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Abstract

Accurate predictions of the impacts of future land use change on species of conservation concern 

can help to inform policy-makers and improve conservation measures. If predictions are spatially 

explicit, predicted consequences of likely land use changes could be accessible to land managers 

at a scale relevant to their working landscape. We introduce a method, based on open source 

software, which integrates habitat suitability modelling with scenario-building, and illustrate its 

use by investigating the effects of alternative land use change scenarios on landscape suitability 

for black grouse Tetrao tetrix. Expert opinion was used to construct five near-future (twenty 

years) scenarios for the 800 km2 study site in upland Scotland. For each scenario, the cover of 

different land use types was altered by 5-30% from 20 random starting locations and changes in 

habitat suitability assessed by projecting a MaxEnt suitability model onto each simulated 

landscape.  A scenario converting grazed land to moorland and open forestry was the most 

beneficial for black grouse, and ‘increased grazing’ (the opposite conversion) the most 

detrimental. Positioning of new landscape blocks was shown to be important in some situations. 

Increasing the area of open-canopy forestry caused a proportional decrease in suitability, but 

suitability gains for the ‘reduced grazing’ scenario were nonlinear. ‘Scenario-led’ landscape 

simulation models can be applied in assessments of the impacts of land use change both on 

individual species and also on diversity and community measures, or ecosystem services. A next 

step would be to include landscape configuration more explicitly in the simulation models, both 

to make them more realistic, and to examine the effects of habitat placement more thoroughly. In 

this example, the recommended policy would be incentives on grazing reduction to benefit black 

grouse.
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Introduction

Land use change has been shown to be an important driver of population change in a wide 

variety of taxa [1], with changes such as conversion of forest to agricultural land reducing habitat 

availability for species throughout the world [2]. Even subtle changes to the way the landscape is 

managed, such as the timing of ploughing cereal fields [3], can have a significant impact on the 

ecology of wildlife within an area [4]. Working landscapes, such as farmland or commercial 

forests, are often compromises between the interests of biodiversity preservation and economic 

benefit [5]. How much biodiversity persists within working landscapes, of course, varies widely, 

but, with careful planning, wildlife can thrive alongside human land use. For example, an area in 

Oregon, USA, retained around 97% of the biological value while still maintaining 92% of its 

economic value [6].

The Scottish uplands are a working landscape containing a mosaic of grouse moor, 

deciduous and coniferous woodland, and pasture [7]. The composition of the landscape is, of 

course, dynamic, with grant schemes such as the Scottish Rural Development Programme [8] 

influencing the amount and placement of various land use types. With these changes come 

changes in wildlife populations, some species being seriously affected [9,10]. One such species 

is the black grouse Tetrao tetrix, which experienced serious declines throughout the United 

Kingdom during the twentieth century [11] but which is expected to benefit from land use 

change brought about through both payments to land-owners and wind farm habitat management 

plans [8]. Black grouse is a bird of woodland edges and requires a habitat mosaic which can 
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consist of mixtures of moorland, forest and agricultural land [12,13], features which have been 

altered by land use changes in the UK uplands over the past decades[14]. 

Modelling species distributions in terms of their associations with habitats, land use or 

environmental factors is a rapidly advancing area of ecological research [15]. Many applications 

of these models have been static, assessing species distributions at a 'snapshot' in time [16]. 

Static species distribution modelling can inform conservationists about current [17] and potential 

distributions [18] or population connectivity [19]. A logical extension is to project organism-

environment relationships into the future for example, to predict species distributions under 

climate change scenarios [20]. Informed environmental policy can be of great benefit to 

conservation [21,22] but the challenge for ecologists is to maximise the relevance and 

accessibility of conservation research to policy-makers. To this end, it is important that the 

projection of species distributions onto future landscape scenarios is ecologically realistic, and 

therefore, restricts the projection to the shorter term and expand species distribution models to 

include potential habitat-management or land use changes. Scenario-led models allow the 

potential impacts of policy or conservation action to be quantified and compared [6,23]. 

