problems it is known
that if a solution exists it is unique (see Theorem 4.7-8 in [Cia88]). Therefore strictly
convex minimization problems contradict the fact that in nonlinear elasticity the solutions
are in general not unique. Also the assumption of a convex stored energy function is too
strong, since it is incompatible to the first requirement of 1[1 in Remark (see Theorem
4.8-1 in [Cia8§| for a proof). Due to this fact the term , polyconvexity* is introduced.
Polyconvexity does not contradict any physical behavior and is weaker than convexity.

Existence theory in nonlinear elasticity based on the minimization of

i(x)z/ﬂtﬂ(xavx)dx—</Qf-xdx+/FNg-de>
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in a suitable set of admissible deformations x (see Section[3.6.1]for more details) is available
if we assume among other things a polyconvex stored energy function 1& These existence
theorems for different boundary conditions can be found in [Bal77].

Due to this fact a good material law should be based on a polyconvex stored energy
function. In this section we define the term ,polyconvexity“ (cf. Section 4.9 in [Cia88])
and state a proposition. With this proposition we can simply prove the polyconvexity of

stored energy functions used in this work.

Definition 2.26: (Polyconvexity of a stored energy function)

Let ¢ : Q x M — R be a stored energy function defined for M = {F € R®3 : detF > 0}.
Then Qﬁ is called polyconvex if for each x € ) there exists a convex function g(x,-) :
U — R with

U:= {(F,Cof F,det F) € R x R?*® x (0,00)}

such that

A~

P(x,F) =g(x,F,Cof F,detF) VF € M.

Thus if we can express 1& through a function ¢ in F, Cof F and det F and ¢ is convex on
U, then @Z; is polyconvex. Note that the set U is as the convex hull of {(F, Cof F,detF) €
R3*3 x R3*3 x R : F € M} naturally a convex set (see Theorem 4.7-4 in [Cia88]).

The following theorem gives necessary and sufficient conditions for the convexity of a

sufficient smooth function on a convex set.

Proposition 2.27: (Conditions for convexity)

Let V be a normed space, K C V a nonempty convex subset and f : K — R a twice

Gateaux differentiable function. Then the following conditions are equivalent:

(a) fisconvex on K, ie. f(Av+ (1 —=XNu) < Af(v)+ (1 —AN)f(u) for u,v € K, X € [0,1]
(b) f'(w)v—ul+ f(u) < f(v) Vu,veK

() ff()v—ul = fl(u)fv—u] >0 YuveK

(d) f"(u)fv—u,v—u] >0 VuvekK

Proof:

A proof of the equivalences (a) < (b) < (c) can be found in [AHO9] (see proof of Theorem
5.3.17). It remains to show the equivalence of (¢) and (d).

(¢) = (d) :

Let u,v € K. Then by assumption it holds f/(v)[v — u] — f'(u)[v — u] > 0. Since K is
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convex we have u+ A(v—u) = Av+ (1 —X\)u € K with A € [0, 1]. Inserting this expression

into the assumption (c) instead of v results in
P+ A — )Mo — )] — F)Aw—u)] >0, Ae[0,1]
Dividing this term by A\? with A € (0, 1] leads to

f'(u+ A(v — U))[v)\— u - flw—u ()

Since the second Géateaux derivative of f in u € K is given by

" _ i fu tw)[v] = f(u) o]
fruww, o] = lim ;

, vweV,

we obtain from for A — 0 the result f”(u)[v —u,v —u] > 0.

(d) = (c) :

Let u,v be again in K. By assumption it holds f”(u)[v — u,v — u] > 0. We set

h(A\) := f'(u+ Av —u))[v — u] and get with the help of the chain rule the derivative

') = f"(u+ Av—u))v—u,v—ul.
By the mean value theorem there exists a A € (0,1) with
P —u] = f(w)v—u] = ~(1) = 2(0) = ') = f"(u+ Mv —u))[v —u,v — ul.

If we insert u+ A(v —u) = Av+ (1 —M)u € K and u € K instead of u and v in assumption
(d) it follows

(w4 Mo —u)[-Av —u), =Av —u)] >0 XNf"(u4+ Ao —u))[v—u,v—u] >0

& f"(u+ Ao —u))v—u,v—u] >0.
With the result obtained above by the mean value theorem we get
PO —u] = F@)o —u] = f/(u+ XMo —uw)o —u,0 -] > 0,

i.e. condition (c).

2.2.7 Plane strain model

For our two-dimensional examples in Section [6] a plane strain model is used. In a plane

strain model we use the following assumptions:
e The displacements u; and ug of u depend only on z1 and x9, i.e. uj (1, z2), uz(x1, x2).

e The displacement u is constant in xg- direction, i.e. ug = const.
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The force densities f and g must be chosen such that they do not contradict these as-
sumptions. We obtain the following consequences:

Due to d3u; = 0, O3ug = 0 and djuz = 0 for j = 1,2,3 we obtain the deformation gradient
F(u) and the corresponding strain tensor C(u) = (F(u))'F(u) as

1+6ur  doug O Ci1(u) Ciz(u) 0
Fuy=I+Vu=| Quy 140wy 0| =C(u)=|Co(u) Cypu) 0
0 0 1 0 1

Due to the simplified structure of the strain tensor C in a plane strain model we get in
general a simplified corresponding stress tensor according to the given material law, see
Section in the case of a homogeneous isotropic frame - indifferent material.

An introduction and further details to the plane strain model and also to the plane stress
model in elasticity theory can be found in [Bra07] and [EGKII].

2.3 Principal invariants of a matrix

In this section we define invariants and especially principal invariants of a matrix A €
R™ ™ Then we consider the principal invariants in the case n = 3 which play a major role
in three - dimensional elasticity theory. Further we prove some estimates and calculate the

Fréchet derivatives and the corresponding gradients to these invariants.

2.3.1 Definition of the principal invariants

The following definitions and explanations are again based on [Cia8§].

Definition 2.28: (Invariant of a matrix A € R"*")

An invariant of a matrix A € R™*" is a real - valued function w(A) with the property

w(A) =w(B 'AB)
for all invertible matrices B € R"*".

Definition 2.29: (Principal invariants of a matrix A € R"*")

We define the principal invariants of a matrix A € R™*" as the n coefficients 71(A), ...,

Tn(A) of the characteristic polynomial
det(A = AI) = (=1)" X" + (=1)" b (AN + .. — 71 (A)A + 7o (A).

Proposition 2.30: (Principal invariants for n = 3)

The principal invariants for an arbitrary matrix A € R3*3 are

I(A) := 5(A) = tr(Cof A), (2.21)
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Proof:

For an arbitrary matrix A € R3*3 with entries A;; it holds
det A = A11 A2 Azz + A10A23A31 + A13A21A30 — A11A23A30 — A19A91 Azz — A13A20A3;.
The representation (2.15) of Cof A € R3*3 implies

tr(Cof A) = Aj1Ags + A1 Ass + AgaAzz — Ao Ao — A13Az1 — Az Asa.

It follows
An—XA A Ais
det(A —AI) =| Ay Aoy — A Aog
Az Azo Azz— A
Ago — A\ A A A A Ags — A\
~ (A — ) 22 2|, 2|, g, A A2
Azp Azz— A Azr Azz— A Az1r Az

= (A11 — N)(A22 — A)(Asz — A) — A3 Az2(A11 — N)
— A12A91(As3 — \) + A12A23A31 + A13A21 A3z — A13A31(A22 — N
= (A1 — A) (A22A33 — A(Agz + Aszz) + A?)
— A [~A23A33 — A12A91 — A13A31] +det A — A1 Az Asg
= =A%+ N*(A11 + Agy + Asg)
— A[A11 A2 + A11A33 + A Asz — Az Azg — A1pAs1 — A13Azi] +det A
= =A%+ XM?tr(A) — Atr(Cof A) + det A.
Therefore we obtain the coefficients 71 (A) = tr(A), 72(A) = tr(Cof A) and 73(A) = det A

of the characteristic polynomial and obtain the statement by Definition [2.29]
O

It is easy to check that the principal invariants in the case n = 3 satisfy the property of
Definition [2.28]
2.3.2 Estimates for the principal invariants

In this part we prove important inequalities for the invariants I1(A), Io(A), I3(A). Alt-
hough they were defined above only in the case n = 3 some of the following inequalities
hold for arbitrary n € N'\ {0}.

Lemma 2.31: (Estimate for the trace operator)
For A € R™™ it holds

[tr(A)] < v/n|A.
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Proof:

For the matrix A € R™*" with matrix entries A;;, 1 <4,j < n, it holds

(tr(A))? = (Z AZ-Z-> < (Z 12> . (Z A?Z.) =n (Z Ag) <n| > A}| =nlAP,

i=1 i=1 i=1 i=1 ,j=1

where we have used the definition of the trace operator, the Cauchy - Schwarz inequality
for a sum and the definition of the Frobenius norm. The statement follows by extracting
the square root.

O

Lemma 2.32: (Estimate for the cofactor in three dimensions)
For A € R3*3 it holds

|Cof A| < 6|A%

Proof:

We define the vectors a, a® € R? which contain the entries of A and Cof A. The Euclidean

norm | - | is equivalent to the maximum norm ||al|« = | max la;|, a € R", with
<i<n

lalleo < |al < Vnlallee VaeR™

With this choice we get

[ 7

2
|Cof A2 = [a®!|?> < 9[la®!||2, =9 ( max ]aCOf) =9 max |a$|%
1<i<9 1255

By Remark we know that each entry of a®f has the form af-"f =ab—cd, 1 <i<9,
where a, b, c,d € R are matrix entries of A. With the help of Young’s inequality we get for
each ¢ the estimate
a$°f|? = (ab — cd)? = a®b* — 2abed + 2d? < a®b* 4 2|ab||cd| + 2d?
1 1
< 5(a4 + 0% + |ab)? + |cd)? + §(c4 +d*)
1 1 1
< 5(a4+b4)+§(a4+b4+c4+d4)+§(c4+d4) =at+vt+ctdt
< 4max{at, bt ¢t d'} < 4 ( max A;lj)
1<ij<3
4
=4 < max |Aij|> = 4ja||?, < 4|alt = 4|A|%
1<ij<3
Altogether we get |Cof A|? < 9112a§9\a§°f|2 < 9-4|A|* = 36/|A|*. We get the statement
_7/_

by extracting the square root.
O
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Corollary 2.33: (Estimate for tr(Cof A))
For A € R3*3 it holds

ltr(Cof A)| < 6v/3|A .

Proof:

Combining Lemmata and with n = 3 leads to
|tr(Cof A)|> < 3|Cof A|* < 3-36|A|.

Extracting the square root results in the statement.

O
Lemma 2.34: (Classical Hadamard inequality)
Let A € R™" with A = (a1, az, ..., a,), e a; € R"™! forall j =1,...,n. Then it
holds

n
| det(A)] < [T layl.
j=1

Proof:
Let A = QR be the QR -decomposition to the matrix A with orthogonal Q € R™*™ and
upper triangular matrix R = (r1, r2, ..., 1), ie. r; € R™! for all j = 1,...,n. Then
it holds

|det(A)| =| det(QR)| = |det Q]| det R| = [det R| = | [ By;| = [ IRus!
N——

=1 Jj=1 j=1
)i <T] (z R%j) 1 (zm) Tl
j=1 j=1 \i=1 j=1 1=1 j=1

since Q is orthogonal, R is upper triangular and the matrix entries of R are R;; = (r;);.
Furthermore it holds |r;| = |Qr;| = |a;| for all j = 1,...,n, since Q is orthogonal and
QR = A. Altogether we obtain the statement.

g
Corollary 2.35: (Estimate for the determinant)
For A € R™™ it holds |det A| < |A|".
Proof:
Let A = (aj, ag, ..., a,) € R"" with a; € R"*! for all j = 1,...,n. For each a; with

(aj)i = A5 ,1,7=1,...,n, it holds

1 1

|aj|=(2<aj>?) :(ZA;) (s ) —a

i=1 i=1 k=1
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With the classical Hadamard inequality (Lemma [2.34)) it follows

[det Al < []lasl < ] 1Al = 1Al
j=1 j=1

2.3.3 Fréchet derivatives and gradients for the principal invariants

For the computation of the Piola- Kirchhoff stress tensor P (respectively 3) for a homoge-
neous isotropic frame - indifferent hyperelastic material we need the gradients of the three
principal invariants I;(C), I3(C), I3(C), C = FTF, with respect to F (respectively C), see
Section For this purpose we derive the Fréchet derivatives and the corresponding
gradients for these invariants. We are able to determine the derivatives of I, 7 = 1,2,3,
for arbitrary n € N\ {0}, i.e. in this section I;(A) := tr(A), I2(A) := tr(Cof A) and
I3(A) := det A are defined for matrices A € R™*™.

Proposition 2.36: (Fréchet derivative of [; : R"*" — R, A — tr(A))
The Fréchet derivative of the mapping I1(A) = tr(A), A € R™*" is given by

A1 (A)(H) = tr(H) = I : H.

Proof:

It holds I; (A + H) = tr(A + H) = tr(A) + tr(H) = I1(A) + tr(H) and therefore the
statement by Definition

g
For the derivation of the Fréchet derivatives of I3(A) and I3(A) we need some crucial

lemmata.

Lemma 2.37: (Linearization of the determinant about the identity)

Let E € R™"™ with a positive integer n be given. Then it holds

det(I+E)=1+tr(E)+o(|E]), E —O0.

Proof: (mathematical induction)

Base case: For n = 1 it holds det(I+E) = 14e1; = 1+ tr(E) and therefore the statement.
Inductive hypothesis: The statement holds for n € N\ {0}.

Inductive step: n+—n+1

In the following we write I, E( for I, E € R"*" to distinguish between I E() and

I+ B+ With this notation, using the formula of Laplace for the expansion of the
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determinant with respect to the column n + 1, it holds

det (I(n+1) 4 E(n+1)> _ j_i(_l)nﬂﬂ (I(n—i-l) I E(n+1)>i7n+1 det (I(n+1) n E(n+1));n+1

_ ; Lyt ( (n+1))i7n+1 det (I(n+1) n E(n+1)>;7n+1

+ (1 +EMY +1) det (I(") + E(">) ,

(%)
where (I(”‘H) + E(”‘H))z ntl € R™™ denotes the matrix obtained by deleting the i-th
row and the (n 4 1)-st column in the matrix I+ 4 E(+1) ¢ RO+ x(n+1),

It can be seen in the following way that the first term is o (|E("+1)|):

For positive integers n > 2 and real numbers ay,...,a, > 0 holds generally

n nol 1 k k 1 n—1 1
2 2" 2"
kl_ll ag kg 1 <2> ap + <2> ay, < g ak + a,

ai+ (4 (o (@l g+ (a) 2+< sy +al)?)?)?)?)?.

IN

IN

The validity of these inequalities can be proven separately with mathematical induction.
The expression (E(”H))i 1 det (I("‘H) + E("‘H)); il

a sum where each summand is a product with at least 2 and at most n + 1 matrix entries

consists for each i € {1,...,n} of

er, of E(1) ag factors. One obtains for each summand

Sel+ (4 (e gt (el o+ (eh 1 +ex)D)?))?)?

< |E(n+1)|2 + ( 4 ( 4 (|E(n+1)|2 + (‘E(n+1)‘2 + (|E(n+1)|2)2)2)2)2)2

with N € {2,...,n+ 1} and E"tD - 0.
Thus each summand of (E("H))i 1 det (I(”+1) + E("H))/.

ing1 180 (JE™*Y]) and thus
the whole first term in is o (|E(”+1)|).

To prove the statement finally we set

+1
By - B OBLG
gty _ | :
B, BY) B0
+1 +1 +1
B BN BN

as extension of the matrix E(®) € R"*" and get straight forward:

1) . . 1
ngl )0 (E™ |)’ < |JEM+D)2 and in particular ngl 7)1+1 (JE™]) = o (JEC*D])

‘Enﬁrllnﬂtr (E("))‘ < |JE™D|2 and in particular E( +1)+1tr( (”)) =o0 (\E(”H)\)
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Additionally for functions f : R™™ — R and g : R®FUx(+D 5 R with g (E(HD) =
f (E(")) and f (E(")) =0 (‘E(”) D we get in a neighborhood of the zero matrix

o5 - () <o

Thus it holds f (E(”)) =o0 (}E(") ’) =g (E(”H)) =o0 (|E("+1) D With these estimates and
the help of the inductive hypothesis it follows for the second term in

(1 + Eﬁjflf)lﬂ) det (I(”) + E(”)> = (1 + E;Tlf%ﬂ) (1 +tr (E<”)> +o (’E(”)
=1+t (BW) + B +o (|EOH))
e ) o )

Therefore we obtain by altogether det (I(”‘H) + E("‘H)) = 1+tr (E(”+1))+0 (}E("H) ’)
O

<e ’E("H)’ Ve > 0.

Lemma 2.38: (Fréchet derivative of the inverse of a given matrix)

The Fréchet derivative of the mapping A — A~1, A € R"*", is given by
OATI(H) = —A'HA !

Proof:

For a matrix E € R™" with |E| < % it holds [tr(E)| < /n|E| < 1 (see Lemma [2.31]).

Therefore for sufficiently small |E| < 1, using Lemma one obtains
0<1—|tr(E)| =|1—[tr(E)|| < |1+ tr(E)| = |det(I+ E)|,

i.e. I+ E is invertible. For E = A~'H the requirement |E| < ﬁ is satisfied if |H| <

ﬁ\A‘lrl. Under this assumption it holds
I+A'H) (I- A'H) =1+o(H]),
since |(A7'H)?| < |A7!'2|H|? — 0 for H — 0 due to the submultiplicativity of the
Frobenius norm. Multiplying this equation with (I + A~ H)~! from left, we get
I+A'H) '=1-A'H- (I+A'H) o(H]|).
Inserting this equation recursively in itself we get
(I+A7'H) ' =1— A'H+o(H]),

since A"'Ho(|H|) = o(|H|) and o(|H|) - o(|H|) = o(|H|?).
With the help of this relation it follows

(A+H)' = (AT+AH) ™

= (I-A'H+o(H|)) A
= A - AT'THA ' +o(|H))

=(I+A'H)'A™
AT ATTHA T 4 o(H)A!
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for H — 0, i.e. the statement by Definition

Proposition 2.39: (Fréchet derivative of I3 : R"*" — R, A — det(A))
For an invertible arbitrary matrix A € R™*" the Fréchet derivative of I3(A) = det(A) is
given by

0I3(A)(H) = Cof A : H.
Proof:

With the help of Lemma it holds

det(A + H) = det (A(I+ A 'H)) = det(A) det(I+ A~ 'H)

et(A) (1 + tr(A™'H) + o(|ATH]))

et(A) + det(A)A™T : H + det(A)o(|A™'H|)
)

et(A) + Cof A : H + o(|H|)

d
d
d
d

for an arbitrary invertible matrix A and H — 0, i.e. the statement.

Lemma 2.40: (Fréchet derivative of the cofactor of an invertible matrix)
Let A € R™™ be an invertible arbitrary matrix. Then the Fréchet derivative of the
mapping A +— Cof A := det(A)A~T is given by

d(Cof A)(H) = (Cof A : H)A™T — det(A)A"THTAT,

Proof:

For the calculation of this derivative we use the product rule of Proposition with
Vi=R, V="V, =R f(A)=det(A), g(A) = A~T and the bounded bilinear form
b(a,A) :== aA, a € R, A € R"". The derivative of f is 0f(A)(H) = Cof A : H (see
Proposition . Since (A + H)T = AT 4+ H” the Fréchet derivative of the mapping
A AT is

OAT(H) = HT. (2.22)

With the help of the chain rule in Proposition and Lemma we get dg(A)(H) =
—A~THT A~T. With the definitions above it holds Cof (A) = b(f(A), g(A)) and therefore

9(Cof A)(H) = b(9f(A)(H),g(A)) + b(f(A),0g(A)(H))
=0f(A)(H)g(A) + f(A)dg(A)(H)
= (Cof A : H)A T — det(A)A"THT AT,
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Proposition 2.41: (Fréchet derivative of Iy : R"*" — R, A — tr(Cof (A)))
Let A € R™™ be an invertible arbitrary matrix. Then the Fréchet derivative of the
mapping I2(A) = tr(Cof (A)) is given by

O (A)(H) = (tr(A"H)I - A7) Cof A : H.

Proof:
Combining Proposition [2.36] and Lemma and using the chain rule in Proposition [2.10
result in

O (A)(H) = tr(9(Cof A)(H)) = tr ((Cof A : H)A™" — det(A)A"THTA™T)

tr

= (Cof A : H)tr(A™T) — det(A)tr (A~THTA™T)
[tr(A"")Cof A] : H — det(A)tr (A""HA ™)
[tr(A~!)Cof A] : H — tr ((Cof A)TA™'H)
[ ] H
[
[

tr

(A7)
(A7)
(A~H)Cof A —[ATCofA] : H
tr(A~ 1)cofA A TCofA|:H
(tr(A™HI-AT)CofA] : H

a
With these considerations it is easy to obtain the derivatives and gradients of I;(C) for
j=1,2,3, C = FTF, with respect to the matrix F. For this purpose we define fj (F) :=
I;(C) = I;(FTF) and need again Lemma . We obtain with the help of the chain rule
and the relation

OpL;(F) : H=0I;(F)(H) = 0;(C)(H'F + FTH), j=1,2,3.

Here we recall that the mapping F — FTF is Fréchet differentiable with derivative H'F +
FTH. To achieve 9 I;(F) we use Propositions |2.36|, |2.41L |2.39| and Lemma It results

Opli(F): H=0L(F)(H)=1: [H'F + F'H| =2F : H,

Opla(F) : H = 05,(F)(H) = tr ((cof o) (tr(cH1-c )" (HTF + FTH))
— tr (2(cof o) (tr(cH1—c )" FTH)
= [2F (tr(C")I-C 7)) Cof C] : H

Opl3(F) : H = 0I3(F)(H) = Cof C: [H'F + F'H] = tr ((Cof C)"(H'F + FTH))
= tr (2(Cof C)"F'H) = 2F Cof C] : H = [2F (det F)*(F'F)" "] : H
= [2(detF)*’F 7] : H

40



2.4 Homogeneous isotropic materials

under the assumption that C is invertible.

Therefore we obtain the gradients of the principal invariants with respect to F as

oF,
OrIx(F) = Ol (C) =2F (tr(C"HI - C 1) Cof C, (2.23)
2(det F)?F~T

with C = FTF.

2.4 Homogeneous isotropic materials
2.4.1 General representation formulas

By Theorem 31.1 in [Sim98] the stored energy function ¢(C) = ¢(F), C = FTF, for a
homogeneous isotropic frame - indifferent hyperelastic material can be expressed through

a function @Z, depending on the three principal invariants I, Is, I3, i.e. it holds
¥(C) = ¢(11(C), I(C), I3(C)). (2.24)

Recall that the existence of such a function % to the given stored energy function 7713 is
guaranteed due to the frame - indifference property (see (2.19))).

We will show that for such a material it is possible to write the second Piola - Kirchhoff
stress tensor X as an expression in C and the Kirchhoff stress tensor T as an expression
in B.

For this aim we firstly simplify the expression for the gradient of I3(C) in the case n = 3

and state some consequences.

Lemma 2.42:
For an arbitrary matrix A € R3*3 it holds

tr(A)A — A% = tr(Cof A)I — (Cof A)T.

Proof:

For A € R?**3 with matrix entries A;j; it obviously holds

Agg + Asz —Aia —Ai3
tr(A)I— A = —Ayr An+Aszz —Ag : (2.25)
—As —Azy A+ Axp

Using the representation (2.15) for Cof A € R3*3 and the transpose of equation ({2.25))
for Cof A instead of A leads to

Ago + Aszs —Aio —Ai3 A A Asg
tr(Cof A)I — (Cof A)" = —Ay A+ Aszz —Aos | A21 A A
—As; — Az A1+ A Asz1 Aszz Ass

= (tr(A)T— A)A = tr(A)A — A2, m
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Note that this result does not hold for arbitrary n € N\ {0}. An immediate consequence

of this lemma is
tr(A)I — A = tr(Cof A)A™! — (Cof A)TA™! = tr(A™1)(Cof A)T — A~!(Cof A)T
= (tr(A™HI— A7) (Cof A)"

for an invertible matrix A € R3%3,

If A is additionally symmetric it follows
(tr(A™HI— A7') Cof A = tr(A)I — A. (2.26)

Using Propositions (combined with equation (2.26) for the symmetric strain
tensor C) and Proposition in the three- dimensional case we obtain the gradients

06 (C) 0I1(C) _1 _T 0I3(C)

——— =1, ———=(tr(C)I-C " )CofC=1tr(C)I-C

aC ) ac ( r( ) ) o r( ) Y ac
of I;(C) = tr(C), I2(C) = tr(Cof C) and I3(C) = det(C) with respect to C.
If we apply the chain rule on 1) for a Fréchet differentiable function v, we get the
gradient of ¢ with respect to C as
9(C) _ 9 OL(C) | 0 0Iy(C) | 9 II3(C)
oC oI, 0C 0l 0C 0l 0C

= Cof C

_ W, W _ o

= o1 1+ op, (O = C) + 5 -Cof C

B o o B b O -1
_ (ah + oL 11(0)> -5 Ct e

Therefore we get by equation (2.5) and Lemma

Fipox =220 _, (81/’ + wh(C)) 1—2%¢ + 2%13(0)0*1. (2.27)

oC (‘9]1 8[2 812 aI?,

Multiplying this equation from left with F and then from right by F7 results in

(91; (9772 (9’1/; ()1;
T 2
7= PR =25 [(B)L +2 <11 + Izll(B)> B 25, B, (2.28)

since FCF? = FFTFF! = B2, FC'F” = F (F’F) 'F’ =1, B = FF” and [;(C) =

I;(B) for j = 1,2,3. Note that the derivatives g}/) generally still depend on all three
J

principal invariants.
With the help of equation (2.26) we can further express C~! through

Cl=tr(CHI- (tr(C"HI-C™)

1 _ _ _ —
=C (det Ctr(C™HI - (tr(C™HI— C™) (det C)C~TCT)
1 -1 -1
= — (tx(Cof )L — (1x(C™)I - C7) (Cof CO)C)
1
= ¢ (tr(Cof O - (tx(C)I - C) C)

= (I5(C)) ™" (I2(C)I - [1(C)C + C?).
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2.4 Homogeneous isotropic materials

Inserting this expression into (2.27) leads to an alternative expression

(20 0% o N 0
¥ =2 (ah + a5, 11O+ ahb((})) I-2 <012 + 513[1(0)) C+25-C (2.29)

Thus if we consider a homogeneous isotropic frame - indifferent hyperelastic material, we
can express the second Piola - Kirchhoff stress tensor in terms of C and the Kirchhoff stress

tensor 7 = PF7 in terms of B.

2.4.2 Stress tensors in a plane strain model

In Section we have seen that a plane strain model leads to a simplified structure of
the deformation gradient F' and the corresponding strain tensor C. With this structure
and the equation ([2.29) it becomes clear that also ¥ has the structure

Y11 Y12 0
=%y X 0 |,
0 0 X33

since the partial derivatives % in equation (2.29) of ¥ : R> — R are in L(R,R) by
Definition Thus the terms in front of I, C and C? are real-valued. Since X has this

simplified structure and it holds 7 = PFT, P = FX also the stress tensors 7 and P have

this structure.

2.4.3 Representation formulas for Mooney - Rivlin

We consider a homogeneous hyperelastic material with stored energy function
Uur(F) = a|F|? + f(det F)? — yIn(det F) + § |Cof F|2, F e M, (2.30)

with the Frobenius norm | - | (see Section and parameters «, 8,7 > 0,0 > 0. This
stored energy function is motivated by the fact that its structure is quite simple, it includes
all three principal invariants, is polyconvex as we will see in Section and obviously
satisfies the requirements of Remark This concrete stored energy function belongs to
a Mooney - Rivlin material and is proposed in Section 4.10 in [Cia88].

For a rotation Q € O it holds by definition det Q = 1 and Q7 = Q~!. Then it holds
det(FQ) = det(QF) = det F. Additionally it holds with C = FTF for F € M

FQ* = tr(Q'F'FQ) = tr1(Q' CQ) = tr(C) = |F|?,
1QF|? = tr(FT QT QF) = tr(C) = |F|?,

43



2 PRELIMINARIES

|Cof (FQ)|* = tr ((Cof (FQ))" Cof (FQ)) = tr ((det(FQ))*(FQ) ' (FQ) ")
=tr ((det F)’Q'F'F Q") = tr ((det F)’F'F~7T)
= tr ((Cof F)" Cof F) = |Cof F|?,

|Cof (QF)|* = tr ((Cof (QF))" Cof (QF)) = tr ((det(QF))*(QF) " (QF) ")

=tr ((det F)*F'F~T) = tr (Cof F)" Cof F) = |Cof F|*.

Therefore by equation (2.30) it holds 1yr(FQ) = ¥ar(F) = ¢ar(QF) for all F € M
and all rotations Q € Q, i.e. this material is frame - indifferent and isotropic.

For C = FTF it holds det C = (det F)?, tr(C) = tr(F'F) = |F|? and
tr(Cof C) = tr(Cof (F'F)) = tr (det(F'F)(FTF) ") = tr ((det F)*F'F 1)
= tr ((Cof F)" Cof F) = |Cof F|*.

3x3

The corresponding function ¢y g @ Ry — R to &MR for this Mooney - Rivlin material

according to is therefore
mr(C) = atr(C) + Bdet C — 1In (det C)2 + § tr(Cof C). (2.31)
The function ¢ : R? — R in equation to this material is obviously
il I, Iy) = aly + BI; = 2 In(ly) + 61,

The partial derivatives of ¢y (I, I, I3) are

OV . OV _
o6 0D
From equation (2.28]) we achieve

al[’MR —8 i
015 213"

0,

B Omr | OVur MR
T = 275 13(B)I+2< ST+ ol Il(B)>B 2B

=2 <5 - 21:(&) I3(B)I+2 (o + 61, (B)) B — 25 B

(2.32)
= (281(B) — 7)1+ 2(a+ 6 (B)) B — 26 B?
= (28detB — ) I+2(a+dtr(B)) B — 26 B
= 2aB + (28det B — 7)I + 26 (tr(B)B — B?)
and from equation we achieve
Sur =2 (8%3 - agth(C)> I- 281;];;30 - 28?[\2}2]3(0)0‘1
(2.33)

= 2(a 4 61;(C))I — 26C + 2 (5 — 2[?(0)) L(Cc)c!

=2a1+ (28detC —~)C +26 (tr(C)I - C)
as expressions for the Kirchhoff and the second Piola- Kirchhoff stress tensors in three-

dimensional elasticity.
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2.4 Homogeneous isotropic materials

2.4.4 Polyconvexity of Mooney - Rivlin

In this part we show that the Mooney - Rivlin model with stored energy function 1/3, defined

by equation (2.30]), is polyconvex.
For this purpose we define the mappings

g R¥3 SR, A |A)
g2:(0,00) > R, =+ Ba? — ~1In(z)

where 8 and v are the positive constants in ([2.30)).
Since g1(A) = |A|> = tr(ATA) = I[;(ATA) we get the Gateaux derivatives

g(A)H] = I (ATA)[(ATA)[H]] = tr((ATA)'[H]) = tr(HTA + ATH) = 2A - H

d

= g1 (A)[E,H] = %g’(AHE)[HHt:O == (2(A+tE)]:H)|,_,=2E:H

t=
for all E, H € R?>*3 and

v

gé(x)zZﬁx—;igg(ﬂs):25+%>0 ¥z € (0, 00).

With the help of Proposition it follows that go is convex on (0,00) and g; is convex

on R3*3, since
GHE-HE-H=2E-H):(E-H)=2E-H?>0

for all E,H € R3*3,
With the definitions of g; and go and the mapping

g: U:=R¥3 xR¥>3 x (0,00) = R
(A,B,z) — agi(A) + g2(z) + 6g1(B) = a|A|> + Bz — yIn(z) + 6| B|?

it holds ¢y r(F) = g(F,Cof F,det F) for all F € M.
Due to the convexity of g; on R3*3 and gy on (0,00) it holds for Uy := (Ay,Bq,21),
Uy := (A2,Ba,22) € U and A € [0, 1] the inequality

g AU + (1 = A)Usz) = g(AA1 + (1 = N)A2,AB1 + (1 — A\)Bg, Az1 + (1 — N)xg)
=ag1 (A1 + (1 —N)A2) + g2(Azy + (1 — N)z2) + 691 (AB1 + (1 — A)B2)
< Aagi(A1) + g2(21) +091(B1)) + (1 — A) (ag1(A2) + g2(z2) + 691(B2))
= Ag(A1,B1,21) + (1 = A)g(Az, By, 22)
=Ag(Uy) + (1 = A)g(Uy),

i.e. g is convex on U and by Definition we obtain the polyconvexity of 1[1M R-
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2.4.5 Consistency with linear elasticity

In this work our aim is to deal with nonlinear hyperelastic material models, i.e. the nonli-
nearities that we have listed in Section [2.2.4] can and will occur. From physical experiments
one knows that a material under sufficiently small loads has firstly a linear behavior, i.e. if
one doubles the load one doubles also the displacement. However, one observes in physi-
cal experiments that there exists a point where the material behavior becomes nonlinear.
A reasonable model should reflect both behaviors, the linear for ,small“ loads and the
nonlinear for ,larger” loads. A nonlinear material law must therefore turn into the linear
model for small loads. If we apply no loads the displacement u is reasonably 0. Small loads
mean that we get a displacement in the neighborhood of u = 0. If a nonlinear model turns
into the model of linear elasticity in a neighborhood of u = 0 we say that the model is
consistent with linear elasticity. In this case also the use of the Lamé constants, introduced
in Section for linear elastic behavior, is meaningful.

With these considerations it is reasonable to assume the following conditions for an (non-

linear) elasticity model:

1. If one has a zero displacement u = 0, the given body is not strained and therefore the
corresponding stresses, given by the stress-strain relation, should be zero. Therefore
one assumes that one has no occurring stresses for u = 0, i.e. mathematically for both

Piola- Kirchhoff stress tensors one supposes
¥(u=0)=0=P(u=0). (2.34)
In this case one obtains a stress- free reference configuration.

2. The second condition assumes that the stress-strain relation in nonlinear elasticity
turns into the linear stress-strain relation of linear elasticity in a neighborhood of
u = 0. Thus if we linearize a stress tensor about u = 0, assuming that it is Fréchet
differentiable at u = 0, we should obtain the stress-strain relation (2.10) of linear
elasticity. For both Piola- Kirchhoff stress tensors P = P(u), ¥ = X(u), related by
P(u) = F(u)X(u) this results under the first assumption of a stress-free reference

configuration into the conditions
P(v) =P(0+v) ~ P(0) +P/'(0)[v] = P'(0)[v] < 2ue(v) + Ar(e(v))I,
B(v) =2(0+v)~3X2(0)+X(0)]v] = X'(0)[v] < 2ue(v) + Ar(e(v))I,

where e(v) = § (Vv + (Vv)T) denotes the linear strain tensor (cf. Section [2.2.2)).
Due to

P'(0)[v] = VvX(0) + F(0)X'(0)[v] = Z'(0)[v],

both stress tensors are approximately the same in a neighborhood of u = 0, i.e. P(v) &

3.(v). Therefore it is sufficient to assume the condition for one of the stress tensors. In
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2.4 Homogeneous isotropic materials

the following we use the condition for ¥(v). Taking the deviator and the trace of this

condition we obtain
dev (X'(0)[v]) = 2udeve(v),
!

tr (X'(0)[v]) = (2 + 3)\) tr(e(v))
with the deviator dev A := A — 1tr(A)I for A € R3*3,

(2.35)

If one considers now a given stored energy function 1[1 to a hyperelastic material, one
has firstly constraintless coefficients in front of the single terms. To satisfy polyconvexity

it is reasonable to assume that the coefficients are nonnegative. To guarantee further

consistency with linear elasticity, we have to satisfy the conditions (2.34]) and (2.35)) above,

i.e. we have altogether three additional conditions for the calculation of these coefficients.

Application to Mooney - Rivlin:

For the stored energy function (2.31), i.e. a homogeneous isotropic frame - indifferent mate-
rial of Mooney - Rivlin type, we have four unknowns «, 3,y, d which have to be determined
such that the material is consistent with linear elasticity. By equation (2.33]) we know

Sur(u) =201+ (26det C(u) — 4)C(u) ™! + 26 (tr(C(u))I — C(u)). (2.36)

The condition results due to C(0) = I and therefore C~1(0) = I, det C(0) = 1,
tr(C(0)) = 3 into

20+ 20 — v+ 46 = 0. (2.37)
For the derivation of the two conditions in equation we define the mappings hi(A) :=
I;(A) = tr(A), ha(A) == I3(A) = det A, h3(A) :== A7, hy(A) := A. We recall the
Fréchet/Gateaux derivatives from Section as

h1(A)[H] = 0hy (A)(H) = tr(H),
hy(A)[H] = 0ha(A)(H) = Cof A : H,
h(A)[H] = 0h3(A)(H) = —~AT'HA™Y,
hy(A)[H] = 0hy(A)(H) = H

for arbitrary matrices A, H.

We know further that F — C = FF is Fréchet differentiable with derivative H' F+FTH.
The mapping u — F(u) = I + Vu is Fréchet differentiable with derivative Vv, since
F(u+v) =I+V(u+v) = F(u)+ Vv, assuming that u, v :  — R? are themselves Fréchet
differentiable. Thus altogether we know that the mapping u + C(u) = (F(u))'F(u) is
Fréchet differentiable with derivative (Vv)F(u) + (F(u))? Vv.

If we consider (2.36) we have

Epr(u) =2al+ (28g2(u) — v)gs(u) + 26 (g1(u)I — ga(u))
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with g;(u) := h;(C(u)) for i = 1,...,4. To compute ¥);z(u)[v] in u = 0 we need the

Fréchet/Gateaux derivatives of g;. The derivatives are generally given by

gi(w)[v] = dgi(w)(v) = hi(C(u))[(Vv) F(u) + (F(u))" Vv].

Individually we get

For u = 0 it follows due to F(0) = C(0) = I and 2¢(v) = Vv + (Vv)T

91(0)[v] = g5(0)[v] = 2tr(e(v)), g3(0)[v] = —2&(v), g4 (0)[v] = 2¢(v).

Using these derivatives in u = 0 and the chain rule we obtain

vr(0)[V] = 26(g5(0)[v])g3(0) + (2892(0) — 7)g5(0)[v] + 26 (g1 (0)[V]T — g4 (0)[v])
= 4ptr(e(v))I + (28 — v)(—2e(v)) + 26 (2tr(e(v))I — 2e(v))
= (48 + 2y —46)e(v) + (48 + 49) tr(e(v))I

and with
dev (),z(0)[v]) = (—48 + 2y — 45) deve(v) = 2 dev e(v)
tr (Zhyr(0)[v])

Since v is arbitrary here it must hold —25 + v — 2§ = p by the first condition in ([2.38]).
Inserting this relation directly in the second equation of (2.38) results in A = 4(5 + ¢).
Combining these two conditions with (2.37]) we can express «, 3,7 through

| (2.38)
(=48 + 2y — 40 + 128 + 120) tr(e(v)) = (2u + 3A) tr(e(v)).

(/.L, 6) 5 63
B(A,6) = i 5, (2.39)
V(s A) = p+ ;

with a free parameter § > 0. « is even independent of A, 5 is independent of p and ~ is
independent of §. Since we have assumed «, > 0 in (2.30]), we get the constraint

Ap
< .
0 5<mln{4 2} (2.40)

Thus if we choose the parameters «, 8,7, 0 in (2.30) according to and - con-

sistency of the nonlinear Mooney - Rivlin model to linear elasticity theory is guaranteed.
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2.5 Finite element spaces

2.5 Finite element spaces

In this section, the finite elements used in this work will be explained. For this purpose let
Tr, be an admissible and shape-regular triangulation of a nonempty, open, bounded and
connected polygonal subset Q C R, n € N\ {0}, into elements T" € T, (cf. Chapter II §5
in [Bra07]). In the 2d plane strain case of elasticity theory we use triangles and in the full
3d case we use tetrahedra as elements. Due to the admissibility of 7T}, it holds in particular

Q = |J T. Shape-regular means that in each element T' € T; a n-dimensional sphere
TeTh

with radius pr could be inscribed and there exists a constant x > 0 such that x > Z—; for
all T' € Tj. hr denotes the diameter of an element and h := max{hr : T € T} the mesh
size.

Further ny, n¢, ne (and additionally ny in 3d) denotes the number of points, the number of
triangles/tetrahedra, the number of edges (and the number of faces) in the triangulation.
Pr(T) is the set of polynomials of degree less than or equal to k, defined on 7.

For the calculation of the dimension Py(T') with variables z1,...,x, we split the space
in Pp(T) = EB P;(T) where P;(T) denotes the set of homogeneous polynomials of degree

1, i.e. all monomlals of a polynomial in 75@(T ) are exactly of degree i. We consider all

possible combinations of {x1,...,z,} (with repetition, order is not taken into account) to

n+i—1) (n4i—1)!

i = =T and therefore

monomials of degree 7. It holds dim P;(T) = (

. k .
dim Py (T Zdunp Z("+2_1>:1+Z("+2_1>.

=0 i=1

It follows in two (n = 2) and three dimensions (n = 3)

1+ i(i+1) =1k+1)(k+2) =2
dim Py (T) = it (2.41)
1+ Y 2(+1)(i+2) =2k+1)(k+2)(k+3) ,n=3.
=1

We also define the space Py (9T") which consists of all polynomials of degree k defined on
the boundary 0T of an element T € Tj. Since for given dimension n the boundary of an

element is (n — 1) dimensional, it holds

-1
dim Py (0T') = #(boundary segments of the element) (1 + Z ( + i )) .
i=1

It follows in two (n = 2) and three dimensions (n = 3)

ko .

3'<1+2(;)> =3(k+1) =2
i?l

4-<1+2(”i1)> =2(k+1)(k+2) ,n=3.

1=1

dim Py (0T) =
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2.5.1 Piecewise polynomial elements

Continuous elements:

For the approximation of each component of the displacement u in elasticity theory we

define a (scalar - valued) space for an integer k > 0 as
Pr(Tn) :=4{v e L™®(Q): v|lr € P(T)VT € Tp}.

In the following proposition we show that a function v € Py(7T,) which is additionally con-
tinuous in the domain € is also in the Sobolev space W1?(£2). This means that continuous

piecewise polynomial elements are suitable for W1P(Q) - approximations.

Proposition 2.43: (Conformity in Sobolev spaces)

Let p € [1,00] be arbitrary and k& > 0 an integer. A function v € Pk(7p), which is

additionally continuous in 2, is also in WP ().