Here we demonstrate the use of open source software to simulate land use change in the Scottish 

uplands and its effect on black grouse. We developed five land use change scenarios: reduced 

grazing, increased grazing, increased grouse moor (heather moorland actively managed to 

provide high red grouse Lagopus lagopus densities for driven shooting), increased closed-canopy 

forestry and increased open-canopy forestry to reflect potential land use changes in the study 

area which may have a positive or negative impact on the species [14,24]. We ‘grew’ patches of 

5

55

60

65

70



the new habitat, using cellular automata according to the land use change scenarios, in randomly 

chosen positions to produce a range of estimates for the impact of the land use change on black 

grouse over multiple runs. We then examined the effects of the landscape changes in more detail 

by looking for nonlinearities in response as the land use change became more extensive. Finally, 

we discuss the potential that scenario-led landscape simulation modelling has as a practical tool 

for policy-makers interested in integrating conservation objectives and land use policy. 
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Materials and Methods

Study area and lek location data

The study area is 800 km2 around Loch Tummel in Perthshire, Scotland (56°42′40″N 3°55′40″W). 

Altitude ranges from 46 to 1078 m above sea level. Forestry, agriculture and moorland managed for 

shooting game (generally hunting of red deer Cervus elaphus and red grouse) are the main land uses in 

the area which is representative of black grouse habitat within working landscapes in much of Scotland. 

In order to demonstrate our modelling method, we required good quality data for both the location of 

black grouse display sites (i.e. leks; areas at which male black grouse display in order to obtain access 

to females) along with a clear satellite image on which to base a habitat map. With this in mind, rather 

than demonstrating the modelling approach with a lower quality satellite image and the most recently 

available black grouse data we chose instead to base these simulations on 1994, a year in which the 

black grouse population was relatively large (663 displaying males compared with a mean number of 

353 displaying males over the next 15 years), was thought to have been counted fully and for which a 

clear Landsat image was available. 

Lek locations used in this study were provided by Perthshire Black Grouse Study Group (PBGSG). The 

PBGSG is a group of volunteers, including core members from professional bodies including the Game 

and Wildlife Conservation Trust (GWCT), Royal Society for the Protection of Birds (RSPB) and 

Forestry Commission. A core of a few volunteers surveyed large areas for several years (e.g. Forestry 

Commission land) while a number of volunteers surveyed smaller areas in just a few years. These data 

represent one of many years of a long-term study undertaken by PBGSG (1990-2008) and which used 

methods similar to those used in the two national black grouse surveys [11,25] covering as much of the 

landscape as possible rather than using transect methods. Volunteers walked within 0.5 km of all 
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suitable habitat [26] while listening for male calls to locate lek sites. These sites were subsequently 

visited twice more, each up to two hours after dawn, to verify the presence of a lek and to count the 

number of displaying males [25]. As the purpose of the survey was to count the number of displaying 

males at existing leks, absences were not recorded systematically. Areas above 550 m (18% of the 

study area) were considered unsuitable for black grouse leks by Hancock et al. [25] and so were not 

searched by PBGSG, and nor were dense forestry, built up areas and arable farmland. Surveys usually 

focus attention on likely areas to search so as not to spend effort in areas known to be outside the range 

for the target species. This was the case for the black grouse surveys which excluded areas above 550 

m. However, below that altitude, there is still much local heterogeneity in habitat suitability for black 

grouse [24] which is what the survey method attempted to capture [26]. 

Environmental data and habitat suitability modelling

National land cover maps are available for the UK but these have received criticism, particularly with 

respect to their inability to accurately identify upland habitat types [27,28]. It therefore made sense to 

develop our own habitat groupings based on unsupervised classification coupled with a good working 

knowledge of the study area. Habitat data were taken from the USGS LANDSAT image at 30 m 

resolution (path 206, row 20) from 1994; as the image for this region was clear, atmospheric correction 

was not applied. The original image consisted of eight spectral bands of which six were combined 

using principal components analysis (PCA; in ArcMap 9.2), chosen as the most straightforward method 

in the available software, to remove redundant information. The thermal infra-red band and the 

panchromatic band were omitted from the classification. The processed image, consisting of three 

principal components, was classified into habitat types using an unsupervised classification in 

Multispec [29]. As the satellite image was from 1994, contemporaneous land cover information was 

unavailable; therefore unsupervised classification was preferred [30]. The k-means algorithm is a 
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simple and efficient algorithm which has two steps that are repeated (iterated) until an optimisation is 

reached [31]. Initially the data (pixels) are partitioned into a defined number of clusters, usually at 

random. Cluster centroids ('averages') are calculated and each case is moved to its most similar cluster 

centre. The cluster centres are recalculated and cases are again moved. These steps are repeated, 

leading to increasingly homogeneous clusters, until an endpoint is reached. Many habitats, particularly 

woodland, agricultural grasslands and large anthropogenic features are clearly identifiable on a false 

composite colour image of the satellite scene, and these are correctly represented in the resulting 

automated classification. This classification resulted in 18 habitat types which were subsequently 

pooled into six broad categories using detailed knowledge of the study area, stakeholder interviews, 

field visits, and more recent (2005 & 2012) aerial photography as a reference. This photography was 

used to confirm features which were likely to have remained fixed during this period (e.g. plantation 

forest edges, water bodies and field boundaries) and was used in conjunction with the other methods of 

verifying the landscape classification and tested with comparison to an existing land cover map from 

1990 (S1 File). These broad categories were: human-dominated landscapes (buildings, urban areas, 

roads and roadside verges); grazed land (managed enclosed grasslands with relatively productive 

grasses, as well as open grazed land dominated by rough, poor quality grassland such as Nardus and 

Molinia); moorland (open land usually dominated by heather Calluna vulgaris); open-canopy forestry; 

closed-canopy forestry; and water bodies. Proportions of each habitat type within a 2 km radius of each 

grid cell were calculated using the focal command in the 'raster' package [32] in R [33].  A radius of 2 

km was considered to give a conservative estimate of the territory used by individuals throughout the 

year [34,35]. This proof of concept study, as with many studies on black grouse, was based on lek 

location positions although it could be repeated or extended by using feeding locations, or locations of 

birds at particular life stages or in different seasons.  A raster giving the altitude of each grid cell was 
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obtained from Ordnance Survey (Ordnance Survey data: OS Landform PROFILE; 50 m resolution), 

then cropped and converted to the same resolution (28.5 m) and extent as the habitat maps. 

Habitat suitability modelling was performed using MaxEnt [36] within the 'dismo' package [37] in R 

using seven predictors (the proportion of six habitat types plus altitude). MaxEnt is a presence-only, 

machine learning process and has been shown to outperform other presence-only habitat suitability 

modelling methods [36,38]. MaxEnt produces values for the relative suitability of each pixel of a map 

(i.e. relative to the rest of the landscape used in the model rather than probability of presence [39]). We 

tested a range of values for the regularization parameter (β) within our models (values of 1, 2, 3, 5, 7, 9, 

10, 11, 13, 15, 17, and 19) and selected the ‘best’ value for our model using the value with the lowest  

AIC score  [40,41].  Default  settings  were  used  for  all  other  variables  within  our  model  fitting  10 

crossvalidated replicates [24]. Full details of the MaxEnt model used to assess the simulated landscapes 

in terms of habitat suitability for black grouse can be found in the supplementary information (S2 File). 

To compare changes in landscape suitability after  modelling with this base map, we converted the 

relative suitability predictions into a binary, presence/absence prediction for black grouse across the 

landscape using a habitat suitability threshold. The choice of threshold is extremely important [42] and 

in some cases can be a complex and case-specific choice.  To keep these choices relatively simple for  

demonstration purposes, in this case, we tested three thresholds. These were low, medium and high 

suitability, corresponding to the first quartile, median and third quartile relative suitability scores, based 

on a habitat suitability model for the original habitat in 1994. 