Proof:

Let v € Pi(Tx) be a function satisfying the additional assumption of continuity in 2. By
definition of Py (7Ty) the function is in L (Q) C LP(Q) for p € [1, oo]. Furthermore we know
that a function v € Py (Ty,) is piecewiese in WHP(T) for all T € Ty, and p € [1,00]. With

an arbitrary test function ¢ € C§°(Q), the decomposition = |J T and element - wise
T€Th
partial integration (see Theorem 6.1-9 in [Cia88]) it holds for all multi-indices o with
ol =1
[ o6 @ ey de = 3 [ vix) @up0)do
Q TeT, T
= Z [—/(@-v(x))(p(x) dw—i—/ v(x) p(x) n; ds]
Ter, T oT
== 3 [ o) el dn = (<171 [ @) plx)di

Here we have set 0, := 0% for a = (0,...,;,...,0) with o; = 1 and have used the
assumed continuity of the function v in 2 and the fact that ¢ vanishes on 9. n; denotes
the i - th component of the outer normal n on dT. Due to v € WHP(T) for all elements we
know that 0%v is piecewise in LP(T") and therefore altogether 0%v € LP(Q) for p € [1, o).
By Definition we see that 0%v = ;v is the weak derivative of v.

g
For practical purposes one usually defines nodal basis functions v; € Py(T), i = 1,...,
dim Py, (T) on a reference element 7' and uses an invertible Fréchet differentiable mapping
Fr: T — T (with invertible Jacobi matrix Jg.,.) from the reference element to an arbitrary

element T of the triangulation to define basis functions

vi(x) == 0(F;'(x)), xe€T.
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Note that we restrict ourselves to affine transformations Fp(X) = Mx + a as mapping
between the reference element 7' and an arbitrary element 7' in this work. This means
that we use no isoparametric elements.

In the case k = 2, i.e. quadratic elements, we use the degrees of freedom depicted in Figure

24

2d 3d
Figure 2.4: Piecewise quadratic elements P2(7") in two and three dimensions

Thus we have locally 6 degrees of freedom in 2d and 10 degrees of freedom in 3d according
to .

In finite element methods the common way is to build local matrices on each element
and assembling them afterwards to a global matrix. In the case of continuous piecewise
quadratic elements, i.e. a function in P2(7}), one obtains altogether n, + n. degrees of
freedom in two and three dimensions. These degrees of freedom will be reduced afterwards
due to prescribed boundary conditions in the problem. The following result can be found
in Proposition 2.2.2 in [BBF13| and states an estimate for the approximation error using

piecewise polynomial elements.

Proposition 2.44: (Approximation error in H?*(Q2))
Let the mapping Fr : T — T be affine and I, : H5(Q) — Py(Tn) with Inpr = py for
all pr, € P(T) and all T € T}, the interpolation operator defined in [BBEF13|. Let further

AT = {T' : T'NT # 0} be a patch around the element T , oar = max I and
T € AT PT’

har := max hyp.

T € AT
Then there exists a constant ¢, depending on k and oar, such that for 0 < m < s,
1 <s<k+1it holds

|U — Ih'U|Hm(T) < ChSA_Tm|U‘Hs(AT), v E HS(AT). (2.43)

Summing up this inequality over all T" € Tj, and using h > har for all possible patches
AT leads to

”U — IhU’Hm(Q) < Chs_m”l)|Hs(Q), Ve HS(Q)
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An immediate consequence for quadratic elements (k = 2), v € H3(Q), i.e. s = 3, and
m = 1is |[v— Ihv|gig) < ch® For v € H*(Q), ie. s = 2, and m = 0 it follows |v —
Inv|r2(0) = [v = Ipv|goq) < ch?. Combining these estimates we get under the assumption
of v € H3(Q) altogether

1
|lv— IhUHHl(Q) = (\v — Ihv\%z(m + v — Ih”’%l(g)) ’ <

This means that if the solution is sufficiently regular we obtain a optimal convergence rate
of two for piecewise quadratic elements.

An approximation result in Sobolev spaces WP (Q) for polyhedral domains Q C R™ and
1 < p < o0 is formulated in Corollary 4.4.24 in [BSO8|. Again for quadratic elements and

a function v € W3P(Q) a convergence rate of two is at most possible.

Further elements for the plane strain model:

In Section we have seen that one in general gets a nonzero matrix entry Ps3 in the
first Piola- Kirchhoff stress tensor P in the context of a plane strain model. In this case
we approximate P33 by a discontinuous piecewise linear function. Per triangle one needs
three degrees of freedom. We choose the vertices of the triangles as degrees of freedom.
After assembling the local matrices one obtains a global matrix of dimension 3n;, due
to the discontinuity. Discontinuous piecewise linear functions are suitable to approximate
L?(2) - functions.

In our numerical experiments in a plane strain model we will additionally compare the
performance of continuous piecewise quadratic elements for approximating the displace-
ment u with the so- called Fortin- Soulie elements introduced in [F'S83]. This element is
a piecewise quadratic element and uses besides the standard nodal basis for quadratic
elements an additional basis function, a so- called bubble function. The additional basis
function vanishes in the Gauss- Legendre points on the edges of T and has the value 1
in the barycenter. Altogether one obtains 7 degrees of freedom on an arbitrary element
T € Tp. Globally, before including the boundary conditions, one has n, + n. + n; degrees
of freedom. This element is no longer continuous on the boundary edges and therefore a
non - conforming element.

The linear (discontinuous) element for the stress component P33 and the quadratic For-

tin - Soulie element are depicted in Figure [2.5

2.5.2 Raviart - Thomas elements

For the approximation of the single rows of the first Piola- Kirchhoff stress tensor P we
use the well - studied Raviart- Thomas elements. A nice introduction into these elements

can be found in [BBF13]. We discuss the essential facts about these elements briefly.
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®

(a) Linear element P1(T) (b) Quadratic Fortin- Soulie element

Figure 2.5: Elements for the plane strain model

For an arbitrary integer k > 0 we define on each 7' € T, the Raviart - Thomas space as
RTK(T):={v:T —=>R"|v=(Pp(T)" +xPe(T)}, x:=(1,...,2n).

By this definition it is clear, that (Px(T))" C RTk(T) C (Pr+1(T))". One can further
write this space as the direct sum

RTK(T) = (Pu(T))" & x Py(T),

where 75k(T) denotes again the space of homogeneous polynomials of degree k. The di-

mension of the Raviart - Thomas space is given by

dim RT1(T) = n - (dim Py(T)) 4 dim Py (T)

k . ~
with dim Py(T) = Z()(”*;*l) and dim Py(T) = ("} "), derived at the beginning of
1=
this section. For our cases of interest n € {2,3} we get

dim RT4(T) = n - (dim Py (T)) + dim Py (T)
2. (3(k+1)(k+2) + (k+1) , n=
3 (tk+1)(k+2)(k+3) +i(k+1)(k+2) , n=3 (2.44)
(k+1)(k+3), . n=2
Sk+1)(k+2)(k+4), , n=3.
On the triangulation 7, we define the set of Raviart - Thomas functions as
RTw(Tn) = {v € (L>(Q)" : vlr € RTW(T)VT € Ta,

v - n is continuous at the interfaces of elements}.

In the following proposition we show that a function v € RT(7p) is also in the function
space WP(div; Q) for all p € [1, 00, i.e. conformity in WP(div;€?) is ensured and therefore
the Raviart - Thomas elements v € RT (7r) are suitable for WP (div; ) - approximations.
For the proof of this conformity result the continuity of the normal component at the

interfaces of elements is crucial.
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Proposition 2.45: (Conformity of Raviart - Thomas elements in WP?(div; 2))

Let v € RTk(Tr) be a Raviart- Thomas function for given integer k > 0 and p € [1, o0]
arbitrary. Then it holds v € WP(div; Q), i.e. RT 1(T) C WP(div; Q).

Proof:
The Raviart - Thomas functions v € RT(7p,) are by definition in (L*°())™ C (LP(£2))™.
Furthermore they are as (vector - valued) polynomials on each element of course in

Wp(div T) and additionally the partial weak derivatives in LP(T') exist. We set w(x) :=

Z 0;v;(x) which exists elementwise. It holds w € LP(T) for all T' € T;, and therefore also
=1
w € LP(Q). It remains to show that @ is the weak divergence of v. For a test function

¢ € C§°(Q) it holds with the help of the decomposition Q = [J T and partial integration
TeT
on each of these elements

/Q dw—Z/ da:—Z/(Z@vz ) x) dz

TET TET, 1=1
TEZT;”; [ / vi(x) (Oip(x)) d + /8T v; (%) n; p(x) ds}
-> = [+ Vetedet [ (v migt) s

= —/Qv(x) -V(x) dz.

The sum over the boundary integrals vanishes due to the assumed continuity of the normal
component v - n with outer normals n and the fact that ¢ = 0 on 9. By Definition [2.16]
w = divv is the weak divergence of v.

O
For the construction of basis functions R7 (T') in practice one starts again on a reference
element 7" and takes again an invertible Fréchet differentiable mapping Fp : 7T (with
invertible Jacobi matrix Jg,) from the reference element to an arbitrary element 7" of the
triangulation.
For any integer & > 0 one can define the vector-valued basis functions v;(x), i = 1,...,
dim RT(T) on T with the help of the moments

o[ 0 s e POT)
oT

These are 3(k + 1) integrals in 2d and 2(k + 1)(k + 2) integrals in 3d due to the derived
dimension of P (9T) for an arbitrary element 7" in equation ([2.42)).

. /T V(%) - Pro1(R)di, Py € (P (D))"

These are dim RT1(T) — dim Py (0T integrals, i.e. k(k 4 1) integrals in 2d and sk(k +
1)(k + 2) integrals in 3d.
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For details concerning the linear independency of the resulting basis functions we refer to
[BBF13). )

Instead of using the moments to define basis functions for R7(7") one could also define
basis functions by prescribing on the one hand their normal components in k£ + 1 points
on each of the edges in 2d (respectively 1(k + 1)(k + 2) points on each of the faces in
3d). On the other hand one uses additionally £ (k + 1) different points in 2d (respectively
tk(k + 1)(k + 2) different points in 3d) and prescribes the x-, y-value (respectively the
x-, y- and z-value) in these points. It is clear that 2 divides k(k + 1). It is also clear that
6 divides k(k + 1)(k + 2), which can be proven simply with complete induction.

2d 3d

Figure 2.6: Raviart - Thomas elements R71(7") in two and three dimensions

This ansatz for defining basis functions is motivated by the fact that we have to satisfy
continuity of the normal components at the element interfaces to obtain conformity in
WP(div; Q). In the case k = 1 one obtains for example the degrees of freedom drawn in
Figure i.e. we prescribe the normal components in all vertices of each edge/face and
we use the barycenter inside the triangle/tetrahedron to define the basis functions. Thus
in 2d we have locally 8 degrees of freedom and in 3d we have locally 15 degrees of freedom,
according to the dimension of R71(T") in equation ([2.44]).

If one has determined the basis functions on the reference element the next step is again
to transform them to an arbitrary element T° € 7. Since the standard transformation
does not preserve normal components, we need here the so- called Piola transformation.

We define the basis functions v, i = 1,...,dimRT(T), on T in general as

vi(x) : !

— -1 ~ o1 x X .
= |detJFT(F;1(X))|JFT(FT (X))Vz(FT ( )), erT
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For an affine orientation - preserving transformation Fp(x) = Mx + a it follows

1

= detMMfzi(F;l(x)), xeT.

vi(x)

With this choice an important consequence is that the conditions above, defining the
degrees of freedom, can be preserved (cf. Lemma 2.1.6 in [BBF13]).

Similar to the standard piecewise polynomial elements one assembles the local matrices of
a function R71(7y) to a global matrix and gets 2(n. + ny) degrees of freedom in 2d and
3(ns +n¢) degrees of freedom in 3d. Again these degrees of freedom are generally reduced
through suitable boundary conditions.

The following result which can be found in [BBF13] is important to get a- priori error
estimates in H (div;(2).

Proposition 2.46: (Approximation error in H(div; 2))
For the global interpolation operator Il : H(div;Q) N L"(2)" — RTr(Ty) with fixed
r > 2, defined in Section 2.5.1 and 2.5.2 in [BBF13], and q € H™ ()" it holds

la — rallr2) < ch™|algm(q)

with constant ¢ independent of h and 1 < m < k 4 1. Furthermore for divq € H*(Q) it
holds

|div(a — IIha) |2 () < ch’|divd|ms )
with s < k + 1.

Proof:

See Proposition 2.5.4 and the statements before in [BBEF13].
a

An immediate consequence for k = 1 and s = m = k + 1 = 2 and therefore a function
q € H(div; Q)N L™ (Q)" N H?(Q)" with divg € H*(Q) is

1 1
(o= T2z + Idiv(a = Tha)Ba) )* S (A (ol + divalizg))* S A2

i.e. for k =1 and a H(div;Q)- conforming approximation one expects a optimal conver-

gence rate of two.
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3 Least Squares Finite Element Methods in elasticity

This section is the main chapter of this work. For the derivation of least squares finite ele-
ment methods (abbr. LSFEMs) for nonlinear hyperelasticity, we use the idea of a LSFEM
approach from linear elasticity. We are interested in developing a robust LSFEM method
for nonlinear elasticity which approximates besides the displacement u also a full stress
tensor. We will approximate the first Piola - Kirchhoff stress tensor P. The simultaneous
approximation of both quantities has the advantage that one needs no post - processing to
determine P. Furthermore one expects better stress approximations.

The outline of this chapter is as follows. At the beginning we state the partial differential
equations that we have to solve in (nonlinear) elasticity, namely the equations of equi-
librium and the stress-strain relation. Then we explain the least squares finite element
method on the basis of the work [CS04] for linear elasticity. In LSFEM for linear problems
one is usually interested in a , wanted property“, which leads to the well - posedness of
the underlying problem. The mentioned work of Cai and Starke states such a ,,wanted
property® for linear elasticity.

This work is also the basis for the extension to the nonlinear case described afterwards. He-
re we explain the general idea of our approach for homogeneous isotropic frame - indifferent
materials before we focus on the cases of a Mooney - Rivlin and a Neo - Hooke material. For
the considered Neo - Hooke model we provide a detailed analysis for the nonlinear problem
as well as for the corresponding linearized problem.

At the end of this chapter we explain two other possible standard discretization methods
to compare our method with already existing ones in Section [6] The first method here
is the simplest one in finite elements for elastic deformation problems, the so-called dis-
placement approach or simply Galerkin method. Unfortunately, this method leads to the
Poisson locking problem at least if one uses small polynomial degrees in an underlying
conforming finite element space (cf. [BS92] for linear elasticity). Poisson locking means
that the obtained approximations deteriorate if A — oo or equivalently if Poisson’s ratio
v— % (cf. Section . Therefore the displacement approach is either only suitable for
compressible materials or with larger polynomial degrees. It is our aim that our approach
works also in the (quasi-) incompressible case for quite small polynomial degrees. We will
compare our LSFEM approach additionally with an existing displacement - pressure

approach, which is proposed by Auricchio in [ABadVLRI10] for incompressible materials.

3.1 First-order system in elasticity theory

We follow the notation of Section and will describe the elastostatic problem in the
reference configuration generally for frame-indifferent hyperelastic materials. We focus
on the case of mixed boundary conditions which is more relevant for practical purposes,

i.e. we have boundary conditions for u on I'p and for P on I'y. In the introduction of
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3 LEAST SQUARES FINITE ELEMENT METHODS IN ELASTICITY

elastic deformation problems we have already mentioned that two sets of equations are
fundamental. The first set consists of the equations of equilibrium. In the reference

configuration they state

—divP=f inQ,

P-n=g only.

The first equation is an immediate consequence of the physically necessary conservation
of linear momentum for a static problem (cf. Section 5.10 in [EGKT1] respectively Section
2 in |Cia88]). The boundary conditions for P on I'y follow directly from the definition of
the so- called Cauchy stress vector and its corresponding Cauchy stress tensor (cf. Section
2 in [Cia88]). Additionally it must hold PF? = FPT in the domain € for the deformation
gradient F = V¢ of the deformation ¢ and the first Piola- Kirchhoff stress tensor P.
This follows directly from the physically necessary requirement of conservation of angular
momentum for a static problem.

The second set of equations is given by a stress- strain relation. In linear elasticity theory
we have the stress-strain relation . In nonlinear hyperelasticity the stress-strain
relation can be obtained through Definition[2.20] Since we are dealing with mixed boundary
conditions, we must prescribe additionally u on I'p to obtain a well - posed problem. We
assume u = up on I'p. Altogether this forms the first - order system/strong formulation
for a frame- indifferent nonlinear hyperelastic material with given stored energy function
P QX RYS 5 R:

Seek the displacement u : Q — R3 and the first Piola - Kirchhoff stress tensor P : Q — R3*3
with

—divP =f in €,
P = 0py(x,C) in 0, (3.1)

u=uponlp, P-n=gonly

under given force densities g : 'y — R? and f : Q — R3.

In linear elasticity it is not necessary to distinguish between the different stress tensors
and one uses generally o as notation for the stress tensor. The strong formulation with
first - order system reduces to:

Seek the displacement u : © — R3 and the stress tensor o : Q — R3*3 with

—dive =f in €,
o =2ue(u) + Atr(e(u))I =:Ce(u) in Q, (3.2)

u=uponlp, o-n=gonly.

3.2 Inverse LSFEM approach for linear elasticity

The general idea of least squares finite element methods can be found in the book [BGQ9]

of Bochev and Gunzburger. Generally one transforms a given system of partial differential
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equations into a corresponding first-order system with vanishing right - hand side, i.e.
in residual form. The next step in general is to put each of the single residuals into
the L?-norm and square them. One defines the least squares functional as the sum of
these squared L?-norms and seeks a minimizer of this functional in a suitable (problem
dependent) function space. If the value of the functional is zero, one knows that one has
found the exact solution. Roughly speaking, that is the idea of standard least squares finite
element methods. We explain the method exemplarily and in more detail for the linear
elastic problem in the following, based on the work of [CS04].

In this work the authors start with the system described in . Obviously the material
law o = Ce(u) blows up in the limit A — co. Since the authors were interested also in the
incompressible case A — oo their idea was to invert the stress- strain relation into

g(u) = 21M <0' — Mtr(a)l) = Clo = Ajyn(o), (3.3)

i.e. Ay is now a mapping from stresses into strains. For A — oo one gets with the definition

of the deviator

1 1 1 1 1
lim Ay = lim — — t 1] =— — =t I)=—devo.
Jim lin(07) im (a’ = 27” r(o) ) o (a 3 r(o) ) o vo
Please note that all stresses of o of the form o = ¢I, ¢ € R, vanish in the incompressible
limit. This means that the kernel of Aj;, is non-trivial and therefore the mapping is no
longer invertible in the incompressible case. We obtain the ,inverse® first - order system

with vanishing right - hand side

dive+f=0 in €,
Ajin(o) —e(u) =0 in Q, (3.4)

u=uponlp, o-n=gonly.

The boundary conditions can be imposed strongly or weakly. Both possibilities are discus-

sed in [CS04]. For strongly imposed boundary conditions the least squares functional
Fiin(o,w; ) := [|div o + £[|72(g) + [Ain (o) — e(w)[|72(q) (3.5)

is defined, following the general idea of LSFEM, and a minimizer (o, u) := (¢ +6&,up +
1) € (H(div; Q)3 + Hr (div; Q)3) x (HY(Q)3 + H%D(Q)?’) with 0¥ -n = g on I'y and
u = up on I'p of the functional is seeked. The subscripts I'y and I'p in the function
spaces here denote functions in the same spaces, but with zero boundary conditions on
'y, respectively I'p. We will use this notation in the rest of this work, also for other
function spaces.

Generally in finite element methods one is interested in estimating the error between

the (in general unknown) exact and the approximated solution. In LSFEM the aim is to
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3 LEAST SQUARES FINITE ELEMENT METHODS IN ELASTICITY

estimate the error in a suitable norm from below and above by the defined least squares
functional.

In the case of linear elasticity the main result in the work [CS04] is the following theorem.

Theorem 3.1: (Continuity and ellipticity of F;,(7,v;0) in linear elasticity)
Let V := Hr, (div; Q)3 x H%D(Q)?’. There exists a constant C, independent of A, such
that

Fin(7,v:0) < C () By + 17220y + div T30 (continuity) -
3.6

1 : o
Fiin(r,vi0) > <H€(V)H%Q(Q) 17220 + Hdler%Q(Q)> (ellipticity)
for all (1,v) € V.
Proof:
see Theorem 3.1 in [CS04]
L O

With the norm ||(7,v)|y := (HTH%{(diV'Q) + HVH%_II(Q)>2 on the space V an immediate
consequence is

VI3 < Fiin(r.vi0) S lm V)3 (r.v) € V.| (37)

Here we have used on the one hand the simple estimate HE(V)”%Q(Q) < HVH%Il(Q) for
v € H'(2)? and on the other hand Korn’s inequality, i.e. HE(V)HQLQ(Q) 2 Hvaql(Q),
v € H%D (€2)3, (see Corollary 11.2.22 in [BS08]). The abbreviations < and > stands again
for inequalities up to positive constants and are often used in the rest of this work.
Equation is the ,, wanted property“ one is usually interested in least squares finite
element methods for (linear) problems. With this property one obtains beneficial conse-
quences. The following consequences are not restricted to the problem of linear elasticity,
i.e. the explanations below work in the same way for general linear least squares problems
of the form F(w;r) = ||L(w) — TH%Q(Q), w € V,r € L3(), with a linear operator £ which
is defined on a suitable function space V' and maps into a subspace of L?(12).

In the context of linear elasticity we set for (o, u) := (e¥ 4+ &,up +1) € (H(div; )3 +

Hr,, (div; Q)3> X (HI(Q)3 + H%D(Q)3>, oV -n=gonTy,u=uponlp

dive —f
L(o,u):= (.Alm(a) B e(u)) , TI:i= < 0 ) . (3.8)

With this definition it holds (cf. (3.5])

Fiin(or, w0 £) = [ £(or,0) = tl[3 - (3.9)
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3.2 Inverse LSFEM approach for linear elasticity

Since we are seeking (6,1) € V such that F, (o, w;f) = Fn(a + 6,up + a;f) is

minimized in V, the necessary condition is

%flm(a +t7,u+tv;f))‘t: =0

0 (3.10)
(r — E(UN,uD),E(T,V))

A
<

S~—

~—
h
—~
=
I

L2(Q)

=:a ((&’ ﬁ)’ (T,V)) = F ((T7V))

for all (7,v) € V with corresponding bilinear form a : ¥V x ¥V — R and linear form

F :V — R. With these considerations we get the following proposition:

Proposition 3.2: (Existence and uniqueness in linear elasticity)
We consider the minimization problem of (3.9 and assume that the property (3.7) holds.
Then the corresponding bilinear form, defined in (3.10]), is symmetric, continuous and

coercive on V. Furthermore under the assumption of f € L%(Q)3, oV € H(div; Q) and
up € H(Q2)3 the linear form F in (3.10) is continuous.

Proof:

Symmetry of a:

Obviously it holds a ((6, 1), (7,v)) = a((7,v), (6,0)) for all (&,0),(7,v) € V.
Continuity of a:

With the help of the Cauchy - Schwarz inequality, forr =0(< f =0) and it
holds for (&, 1), (T,v) €V

|
=
5
—
Q>
=3
=)
S~—
N~—

[ I
5
g
—~
R
=
(=)
=
(SIS

S (6, @)yl v)lly-

Coercivity of a:

For (7,v) € V it holds due to (3.7) and (3.9)

CL((T,V), (T,V)) = (ﬁ(Tvv)v‘C(Tvv))LQ(Q) - H‘C(T7V)H%Q(Q)

= Flin(T,v:0) 2 [I(T, V)[[5

Continuity of F:
By the assumption it is clear that r — £ (o™, up) € L*()? x L*(Q)**3. For (7,v) € V it
holds due to (3.7 and again the Cauchy - Schwarz inequality and (3.9)

N[

[F((m, V)| < lx = £ (e, up) l2@)I£(7, V)llL2(@) S (Fiin(T,v:0))2 < [[(7,9) v

a

An immediate consequence of this proposition with the help of Lax - Milgram (see Theorem
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2.7.7 in [BSO8]) is that a unique solution of the variational problem in (3.10]) exists. For
the sake of completeness we mention that the variational problem in (3.10) is actually

equivalent to the minimization problem of Fy;, (o, u; f), since for a solution (&,u) € V of
a((e,a),(r,v))=F((r,v)) for all (7,v) € V it holds

Fiin(o + 7, u+vif) = [L(o + T, u+v) —1][f2g) = [|£(0, 1) — v+ L(7,V)|[72q
= [[L(o,u) = rlff2q) + 2 (L(o,u) =1, L(T,V)) 12(q) + [L(7, V)l 20

=0 >0

> Hﬁ(a,u) - rH%ﬁQ) = Jrlm(o'7U; f)

with & = o + 6 and u = up + 0 and arbitrary (7,v) € V.
With the help of the property (3.7) we can also show that the least squares functional
is equivalent to the error, i.e. the least squares functional is a suitable a- posteriori error

estimator and can be used for adaptive refinement.

Corollary 3.3: (Error estimator in linear elasticity)
Let (o,u) be the exact solution of (3.4) and (7,v) € H(div;Q)3 x H'(Q)3, satisfying
T-n=gon 'y and v=up on I'p. Then it holds

(o =T u=v)I} S Fiin(r,v:£) S (0 — T, u = v)[[3. (3.11)

Proof:

By assumption is (o, u) the exact solution of (3.4) and therefore it holds L(o,u) = r.
This implies due to the linearity of £ and the definition of Fy;,,

Fiin(7,v3£) = IL(7,v) = x| 72q) = [£(1,v) = Lo, 1) [ F2(q)

=||L(c—T,u— v)H%Q(Q) = Flin(c — T,u—v;0)

with (0 —7) n=0c-n—-7-n=g—-g=0omI'yandu—v=up—up=0onTp.
Thus we can apply and obtain the statement.

OdJ
An immediate consequence for 7 = o5 and v = uy with a conforming approximation
(on,up) € H(div; Q)3 x H'(Q)3, satisfying o, -n = g on I'y and u;, = up on I'p, and

the error e := (0 — o, u —uy) is
lell = [l(o — oy u —un) [} = Fiin(on, up; £). (3.12)

The sign = in is an abbreviation for |e||3, < Fiin(on, up; ) < [le]|%. The abbrevia-
tion =~ will be used in the rest of this work in the same way.

means that the least squares functional, evaluated in the approximation, is up to
constants a reliable and efficient measure for the error e and can be used for adaptive

refinement.
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Furthermore if one uses for instance Raviart - Thomas elements (R7_1(73))> for o, and

continuous elements (Pk(’ﬁl))?’ for uy, with an integer k£ > 1, we get from the approximation

error estimates in Propositions and

NI

lellv = (Il = onli3awsay + I = wallEey)
(3.13)

N

< Ch* (HUH?{IC(Q) + ||diVU||§{k(Q) + |’“H%1k+1(9)) ’

assuming that u € H*1(Q)3, o € H(div; Q)N H*(Q)3*3N L7 (Q)3*3 (with fixed r > 2 for
the interpolation operator II;, defined in Proposition [2.46) and dive € H*(Q)3. Equation
(3.13]) is an a-priori estimate for the error.

3.3 Extension to homogeneous isotropic hyperelastic models

Our aim in this section is to generalize the idea described in Section to nonlinear
homogeneous isotropic frame - indifferent hyperelastic materials. The point of departure
is the first - order system with stored energy function 9 (C), now homogeneous and
isotropic. We have seen in equation and (respectively ) that we can
express the stress tensors 7 = PF? and ¥ = F~'P in terms of B = FFT and C = FTF,
i.e. there exist mappings G, G : R3*3 — R3*3 with

PFT = G(B) and F~'P = G(C). (3.14)

These are mappings from strains into stresses similar to the mapping C in . Following
the idea of Section we want to invert these equations in order to obtain mappings from
stresses to strains. However, since the mappings G, G are nonlinear in the strains, this is in
general impossible. The idea is now that the stress- strain relations are at least invertible
in a neighborhood of B = I = C. Assuming that we have eliminated all rigid body motions
¢ # id (cf. Section , this condition is only possible if and only if ¢ = id < u = 0.
If we consider in terms of the displacement u, i.e.

P(u)(F(u))" = G(B(u)) and F(u)"'P(u) = G(C(u)),
and assume that the material is consistent with linear elasticity (cf. Section we get
G(I) = G(B(0)) = P(0)(F(0))" =0, G(I) =G(C(0)) = F(0) 'P(0) =

since P(0) = 0. We assume that G and C; are continuously differentiable. Then we get as

Fréchet/Gateaux derivatives

g’<B<u>>[vV<F<u>>T+F<u><Vv> ]z '(B(w))[B'(w)[v] = (G(B(w)))' [v]
= (P(u)(F(w))") [v] VI(F(u)” +P(u)(Vv)7,

¢'(C(u ))[(VV)TF(U)+(F(H))TVV] é( (w))[C'(w)[v] = (G(C(w)))'[v]

!

L (F(w)'P(w)' [v] = (~F(w) "' VvF(u)")P(w) + F(u)"P'(w)[v].
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For u = 0 it follows B(u) = I = C(u), Vv(F(u))? + F(u)(Vv)! =2¢e(v) = (Vv)TF(u) +

(F(u))”Vv and therefore by the assumed consistency with linear elasticity

¢'(D[2e(v)] = §'(D)[2e(v)] = P'(0)[v] = 2p€(v) + Atr(e(v))I
for all v in a neighborhood of u = 0. Since C(v) —I = C(v) — C(0) = 2E(v) = 2¢&(v)
the equation

G(D[E] = B+ tr(B) = ' (D[E)

is reasonable for the Green-St. Venant strain tensor E in a neighborhood of E = 0

(respectively for the Cauchy - Green strain tensors B and C in a neighborhood of I). Thus
for small strains E and by definition of C in ({3.2)

G (D[E] = §'(I)[E] = %c E=uE+ %tr(E)I (3.15)

is motivated.

If holds and the mappings G and G are continuously differentiable it remains to show
by Theorem that C is an isomorphism. Then local invertibility of G and G is ensured.
Obviously C and its inverse C~!, defined in (3.3), are linear. Furthermore for finite A and
1 the mappings C and C~! are continuous since with I = v/3 and Lemma it holds

ICE| = |2uE + Mr(E)I| < 2u|E| + Mtr(E)||TI| < 21 + 3\ |E|, E c R3*3,

1 A 1 3
-1

e o)< = (14 =2
€™l zﬂ“’ 3T 2n r(”)‘—2u< +3A+2u>""

1/ 3X 1{3+%&
:( +“>a|: L)oo eRrPE
o\ 3A+2p p\3+ 2

Thus C and therefore also 9G(I) = 3C and IG(I) = 1C are isomorphisms. The consequence

of the local inversion theorem is that the inverse mappings G~'(7) and G~1(X) are well -

defined in a neighborhood of 7 = 0 = X, i.e. at least for small stresses. We can therefore

find, similar to the linear case, two first - order systems. On the one hand we get

divP+f=0 in{,
G ' PFwWT) -B(u)=0 inQ, (3.16)

u=uponlp, P-n=gonly,

using the representation in B, and on the other hand we have

divP+f=0 inQ,
G ' (F(u)'P)—C(u)=0 inQ, (3.17)

u=uponlp, P-n=gonly

using the representation in C.
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3.3 Extension to homogeneous isotropic hyperelastic models

3.3.1 General least squares formulations for hyperelastic materials

We have observed in Section that the operator Ay, = C~! of linear elasticity is
indeed well - defined in the incompressible limit but is no longer invertible in this case.
The linearization of G and G about the matrix I is by construction up to a constant

similar to C. Thus also for the inverses G~1 and G~ we expect a similar behavior as for

C~! in the incompressible limit. Due to this observation we use in (3.16)) and (3.17) instead
of G~ and G~! the notation A and A in the following. For finite \ we set A = G~!

A = G~ 1. One question that arises is if the operators A and A are also well- defined in

the incompressible limit A — oo. For the case of a special Neo- Hooke material we will
answer this question in Section But let us first define general least squares functionals
in hyperelasticity based on and using the notation A, A instead of =1, G~1.
We follow the same idea as for linear elasticity.

For this purpose let P = PN + P € W4(div; Q)3 + Wi (div; Q)3 (with PV .n =g on I'y),
u=up-+aewWrQ)3+ Wll;f(Q)?’ and f € L9(Q)3 for sufficiently large ¢ and p. For such

pairs (P, u) we define the nonlinear operators

wi (divP +f)
wy (A(F(w)'P) - C(u))
(3.18)
for (respectively for (3.17)) with scaling parameters wy,ws > 0. We define general

nonlinear least squares functionals as

wy (divP +f)

R(P,u) := <w2 (A(PF(u)T) B(u))) , R(P,u):=

F(Pu) == ||R(P,u)| 72
wi [[div P + f[|72 o) + w3 [APF()") — B(u)[[7q, (3.19)
wi |divP + f][72 o) + w3 [AF(u)"'P) — C(u )HLz(Q

We call the first case inverse B- and the second case inverse C -formulation. The aim
is again to find a minimizer of F(P,u), since the exact solution of the problem satisfies
F(P,u) =0.

The value of ¢ and p has to be chosen sufficiently large such that R(P,u) € L?(2)3 x
L?(9)3*3 is ensured. Since the strain tensors B(u) = F(u)(F(u))? (respectively C(u) =
(F(u))TF(u)) are involved it must at least hold p > 4. Since we are dealing with nonlinear
problems ¢ > 2 is additionally a reasonable assumption. We will specify the required values
of ¢ and p in the case of a Neo- Hooke material for the B - formulation in Section

Furthermore, it would be desirable to prove
FPp,up) = [|R(Pp, wp) 720y = |(P = Prpyu—w)|f (3:20)

similar to (3.12)) in linear elasticity, for the exact solution (P,u), a conforming finite

element approximation (Pp,u;) and a suitable norm || - ||y. This means that we can
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3 LEAST SQUARES FINITE ELEMENT METHODS IN ELASTICITY

estimate the error between the (unknown) exact solution and the calculated approximation
by the nonlinear least squares functional. In the case of a special Neo - Hooke material we
will prove this property in Section with V =V = Hr, (div; Q)3 x HllD ()3 and

additional assumptions on (P, u) and (Py, uy).

3.3.2 Linearized least squares formulation

For the minimization of (3.19)) we consider a sequence of linearized problems. If we assume
that the operator R(P,u) is Fréchet differentiable with respect to (P, u) we can linearize
this operator about a given (P(k), u(k)) € Wi(div; Q)% x WhP(Q)3, satisfying P*) .n=g

on I'y and u® = up on I'p. We define the linearized least squares functional as

FQ.v) = FM(Q, v R(PHW, u)) := [RPH, u®) + R/(PH, u)[Q, v]||7:

(3.21)
and seek the minimizer (Q, v) with zero boundary conditions in a suitable normed function
space IIr, x Ur,, equipped with norm || - |[{1  17- Unfortunately, one needs in general
more regularity for the linearized problem as for the nonlinear problem (3.19) to
ensure that also the derivative R/(P®*), u®)[Q, v] is in L*(Q)3 x L?(Q)3*3 and therefore
exists. Similar to the derivation in the necessary condition for a minimum
of is LFN(Q+tQ,v + V)
through

i0 = 0. We define a bilinear form and a linear form

a((@Qv),(Q.9) = (R'(PM),u)[Q, vI, R (PH), u)[Q, )

F((Q.9)) := = (RPW,u®), R(PH, u®)Q, v])

L2(Q)

L2(9)
for all (Q, v) € Iy, x Ur,. Then the corresponding variational problem to the minimi-
zation problem ({3.21)) is:

Find (Q,v) € IIr,, x Up, with

a((Q,v). (Q. %)) = F((Q,¥)) (3.22)
for all (Q,¥) € M, x Ur,.

The next lemma proves that the problems (3.21]) and (3.22)) are even equivalent.

Lemma 3.4:
Let (Q,v) € IIt, x Ur,, the solution of (3.22). Then (Q, v) is also the minimizer of (3.21)).

Proof:
By assumption it holds for the solution (Q,v) € IIp, x Up, and arbitrary (Q,f/) €
IIp

NXUFD

a((Q,v),(Q, %)) — F((Q,¥)) =0

& (RPWa®) + R(PH u®)(Q,v], R/(PH,ut)Q9]) =0
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3.3 Extension to homogeneous isotropic hyperelastic models

With this property we get
FNQ+ Qv +¥) = [RPH, u®) +R’(P<’f> ufQ+ Qv +¥][F20
= [R(PW,u®) + R/(PH u*)[Q,v] + R'(P®), u)[Q,¥]|72(g
= |[R@P®, u®) + R/ (P %u““))[Q,v]HLzm) + | R'(PW,u®™)[Q,¥][72

+2 (RPH, ) + (PP, u®)[Q v, R(PW, u®)[Q. 7]

=0
> |[RPW, u) +R’(P(k),u(k))[Q7V]Hi2(Q) — Flin(Q,v)
for all (Q,v) € Iy, x Ur,, i.e. (Q,v) is a minimizer of (3.21).
O
Similar to the property (3.7) in linear elasticity one is generally interested in a property

Fin(Q,%;0) = [R/(PE, u®)[Q,¥] |20 = Q.93 1 (3.23)

(Q,\?) € IIr, x Ur,, for the linearized least squares problem, since from this property
follows the well - posedness of the variational problem and therefore a unique solution
(Q,v) € IIr, x Ur,,. The proof for the existence of a unique solution can be done in the
same way as in Section using the linear operator R'(P*), u*)) instead of L.
Furthermore if (Q, v) € I, x Ur,, is the exact solution of (3.21)), i.e. it holds F'*(Q,v) =
0, and the property is satisfied, then it holds for arbitrary (Q, v) € Iy, x Ur,

F™Q,¥) = F™(Q,v; RPM, u®))) = |RPH, u®)) + R'(PW, uM)[Q, ¥]|I7: o
= || = R'PW,u*)Q,v] + R (PW u*)[Q,¥]]72
= IR (P, u* )[Q - Q,v— ]2
= Fi"(Q-Q,v —+;0)
~1Q-Qv -9« U
i.e. the linearized least squares functional is an efficient and reliable a- posteriori error
estimator.
If we use for instance Raviart-Thomas elements IT, := (RT;_1(73))* C IIp, for the
approximation Qy, of Q and continuous elements Ul := (P((Th))* € Ur,, for the appro-

ximation vy, of v with an arbitrary integer [ > 1 and (Qp, vp,) is the unique minimizer of

Flin(Ry,, wy,) about all (Ry, wy,) € Hﬁl X Uil C Il x Ur,, we get the a- priori estimate

ST
ST

(@) = (Ryven) 0, x UL, (7 @ i)

< (F0Q 1) £ 1@ - Qv -~ bl < U

1

2

< 1 (1Q11 ) + 14iv QI3 oy + V13410 )
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with the interpolation operators Ilj, I, defined in Section its componentwise appli-
cation and the assumptions Q € H(div; Q)3 N HY(Q)**3 N L7 (Q)%*3 (with fixed r > 2),
divQ € H(Q)3 and v € H'T1(Q)3.

We will prove the property for a Neo- Hooke material in Section with IIp, :=
Hr, (div; Q)3, Up, := H%D(Q)3 and an additional assumption on (P®) u(*).

3.3.3 Discretization, Gauss - Newton method and implementation

In the following we describe the idea how to solve the nonlinear minimization problem
through a sequence of linearized problems (3.21)) in a finite dimensional space ITj x
Uj,. In our numerical experiments later we use I, x Uy, = (RT-1(T3))* x (Pi(Th))?,
[ > 1, respectively another suitable combination of the introduced finite element spaces in
Section for the approximation of (P, u).

We start with an initial solution (P20)7u20)) € I, x Uy, satisfying P;LO) ‘n=gonl'y
and u%o) = up on I'p, set £ = 0 and solve the discrete problem of in the finite
element space II; x U to obtain a correction term (ng),v,(f)) € II;, x Uy, satisfying
Q%k) ‘n =0on 'y and vék) =0onTIp. If {@i}zN:1 denotes a basis of IT;, x U, with
N := dim (IT;, x Uy,) we set

(fo),VEf)) =Y e, (3.24)

and can build in each step the stiffness matrix A% e RV*N and the right-hand side

r®) ¢ RN with components

k k) (K k) (k .
A = a(®;, ;) = (R'(P, ul) @], R (P}, uf ))[‘P"])La(m L ij=1,...,N,
(k) _ AN (k) (R mrpk) (R)\ra. _
P8 = (@) = (R(Ph ) R'(PF ul )[@,])LZ(Q) . i=1,...,N.
(3.25)
Hence we have to solve the linear system of equations
AR k) — p(k) (3.26)

to get the correction term (ng),vl(lk)). The stiffness matrices A% k > 0, are obviously

symmetric in each step. Additionally as long as the bilinear form a(-,-) is coercive the

matrices are even symmetric positive definite, since under this assumption it holds

W\ A (k) (k) Al (k) - (k), (k) > (k) S (k)
(x ) AYx :in ZAij z; :in Za(q)j,q)i)xj
i=1  j=1 i=1  j=1
N N
=q ngk)@j,zbrgk)i’i :a(( ﬁ),v,(lk)),( Elk),vék)))>0

ji=1 i=1
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3.3 Extension to homogeneous isotropic hyperelastic models

for all 0 # x®) € RN, After solving the problem 1) with a suitable solver, we set the

new approximation as
k+1) _ (k+1)\ (k) _.(k (k) _.(k)
(P ™) = (P.u0) +a® ().

where we have additionally inserted a parameter o®) of a suitable damping strategy. For
instance one can use any line search or trust region method. In our numerical experiments
later we use a backtracking line search strategy (cf. Section 3.1 in [NWO0G]), often also
called (classical) Armijo method in literature:

We start with a(*) = 1 and multiply a®) with given fixed p € (0,1) as long as

() () <0 1)
!
( gk ) 4 tol tolz o <P(k),u§zk)> [ngk)7vl(zk)]
( ;f ) +tol20z ( (Pék),ugk))ﬂz(Pék),ugk))[Qék) R ])LQ(Q)
(3.27)
(P(kz >+t0l o ZZE ( P(k ()) R/( (k) EL))[(I,i])LQ(Q)

1=1

=-r;

= F (PP ul) ~ toly o (x®) " £,

for small given toly > 0, is satisfied. If the right-hand side r®) in equals 0 a
minimum is found. As long as the matrix A®) is symmetric positive definite it holds
further

[|x* HA(k> = (x k))TA(k')x(k) = (X(k))TI‘(k) > 0 by (3.26|) and therefore

RO R (rac))T (Aw))‘lr(m _ (X(m)T (A(k>>T (A<k>)‘1A(k>X(k>

(k) T (k) (k) (k)12 (k) r (k)
— <x ) AR xR — | x®))2 = <x ) r*)

In particular this means that [|r(*) (x(k))T r(¥) is a suitable measure within

”( A(k))_l =
any stopping criterion for the sequence of linearized problems. Furthermore by we
ensure that the value of the nonlinear functional decreases in each step. The requirement
of is the first Wolfe condition, often also called Armijo condition (cf. Section 3.1 in
[NWO06]). To ensure that the parameter does not become too small one can prescribe a
parameter amin and demand a(k) > Qupip in the algorithm.

( pitD) u,(lkﬂ)), which satisfies by construction automatically

After the determination of
the given boundary conditions, we increase k by one and use the new approximation in
the following variational problem . We continue this procedure as long as the given
stopping criterion is satisfied or a prescribed number of iterations is exceeded. As output

one gets an approximation (Pp,up) € II, x Uy of a minimizer of the nonlinear least
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Algorithm 1 Damped Gauss-Newton for minimizing the nonlinear functional ([3.19))

Require: tol > 0, toly > 0; imax € N, amin > 0, p € (0,1);
initial solution (P;LO), ug )> € IT, x Uy, satisfying P( ) -n=gonly
and ugo) =up on I['p;
Set k = 0, determine r*) via and set r = |r(®)|;
while r > tol and k < i do
Determine the stiffness matrix A®) via ;
Solve the linear system of equation A®x(*) = r(¥) to obtain the correction term
(Qg@,vh ) € I, x Uy, via (3.24);
Set aF) = 1;
while ]-"(( ) +a® (@ vi?)) > F (P ul?) — toly a®) (x4 x®

and o) > a,;, do

k) = pak).
end while
Set P(k+1) P Q k“) — U-Elk) + a(k)vglk); {new approximation}

Set r = (X(k)) r(k) and k =k + 1;

Determine r®) via ;

end while

squares functional . A pseudocode of the whole algorithm can be found above in
Algorithm

Please note that the Gauss-Newton method works on a fixed triangulation 7T, of the
given domain (2. For a further improvement of the solution one can refine the mesh,
either uniformly or adaptively. One solves the problem on the coarse mesh, interpolates
the obtained solution to the finer mesh, ensures the satisfaction of the given boundary
conditions on the fine mesh and uses this approximation as initial solution in Algorithm
[ on the finer mesh.

We have to consider another problem for the numerical implementation. It must be possible
to evaluate F(Pp,up) for given (Pp,uy) € II, x Uy, locally at each quadrature point. If
we consider the problematical part is the evaluation of A, respectively A. However
we can solve the problem G(B) = T, respectively G(C) = X for 7 := P,F(u,)7, 2 =
F(uy,)"'P}, and given (Py,,uy,) € ITj, x Uy, with the help of a Newton scheme. We assume
here a finite A and sufficiently small 7, 3. The sequence of Newton iterations is given by

BUTD = BU) + AU, U+ = cW) 4 A(j)

with A0, AV

g (Bm) [Am} —r-g (B@)) ¢ (Cu)) [A(”} _x-¢ (Cm) , (3.28)

determined through
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3.3 Extension to homogeneous isotropic hyperelastic models

provided that G and é are Gateaux differentiable. The starting values BO =cO =1
are at least for small (P, uy,) reasonable, since for (P, u;) = (0,0) the solution is B =
C = I. The equations in are nothing else than linear systems of equations with
nine unknowns, where the occurring matrices depend on the old approximations B, cO)
and the right - hand sides depend on (Pj,u;) and B, CU). We have to use this Newton
iteration for each quadrature point and on each given element 1" € 7;,. This means that
for a prescribed maximal number iyax of Newton steps, n; elements and n, quadrature
points, we have to solve in the worst case n - ng - imax linear systems with nine equations
and nine unknowns. In the case of a plane strain model the 9 x 9 systems reduces to 5 x 5
systems. Obviously this is numerically very expensive, but it is in general possible. For a
special Neo- Hooke model which we consider in the following sections it is even possible
to solve the problem without Newton’s method. In fact it is possible to set A = co.

For more complicated models, based on the special Neo- Hooke model, the solution of the

Neo - Hooke model can be used as initial values B(?), C(©) for the more complicated models
in the Newton scheme ((3.28)).

3.3.4 Mappings G and G and their derivatives for Mooney - Rivlin and Neo - Hooke

The first heuristic nonlinear candidate for an extension of linear elasticity is the St. Venant -

Kirchhoff model with stored energy function

dsv(F) = vsv(C) = 3 (1x(C) 3 + Xir ((C - 1),

since it leads to the stress-strain relation , i.e. it is the stress- strain relation from
linear elasticity with nonlinear kinematics. However this stored energy function is not
polyconvex (cf. [Raol0]) and is therefore in general not suitable, since it does not fit into
the existence theory of Ball (cf. [Bal77]).

Further extension of the material model leads historically to the Neo-Hooke and the
Mooney - Rivlin model, proposed in [Cia88] and defined already in . The considered
Neo-Hooke model in this work is a special case of the Mooney - Rivlin model ,
more precisely with § = 0. These models include nonlinear kinematics as well
as nonlinearities in the material law and are additionally polyconvex (cf. Sections
and . In the following the mappings Gyr(B), Garr(C) and Gy (B), Gyw(C) will
be specified. Furthermore we will confirm that condition holds actually for these

materials.

Derivation of Gz and Gug

In the following we study the Mooney - Rivlin material with stored energy function (2.31)).
To ensure consistency with linear elasticity we have to satisfy the conditions in (2.39)) and
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(2.40)). Inserting these conditions into the representations (2.32) and (2.33) we get
Tur = 20B + (28det B — ) I+ 26 (tr(B)B — B?)

=2(5-9)B+ (2 (2-5) det B — (u+/2\>>1+25(tr(B)B—B2)

\ (3.29)
= uB + <2(detB —1) - u) I+26 ((tr(B) — 1)B — (det B)I — B?)
=: Gur(B)
and
Yk =2al+ (28detC —~)C™1 + 26 (tr(C)I — C)
_9 (g - 5) I+ <2 <i - 5) det C — (u+ ;)) C~L + 26 (tr(C)I — C) -

= pl + (;(det C-1)— u) C™' +26 ((tr(C) — 1)I - C — (Cof C)7)

=: QMR(C).

Obviously Gar and Gupr map symmetric matrices to symmetric matrices. We have al-
ready derived the Fréchet derivatives of the components of these mappings in Section
Combining these derivatives leads to Gy, p(B)[E] = 9Gyr(B)(E) and G}, (B)[E] =
0G 1 r(B)(E) for arbitrary matrices E € R3*3 with

Ghyn(B)E) = uE + 5 (Cof B )T

+ 26 [tr(E)B + (tr(B) — 1)E — (Cof B : E)I — (EB + BE)]
) \ \ (3.31)
Gr(C)E] = 5 (Cof C - E) cl- <2(detC —1)— M) c'EC!

+25 [tr(E)I - E — (Cof C: E)C ™! + (Cof C)"EC™].

Thus we see that Gy : R33 — R3*3 and QNMR : R3%3 5 R3%3 are Fréchet differen-
tiable with the derivatives above. Furthermore the derivatives 0Gy g(B) : R3*3 — R3*3)
Gy r(C) : B33 — R3%3 are continuous in B (respectively in C) since they are even
again differentiable with respect to B (with respect to C). Thus they are altogether at
least continuously differentiable.

For B =1= C it follows due to detI =1, Cof I =1 and tr(I) =3

Ghyn(D[E] = B + 3 (1 B) L+ 26 [tr(B) + (tx(1) ~ 1B — (1: B)1 - 28
— uE + %tr(E)I 4 26 [tr(E)I + 2E — tr(E)I — 2E]
_E+ %tr(E)I, (3.32)
A

QMR(I)[E] = 5(1 E)I— (;(1— 1) —,u) E+2)tr(EYI-E—(I1: E)I+ E]

A
= uE + Jtr(E)L
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3.3 Extension to homogeneous isotropic hyperelastic models

Altogether the mappings Gy and Gy g are continuously differentiable and the condition
is confirmed for this model. Therefore the mappings are at least invertible in a
neighborhood of I (cf. introduction of Section and thus suitable for our inverse first -
order systems (3.16]) and (3.17)).

Mappings Gyg and QNH for the Neo - Hooke model

For the Neo- Hooke model, i.e. 6 = 0, we conclude by (3.29)), (3.30)) and (3.31])

Gng(B) == uB + <;(detB -1) - #> I,

QNH(C) = ul+ <;\(detC —-1)— M) c!
with Fréchet derivatives
\ (3.33)
Gy n(B)[E] = 9Gn 1 (B)(E) = uE + 7 (Cof B: E) T,
G (C)[E] = 9Gnu(C)(E)

= % (Cof C:E)C™! — (;\(detC —1)— u) c'ECcL.

For our analysis and the implementation of our approach it would be advantageous if we
could invert the derivatives of G and G directly. In the case of the Neo - Hooke model we can
invert G, simply with the help of the following lemma and get an exact representation

for its inverse.

Lemma 3.5: (General inversion formula)
Let A,C € R™ " be arbitrary matrices and a,b € R which may depend on A, C. Then a
mapping H : R"*" — R™" with H(E) :=aE +b(C: E)A, E € R"*" is invertible with

inverse

H D) = 2 (2 - M(C : 2)A> , X eR™™

provided that a +b(C : A) # 0 and a # 0.

Proof:

We have to show that H(H1(X)) = ¥ and H 1 (H(E)) = E hold for arbitrary matrices
E,3 € R"". Due to

C:H(Z)=C: [i <2 - a+b(bC:A)(C : E)Aﬂ

:1<c:z)_i<ﬁb(l’w>(c;z)(c;m
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it holds on the one hand

HH YD) =aH (D) +b(C:HL(D)A

b _
:2—m(c;z)A+b(c:H I(Z)A
:E+2(C:2)A—a+b(bC:A)(1+Z(C:A)> (C:2)A

b b
=2 +-(C:2)A--(C:T)A=1X.
a

a

Due to

C:HE)=C:[aE+b(C:E)A]=a(C:E)+b(C:E)(C:A)
=(a+b(C:A))(C:E)

it holds one the other hand

<7—L(E) - cHrb(bC:A)(C : H(E))A>

(H(E) — b(C: E)A) = E.

O
We can use Lemma ﬁ to obtain an expression for G, (B) 71 [Z]. If we set a = p, b= %,
C = Cof B and A =1 we obtain, after expanding the fraction by 2, directly

1 A

Gyvu(B) ' [Z] = 1 <2 C2u+ Atr(Cof B)

(Cof B : 2)1) . (3.34)

Unfortunately, we cannot directly find a formula for the inverse G (C)~'[E] with the
help of Lemma However we can find a remedy. We construct a mapping Gy whose
derivative is directly invertible with the help of Lemma The idea is to define

Gvu(A) = pul + <;‘ ((det A)~! —1) — u) A

for invertible A € R3*3. Then it holds due to det(C~!) = (det C)~! the relation
QNH(C_I) = QNH(C). The Fréchet derivative of Gy is

Oni(A)[E] = —2(dei\A)2(CofA E)A + @ ((det A)™' —1) — M) E
and it holds
Gnu(C)[E] = Gyy(CH[-C'EC]. (3.35)

Due to Lemma [3.5( the inverse of Gy, (A)[E] is given by

5/ — 1 b
G (A)[E) = (z o (CotA 2)A>
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3.4 Suitability of the LSFEM approach with Neo- Hooke in the incompressible limit

with 0= 3 (ot A) ! = 1) 1=

We can now define the inverse of G ,;(C)[E] as

provided that a+3b det A # 0 and a # 0.

G (C)' =] = - € (Gh(CT)'[Z]) C
1 b
=—-C(X-——————(CofC™!:2)C!|C
a ( o 3b deto1(C° ) >
with a := %(det C—1)—pandb:= —%(det C)2, since with this choice and the help of

relation it holds
Gt (O (€)= = G (€) [~C (G (€7 '[Z]) €

=-C(-C'EC')C=E.
We have to remark that a = 0 if and only if det C =1+ 27“ Furthermore it holds
A A A
a+3bdetC™! = 5 (detC—1) —p— %detC =5(-2detC—1) —p =0

if and only if det C = —5 — §.

1
2
Remark 3.6:

In general it is problematic, in most cases even impossible, to invert the Fréchet derivative
0G (respectively (95) of the general mappings G and G in belonging to homogeneous
isotropic frame - indifferent materials. Already for the Mooney - Rivlin case we could not
find a representation for the inverse of the corresponding derivatives (cf. (3.31))). This leads

to more computational time in numerical simulations (cf. Section [3.3.3]).

3.4 Suitability of the LSFEM approach with Neo - Hooke in the
incompressible limit

In this section we consider the Neo - Hooke case and show that the corresponding operators
Ang and Ang (with Ayg = Q;,}LI and Ayy = Q&}q for finite \) are also well - defined
in the incompressible limit. Moreover we will show that the operators are in the incom-
pressible case no longer invertible, similar to A, in linear elasticity. We will derive cubic
equations to determine Ay (7) and Ang(X) for given stresses 7,3, i.e. we calculate the
corresponding strains for given stresses. The novelty is here that we can even set A = oo
in these equations and are therefore able to consider the fully incompressible case in our

theory and our numerical simulations later. We distinguish between the inverse B- and
the inverse C - formulation (cf. (3.19)).
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Cubic equation and incompressibility for the inverse B - formulation

The following explanations for the inverse B - formulation are already partly published in
[MSSS14]. Our aim is to determine Ay (1) =: B for given 7 € R3*3 and to show that
Apng is even well - defined for A — oco. Let us assume firstly that A is finite and a matrix
T is given. We seek the corresponding strain B € R3*3 to 7 with Gyy(B) = .
We split B and 7 into its trace and deviatoric part with the help of

A =devA+ étr(A)I

which obviously holds for arbitrary matrices A € R3*3, due to the definition of the de-

viator. Inserting this splitting into Gy (B) = 7 and using the representation of Gy in

(3.33) leads to
7 A 1
pdev B + 3 tr(B)I + §(detB —1)—p|I=devr+ gtr(T)I.
Since the splitting into its trace and deviatoric part of a matrix is unique it must hold

pndevB =dev T,
1 A 1
w (Str(B) — 1) + §(detB -1)= gtr(r).

For the derivation of an expression for det B we use the property tr(devB) = 0 of the
deviator, the properties det(cB) = ¢3(det B) and Cof (¢cB) = c?Cof B (cf. representation
(2.15))) for ¢ € R and arbitrary matrices B € R3*3 and the identity

(3.36)

det(B1 + BQ) =detB; + Cof By : By + B : Cof By + det By

for arbitrary matrices By, By € R3*3 (cf. Exercise 1.3 in [Cia88]). Combining these pro-
perties with the first equation in (3.36) implies

1
det B = det (devB + 3tr(B)I)

— det(dev B) + Cof (dev B) : étr(B)I +devB : Cof (;m(B)I) + det <;tr(B)I>
— det (de:7> + %tr(B) tr (Cof (de:T» +devB: (;(mB))?) I

=0

1
+ 2—7(tr(B))3 det(I)

= - (r(B))* + B;Ztr(B) tr (Cof (dev 7)) + Iulgdet (dev ).
(3.37)

We plug this expression for det B into the second equation of (3.36) and obtain

% (217(‘51"(B))3 + 3}1L2tr(B) tr (Cof (dev 1)) + Mlgdet (devT) — 1)

b u <;tr(B) - 1> _ %tr(’r).
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3.4 Suitability of the LSFEM approach with Neo- Hooke in the incompressible limit

Multiplying the whole equation with (2772), subtracting the resulting tr(7)-term and

ordering the equation in powers of tr(B) leads to

(tr(B))® + (;tr(COf (devT)) + 1?\”) tr(B)

(3.38)
1 o 2
+27 (M3 det(devT) — 1 — Sul 3/\1:1"(7')) = 0.
Thus with the coefficients
1
S = %tr(Cof (devT))+ ﬂ,
7 A
1 9 9 (3.39)
T:=27 (,U?’ det(devT) — 1 — 7'& - 3)\tr(7'))
we have obtained a cubic equation
(tr(B))} + Str(B)+T =0 (3.40)

with discriminant D := (g)g + (%)2 for tr(B). This cubic equation can be solved with
Cardano’s formula (cf. Section 2.1.6.2 in [Zeil3]). For D < 0 one obtains in general three
different real solutions and for D = 0 one obtains also three real solutions and at least
two of them are equal. Since we are interested in a unique solution for B, only the case
D > 0 makes sense. In this case one has one real solution and the other two solutions are
complex conjugates. Since the strain B that corresponds to 7 should be real, only the real

solution makes sense. This real unique solution is given by

tr(B) = \3/—§+\/5+ ¢ —g ~VD. (3.41)

If we have determined tr(B) via 1} provided that D > 0, and dev B = de# via the
first equation in (3.36) we obtain a unique strain

1
B =devB + gtr(B)I

which belongs to the given stress 7, i.e. B = Ayg(7). For u = 0 we have 7 = 0 due
to consistency with linear elasticity (cf. Section [2.4.5)). In this case it holds dev T = 0,
tr(7) = 0 and therefore S = 18T“ and T = —27 (1 + %) We obtain the discriminant

D= <§>3+<§>2 = <6A“>3+<—27 (;#;))2 — 216 (%)3%29 (;Jr’;)z (3.42)

which is obviously positive for given Lamé constants A, u > 0. This observation confirms
that the mapping Gy is invertible at least for small strains B in a neighborhood of I
or equivalently for small enough stresses 7. We make this statement more precise in the

following proposition:
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Proposition 3.7:

Under the assumptions of

dev T
7

<a

— I

with d := a®+3b—1 < 0 and d* > 96a°V/3 it holds T < 0 and D > 0 in the cubic equation
(3.40]). In this case we have furthermore tr(B) > 0 for the strain B = Ayg(7).

Proof:
The identity Cof (cA) = c*Cof A (cf. representation (2.15))) for arbitrary ¢ € R, A €
R3*3 | implies c*tr(Cof A) = tr(Cof (c A)). In combination with Corollary it follows

1 d dev |’

— [tr(Cof (dev T))| = tr <Cof ( eVT))‘ §6\/§‘ VT < 6a2V3,

7 [ 7

i.e. in particular u—lgtr(Cof (dev 1)) > —6a2y/3. This implies
1
S = %tr(Cof (devT)) + 18 > gtlr(Cof (devT)) > —54a>V/3.
p N

>0

For the coefficient T it holds with the help of Corollary
1 2 2 1 2
T =27 <M3 det(devT) —1— . (T)> <27 <,U3 det(devT) — 1 — —tr(7 )>

A 3\ 3)\
1 2 dev T
<27 —|det(d -1 ——t =27 ( |det -1 —t
e a1+ -Gt o (455 1+ )
tr(7)

d 2
g27<‘ VT ; >§27<a3+3b—1>:27d<0
by assumption.

I
These considerations imply % > —18a%V/3 and % < 277 (a3 + %b— 1) < 0. Since the

3
2
14+ =
+3

mapping x — x> is monotonically increasing on (—oo,00) and z +— z? is monotonically

decreasing on (—o00,0) we get

S T\? _ (2T\* [ 5 2 2
> (1 R R “h-1
(5) = ot (5)=(5) (e )
and therefore

D= §>3 <§>2 > —(18v/3)3a% + <227)2 (a3 + %b - 1)2
>2 <a3 + %b — 1)2 - (;7)2 (18\/5)%6)
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3.4 Suitability of the LSFEM approach with Neo- Hooke in the incompressible limit

by assumption. It remains to show that tr(Anx (7)) > 0. With the considerations above it
holds obviously —T > 0 & —% > % and therefore —%—&—\/T? > %—i—f = — (—% — \/T))

The function f(z) = ¢z is due to f'(z) = %1:7% = %3/17 > 0 for all z € R strictly

increasing in R, i.e. it holds

j— (-5-v) <t Levpey-Livos -y ovp

T T
<:></—2+\/5+ 3—5—\/5>0

=tr(B)

for B := Anp(7) by equation (3.41)).

Example 3.8:

For instance for a = b = % it holds a3 + %b— 1= —g—g < 0and d? = %8 > 976—5?5 = 96a%/3.
Thus the assumptions in Proposition are satisfied and therefore for such stress tensors
T the cubic equation has a unique real solution.

We remark that this choice is not optimal. However in numerical experiments one can
easily check for every approximation in the program if D > 0 and T < 0 is still satisfied

or not.

With the derivation of the cubic equation above we can also state the following theorem

concerning the well - posedness of Ayg.

Theorem 3.9: (Well - posedness of Aypy for A — o0)
Assume that the discriminant D of the cubic equation ({3.40) is positive.

Then the mapping B = Ay (7), defined by the first equation in (3.36) and (3.41)), is
well - defined in the incompressible limit A — oo. Its inverse does not exist in this case.

Proof:

We can take the limit A — oo in (3.39) and obtain the coefficients

1
)\li_}mooS = )\li_}moo [;tr(Cof (devT))+ i] = ;tr(Cof (devT)),
lim 7= lim |27 (— det(devr) —1— 2 — 2 t3(7) (3.43)
A — 00 _)\%oo ,u3 ¢ evT A 3\ T ’
1

Thus also in this case, provided that D > 0, we get a unique solution for tr(B) and
therefore for B. It remains to show that in the incompressible case the inverse of Axgy

does not exist anymore.
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Obviously does not depend on tr(7) anymore. For instance for 79 := 71 + ¢I with
given arbitrary matrix 71 and ¢ € R\ {0} it holds 7; # 79 and dev T, = dev 7. This
implies due to the same coefficients S and T in the cubic equation . With
dev B = 9¢¥T  4ccording to the first equation in , it follows

B

devB; = devB; and tr(B;) = tr(B2) = Ayu(71) = B1 = By = Aypu(72).

This means that Ay is not injective and therefore not invertible for A — oc.

Remark 3.10: (Exact satisfaction of the incompressibility constraint)

Another remarkable fact is that it always holds det(Axg(PF(u)?)) = 1 for any combi-
nation (P,u) in the incompressible limit. This can be seen in the following way. In the
incompressible case we get the coefficients and therefore the cubic equation

(tr(B))3 + <j2tr(C0f (dev T))) tr(B) + 27 <M13 det(dev 1) — 1> =0

o %(tr(B))ii + (3;2tr(Cof (dev T))> tx(B) + (:3 det(dev ) — 1) ~0

& 2i7(tr(B))3 + (3;2tr(Cof (dev ’T))) tr(B) + :3 det(devT) = 1.

Inserting this equation into (3.37)) results in det B = 1 for B = Ay g (7) with 7 = PF(u)”.
This means that our approach produces an exactly incompressible strain B (cf. Section

2.2.3).

Cubic equation and incompressibility for the inverse C - formulation

We can also show the well - posedness of the operator Ayp for A — 0o as we will see in
the following. The first step is again to determine Ay (X) =: C for given X € R3*3. Let
us assume again firstly that X is finite. We seek the corresponding strain C € R3*3 to X
with Gy (C) = .

By the representation of Gy in l} and p := %(det C — 1) — p it follows

Gva(C) =S e ul+pC =S o pC =3 — 4l (3.44)

Obviously for C with det C # 0, which is usually valid for the seeked strain, it holds
det(X — pI) = 0 if and only if p = 0. We assume that det(X — uI) # 0 and therefore p # 0.
It follows C~! = %(E — pI) with determinant

1 _ 0
det(C-1)  det(XZ — ul)’

1
det(C™1) = = det(X — puI) < det C = (3.45)
P
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Inserting l} and C~1 = %(2 — pI) into QNH(C) =¥, with QNNH(C) given by |)

leads to

~ B 03 B B X —pul 1 .

A
2
@<; <det(§é)3—/d)_1> —M> (B = pI) = p(2 — pI)

3
(:);\<det(£—u1)> (2 — pl) = (/2\+M+p (= — ul).

Multiplying this equation with %det(E — pI) # 0 implies

P2 (E — pl) = (1 + 27u + 2/\p> det(X — pI)(X2 — uI).

Since we have assumed det(% — pI) # 0, it must hold

2 2
p* — ()\ det(X — ul)) p— (1 + )/f) det(X — pI) = 0. (3.46)
Thus with
2 2u

we have again a cubic equation of the form (3.40]) to determine p. With the same arguments

as for the inverse B - formulation we get a unique solution

p= -2 i-Lvp (3.47)

provided that the corresponding discriminant

D= (§>3 + @)2 — —%(det(z )+ (; + ‘;)2 (det(Z — pI))?  (3.48)

is positive. After determining p via (3.47)) we obtain for a given stress 3 by construction

(cf. @)

3 —pul
P
i.e. a corresponding strain C under the assumption that X — pI is invertible (cp. Section

10.3 in [Wri08]).
For 3 = 0 € R3*3 we get det(X — pl) = det(—pul) = —u? and therefore

A TAAY
D= Sk .
e T\t y) >0

cl= & C=pZ—-pl) L, (3.49)

This observation confirms that the mapping Gy is invertible at least for small strains C
in a neighborhood of I or equivalently for small enough stresses 3.

With these considerations we can state the following theorem for the operator Ay similar
to Theorem [3.91
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Theorem 3.11: (Well - posedness of Ayp for A\ — o)

Assume that for a given stress tensor 3 with det(32 — uI) # 0 the discriminant D, defined
by , is positive.

Then the mapping C = ANH(E), defined by and , is well - defined in the
incompressible limit A — oo. Its inverse does not exist in this case.

Proof:

In the incompressible case A — oo the cubic equation (3.46) turns into

PP =det(E — ul) & p= ¥/det(Z — ul), (3.50)

i.e. we have a unique solution for p and therefore by (3.49)) a unique solution for C.

For an arbitrary matrix X; € R3*3 and ¢ € R\ {1} we set Xy := ¢(2; — pul) + pI such
that 31 # 3. For this choice and the fact that p3 = det(X; — uI), i = 1,2, by (3.50), it
holds

det(2y — pI) = det(c(2y — pI)) = A det(B; — pl) & ps = 3p3 < ps = cp1.
Thus by ([3.49) we conclude

Anp(E2) = Co = pa(Za — pul) ™! = cpy (e(Zq — p)) ™
=p1(Z1 —pl) = Cy = Ayy ().

This means that Ay is not injective and therefore not invertible for A — oc.

Furthermore we get an analogous result as stated in Remark

Remark 3.12: (Exact satisfaction of the incompressibility constraint)

Also in the case of the inverse C-formulation we satisfy the incompressibility constraint
det <f~1 NH(E)) = 1 for given stress tensor ¥ with det(X — uI) # 0 exactly, since it holds

p® = det(Z — pI) in the incompressible case (cf. equation (3.50))) and therefore by (3.45))
det C = p3 (det(X — pI)) "t = 1.
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3.5 Analysis for the inverse B - formulation and Neo - Hooke material law

In this section of the work we will analyze the nonlinear least squares formulation (3.19))

and its linearized problem ({3.21)) for the inverse B - formulation and a Neo - Hooke material.

3.5.1 The nonlinear problem

The general aim for the nonlinear problem is to estimate the error from below and
above by the nonlinear least squares functional, similar to , i.e. to obtain an estimate
of the form . The analysis in [CS04] for linear elasticity is done without scaling the
first - order system. Since we need this theory in some proofs below we set for simplicity
w1 = w9 = 1 in the whole Section

For the estimation of the error we need some preparations. The first preparation is a

mapping property concerning the nonlinear operator Aypg.

Lemma 3.13: (Mapping property of Axp)
The operator Ayp, defined by the first equation in (3.36) and the cubic equation (3.38)),

provided that its discriminant is positive, maps functions in L2()3*3 into L?(Q)3*3.

Proof:
We recall that the definition of the Lebesgue spaces LP(2) in Section is valid for
€ (0,1). In this case ||f||p = [o|fIPdx, f € LP(Q), is a quasi-norm. Additionally

we need the generalized Holder mequahty It states that for functlons fj € LPi(Q) with

pj € (0,00], 5 =1,...,m, its product H fJ is in L7(Q) with 1 := Z D (cf. Corollary 2.6
j=1
in [AF03)).

We have to show that for 7 € L?(Q)3*3 it holds B := Anpy(7T) € L*(Q)**3. For 7 €
L2(9)3%3 it follows immediately that tr(T) = 711 + 722 + 733 € L?(2). Then, by definition
of the deviator and the first equation in (3.36]), it follows

dev T

e L2(Q)*,
. (@)

1
devr =71 — gtr(T)I € L*(Q)*3 = devB =
It remains to show that tr(B) € L?(Q2) to obtain
1
B =devB + gtr(B)I € L2(Q)3%3.

The representation (2.15) of the cofactor and the generalized Holder inequality for two
functions in L?(Q) imply Cof (devT) € L'(Q2)3*3. Due to devr € L?(Q)3*3 and the
fact that each term in det(dev T) is a product of three matrix entries of dev T we get

by the generalized Holder inequality det(dev 7) € L3 (€2). These considerations imply the
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3 LEAST SQUARES FINITE ELEMENT METHODS IN ELASTICITY

coeflicients

9 18
S = ?tr(Cof (dev 1)) +T c LY(Q),

e L1(Q)
1 2 2
T=27 Edet(deVT) 1_7”_§ tr(T) eL%(Q)
eri (@) GLQ(Q)

in the cubic equation (3.40)). Here we have to remark that L?(Q) C LP(2) holds, even in
the case 0 < p < g < 1, as long as 2 does not contain sets of arbitrarily large measure
(cp. Theorem 2.14 in [AF03] and Theorem 2 in [Vil85]).

An arbitrary function f is due to

rfqum):( / Ifqlpdw> ( / !f\‘”’dﬂ:) 1 W e

in L% (Q) if and only if f¢ € LP(Q) with 0 < p,q < cc.

This means that S € L'(Q) (¢ = 3,p = 1) implies S3 € L3(Q) and T € L%(Q) (¢ =
2,p = %) implies T2 € L%(Q) Altogether we get D = ( )3 + (%)2 € L%(Q) This implies
\/EGL%( )Wlthq— 2,p—§ and therefore —f:I:\FGLg( Q). Withq:%andp:2
we conclude {/—% £ v/D € L*(Q) and by (3.41) tr(B) € L*().

g
At the end of Section [B.3.1] it was mentioned that we have to choose suitable values
for ¢ and p in the function spaces W4(div; Q2)? and WHP(Q)3 such that R(P,u) is in
L2(9)3 x L2(9)3*3. We specify now these values for the inverse B - formulation and the

considered Neo- Hooke law:

Corollary 3.14:

For the inverse B - formulation with Neo- Hooke law A = Ay, defined by the first
equation in and the cubic equation , again provided that its discriminant is
positive, it holds for u € WH4(Q)3, P € W4(div; Q)3 and a volume force density f € L4()3

Rnm(P,u) € LY(Q)3 x L2(Q)>*3.

Proof:

By definition of the space W*(div; Q)3 (cf. Definition it holds divP € L*(Q)3 for
given P € W(div; Q)3, i.e. divP +f € L*(Q)? is clear. By definition of W4(Q)3 (cf. Defi-
nition it holds F(u) = I+ Vu € L*(9)3*3 for u € W4(Q)3. The generalized Holder
inequality implies PF(u)? € L?(9)3*3. By Lemma we know that Ayy(PF(u)”) €
L2(9)3%3. Since F(u) € L*(2)3*3 it follows B(u) = F(u)(F(u))” € L?(2)*3 and there-
fore Ayg(PF(u)T) — B(u) € L?(Q)3*3.

g
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Due to this corollary the least squares functional for the B - formulation and the
Neo - Hooke law exists for p =4 = q.

For our purposes we also need the derivative of R g (P, u) with respect to (P, u). By the
local inversion theorem (cf. Theorem and the inverse of Gy (B)[E] we obtain

the derivative

i (T)[Z] = Gy (Ave(T)) " [Z]

e A
U 2p + Mtr(Cof (Anpg (1))
The cubic equation (3.38) is uniquely solvable for 7 = 0 (cf. (3.42))) with solution

tr(Ang(0)) = 3. The corresponding strain is then given by Axg(0) = I. For 7 = 0 we

(3.51)

(Cof (Anpg (1)) : 2)1) .

obtain therefore

A1 (0)[Z] = ; (2 - i . Atr(Z)I) 0 = 2 (%), (3.52)

i.e. A%y (0) is up to a constant identical to the operator Ay, = C~! of linear elasticity. It

follows by equation ([3.18))

wldiv Q
w3 (Al (PF()")[QF (W) + P(Vv)"] = VvF(w)" — F(u)(Vv)")
(3.53)

ve(P )[Q,v] =

and with (P,u) = (0,0)

/ o w divQ _ wdiv Q
vi(0,0)[Q, v] = w2( L (0)[Q] — Vv — (VV)T> (2 wa (A1in(Q) — E(V))>

divQ
= for wg =ws =1) ],
[ <2<Alm<Q>—e<v>>) (foror =z )]
(3.54)

i.e. Rlyy(0,0)[Q,v]is up to a constant identical to the operator £(Q, v) of linear elasticity

(cf. equation (3.8))).
In what follows (cp. [MSSS14]), let for PY € W (div; Q)3 satisfying PV -n =g on I'y,
and for up € WhH*(Q)3, satisfying the boundary conditions on I'p,

I :={Q € W>(div; )° : Q]| ooy < 6} N (PY + W (div; 2)°),

U™ = {ue W'=(Q)?: |V <0 Wi (@) (359
={ue ()7 : [IVul[ ooy < 0} N (up + Wy (©2)°)

be the restriction of the solution spaces to sufficiently small neighborhoods of the origin,
i.e. for sufficiently small §. We will assume in the following that (P,u) € II*® x U™ is an
exact solution of Ry (P,u) = 0 for Ry (P, u) defined in . Since we have to satisfy
—divP=finQand P-n=P" .n=gon 'y, we need f € L®(Q)? and g € L>(T'y)?

for the densities of the given volume and surface forces. In the case of a pure displacement
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boundary problem (i.e. 'y = (), up = 0 on I'p, the existence of a unique solution is
ensured for sufficiently small [[f|[zq) and strong regularity assumptions (cf. Theorem
6.7.1 in [CTa88)).

We will prove (cp. (3.20))
(P = Pp,u—w)|[ S Fvu(Pryup) S I[(P = Pryu—up)ff) (3.56)

for V := Hr,, (div; Q)3 x H%D(Q)‘3 and an approximation (P, u) € II*® x U*. It would
be great if the constants that appear in (3.56|) are independent of A such that the Poisson
locking problem is eliminated in our approach. For the proof of (3.56|) we need some further

lemmata.

Lemma 3.15: (Estimate of the cofactor in three dimensions near the identity)

For an arbitrary matrix A € R3*3 it holds
|Cof A — 1] <6|A —I|* +3|A —T|%.

Proof:

For the proof of the statements we need the (complex) Schur decomposition of the matrix
A € R¥3 c C?**3 (cf. Theorem 2.3.1 in [[IJ13]). For this purpose we must extend the
definition of the Frobenius norm in Section 2.1.2] to matrices over C. The Frobenius norm
for a matrix Q € C"*" is defined by

n 2
Q= (@ Q)2 = [ D laul |
ij=1
where Q* := QT denotes the conjugate transpose of Q.
With the help of the (complex) Schur decomposition we can find for A € R3*3 a unitary
matrix Q € C3*3,i.e. Q* = Q~ ', and an upper triangular matrix R € C3*3 with Q*AQ =
R. It follows

Cof R = Cof (Q"AQ) = det(Q*AQ)(Q*AQ) T = (det Q)(det A)(det Q)(Q' AQ)™T
= (det Q)(det A)(det Q)(Q 'ATTQT) = (det Q)Q ' (det A)A™T (det Q)Q 7
= ((det Q)Q_T)* (Cof A)(Cof Q) = (Cof Q)" - (Cof A) - (Cof Q).
In this equation of the proof we have assumed for simplicity that A € R3*3 is invertible.
However, this equation holds in general, i.e. is also valid for matrices which are non-

invertible.

For unitary Q also Cof Q is unitary, since

(Cof Q) = (At Q)Q™")" = (et Q) (Q7)" = (det @) (Q ') = (det @™HQ"
= (det Q)~'Q" = ((det Q)Q_T)il = (Cof Q).
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Until now we have proven that Cof R is similar to Cof A, i.e. both matrices have the

same eigenvalues, and that Cof Q is also unitary.

)\1 g1 &2
With the representation R = | 0 Ay &3 |, including the eigenvalues A1, A2, A3 € C of
0 0 As
A, it follows
A2 A3 0 0
Cof R = —>\3€1 )\1)\3 0

—Aog2 + €163 —A1E3 A1

by Definition [2.21] (respectively representation (2.15)).
We set §; := X\; — 1 for ¢ = 1, 2,3 and obtain with the representations above

3 3

R—TI2 =" (N =1+ [eil?) =D (16:° + leal) ,
i=1 i=1

|COfR — I|2 = |)\2)\3 — 1’2 + ‘)\1)\3 — 1|2 + |)\1)\2 — 1|2 + |)\3€1|2 + |)\1€3‘2 + |)\262 — 6163’2.

Now we estimate the single terms in |Cof R — I|?, using only the triangle and Young’s

inequality. If we combine both inequalities we get the estimates

ja+0* < (lal + [b])* = |al® + [b* + 2|al|b] < 2 (Jaf* + [b?)
ja+ b+l < (lal + b + |e)* = lal* + [b]* + |c* + 2 (|al[b] + lalle[ + [bllc)) ~ (3.57)
<3 (laf* + [b]* + |cf?)

for a,b,c € C.
(i) For the first three terms in |Cof R—1I|? with (4, j) € {(2,3), (1,3), (1,2)} we conclude
Nidj =112 = [(L+6:)(1+85) — 12 = [6; + 8 + 6,051 < 3 (16> + |95 + 18:0; )
<3 (10 + 1) + 5 (10l +1551%).
(ii) For (i,7) € {(3,1),(1,3)} we conclude

\Xigj1? = (A — D)ej + &5 = 10igj + 57 < 2105 |e51* + 2e;]*.

(iii) For the last term in the representation of |Cof R — I|? we conclude

|Aaga — e163)% = (A2 — 1)eg + 2 — e163] = |dae2 + €9 — 163/

< 3 (|02e2]? + le2] + |e1e3]?) -
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Inserting these inequalities in the expression of |Cof R — I|? above results in

|Cof R —1I|* = [AaA3 — 1[* + [\t A3 — 1 + [\ Ag — 112 + [Ager|* + [Aies] + [Age2 — e1es)?
<6 (’(51|2 + |(52’2 + ‘53|2) + 3 (|(51‘4 + |52|4 + |53|4)
+2 (161 lesl® + 163%[e1]?) + 2 (le1]? + lesl?) + 3 (16222)* + [e2]* + |e1es]?)
< 623:|5i|2+323: |ei |2+
1=1 i=1
+ 3 (10u]* + [62]* + 051" + (617 |esl® + 03] [e1]? + |02 eal* + le1[*[es]?) -

<|R-I

Thus altogether we obtain
|ICof R —I> < 6|R —I*+ 3R - I*.
Due to the similarity of A to R and the invariance of the (complex) Frobenius norm, i.e.
[QAQI” = ((Q"AQ)"Q"AQ) = tr (Q"A'QQ"AQ) = tr (A"A) = |A[?
for unitary matrices Q, it follows
R—1I7?=[Q'AQ—If = |Q"(A—DQP = [A - IP". (3.58)

We have shown above that also Cof Q is unitary for unitary Q. Using the same arguments

again and the estimate for |Cof R — I|> we obtain

|Cof A —I|? = |(Cof Q)(Cof R)(Cof Q)* — I|> = |(Cof Q)(Cof R — I)(Cof Q)*|?
= |[Cof R — I <6/R—I>+ 3R -1I*=6/A —I>+3/A 1",

i.e. the statement.

Corollary 3.16:
For a matrix A € R3*3 with |[A —I| < 1 it holds |A — I|* < |A — I|? and therefore by
Lemma B.15]

ICof A —I| < 3|A —1].

Lemma 3.17:
Let A € R™ ™ be an arbitrary matrix and dev A := A — 1tr(A)I the deviator of A. Then
it holds for all c € R

|dev A + cI|? = |dev A|? + nc?.
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Proof:
By definition of the inner product and its induced (Frobenius) norm in Section [2.1.2]
it holds
|dev A + cI|? = |[dev A|? +2(dev A : cI) + |cI|?
= |dev A]* + 2ctr(dev A) +c*|I)? = |[dev A|? + nc?.
————r

=0

Corollary 3.18:
For arbitrary A € R™*™ it holds

1 2
A1 = |devA> +n (ntr(A) - 1) :

Proof:

We split A into its trace and deviatoric part and obtain with the help of Lemma (3.1

1 1
A —T1)? = |dev A + —tr(A)I - I|* = |dev A + <tr(A) - 1> I)?
n n
e ——

=:C

1 2
=|devA|> +n <tr(A) — 1) .
n

Lemma 3.19:
For arbitrary matrix - valued functions A € L°°(0)"*" and B € L?*(Q)™*™ it holds

A Bllr2q) < AL B2 (0)-

Proof:

It holds with the help of the Cauchy - Schwarz inequality and Remark
|A:BlRq = [ 1A:BPdr< [ APBPL
Q Q

<A 2wy /Q B do = | A]2 oy 1Bl .

i.e. the statement after extracting the square root.
O

The next lemma gives us an estimate for small perturbations of A’ (E)[X] about = = 0.

Lemma 3.20:
If 2 € L>(2)3*3 satisfies

|

devE
<a

—_ )

N 2 (9) Lo () (3.59)
tr(Anvg(E)) >0, tr(Cof (Ayg(E))) > 2
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with 0 <a < \[,Ogbggand
A 2b 18 +v/3a
_ +a +a<1, 3.60
V3 — 18a2 (1—6612[) ( )
then it holds
3V3 2 tr(2)
Ay (B)[B] — Ay (0)[Z < ( )‘
A (Z)(E] - Ay (O[S 2oy < =% [ 15) |3 e
18 +1/3a ‘deVE
+lal ——— | +1 p
( (1_6a2 ﬁ) )] =
(3.61)

for all ¥ € L?(9)3*3 and the operator Ay, defined by the first equation in (3.36) and
the cubic equation (3.38)), provided that its discriminant is positive. Moreover there exists
a constant C' > 0, depending on A, 4 and a, such that

AN 1 (B)[Z] — Ay g (0)[E]] L2 0) < ClIE| Lo (012 2(0)- (3.62)
Proof:

By assumption it holds E € L>(Q2)3*3. Under this assumption, following the same steps
as in the proof of Lemma the corresponding strain Ay g (Z) is in L>°(2)**% and thus
Cof (Ayy(E)) € L*°(£2)3*3. Obviously for arbitrary f € L?(Q) it holds

1£ 12200 = /Q I d = /Q PR de = 31220 (3.63)

With the help of (3.63), Lemma in combination with the representations of Ay, in
(3.51) and (3.52)) for general E and E = 0 it follows for arbitrary X € L?(Q)3*3

_ ) 1 (A(®) . A(Cof (Ayu(E)): 3)
I 1 (E)E] Ay (0)[Z] | r2(0) = Hu <2u+ 3)\1 2+ Mtr(Cof (ANH(E)))I> £2(Q)
CVB|IAI:E)  A(Cof (Ayu(E)) : )
op 20430 2p+ Ate(Cof (Anu(E))) || 120
V3 ( AT A Cof (Ayn(E)) >.2
W 2u + 3\ 2u+ Atr(Cof (Ang(E))) L2(9)
_VB||[_AL ACof (Avu(E)) ol
= 12p+3%  2p+ Ate(Cof (Anu(E)) [l ooy
(3.64)
It remains to show that
‘ A A Cof (A (5)) ’ (3.65)

21+ 3\ 2u+ Mr(Cof (Ayg(E)))
is bounded from above.
To this end we use Corollary for n = 3 and obtain

2
‘ANH(E) — I|2 |deV.ANH(E)|2 + 3 < tI‘(.ANH(E)) — 1) s

3
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which leads after extracting the square root and the use of (a? + a%)% < ay + ag for
ai,as > 0 to

Ann(E) — 1] < [dev Ayu(Z)| + V3 ‘;tr(ANH(E)) _ 1' | (3.66)

Both terms are bounded individually as we will see in the following. For the deviator term
we have by the first equation in ((3.36])

devE
1

Equation (3.38) with B = Axy(E) is after dividing it by 27 equivalent to

\dev .ANH(E)‘ = ‘

(3.67)

2 1
3—)\‘51“(5) 3 det(dev E).