The most common metrics used to assess the predictive power of species distribution models require 

both  presence  and absence  values  for  testing.  Tests  of  predictive power were  calculated from our 

presence-only dataset by producing a composite dataset consisting of our original presence points along 
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with 1000 background predictions from the binary presence/absence map similar to the map described 

above. This was created using a fourth threshold, the maximum sum of sensitivity and specificity. The 

MaxEnt model based on the original habitat  was then tested using the area under the curve (AUC, 

ranges from 0 to 1) of the receiver operating characteristic plot (ROC [43]) as well as the true skill 

statistic (TSS, ranges from -1 to +1 [44]). In both cases, the closer the value is to 1, the more accurate 

the model. 

Scenario building and landscape change simulation

The study area represents a highly dynamic working landscape. Analysis of satellite images from 1994 

and 2008 show that while net gains or losses in each habitat type between 1994 and 2008 didn’t exceed 

3% for any major habitat type, the amount of land actually switching between habitat types was 

considerably larger (up to 17%; indicating both gains and losses in different parts of the landscape). 

During this period the black grouse population experienced a significant decline, followed by a 

recovery. Changes in habitat over this time and the impact on black grouse populations are explored in 

Geary et al. [45]. In order to choose appropriate future land use change scenarios for this proof of 

concept study, expert advice was sought. A questionnaire prompted respondents to choose their top five 

from ten potential scenarios, these coming from the authors' experience in upland research and the 

likelihood that they would take place during the next twenty years in Scotland. Surveys were received 

from ten professionals representing academic (30%), consultant (10%), conservation (30%), 

governmental (20%) and sporting interests (10%). The most likely future scenario was considered to be 

additional native forestry schemes resulting in more open-canopy forestry (Table 1). The second to fifth 

most likely scenarios were an increase in grouse moor, a decrease in grazing, an increase in grazing and 

an increase in closed-canopy forestry. Agreement among scenarios was generally good with each of the 

scenarios used in modelling chosen by over 50% of the experts (File S3).
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### Table 1 approximately here ###

For each scenario, land use change was simulated from 20 random starting locations (i.e. 20 random 

pixels from the 1994 classified image) using an iterative process which grows new pixels of habitat 

close to starting locations according to a probability of change (0.25; simply to determine the direction 

in which the patch grows) until they reached the new proportion of the habitat prescribed under the 

scenario. Starting locations refer to individual pixels around which simulated land use change was 

centred and do not imply likely land use change at that point to be greater than at any other. The 

resulting habitat patches were non-uniform in shape and, due to the stochastic process, varied in size, 

but their combined area summed to the total area of new habitat. With the new habitat patches created, 

the proportion of each habitat type within 2 km of each grid cell in the study area was re-calculated. 

The 1994 MaxEnt model was then projected onto these novel landscapes and the percentage of the 

study area predicted as suitable habitat for black grouse was calculated for each threshold suitability 

value. R scripts for the modelling functions as well as the scenarios are included in the supplementary 

information (File S4). Thirty new landscapes (i.e. 30 model runs) were generated for each scenario to 

allow average habitat suitability to be calculated. Results from these new scenarios could potentially 

have been influenced by changes in the spatial arrangement of patches rather than those produced by 

the actual increase or decrease in the different habitat types. To explore this further we created a series 

of ‘null’ models for each scenario to compare situations with land use change against scenarios where 

the habitat is changed in the same way but with no net increase or decrease in the amount of each 

habitat type. Again, thirty new landscapes were generated for each of four null models (both increase in 

grazing and decrease in grazing have the same null model – no net change in grazing) and the 1994 

MaxEnt model was then projected onto them, and the percentage of the study area predicted suitable 

for black grouse calculated. 
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The proportions of area predicted suitable under each of the five scenarios were compared using 

Kruskal-Wallis tests followed by pairwise Mann-Whitney U tests. In addition, each scenario was 

compared to its equivalent ‘null’ scenario using Mann-Whitney U tests. We examined in greater detail 

the impact of some closed-canopy forestry patches, a common land use change in the Scottish uplands, 

as they are thought to be detrimental for black grouse at a landscape scale [14] but changed land 

management around them could produce complex effects on habitat suitability. To do this, we present 

some examples of the effects of different placements of closed-canopy forest patches within the 

landscape. Supporting these examples, we present pre- and post-scenario landscape metrics such as 

number of closed-canopy forestry patches, mean patch sizes and total woodland edge computed using 

the SDMTools package [46]. Further to this, we investigated whether there was a linear (proportional) 

effect of adding increasing amounts of the given land use on habitat suitability. We varied the area 

affected by increased open-canopy forestry and reduced grazing, two land use changes which are 

thought to benefit black grouse [47], between 5% and 30% to identify any nonlinearities in benefit for 

black grouse.