We subtract on both sides the term — u tr(Cof (dev E)) and get

2
(;tr(-ANH(E)) - 1) ((;tr(ANH(E))> + %tl"(.ANH(E)) +1+ QTM + Iulgtr(Cof (dev E)))

~\~

=y

=T

2 1 1
S—Atr(E) B det(dev E) — Etr(Cof (devE)).
B (3.68)
Obviously Corollary and assumption (3.59) lead to the estimate
6 dev E|?
. |tr(Cof (devE))| < i\d vE[? = 6\/5‘ e: ’ <6a2V/3 < 1
1 =
e 1- 2 |tr(Cof (dev E))| > 1 —6a>V3 (> 0) (3.69)

1 1
= < .
1- % [tr(Cof (dev E))| ~— 1 — 6a2V/3

With y; := 1+ﬁtr(Cof (devE)) and y2 := (%tr(ANH(E)))2+%tr(ANH("'))+27“ we have
y = y1 + y2. By the identity (3.68) it holds xy = z and therefore |z| = } I, provided that

y # 0. Due to the assumption tr(Ayxg(Z)) > 0 and positive Lamé constants A, u it holds
obviously 42 > 0. y; is positive if and only if tr(Cof (dev E)) > —u?. This is ensured,
since we have either for tr(Cof (dev E)) > 0 the conclusion tr(Cof (dev E)) > —u? or for
tr(Cof (dev E)) < 0 we have the implication tr(Cof (dev E)) > (—6a?v/3)u? > —pu? by
. Altogether we have proven that it holds y1,y2 > 0. This implies y = y1 +y2 > 0

and the estimate

ok
ol = Tonl

_ A
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Additionally the reverse triangle inequality and (3.69)) imply

1
y1 =yl = ’1 + Etr(Cof (dev E))

1 =
> ‘1 - E!tr(Cof (dev .:.))]' >1—6a%V3.

Altogether we obtain

L@ -1 = 1o < 2L < | &6r(8) - & det(dev E) — Ltx(Cof (devE))|
—1ir e — = |z -
3 M “ oyl T 1- %]tr(Cof (devE))|
< (1savs) (|7 + [ astaer |+ [ cor e
7 ~tr(E — det(devZ —tr vE
~\1-6a2V3 3A w3 2
1 2 |tx(8) dev E |? ’devE 3
“\v——37) |3 +6v3
1 2 |[tr(8) 5\ |devE >
= Py + (6aV3+a )
n (1 — 6a2\/§> <3 A ( ) L 570
3.70
In the last steps here we have combined Corollary [2.33|and [2.35| and have used % ’n <

an! ‘%‘ for n € N\ {0} which holds by assumption (3.59).
Plugging (3.70]) into (3.66]) and using (3.67) lead to

1
‘.ANH(E) — I| S ‘deV.ANH(E)‘ + \/g ‘SU'(-ANH(E)) — 1’

= de:E " <1-Z§2\/§> <§ tr(AE)’JF(Ga*/g”Q) ’de:ED (3.71)
B (\/3—218a2) ek ( (%) +1> =z

by assumption. Until now we have derived an estimate for | Ay (2) —I|. To prove finally
that (3.65) is bounded we observe

‘ AL A Cof (Anm(E)) ‘_‘ AL Al
2 +3X  2u+ Ar(Cof (Ang(E)))| |21 +3X  2u+ Atr(Cof (Ang(E)))

N M B ACof (Anu(E)) ’
2u + Atr(Cof (Anp(E))) 21+ Atr(Cof (Ayp(E)))
| Y| ‘ ‘ AI — Cof (Ayu(E)))
20+ 3N  2u+ Atr(Cof (Anvu(E))) 2u+ Mtr(Cof (Ayu(E)))
_ 262+ Nt2(Cof (An(E))) — 201 — 3N ‘ AMI — Cof (Ayy(E))) ‘
(21 4+ 3N (2u + Atr(Cof (Anvu(E)))) 2+ Atr(Cof (Ang (E)))

Atr(Cof (Anp(2)) — 1) AMI — Cof (Aygr(E)))

(21 + 30) (21 + A tr(Cof (ANH(E))))I' 2p+ Mtr(Cof (Ayu(E)))

Ntr(Cof (Ayu(8)) — )| | [MI - Cof (Ayru(E)))
S O TE oy ‘ 2+ 2

V3
3
£ 1Cof (Avy(E)) ~ 1| + 5| Cof (Axu(Z)) ~ 1| = |Cof (Avn(Z)) 1|

IN

tr(Cof (Axn(E)) ~ T)| + 5|Cof (Avn(E)) ~ T

IN
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In the last steps we have used:

o (2p+20)71 > (2u+ Atr(Cof (Anu(E)))) ! & tr(Cof (Anu (E))) > 2
(holds by assumption (3.59))

W@ww < 59 6A7 < (204 3X0) (2 4 2X) = 4p® + 10pA + 622

(holds obviously for A, > 0)

o 2NJ);2/\ <ie A< 3(2u+2)) = p+ A (holds obviously for p > 0)

It follows immediately

H AL A Cof (Ayy(E))
2u+ 3N 2u+ Ar(Cof (Ang(E)))

< |Cof (Anu(B)) = Ilpe(o)-  (3.72)
Lo(0)

As long as |Ayg(Z) — I| < 1, which is satisfied by assumption, we obtain by Corollary

B0 and

|Cof (Anu(E)) —I| < 3[Anu(E) — 1|

<3 < 2 >tr(.:.) i+ a 18 ++/3a +1 ‘dev:. .
V3 — 18a2 A 1 —6a2v/3 0
(3.73)
Combining (3.64)), (3.72)) and (3.73)) ends up in
3V3 2 tr(E)
Ay (B N (0)[Z < ( )
A (E)[E] - Ay O[S 2oy < =% [ﬁ_w v AN
18 4+ 3a HdevE
+la| ———= | +1 by
( (1_6a2 ﬁ> ) o | 120

i.e. the first statement (3.61]).

We know due to Lemma [3.17
2

1 2
|Z]? = |dev E + gtr(E) = |devE* +3 ( tr(E)> > |dev E|?,

i.e. |[dev E| < |E[, and by Lemma- the inequality [tr(2)| < v/3|E|. Consequently

/ = ! 3\/§
[ANr (E)[E] = Ay (0)[Z]ll L2 (0) < 1 < 3—18a2>

18 +/3a
(i) )1

3V3 2 V3 1 18 ++/3a
= [<\/§—18a2>)\+,u< (1—6a2\f>+1>

=: C|E] Lo ) 1 2l 220

tr(2)

dev E

12220

(@)

1E]| Loo @) IZ ]| 2 (@)

i.e. the second statement (3.62]).
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Remark 3.21:

1. The parameter A which is characteristic for an incompressible material appears in the
constant C only in one denominator. Hence for A > 1 the constant can be estimated
by a constant that is independent of A. In particular, the constant cannot blow up

for A — oo.

2. The assumption tr(Axg(E)) > 0 is automatically satisfied if a® + %b —1< 0 and
(a3 + %b — 1)2 > 96a%y/3 (cf. Proposition .
If we choose additionally the pair (a,b) € R? sufficiently small such that the condition
[tr(Cof (Anp(E))—1I)| < 1issatisfied, then we automatically have tr(Cof (Anxg(E)))
€ [2,4], i.e. in particular the condition tr(Cof (Anm(Z))) > 2 of assumption
holds. Hence we seek pairs (a,b) € R? such that [tr(Cof (Axg(E)) —I)| < 1 is
satisfied.

Combining Lemma Corollary and equation (3.71) lead to

|tr(Cof (Anu () —I)| < V3|Cof (Anu(E)) — 1|
< 3V3|Anm(B) — 1| < 3V3C =: C.

Thus for 0 < C' < 1 or equivalently 0 < C < 313 ~ 0.1925 the condition
tr(Cof (Anxg(E))) > 2 is ensured.

4

3. In the proof of Lemma we have chosen a and b such that the constant C' in
is less than or equal to one. With this choice and due to it was possible
to use Corollary in . If we do not assume C' < 1, we can use Lemma
instead of Corollary to obtain an estimate for |Cof (Anxpg(Z)) — I|. However,
also in this case, an inequality of the form can be achieved.

By Remark we know that Lemma holds at least for small stresses E. In numerical
simulations one could easily prove the conditions in (3.59) and (3.60). In the following
example we state exemplarily two values a and b for which the assumptions are satisfied.

Note that this choice is not optimal.

Example 3.22:

Choosing for instance a = 2—14 < ,/ﬁ and b = 1—12 < §
equation (3.38)) is positive and the condition tr(Anxg(E)) > 0 is automatically satisfied
(cf. Example . Furthermore with this choice we have C' ~ 0.1716 < 0.1925 < 1.
Therefore with the help of the second part of Remark all assumptions of Lemma [3.20]

are satisfied.

the discriminant of the cubic

Lemma 3.23: (Estimate for Ry ;(Q,v) near the origin)
If # > 0 in the definition of II* and U (cf. (3.55))) is sufficiently small, then there is a
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€ [0,1) such that

IRy (Q)[Q, ¥] = Riy(0,0)[Q, 9] 120y < pI R (0,0)[Q, %] 20
holds for all (Q,v) € II™ x U™ and (Q,¥) € Hr, (div; Q)% x HL ()%,

Proof:

The proof follows the steps in the proof of Lemma 4.3 of [MSSS14], but is explained in
more detail here.

Let (Q,v) € IT® x U™ and (Q, V) € Hr,, (div; 2)3 x H%D(Q)3 be arbitrary and therefore
in particular Q € L2(£2)3%3,

Inserting (3.53) and (3.54) (with w; = we = 1) leads to

RN (Q, V) [Q, ¥] = Riv#(0,0)[Q, V]| 12(0y
< [ A (QF()DIQF ()" + Q(VH)T] = Ay (0)[Qll L2y (3.T4)
+ IVVEW)" + F(v)(V9)T = V¥ — (V)| 120
by the triangle inequality. In the following we estimate both terms on the right - hand side

of (3.74) individually. For the first term, by adding and subtracting an additional term at

the same time and using the triangle inequality, we obtain

I AN 1 (QF(v))[QF(v)" + Q(V¥)"] — «4’NH( )[Qlll 220
< Ay (QF(V)QF(v)" + Q(V¥)T] = Ay (0)[QF (V)" + Q(V9) 20y  (3.75)

+ | Ay (0)[QF (v)T + Q(V¥)T] — Ay (0 )[Q]HL2(Q)

For the first term in (3.75) we use Lemma with 2 = QF(v)T € L®(Q)33, ¥ =
QF ()T + Q(V¥)T € L2(0)**3 and obtain
AN (QF(v))QF(v)" + Q(V¥)"] = Ay (0)[QF (V)" + Q(V¥) ][ 120
< CIQF(v)" || |QF(v)" + Q(V¥)" |l 120
where C is the constant in the proof of Lemma Note that at least for sufficiently

(3.76)

small 6 the assumptions of Lemma [3.20] are satisfied.

Due to 2;12% <1< 0 < A, which obviously holds, equation (3.52)) and Lemma|3.17 (With

_ 2p tr(Z)
T 3(2p+3)N)

respectively ¢ = tr(32)> it follows for arbitrary ¥ € R3*3

A
~ tr(2)1
2o (®)

L
2utr(X) I 2 1 devS[?+3 2ptr(2) 2
32u+ 3N p? 3(21 + 3X)

<\devzy2 +3 <tr(3§])>2> - :2
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which implies ||A’y ;4 (0)[X ]||L2 < IQHZ]HLQ(Q (cf. Remark for X € L2(£2)33.
By assumption we know Q(Vv) + Q(V¥)T € L?(Q)3*3. Thus for the second term in

(3.75]) we obtain

[ A1 (0)[QF (V) + Q(V)T] — Ayrgy (0)[ Q) 20
= [ (OIQP)” + Q)" = Qll e
— Ay (O[QI+ (VV)) + Q(V¥)” = Q120 (3.77)
— [ Ay (O[QVY)” + Q) ] 120

1 -
< QYT+ Q) )

Plugging (3.76]) and (3.77) into (3.75) leads to

Ay 1 (QF (V) QF(v)" + Q(V¥)"] = Ay (0)[Q]] 120y
< CIQF (V)" [| oo () [QF (V)" + Q(V¥) | 20 + iIIQ(VV)T +Q(VV) | 12(0).

The norms |QF(v)T|[1<(), [QF(¥)T + Q(V¥)T | 12(q) and [Q(VV)" + Q(V¥)T| 120
can be further estimated by

IQF(v) ||z = 1Q T+ (VV)) [l no() < Qe + QYY) |z (0

< QL) + 1Rl Lee (@) IV VIl oo ()
< (max{1,0}) ([|Qll @) + V¥l L) ;

IQF ()" + Q(V¥)" |2 = I1Q + Q(VY)" + Q(V) " 2(q)
<1Qll 2@ + 1QVV) 2 () + 1RV L2
<NQll 2@ + 1Ql L2 V¥l Lo () + 1Ql o (2 IV ¥ 120
<N1Qll 20 + 0I1Ql 20 + OV L2
< (146) (I1Qll2@) + 19l 22(0) ) -

1QVV)T + Q(V9) | 120 < 1Ql 2@l VIl @) + IV 22 QI Lo 0

1

< (1QI ey + IVVI3y)* (1Q1220) + IV9 1220
< (1Qllz<(@) + 19Vl () (I1Qllz2() + V¥l 122

1
2

using the triangle inequality, the generalized Holder inequality (cf. Corollary 2.6 in [AF03]),
the definition of II*® and U (cf. (3.55))) and the inequalities

ac+ bd < (a2+b2)% (CQA—dQ)%7 a,b,c,d >0,

(> +8%)% <a+b, ab>0.
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This ends up in

Ay 1 (QF(V))QF(v)" + Q(V¥)"] = Ay (0)[Q]] 20y
< ClQF ()" |l (o) QF (V)" + Q(V¥) | 20 + ;IIQ(VV)T +Q(V¥) [l 12(q)

1 A .
< (€ (max(1,0) (1+0) + 1) (1Q) + 9¥l=00)) (120 + 9220

=:C(0,n)
(3.78)
for the first term in .
For the second term in we obtain
IVVEW)" + F(v)(V¥)T = V¥ — (V) 12(q)
= [VV(I+ (VV)T) + T+ Vv)(V9)T = Vv = (V)T 120 (3.79)

= [V¥(VV)T + Vv(V9) T |12 (0) < 2 VV] L (@I V¥ ]| 22(0)
<2 (1Ql ooy + IV VIlLeo () (HQHL?(Q) + ||VV|’L2(Q)> :

Plugging (3.78) and (3.79) into (3.74]) leads to

||R§VH(Q>V)[Q7‘}] - R/NH(OaO)[Qv‘AI]HLQ(Q)
< (C0.1) +2) (1) + V¥l 2(0y) (I1QU12(0) + V¥l 220
< (C(O, 1) +2) (11Qll () + V¥ () (HQHL?(Q) + ”{’”Hl(Q)) :

Usage of Korn’s inequality [[V||g1q) < éHE(Q)HZP(Q) for v € H%D(Q)?’ (cf. Corollary
11.2.22 in [BSO08]) with constant Cx > 0 leads to

IR #(Q.v)[Q,¥] = Ry (0, 0)[Q. 91220

< (CO.1) +2)° (1Rl (o) + V¥ | (0 )(IIQIILz + o lle@le )

< (19l (@) + 199 Lzm(@)? (1QU 2y + (@) iz ) (8.80)
S (1R (@) + 19V ll2()” (I QU2 + (@) 2(ey )

S (191 (@) + 19Vl () (I1div QI + 1QI 20 + I(Eay )

where we have used Young’s inequality in the last but one estimate.
We have already observed in (3.54]) and (3.8) that the operators

I - leQ n o) = leQ
e (2 (Alm(Q)sw)))’ e (Azm@)—eﬁ’))

differ only up to a constant. Therefore it holds

Hﬁ(Q‘A’)HL?(m < [|Ry5(0,0)[Q,¥ V2@ < 2/|1£(Q, Vllz2(0)- (3.81)
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We apply Theorem of linear elasticity, use (3.9) and (3.81]) to obtain
IR #(Q, v)[Q, 9] = Riy1(0,0)[Q, ¥]|[72(qy

2 (14 A A .

< (1R (@) + 19Vl z2(ey)” (lltiv Q320 + QU0 + (@) 32(q) )
2 N

S (1Qll () + VL)) H‘C(QaV)H%Q(Q)
2 A

S (1Qll () + IVl Lo () HR{I\TH(QO)[Q?V]H%Z(Q)

from inequality . We obtain the statement after extracting the square root and
choosing 6 in sufficiently small such that the constant on the right-hand side in
becomes less than 1 and the assumptions of Lemma for 2= QF(v)T, (Q,v) €
II%° x U, are additionally satisfied.

(3.82)

g

Remark 3.24:

The constant that appears in Lemma depends on the constant of Lemma the
constant of Korn’s inequality, the constant of Theorem and 6 and p. Therefore it is
cumbersome to specify. However, it is guaranteed that Lemma holds for (Q,v) €
II1*° x U with sufficiently small § > 0, i.e. for (Q, v) sufficiently close to the origin. The
constant does not depend on A for A > 1 (cf. Remark . This means in particular that

the statement holds uniformly in the incompressible limit A — oco.

Lemma 3.25:

Let V be a normed space with norm || - ||y and assume that
lu = vllv < pllvflv
for all u,v € V and p € [0,1). Then it holds
lully < (1+ p)llvlly and [lufly = (1 = p)llv[lv
for all u,v € V.

Proof:

Let u,v € V be arbitrary. By assumption it holds ||u — v||v < p||v|lv < |[v]lv, since p < 1.
Therefore it holds on the one hand with the triangle inequality
[ully = llu —v+olly <lu—vllv+[vllv <plvllv + vl = 1+ p)]vllv.

With the help of the reverse triangle inequality it holds on the other hand

[ullv = llv = (v = w)llv = | lvllv = [lo —ully | = llvllv = [Ju = vllv

>0

> |lvllv = pllvllv = (1= p)v]lv.
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3.5 Analysis for the inverse B-formulation and Neo- Hooke material law

Lemma 3.26:

Let V be a normed function space, R : V — L?(f2) continuously differentiable, g : [0,1] —
V, s — v+ s(u—v) for fixed but arbitrary u,v € V and f : [0,1] — L?*(Q), defined by
f(s) := R(g(s)) for s € [0,1]. Then it holds

[1R(u) = R(v)]l12(0) < [ax £/ ()l 22

Proof:
By assumption it holds R'(v) € L(V, L?(2)) for arbitrary v € V, ¢/(s) = u—v € V for
s € [0,1], u,v € V, and by the chain rule the derivative

f'(s) = R'(9(s))lg'(s)] = R' (v + s(u — v))[u— v] € C([0,1], L*(2)).

This implies
1
R(w) ~ B(o) = f(1) = /0 = [ [(5)ds € @), wveV.
0
and results in

[B(u) = R(0)[| 20

1
< / 175l aqey ds < mae [[£/() ey
LQ(Q) 0 s€[0,1]

Here we have used well - known estimates for integrals over continuous functions mapping
from compact intervals to Banach spaces (cf. Section VI.4 in [AE0GD]).
O

Corollary 3.27:
Let V be a normed function space, R : V — L?(Q) continuously differentiable. Then it
holds

[1R(uw) — R(v) = R'(0)[u = vl 12(q) < max ||R'(v+ s(u—v))[u—v] - R(0)[u—]r2(q)

s€(0,1]
Proof:
We set R(u) := R(u) — R'(0)[u] for w € V. Then R is also a mapping from V into L?(Q).
Since R is assumed to be continuously differentiable, R is also continuously differentiable
with respect to u. We obtain its derivative R’ (u)[v] = R'(u)[v] — R'(0)[v], u,v € V, and use
the mapping R instead of R in Lemma Using f(s) := R(v + s(u — v)) for s € [0,1],
u,v € V, we get

f'(s) =R+ s(u—v)|u—-v] =R (v+stu—0v))[u—1v]—R0)u—mu.
Inserting this into the statement of Lemma leads to

IR(w) = R(v) = R'(0)[u — o]l 20 = |1 R(w) — R(v)||12() < Srg%}{unfl(s)HLQ(Q)

= mae [ B0 4 s(u ) — o] = B(0)[u— 1] 12(0)

i.e. the statement.
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3 LEAST SQUARES FINITE ELEMENT METHODS IN ELASTICITY

Corollary 3.28:
Let N be a positive integer. For functions R; : V — L*(Q), i = 1,..., N, in a normed

function space V we define

with g : [0,1] = V, s+ v+ s(u — v) for u,v € V. Consequently we obtain

2 N 3
IR (w) = R(v)l| 20 (Z 1R:i(w) = Ri(v)| 720 ) = ( m%ﬁ]llfz( )H%z(m)
i=1

=1

1
2
= (a7 >||zz(m) = a5 20

€1[0,1] s€[0,1]

where we have used Lemma for each i € {1,..., N}. Hence, Lemma can be
extended to a continuously differentiable function R : V — L2(Q)". Analogously, following

the steps in Corollary we obtain moreover

IR (u) = R(v) — R(0)[u — v]|| 12(0) < Slél[%ﬁ]HRl(U + 5(u —v))[u —v] = R'(0)[u — ][l L2 ()
7 (3.83)

Theorem 3.29: (Efficiency and reliability of the nonlinear least squares func-
tional)
For the first-order system (3.18)) to the inverse B -formulation in the considered Neo-

Hooke material, if # > 0 sufficiently small in II°, U (cf. (3.55])), then
IRNE(Q.¥) = Rva(Q,V)|[72(0) S 1Q = Qi) + IV = VIZn(q) (3.84)
IRNE(Q, %) = Rvu(Q )72 2 1Q = QllEraivs ) + ¥ = Vi)

holds for all (Q,¥),(Q,v) € IT*® x U,

Proof:

We recall that Ry : II®® x U® C H(div; Q)% x HY(Q)? — L?(Q)3 x L*(Q)3*3. Since
Ry is continuously differentiable with derivative (3.53)), we can use (3.83)) in Corollary
for Ryg (instead of R) and V := H(div; Q)% x H'(Q)3. Using moreover Lemma

this leads immediately to

IRNa(Q.¥) = Ryvu(Q,v) — Ry (0,0)[Q — Q¥ — V]| 12(q)
< max | (Rig(Q+5(Q-Q),v+5(v = v)) - Riyy(0,0)) [Q - Qv — V]|

s€[0,1]

L2(Q)

< max pl[Riyi (0, 0)[Q — Q, v — Vllr2() = PIRNH(0,0)[Q - Q, ¥ — V]| 120

100



3.5 Analysis for the inverse B-formulation and Neo- Hooke material law

We use Lemma [3.25] to obtain

IRNE(Q, %) = Rve (Q, V)l r2(0) < (1+ p) Ry (0,0)[Q — Q¥ — V]|l 120
IRNe(Q,¥) = Ryvr (Q, V)l r2() = (1= p)[Ryu(0,0)[Q — Q¥ — V][l 12(0-

The statement (3.84]) follows immediately by combining (3.85)) with (3.81) and (3.7).

(3.85)

An immediate consequence of Theorem for the exact solution (Q,v) := (P,u) €
I1°° x U* and an approximation (Q, V) := (Pj, up,) € I x U™ is

(P —Pr,u—w)|l3 S FvuProup) S|P —Ppyu—w)|}

with V = Hr, (div; Q)3 x H%D (€2)3. This is exactly the property and is valid, since for
the exact solution it holds Ry g (P, u) = 0 and by definition of the least squares functional
in for the Neo-Hooke case it holds HRNH(Ph,uh)H%Q(Q) = Fnu(Pp,up). Thus we
have proven under quite strong regularity assumptions that we can estimate the error
e := (P — Py,u — uy) from below and above by the nonlinear least squares functional,
evaluated in the approximation. This holds at least for (P,u) and (P, u) sufficiently
close to the origin. In this case it is proven that the nonlinear functional is a reasonable
a - posteriori error estimator.

For instance if we combine Raviart- Thomas elements IT, := (RT;_1(7))* ¢ I*® C
H(div; Q)3 for the approximation of Pj, with continuous elements U := (P(T,))* C
U>* c H'(Q)3 for the approximation of uj, with an arbitrary integer [ > 1 and (P, uy)
minimize Fn g (Qp, vi) about all (Qp, vy,) € I, x UL < H(div; Q)% x HY(Q)? we get the

a- priori estimate

NI
NI

lelly =[[(P =Pp,u—w)|lv S (Fnu(Pr,up))2 = inf (Fnu(Qnsvn))

(Qn,vi) € I}, x U},
1
SIP =P, u = L)y S B (1P + v Pl + [l )

(3.86)
for the error respectively the nonlinear least squares functional (cf. with the in-
terpolation operators Ilj, I, defined in Section . In particular we expect at most a
behavior proportional to h! of the square root of the nonlinear least squares functional,
provided that the solution (P, u) is sufficiently regular. Hence a convergence rate of order
[ is optimal for this choice of finite element spaces.

For the sake of completeness we want to prove at the end of this subsection that the
approximation 7, = P,F(uy)” of the symmetric Kirchhoff stress tensor 7 = PF(u)” is
also symmetric in convergence, i.e. one obtains 7, = T;‘Lp if Fng(Pr,up) — 0 for h — 0.

For this purpose we start with the following lemma:

Lemma 3.30:
Let (Q,v), (Q,\?) be in II®® x U, again provided that 6 > 0 is sufficiently small. Then
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it holds

IQF(v)" — QF ()" |l 12(0) S IRNu(Q. V) = Rve (Q, )| 12(0y-
Proof:

By assumption we have (Q,v), (Q,\?) € II*® x U*. With this choice we get on the one

hand the estimate
IQF(v)" — QF ()" [l 120) = [1(Q

Q

)F(V)T||L2(Q)

YT+ (V)2

1Q — Qllr20) + 11(Q — Q)(VV)T || 120 (3.87)
1Q 2y + 1Q — Qllz2(@) V¥l L (o)

(1460)Q — Qllz2(0-

IQ-Q
IQ-Q

IN

-Q
-Q

IN

IN

On the other hand we obtain
HQF(V)T - QF(V)T‘|L2(Q) = HQ(F(V) - F(‘A’))THLQ(Q) = ”Q(V(V - ‘A’)>THL2(Q)
< HQ”LOO(Q)HV(V — V)2 < OIV(V = V) 12(0)-
Combining and leads to
IQF(v)" — QF()" [ 12(0) = IQF(v)" = QF()" + QF ()" — QF(¥)" | 12(q)
<IQFW)" = QF ()" |l12() + |QF (V)" — QF ()" | 12(0
<(140)Q - Qllr2@) +0IV(V =) 20
< (1+40) (1Q = Qllzzey + 19 = 9l )
< (1+0) (19 - Qllgansoy + Iv = ¥l -

Using Theorem ends up in

(3.88)

A ~ 2
IQF()” — QF () 320y = (14 0) (11Q = Qllaraiv oy + IV = V)
<201+ 0 (11Q = Qs + IV = VI3 ey
SIRNE(Q, V) = Rvu(Q.¥)II7 20,

i.e. the statement after extracting the square root.

Corollary 3.31: (Symmetry of 7},)

Let (P,u) € II*® x U* be the exact solution, i.e. Ryg(P,u) =0, and (Pp,up) € II™ x
U be a conforming finite element approximation. Then we get for the approximation
T4 := PpF(uy)T of the Kirchhoff stress tensor 7 = PF(u)? the estimates

(Fnu(Pr,un))?,

|7 = Thll2) S
I — Th 2@ S (Fve (P, ug))z.

D= D=
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3.5 Analysis for the inverse B-formulation and Neo- Hooke material law

Proof:
We use Lemma [3.30| with (Q,v) = (P, u), (Q,V) = (Pj, up,) € II® x U and obtain with
the help of (3.19)
7 = Thllr2) = IPF()" = PuF(un)" |l 12¢0) S [Ryu(P,u) = Rym (P, un)ll 120
= |Ryu(Pr,un)llr2) = (Fna(Ph,up))?,

[

i.e. the first statement.
In Section [3.1] we have remarked that the conservation of angular momentum leads to
a symmetric 7, i.e. it holds 7 = 77 for the exact Kirchhoff stress tensor 7. With this

property and the first statement we obtain

I = Thllz@) = 7 = 7 = (7 = T lp2e) = (7 = )" = (7 = 7h)ll2(e

1
<27 = Thllr2) S (Fnu(Pr,un))?,
i.e. the second statement.
O
Corollary tells us that as long as the value Fy g (Pp,up) converges to zero it is also
ensured that the Kirchhoff stress approximation converges to the exact one and these

approximations become symmetric. Note that the estimates in Corollary can be also
combined with (3.86]) to obtain a- priori estimates for the Kirchhoff stress tensor.

3.5.2 The linearized problem

In the Neo-Hooke case we are also able to prove the property (3.23) in the space V :=
Hr,, (div; Q)3 x HllD (€2)3 for the linearized problem. For this purpose we need the following

lemma.
Lemma 3.32:
Let (P®) u®)) € ITI™® x U and (Q,¥) € V. Then it holds
IRy (PE u*N[Q, V]l 12() < (14 p) IRy (0,0)[Q, V]l 125,
IRy (P®,u*N[Q, V]l 12() > (1 = p) IRy (0,0)[Q, V]l 125
with p € [0,1).
Proof:

For sufficiently small € in (3.55) we know by Lemma that there exists p € [0, 1) such
that

IRy (PH),u™)[Q, 9] = Riy1(0,0)[Q, %]l 2() < pIRN#(0,0)[Q, ¥]l| 120

holds for (P®), u®)) € II™® x U™ and arbitrary (Q,¥) € V. Using this observation and
Lemma directly leads to the statement.
O
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Corollary 3.33: (,, Wanted property* for the linearized problem)
Let (P®) u(®)) € II® x U* be given. Then it holds

Fa(Q,¥:0) = [(Q.¥)[3  for all (Q,¥) € V.

Proof:

By definition of .7-"11\1}}{(@, v;0) in l for the Neo- Hooke case, Lemma the relation
(3.81) between the operators R’y ;(0,0) and £ and the property (3.7)) of linear elasticity

we obtain

= 1£(Q,%) 220y = Q.92

for all (Q,¥) € V.

O
Therefore by the general considerations in Section we get for each linearized problem
in the algorithm a unique correction term (Q(k) , v(k)) € V. One open problem still remains,
namely IT> x U™ is only a subset of H (div; Q)3 x H'(2)? and therefore it is not guaranteed

that the new solution
(P(k+1)7u(k+1)> — (Pw)’u(k)) +a® (Qw),v(k)), a® e (0,1],

is in II®® x U*. However, the problem is not existent in the discrete problem, described

in Section B.3.3]

3.6 Comparison to other discretization methods

The least squares finite element methods for hyperelasticity proposed in Section based
on the inversion of given stress- strain relations, must be compared with already existing
discretization schemes to show their suitability. For this purpose we introduce the stan-
dard Galerkin method (often called pure displacement approach) for compressible
materials and a displacement - pressure approach for incompressible hyperelasticity, pro-
posed by Auricchio (cf. [ABadVLR05] and [ABadVLR10]). In both discretization schemes
we assume for simplicity that the applied forces are dead loads, which means that the
given densities f and g of the volume and surface forces are independent of the deforma-
tion ¢ (or equivalently independent of the displacement u). However, bear in mind that
both schemes also work for more general conservative forces (cf. Section 5 in [Cia8§]). In
particular both discretization schemes will be formulated for the Mooney - Rivlin material
(2.30]).
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3.6 Comparison to other discretization methods

3.6.1 Pure displacement approach

The point of departure is to find a minimizer of the total energy

I(x) :Z/Q@?)(X’Vx)dw—(/Qf-xder/FNg-de>

= L(x)

in an admissible set
d = {go e WhP(Q)? : det Vo > 0in Q, = ¢ on FD}
of deformations (cf. Section 5 in [Cia88]), i.e. we seek ¢ € ® such that
I(p) = inf {f(x) iX € ‘i} . (3.89)

Y : QXM — R with M := {F € R¥*3 : det F > 0} is assumed to be a Fréchet differentiable
stored energy function to a given hyperelastic material (cf. Definition and ¢ €
WHP(Q)3 are prescribed boundary conditions on I'p.

An existence theory for minimizer(s) of can be found in [Bal77] (respectively in
Section 7.7 in [Cia88]|). This theory is based on the polyconvexity (cf. Section of the

underlying stored energy function zﬁ and a coerciveness inequality of the form

U(x,F) > ¢ (|F]P + |Cof F|? + (det F)") + ¢2, (3.90)
forallFEM,er,WithpZQ,qzzﬁ,T>1,01>0, co € R.
In particular, the stored energy function of the considered Mooney - Rivlin material
satisfies by Theorem 4.10-2 in [Cia88] the coerciveness inequality with p = ¢ =
r = 2 and is polyconvex (cf. Section [2.4.4). Thus by Theorem 7.7-1 in [Cia88], provided
that L(x) is continuous and inf{I(x) : x € ®} < 4 o0, a minimizer ¢ of is in
WL2(Q)3 = HY(Q)? with Cof Ve € L?(92)3*3 and det Vo € L?(9).
In the following we rewrite the minimization problem in terms of displacements.
For each deformation x € ® we write x = id + v and set up := ¢ — id € W'?(Q)?

with displacements
ved:={ueW(Q)?: det(I+Vu)>0in Qu=uponlp}
and seek u € ® such that
I(u) =inf{I(v):ve®}, I(v):=I(id+v). (3.91)

We further decompose each v € ® into v = v + up with

Ve dr, = {ﬁ € WEP(Q)? : det(I+ V(@ +up)) > 0 in Q} .

105



3 LEAST SQUARES FINITE ELEMENT METHODS IN ELASTICITY

—e

Since the boundary conditions up are prescribed, the minimization problem (3.91)) is

equivalent to find the minimizer G € ®r,, with
Ip(t) =inf{ly(V) : v e ®r,}, Ioh(V):=I(V+up)=I(v).

Since 1) is Fréchet differentiable by assumption and it holds P(u) = 8F1/A1(x, Fllr—r@ =
g—iﬁ(x, F(u)) for u =10+ up € ®, we get by the chain rule and 1}

A~

(B0 P()) (11 = ($0e T+ V(i +up))) [¥] = &0, T+ V(i + up))[V¥]
u):

= aFQﬁ(Xv F)|F:F(u) Vv = P( Vv, ve @FD'

The necessary condition of finding a minimizer is 0 = IN(Q)[V] = (I(a+ up))[v] =

I'(G+up)[Vv] = I'(u)[V] for all v € &, and equivalently

(P(w), V) 20 — (£:9) 200y —/ g vds=0 Vvedp, (3.92)
'y

=:(gV)ry

i.e. this is the corresponding (nonlinear) variational problem of finding the minimizer
u=u+up € ® of . Note that is the variational problem according to the
strong formulation . Indeed both problems are equivalent if the solution u is regular
enough.

We solve the nonlinear variational formulation (3.92)) with the help of a Newton iteration.
In the k-th step of the Newton iteration we set the new approximation as u*+1) .=
ul®) + §u, use the Taylor approximation P(u**1) ~ P(u®) 4+ P/(u®)[du], provided

that P(u) is Fréchet differentiable with respect to u, to get the linearized variational

formulation
/ P'(u)[du] : Vv dr = —/ P(u®): vvdﬁ/ f-{rdx+/ g-vds Vvedr,,
Q Q Q I'n
=: a(éu,ff) = F({/)
(3.93)
depending on the old approximation u*) € ®.
In short notation we have
a(5u7 ‘A’) = (P/(u(k))[éuL V{I)L2(Q)a
. A R R R (3.94)
Fv) = —(P(u( ))7 vV)L?(Q) + (fvv)LQ(Q) + (g V)ry
and seek a correction du € ®r,, such that
a(du,v) =F(v) Vve®r,. (3.95)

Of course one can additionally use a damping strategy, as usual, in this method.
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Remark 3.34: (Pure displacement approach for u*) = 0 and zero boundary

conditions)

If we set up = 0 and u® = 0 in and assume consistency with linear elasticity
(cf. Section , i.e. it holds P(u®) = P(0) = 0 and P'(u®)[du] = P/(0)[du] =
2pe(du) + A tr(e(du))I, we obtain

a(0u, V) = (2ue(du) + Atr(e(du))I, VV) 20y = (Ce(du),e(V)) L2 ()
F(‘A/) = (fa‘A’)L2(Q) + <g7</>FN

due to Lemma and the symmetry of Ce(du).
Thus for u*) = 0 and up = 0 the variational problem (3.95) reduces to the well - known
variational problem of linear elasticity (cf. Section 11.2 in [BS08]). Therefore (3.95) can

also be used to determine the solution of linear elasticity.

The derivation of the nonlinear variational problem and the linear variational pro-
blem holds in general, provided that P(u) € L?(Q)%*% and P’(u®)[du] € L?(Q)>*3
for given u, u*) € ® and arbitrary du € ®r - In the following we will focus on a hyperela-
stic material law of Mooney - Rivlin type with stored energy function (2.31)). Consistency
with linear elasticity has led to a := a(u,d) = § — 9,5 := B(\,9) = % =0,y =y, \) =
w+ % with 0 < § < min{%, £} in Sectionm

Due to the definition of a hyperelastic material in and the gradients in (2.23) we
get the first Piola- Kirchhoff stress tensor as

Prr = Opamr(C) = 2aF + (28(det F)? — 7)F T + 26 F (tr(C"1)I- C~ ) Cof C
= 2aF + (28(det F)? — /)F~ T 4+ 25(det F)? (tr(B"HI - B ) F 7

with C = FTF and B = FFT.

Inserting the parameters «, 3,y leads to

Pyrp(u) =2 (g - 5) F(u) + (2 (i - 5) (det F(u))? — (u - ;)) F(u)~"

+25(det F(u))? (tr(B(u) I - B(u) ') F(u) ™"

— () + |5 (et P~ 1) = | Pl (3.96)
=:Pyp(u)
126 [(det F(w))? { (tr(B(u)~) — 1)I - B(u)"'} F(u)~T — F(u)] .
=:Pyqq(u)

Pysr(u) is therefore decomposed into the first Piola- Kirchhoff stress tensor for the Neo-
Hooke case, i.e. Pyg(u), and an additional part P ,q4q(u).
We set gi(u) := (det F(u))?, g2(u) := B(u)™', g3(u) := tr (B(u)™"), ga(u) := F(u)™"
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and gs(u) := F(u). As presented in Section one analogously obtains the Fréchet

derivatives with respect to u as

g1 (u)[v] = 2(det F(u))%tr (F(u)_1Vv) ,

g()[v] = =B(w) " (Vv(F(u)" + F(u)(Vv)") B(u) ",

g3()[v] = tr (gh(u)[v]) = —2tr (B(w) ' Vv(F(w))"B(u)™"), (3.97)
di()[v] = —F(u) (V) F(u)~7,

gs(w)[v] = Vv.

For the calculation of g4(u)[v] we have used Lemma The Fréchet derivative of
P rr(u) with respect to u is then

Mr(W)[V] =Pl (u)[v] + Plgy(a)[v]

with components
W] = p9v — |2 (et F)? ~ 1) — po| Fw) 7 (Fv) F(w) "

+ A (det F(u))? tr(F(u) ' Vv)F(u)~ 7,
ada(W)[V] = 20 [g1 (w)[v] {(g3(w) = )T = g2(u)} g4 (u)
+ g1 (w) ({5 (VL = gh(W)[v]} ga(w) +{(g5(0) — DI = ga(u)} g5 (w)[v])
~ ghwlv]
(3.98)

With these observations one can also show that the bilinear form, defined in , is
symmetric for the considered Mooney - Rivlin material.
In the following we study the pure displacement approach in a plane strain model and the

Mooney - Rivlin material law.

Restriction to a plane strain model:

In a plane strain model we recall that the deformation gradient reduces to

F(u) = O1us 14 0sug 0| =:

14+0 0 0 R
+ 01uy pXI51 (F(u) 0)
0 0 1

Consequently we recall that the stress tensor and the left Cauchy - Green strain tensor are

given by
Py P 0 .
PMR — P21 P22 0 =: (P](\fR (1)> ,
0 0 P
S BT o
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3.6 Comparison to other discretization methods

Obviously it follows tr(B(u)~!) = tr(B(u) ') +1, det F(u) = det F(u) and therefore with
the help of equation ((3.96)
(PMR(U))1;2,1:2 = (PNH(U))1;2,1;2

+26 ([(det F(u))? {(tr(B(u) ") — DI — B(u) '} F(u) ™" - F(u)])m,m
= (Prsr (W), 9,0 +26 | (det F(w)? { (r(B)™) +1 - 1) T-B) ™  Fw) ™ — F(u)|
= (Pxar (W), 9,0 + 26 | (det F(w)? (tr(B(w) ™) - Bw)™) F(w)™" — F(u)|
for the components of Pj/r(u) in the first two rows and columns.
In two dimensions it holds tr(Cof A) = tr(A) and tr(A)I — (Cof A)T = A for an

arbitrary matrix A € R?*2. With these ingredients and the relation B(u) = F(u)(F(u))”
it actually holds

(det B(w))? (tr(B(uw) ™)1 - B(u)™") ()" - F(u)
= (tr(Cof B(u))I — (Cof B(u)) )F w7 — F(u)
— (te(B(u)I - (Cof B(u)) )F( )T~ F(u)

— B(wF(u) " - F(u) = F(u)(F(w) Fu) "~ F(u) =0

and it follows (Par(0));.91.0 = (PNu(0))).91.5- The stress tensors Py (u) and Prr(u)

differ therefore only in one component, namely

(Prr(u))zg = (Pya(u))ss
+25 ([(det F(u))? { (tr(B(u) ') — )I— u) '} F(u)”" - F(u)]),,
— (P H(u))33—|—2(5[detFu 2{( +1—1) 1—1}-1—1]
= (Pnu(u))gq +26 [ det F(u))? (tr 1) }

whose additional term 24 [det(ﬁ‘(u))2 (tr(B(u)*l) - 1) - 1} is in general unequal to zero.
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3 LEAST SQUARES FINITE ELEMENT METHODS IN ELASTICITY

Proposition 3.35: (Pure displacement approach with Mooney - Rivlin and plane

strain configuration)

Assume that we use a plane strain model. Then the pure displacement approach for the
considered Mooney - Rivlin material with stored energy function leads for all possible
values 0 < 0 < min{%, %} to the same displacement approximation as using the Neo-
Hooke material, i.e. with 6 = 0.

Proof:
811)1 821)1 0
Since we are dealing with a plane strain configuration it holds Vv = | 9jv9 dava 0
0 0 0
for v.e ®r,.

Inserting Vv into (3.98) leads to

(Phaa()[v]) 33 = 20 (91 (0)[v](g3(w) — 2) + g1 (u)gs(w)[v])

and (P (u)[v]);; = 0 for (4, ) € {1,2,3} x {1,2,3} \ {(3,3)}. These identities could be
proven with the help of a long calculation or simply with the help of the Symbolic Math
Toolbox™ in MATLAB® as done here.

The variational formulations (3.92) and (3.93)) do not consider the components in the last

row and last column of P(u) and P’(u®))[du] due to test functions ¥ with vanishing
matrix entries in Vv in the last row and column. Only the first two rows and columns of
these matrices are taken into account. But these submatrices are, by the considerations
above, equal for both models. Therefore the usage of the Mooney- Rivlin model is no
improvement compared to the Neo- Hooke model in a pure displacement approach with
plane strain configuration.

O
Proposition [3.35] states that we can neglect the additional 0 - term in the Mooney - Rivlin
material compared to the Neo- Hooke model if we are using a pure displacement approach
in combination with a plane strain model to approximate the displacement u. Hence, it
always holds up;gr = ung. If we calculate the corresponding stress tensors Pasg and Pyp
in a post - processing, then these tensors can only differ in one component, i.e. (Pyr)5q #
(Pnm)s3 and all other components are equal.
However, for a complete three dimensional problem without a plane strain model, the
results for Mooney - Rivlin and Neo - Hooke will differ. Also for other constitutive laws that
are based on the Neo-Hooke material with corresponding stress tensor P = Pygy + Paga
with at least one additional non - vanishing entry of the components (Pyqq)11, (Padd)12,

(Padd)21, (Padq)2e will lead generally to a different displacement approximation.
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3.6 Comparison to other discretization methods

3.6.2 Displacement - pressure approach

Since the pure displacement approach leads to unwanted Poisson locking effects in the
incompressible limit, at least if polynomials with small degree are used as conforming
finite elements (cf. [BS92] for linear elasticity), we use a different discretization method
for the incompressible limit A — oo. The following discretization method is a mixed
formulation and approximates, in addition to the displacement u, a pressure - like variable
p. This method is proposed by Auricchio et al. in [ABadVLR05] and [ABadVLR10] for
a homogeneous Neo- Hooke material. The corresponding stored energy function that the
authors used in their work is slightly different to the one proposed in with § = 0.
However, we use their idea and formulate a mixed method for the Mooney - Rivlin material
with stored energy function in the following:

By equation it holds Py/r(u) = Pyg(u) + Pygq(u) with

Povar(w) = pF(w) + | 5 ((det F(w)” 1) — | F(u) 7,
P () = 28 g1 (w) { (g5(w) — 1T — go(w)} ga(w) — g5(w)]

and the functions gi,...,gs, defined in Section [3.6.1] Here only the first part, namely
Pyp(u), depends on . Introducing the pressure-like variable p := 3 ((det F(u))? — 1),

or equivalently (det F(u))? —1 = 2710, we get

Pyu(u,p) == pF(u)+ (p— p)Fu)™"

and P,gq(u) remains unchanged and is independent of p. Hence we write Py/r(u,p) :=
Pyu(u,p) + Paga(u).

For the limit A — co we get (det F(u))?—1 = 0. Since det F(u) > 0 (cf. Section[2.2.1)), this
condition is equivalent to det F(u) — 1 = 0 and confirms the incompressibility constraint
([2.9). We get the nonlinear mixed formulation:

Find the pair (u,p) € Wh5(Q)3 x L"(Q) with sufficiently large s, > 2 such that

(PMR(uap)a vV)L2(Q) = (fvv)LQ(Q) + <gaV>FN Vv e Wllj(Q)?),

(3.99)
(det F(u) — 1,¢) 12y =0 V¥q € L"().

Here u has to satisfy again the prescribed boundary condition on I'p, i.e. u =up on I'p.
We obtain the Fréchet derivative of Pysr with respect to (u,p) (cf. Definition as

Py r(u,p)[0u,6p] = Py (u, p)[du, op] + Ppgy(u)[dul
d d
= 2 Prm(u+10u,p)|,_ o+ Plga(w[ou] + = Pyu(u,p +tp)|,
= uVéu+ (u—p)F(u) ™" (Véuw) F(u)™" + P yy(w)[du] + spF(u) "

= uVéu+ (u—p)F(u)~7 (Véu) ' F(u)™T + P’ 4y (u)[du] + dp Cof F(u),
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3 LEAST SQUARES FINITE ELEMENT METHODS IN ELASTICITY

where we have inserted the incompressibility constraint det F(u) = 1 in the last step. The
derivative P/, ,(u)[du] was already determined in (3.98).

We solve the nonlinear variational formulation again by a Newton iteration. With
the help of the derivative P’ (u,p) and Taylor’s formula of order one we linearize the
system about the pair (u®) p®)) e WH3(Q)3 x L(Q), where u®) = up satisfies
the boundary condition on I'p.

Since (det F(u(k)))/ [v] = Cof F(u®)) : Vv we obtain the linearized system

_ (PMR(uw), oM vV)

+ (£, V) 12(0) + (8 V)ry, (3.100)
=— (det F(u®) — 1,q)

(Phrp(a®,p™)[5u,57], 9v)

120) 12(9)

(Cof F(u'") : Véu, q) @)
of (3.99) for all (v,q) € W (Q)3 x L"(Q).
Defining bilinear forms a : WII,DS(Q)?’ X W%;(Q)?’ — R, b: W;;(Q)?’ x L"(©2) — R and
linear forms F' : Wéj(ﬂ)?’ — R respectively G : L"(2) — R as

L2(Q)

a(du,v) = (,Nau + (u - p(k)> Fu) 7T (vou)l Fu®)7, vv)

/ k
+ ( add(u )[du]vv‘/)LQ(Q),

L2(Q)

b(v,dp) := (5p Cof F(u(k)),Vv> (3.101)

r2(Q)’
F(v) i= = (Pyr®,p®), vv)

G(q) = — (det F(u®) — 1,q>

12(9) + (va)LQ(Q) + (& V)TN

L*(Q)
and using (Cof F(u®) V(Su,q)L2
the following linearized problem:
Find for given (u® p*)) € W(Q)3 x L"(Q), satisfying u®) = up on I'p, the correction
term (du,dp) € W;;(Q)?’ x L"(Q) such that

= (q CofF(u(k)),V(iu) = b(du,q) leads to

() L2(Q)

a(du,v) +b(v,0p) = F(v) VveWps(Q)?

(3.102)
b(du,q) = G(q) Vqe L (Q).

After solving this typical saddle point problem we set the new displacement and pressure
approximations as
uFt) = q®) 4 (B gu and  p*t = pk) 4 o) sp,

where 0 < a®) < 1 is again a parameter of a globalization strategy. By construction the
new approximation satisfies u**%) = up on I'p and will be used in the following linearized
problem of the used Newton scheme. We continue this until any given stopping criterion

is satisfied.
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3.6 Comparison to other discretization methods

In the following of this section we show that the saddle point problem ([3.102]) generalizes a
well - known mixed finite element method for incompressible materials in linear elasticity:

If we choose (u®), p(*)) = (0,0) under the assumption up = 0, it holds by definition of

g1, ---,9gs in Section and their derivatives in (3.97))

91(0) =1, g1(0)[v] = 2tx(Vv) = 2tr(e(v)),

92(0) =L, g5(0)[v] = (VV +(Vv)) = —2e(v),
93(0) =3, g3(0)[v] = —2tr(e(v)),

91(0) =1, gy(0)[v] = ~(Vv)",

95(0) =L, g5(0)[v] = Vv.

With the help of (3.98) we obtain

2da(0)[V] = 26 [g1(0)[v] { (0) — 1) — g2(0)} 94(0)
+ 91(0) ({95(0) V]I — g5(0)[v]} 94(0) + {(g5(0) — 1)I — g2(0)} g4(0)[v])
— g5(0 )[V]

]
=26 [2tr(e(v))I — 2tr(e(v))I + 2¢(v) — (Vv)T = Vv] =0

and due to consistency with linear elasticity of course Py/r(0,0) = 0.
By the definition of the bilinear forms and linear forms in (3.101)) it follows

a(du,v) = (pVéu + w(Véu), VV)LQ(Q) = (2ue(du), Vv) 2 (q)
= (2ne(du),e(v))2(q)

b(v,dp) = (0pL,VV) 2y = / optr(Vv)de = / opdivvdr = (0p,divv) 2 -
Q Q
Thus by (3.102]) we obtain the saddle point formulation

(2pe(8u),e(v)) 121 + (09, div V) o) = (£, V) o) + (8, V)T Vv € WRS(Q)P,
(¢, divéu) 2y =0  VgeL'(Q),

(3.103)
for which the choice s = r = 2 is sufficient in linear elasticity. The saddle point formulation
is exactly the well - known mixed formulation of linear elasticity for A — oo (cf.
Section 8 in [BBF13]) and is close to the Stokes problem for an incompressible fluid.
Finally, we remark that also the displacement - pressure approach leads to the same dis-
placement results for the Mooney- Rivlin and the Neo-Hooke model in a plane strain
configuration (cp. Proposition , since also in this case it holds (Pygr(u,p))1:21:2 =
(Pyu(w,p))i:2,1:2, (Phyr(w,p)v,d)i21:2 = (Pyy(u,p)[v,q])i:2,1:2 and exactly these com-
ponents are taken into account in (3.99) and (3.102)) (cf. also (3.101))).
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3 LEAST SQUARES FINITE ELEMENT METHODS IN ELASTICITY

3.7 Advantages and disadvantages of the LSFEM approach

At the end of this chapter and the description of our least squares finite element method
we would like to discuss the advantages and drawbacks of this approach.

The first drawback is that we need much regularity in our theory. We had to assume in
Section [3.5[that the stress tensor is in W (div; Q) and the displacement is in W1°(€2)3.
This is a quite strong regularity assumption that is not satisfied in all applications (cf.
[HMWT1]). However, we will see in our numerical experiments in Section [6] that our me-
thod provides even good results if these assumptions are not satisfied.

Secondly, since we are approximating the whole stress tensor in our approach, we have
much more degrees of freedom in contrast to the other two approaches. Consequently the
resulting linear systems of equations are larger and the computational costs for their so-
lution increase. A challenge is to provide reasonable (preconditioned) iterative solvers for
the linear systems .

Thirdly, a further issue is unfortunately existent in our approach: In numerical experi-
ments we have observed that it is necessary to scale the first term in the least squares
functional sufficiently large in order to obtain good solutions. That is the reason why we
have introduced a scaling parameter w; in . w1 has to be chosen in such a way that
the size of the domain is taken into account. An unscaled functional could be used if we
would rescale the domain (cf. Section . For practical purposes one could for instance
start with w; = 1 and increase the number by the factor 10 as long as the displacement
in a particular point remains unchanged. The scaling issue is not existent in the Galerkin
and the displacement - pressure approach, introduced in Section

Besides these disadvantages our least squares finite element approach provides also many
advantages. First of all, despite the fact that the appearing linear systems of equations
are large, they have a beneficial structure. The stiffness matrix is always symmetric and,
as long as the corresponding bilinear form to the linearized problem is coercive, it is mo-
reover positive definite (cf. Section . This is a pleasant property for the development
of suitable solvers and preconditioners.

Secondly, besides the displacement we automatically obtain an approximation of the oc-
curring stresses with our method. The stresses of a deformed body are very important
for engineers, since high stresses could practically lead for instance to cracks. In contrast
to the other both discretization schemes we need no post - processing to obtain the stress
tensor P. Moreover, we do not lose any approximation quality in our approach. We will
see exemplarily in Section [6] that the stress approximations in our LSFEM approach are
better than in the other two approaches.

Thirdly, as a general advantage of least squares finite element methods, our approach is
not restricted to any discrete inf- sup condition (cf. Chapter III §4 in [Bra07] and [BG09]).

Thus we can combine arbitrary finite element spaces for the stresses and displacements in
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3.7 Advantages and disadvantages of the LSFEM approach

contrast to mixed methods with saddle point structure.

Fourthly, we will see in Section [6] that we can determine critical loads correctly with our
approach. Auricchio et al. tried in [ABadVLR10] to determine critical load values in se-
veral benchmark tests with the help of the displacement - pressure approach. The authors
observed that their results are for many combinations of finite elements unsatisfactory. We
will see exemplarily in Section that our approach can determine the right values for
the same problems without any difficulty and with quite simple elements.

Fifthly, our method for the Neo-Hooke material is robust in the incompressible limit
A — 0o. As we have observed it is actually possible to set A = oo in this case. In par-
ticular we have no unwanted Poisson locking effect as often observed for the Galerkin
method using small polynomial degrees for the approximation. Also for more complicated
nonlinear models our approach is promising for quasi-incompressible materials, since by
the inversion of the stress- strain relation the inverse material law should not blow up for
A — 00.

Sixthly and lastly, the least squares finite element method generally provides a candidate
for an a-posteriori error estimator as by - product, namely the least squares functional
itself. In the case of the Neo - Hooke material and the B - formulation we have proven that
the corresponding least squares functional is a reliable and efficient error estimator, at least
for small stresses and displacements close to the origin (cf. Section . Hence adaptive
mesh refinement is possible without any difficulty. Practically we have observed that this
estimator also identifies ,, problematical® regions for larger displacements and stresses, i.e.
beyond the theoretically guaranteed range. Furthermore we will introduce the so - called
model adaptivity in Section [5| which is again based on the nonlinear least squares func-
tional as error estimator. We will see that our approach is also promising concerning this

direction.
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4 Inverse LSFEM approach for transverse isotropy

In Section we have derived least squares finite element methods for homogeneous
isotropic frame - indifferent hyperelastic materials. The main idea was to invert the given
stress - strain relation and express the material law in terms of strains instead of stresses.
In this part of the work we will show that this approach, at least for the C - formulation,
can be easily extended to anisotropic hyperelastic materials. Only the modeling, more
precisely the stored energy function, has to be adjusted.

We follow the explanations in [Sch10] and [BSN10] for the modeling. After defining suitable
additional invariants for general anisotropic materials, we consider in particular the case
of transverse isotropy. In this case one has a so- called preferred direction, denoted by
a vector a € R3. In the planes perpendicular to a, the elasticity properties of a material
remain independent of the direction. An example for transverse isotropy is wood with
preferred direction in the wood fibers. In this chapter we denote the set of all rotations in
R? as 0 :={Q c R¥*>3:QTQ =1=QQ7,detQ = 1} and the set of all matrices with
positive determinant as M := {F € R3*3 : det F > 0}, as before.

4.1 Modeling of anisotropic materials

In Section we have defined the isotropy of a stored energy function zﬂ OxM—=R

as the condition

A~ ~

D(x,F) =9)(x,FQ), xcOFeM,QeO. (4.1)

The physically necessary property of material frame- indifference in hyperelasticity was
also introduced in Section as

V(x,F)=9(x,QF), xcQ,FeM,QecO. (4.2)
If we combine both properties we obtain

D(x, QFQ2) = ¥(x, QiF) = ¥(x,F), x€Q,FeM,Q;,Q: €0, (4.3)

often called orthogonal invariance.

For anisotropic materials the property holds only in a subset G C Q. is for
anisotropic materials still a necessary requirement for all Q € Q. Altogether holds
for an anisotropic material only in the subset G. The set G is called material symmetry
group.

Following the explanations in [Sch10] and [BSN10], we split the total stored energy function

of an anisotropic hyperelastic material into an isotropic and an anisotropic part

V(x,F,E) =, (%, F) +¥,,,.,xF,E), xcQFecM, (4.4)
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4.1 Modeling of anisotropic materials

where B := {aj,as,...,M;,My,...} denotes a set of structural tensors. The stored

energy function ¢ (x, F,Z) then shall satisfy

)(x,F,B) = 1)(x,QFQ", Qa;, Qas, ...,QM;Q”,QM:Q", . ..) = ¥(x,QFQ", Q + E)
(4.5)
for all Q € O with the abbreviation Q * Z := (Qay, Qas,...,QM;Q”,QM2Q7”,...). In
the following we define, based on [Sch10], suitable ingredients of the stored energy function

of an anisotropic material.

Definition 4.1: (Mixed invariants)

Let a € R? be given. Then we define for arbitrary F € R3*3 the mixed invariants

where I1(F) = |F|? and I1(F) = |Cof F|2, I3(F) = (det F)? were already introduced in
Section [2.3.3

Note that K 1(F,a) and KQ(F, a) can be expressed by linear combinations of the set Z :=
{I,(F), I(F), I3(F), J4(F,a), K3(F,a)} and therefore T is for instance one possibility for
an independent set of invariants. The stored energy function will be defined later
in terms of the principal and mixed invariants. In the following we often use the identity
tr(y -y?) = i y? = |y|? which is valid for arbitrary column vectors y € R".

Moreover, W;_éeﬁne for arbitrary A,M € R3*3 the mappings J4(A, M) := tr(AM),
J5(A, M) := tr(A2M), K1(A,M) := J5(A,M) — I} (A)J4(A, M) + I1(A), K2(A, M) :=
Li(A) — Jy(A, M) and K3(A,M) := I1(A)Js(A, M) — J5(A,M). For the special choice
A = C = FTF, M = a-a” we obtain similar to I;(C) = tr(C) = I,(F), I1(C) =
tr(Cof C) = Iy(F), I3(C) = det C = I3(F) (cf. Section the relations

Ji(C,M) = tr(CM) = tr(FTFaa’) = tr(Fa(Fa)”) = |Fa|? = J4(F,a),
J5(C, M) = tr(C*M) = tr(FFFTFaa”) = tr(F'Faa’ FTF)
= tr(FTFa(FTFa)?) = [FTFal? = J5(F, a),

K1(C,M) = J5(C,M) — I (C)J4(C,M) + I5(C)
= J5(F,a) — I,(F)J,(F,a) + I,(F) = K (F, a),
K3(C,M) = I1(C) — J4(C,M) = I;(F) — Jy(F,a) = K»(F,a),
K3(C,M) = I1(C)J4(C, M) — J5(C, M) = [,(F)J4(F,a) — J5(F,a) = K3(F,a).
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Thus, for instance if we have the set & = (a, M) of structural tensors with M := a - a’

a € R? given, and choose a stored energy function ¢(x,F,a) := ¢ (x,F,Z) in terms of
the principal and mixed invariants, we can express the stored energy function, similar to
(2.19), in terms of C, i.e.

Y(x,C,M) =1(x,F,a), xe,C=F'F,FecM.

For our later purpose, the computation of the mapping G and its Géateaux derivative for
an anisotropic material, which will be done similar to the derivations in Section it
is necessary to compute the derivatives of the principal and mixed invariants and their
gradients (cf. Section . For the principal invariants this was already done in Section
In three dimensions we recall the Gateaux derivatives with respect to an invertible

matrix A € R3*? and its evaluation in A =T as

I(A)H]=1:H, I1(1)[H] = tr(H),
L(A)H] = (tr(A™HI- A7) Cof At H,  I}(I)[H] = 2tr(H), (4.6)
IL(A)H] = Cof A : H, I4(1)[H] = tr(H)

with arbitrary H € R3*3. For C = FTF the calculation of the gradients with respect to
F € R3*3 were an immediate consequence in Section We recall the result as

dpI,(C) = 2F,
OpI3(C) = 2(det F)>’F~T = 2(det C)F 7.

In the following lemma we itemize the Gateaux derivatives of the mixed invariants

Ji(A, M), J5(A, M), K1(A, M), K3(A,M) and K3(A, M) with respect to a not necessa-
rily symmetric but invertible matrix A € R3*3 and its evaluation in A = I. Moreover, for
the choice A = C = FTF we state their gradients with respect to F.

Lemma 4.2: (Gateaux derivatives and gradients of mixed invariants)
For an invertible arbitrary matrix A € R3*3, M = a - a’ with given normed a € R3, i.e.
la|] = 1, and H € R3*3 it holds

JH(A,M)[H] = tr(MH) = M : H,

JLHA,M)[H] = tr((AM + MA)H) = [MA” + A"M] : H,

K{(A,M)[H] =  MAT + ATM — tr(AM)I — tr(A)M + (tr(A"H)I - A7) Cof A] : H,
K5(A,M)[H] = tr(H) — tr(MH) = [I - M] : H,

K5(A,M)H] = [tr(AM)I + tr(A)M — (MA”T + ATM)] : H.

(4.8)
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4.1 Modeling of anisotropic materials

For A =1 we obtain in particular

J4(L, M) [H] = t(MH),

J4(L, M) [H] = 2 tr(MH),

K (I, M)[H] = tr(H) — tr(MH), (4.9)
K(LM)[H] = tr(H) — tr(MH),

K41, M)[H] = tr(H) + tr(MH)

For the special choice A = C = FTF the gradients of the mixed invariants with respect
to F' are then given by

IpJi(C,M) = 2FM,

O J5(C, M) = 2F(CM + MC),

0pK1(C, M) = 2F(CM + MC — tr(CM)I — tz(C)M + tr(C)I — C), (4.10)
OpK2(C,M) = 2F(I - M),

OrK3(C,M) = 2F(tr(CM)I + tr(C)M — (CM + MCQ)).

Proof:

A straightforward calculation leads to

Jy(A,M)[H] = iJ4(A +tH,M)|

d
7 = ot (A +tH)M)|

t=0 tzOztr(HM):M:H,

due to the symmetry of M and the calculation rules of the trace operator.
Moreover, again with the help of the calculation rules for the trace operator, we obtain
/ d d 2
JL(A,M)[H] = %J5(A+tH M)|,_, = tr (A +tH)*M)
= tr(AMH) + tr(MAH) = tr (AM + MA)H) = [MA” + ATM] : H.

|,_o = tr (HA + AH)M)

With the help of the definitions above of K;(A, M) for j = 1,2, 3, the derivatives in (4.6))

and the previous calculations in this proof, we obtain

K1 (A, M)[H] = J5(A, M)[H] — I;(A)[H]J4(A, M) — I;(A)Jy(A, M)[H] + I;(A)[H]
= [MA” + ATM — tr(AM)I — tr(A)M + (tr(A")I— A~T) Cof A] : H,
Ky(A,M)[H] = I{(A)[H] - JAM)H|=I:H-M:H=[I-M]: H,
K3 (A, M)[H] = (—K1(A,M) + I>(A))' [H]
= I1(A)[H]Js(A, M) + [1(A)J4 (A, M)[H] — J5(A, M)[H]
= [tr(AM)I + tr(A)M — (MAT + ATM)] : H.

Until now we have proven that (4.8]) holds. Inserting A =TI in (4.8) and using the identity
tr(M) = 1 directly result into (4.9).
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4 INVERSE LSFEM APPROACH FOR TRANSVERSE ISOTROPY

For the proof of we recall that by construction it holds jj(F,a) = J;(C,M) =
J;(FTF, M) for j = 4,5 and K;(F,a) = K;(C,M) = K;(FTF,M) for j = 1,2,3 with
C = FTF. Moreover, if we insert A = C = FTF in , we observe that all the terms in
the first argument of the inner products in are symmetric. By Riesz representation
theorem these arguments are exactly the gradients of J; (j = 4,5) and K; (j = 1,2,3)
with respect to A, evaluated in A = C (cf. Section [2.1.3). Thus we can use Lemma
and obtain similarly to the considerations below Proposition the equations

opJ;(C,M) : H = (aAJj(A’M)‘A:C
=2(0aJ;(A, M

): [H'F + FTH]

): FTH = 2F (0aJ;(A,M)|, _o) : H

for j = 4,5 and analogously O K;(C,M) : H = 2F (aAKj(A,M)’A:C) : H for j =
1,2,3, i.e. altogether the gradients in (4.10)). Note that for the proof of the gradient of
K1(C,M) the identity (tr(C™')I— C~T) Cof C = tr(C)I — C (cf. (2.26))), which is valid

for symmetric invertible matrices C € R3*3, must additionally be taken into account.

Na-c

a

Remark 4.3:

If we consider the gradients of the mixed invariants in , it becomes clear that we
cannot express the right-hand sides in terms of the left Cauchy - Green strain tensor
B = FF7 after multiplying them with F” from the right. However, one can multiply the
gradients from left with F~!. Then the resulting right-hand sides can be expressed in
terms of C = FTF. This motivates us to use the proposed C - formulation of Section

instead of the B -formulation for the extension to anisotropic materials.

In the following lemma we show that the mixed invariants with the exception of Ji(F,a)
are polyconvex. For the non - polyconvexity of Js we refer to [Sch10].

Lemma 4.4: (Polyconvexity of j4(F,a) and Kj(F,a),j =1,2,3)

Let M = a-a’ for normed a € R? (i.e. |]a| = 1) and F € M. Then the mixed invariants
Ji(F,a) and Kj(F,a), j =1,2,3, are polyconvex.

Proof:

The following proof is based on the explanations in [SNO3| and [Sch10]. For the proof we
use the Definition of polyconvexity and Proposition [2.27]

(a) For the polyconvexity of J4(F,a) = [Fa|?> = tr(FTFM), we have to show that g(A) :=
|Aa)? = tr(ATAM), A € R3*3, is convex on R3*3. We obtain the Gateaux derivatives
with respect to A as

g(A)H] =tr (H{A+ATH;) M) =2tr (ATH,M)
=2tr (MATH;) = [2AM] : H;,
g"(A)[Hy, Hy| = [2HoM] : Hy,
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4.1 Modeling of anisotropic materials

since M? = M. Hence it holds
¢"(A)H,H|=2HM] : H=2tr  MH"H) = 2tr (Haa’H")
= 2tr (Ha(Ha)T) = 2/Hal?> > 0

for arbitrary A, H € R3*3. By Proposition follows the convexity of g on {A €
R3*3} and therefore J4(F,a) = g(F) is polyconvex.

For the polyconvexity of K (F,a) we need at first some simple considerations:
From linear algebra it is well - known that a real square matrix is a root of its own

characteristic polynomial (Cayley - Hamilton theorem), i.e. it holds
C3 - L(C)C? + ,(C)C - (C)I=0
for the right Cauchy - Green strain tensor C = FTF. This identity is equivalent to
Cof C = I3(C)C~ T = 3(C)C™! = C? - [1(C)C + I,(C)I

using the symmetry of C and the definition of the cofactor. If we multiply this equation
with M from the right and take the trace of it, we obtain

tr((Cof C)M) = tr(C*M) — I;(C)tr(CM) + I(C)tr(M)
= J5(C,M) — I,(C)J4(C,M) + I1(C) = K1(C,M) = K\(F,a),

due to tr(M) = 1 and the definition of K;(C, M) respectively K (F,a).
With the help of

tr((Cof C)M) = tr((det F)F~!(det F)FTaal)
= tr((Cof F)T (Cof F)aal) = |(Cof F)al?
we end up with the identity
K| (F,a) = |(Cof F)al?.

Using the same mapping ¢ as in the first part (a) of this proof, it holds K, (F,a) =
g(Cof F) and therefore the polyconvexity of K1 (F,a).

For the polyconvexity of Ky(F,a) = I;(F) — J,4(F,a) = |F|?> — |Fal> we follow the
same idea as before and consider the mapping g(A) := |A|?> — |Aa|> = tr(ATA) —
tr(ATAM), A € R3*3. We have to show that this mapping is convex on R3*3,
Analogously as above it hold

g'(A)[Hl] =2A : H1 — [2AM] : Hl,
g”(A) [Hl,HQ] = 2H2 : H1 — [2H2M] . Hl-
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4 INVERSE LSFEM APPROACH FOR TRANSVERSE ISOTROPY

Thus we obtain for arbitrary A, H € R3*3
¢"(A)[H,H] = 2/H? - 2|Ha> = 2 (|H|* - [Ha|?) > 0,

since the Frobenius norm is consistent with the Euclidean norm |- | and therefore
|Ha| < |H||a] = |[H| < |H|? — [Ha|? > 0. Here we have used the assumption |a| = 1.
By Propositionthe convexity of g on {A € R3*3} follows and therefore Ko(F,a) =
g(F) is polyconvex.

(d) For the polyconvexity of K3(F,a) it holds with the help of the derivations in (b) and
Definition [4.1] for arbitrary F € M and normed a € R3 the equation

K3(F,a) = I,(F) — K(F,a) = |Cof F|? — |(Cof F)a|>.

Thus we can use the same mapping ¢ as in the proof of the polyconvexity of KQ(F, a)
in part (c) of this proof. Due to the convexity of g on R3*3 and the relation K3(F,a) =
g(Cof F), K5(F, a) is polyconvex.

a

4.2 Application to transverse isotropy

In the case of a transversely isotropic hyperelastic material we consider one preferred
direction, described by a column vector a € R3. Without loss of generality we assume
that a is normed. By [Schl0] the material symmetry group in this case is defined by
G = {£I,Q(¢,a)}, where Q(¢,a) denotes a rotation about the a-axis with arbitrary
angle 0 < ¢ < 27. Thus it holds Qa = a and thus for M := a - a’ we obtain QMQ” =
Qaa’Q” = Qa(Qa)? = aa” = M. The principal and mixed invariants, which will be
ingredients for the stored energy function , do not depend explicitly on x € . Thus,
for simplicity, we assume in the following that is completely homogeneous.

Before we define a concrete suitable stored energy function we introduce the so- called

Macaulay brackets:

Definition 4.5: (Macaulay brackets)

Let f be a real-valued function. Then we define the Macaulay brackets pointwise as

f.r=0
0 ,f<oO.

(f) =5 (f +[f]) = max{f,0} =

DN |

Thus Definition is nothing else than the positive part of a real-valued function f.
However, this notation is often used in engineering and mechanics and we will stick to this

notation in the following.
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4.2 Application to transverse isotropy

An immediate consequence for the function f(z) =z, x € R, m € R, is

™ x>0

0 ,x <0,
which is continuous for positive values m and, due to lim (z) = lim 2% = 1, disconti-
z— 07t z— 0t
nuous for m = 0.
Obviously for given n € N, m >n and ¢ € {1,...,n} it holds
T (m — ja~ =
d m—k)z"™" x>0 = »
T (@)™ = k=0 = ] (m — k) x)™". (4.11)
, <0 k=0

Consequently for m > n it holds i < n < m or equivalently m — i > 0 for alli € {1,...,n}

and in particular this leads to (z)™ € C™(R,R>q) for i € {1,...,n}.
For the isotropic part 1[1@-50 in the general stored energy function 1) we use the Mooney -
Rivlin model, described by (2.30)), i.e.

Viso(F) := thprr(F) = a |F|? + B(det F)? — (2a + 28+ 46) In(det F) + 6 |Cof F|?, F e M,

(4.12)
with a,8 > 0 and § > 0. Recall that for this choice consistency with linear elasticity is
ensured if a = £ — 6, =2 — 0 with 0 < § < min { 1,5} (cf. Section [2.4.5)).

For the anisotroplc part ¢amso in we use
1/3G7LiSO(F7a) = 12 nzso(F a)+52¢amso(F a)+€3wanzso Zgzwanzso F a) (4 13)
=1
with parameters €1, €2,3 > 0,
U (Fa) = (Ju(F,a) — 1)
wamso( 7a) _< 4( 7a) > )
12 (Foa) =~ Jy(F,a)" + Ky (F,a)™ 1 —Iy(F)
waniso( 9 a) L ‘]4( 9 a) + 1( 9 a) + 3( ) 9
al a9 as
- 1 /1, S N4 I R B
imso(F.2) = = GRa(Fia) )+ (SKa(Foa)) 4o L(F)™,
by \ 2 bo bs
containing real parameters a1, as,b1,b2 > 1 and nonzero as, by > —5 (cf [Sch10] and

[BSN10]). We denote the whole stored energy function for this choice in the following as
szti(Fa a) = @iso(F) + &aniso(Fv a)- (414)

Since I;(QFQT) = I;(F) (j = 1,2,3), J;(QFQ”,Qa) = J;(F, a) for j = 4,5 and all
Q € O, it holds by Deﬁnltlon automatlcally K;(QFQ”,Qa) = K;(F,a) for j = 1,2,3
and all Q € Q. Therefore condition is automatically satisfied for (4.14)).
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4 INVERSE LSFEM APPROACH FOR TRANSVERSE ISOTROPY

Polyconvexity of the stored energy function

We have seen in Section that polyconvexity is an important tool for existence theory
of minimizers. Since we will not exclude the possibility a- priori to use this theory for ani-
sotropic materials, we demand that our used stored energy function is polyconvex.

For our special choice we have already proven polyconvexity of 1/3130( F) in Secti-
on It remains to show that wamso(F a) is polyconvex, since then the total stored
energy function is obviously polyconvex. Furthermore, since Tl)am'so(F, a) is a linear

combination of 1/1 F,a),i=1,2,3, and ¢;, i = 1,2, 3, are nonnegative, it is sufficient

anzso(

to show that each w

we start with the following considerations:

mis O(F, a) is polyconvex. For the proof of polyconvexity of these terms
For f(z) = é(x>m with real parameters a > 0,m > 2 and arbitrary twice Gateaux-

: : : . TR3x3 - _ 1 3x3
differentiable function g : R°*® — R we set h(A) := f(g9(A)) = ;(9(A))™, A € R
Obviously it holds by (4.11))

d1

Pl = )"y = @)y,

Therefore we obtain the Gateaux derivatives

W(A)H] = f(9(A))lg'(A)[Hy]] = %(g(A»m‘lg’(A)[Hﬂ,

W' (A)[HL Hy] = = (m — 1){g(A))™ 29’ (A)[Halg' (A)[EL] + = (g(A))™ " (A)[Hy, H]

and in particular

(AL H] = ™ n = 1)(g(A))" 2 (o (A)H))” + " (g(A))™ g (A)HLH).  (4.15)

The Macaulay bracket in the first term of is defined for m > 2 and the whole
term is nonnegative in this case. Hence by Proposition h is convex on R3**3 if and
only if ¢"(Hy)[Hy — Hy,Hy — Hy] > 0 for arbitrary Hy, Hy € R3*3. For the function
g1(A) := g(A) = |Aa|? — 1 this is obviously true (cf. proof of Lemma [4.4). With this

choice we have

G0 (F,a) == (Ji(F,a) — 1)? = (:(F))* =: I (F)

form = 2, a = 1 and a convex function hq, i.e. by Deﬁmtlonﬂw

If we change the function f to f(z) := 137’” with real parameters a # 0 and m, provided

aniso 5 @) is polyconvex.

that z > 0, we can follow the same steps and obtain for mappings ¢ : R3*3 — R>o and
h(A) = f(g(A)) = Lg(A)™ the condition
m

B(A)HLH] = 2 (m — 1)g(A)™ (¢ (A)[H])* + —g(A)" " (A)H,H].  (4.16)

a

(4.16) is at least nonnegative if ¢”(A)[H,H] > 0 for arbitrary A, H € R3*® ™ > ( and

% (m—1) > 0. Obviously % is nonnegative if and only if m and a have the same algebraic
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4.3 Consistency with the linear model of transverse isotropic materials

sign or m = 0. Z(m — 1) is nonnegative for the sets {(m,a) € R* : m > 1 A a > 0},
{(m,a) €eR?2:m <0 A a>0}and {(m,a) € R? : m € [0,1] A a < 0}. This means that
(4.16) is definitely nonnegative for {(m,a) € R? : m > 1 A a > 0} under the assumption
that ¢”(A)[H, H] > 0 for all A, H € R3*3. In particular this is valid for m =a > 1.
Moreover, the function f(z) = él’m, x>0, meR,0+#aecR,is convex on Ryq if and
only f”(x) = 2(m—1)z™ 2 > 0 for all z > 0. This is again ensured for pairs (m, a) € R?,
a # 0, in the union of the three mentioned sets above. In particular, if we choose m = —2n
and a = n, f is convex on Ryg if and only if n > —%.

We define g2(A) := |Aa|?, g3(A ) := |A|? — |Aa|? for arbitrary A € R3*3 and g4(z,n) :=
12727 on (0, 00) with fixed n > —%, n # 0. Obviously it holds g;(A) > 0 and ¢/ (A)[H, H] >

0,i=2,3, for all A,H € R3*3 (cf. proof of Lemma [4.4)). With this choice and the consi-

derations above we obtain for F € M

antso

D2 (B a) = LR a)" + LR (F,a)" + Ly (F)
ai a2 as

1 1
= *gz(F)“l + *gz(Cof F)* + g4(det F, a3),

2(3) 1 R A b
waniso(F7a) bl ( KQ(F a)) + g < K?)(F a)) + b3I3( )

1 /1 b1 b
593(F) )+ { 593(Cof F) |+ ga(det F, b3)
bl bg 2

with convex right hand sides on the set {(F, Cof F,det F) € R3*3 x R3*3 x (0,00)}.
Therefore wamso(F a) and 1/1am$0(F7 a) are by Definition polyconvex. Altogether po-

lyconvexity of (4.14) is proven.

4.3 Consistency with the linear model of transverse isotropic materials

Remark has motivated us to use the proposed C -formulation of Section for our
least squares finite element approach in the case of anisotropic materials. In this subsection
we formulate the corresponding mapping Gyi(C) := Filﬁpiﬂti(F,a) to the stored energy
function . For our least squares formulation we also need the Gateaux derivative
of G1(C). G;(C) and G/;(C)[E] will be derived firstly. With these expressions we can
then ensure consistency of the nonlinear model with a linear model for transverse isotropy
following the same steps as in Sectlon For consistency we have to ensure gm( ) =0to
get a stress - free reference configuration. Moreover, we have to guarantee 2G!,(I)[E] = C,E
for all E € R**3 (cp. the introduction of Section, where Cy; is now a symmetric fourth -
order tensor describing the stress-strain relation of form o = Cye in a linear model for
transverse isotropy. Thus Cy; replaces the elasticity tensor C in the stress- strain relation
of linear elasticity (cf. (2.10)). With these requirements the linearized nonlinear model,
more precisely the linearization of Gy;(C) about C = I, then coincides again with the

linear model up to a constant % The required consistency with the linear model again
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4 INVERSE LSFEM APPROACH FOR TRANSVERSE ISOTROPY

influences the choice of material parameters. Our aim is to determine the set of material
parameters (o, 3,e1,2,e3) for arbitrary but fixed parameters (4, a1, ag, as, by, ba, bg) such
that consistency with a linear behavior is guaranteed. Recall that the choice a, 5 > 0,
€1,€2,e3 > 0, 6 > 0, a1,a2,b1,bo > 1 and nonzero ag,bg > —% is necessary by the
considerations in Sections [4.1] and 4.2

We start with the calculation of Qti(C) = F_lapz/;n-(F, a) and its Gateaux derivative with

respect to C using Lemma 4.2l and (4.7)):
We decompose Gi;(C) into

Gii(C) = Giso(C) + Guniso(C) = Giso(C) + 1600, (C) + 262 (C) +£36), () (4.17)
with

Giso(C) := FL0p1iso(F) = 20l 4+ 2 (8(det C) — (a4 8+ 26)) C™1 + 26(tr(C)I — C),
G (C) = F 1opgl) (F a) = 4(J4(C, M) — )M,

G2,,(C) = F ' 0pi {2, (F,a) = 0 (;L(F, )"+ - Ka(Fa)" + ;stmr%)
=F ' (Ju(F,a)" '9pJi(F,a) + K1 (F,a)2 ' 9p K (F, a)
— I3(F) "~ 1 9pI3(F))
=2F ! (J4(C,M)" " 'FM + K;(C,M)*'F [CM + MC — tr(CM)I
—tr(C)M + tr(C)I — C] — I;(C) " “F 1)
=2 (J4(C, M) M + K;(C,M)*~ ! [CM + MC — tr(CM)I
—tr(C)M + tr(C)I — C] — I3(C)~C™!),

~(3) (11 I I I B
G (C) =F 0 — *KQ(F,B.) + — *K3(F, a) + *Ig(F) 3
aniso bl 9 bg 2 b3
ba—1

. (1 (;KQ(F,a)>b113FK2(F,a) +% @kg(F,a)) OpK5(F, a)

=F! ((KQ(C, M))bl_1 FI-M) + GK?,(C, M))bz_1 F

- [tr(CM)I + tr(C)M — (CM + MC)] — 2[3(C)b3FT>

- @m(c,M))bl_1 (I—M) + <;K3(C,M)>b2_1

- [tr(CM)I + tr(C)M — (CM + MC)] — 2I3(C) = C 1.
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4.3 Consistency with the linear model of transverse isotropic materials

Due to [1(I) = 3, () = 3, I(I) = 1, JJLM) = 1, J5(LM) = 1, K;(ILM) = 1,
Ko(I, M) = 2 and K3(I, M) = 2 we obtain for C =1

Giso(I) = 201+ 2 (8 — (a+ B +25)) T+ 25(2I) = 0,
GoriaoD) = 4(1 = 1)M =0,
G2 (@) = 2 (197 M + 19271 M+ M — tr(M)I — 3M + 31 — I] — 17%°1)
=2(M+[I-M]-1I)=0,

b1—1 ba—1
G201 = (; : 2) (I-M)+ (2 : 2) [br(M)I + 3M — (M + M)] —2- 1751

=I-M)+[I+M]-2I=0,

i.e. with the help of (4.17)) it holds G;(I) = 0. Thus for this choice of stored energy function
the reference configuration is automatically stress - free.
Due to the linearity of the Gateaux derivative and (4.17)) we get

3 . /
Gi(C)IE] = Lo (CIE] + Y i (G10,,(C)) [E] (4.18)

=1

for C,E € R3*3. For the calculation of the Gateaux derivatives with respect to C in the
single terms we use Lemma [4.2 and (4.6)) to obtain

Glo(C)[E] =2[B(Cof C: E)C " — (B(det C) — (a + B +26))C 'EC™*
+0(tr(E)I — E)],

4tr(ME)M, J4(C,M) > 1

0, J1(C,M) < 1

aniso

(622.0(©)) [B) = 4472(C. M) — 1)°7;(C, M)[EM = {

antiso

(6% (C))' [B] = 2( (a1 — 1)J4(C, M) ~27(C, M)[E]M + (a5 — 1) (C, M)
K1 (C,M)[E]{CM + MC — tr(CM)I — tr(C)M + tr(C)I — C}
+ K1(C,M)* "{EM + ME — tr(EM)I — tr(E)M + tr(E)I — E}
+ a313(C)~ 1 (Cof C : E)C~! + 13(0)—%0—1130—1),
, bi—2
(60.(©)) B = 501 - 1) (3RaC.M)) KY(C MBI - M)
1 1 b22
+ 52— 1) (217(3(0, M)) K4(C, M)[E]{tr(CM)I + tr(C)M
ba—1
- (CM +MO)} + (;KB(C, M)> {tr(EM)I + tr(E)M

— (EM + ME)} + 2b313(C) % }(Cof C : E)C™!
+2I3(C)"»ClEC™L.
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4 INVERSE LSFEM APPROACH FOR TRANSVERSE ISOTROPY

If we insert C = I we obtain with the help of (4.6)), (4.9) and some elementary simplifica-

tions the Gateaux derivatives
92‘50(1)[ | =2(a+0)E+2(8+ O)tr(E)I,
/

< anzso

(953”80

= 4tr(ME)M,

= 2(ag + a3)tr(E)I + 2(a; + a2 — 2)tr(ME)M

— 2az (tr(ME)I + tr(E)M) + 2(EM + ME),
(69.,m) =) =28 + (;wl +ba) + 205 — 1) (B + (;wl ) 1) (ME)M

+ (;(bQ —b1)+ 1> (tr(ME)I + tr(E)M) — (EM + ME).
(4.19)
One observes that all right - hand sides in can be expressed by linear combinations
of the set of matrices {E, tr(E)I, tr(ME)M, tr(ME)I + tr(E)M, EM + ME} with fixed
M = a-a’ for given normed a € R? and arbitrary matrix E € R3*3,

The expression

3 /
2G;,(1)[E] = 261, (D[E] +2 " =i (G5, (D) [E]

i=1
- (4(a o)+ 453)E + (4(5 +6) + 4(az + as)ez + (by + by + 4bs — 2)53)tr(E)I

+ (861 + 4(&1 + a9 — 2)52 + (bl + by — 2) 63)'61"(ME)M
+ (= dazzy + (b2 — by +2) 53 ) (1(ME)T + tr(E)M)

+ (452 - 253) (EM + ME)
(4.20)

follows directly from ([4.18) and ([4.19).