While we use real data on lek presence for black grouse to illustrate our method, we do not include any 

demographic data in the study. As well as the suitability of habitat surrounding the lek we acknowledge 

that other considerations such as lek connectivity [48], the quality of habitat around surrounding leks 

[24], edge effects and source-sink dynamics are likely to also play a role in determining the overall 

quality of the landscape for this species. Although the model presented retains enough flexibility to 

incorporate these considerations, we have chosen to focus solely on habitat quality for the sake of 

simplicity while demonstrating the method.
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Results

Comparisons across scenarios

The MaxEnt model, using a regularisation multiplier of 7 (Table 2), performed well in predicting black 

grouse presence using the original environmental data (30 m pixels, AUC = 0.83, TSS = 0.64). All of 

the scenarios produced outcomes that were significantly different from those of the ‘null’ scenarios (Fig 

1) at each of the three thresholds (min U = 0, n = 30, max P = 0.04) except for the open canopy forestry 

scenario which was not significantly different at the first and third quartile thresholds (min U = 481, n 

= 30, min P= 0.06) and the closed canopy forestry scenario which was not significantly different from 

the null scenario at using the median threshold (W = 390, n = 30, P = 0.38). There were significant 

differences between the amount of suitable habitat produced under the five scenarios at the first quartile 

(χ2 = 132.6, df = 4, P < 0.001; Fig 2a), median (χ2 = 129.6, df = 4, P < 0.001; Fig 2b) and third quartile 

(χ2 = 120, df = 4, P < 0.001; Fig 2c) thresholds. Across the three thresholds the most beneficial scenario 

for black grouse in terms of increased habitat suitability across the landscape was the reduced grazing 

scenario. It resulted in a significantly larger proportion of the landscape suitable for black grouse than 

the next best scenario at the first quartile (increased open canopy forestry; U = 900, n = 60, P < 0.001) 

and median (increased grouse moor; U = 817, n=60, P < 0.001) thresholds. At the third quartile 

threshold increasing grouse moor resulted in a significantly larger proportion of the landscape predicted 

suitable for black grouse than the next best scenarios  (reduced grazing; U = 51, n=60, p < 0.001). The 

lowest suitability at the first and third quartile thresholds was produced by the increased grazing 

scenario. This predicted significantly smaller proportions of the landscape were suitable for black 

grouse than the next lowest scenario at both thresholds (Q1 closed canopy forestry; U = 607, n = 60, P 

= 0.02, Q3 open canopy forestry; U = 107, n=60, P < 0.001). Using the median threshold, the scenario 

predicting the lowest suitability was increased closed canopy forestry. However, this did not predict 
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significantly lower suitability than the next lowest scenario (increased grazing; U = 406, n = 60, P = 

0.52). Both the increased closed canopy forestry (U = 2, n = 60, P < 0.001) and increased grazing (U = 

18, n = 60, P < 0.001) scenarios resulted in significantly lower suitability for black grouse than the next 

worst scenario, increased open canopy forestry. 

### Table 2 approximately here ###

### Fig 1 approximately here ###

### Fig 2 approximately here ###

Effect of habitat placement

Changes to the area and position of closed-canopy forestry resulted in projections which could both 

increase and decrease suitability for black grouse. Figs 3a-c represent simplified small sections of the 

landscape showing 1994 habitat and altered habitat under an illustrative ‘one-off’ simulated land use 

change, along with resultant differences in suitability. These figures are presented for reference only as 

further analysis of this effect is beyond the scope of this paper. Below each map are selected landscape 

metrics such as number of closed-canopy forestry patches, mean patch sizes and total woodland edge. 

In most cases, the area covered by new forestry was much less suitable (Fig 3a), but in some situations, 

the area immediately surrounding the new forest had improved suitability (Fig 3b). In other areas, a 

more complex arrangement arose where habitat suitability had increased along some edges but not 

others (Fig 3c).

### Fig 3 approximately here ###

Effects of extent of land use change 
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Increases in the extent of open-canopy forestry resulted in a linear decrease in suitability (Fig 4a). For 

the reduced grazing scenario, increasing the extent of land use change resulted in a nonlinear increase 

in suitability (Fig 4b) which was disproportionately beneficial when 20% or more of grazed land was 

converted (median 15% = 0.095  median 20% = 0.1; U = 124, n = 100, P < 0.001). 

### Fig 4 approximately here ###
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Discussion

Fitting with our expectation, the most beneficial potential future scenario for the black grouse involved 

the conversion of grazed land to both grouse moor and open-canopy forestry and the most detrimental 

was an increase in grazing. This result reflected the detrimental impact of overgrazing on black grouse 

as well as their habitat requirements as woodland-edge species [49,50] although this demonstration of 

our method does not yet take into account fragmentation or the influence of habitat edge independent of 

habitat area. Consideration of changes to the amount of edge would be useful to include in future 

models, especially for species such as black grouse, as it would help to properly reflect patch shapes as 

well as sizes, especially in heavily-fragmented landscapes. Sheep grazing is a widespread feature of 

landscapes in the Scottish uplands and with added pressure from large red deer populations [51], 

overgrazing is a threat to many upland bird species [9]. Reduced grazing regimes, both in terms of 

fewer sheep and increased deer control, are likely to have widespread benefits for a number of species 

of conservation concern [52], including black grouse [50,53]. The numerical predictions of changes to 

the area suitable for black grouse should be regarded relative to the other scenarios rather than 

suggestions of the actual changes ‘on the ground’. 

Under the increased closed-canopy forestry scenario, different model runs produced both increases and 

reductions in habitat suitability. Research has shown that canopy closure in areas of new plantation 

forestry has led to declines in black grouse populations [14]. Our example simulations using increased 

closed-canopy forestry (Fig 3) showed that the location of new patches of closed-canopy forestry was 

important in determining the resulting suitability for black grouse. That there is a landscape context to 

the effects of land use change on species is not surprising [54], especially in a species such as black 
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grouse, which is associated with habitat mosaics [12,13], and which can thrive in several rather 

different combinations of land uses [13,24,55]. Indeed in our null models, we quantified the variability 

in habitat suitability associated with moving habitat patches around rather than actually changing than 

proportions of habitats. We then briefly explored some of the possible metrics, such as patch size and 

edge effects, which may affect the impact of different patch placements on overall landscape suitability, 

but it will take a more extensive modelling exercise to elucidate the multiple features that contribute to 

landscape suitability. Our proposed method does, however, allow quantification of suitability changes 

related to individual landscape changes, even if it does not identify the underlying causes of those 

changes. At present, our scenarios are restricted to single land use changes (although an increase in one 

land use results in loss of one or more other land uses) for ease of model demonstration. In reality, 

changes may involve several land use types, as well as gradual changes in habitat characteristics 

brought about natural habitat succession (e.g. canopy closure) and management interventions (e.g. 

heather burning). Taken together with landscape context, this complexity has the potential to become 

prohibitively computing-intensive to model accurately [56]. Again, such models make for powerful 

ecological tools, and our illustration is a first practical step towards their realisation. As expected, the 

interiors of closed-canopy plantations were consistently unsuitable [14,47], although the same was not 

true for the areas surrounding new forest patches. Forest edges are a habitat feature preferred by black 

grouse [49] and investigating the effect of patch shape on habitat suitability may be productive for land 

managers. 