Calculation of material parameters:

As already mentioned at the beginning of Section the aim is to determine (a, 3,1, €2,
e3) for given 6 > 0, a1, ag,b1, by > 1, nonzero ag, by > —% such that our nonlinear model
is consistent with a linear model. Recall that the restrictions for 6, a1, as, as, by, ba, b3 are
necessary in order to guarantee polyconvexity of (cp. the derivations in Section .
For this purpose we have to introduce a linear model for transversely isotropic materials.
The following introduction is based on [Alt12]. The stress- strain relation in the small-
strain regime is given by o = Cye and has the same structure as in linear (isotropic)
elasticity. Cy; is again a symmetric positive definite fourth- order tensor which maps sym-
metric strains € into symmetric stresses o. The difference between the operators C for
linear elasticity and Cy; for linear transverse isotropy is that Cy contains now five inde-

pendent physical material constants which describe the given material with transverse
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4.3 Consistency with the linear model of transverse isotropic materials

isotropic behavior. In contrast, the linear elastic isotropic behavior was described by only
two material parameters, either Young’s modulus E and Poisson’s ratio v or equivalently
the Lamé constants \ and pu.

If we choose the preferred direction as a3 - direction, i.e. a = (0,0, 1)7, the behavior can be
described by material constants E1, E3, v12,v31 and Gs; (cf. Section 12.4 in [Alt12]). Es is
the elastic modulus in the preferred direction, F4 is the elastic modulus in the isotropic
x1-xg-plane (plane perpendicular to the preferred direction), v19, v3; are two Poisson’s
ratios and G3; is the shear modulus in the x3- x4 - plane. In general Poisson’s ratios v;;
characterize the transverse contraction between the directions ¢ (direction of load) and j
(direction of transverse strain). The shear moduli G;; are necessary for the description of
shearing strains in the z;- x; - plane. For a = (0,0, 1)T the stress-strain relation o = Cye

is equivalent to

o11 Ni1 N2 Niz 0 0 0 11
0922 Ni2 Nii Niz 0 0 0 €22
N 033 Niz Niz Nsz 0 0 0 €33 5 -
o= = =: Cy€
J23 0 0 0 N44 0 0 €23
J13 0 0 0 0 N44 0 €13
J12 0 0 0 0 0 N11 — N12 €12
in vector - matrix representation with constants
E E
— o _ Vig + V31 5L
11 - D ) 12 - D ’
1+ v9)v3 1—wv19)E3
Nz = Q, N33z := ( ) 5 B (4.21)
D 1—1v0 — 2’/31}?;
14 v FEy
N44 = 2G31, D = E'1 (1 — V12 — 2V§1§3 y

depending on the material constants E1, E3, 12,731 and G31. For the given material con-

stants one has additional requirements

e £1>0,F3>0,G31 >0, -1 <wvig <1,

2 E3 2 Fq

o 1 — 2V§1% > 119
such that D > 0 holds and the matrix entries of CNti on the diagonal are positive (cf.
[Alt12]).

The choice of v :=v1g = v31, ' := By = E3 and G := G331 = 2(1€ru)

isotropic material. Thus for this choice we expect an isotropic behavior and the material

= u, corresponds to an

parameters €;, 1 = 1,2, 3, in the stored energy function must vanish in this case.

For a more detailed introduction into the material constants of anisotropic materials and
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4 INVERSE LSFEM APPROACH FOR TRANSVERSE ISOTROPY

in particular of transverse isotropic materials we refer to [Alt12].

One can recompute that for a = (0,0, 1)T7 the corresponding matrix

Il

o

Q

S

Il
o O O
o O O
_ o O

and a symmetric matrix E € R3*3 it holds

Cm'E = (Nn — ng)E + N12tI‘(E)I =+ (Nn — 2N13 + N33 — 2N44)tI'(ME>M (4 22)
+ (N13 — Nio) (te(ME)I + tr(E)M) + (~ N1 + Niz + Nua)(EM + ME),
i.e. the right - hand side is also expressed in terms of the set {E, tr(E)I, tr(ME)M,
tr(ME)I + tr(E)M, EM + ME}. Since we have to satisfy the condition 2G!;(I)[E] = C4E
for all symmetric matrices E € R3*3 one can compare the coefficients of (4.20)) and (4.22)

in the case a = (0,0, 1)T. This results in the linear system of equations

4(a +9) +4eg = N11 — Nia,
4(B 4 0) + 4(az + az)ez + (b1 + ba + 4b3 — 2)e3 = Ni2,
821 4+ 4(a1 + ag — 2)ea + (by + by — 2) e3 = N11 — 2N13 + N3z — 2Ny,
—4ages + (b2 — b1 +2) e3 = N13 — Nia,
deg — 2e3 = —Ni1 + Nig + Ny

In matrix notation the system is given by Ax = b with

4 00 0 4 N1 — Nig — 46

0 4 0 4(az+a3) b1 + by + 4b3 — 2 Nig — 46
A=10 0 8 4(a;+a2—2) b1 +by —2 , b= | Ni;1 —2N13+ N33 — 2Ny

0 0 0 —4as by — b1 +2 Ni3 — Nis

0 00 4 -2 —N11 + Ni2 + Ny

for the unknown vector x = (o, 3,¢1,€2,3)7. The matrix A and the right-hand side
b depend only on the given values § > 0,a1,a2,b1,b2 > 1, nonzero as,bs > —% and
the physical material constants FEp, F3, 12,31, Gs1. Note that for a unique solution of
the linear system of equations Ax = b the free parameters a1, as, as, b1, b2, b3 have to be
chosen in such a way that the rank of the matrix is full. Obviously one obtains a unique

solution if and only if the subsystem

—4ay by —b1+2) [e2) Ni3 — Ny2
4 -2 €3 —Ni1 4+ Nig + Ny
is uniquely solvable. This subsystem is uniquely solvable if and only if the free parameters

are chosen such that by — by — 2a0 + 2 # 0.
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4.4 Least squares formulation for transverse isotropic hyperelastic materials

Moreover one has to be careful in the choice of the free parameters § and a1, as, as, b1, b, b3
in order to guarantee polyconvexity of . For polyconvexity the entries in the solution
x should be nonnegative. However, one can choose free parameters 6 > 0, ay,az, b1, by >
1, nonzero ag,bs > —% and material parameters (Ej, Es3,v12,v31,Gs1) such that some
entries of x are negative. This is indeed physically meaningful, but does not satisfy the
polyconvexity requirement. The free and material parameters should be chosen such that
polyconvexity of is also satisfied. This will be done in the numerical simulation in

Section 6.3

Remark 4.6: (Transition to the isotropic case)

For the transition to the isotropic case we set £ := E; = FE3, v := 13 = v31 and
Gs1 = 2(1731/) = u which corresponds to material parameters for an isotropic material.
Inserting these values into (4.21)) leads to

E(l—-v Ev E
N11 = N33 = ( ) Nig = N1z = =A Ny =2

1+ v)(1—2v) (1+v)(1—2v) T 1tv

and therefore we get the right-hand side b = (2u — 45, A — 46,0,0,0)”. Under the as-
sumption that the rank of A is full, we get the unique solution x = (% — 4, 2 —-4,0,0, O)T.
This means that the anisotropic part in the stored energy function plays no role in
this case and the constants o and § correspond to the values determined in Section [2.4.5]
Thus our model automatically tends reasonably to an isotropic model in this special case
and therefore it can be used for the simulation of transversely isotropic and full isotropic

materials.

4.4 Least squares formulation for transverse isotropic hyperelastic materials

In Section we have determined the coefficients («, 8,e1,€2,£3) of the stored energy
function in such a way that our model is consistent with a linear model for transverse
isotropic materials. Due to Qzl(I) = %Cti this means in particular, using Theorem that
the mapping G;(C) itself is locally invertible, at least in a neighborhood of C = 1.
Following the steps similar to Section we define for (P, u) (itself lying in a suitable
function space)

wi (divP +f)

Rii(P,u) == wo <jlm-(F(u)71P) - C(u))

(4.23)

with At,- = g}; U for compressible materials and a nonlinear least squares functional

Fi(P,u) = [[Ru(P, )72

2 2 20 7 1 2 (4.24)
= wi [|div P + £[[72 o) + wj [|Au(F(u) " P) — C(u)|72(q)-

w1 and wo are again scaling parameters. To find a minimizer we follow the same steps as in

Section for the linearization of (4.24)) and Section for its discretization. For the
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4 INVERSE LSFEM APPROACH FOR TRANSVERSE ISOTROPY

computation of Ay (F(u)~'P), (P,u) given, Newton’s method is always applicable and is
used for the numerical implementation.

At the end of this section we would like to point out that this method can be also extended
to even more complicated materials (cp. for instance [Alt12] and [ESN10]). The most
complicated case is a fully anisotropic solid with 21 material parameters instead of 5. In
order to satisfy consistency of nonlinear models with appropriate linear ones the stored

energy function will be much more complicated.
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5 Model error and model adaptivity

In numerical mathematics we have to pay attention to different errors that can occur
in an algorithm. On the one hand a certain quadrature formula for the integrations in
has to be chosen by the programmer. Quadrature formulas integrate by construction
polynomials up to a certain degree exactly. If the occurring polynomials in the discretized
method exceed this degree of exactness one gets a quadrature error, which tends normally
to zero as the mesh size h tends to zero. On the other hand, especially in three dimensional
problems or equivalently for huge linear systems of equations, one has to use iterative
methods for solving the occurring linear systems of equations , since direct solvers
generally have high memory requirements and quickly exceed the available resources. Using
an iterative method then leads to an algebraic error.

Two further important errors in finite element methods are the discretization error, which
occurs in a fixed model and normally vanishes for h — 0, and additionally the modeling
error. The modeling error is always present, since a mathematical model reflects the
reality only up to a certain quality. For example the linear model of elasticity theory has
its validity up to a certain load. Beyond this point a nonlinear model has to be used. But
also here different models come into consideration, for instance a Neo - Hooke model versus
a Mooney - Rivlin model, or even a still more complex model.

In this part of the work we would like to present a possibility to decide whether we only
need a simple model on a particular element of our given triangulation 7; or a more
complex one. Since an analysis for the Neo- Hooke case in the B -formulation is provided
in Section the explanations below are focused on the linear model as simple model
and the Neo-Hooke model (cf. with 6 = 0) as complex model. In general the
explanations below can be extended to other choices of simple and complex models, for

instance Neo- Hooke as simple and Mooney - Rivlin as complex model, and so on.

5.1 Preparations

The point of departure is on the one hand the first - order system operator

Rim(Pw) = Wit (div P + f)
T Wl (A (P) — e(u)

B wllindiVP B —wllinf (P u)
A\l (A (P) — () o ) T

of linear elasticity with the operator A, defined in (3.3) and (P,u) € H(div; Q)3 x
H'(Q)3, satisfying the boundary conditions P - n = g on I'y and u = up on I'p. We

(5.1)

use this model as simple model in our modeling error discussion. In comparison to Section
m we have introduced scaling parameters wllm,wém here, similar to the nonlinear consi-

derations in Section [3.3.1] The corresponding least squares functional, which has to be
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5 MODEL ERROR AND MODEL ADAPTIVITY

minimized, is given by (cf. (3.9))
Fin(Pw) = LR, ) — a0y = [Riin (P 1) 20, (5.2)

again defined for (P,u) € H(div; Q)® x H(Q)3, satisfying the prescribed boundary con-
ditions. To obtain a structure that coincides with that in (3.21)), we introduce in addition
to (5.2]) a second linear least squares functional as

Fim®,w) = [Ripn(P®), u) + R, (PH u®)[R, w]|72 (0 (5.3)

lin

for (R,w) € Hr,(div;) x Hf (Q)% and fixed (P®,ul®)) e H(div; Q)* x H(Q)?,
satisfying the prescribed boundary conditions.

The next Lemma shows that there is a close relation between the minimizer (P, w;y,) of
(5.2) and the minimizer (Q, v) of (5.3).

Lemma 5.1: (Relation between the two linear minimization problems)

(Plin, win) € H(div; Q)3 x HY(Q)3, satisfying the boundary conditions Py, - n = g on
I'y and uy, = up on I'p, is the minimizer of if and only if (Q,v) := (P, win) —
(P®) uk)) e Hp (div; Q) x HllD (£2)3 is the minimizer of .

Proof:

We know by the considerations in Section that the minimization problem ({5.2)) is
equivalent to solve the variational problem:
Seek (Pyin, win) € H(div; Q)3 x H'(Q)? with

(LPuin, Win) =1, LR, W) 12y = 0V (R, w) € Hr (div; 2)* x Hf (Q)*.
Furthermore for arbitrary (R, w) € Hr, (div;Q)* x Hf._(€)? it holds
R, (P® uF)) R, w] = L(R,w) and thus
Fiin(Ryw) = [Ryin (PO, u™) + Riy,, (P, u®) R, w2
— ILPE, ) — 1+ LR, W) (5.4)
= IR, W) = (r = LW, uM))[[7. ).

Using ([5.4), the minimization problem (5.3) has the same structure as (5.2)) with r :=
r — £L(P® u(®) instead of r. Then, again by the considerations in Section this mini-
mization problem is equivalent to find (Q,v) € Hr, (div; Q)3 x HllD ()3 with

(£(Q,v) — £, L(R, W)) 2y =0 V(R,w) € Hr (div; 2)* x Hy ().
With this observation and due to £(Q, V) = L(Pyn, Win) — E(P(k), u(k)) by definition of

(Q,v) and the linearity of the operator £, the statement follows immediately.
O

Thus if we solve the minimization problem ([5.3)) and obtain its unique minimizer (Q, v)
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5.1 Preparations

we can set (P, un) = (P®, u®) + (Q,v) and get the unique minimizer of (5.2) for
arbitrary (P(k), u(k))7 satisfying the boundary conditions.
On the other hand we use the first - order system operator (cf. (3.18)))

3 wi (divP +f)
Ryu(P,u) = <w2 (A (PF()T) — B(u))) -

for the Neo-Hooke case in the B -formulation with operator Ayp, defined by the first
equation in (3.36) and (3.38)), and the corresponding nonlinear least squares functional

(¢f. (519)

Fnu(P,uw) = [Ryu(P,u)l[72q (5.6)
as complex model. The linearized problem is then given by (cf. Section |3.3.2))
Fiu(R,w) = [Ryg(P®, 0®)) + Ry (P® )[R, w]||72 g (5.7)

with Rl (P®), u®))[R, w] defined by (3.53)). These definitions are by the considerations
in Section reasonable for (P*) ulk)) € TI® x U and (R,w) € Hr, (div;Q)? x
H} ()%

Remark 5. 2'
For ( (k)) = ), assuming zero boundary conditions, we have Ry (P®), ul®)) =
Rnmu(0,0) ( , since Anpg(0) =1 =B(0) (cf. explanations below Corollary |3.14)),

0
hn
and Ry, (0,0) . Moreover, due to (3.54)) and the considerations above, we have

L (0,0)[R, w] = < widivR ) ,

2 wo (-Alzn(R) _ €(W>) lin(07 0)[R, W] = (

Thus with (P®) u®)) = (0,0), W™ = w;, Wi =1 and wy =

wit divR )
5" (Aiin(R) — e(w)) .

% we obtain

FuR,w) = [Ryg(P®,u®) + Ry, (P® u®)[R, w]|72

)i
B 0 2ws (Aiin(R) — e(w))

L2()
= wi|[divR + f]72(q) + [ Aiin(R) — e(W)|72(q)

= () v R + 820y + (A7) I Ain(R) — ()32
= ||Rlln( ( )7 (k)) +Rlzn( ( )7u( ))[R VV]HL2 Q) — ‘th(va)'

lin

Thus for this choice the linear least squares functionals (5.3) and (5.7) coincide. This is
expected from the considered consistency with linear elasticity in Section and the
observations at the beginning of Section In this simple case the stiffness matrices and

right - hand sides to the discrete problems coincide.
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5 MODEL ERROR AND MODEL ADAPTIVITY

The considerations above motivate us to use the following formulations for our model error
discussion with fixed (P®), u®) ¢ TI°® x U>°:

Initial data:

Let (P®), u®) € TI® x U™ be given (with IT®, U* defined by (3.55)) and choose
the scaling parameters wllin = w1, wgn =1and wy = % in 1} and {}

Simple model:

Minimize Fji* (R, w) = |Rin(P®), u®) + R). (P® u*))[R, W]H%Q(Q) about all

(R,w) € Hr,(div;Q)3 x H%D(Q)?’ or equivalently find (Q,v) € Hr, (div; Q)® x
H%D ()3 with
Lo Pk yk) Lo Pk yk)
(Riin(P®, 0@ v], REyy (PH u® )R, w])
= — (Rua(P®, u), RE, (PO, u) R, w)

s lin

(5.8)

L2(Q)
for all (R, w) € Hr,, (div; Q)3 x H%D(Q)?’.

Linearized complex model:

Minimize Fy; (R, w) = Ry (P®), u®)) + Ry, (P )[R, w]||7, ) about all
(R,w) € Hry(div;Q)* x H} () or equivalently find (Q,v) € Hr,(div; Q2)* x
H}(€)? with

(R (P®a®)(Q v, Riyy (P, a) R w])

k) o (k k) o (k (5.9)
= = (Ryu(®P®,u®), Ry 4 (PO, u®) R, w])

L)

for all (R, w) € Hr, (div; Q)% x H%D(Q)?’.

Obviously the variational problems (5.8)) and (5.9)) have the same structure. Thus we can

implement both problems in the same way.

5.2 ldea and algorithm for model adaptivity

An a-posteriori error estimator permits to decide in which part of the triangulated domain
one should refine. Usually for the modeling of the underlying problem one fixed model is
used in the whole domain € and in each of possible refinement levels. We are interested
now in considering two different models simultaneously on one fixed mesh and in particular

we want to decide on which part of the domain we can use the simpler model (i.e. in our
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5.2 Idea and algorithm for model adaptivity

case the model of linear elasticity) and on which part we have to use the more complex
model (i.e. in our case the nonlinear Neo- Hooke model).

In the rest of this chapter we assume that the Neo- Hooke model is an exact model and
we have no quadrature and no algebraic error. Our aim is to measure the quality of the
solution of linear elasticity totally and on single elements. We provide an algorithm which
automatically decides on which part of the domain the simple model is insufficient and the
complex model should be used. The main idea of model adaptivity is therefore that we only
use the nonlinear model in a subdomain € C €2, where it is necessary and reasonable. We
define the remaining domain as Qs := Q\ ©; and use the simple model on this subdomain.

Thus instead of minimizing (5.6)) we want to minimize the least squares functional
fred(Pa ll) = ||RNH(Pa u)”%?(Ql) + ”Rlzn(Pa u)”%ﬁ(flg) (510)

Freda(P,u) is still nonlinear on ©; and for its minimization we use the damped Gauss-
Newton method (described in Algorithm (1| for the discretized problem), i.e. we minimize

again a sequence of linearized problems

T

Fin (R, w) = [Rvir(P®, u®) + Rly g (PP, u®)[R, w22 g (5.11)
+ [ Riin(P®, u®) + R}, (PW, u®) R, w]|[2 g,

lin

where (P(k), u(k)) is an old solution, satisfying the boundary conditions on I'y and I'p.
We set the new solution again as (P*+D uk+1)y = (PK*) u®) 4 o) (Q*) v(¥)) where
(Q"),v(k)) denotes the minimizer of (cf. Section with zero boundary condi-
tions.

For the minimization of in a finite element space we can use the discrete formulation
of on each element T' € € of the given triangulation 7;. We call all elements T' € 4
complex elements. Analogously we use the discrete formulation of for all elements
T € Qy. We call these elements simple elements.

Since both variational problems and have the same structure, we can determine
the local stiffness matrices and right - hand sides in the same way. Afterwards we assemble
the global stiffness matrix and global right - hand side with the help of the local ones as
usual in finite element methods. We call this mix of both models in the following reduced
model and denote its solution, i.e. the minimizer of as (Pred, Ureq), and assume
that it is still in the set TI® x U, defined by . At the beginning we always set
Oy =0, i.e. we use the simple (respectively linear) model on all elements and the solution
(Pred; Ureq) equals (P, uyp). The following corollary provides a ,,measure of quality“ in
order to decide on which part of the domain we have to switch to the complex (respectively
Neo - Hooke) model.

Corollary 5.3: (Measure of quality)
Let 6 > 0 be sufficiently small in II*°, U (cf. (3.55))), (Pnm,ung) € II® x U™ the
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5 MODEL ERROR AND MODEL ADAPTIVITY

exact solution of , ie. Ryg(Pym,ung) = 0, and assume that the Neo - Hooke model
is an exact model. Moreover we assume that the minimizer (P,e¢q, uyeq) of (5.10) is also
in TI®® x U*. Then the nonlinear functional Fxnpg, evaluated in the reduced solution
(Pred; Ureq), measures the quality of (P4, Ureq) With respect to the exact model and the

suitability of the reduced model.

Proof:

An immediate consequence of Theorem for (Q,v) = (Pyg,uyg) and (Q,v) =

(Predyured) is
fNH(Preda ured) ~ ||(PNH - Pred7 UNH — ured)H]Qj

for V = Hr, (div; Q)3 x H%D ()3, i.e. FNH(Pred, Ureq) is up to constants equivalent to the
error between the solution of the reduced model and the solution of the Neo - Hooke model.
Since (Pnp,ung) is assumed to be the correct solution, Fn g (Preq, Ureq) measures the
quality of the solution (P;cq, Uyeq). Furthermore, since the Neo- Hooke model is assumed
to be the exact model, Fx g (Ped, Ureq) also measures the suitability of the reduced model,
i.e. its quality.

O
Corollary provides a possibility to measure the quality of the reduced solution/model.
In particular it provides a possibility to measure the quality of the solution (P, uypy)
of linear elasticity. With the help of the least squares functional Fyp, evaluated in the
reduced solution, we can decide locally where we have to modify our model. Thus we
are able to establish a method which automatically switches from the simple linear mo-
del to the complex Neo-Hooke model, if necessary. Thus the algorithm can adapt the
model itself and we speak about model adaptivity. This is at least for small stresses
and displacements near the origin theoretically ensured. Before we state the algorithm, we
have to remark that Fyg(Pred, Ureq) is a value which reflects the total error as sum of
discretization and model error. It would be more advantageous if one could split the total
error into its two parts and could measure both errors individually. Then one could decide
independently in which part of the domain one should refine and in which part one should
use the complex model. However, Fn (P eq, Ureq) measures the quality of the reduced
solution with respect to the exact model and can be used a few times to adapt the model.
After adapting the model on a fixed mesh several times one could do a step of (adaptive)
refinement and use the model adaptivity on this new finer mesh, and so on.
Algorithm [2| needs besides a measure of quality a marking strategy. A marking strategy
marks some elements of the given triangulation with the help of the given measure of
quality. On the marked elements the simple model is substituted by the complex model. A
logical assumption for Algorithm [2]is that an element T' € 7}, which once becomes complex

remains complex in the subsequent steps.
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5.2 Idea and algorithm for model adaptivity

Algorithm 2 Model adaptivity on a fixed mesh

Require: Fixed triangulation 77, of the domain €, tolyeq > 0, im°4 € N;

max

Marking strategy;

Set ¢ = 0; Qgi) = 0; Qg) = ) and calculate (Pfﬂ?d, u$2d> via discrete formulation of 1'
Choose Qgiﬂ) with the help of Fypg <P$Qd, ugd
Set QT = 0\ i,

while Fyy (P(i) u® ) > tol,.q and i < ™4 do

) and the given marking strategy;

red’ “red max
Determine (Pg@;l),uﬁzl)) with the help of Algorithm (using (P20)7u§lo)> =

INONO

red’ “red
{i on Qgiﬂ) and discrete formulation of on Qgﬂ));
Set i =14 1;
Choose Qg”l) as above;
Set Qg”l) = Qg”l) U Qgi); {complex elements remain complex}
St Qgiﬂ) — 0\ ng'ﬂ);

end while

) as initial guess) and the reduced model (use discrete formulation of

In the 7 - th step of model adaptivity and therefore fixed Qgi) and Qg), the reduced solution

is determined by the damped Gauss- Newton method. Thus we use Algorithm [I] where
now in each step of the Gauss- Newton iteration 1} is used on Qg) and ([5.9) is used
on ng). We continue this until Fygy (P(z) u(z)

reds Ted) goes below a given tolerance tol,oq or

we exceed a prescribed number of model adaptivity steps 124

(4)

a sequence of ,nonlinear” domains €27’ and a sequence of ,linear” domains Qé ). Further-

moe. As the output one obtains
more we have determined an approximated minimizer of for each of these i.
At the end of this chapter we would like to mention some benefits of this algorithm and
in general of model adaptivity: For fixed Qgi) and Qg) it is not necessary to recalcula-
te the local stiffness matrices on Qg) in the process of Gauss-Newton iterations, since
;m(P(k), u)[Q,v] = £(Q, v) is independent of (P®*), u(®)) and thus by the stiff-
ness matrix on this part of the domain remains unchanged. Consequently one can save
computational time. The possibility of reusing matrix entries of the linear model can be
considered as general advantage of model adaptivity.
A second general advantage of model adaptivity can be found in the context of quadrature
formulas: The usage of a nonlinear model needs in general a higher quadrature formula
than a linear model for exact integration. Using a fixed quadrature formula could lead to
situations where one integrates exactly in the parts Qg) but not in the parts Qgi). In such
situations the usage of the reduced model then leads to a smaller quadrature error than
the usage of the full nonlinear model. Alternatively, one can also use higher quadrature
formulas which integrate all polynomials exactly, i.e. also in the nonlinear part. But this

leads in general to more effort and computational time.
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6 Numerical examples

In this part of the work we present several numerical results using the developed least
squares finite element methods for isotropic and transversely isotropic hyperelastic mate-
rials. Within the usage of the isotropic Neo - Hooke model the compressible as well as the
fully incompressible case is considered.

The outline of this section is as follows: We start with some two-dimensional examp-

les using the plane strain model (cf. Section [2.2.7| and [2.4.2)). We continue with some

three - dimensional examples using in addition to the Neo- Hooke model also the more
complex Mooney - Rivlin model. For all these (isotropic) examples we restrict ourselves
to the B-formulation where an analysis was provided in Section [3.5] In some of these
examples we compare the results obtained with our LSFEM approach with the results of
the pure displacement approach for compressible materials respectively with the results
of the displacement - pressure approach for fully incompressible materials (cf. Section .
Moreover, at the end of this chapter we consider one example for transversely isotropic
materials in three dimensions (cf. Section [4) and one two - dimensional example for model
adaptivity (cf. Section .

All examples are implemented in MATLAB®. For the occurring integrals in the discreti-
zed problems we use a quadrature rule which integrates polynomials up to degree 5 exactly
(cf. Appendix . Furthermore, as long as the memory resources are sufficient, we use the
,backslash®/ divided into* operator of MATLAB® (cf. [Att12]) for solving the occurring
linear systems of equations. If we are close to exceed the available memory resources we use
instead of the backslash solver the (iterative) preconditioned conjugate gradient method
combined with an incomplete Cholesky factorization as preconditioner. In particular for
the considered three-dimensional problems on finer meshes this is indispensable .

For adaptive refinement we use the nonlinear least squares functional, evaluated in the
approximations, as a-posteriori error estimator to decide in which elements the error is
locally large. Moreover we use the marking strategies described in Appendix [C] and com-
bine them with standard refinement strategies (cf. [Riv84] and [Car(04] for two dimensions
and [Bey95| for three dimensions).

The physical units in the examples are neglected. But note that the deformations and the
displacements have the physical unit of a length and the Lamé constants as well as the
stress components have the physical unit of force per length squared.

In addition to the approximation of the displacements and stresses we are also interested
in the numerically obtained convergence order of our algorithm as the mesh size h decrea-
ses. We have shown in Section for the B - formulation that the nonlinear functional,
evaluated in the approximation, is equivalent to the error at least if the loads are suffi-

ciently small. Due to (3.86]) we expect an optimal convergence rate of 2 for the error and

VFni(Pp,up) as long as the regularity assumptions in Propositions and and
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Theorem are satisfied and a combination of Raviart - Thomas elements R71(7},) for
the stress approximations and piecewise quadratic elements Pa(7;,) for the displacement
approximations are used as finite element space. Note that also the usage of discontinuous
elements for the stress approximation of P33 in a plane strain model leads to an optimal
convergence rate of 2 (cf. Proposition for a L?(Q) estimate) if the solution is suffi-
ciently regular, i.e. P33 € H?(Q).
It is well - known that the number of elements n; is proportional to A2 in two dimensions
and proportional to ™3 in three dimensions. Thus with this choice we expect an optimal
convergence order of

Fna(Pp,up) <k~ n; ° (6.1)

with s = 2 in two dimensions and s = % in three dimensions, provided that the regularity

assumptions are satisfied.
In the following we consider two successive triangulations 7Ty, and T, , with mesh sizes
hi+1 < h; and number of elements nilﬂ)

the approximations (Pgﬂ),ugﬂ)) and (Pg),ug)).
We use the abbreviation F; := F; (ngl)) = FNH (pg)7 ug)) and make the ansatz

> ngl), [ € N. On these meshes we can calculate

F=c-(n")"

with unknowns C' > 0 and r > 0. Due to log(F;) = log(C) — rlog <n§l)) we get a straight
line with gradient —r and intercept log(C) on the ordinate if we use a double logarithmic
scaled diagram.

For the pairs (nil), .E) and (nilﬂ) , ~7:l+1) , corresponding to the approximations (Pg), ug))
(Pgﬂ), ugﬂ)) on the triangulations 7, Tp,,,, we obtain the equations

log(Fi41) = —rlog (nglﬂ)) +log(C) and log(F;) = —rlog (ngl)) +log(C). (6.2)

Subtracting the second equation of (6.2)) from the first one leads to

log(Fiv) — log(Fy) = r (10g (nil)> " log (n§l+l)>) &= bg(%:)_
o ()

Note that r is the numerically obtained convergence order (convergence rate) and
s is the theoretical convergence order which can be obtained if the solution is sufficiently
regular. For such ,regular” problems one usually gets r /&~ s, also with uniform refinement.
But for ,irregular” problems one usually gets worse convergence rates r, i.e. r < s, using
uniform refinement. In these cases adaptive refinement strategies play an important role.
With these strategies one usually obtains convergence rates r close to s although the re-

gularity assumptions are not satisfied in the considered problem. We will see this fact in
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6 NUMERICAL EXAMPLES

the concrete examples below.

Besides the evolution of the nonlinear functional we are also interested in the single term
[|div Py, + f||2(q) which describes the (linear) momentum in the L?(Q) -norm. Two que-
stions arise: The first one is how good the conservation of momentum for the obtained
approximations Py, is satisfied. Recall that the exact solution P satisfies divP + f = 0.

The second question considers the convergence rate of
[div(P = Pp)llr2q) = | = £ = divPp|[12(0) = [|divPp + £ 22(q).-

By the interpolation estimate for the divergence in Proposition [2.46] one expects, simi-
lar as above, ||div(P — Ph)||%2(9) < h*, provided that the regularity assumptions in the
proposition are satisfied and using Raviart - Thomas elements (R71(7))? for the appro-
ximation P of P. By this interpolation estimate we expect a convergence order of 2
for ||div(P — Py)|3. () In two dimensions and % in three dimensions with respect to the
number of elements n; (cp. ) We will see in the results below that we actually get
better convergence rates for [|div(P — Pp)||3, () using adaptive refinement. Moreover one
gets better convergence orders for ||div(P — Ph)H%Q(Q) than for Fng(Pp,uy), regardless
whether using uniform or adaptive refinement. Such an improvement was already obser-
ved in numerical experiments in [SSS10] for different least squares formulations. In that
work one has approximately obtained twice as large convergence rates for the balance of
momentum as for the least squares functional using uniform refinement. An corresponding
analysis and further examples for the improvement of momentum balance can be found in
[SSS11]. We will observe this interesting fact also numerically for the nonlinear case and

the proposed least squares formulation in this work.

6.1 Two - dimensional problems for isotropic materials and a plane strain
configuration

For our LSFEM approach in a plane strain model we use the space ITj, := (RT1(Tp))* x
P11 disc(Tr) for the stress approximations and Uj, := (P (7}1))2 for the displacement appro-
ximations. Py qisc(75) denotes piecewise linear discontinuous elements for the approxima-
tion of the stress component Ps3. For the pure displacement approach we use piecewise
quadratic elements Po(7;,) respectively the non- conforming piecewise quadratic Fortin -
Soulie elements for each component of u (cf. Section [2.5). For the displacement - pressure
mixed finite element method we combine the Fortin - Soulie elements for the displacements
with discontinuous piecewise linear pressure approximations. This pair of finite elements
is inf - sup - stable for the mixed problem in linear elasticity (cp. [FS83], Sections
4 and 8 in [BBF13|] and Section 12 in [BS0S§]).

In Algortihm [1) which is essential for our least squares finite element method we choose in
particular as input values the tolerance tol = 1079 in the stopping criterion and iy = 50

as maximal number of Gauss- Newton steps. Moreover, we use on the coarsest mesh (level
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6.1 Two-dimensional problems for isotropic materials and a plane strain configuration

constraints on I'p:
16

constraints on I'y:

44 e P-n =0 (top, bottom)

e P-n =g (right)

48

Figure 6.1: Problem description of Cook’s membrane in two dimensions

[ = 0) the initial solution P;lo) =PV, uELU) = up such that the boundary conditions are
satisfied. On finer meshes (I > 0) we use the already computed solution from the previous
mesh, interpolate this to the finer mesh and use the resulting interpolated solution as

initial solution (P;LO), ug))

) for the Gauss- Newton scheme on the finer mesh.

For the marking of elements in adaptive refinement strategies we use the percent marking
strategy (cf. Appendix with p = 10, i.e. one-tenth of the elements are marked for
regular refinement in each refinement step.

Note that, also in a plane strain model, the densities f and g are vector - valued with three

components (cf. Sections [2.2.7| and [2.4.2)), although the given domain € in the following

examples is two - dimensional. Thus we assume in the following two - dimensional examples
that the third component of f and g is always zero and therefore specify the densities only

by two - dimensional vector - valued functions.

6.1.1 Cook’s membrane with compressible Neo - Hooke

As a first example we study the so-called Cook membrane problem firstly considered in
[CA69] and [Coo74] by Robert D. Cook. The reference configuration and the prescribed
boundary conditions are depicted in Figure A surface force, more precisely an upward
orientated traction force, is applied to the body on the right boundary. We do not apply
any volume forces, i.e. we set f = 0. For this example we use Poisson’s ratio v = 0.35,
Young’s modulus E = 200 and g = (0, v'°*4)T with load parameter 4°d = 4. Note that the
domain of Cook’s membrane contains a so- called corner singularity at (0,44) where the
boundary conditions change from hard clamped (u = 0) to a stress - free normal component
(P -n = 0) and the interior angle is larger than the critical one (cf. [R6s00]). Thus we
expect a strong local refinement near this vertex using adaptive refinement strategies. As
scaling parameters in the least squares functional (cf. ) we use wi = 102 and wy = 1.
In Tables and the results for the considered problem, obtained with our LSFEM
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6 NUMERICAL EXAMPLES

Level I  (# Triangles) | dimII;, dimUyj | Fya(Pr,un) (order) | # GN steps | u2(48,60)
0 186 2378 784 2.3034 - 1072 6 5.9945
1 264 3380 1108 9.5899 - 1073  (2.502) 5 6.0844
2 378 4854 1572 4.1877-1073%  (2.308) 5 6.1193
3 546 7018 2264 1.8679-107%  (2.196) 5 6.1344
4 825 10635 3390 8.1150- 1074 (2.020) 5 6.1418
5 1243 16041 5090 3.4713-107%  (2.072) 5 6.1449
6 1852 23036 7548 | 1.4823-107% (2.134) 6 6.1464
7 2738 35438 11108 6.3157-107°  (2.182) 6 6.1469

Table 6.1: Results with adaptive refinement (compressible Neo- Hooke, 2d)

Level |  (# Triangles) | dimII;, dimUy | Fya(Pr,un) (order) | # GN steps | u2(48,60)
0 186 2378 784 2.3034-1072 6 5.9945
1 744 9592 3056 9.3014- 1073  (0.654) 5 6.0869
2 2976 38528 12064 3.8853-107%  (0.630) 5 6.1225
3 11904 154432 47936 1.6405- 1073 (0.622) 5 6.1372
4 47616 618368 191104 | 6.9173-10"*  (0.623) 5 6.1433

Table 6.2: Results with uniform refinement (compressible Neo - Hooke, 2d)

adaptive refinement uniform refinement

Level I | ||div(P — P}L)”iz(n) (order) Level I | ||div(P — Ph)Hiz(Q) (order)
0 7.3330-107*° 0 7.3330-1071*
1 1.3494-107"3 (4.833) 1 1.3101-107"3 (1.242)
2 2.4982 - 1074 (4.699) 2 2.3676 - 10~ (1.234)
3 4.6497-10715 (4.572) 3 4.2340 - 10717 (1.242)
4 8.4998 - 10716 (4.117) 4 7.3776-10716 (1.260)
5 1.4788 -1071'¢ (4.266)
6 2.6127- 10717 (4.347)
7 4.7685 - 10718 (4.351)

Table 6.3: Improved convergence rates for balance of momentum (compressible Neo-
Hooke, 2d)

approach (B -formulation) and using adaptive respectively uniform refinement, are de-
monstrated.

In the third column of each table the values of the nonlinear functional Fyp, evaluated
in the computed approximations, and the corresponding convergence orders can be ob-
served. One directly observes that the method using adaptive refinement is superior. One
can achieve the theoretical optimal convergence rate of 2 and the method using uniform
refinement is essential worse where one gets a convergence rate of merely approximately
0.63. This is as expected, since the problem is not sufficiently regular to obtain an opti-

mal convergence order with uniform refinement. In Figure (left) both behaviors are
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6.1 Two-dimensional problems for isotropic materials and a plane strain configuration

graphically depicted. In the fourth column of Tables and the number of necessary
Gauss - Newton steps, until the prescribed stopping criterion is achieved, are illustrated.
We see that the number of steps is more or less constant and similar using adaptive or
uniform refinement.

In Table we observe that the conservation of linear momentum is satisfied very well.
Moreover, we can observe an improved convergence rate of the term ||div(P — Pp)||3, @
compared to the convergence rate of Fy g (P, up). The convergence rate for the balance

of momentum is approximately doubled. The corresponding graphical impression can be
found in Figure (right).
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In Figure[6.3|the deformed mesh with its triangulation (left picture) and the normal stres-
sesn-P-n = P;; on I'p (right picture) are drawn in level 4. Although our method

produces a piecewise linear discontinuous stress along the left boundary, we see that the
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6 NUMERICAL EXAMPLES

result is quite smooth. The expected singular behavior at (0,44) and therefore strong local
refinement in this region can be observed in these plots.

In Figurethe first two rows of the Kirchhoff stress tensor approximation 75, = PhF(uh)T
are plotted in level 4. The nondiagonal components seem equal, i.e. the approximation re-
flects the theoretical necessary symmetry of the exact Kirchhoff stress tensor (cf. Section
and Corollary . If we plot in comparison the nondiagonal elements of P}, in level
4, we see in Figure that the approximation of the first Piola - Kirchhoff stress tensor P
is not symmetric. Note that the singular behavior at the left upper vertex is also visible
in all these stress plots.

At the end of this example we are interested in comparing our LSFEM approach with
the displacement approach. Firstly we consider the vertical displacements of the vertex

(48,60) for both approaches if we increase the number of elements. It is clear that both

o
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Figure 6.4: Components of the Kirchhoff stress (compressible Neo- Hooke, 2d)

10 10
s - 5
o o
-5 -5
-10 -10
-15 -1s5

P12 P21

Figure 6.5: Nondiagonal components of P (compressible Neo- Hooke, 2d)
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6.1 Two-dimensional problems for isotropic materials and a plane strain configuration

approaches should converge to the same displacement in this particular node. The values
for the LSFEM approach can be found in the last column of Tables m (adaptive refine-
ment) and (uniform refinement). A graphical comparison of both approaches can be
found in Figure (left: adaptive refinement, right: uniform refinement). Here we have
used the same meshes for the displacement approach that we have generated with our
LSFEM approach.

6.16 T 6.16
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6.12f 612
6.1 6.1
3 608 8 608
X ©
N <
T 6.060 T~ 6.06F
> =]
6.041 6.04
. _LSFEM (RTJP,) . LSFEM (RT P)
6.02 _.Galerkin (P,) 6.02 . Galerkin (P,)
6 —&-Galerkin (FS) ] 6t -4 Galerkin (FS)
598 - - - . . 5.98 . .
0 500 1000 1500 2000 2500 3000 10° 10° 10¢ 10°
# Triangles # Triangles
(a) adaptive refinement (b) uniform refinement

Figure 6.6: Vertical displacement in right upper node (compressible Neo - Hooke, 2d)

One observes that the displacement approximations of the Galerkin method are superior
in comparison to the approximations of the LSFEM approach, at least on coarse meshes.
Furthermore the results using Fortin - Soulie elements (abbrev. FS) are better than using
standard piecewise quadratic elements (abbrev. Ps). Additionally, it can be seen that both
approaches converge to the same displacement value (approx. 6.1470).