At their most basic, increases or decreases in suitability would be proportionate to the amount of 

habitat change (e.g. stone marten Martes foina and strawberry tree Arbutus undo [57]) but more 

complex, nonlinear relationships, perhaps depending on landscape structure or interacting effects (e.g. 

models of invasive species [58]) or ecological thresholds (e.g. pine marten Martes martes in 

fragmented forests [59]) are important in wildlife management. Increases in the area of grazed land 
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converted to grouse moor and open-canopy forestry was beneficial to black grouse, with a step change 

at proportions above 15%. The spatial structure of the resulting landscapes is a likely cause for this 

difference in response [58]. In one case, both moorland and grazed land were converted into open-

canopy forestry causing a homogenisation of the landscape which larger magnitudes of change 

exacerbated. In contrast, reduced grazing resulted in a more heterogeneous landscape which contained 

the mosaics attractive to black grouse [48,51]. Nonlinear responses to habitat management by species 

can be related to edge effects [60]; as a forest edge species [49], black grouse might benefit from these 

changes. Identifying these thresholds is important for species conservation as it highlights the potential 

for rapid changes in abundance or distribution to occur [61,62]. 

Combined with knowledge of habitat management, scenario-led habitat suitability modelling could be 

extremely useful both for agencies or consultants advising individual landowners on local 

costs/benefits of land management changes [63], and as a basis for encouraging wider-scale changes 

through appropriate policy or planning regulations [64]. Changes incorporated into the models could be 

the results of changes in policy across landscapes, as we have demonstrated here, or specific spatial 

changes of interest to land managers. Species of conservation concern which inhabit agricultural 

landscapes could benefit greatly from changes to management practices (e.g. corn bunting Miliaria  

calandra [65]) or from subsidies targeted to improving habitats (e.g. little bustard Tetrax tetrax [66] & 

greater sage-grouse Centrocercus urophasianus [67]) both of which could be explored using landscape 

simulation models. A natural progression would be to consider the position and shape of new land use 

features as well as their location within the landscape. This would require an extension of the current 

modelling framework and consideration of the computational requirements of creating realistic 

representations of these complex situations. Landscape simulation models could be extended to work 

on metrics such as species richness/diversity, or ecosystem function or services (e.g. abundance of 
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pollinators [68]). If the provision of ecosystem services or economic benefits is related to habitats or 

landscape structure then, by examining the effects of different land use change scenarios, a compromise 

between economic activity and conservation can be achieved [6]. The inclusion of economic or 

sociological factors into landscape simulation models is another area of potential, with, for example, 

likelihood of land use change related to an ‘index of willingness’ which might be affected by differing 

financial rewards or levels of knowledge [69]. 

Black grouse in the Scottish uplands, like many species across the world, now exist largely within a 

working landscape [47]. Our models pointed to specific land use changes which are predicted to 

improve habitat for black grouse, finding a reduction in grazing, as field-based studies have [53], to be 

the most beneficial. Perhaps most importantly, our work indicates that it is not just the land use change 

itself that will determine whether species thrive or decline, but the extent of these changes and their 

position in relation to other features in the landscape.
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Figure Legends

Fig 1. The proportion of the study area predicted suitable for black grouse under each of the land 

use change scenarios and their ‘null’ equivalent. Boxplots of the proportion of the study area 

predicted as suitable for black grouse using the median threshold (0.58) under each land use change 

scenario along with its ‘null’ equivalent where the configuration of land uses was changed but not the 

proportion of each land use type. The dotted line indicates the proportion of the study area predicted 

suitable using the original habitat.

Fig 2. The proportion of the study area predicted suitable for black grouse under each of the land 

use change scenarios. Boxplots of the proportion of the study area predicted as suitable for black 

grouse using the A) lower quartile (0.48), B) median (0.58); and, C) upper quartile (0.65) thresholds 
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using 30 m pixels. The dotted line indicates the proportion of the study area predicted suitable using the 

original habitat at each threshold. 

Fig 3. Examples of different outcomes resulting from closed canopy forestry placement within the 

landscape. Examples of new closed-canopy forestry placement resulting in A) a reduction in habitat 

suitability within the new forest, B) a decrease in habitat suitability within the new forest coupled with 

an increase in habitat suitability around the new forest edge, and, C) a reduction of habitat suitability 

within the new forest with an increase in habitat suitability around some of the forest edge. Text under 

individual habitat examples shows NP – Number of forestry patches, TE – Total forest edge (km), TA – 

total forest area (km2) and MA – mean forest area (km2).

Fig 4. The proportion of the study area predicted suitable for black grouse under different levels 

of habitat change. Boxplots representing the proportion of the study area predicted present under 

scenarios different levels of habitat change (5-30%) using the median threshold (0.58) for A) the 

increased open-canopy forestry scenario, and, B) the reduced grazing scenario. The dotted line 

represents the proportion of the study area predicted suitable using the original habitat. 

Supporting Information Captions

S1 File. Validation of the habitat classification. Validation of our own habitat classification with 

reference to the UK national land use classification.

S2 File. Modelling black grouse habitat suitability using MaxEnt. A description on the MaxEnt 

model used to assess habitat suitability under each scenario.

S3 File. Scenarios used in landscape simulation modelling.  A description of the potential scenarios 

indicating the scenarios chosen by experts as the most likely and the agreement between choices.
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S4 File. R code for landscape simulation modelling. R code to run the models under the stated 

scenarios.



Tables

Table 1. Scenarios used in landscape simulation modelling. Scenarios used in landscape simulation 

modelling, along with how the landscape is changed under each. Scenarios were chosen by upland 

experts as most likely to occur in the Scottish uplands from ten candidate scenarios. The ranked 

likelihood of each scenario, as decided by respondents to the questionnaire is also presented. 

SCENARIO RANK CHANGES TO THE LANDSCAPE
Increased 

open-canopy 

forestry

1 Woodland creation grants larger than those for plantation forestry are available 

for the planting of native forestry under the (SRDP; 

http://www.scotland.gov.uk/Topics/farmingrural/SRDP/RuralPriorities/Options/). 

This will be reflected by a conversion of 7% of grazed land and 3% of grouse 

moor to open-canopy/mixed woodland. Grazed land was considered more likely 

to be converted to woodland than grouse moor.
Reduced 

grazing

2 Since 1982, sheep numbers in Scotland have decreased by 34% [70]. Grants 

encouraging a reduction in grazing are currently available through the Scottish 

Rural Development Programme (SRDP; 

http://www.scotland.gov.uk/Topics/farmingrural/SRDP/RuralPriorities/Options/). 

Under this scenario, a continued reduction in upland grazing will be reflected by 

a 10% reduction in grazed land 7% of which will be converted into moorland and 

3% into open-canopy/mixed forestry.
Increased 

grouse moor

3 Economic analysis of the grouse shooting industry by the Fraser of Allander 

Institute [71] showed increased profitability in managed grouse shoots in 2010 

and suggested this may lead to an increase in the area of moorland used for 

shooting. This will be reflected by a conversion of 5% of grazed land and 5% of 

open-canopy woodland to grouse moor.
Increased 

grazing

4 Both the Tenant farmers association and the Pack enquiry [72] have suggested a 

return to headage payments for upland farmers. In the past, this has resulted in an 
29
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increase in the number of sheep. This change will be reflected by converting 10% 

of moorland to grazed land.
Increased 

closed-canopy 

forestry

5 Woodland creation grants available under the (SRDP; 

http://www.scotland.gov.uk/Topics/farmingrural/SRDP/RuralPriorities/Options/) 

offer a financial incentive for the creation of plantation forestry. This will be 

reflected in the conversion of 5% of grouse moor and 5% of grazed land to 

plantation forestry.
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Table 2. Model selection comparing regularisation parameters (β) in candidate MaxEnt models.

Regularisatio
n parameter 

(β)

Log 
Likelihoo

d

Parameters AICc 
score

ΔAICc

1 -946.569 37 2052.35 111.38
2 -953.742 19 1960.39 19.41
3 -958.848 16 1959.77 18.80
5 -966.734 13 1965.85 24.88
7 -958.653 10 1940.97 0
9 -978.316 8 1974.95 33.98
10 -980.113 9 1981.18 40.20
11 -983.429 9 1987.81 46.84
13 -985.944 8 1990.21 49.24
15 -987.984 6 1989.28 48.31
17 -988.778 6 1990.87 49.90
19 -990.25 6 1993.81 52.84
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