Secondly we go back to the stress boundary approximations on I'p, where we will compare
the values of the boundary integrals Val; := fFD P ds and Valy := fFD P> ds for both ap-
proaches. For the displacement approach we distinguish moreover between Fortin - Soulie
elements and standard continuous piecewise quadratic elements.

Before we show the results we state some preliminary considerations:

On the one hand, for an arbitrary vector v € R?, arbitrary load value 4°2d € R and the

prescribed boundary conditions on I'y, we obtain the equation

0
/ v-P-nds= / V- lond ds = / UQ’}/load ds = U2’Yload|FR| — 16U2’}/10ad, (63)
FN FR fy FR

where I'p 1= {(48,22) : 44 < x9 < 60} denotes the right part of the boundary I" with
length |I'r| = 16.
On the other hand for the choice f = 0 we obtain divP = 0 (cf. (3.1))) and therefore with
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6 NUMERICAL EXAMPLES

the help of the divergence theorem the equation

Oz/didex:/P~nds:/ P-nds+/ P -nds
Q r T'n I'p

(6.4)
= P-nds-—/ P -nds.
'y I'p

Using (i for the outer normal v = n := (—1,0)7 on I'p, respectively the tangential
vector v =t := (0,1)7 orthogonal to n, and combining this with 1) leads to

/ PlldS:/ n-P-nds:—/ n.P.ndS:_16‘0',yload:07
Ip T'p 'y

/ P21d8:—/ tPndS:/ t.:P.ndSZ16,}/103.d7

i.e. Val; = 0 and Valy = 167°2d (= 64 for 4'°*d = 4) are the exact values if one inserts the
correct stress components Py, Po; of P.
In Table the boundary integral values, obtained with our LSFEM approach and adap-

tive refinement, can be observed. One can see that these approximations are very close to

(6.5)

the exact values, already on a very coarse mesh.

Level 1 1 2 3 4 5 6 7
Valy 6.5207 - 1076 | 2.8131-107% | 1.2118-10% | 4.5390-10"7 | 2.0002-107 | 5.6404-10"7 | 6.2720-10"7
Valy 6.4000 - 10* 6.4000 - 10" 6.4000 - 10" 6.4000 - 10" 6.4000 - 10* 6.4000 - 10" 6.4000 - 10"

Table 6.4: Values of boundary integrals on I'p (compressible Cook, adaptive LSFEM)

In Table the values of the boundary integrals of the LSFEM approach can be com-
pared with the values obtained with the pure displacement approach, using either P, or
Fortin - Soulie elements. Here a sequence of uniform refined meshes was used. The stress

tensor in the pure displacement approach was computed in a post - processing with the
help of the calculated approximation u (cf. Pyg(u) in (3.96).

Level 1 LSFEM (RT1/P2) Galerkin (P2) Galerkin (FS)
Valy Valy Valy Vals Valy Valy
0 1.5051-107° | 6.4000-10' | 1.2720-10" | 6.3365- 10" | —2.6416-10"" | 6.3475- 10!
1 6.4612-1075% | 6.4000 - 10* | 8.2786-10° | 6.3764-10' | —6.2475- 1072 | 6.3653 - 10"
2 2.7995-107% | 6.4000 - 10* | 5.6891-10° | 6.4075-10' | —8.6648 - 1073 | 6.3716 - 10"
3 1.3555-107% | 6.4000-10" | 4.0135-10° | 6.4264 - 10* | —3.5480-10"3 | 6.3733 - 10!
4 —1.9792-107% | 6.4000- 10* | 2.8820-10° | 6.4368-10' | —1.6818-10"% | 6.3730 - 10*

Table 6.5: Comparison of boundary stress approximations (compressible Cook)

One observes again that the LSFEM approach produces very good results, also for uniform
refinement. The results for the displacement approach are overall poor and in particular do
not converge to the correct values. The results with Fortin - Soulie elements are essentially
better than with P, elements, but still bad in comparison with the results of the LSFEM
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6.1 Two-dimensional problems for isotropic materials and a plane strain configuration

approach. Note that the results of the boundary integrals Val; and Valy of the Galerkin
method were also checked in more detail in the case of very small loads and compressible
materials. In this case, being in a regime of linear elasticity, the results are significantly
better and converge to the correct values.

If one compares the normal stresses P11 on I'p in level 1 using uniform refinement (see
Figure , one observes at first glance that they look fine for the Galerkin method.
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Figure 6.7: Normal stresses on I'p (compressible Neo- Hooke, 2d, y°8d = 4)

In order to convince the reader that the stress results on the boundary I'p using the Ga-
lerkin method are in general worse compared to the results of the LSFEM approach, we
consider the same problem but with a less compressible material. More precisely we use
v = 0.499 instead of v = 0.35. Figure shows the results for 42 = 1 and Figure

load

displays the results for ~ = 4. Both figures corresponds again to the results on level 1

using uniform refinement. One observes that the LSFEM approach always yields excellent
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Figure 6.8: Normal stresses on I'p (quasi-incompressible Neo- Hooke, 2d, yload — 1)

results. The Galerkin method with P, has strong discontinuities at the edge interfaces, also

in the case of smaller loads. In the case 7'°2d = 1 the Galerkin method with Fortin- Soulie

elements seems okay, but if one increase the load value the results obviously fail. Alto-

gether one can say that the Galerkin method cannot produce good stress approximations
1

on the boundary if one tends to incompressible materials (v — 5) and/or increases the

load value.
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We can conclude that our developed LSFEM approach produces essentially better stress
approximations than the Galerkin method. We will examine in the following example if this
is also true in the fully incompressible case. Here we will compare the LSFEM approach

with the displacement - pressure formulation.

6.1.2 Cook’s membrane with incompressible Neo - Hooke

We consider again the Cook membrane problem depicted in Figure [6.1} The main diffe-
rence to the example in Section [6.1.1] is that we use now a fully incompressible material,
i.e. we set actually A = oco. Furthermore we use u = 1 as second Lamé constant, the
force densities f = 0, g = (0, v°*N)7T with 4°2d = 0.05 and again the scaling parameters
wp =102, wy = 1.

The aim of this example is to confirm the results of compressible materials also for incom-
pressible materials.

Table using our LSFEM method with adaptive refinement, and Table [6.7] using our
LSFEM approach with uniform refinement, show the results we have obtained for this
problem. In comparison to the example with a compressible material in Section we
see in these tables that we need more steps in the Gauss- Newton scheme until the given
stopping criterion is achieved and that the number of necessary steps vary stronger from
mesh to mesh.

In Figure (left), using the values of Tables and a graphical comparison bet-
ween adaptive and uniform refinement can be found. Here again, the values of the nonlinear
functional Fn g (Pp,uy) are plotted against the number of triangles. One observes that we
can achieve almost optimal convergence rates using adaptive refinement. The convergence
rates for uniform refinement are worse, as expected, since the considered problem is still
a singular problem. If we compare the convergence rates of Tables and with these
of Tables and for compressible materials, we see that the achieved numerical con-
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6.1 Two-dimensional problems for isotropic materials and a plane strain configuration

Level I  (# Triangles) | dimII;, dimUyj | Fya(Pr,un) (order) | # GN steps | u2(48,60)
0 186 2378 784 2.9972 1072 11 4.5092
1 275 3525 1150 1.4042 - 1072 (1.939) 9 4.6120
2 390 5010 1620 6.7178 - 1073  (2.110) 11 4.6586
3 559 7189 2314 | 3.2427-107°  (2.023) 14 4.6810
4 821 10583 3374 1.5525-107% (1.916) 10 4.6921
5 1211 15633 4954 7.3322-107%  (1.930) 12 4.6974
6 1796 23208 7324 3.3695-107*  (1.973) 13 4.6999
7 2622 33918 10656 1.4855-107"  (2.165) 14 4.7011

Table 6.6: Results with adaptive refinement (incompressible Neo - Hooke, 2d)

Level I  (# Triangles) | dimII;, dimUyj | Fya(Pr,un) (order) | # GN steps | u2(48,60)
0 186 2378 784 2.9972 1072 11 4.5092
1 744 9592 3056 1.3800-1072  (0.559) 9 4.6141
2 2976 38528 12064 6.4895- 1073 (0.544) 10 4.6611
3 11904 154432 47936 3.0743-1073  (0.539) 11 4.6830
4 47616 618368 191104 | 1.4538-1077° (0.540) 13 4.6934

Table 6.7: Results with uniform refinement (incompressible Neo - Hooke, 2d)

adaptive refinement uniform refinement

Level [ | ||div(P — Ph)||2Lz(Q) (order) Level [ | ||div(P — Ph)HQLQ(Q) (order)
0 8.3534 -107° 0 8.3534-107°
1 1.9602 - 10~° (3.707) 1 1.9315-107° (1.056)
2 4.5544 - 10710 (4.177) 2 4.4487-1071° (1.059)
3 1.0488 - 10710 (4.079) 3 1.0116-107*° (1.068)
4 2.3596 - 107! (3.881) 4 22323107 (1.090)
5 4.9448 - 1012 (4.021)
6 9.4024 - 10713 (4.212)
7 1.4687-107 ' (4.907)

Table 6.8: Improved convergence rates for balance of momentum (incompressible Neo -
Hooke, 2d)

vergence orders are slightly worse in the incompressible case. In our opinion this is self-
evident, since the problem is numerically much harder due to the incompressibility.

In Table conservation of linear momentum is almost satisfied and an improved con-
vergence rate can be again observed. Their convergence rates are approximately twice the
convergence rates of Fxpg(Pp,up), similar to the compressible case. A graphical impres-
sion can be found in Figure (right).
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In Figure the deformed mesh (left picture) and the normal stresses on I'p (right

picture) on level 4 using adaptive refinement are plotted. In the left picture also the

reference configuration is drafted in cyan blue. We see in these pictures, analogously to the
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Figure 6.11: Results in level 4 with adaptive LSFEM (incompressible Neo- Hooke, 2d)

compressible example, that we have a strong local refinement near the corner singularity
at (0,44) and near the right boundary where the traction force is applied. Moreover,
although the LSFEM method produces piecewise linear and discontinuous normal stress
approximations on I'p, the results look quite smooth.

In Figure the first two rows of the Kirchhoff stress tensor approximation on the same
triangulation, are plotted. The nondiagonal components seem identical. In comparison to

the Kirchhoff stress tensor the nondiagonal components of the first Piola - Kirchhoff stress
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Figure 6.12: Components of the Kirchhoff stress (incompressible Neo - Hooke, 2d)
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Figure 6.13: Nondiagonal components of P (incompressible Neo - Hooke, 2d)

tensor are drawn in Figure Although it is difficult to see a difference at first glance,
one can observe minor differences if one compare the components carefully.

In order to convince the reader that the results obtained with our LSFEM approach
are reasonable we compare the vertical displacements in the node (48,60) with the dis-
placement - pressure approach, similar as in Section (see Figure . One obtains
similar results as in the compressible case: The displacement approximations of the LS-
FEM approach are quite bad on a coarse mesh and the displacement - pressure approach
is obviously superior. However, it is also obvious that both approaches converge to the
same displacement value if one increases the number of elements. The results in the left
picture with adaptive refinement are advantageous, since we need much less elements in
order to be close to the correct displacement value (= 4.7013). Here we have used again

the same meshes for the displacement - pressure approach that we have generated with our
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Figure 6.14: Vertical displacement in right upper node (incompressible Neo - Hooke, 2d)

adaptive LSFEM approach. Thus we can confirm the results for compressible materials
also for incompressible materials, and record that the LSFEM approach is evidently worse
in displacement approximations on coarse meshes.

In contrast, we have observed in the example of compressible materials (cf. Section
that the stress approximations are superior in the LSFEM approach. In order to confirm
also this consideration in the incompressible case we firstly compare again the normal
stress approximation P;; on I'p. We see in Figure that the results for the displace-
ment - pressure approach are more discontinuous close to the singularity at (0,44). This
effect is enforced if we increase the forces to y°2d = 0.25 (cf. Figure .
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Figure 6.15: Normal stresses on I'p (incompressible Neo- Hooke, 2d, load — 0.05)

Thus, the LSFEM approach seems superior with respect to stress approximations. We can
confirm this statement considering the boundary integrals in equation (6.5)):
For this example with v'°*d = 0.05 the correct values are Val; = 0 and Valy = 16 - 0.05 =

8-10~!. A comparison of the obtained values for both approaches with uniform refinement
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Figure 6.16: Normal stresses on I'p (incompressible Neo - Hooke, 2d, 4°2d = (0.25)

can be found in Table [6.9l

We observe that the boundary stress approximations are essentially better using the LS-
FEM approach. In the displacement - pressure approach we cannot observe any convergence
to the exact values. Note again, that these boundary integral approximations in the dis-
placement - pressure method become better if one decreases the load value.

For the sake of completeness we look at Table [6.10] where good approximations of Val; and

Valy, using our LSFEM approach with adaptive refinement, are illustrated. Furthermore,

Level I LSFEM (RT1/P2) displacement - pressure (FS/P1.disc)
Valy Valz Valy Vals
0 1.6806-107% | 7.9764-107"' | —7.4612-107* 7.9133-107"
1 8.1169-10"* | 7.9886-10"' | 1.1027-103 7.9393-107*
2 3.8982-107* | 7.9945-107' | 1.5488-1073 7.9447 1071
3 1.8587-107* | 7.9974-107' | 1.6826-107° 7.9403 -107*
4 8.7255-107° | 7.9988-107" | 1.9403-1073 7.9299 - 1071

Table 6.9: Comparison of boundary stress approximations (incompressible Cook)

Level 1 1 2 3 4 5 6 7
Valy 8.1463-10~% | 3.9221-10"% | 1.8788-10% | 8.9001-10"° | 4.0611-10"° | 1.7616-10"° | 6.8998 .10 6
Valg 7.9885- 10~ 1 | 7.9945-10"1 | 7.9974-10"1 | 7.9987 101! 7.9994-10~1 | 7.9998 10" | 7.9999 101!

Table 6.10: Values of boundary integrals on I'p (incompressible Cook, adaptive LSFEM)

convergence to the exact boundary integral values can be observed.

Altogether we can conclude that the results for the incompressible and compressible case
are very similar. Moreover, we note that the LSFEM approach is inferior with respect
to displacement approximations, at least on coarse meshes, and superior with respect to
stress approximations. We will emphasize that the stress approximations of 7 in the com-

pressible as well as in the incompressible case are almost symmetric (cf. Figures and
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6.12). This confirms numerically Corollary where it was proven that 75, = P,F(u;)?

converge to the symmetric Kirchhoff stress tensor as long as Fy i (Pp,up) tends to zero.

6.1.3 Cook’s membrane with triple length and incompressible Neo - Hooke

In this problem we show the importance to scale the term of balance of (linear) momentum
sufficiently large. We will see exemplarily that one can obtain poor results choosing wrong
scaling parameters. Moreover we show in this example, provided that we have scaled the
balance of momentum sufficiently large, that we get also excellent results for more bending
dominated problems, even in the fully incompressible case.

For this purpose we consider a Cook membrane with triple length. The reference configu-
ration of the Cook membrane with triple length is defined by the vertices (0,0), (144, 44),
(144,60) and (0, 44). Also for this problem we use f = 0 and the same boundary conditions
as in Figure More precisely we set g = (0,7°*)T with 4°2d = 0.05. Moreover, we set
the Lamé constants again to A = oo, u = 1 and the scaling parameter corresponding to
the inverse stress-strain relation (cf. (3.18)) to ws = 1.

In Tables|[6.11] and the dependence on the scaling parameter wy of the horizontal and
vertical displacement in the particular node (144,60) can be observed. Here the different

scaling parameters w; € {100, 104, ..., 104} are taken into account in the adaptive LSFEM

Level | | w1 =10° | w; =10" | w1 =10% | w1 =10® | w; =10*

0 —8.2096 | —12.7656 | —23.2275 | —23.6676 | —23.6721
—8.3313 | —15.5299 | —24.5254 | —24.7353 | —24.7375
—8.3210 | —18.7317 | —25.0930 | —25.1892 | —25.1902
—8.5862 | —21.6370 | —25.3539 | —25.3995 | —25.3999
—9.4137 | —23.5856 | —25.4764 | —25.4973 | —25.4975
—10.1742 | —24.6572 | —25.5342 | —25.5430 | —25.5430
—10.7988 | —25.1888 | —25.5607 | —25.5643 | —25.5644
—11.8603 | —25.4122 | —25.5708 | —25.5723 | —25.5723

N OO e | W N

Table 6.11: Comparison of displacements u; (144, 60) using different wy

Level I | w1 =10° | w1 =10' | wy =10% | wy =10% | wy = 10*

0 17.2227 | 25.6091 | 42.2354 | 42.8338 | 42.8399
17.2742 | 30.3833 | 43.7839 | 44.0616 | 44.0644
17.2024 | 35.4820 | 44.4502 | 44.5761 | 44.5774
17.6105 | 39.7345 | 44.7518 | 44.8106 | 44.8112
19.1545 | 42.4061 | 44.8910 | 44.9177 | 44.9180
20.5333 | 43.8196 | 44.9563 | 44.9676 | 44.9677
21.7195 | 44.5070 | 44.9846 | 44.9893 | 44.9894
23.7646 | 44.7934 | 44.9962 | 44.9981 | 44.9981

N[O~ | W N~

Table 6.12: Comparison of displacements uy (144, 60) using different wq
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6.1 Two-dimensional problems for isotropic materials and a plane strain configuration

approach. A graphical impression of this scaling issue is depicted in Figure In this
figure the poor results for w; = 10° = 1 are neglected. Furthermore, since the displacement

results for w; = 10% and w; = 10* are almost equal, the curve for w; = 10* is also omitted.
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Figure 6.17: Comparison of displacements using different scaling parameters w;

As a result we get that w; = 103 is the best choice, since a further increase of this parame-
ter does not lead to essentially better approximations and a very large scaling parameter
wy would lead to singular matrices in the algorithm. Note that for a rescaled Cook mem-
brane problem with vertices (0,0), (0.144,0.044), (0.144,0.06) and (0,0.044), i.e. scaling
factor ﬁ in the domain (2, a scaling parameter w; = 10° = 1 is sufficient (cp. Table
6.13]).

u1(0.144, 0.06) u2(0.144, 0.06)

Level | ne 5 T 5 T

wy =10 w1 =10 w1 =10 wi =10
0 72 | —2.1814-1072 | —2.1822-1072 | 4.0659 - 1072 | 4.0670- 1072
1 108 | —2.3781-1072 | —2.3785-1072 | 4.3082-1072 | 4.3087-1072
2 157 | —2.4696-1072 | —2.4698-1072 | 4.4073-1072 | 4.4076-10"2
3 257 | —2.5146-1072 | —2.5147-1072 | 4.4559-1072 | 4.4560 - 1072
4 398 | —2.5372-1072% | —2.5372-1072 | 4.4794-1072 | 4.4794-1072
5 610 | —2.5475-107% | —2.5475-1072 | 4.4907 - 1072 | 4.4908 - 1072
6 937 | —2.5533-1072 | —2.5533-1072 | 4.4964-1072 | 4.4964-1072
7 1416 | —2.5558 - 1072 | —2.5558- 1072 | 4.4987-1072 | 4.4987-10"2

Table 6.13: Comp. of displacements for a rescaled Cook’s membrane using different w;

This means that the necessary value of the scaling parameter w; depends on the size of
the domain respectively the used physical unit of the problem.

Let us go back to the problem with triple length. In Figure[6.18 a comparison of the displa-
cements in the node (144, 60) between the LSFEM approach, choosing w; = 10 and using
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Figure 6.18: Comparison of LSFEM and displacement - pressure approach (triple Cook)

adaptive refinement, and the displacement - pressure approach can be observed. Both ap-
proaches converge to the same displacements (u(144,60) ~ —25.58, u2(144,60) =~ 45.01)
and, similar to the previous examples, the LSFEM approach is inferior concerning displa-
cement approximations.

In what follows also the other obtained results of the examples in Sections and [6.1.2]
can be confirmed for this bending dominated problem:

In Figure[6.19|a graphical comparison of adaptive and uniform refinement can be regarded.
More precisely the values Fy g (Pp,up) (left) and ||div(P — Ph)H%Q(Q) (right) are plotted
against the number of elements for different levels. Also for this problem one observes a
numerically obtained convergence order of Fnp(Pp,up) close to the optimal one using

adaptive refinement. Uniform refinement is worse. Moreover, one observes again an im-
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Figure 6.19: Comp. of adaptive and uniform refinement (triple Cook, incompressible Neo -
Hooke)
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6.1 Two-dimensional problems for isotropic materials and a plane strain configuration

proved convergence rate for the momentum term in the L?(£2)-norm. One remarkable
observation can be made in Figure One evidently obtains a second singularity at
the origin, since also in this vertex strong local refinement is performed. These results
correspond again to the fourth level using adaptive refinement. The corresponding trian-
gulation has 1031 triangles.

In Figure[6.21] the first two rows of the Kirchhoff stress tensor approximation can be found.

Also in this example the nondiagonal components look equal in contrast to the nondia-
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Figure 6.20: Results in level 4 with adaptive LSFEM (triple Cook, incompressible Neo -
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Figure 6.21: Components of the Kirchhoff stress (triple Cook, incompressible Neo - Hooke)
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P12 P21

Figure 6.22: Nondiagonal components of P (triple Cook, incompressible Neo - Hooke)

gonal components of the first Piola- Kirchhoff stress tensor (cf. Figure [6.22)).

At the end of this example we briefly compare the normal stress approximations of our

LSFEM approach and the displacement - pressure approach in the first level using uniform

refinement (cf. Figure[6.23]). The discontinuities at the edge interfaces are more pronounced
in this example in comparison to the other two examples in Sections and
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Figure 6.23: Normal stresses on I'p (level 1, triple Cook, incompressible Neo - Hooke)

Level I n LSFEM (RT1/P2) displacement - pressure (FS/P1 qisc)
Valy Val, Valy Vals
0 215 | 1.4163-107* | 7.9967-107" | 1.7869 - 1072 7.5990 - 107!
1 860 | 6.5348-107° | 7.9985 107! | 1.3127 1072 7.7253 1071
2 3440 | 3.0344-107° | 7.9993-10"* | 9.1529-1073 7.7478 - 1071
3 13760 | 1.3936-107° | 7.9997-10"" | 7.0386- 1073 7.7194- 1071
4 55040 | 6.2226-107° | 7.9999-107' | 6.8604 - 107> 7.6614 - 1071

Table 6.14: Comparison of boundary stress approximations (triple Cook,

incompressible)

In Table the boundary stress integrals Val; and Valy can be again compared for the

LSFEM and the displacement - pressure method using uniform refined meshes. The exact
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6.1 Two-dimensional problems for isotropic materials and a plane strain configuration

values for the triple Cook membrane problem are Val; = 0 and Val, = 0.05-16 = 81071,
Altogether we obtain similar results as in the previous considered examples concerning

the boundary integral stress approximations.

6.1.4 Calculation of critical loads

In this example we consider the problem illustrated in Figure The reference con-
figuration is given by the unit square € := (—1,1)? where an uniform body load with
density f = (0,7103‘1, 0)7, Aload ¢ R is applied. The boundary I'p contains the boundary
segments on the left, right and bottom part where the boundary conditions u-n = 0 and

(P -n) -t = 0 are prescribed. Here n denotes again the outer normal and t a tangential

constraints on I'p (left, right, bottom):
O ® eu-n=20
1 OII I IO e (P-n)-t=0
O O )
O 5 constraints on I'x (top):
SR I e
! OQ OROIIONO) QO exact solution (for A — oo):

o P(zy,29) =41 —29)l,u=0

Figure 6.24: Problem description for the calculation of critical loads

vector. On the remaining boundary part I'y (top) no traction forces are applied, i.e. we
prescribe P -n = 0 on I'y. As Lamé constants we set A = oo and p = 1, i.e. we consider
again a fully incompressible material. As scaling parameters we have chosen w; = 1 = ws.
Note that this problem was already considered in [ABadVLR10]. The aim of this problem
is to detect so-called critical load values, i.e. load values where the uniqueness of the
solution is lost. In this manner one also speaks about bifurcation points.

Before we present the numerical results we state some preliminary considerations:
Firstly the solution of the problem is given by u = 0 and P (21, z2) = 7'°*4(1 — 22)I. This
pair (P, u) obviously satisfies the prescribed boundary conditions. To verify this solution
we have to show additionally that it holds Ryg(P,u) = 0 with Rypy defined by the left
equation in and using the Neo- Hooke model. Obviously it holds on the one hand

0
divP = 'Yload . V(l _ xQ) — _,Yload ’
0
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i.e. divP + f = 0. On the other hand we obtain F(u) = I and therefore
devr =dev (PF(u)’) =devP =0

for the Kirchhoff stress tensor 7 = PF(u)? in €.

Inserting dev 7 = 0 into @ with A = oo results in the coefficients S = 0 and T' = —27
of the cubic equation @ . One obtains its discriminant as D = (%) ( ) ( )2
and therefore (cf. (3.41)))

T T 27 27 27 27
tl"(-ANH(T)):\3/—2+\/5+§/—2—\/5:§’/2+2+ 3?_?

/54 .

Thus we obtain the strain tensor Aypg(7) = de# +tr(Ayp(T)I=0+1-3-I=1L
Due to F(u) = I it holds B(u) = I and hence the equation Ayy (PF(u)”) — B(u) =
0 is confirmed. Altogether we have shown that the pair (P,u) is indeed a solution of
Ry (P,u) =0.

Secondly we observe that the right hand side of the occurring linear systems in in

the Gauss - Newton iteration is zero inserting the exact solution (P, u) as <P§Zk), ugk)) (cf.

(3.25))). This means that for this choice we get linear systems of equations of the form
AR x(*) — 0. As long as the stiffness matrices A*) are positive definite the solution is
x(®) = 0 and the new iteration would be (P;Lkﬂ),ugkﬂ)) = (P?,uﬁ?) = (P,u), i.e
if one would use the Gauss- Newton scheme with exact solution as initial guess, the new
solution remains the exact solution.

A difficulty occurs if the linear systems of equations A*)x(*) = 0 has a solution x(*) £ 0.
This is possible if and only if the stiffness matrix has at least one zero eigenvalue or
equivalently the matrix is singular. Note, that in this case the coerciveness property of the
bilinear form is no longer satisfied (cf. Section , the problem loses its stability and a
second solution unequal to (P, u) occurs.

In Figure @ the smallest eigenvalue of the stiffness matrix A with components A;; =
(Riy g (P, u)[®;], RNy (P, u) [(ﬁi])p(m, where ®;, j =1,..., N, denote basis functions to
the space II;, x Uy with dimension N := dim (IT, x Uy) (cf. Section , is plotted

against the load value '°24. In this example ~'°2d

varies between 0 and 8 choosing a load
step size of 0.1. Furthermore three different triangulations were used.

One observes that the first zero eigenvalue which tends to zero as the mesh size decreases
occurs between a load value of 3.1 and 3.3. This is the first critical load value. The second
critical load value occurs between 6.2 and 6.4 (cp. also the values in Tables and . It
we zoom into the intervals [3.1,3.3] and [6.2, 6.4] (cf. Figure[6.26]) we can specify the critical
load values as approximately 3.23 and 6.28. The first critical load value approximation 3.23

is identical to the theoretically obtained value in [ABadVLR10].
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Aload 3.0 3.1 3.2 3.3 3.4 3.5
A1 | 5.0013-107% | 1.4883-107% | 6.5141-1071° | 4.3592-107° | 2.3340-107% | 5.5134-107%

Table 6.15: Smallest eigenvalue A; of stiffness matrix (n; = 32768, v'°2d € [3,3.5])

load
Y

6.0

6.1

6.2

6.3

6.4

6.5

A1

1.5235-1078

6.3616 - 10~°

1.3152-107°

5.2258 - 10711

2.4738 .107°

8.4330-107°

Table 6.16: Smallest eigenvalue \; of stiffness matrix (n; = 32768, v'°2d ¢ [6, 6.5])
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6 NUMERICAL EXAMPLES

In Figure the displacement and stress eigenfunctions corresponding to the smallest
eigenvalue of the critical loads are plotted (first row: 41°24 = 3.23, second row: 424 = 6.28).
On the left side of this figure the displacement eigenfunctions can be regarded. One can
observe that a second displacement solution (black mesh) occurs which is obviously unequal
to the zero displacement solution (red mesh). On the right side of this figure the stress
eigenfunctions are plotted for both critical load values.

We can conclude that our least squares approach provides very good approximations of

the exact critical load values in this example.
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Figure 6.27: Eigenfunctions to 7'°*! = 3.23 (1st row) and 7'°*d = 6.28 (2nd row)

6.2 Three - dimensional problems for isotropic materials

The aim of this part of the work is to show that our proposed least squares finite element
method works also for three- dimensional problems. In this subsection we will consider
two examples for isotropic materials.

In general we use the space ITj, := (RT1(75))” for the stress approximations and Uj =
(P2(T5))? for the displacement approximations in our three - dimensional LSFEM simula-
tions.

In Algorithm [l we use the tolerance tol = 1075 inside the proposed stopping criterion
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6.2 Three-dimensional problems for isotropic materials

and imax = 20 as maximal number of Gauss- Newton steps. As initial solution for the

Gauss - Newton scheme we use <P§ZO), uglo)) = (PN, uD).

6.2.1 Uniaxial tension test with compressible Mooney - Rivlin

The first example is a quite simple problem. We consider an uniaxial tension test on the
cube Q = (0,3)3 with fixed triangulation into n; = 2816 tetrahedra and compressible
isotropic material behavior. As material parameters we choose E = 200, v = 0.35 and as
scaling parameters in we use w1 = 1 = wo. The aim of this example is to compare
different models using our proposed least squares finite element method.

Three different models are taken into account: The first one is the model of linear elastici-
ty. The second one is the nonlinear Neo- Hooke model and the third one is the nonlinear
Mooney - Rivlin model. Recall that the Neo- Hooke model is exactly the Mooney - Rivlin
model for the choice § = 0 in .

Furthermore we compare the obtained results with the pure displacement approach that
we have introduced in Section [3.6.1| as reference method for compressible materials. In this
approach we use continuous piecewise quadratic elements (Pg(ﬁ))3 for the approximation
of u.

The whole description of the problem is depicted in Figure As force densities we

constraints on I'p (right, back, bottom):
eun=0,(P-n)-t=0
constraints on I'y:
e P.n =0 (front, top)

o P.n=g (left)

Figure 6.28: Problem description of an uniaxial tension test in 3d

use f = 0, g = (v#4,0,0)7 with 4°d € R. The boundary I' = 99 is divided into T'p,
consisting of the right (x; = 0), back (z2 = 0) and bottom (x3 = 0) lateral face, and I'y,
consisting of the left (z1 = 3), front (z2 = 3) and top (xz3 = 3) lateral face. The constraint
u-n=0and (P-n)-t =0 on I'pis equivalent to the boundary conditions u; = 0,
P51 = 0 = P31 on the right, ug = 0, Pia = 0 = P35 on the back and uz =0, P13 =0 = Po3
on the bottom. On the part I'y we prescribe traction forces: On the front and top part

we specify them to P - n = 0, i.e. traction - free boundary conditions. On the left part we
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apply a traction force in zi - direction with load parameter 424 € R, according to the
given force density g. In Figure [6.29] a comparison using different models is illustrated:
The displacement in x; - direction of the point (3,3,3) is plotted against different load
values 7'°2d € {100, —75, —50, —25, 25, 50, 75, 100}. Different values 6 € {0, 10, 15, 20, 25}
in the stored energy function of the Mooney - Rivlin model are taken into account.
For each model one observes consistency with the model of linear elasticity, as expected
by Section Furthermore one notes that the displacements concerning the different
nonlinear models for negative loads differ only slightly. In contrast the difference of displa-
cements in the nonlinear models for larger positive load values is much more pronounced.
For instance for 4°*d = 100 the displacement for the Mooney - Rivlin model with § = 25
in the considered point is more than twice as large as the corresponding displacement for
the Neo- Hooke model. With this in mind it is for example possible to fit hyperelastic
models to given experimental data such that the theoretical model matches better with

the physical experiment.

5 \

——linear
41 |——Neo - Hooke
——Mooney - Rivlin (6 = 10)
Mooney - Rivlin (§ = 15)
3 |——Mooney - Rivlin (6 = 20)
——Mooney - Rivlin (§ = 25)

u,(33.3)

-100 -75 -50 -25 0 25 50 75 100
load value ~°%

Figure 6.29: Comparison of different models (3d uniaxial tension test)

The displacement approximations plotted in Figure [6.29 can be found in more detail in
Table In this table the abbreviations , MR* for the Mooney - Rivlin model and ,,line-
ar“ for the model of linear elasticity are used. In the table one can observe quantitatively
that the displacements increase in each row from left to right, i.e. for a fixed load value
~oad the displacements increase if one increment the value of ¢ in the model. Moreover,
for a fixed model the displacement values increase columnwise.

For this problem we have also checked if the displacement values in Table are rea-
sonable. For this purpose we have compared the displacement approximations of (3,3, 3)

in x1 - direction obtained with the pure displacement approach with the values in Table
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6.2 Three-dimensional problems for isotropic materials

A2 | linear | MR (§ =0) | MR (§ = 10) | MR (§ = 15) | MR (§ = 20) | MR, (§ = 25)
—100 | —1.5000 | —1.0384 —1.0073 —0.9951 —0.9843 —0.9749
—75 | —1.1250 | —0.8475 —0.8239 —0.8142 —0.8056 —0.7978
—50 | —0.7500 | —0.6181 —0.6038 —0.5976 —0.5919 —0.5867
—25 | —0.3750 | —0.3398 —0.3348 —0.3325 —0.3304 —0.3283
25 | 0.3750 0.4146 0.4241 0.4294 0.4352 0.4414
50 | 0.7500 0.9154 0.9670 1.0000 1.0403 1.0915
75 | 1.1250 1.5082 1.6590 1.7716 1.9346 2.2089
100 | 1.5000 2.1901 2.5185 2.8023 3.2974 4.5319

Table 6.17: Displacements u1(3,3,3) for different models and load values '°

One obtains the same approximations up to a tolerance 10~7 for all the conside-
red models (linear, Mooney - Rivlin with § € {0,10,15,20,25}) and all considered load
values 7'°* € {-100, —75, —50, —25, 25,50, 75, 100}. Thus we can state that both discreti-
zation schemes for this simple problem lead to the same displacement approximations of
u1(3,3,3). Hence, our proposed least squares finite element method yields reasonable re-
sults.

For the special choice of § = 25 four different deformed configurations, corresponding to
the load values 7'°*d € {100, —50, 50,100}, are depicted in Figure [6.30}

(a) ,yload = —100

(d) 44 =100

Figure 6.30: Deformed configuration for different loads (orange) and reference configura-
tion (blue) (Mooney - Rivlin model with § = 25, n, = 2816)
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In this figure the reference configuration is plotted in blue and the deformed configuration
for each load is plotted in orange. One observes a behavior which one expects due to the
problem description in Figure [6.28] The satisfaction of the boundary condition u-n =0
on I'p is visible in all these plots.

Altogether we can confirm that our proposed least squares finite element method (for the
B - formulation) works also in three dimensions. Moreover, it also works for more complex
material models than Neo- Hooke. Recall that for the Mooney - Rivlin model with § #£ 0
a Newton scheme for the evaluation of Ayr (PF(u)”) is necessary. For such a model the
simulation of quasi-incompressible materials (V close to %) is also possible whereas the

1

fully incompressible case v = 3 is not possible without further efforts.

6.2.2 Cook’s membrane with incompressible Neo - Hooke and adaptive refinement

In the second three-dimensional example we extend the Cook membrane problem from
two dimensions. For this purpose we use the domain of Cook’s membrane (cf. Figure [6.1])
in two dimensions as base area and expand it in x3-direction with thickness d := 5. The

corresponding reference configuration and prescribed boundary conditions for this problem

are summarized in Figure |6.31

constraints on I'p:
o u=0 (left)
constraints on I'y:
e P-n =0 (top, bottom,
front, back)
e P.n =g (right)

Figure 6.31: Problem description of Cook’s membrane in three dimensions

The boundary I" = 99 is splitted into the left lateral face I'p := {(0,x2,23) : 0 < 29 <
44,0 < x3 < d} and 'y consisting of the remaining five lateral faces. We clamp the body
on I'p and apply a surface force g = (0,7'°*4,0)” with load value v'°*d € R on the right
part of the boundary T'r := {(48,z9,23) : 44 < 253 < 60,0 < x3 < d}. On the other parts
of I'y no surface forces act. As body force density we use again f = 0. For the concrete

load — () 05, Lamé constants = 1, A = oo, i.e. we consider

example below we have chosen ~y
a fully incompressible material, and scaling parameters w; = 10%, wy = 1.
For the marking of elements in adaptive simulations we use now the Dorfler marking strat-

egy (cp. Appendix (C.2)) which is in general superior in comparison to the percent marking
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6.2 Three-dimensional problems for isotropic materials

strategy, since not only a fixed number of elements is marked but also a particular rate of

the total error is taken into account.

In Tables andnumerical obtained convergence rates corresponding to Fy g (P, up)
and ||div(P—Pyp,) H%Q(Q), using adaptive respectively uniform refinement, can be compared.

Note that the initial triangulation is quite coarse with n; = 880 tetrahedra and recall that

| denotes the refinement level.

l ne dimII, dimUp | cast | Fne(Pr,up)  (order) | ||div(P — Ph)HZLQ(Q) (order)
0| 880 22968 4104 3.8682- 1071 2.3313-1077

1| 1410 | 37161 6321 | 0.800 | 2.0062-10~"  (1.393) 4.8949 - 10~° (3.311)
2 | 1928 50859 8607 0.650 | 1.3179-107! (1.343) 1.8969 - 1078 (3.030)
3] 2892 | 76734 12576 | 0.450 | 8.1998-10"2  (1.170) 5.7679 - 107 (2.936)

Table 6.18: Convergence rates with adaptive refinement I (incompressible Neo - Hooke, 3d)

l ny dimII, dimUy | oasee | Fne(Pr,un)  (order) | ||div(P — Ph)HiQ(Q) (order)
0| 880 22968 4104 3.8682- 1071 2.3313-1077
7040 | 186912 30384 1.000 | 1.3719-107'  (0.498) 3.3031-1078 (0.940)

Table 6.19: Convergence rates with uniform refinement (incompressible Neo - Hooke, 3d)

One observes in Table that we obtain good convergence rates, close to the optimal
value %, for the nonlinear functional using adaptive refinement. Moreover we see, similar
as in the two - dimensional examples, that the convergence rates to the balance of momen-
tum is greater than for the nonlinear functional. Here they are even more than doubled.
Moreover, the value ||div(P —Pp)||2, () 10 each considered level is again close to zero, i.e.
linear momentum is conserved quite well.

The convergence rate for Fy g (P, up) in the case of uniform refinement (see Table
is worse than the optimal convergence rate % for linear elements. The convergence rate
corresponding to the conservation of momentum is approximately doubled.

Altogether we can confirm the observations made in two dimensions. For the sake of com-
pleteness a visualization of the convergence rates, corresponding to the values in Tables
and can be found in Figure [6.32

If we have a closer look at the parameter oggss in the fourth column of Table within
the marking strategy of Dorfler, we see that we have reduced the parameter in each step
in order to obtain good convergence rates. The question arises if such a reduction of ogs.f
is always necessary or if the necessity in this example is based on the used coarse meshes.
For this purpose we consider another simulation with adaptive refinement, using this time
a finer initial mesh with n; = 7040 tetrahedra. We observe in Table[6.20] that such a drastic
reduction of oy, is not necessary in this example. However, a slight modification of gt

from level to level is also here needed in order to get convergence rates close to the optimal
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Nonlinear Least Squares Functional
div(P - P,) in squared L,(%2) - norm

—s—uniform
——adaptive

—-—- optimal convergence rate (linear elements) —e— uniform
—-—- optimal convergence rate (quadratic elements) —s— adaptive

. .
10° 104 10° 104
# Tetrahedra # Tetrahedra

(a) Fna(Pn,up) (b) [|div(P — Ph)||2L2(Q)

Figure 6.32: Comp. of uniform and adaptive refinement I (incompressible Neo - Hooke, 3d)

l e dimII;, dim Uy | casee | Fva(Pr,un)  (order) | ||div(P —Pp) ||2L2(Q) (order)
0 | 7040 186912 30384 1.5280- 107! 4.0382-1078

1| 14284 | 381132 60456 | 0.950 | 5.7710- 102  (1.376) 5.6071-107° (2.768)
2 [ 18628 [ 498042 78216 | 0.900 | 2.7646-102 (2.772) 1.1405 - 10~° (6.058)
2 | 23640 | 633231 98469 0.925 | 2.5911-102 (1.589) 1.0739 - 107° (3.312)
2 | 30442 | 1056204 164328 | 0.950 | 2.3432-10~2  (0.887) 1.0000 - 10~° (1.713)

Table 6.20: Convergence rates with adaptive refinement II (incompressible Neo- Hooke,
3d)

one. In more detail: Starting from an initial triangulation (level [ = 0) with 7040 tetra-
hedra we use ogst = 0.95 in the first refinement step which results in a triangulation
with 14284 tetrahedra (level [ = 1). In this step the convergence rate 1.376 correspon-
ding to the nonlinear functional is close to the optimal one %. From level [ =1tol =2
we have compared the results for three different parameters ogs¢ € {0.9,0.925,0.95}. If
one chooses gyt = 0.9, we see that the convergence rate 2.772 is too good. Choosing
ogsrf = 0.925 leads to a convergence rate of 1.589 which is closer to the optimal one. If
one chooses the same parameter oqst as in the first refinement step, i.e. ogsr = 0.95, we
observe that the obtained convergence rate 0.887 becomes too bad. This means that one
value ogst € (0.925,0.95) should lead to an optimal convergence rate.

The convergence rates belonging to the conservation of momentum are improved indepen-
dently of the choice of o4s:¢ in all these case. They are approximately twice as large as the
convergence rates to the nonlinear functional, similar as observed in the two - dimensional
examples.

We can conclude that the numerical convergence rates are quite sensitive with respect to
ogsrf and it is difficult to choose an ,,optimal“ parameter ogs¢. In addition we have seen

that if we start with a coarse mesh we must reduce the parameter ogsps in the refinement
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(a) Deformed configuration (b) Normal component of P on I'p

Figure 6.33: Results in level 2 with adaptive refinement II (incompressible Neo- Hooke,
3d)

strategy stronger in order to get convergence rates close to the optimal one. In general,
note that an optimal convergence rate is only asymptotically expectable, i.e. in fact we
have to consider much more refinement steps to get a more precise statement.

On the left side of Figure[6.33] the deformed configuration with n; = 23640 tetrahedra after
two refinement steps, belonging to ogs.s = 0.925 and the finer initial triangulation, is plot-
ted. We see that we have a strong local refinement near the edge {(0,44, z3) : 0 < z3 < 5}.
This means that the point singularity in (0,44) of two dimensions becomes an edge sin-
gularity in three dimensions. Moreover, one also observes stronger local refinement at the
transition of boundary conditions from hard - clamped (u = 0) to stress-free (P -n = 0)
and at the right part where the surface force acts.

On the right side of Figure the approximated normal component of P with outer
normal n = (—1,0,0)7 is depicted on I'p. One can observe that the absolute values of
the components P;; and P»; of P increase near the singularity edge. In Figure stress
approximations for each component of the Kirchhoff stress tensor 7 are illustrated on the
same mesh. One observes that the approximated stress tensor is quite symmetric, accor-
ding to our theory (cf. Corollary . Differences between the nondiagonal elements of
T occur only near the singularity edge where the discretization error is large.

At the end of this example we are also interested in the resultant normal and traction
forces on I'p, similar to Tables [6.4 and [6.10] in the two - dimensional case.

Analogously to we obtain for an arbitrary vector v € R3, arbitrary load value
y°2d ¢ R and the prescribed boundary conditions on I'y the equation

/ v-P-nds= / V- ,.Yload ds = / vz,yload ds = ’Uz’yload|FR| — 801)2,)/103@7 (66)
FN FR 1_‘R
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Hooke, 3d)

T12

= n := (—1,0,0)T on I'p, respectively the tangential vectors

and v = ty := (0,0,1)7 orthogonal to n, and combining this with

T11
T21
T31

t; == (0,1,0)T

(6.4) leads to

Figure 6.34: Components of the Kirchhoff stress (incompressible Neo

where the right part I'r of the boundary I" has the area |[I'gr| = 16d = 80. Using
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for the outer normal v

A%

(6.7)

Y

0

load

—/ n-P-nds=-80-0-v
'y

—/typnwz/typmm:ww%
I'p NN

/ n-P-nds
I'p

P11 ds
P21 ds

J.
J

=0,
P11 ds = O,

0 are the exact
Py, P31 of

fFD P31 ds

80 - 0.05 = 4 and Valg
172

/ tQ-P-nds:/ t2.P.nd8:80‘0‘710ad
FD FN

80,yload
boundary integral values on I'p if one insert the correct stress components P,

D

/ P31 ds
I'p

similar to 1} In particular for 4°*d = 0.05 this means that Val; := fFD

fFD P21 ds

Valg
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Some results can be found in Table using adaptive and uniform refinement. In the
adaptive case we consider the results on two different sequences of meshes, similar as
above. ,,Adaptive refinement I“ corresponds to the coarse initial mesh with 880 tetrahedra
and ,adaptive refinement II1“ to the finer initial mesh with 7040 tetrahedra. For the finer
initial mesh we distinguish again between ogs¢ € {0.9,0.925,0.95} in the second refinement
step. In the case of uniform refinement we start with the coarse initial mesh. We observe
convergence of Val; and Valy to the correct values in all cases. Adaptive refinement leads
to better results than uniform refinement, as expected. Concerning Vals we have to say
that the values sometimes oscillate, e.g. observable in ,adaptive refinement I* from level
[ = 2 to [ = 3. This behavior seems to occur if the previous solution is close to the used

tolerance tol = 10~% in the Gauss- Newton framework.

adaptive refinement I

Level | Nt Odsrf Valy Vals Vals
0 880 1.7462-1072 | 3.9723-10° | —1.1473-107*
1 1410 | 0.800 | 6.6751-1073 | 3.9872-10° 8.6541-107°
2 1928 | 0.650 | 3.0716-1072 | 3.9921 - 10° 5.3635-107°
3 2892 | 0.450 | 1.8159-1072 | 3.9959-10° | —6.7773-107°

adaptive refinement 11

Level [ ng Tdorf Valy Val, Valj
0 7040 7.4262-1073 | 3.9884-10° | —8.7433-107°
1 14284 | 0.950 | 2.8350-1073 | 3.9956 - 10° 1.9505 - 10~°
2 18628 | 0.900 | 1.2603-1073 | 3.9981-10° | —1.3150-107°
2 23640 | 0.925 | 1.2337-1072 | 3.9981-10° | —1.3283-107°
2 39442 | 0.950 | 1.2068-1072 | 3.9982-10° | —5.7961 - 10~°

uniform refinement

Level [ ng Tdorf Valy Val, Valj
0 880 1.7462-1072 | 3.9723-10° | —1.1473-107*
1 7040 | 1.000 | 6.7975-107% | 3.9895-10° | —3.8141-107°

Table 6.21: Values of boundary integrals on I'p (incompressible 3d Cook, LSFEM)

We can conclude that our least squares method, using suitable parameters ogsf, lead
to optimal convergence rates. We have seen that the obtained convergence rates are very
sensitive with respect to the choice of this parameter. We have again observed an improved
convergence rate for the conservation of linear momentum, similar as in two dimensions.
Good stress approximations can be achieved with our method. This includes that the
axiom of force and momentum balance is satisfied quite well (cp. Table and Figure
6.34]).
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6.3 Transverse isotropy in three dimensions

In this Section our aim is to test the proposed least squares finite element method of
Section [4] for transverse isotropic materials. In the numerical simulations we use the same
finite element spaces as in Section Before we start we mention that all Young’s moduli
and shear moduli have the physical unit of force per length squared. In common tables, e.g.
in literature or in the internet, these moduli are usually given in the unit of megapascal
which is identical to Newton per square millimeter. The units of physical constants and
forces are again neglected in the following.

In real applications so-called fiber reinforced materials are of great importance. Such
materials are composites consisting of a basic material and some fibers of a second material.
The fibers strengthen the material in a particular direction. In practical applications the
basic material is weaker than the fiber material. This implies that Young’s modulus of
the basic material is usually less than Young’s modulus of the fiber material. Vice versa,
Poisson’s ratio of the basic material is usually greater than Poisson’s ratio of the fiber
material.

With this in mind we consider a composite of a weak basic material (e.g. an elastomer) and
a stronger material (e.g. steel fibers). If we use the weak material in the isotropic planes
and perpendicular to them the strong material we are in the situation of a transverse
isotropic material studied in Section |4 We need the material parameters E1, E3, v19,v31
and G31 as input for the calculation of the coefficients («, 3,1, e2,e3) within the used
transverse isotropic model (cf. Section . For an elastomer the values 15 = 0.4 as
Poisson’s ratio and F; = 103 as Young’s modulus are quite reasonable in real applications
and are used in our numerical simulation below. For the strong material we use a fixed
Poisson’s ratio v3; = 0.3 < v19 and vary Young’s modulus F3 = 103t/ > E; for j =1,2,3
in order to show the robustness of our method for increasing F3. We set the remaining
necessary material parameter (G31, the shear modulus in the xz3- 1 - plane, as G3; = 400.
The chosen set of material parameters satisfies the conditions below equation (4.21]).

As free material parameters we choose 6 = 0, a1 = 9, as = 1, ag = —%, b =1,b =3
and by = —%. With this choice and the chosen material parameters above we obtain
nonnegative coefficients in (respectively in (4.12) and (4.13))) after solving the linear
system of equation derived in Section [£.3] Consequently, polyconvexity of the underlying
stored energy function (4.14)) is ensured (cf. Section [4.2)).

As geometry and boundary conditions for our numerical example below we use again the

Cook membrane problem in three dimensions described in Figure [6.31] Furthermore we
choose g = (0,40,0)7 and f = 0 as surface and volume force densities and w; = 102,
wo = 1 as scaling parameters in (4.24)).

In the first test we would like to illustrate numerically the dependence of displacements

relative to the preferred direction a. One expects that the displacement approximations
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vary if one changes a. For a confirmation of this behavior we start with preferred direction

= %(\/i, 0,1)7 and rotate it about the x3-axis with the help of the orthogonal matrix

cos(¢p) —sin(¢p) 0
Q. = | sin(¢) cos(¢) 0|,
0 0 1

depending on the rotation angle ¢ € [0, 7).

We start with ¢ = 0 and choose an angle step size of § (= 22.5°). The corresponding results

can be found in Table for three different Young’s moduli F3 = 10317, j =1, 2, 3.

angle w1 (48, 60, 5) w2 (48,60, 5) u3(48, 60, 5)
j=1 j=2 j=3 j=1 ji=2 j=3 j= ji=2 j=

0° —9.4052 —9.3698 —9.3662 10.4766 10.4609 10.4593 0.2044 0.0629 0.0468
22.5° —8.3774 —8.2460 —8.2327 9.3860 9.2612 9.2486 —0.2799 —0.5373 —0.5649
45° —8.2653 —8.0892 —8.0710 8.8394 8.6366 8.6162 —0.6477 —0.9286 —0.9607
67.5° —9.3688 —9.2917 —9.2831 9.7851 9.6754 9.6640 —0.5118 —0.6002 —0.6143
90° —10.3970 —10.4251 —10.4278 10.9611 10.9725 10.9737 —0.4106 —0.4225 —0.4234
112.5° —10.6179 —10.6710 —10.6759 11.1998 11.2386 11.2423 —0.4461 —0.4579 —0.4567
135° —10.5331 —10.5832 —10.5882 11.0457 11.0795 11.0830 —0.5923 —0.6050 —0.6069
157.5° —10.3475 —10.3901 —10.3945 10.9905 11.0164 11.0190 —0.5439 —0.4898 —0.4833

Table 6.22: Transverse isotropy: Dependence of displacements relative to preferred direc-
tion a for B3 = 1037, j =1,2,3

One observes the displacement dependence in the particular point (48,60, 5) with respect
to the preferred direction a in each case. The results belong to a fixed mesh with n; =
1144 tetrahedra. One can also observe that if the displacements in x7 - direction increase
the displacements in xo-direction decrease and vice versa. This is reasonable for the
considered problem. For each considered rotation angle ¢ one can additionally observe
a kind of convergence of wu;, i = 1,2,3. Thus our proposed least squares method seems
robust in E£3. One can also observe in this table that the absolute values of the displacement
approximations in x3- direction reach its maximum in the case of a preferred direction
a= %(1, 1,1)T, corresponding to the rotation angle ¢ = T (=45°).

After these observations we consider the convergence of the least squares functional Fi;,
evaluated in the obtained approximations (Pp,up) € II; x Uy, and the convergence of
div Py, +f in the squared L?(Q)-norm for the choice of a = 2-(1,1,1)” and E3 = 105. We

3
see in Table that one can achieve optimal convergence rates for the nonlinear functio-

l ny ogsrt | Fei(Pp,up)  (order) | ||div(P — Ph)l\QLz(Q) (order) | u1(48,60,5) | u2(48,60,5) | u3(48,60,5)

0| 880 7.0826 - 1071 8.9815 - 10713 —7.9973 8.5615 —0.9645

1| 1499 | 0.75 | 3.5686-10"'  (1.287) 2.0582 - 10713 (2.766) —8.2149 8.7174 —1.1015

2 | 1617 | 0.30 | 3.2136-10"1  (1.383) 1.6467 - 1013 (2.944) —8.2288 8.7307 —1.1155
Table 6.23: Transverse isotropy: Results for a = —-(1,1,1)7 and E3 = 10 with adaptive

3
refinement
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nal if one uses suitable parameter oqs¢ in the marking strategy of Dérfler (cp. Appendix
. However the optimal choice of ogs.t is also here a difficult task, similar as observed
in Section The convergence rates to the momentum term is again improved and the
conservation of momentum is also satisfied quite well in this example. In the last three

columns of Table the displacements in the particular point (48,60,5) can be found.
They seems to converge.

(a) uniform, total view (b) adaptive, total view

(c) uniform, view along xs - axis (d) adaptive, view along x2 - axis

(e) uniform, view along x3 - axis (f) adaptive, view along x3 - axis

Figure 6.35: Transverse isotropy: Visualization of approximated 711 (left: uniform mesh

with n; = 1144, right: adaptive mesh with n; = 1617)
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In the next step our aim is to study the stress approximations. For this purpose we compare
exemplarily the approximation of the Kirchhoff stress tensor component 717 on a uniform
(ny = 1144) as well as on a locally refined mesh (n; = 1617). The results correspond again
toa = %(1, 1,1)T and F3 = 10° and are depicted in Figure on the left for the uniform
mesh and on the right for the adaptive refined mesh. The stress approximations are plotted
with respect to different views and look reasonable. One observes a bending behavior in
x3 - direction similar to the results in [SWB11]. Moreover, the occurring singularity at the
edge {(0,44,x3) : 0 < x3 < 5} on I'p can be observed again.

Finally, we consider the boundary integral values Val;, Valy and Vals for this example (cf.

equation (6.7)). The results are given in Table

Level { 0 ! 2 exact values
ne 880 1499 1617
Val, 2.8993-107° 1.1112-107° 7.9571-107° 0
Val, 3.2000 - 10° 3.2000 - 10° 3.2000 - 10® 3200
Vals —1.2398-107° | —1.3816-107° | —1.3774-107° 0

Table 6.24: Values of boundary integrals on I'p (3d Cook, transverse isotropy, adaptive
LSFEM)

One can also observe for this example, dealing with transverse isotropic materials, that
the approximations of the exact boundary integral values are very good.

Altogether we can conclude that our proposed least squares finite element method is
also promising for the simulation of anisotropic materials. First results for materials with
transverse isotropic behavior are presented in this section. They look quite reasonable
although no analysis is provided in this work. In particular we have shown numerically
that the results depend reasonably on the preferred direction and that we can get optimal

convergence rates and good stress approximations.
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6 NUMERICAL EXAMPLES

6.4 Model adaptivity in two dimensions

In this example our aim is to apply Algorithm [2] and show that the considerations in
Section [5| are reasonable. We use the same finite element spaces IT;, and Uy, as in Section
[6.1] within the numerical simulations below. For this purpose we consider again Cook’s
membrane in two dimensions (cp. Figure with body force density f = 0 and surface
force density g = (0,y1°8d)T, yload ¢ R Ag scaling parameters in and we use
wp = 10% = wﬁin, wo = % and wgn = 1. The example below corresponds to a fixed mesh with
ny = 2096 triangles. In this section (Py;,, uyy,) denotes the solution of the minimization
problem of linear elasticity and (Peq, Ureq) the solution of the minimization problem
in the finite dimensional space IT;, x Uy,.

Before we present some results for this problem, we firstly mention that the assumption
(Pyg,ung) € II® x U™ of Corollary is not satisfied for the Cook membrane problem.
We have observed this lack of regularity numerically in finite dimensional spaces near the
point (0,44) in two dimensions (cf. Sections and and near the edge
{(0,44,z3) : 0 < x3 < 5} in three dimensions (cf. Section in the previous examp-
les. Despite this regularity problem, the nonlinear least squares functional Fy g (Pp,up),
(Pp,up) € I, x Uy, has worked reasonable as a- posteriori error estimator in these nume-
rical simulations. For this reason we assume that the nonlinear functional Fx g (Pyin, i)
(respectively Fn g (Pred, Ureq)) is also a measure of quality for the solution of linear ela-
sticity (respectively the reduced solution) with respect to the Neo-Hooke model for this
problem (cf. Corollary [5.3)).

In Figure [6.36] a comparison between the linear model and the Neo- Hooke model is illu-
strated. On the left part of this figure the vertical displacement u2(48,60) is plotted for

load values 724 € [0, 0.4] (linear model in blue, nonlinear model in red). At first glance

45 . . . . . . . 104
401 +
35F

30+

u,(48,60)

—t

20 P

Nonlinear Least Squares Functional

5l —+linear model | 102F —t+—linear model 3
—+—Neo - Hooke model —+—Neo - Hooke model
0.3 0.35 0.

0 L L L L L L L -3 L L L L L
6 005 01 015 02 025 03 035 04 10" 005 01 o015 02 025 4
load value ~'°2 load value +'°%¢
(a) Displacements u2(48, 60) (b) Quality of solutions

Figure 6.36: Model adaptivity: Comparison of linear and Neo- Hooke model
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6.4 Model adaptivity in two dimensions

one observes consistency of the nonlinear model with the linear model, as expected by
Section [2.4.5 and an appropriate linear load - displacement relation of the linear model.
Moreover, one can observe that the linear solution becomes worse if one increases the
load value. The right part of Figure [6.36| confirms this observation in a more general way.
Here, instead of taking the displacement in only one particular point into account, the
whole nonlinear least squares functional is considered in the approximations. More preci-
sely, the values fNH((PNH)h, (uNH)h) (red curve), ((PNH)h, (uNH)h)) e II;, x Uy, and
FNi(Plin, win) (blue curve) are plotted for different load values. Similar to the left plot
both curves drift apart if one increases the load. The results are plausible and reflects the
observations in physical experiments.

In Figure the distribution of Fng(Pin,wsn) is plotted on the domain Q for four

different load values.

,_yload = 0.025 ,yload =0.1

30
25

20

,Yload =0.25 ,yload =04

Figure 6.37: Error distribution of linear solution (Py;,,u;,) for different load values

Recall that we have neglected the quadrature error in the theoretical part of Section
and therefore the total error contains only the model and the discretization error. Due
to the previously considered examples we know that we have a singularity near the node
(0,44) in this problem. Thus we expect a large discretization error in this part of the
domain, independently of the considered model. Looking at the plots in Figure we see
another part where the error is locally quite large. This part seems to be close to the right
boundary and in particular near the point (48,60). This area is exactly the region where
the surface force is applied. Intuitively this is the part where the difference between the

nonlinear and the linear model should be large. This observation is valid for all considered
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6 NUMERICAL EXAMPLES

load values in Figure [6.3
With this in mind we apply Algortihm [2| for the load value 4'°*d = 0.25. By Figure m
it is clear that we are far away from the regime of linear elasticity and the displacements
are quite large for this choice. In the algorithm we use the marking strategy of Dorfler
with ogsrt = 0.7 (cp. Appendix |C.2), the tolerance toly,oq = 107! and a maximal num-
ber im°d = 15 of model adaptivity steps. For the damped Gauss- Newton algorithm (cp.
Algorithm 1)) inside Algorithm [2| we use a tolerance tol = 1079 in the stopping criterion
and imax = 20 as maximal number of Gauss- Newton steps per model adaptive step. In
the following we denote ¢ € N as level in the model adaptivity scheme, according to the
considerations in Section Recall that ¢ = 0 corresponds to a fully linear model.

)

Starting with the linear model on the whole domain, i.e. ng) = () and ng =0, we ex-
pect by the considerations above that in the areas near the left upper node and near the
right boundary the linear model will be substituted by the nonlinear model. This can be
clearly seen by using Algortihm [2l The propagation of the nonlinear regime is illustrated
in Figure [6.38 in the left column after one, three, six and nine steps of model adaptivity.
One observes that the simple elements near the right boundary are exchanged in the first
step by complex elements. The exchange of simple elements to complex elements near the
singularity at the left upper node is visible after the third step. In general the complex
elements propagate in each step more and more from the right into the left part of Q2. After
the ninth step also the change of boundary conditions from hard - clamped to stress- free

in the origin is taken into account.
In the right column of Figure [6.38| the distribution of Fyg (P(i) ufn?d), <P(i) ug,?d> €

red’ red’

II;, x Uy, is plotted over the entire domain. One observes that the error on the complex
elements is quite small and the error dominates at the transition of the nonlinear and
linear part and at the singularity. After nine steps of model adaptivity one has a quite
smooth and small error distribution on the whole domain with exception near the singu-
larity. In this part local mesh refinement is necessary to improve the results. For a closer
quantitative consideration of the propagation of the nonlinear and linear regime we refer
to Table In the first steps the number of new complex elements from Qgi) to Qgiﬂ)
increases and later the number of them decreases. For instance from ng) to Qg?’) we get
270 new complex elements and from QSM) to ng) we get only 2 new complex elements.
This means that the model has to be adjusted quite strongly at the beginning and just a
bit in the later steps of Algorithm

In the second to last column the value of the nonlinear functional Fy, evaluated in the
reduced solution (P(i) ul?

red> Upe d), and in the last column the values of the vertical displace-

ment in (48,60) are listed. Convergence of these values can be observed in this example
although the displacement values are oscillating in the first steps. Since the change of the

reds Upe d) between two successive meshes is quite small

nonlinear functional values Fy g (P(i) u(i)

after a certain number of steps, it is reasonable to stop the algorithm at this point.
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6.4 Model adaptivity in two dimensions

0.8
0.7
4 06
0.5
0.4
0.3
0.2
0.1

10| =107, |28 | = 1989 error distribution of (Pﬁ)d, ug)d)
0.06
0.05
0.04
0.03
0.02
0.01
10| = 545,108 | = 1551 error distribution of (Pfj’i)d7 ug)d)
0.06
0.05
0.04
0.03
0.02
0.01
12| = 1106, |259] = 990 error distribution of (P(%,,u'?))
0.06
0.05
0.04
0.03
0.02
0.01
|Q§9>| = 1551, |Q§,9)| =545 error distribution of (Pi)d, ug)d)

Figure 6.38: Visualization of model adaptivity on a fixed mesh (n; = 2096)
(left: decomposition into linear domain Qg) and nonlinear domain Qgi); right: error

distribution for reduced solutions)
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Level i | 0] | [057] | Fvu (Pl ull) | ua(48,60)
0 0 2096 2.9120 - 102 25.5216
1 107 | 1989 7.0948 - 10! 18.4849
2 275 | 1821 1.9726 - 10* 16.3284
3 545 | 1551 9.3872 - 10° 16.0075
4 745 | 1351 4.9352 - 10° 16.0405
5 942 | 1154 2.5737 - 10° 16.0640
6 1106 | 990 1.4340 - 10° 16.1579
7 1259 | 837 8.2623- 1071 16.2261
8 1419 | 677 5.2130 - 1071 16.2876
9 1551 | 545 3.6855 - 1071 16.3177
10 1634 | 462 2.9418 - 107! 16.3289
11 1680 | 416 2.5333-1071 16.3342
12 1703 | 393 2.3458 - 1071 16.3373
13 1715 | 381 2.2526 - 1071 16.3384
14 1721 | 375 2.2031-107* 16.3390
15 1723 | 373 2.1867 - 107! 16.3391

Table 6.25: Results for model adaptivity

Otherwise the computational costs are higher compared to the benefit. In this example
a reasonable point to terminate the algorithm is probably between the eighth and tenth
step.

At the end of this example we would like to confirm numerically one main advantage of
model adaptivity. We have already realized at the end of Section that one can reuse
the local stiffness matrices on the domain 29, provided that we have a fixed disjunct de-
composition of ) into a linear part {29 and a nonlinear part €. This affects the number
of entries in the global stiffness matrix that must be recomputed in the single steps of
the Gauss- Newton scheme. Moreover, also a part of the stiffness matrix in the transi-
tion (Qgi)7ﬁg)> — (Qgiﬂ),QgH)) can be reused. This part corresponds to the linear
unchanged part, i.e. the elements which are in the intersection of Qgi) and Qgﬂ). Since
Qgﬂ) C Qg) by construction, the linear unchanged part is exactly the set Qgiﬂ).

Some numerical results concerning the entries of the occurring stiffness matrices for this
example can be found in Table

Here Ai?d denote the stiffness matrices that occur in the Gauss- Newton scheme of the
reduced model in level ¢ of model adaptivity. In general they consist of a nonlinear part
Affgnlm, corresponding to Qgi)7 and a linear part, corresponding to Qg). For ¢ = 0 the stiff-
ness matrix Afzd
We split Aff.)d additively into a linear and a nonlinear part. We determine the nonlinear

part Al as all entries of AY

nonlin red
In particular this means that n (Agnlm> = # {(j7 k) ’(Agd) T (Alm) .
j7 j7

denotes the number of nonlinear entries in the matrix Affe g

coincides by construction with the stiffness matrix Ay, of linear elasticity.

— Ay, which are greater than a given tolerance tol.

> tol}
k

up to a given tolerance. The
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6.4 Model adaptivity in two dimensions

Level i | nnz (Ai?d) n (Affgnzm) 1- Z(i%i?f:)) mné?‘
0 1674148 0 1.0000 1.0000
1 1674664 84223 0.9497 0.9490
2 1674912 218879 0.8693 0.8688
3 1674934 437317 0.7389 0.7400
4 1674966 597853 0.6431 0.6446
5 1674998 755954 0.5487 0.5506
6 1675024 887998 0.4699 0.4723
7 1675058 1010499 0.3967 0.3993
8 1675086 1140367 0.3192 0.3230
9 1675284 1245715 0.2564 0.2600
10 1675428 1313254 0.2162 0.2204
11 1675538 1350576 0.1939 0.1985
12 1675554 1369495 0.1827 0.1875
13 1675560 1379015 0.1770 0.1818
14 1675566 1384033 0.1740 0.1789
15 1675586 1385751 0.1730 0.1780

Table 6.26: Development of nonlinear entries in stiffness matrices

(4)

red

Table the tolerance was chosen as tol = 1077,
In the second column of Table the number of nonzero entries of ATQd, abbreviated

as nnz (Ai?d>, can be found for each level of our model adaptivity scheme. In the third
(@)
red

cess of model adaptivity steps. This is reasonable, since more and more elements become

n (Aa('lzgnlzn)

complex elements in the algorithm. ( ) is the ratio of nonlinear entries in the stiff-
nn

other entries of A -, are similar to the corresponding entries in Ay;,. For the results in

column the number of nonlinear entries in A}’ are listed. They increase during the pro-

2(AD

red
. (’L) n( S(anin) . . . . . . .
ness matrix A, ;. Thus 1 — ——==< indicates the ratio of entries in this matrix that are
re nnz <A'red>
n<A'E12nlin> . . . .
—— 5% is therefore a ratio of matrix entries
nnz(A ) >

red

which need not be recomputed, i.e. a measure of saving computational time. This ratio

similar to linear elasticity. The number 1 —

coincides approximately with the ratio of linear elements to all elements (cp. the last two
columns in Table . Furthermore, it is reasonable that these values decrease within
increasing the level 4, since more and more elements become complex.

All occurring stiffness matrices in this example have the dimension dim(IT;, x Up,) = 35632
and are sparse. For instance in Figure [6.39|the structure of two occurring stiffness matrices
after three and nine steps of model adaptivity can be observed. The entries are divided
into a blue part, corresponding to the linear model, and a red part corresponding to the
nonlinear model.

At the end of this example we would like to point out that this algorithm for model ad-
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red: nnz = 437317
blue: nnz = 1237617

[ nonlinear entries (red) linear entries (blue)|

red: nnz = 1245715
blue: nnz = 429569

nonlinear entries (red) linear entries (blue)|

Level i =3 Level 1 =9

Figure 6.39: Decomposition of stiffness matrices for two different levels

aptivity is far from optimal. A more improved algorithm needs a decomposition of the
total error into model and discretization error. Such a splitting is desirable and highly
recommended similar to [SRO07]. One should combine model adaptivity with usual mesh
refinement in an appropriate way. However, from our point of view the observations here
and in Section [p| provide some first helpful considerations dealing with model adaptivity
in the context of least squares finite element methods, even without such a decomposition
of the total error. The general aim of model adaptivity should be to speed up an existing
algorithm combining model adaptivity and usual mesh refinement. Provided that the ap-
proximation quality of the solutions are the same, an algorithm using model adaptivity
should be faster than another algorithm without using model adaptivity.

Generally such algorithms using model adaptivity are very interesting, since one can start
with the simplest possible model and the algorithm automatically decides in which ele-
ments one must use a more complex one. Also an extension using a hierarchy of different
models is possible, e.g. using the model of linear elasticity, Neo- Hooke, Mooney - Rivlin

and maybe even more complex models.
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7 Conclusion and outlook

7.1 Conclusion

In this work polyconvex stored energy functions in the context of hyperelasticity for the
description of nonlinear material behavior have been considered. The coefficients in these
functions have been determined such that the nonlinear model is consistent with appro-
priate linear ones (cf. Section for the homogeneous isotropic Mooney - Rivlin model
and Section for a special model within transverse isotropy).

Based on the physical necessary conservation of linear momentum and the usual stress-
strain relation, derived from the given stored energy function, the idea in our approach is
to invert the nonlinear stress- strain relation, similar as done in [CS04] for linear elasticity.
We have shown with the local inversion theorem that this is at least possible for small
strains although an exact representation for the inverse is not available in general. With
this in hand we have formulated general nonlinear least squares functionals for homoge-
neous isotropic models in terms of B and C (cf. ) These functionals depend on the
first Piola - Kirchhoff stress tensor P and the displacement u and lead therefore to mixed
finite element methods. This approach can be used in general for all kinds of given stored
energy functions, provided that consistency of the considered model with linear elasticity
is satisfied.

For the minimization of the nonlinear functionals in finite dimensional spaces we have used
the Gauss- Newton scheme, i.e. we have replaced the nonlinear problem by a sequence of
linearized problems. The practical result is Algorithm [I}

Focusing on a special model of Neo-Hooke type, we have shown that it is possible to
derive cubic equations for the B - and the C - formulation (cf. and (3.46))). With the
help of them one is able to determine Ayg(PF(u)T) (respectively Ay (F(u)~'P)) for
given (P, u) exactly, i.e. in particular without using Newton’s method. This is an essential
advantage in the resulting numerical scheme. Another remarkable fact is that one can set
A = 00 in these equations and in the resulting method. In particular we have shown the
well - posedness of Ay g and An (cf. Theorem and Theorem D for A — oo and that
in this case these mappings are no longer invertible, similar to C~! in linear elasticity. Mo-
reover, we have proven that the incompressibility constraint to the strain Ay gy (PF(u)T)
(respectively Ang (F(u)*lP)), corresponding to any combination (P, u), is satisfied in
the incompressible limit (see Remarks and [3.12). For the B - formulation we have set
conditions where the cubic equation has definitely only one real solution (Proposition |3.7)).
We have established an analysis for the nonlinear functional in the case of the Neo - Hooke
material and the B -formulation starting with some necessary regularity assumptions for
(P, u) and volume force density f (Corollary [3.14) such that the nonlinear functional
exists. Our main theoretical result is Theorem which proves efficiency and reliability

of the nonlinear functional Fyp and is uniformly valid in the incompressible limit A — oo
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7 CONCLUSION AND OUTLOOK

such that Poisson locking is excluded within this model. Due to this theorem it is also
theoretically proven that F g is a suitable a- posteriori error estimator which can be used
in adaptive refinement strategies. An a- priori error estimate is an immediate consequence
(cf. ) Moreover we have shown that the approximation 7, of the Kirchhoff stress
tensor T becomes symmetric for h — 0 (see Corollary . For the linearized problems
we have proven that they are well - posed in Hr,, (div; )3 x H%D ()3 (cf. Corollary .
In Section [3.6| we have formulated some reference methods in order to compare our pro-
posed least squares method with them in numerical experiments. In particular we have
seen in this section that the usage of the Mooney - Rivlin model in a two - dimensional
plane - strain leads to the same displacement approximations as the Neo- Hooke model
(cf. Proposition . Moreover these formulations cover also the material behavior of
linear elasticity if one uses the zero solution as initial guess (cf. Remark and equation
(B-103)).

In Section |4 we have extended our idea to materials with transversely isotropic behavior
which is of great importance for concrete applications in engineering, e.g. fiber reinforced
materials. We have formulated a suitable stored energy function based on [Sch10] and
[BSN10] for such problems. Again consistency with an appropriate linear model and the
transition to the isotropic case (cf. Remark is ensured.

In Section [5| we have proposed an algorithm dealing with model adaptivity in the context
of least squares finite element methods (cf. Algorithm . In particular the potential of
measuring the quality of solutions of the reduced/simple model with respect to another
model is of crucial importance in this context. The idea is realized in more detail for the
model of linear elasticity as simple model and the Neo-Hooke model as more complex
model (cf. Corollary [5.3)). An extension to other models or a hierarchy of models is con-
ceivable.

In Section [6] we have tested our proposed least squares finite element method succesfully
in two and three dimensions. We have seen in several examples that we can set A = oo
in simulations for the Neo- Hooke model and that we can achieve almost optimal conver-
gence rates, regardless of considering compressible or fully incompressible materials. The
nonlinear least squares functional works well and reliable as a- posteriori error estimator,
even for examples where the regularity assumptions of our theory are not satisfied. We
have seen that the method also leads to good results for bending dominated problems (cf.
Section . In this context we have pointed out the occurring scaling issue within our
method. Considering the size of the domain and the physical parameters in more detail
one can handle this problem quite well. One remarkable effect is the improved convergence
rate for the conservation of momentum that we have observed in several examples (cp.
[SSS11]).

After studying these examples our proposed least squares method seems well - suited to

obtain good stress approximations. Stress oscillations as observed in the cases of the Ga-
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7.2 Outlook

lerkin or displacement - pressure approach are not present in the considered examples.
The resulting stress approximations are one major advantage of our method compared to
others. However, if one is only interested in good displacement approximations our least
squares approach would not be the method of choice.

The extension of our method to more complicated homogeneous isotropic materials as
Neo-Hooke is shown in Section [6.2.1] where the displacement approximations using a
Mooney - Rivlin model for different parameters § are compared within a three - dimensional
uniaxial tension test.

At the end we would like to emphasize that our method has no difficulties in approximating
the correct critical load values in the examples of [ABadVLR10]. Furthermore we have ap-
plied our method succesfully to an example with transversely isotropic material behavior
(cf. Section . Here we have observed numerically the dependence of the displacement
with respect to the preferred direction, as expected. And lastly we have shown exemplarily
in Section that our proposed algorithm for model adaptivity works quite well. We have
seen a reasonable expansion of the nonlinear region and that one can reuse entries of older
stiffness matrices for newer stiffness matrices in the Gauss- Newton framework. This idea

might aid in saving computational time.

7.2 Qutlook

In the following we would like to point out some open questions which arose during this
work. Moreover we discuss some opportunities for further research.

Our theory in Section [3.5is based on the convex sets II®® and U°. This choice includes
quite strong regularity assumptions which are not satisfied in general (cp. [HMWII]).
It would be advantageous if one could weaken the assumptions to W4(div; Q)3 for the
stresses and WP ()3 for the displacements with finite ¢, p > 2. Under these assumptions
an analysis which includes efficiency and reliability of the nonlinear functional F(P,u)
with respect to appropriate norms is desirable.

Another problem occurred in Section [3.5.2] We have pointed out that we cannot guarantee
that the new solution (P(k“)7 u(k+1)) lies in IT® x U>°. But this is essential for Theorem
3.29| The aim should be to prove a regularity theorem such that the sequence (P(k), u(k)),
k € N, stays in IT®® x U,

Moreover it would be advantageous if one could extend the derivation of cubic equations,
similar to and , to more complicated models. But already for the Mooney -
Rivlin model , d > 0, the coupling between dev B and dev 7 (cp. ) becomes
much more complicated and prevents a simple analogous derivation. Well - posedness of A
and A in the incompressible limit and an analysis for more complicated models would be
desirable, but hard to achieve.

Besides these concrete issues, one could improve the computational time of Algorithm [I]in
the following way: The linear systems of equations (cf. ) which occur in the Gauss-
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Newton framework are extremely costly in three dimensions. They should be solved in an
efficient way. One needs a suitable preconditioner in order to reduce the condition number
of the occurring stiffness matrices and must combine them with a suitable solver. Domain
decomposition methods and/or algebraic multigrid techniques could be helpful.

A further concrete improvement in the context of model adaptivity (cf. Section |5)) would
be an additive splitting of the total error into a part describing only the discretization
error and a part describing only the model error. The considerations in [SRO07] could be
helpful for further investigations.

The examples in Section [6] are all based on a polygonal bounded domain 2. Bodys in real
applications, e.g. cars or aircraft, obviously have a curved boundary. In order to improve
results one can use so- called isoparametric elements. Here, roughly speaking, one increases
the polynomial degree in the usual mapping from the reference element to an arbitrary
element. Further explanations in the context of isoparametric elements can be found in
[Bra07] and [BBF13|. Some investigations in the context of least squares finite element
methods using isoparametric (Raviart - Thomas) elements have been provided in the recent
works [BMS14b] and [BMS14al.

In the introduction at the beginning of this work we have distinguished between plastic and
elastic deformations. The whole work has only considered elastic deformation processes.
In order to simulate for instance crash tests in engineering one must extend the proposed
method to plasticity. A mathematical introduction into plasticity can be found in [HR13].
In [Sta07] a least squares finite element method in the context of small-strain elasto-
plasticity is realized. Some further modeling aspects and numerical examples in the context

of finite multiplicative plasticity can be found for instance in [NW03].
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Appendix

A Little o-and big O - notation

The following definitions can be found in [AEQ0Ga].

Little o- notation:

For normed spaces X and E, D #0, f : D C X — E, a >0 and a € D it holds
- fl=)
f(@) =o(||z —all%) (x = a) & xhj}lam =
Or equivalently Ve > 0 there exists a neighborhood U of a in D with
If(@)lle <elle—allk, zeU.

Big O-notation:

For normed spaces X and E, D # 0, f : D C X — E, a > 0 and a € D it holds
f(z) = O(||lx — a||%) (z — a) if and only if there exists r > 0 and K > 0 with ||f(z)||r <
K|z — a||% for all x € B(a,r) N D. B(a,r) denotes the open ball in X centered at a with

radius 7.

B Quadrature rules

The following quadrature rules can be found in [Cow73| for a triangulation into triangles
(2d) and in |[GH91] for a triangulation into tetrahedra (3d). Both quadrature rules integrate

polynomials up to degree 5 exactly.

B.1 7- point quadrature formula for triangles (2d)

In two dimensions we consider the reference triangle 7' with vertices (0,0), (1,0), (0,1),

the nodes

T
. 1 T T 6 —+v15 9+2V15
xp:=-(1,1)", %Xo:=—7"—(1,1)", =X3:= ; 5
3 21 21 21

T T
. <9+2\/ﬁ 6—\/ﬁ> . <6+\/ﬁ 6+\/15>
4 = 5 5 = 5

21 To21 21 721

. <6+\/ﬁ 9—2\/E>T . (9—2\/ﬁ 6+\/E>T

X6 = ; )
21 21 21 21
and the weights wy = %, W9 = W3 = Wy = 15‘350‘(/)ﬁ, W5 = Wg = Wy = %.
Then we define the quadrature rule
1 < .
I(a) == /Ta(fc) di ~ 3 wi U(x;) =: I(u)
i=1
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B QUADRATURE RULES

on the reference element for functions @ : T C R? — R and it holds I(a) = I(a) for
o € Ps(T).

Thus, with the standard affine transformation Fy : T — T, X — Fp(X) = Mx + a,
M € R?>*2, a € R?, from T to an arbitrary element 7' € T, we obtain the quadrature rule

I(u) ::/Tu(x) da::éu(FT(ﬁ))|detM\diz2vol(T)/Tu(FT(§())di“

7
~vol(T) Y wiu(Fr(%k:)) =: I(u)
1=1

for functions u : T C R? — R, since |det M| = 2vol(T), and it holds I(u) = I(u) for
u € Ps (T)
B.2 14- point quadrature formula for tetrahedra (3d)

In three dimensions we start with the reference tetrahedron 7' defined by the vertices
(0,0,0), (1,0,0), (0,1,0) and (0,0, 1). Moreover let

1 2 , 104 + 8v/46 cos(h)
= , h:=arccos(g) + - arcsin(g), k:= ,
9= 6vio (9)+3 (9) 3
7+s 7T—s
s:=v49 -k, b:= o a:=1-3b, d:= o c:=1-3d,
98 —k — 14s 98 — k + 14s 1—4(p+q)
=— =_— ==
P = 16800 —a)®” 17T 1680s(c — a)® 6
1
5 \ 1
e,:]‘—i_(1057”)4 f':1_2e
: 4 , : 5

be some successively defined constants. With these constants we define the nodes

= (a,b,b)", %o:=(b,a,b)", %3:=(bba)’, %x4:=(bbb)",
%5 := (¢, d,d)", %¢:=(d,c;d), %7:=(d,d, )", %s:=(d,d,d)T,
( Ta )A(lO = (evfae)Tv )A(ll = (eafvf)Ta fil? = (f,6,6)T7
(

)
)Ta )214::(f,f,6)T,

the weights wy = ... =ws =p, ws = ... = wg = ¢, wg = ... = wiy = r and finally the

quadrature rule
R
I(d) = /Ta(&) dis ~ < ;w a(%;) =: I(a)

on the reference element for functions @ : T C R® — R and it holds I(4) = I(a) for
U € Ps (T)
Analogously as above for the two - dimensional case, using the standard affine transforma-

tion Fr : T — T, X — Fr(x) = Mx +a, M € R*3 a € R3, from T to an arbitrary
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element T' € 7}, we obtain the quadrature rule
I(u) = / w(x) dz — / W(Fp(%))] det M| di = 6 vol(T) / W(Fr(%)) d
T T T

~ vol(T Zwl (Fr(x;)) =: f()
1=1

for functions u : T C R® — R, since |det M| = 6vol(T), and it holds I(u) = I(u) for
u € Ps (T)

C Marking strategies

Assuming that 7j is an admissible triangulation of the given body €2 with decomposition

Q = |J T, the least squares functionals in this work, evaluated in an approximation
TETh
(P, up), have the structure

F®h,wp) = [R(Ph w72y = > IR®uwn)llizmy = Y 0
TeT TeT,

where np, T € Ty, are called local error indicators.
Without loss of generality we assume that the local error indicators are sorted in a descent
order, i.e. np, > np, > ... > N1 = M, s where n; denotes again the number of elements

in the triangulation.

C.1 Percent marking strategy

Let p € [0,100] be arbitrary. Then we define n € N as

where [z] := min{k € N: k > z} denotes the ceiling of a given z € R>.

With this defined 0 < n < n; the elements 711, ...,T,, will be marked for refinement. By
construction these n elements are exactly the elements of the triangulation with largest
local error indicators. The case p = 100 (< n = n;) corresponds to an uniform refinement
and the case p = 0 (& n = 0) corresponds to no refinement. Altogether one obtains a

subset S := {T1,...,T,} C T, which consists of elements that are marked for refinement.

C.2 Marking strategy of Dorfler

Let ogsie € [0,1] be arbitrary. The aim of Dérfler’s marking strategy (cp. Section 4.2 in
[D6r96)) is to seek the smallest subset S C T, such that

D= 0hes ) 0 (C1)

TeS TeTh
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C MARKING STRATEGIES

One starts with S = () and increase the set in each step by one element, starting with
Ty (the element with the largest local error indicator) and stopping at the latest on T,
(the element with the smallest local error indicator), as long as the inequality is not
satisfied. The elements T' € S will be marked for refinement. For o4s.f = 0 one obtains
S = 0, i.e. no refinement will be performed, and for ogsf = 1 one gets S = Tp, i.e. all

elements will be refined.
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