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Abstract 

 
Managing the complexity within virtualised IT infrastructure platforms is a common 

problem for many organisations today. Computer systems are often highly consolidated into 

a relatively small physical footprint compared with previous decades prior to late 2000s, so 

much thought, planning and control is necessary to effectively operate such systems within 

the enterprise computing space. With the development of private, hybrid and public cloud 

utility computing this has become even more relevant; this work examines how such cloud 

systems are using virtualisation technology and embedded software to leverage advantages, 

and it uses a fresh approach of developing and creating an Intelligent decision engine (expert 

system). Its aim is to help reduce the complexity of managing virtualised computer-based 

platforms, through tight integration, high-levels of automation to minimise human inputs, 

errors, and enforce standards and consistency, in order to achieve better management and 

control.  The thesis investigates whether an expert system known as the Intelligent Decision 

Engine (IDE) could aid the management of virtualised computer-based platforms.  Through 

conducting a series of mixed quantitative and qualitative experiments in the areas of research, 

the initial findings and evaluation are presented in detail, using repeatable and observable 

processes and provide detailed analysis on the recorded outputs. The results of the 

investigation establish the advantages of using the IDE (expert system) to achieve the goal of 

reducing the complexity of managing virtualised computer-based platforms. In each detailed 

area examined, it is demonstrated how using a global management approach in combination 

with VM provisioning, migration, failover, and system resource controls can create a powerful 

autonomous system. 
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Abbreviations 
 

AI Artificial Intelligence 

AMI Amazon Machine Image 

CLR Cognitive Load Rating 

CLT Cognitive Load Theory 

DaaS Database as a Service 

DNS Domain Name Service 

ESX  Elastic Sky X (VMware hypervisor) 

FC Fibre Channel  

Gb Gigabits 

GB Gigabytes 

GHz Gigahertz 

GNU Unix like operating system (free software foundation) 

HA High Availability 

HyperV Microsoft’s Hypervisor 

ICMP Internet Control Message Protocol 

I/O Input/Output 

i86pc 8086 intel/AMD architecture 

IaaS Infrastructure as a Service 

IDE Intelligent Decision/Design Engine 

IEEE Institute of Engineering Electrical and Electronics 

IOPS Input/Output Operations per second 

IoT Internet of Things 

iSCSI Internet Small Computer Systems Interface 

JSON JavaScript Object Notation  

KBS Knowledge Based System 

KVM Kernel-based Virtual Machine 



Intelligent Management of Virtualised Computer Based Workloads and Systems 

 

 

 

© James Oakes, 2020                                  6 | P a g e  

 

LACP Link Aggregation Control Protocol defined by IEEE 802.1ax 

LAMP  Linux Apache MySQL PHP 

LAN Local Area Network 

LDOM   Logical Domain 

LOM Lights Out Management 

LUN Logical Unit 

Mb Megabits 

MTBF Meantime Between Failure 

NAS Network Attached Storage 

NFS Network Filesystem 

NGZ Non-Global Zone, Solaris container 

N+1 Indicates a resilient backup component is available 

OEM  Oracle Enterprise Manager 

OOC Oracle Ops Center, formally Sun Management Center 

OS Operating System 

OVM Oracle Virtual Machine Server 

PaaS Platform as a Service 

PXE Pre-boot Execution Environment 

RAM Random Access Memory 

RDBMS Relational Database Management System 

RPM Redhat Package Manager 

SaaS Software as a Service 

SAIL Stanford Artificial Intelligence Language 

SAMP Solaris Apache MySQL PHP 

SAN Storage Area Network 

SAS Serial Attached SCSI 

SATA Serial AT Attachment 
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SCSI Small Computer Systems Interface 

Solaris OS Sun Microsystems Solaris Operating System (now Oracle) 

SPARC Scalable Processor Architecture 

SPoF Single Point of Failure 

SSH Secure Shell 

sun4u                                        SPARC-Enterprise SPARC V9 Unix Kernel 

sun4v SPARCV9 Unix Kernel  

SunOS UNIX System V, now known as Solaris 

TCP/IP Transmission Control Protocol / Internet Protocol 

VAX  Computers manufactured by Digital Equipment Corporation 

VirtualBox Innotek/Sun’s type II Hypervisor now owned by Oracle Corporation 

VIP  Virtual IP 

VLAN Virtual LAN 

VLAN Tagging VLAN encapsulation defined by IEEE 802.1Q 

VM Virtual Machine 

VMDK Virtual Machine Disk 

vNAS Virtual Network Attached Storage 

x86 Intel 8086 CPU Compatible Architectures 

Xen Xen Hypervisor, Open-source virtualisation project 

YAML YAML Ain't Markup Language 

ZFS Zetabyte Filesystem 

Zpool  A ZFS dataset / pool 
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Nomenclature 

 

Greek and Latin Script, Letters & Maths Symbols 

 

• Relating to Cluster Quorum 
 

𝜂    denotes a cluster node that is available or unavailable 
𝜖    denotes a cluster node that is unavailable 
Τ    denotes the total number of cluster node votes possible 
𝜐    denotes the number of cluster node votes currently available 
𝜛   denotes the minimum number of votes needed to establish a quorum 
𝜚    denotes the ability to establish a cluster quorum 
 

• Relating to Cognitive Load Rating 
 

  𝛽    denotes the Cognitive Load Rating (CLR) for one task  
  ∆    denotes the Task Complexity  
  ∅    denotes the Process Mechanism  
  𝜆    denotes the CLR for a set (sum) of tasks  
  n    denotes the number of tasks 
  t     denotes the task identifier 
  𝛫   denotes the CLR mean average for a set of tasks 

• Relating to User Task Complexity 
 

  R   denotes the derived result 
  𝜇   denotes user input 
  s    denotes a simple task  
 m   denotes a moderate task 
  d   denotes a difficult task 
  x   denotes a manual task  
  y   denotes a semi-automatic task 
  z   denotes an automatic task 
 

• Relating to VM provisioning Timing 
 
𝒯   denotes the total time to deploy a VM 
n    denotes the task number  
t     denotes the task identifier 
𝜃    denotes the participant time taken to complete a task (in seconds) 
𝜓   denotes the average (mean) participant time taken per task (in seconds) 
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Chapter 1: Introduction 
 

1.1 Background 

 

In the 1960s it was IBM’s research Cambridge scientific centre (Massachusetts) 

experiment with CP-40 that paved the way for the beginning of the full virtualisation of 

computer systems (Pugh et al, 1991). Full virtualisation is defined as multiple operating system 

instances sharing the same computer hardware resource. From there on developments have 

continued on apace, and since the late 1990s onwards, there has been a shift in virtualising 

computer systems on the more popular x86 system architectures (Rosenblum, 2004). This 

progression has led to widespread use of virtualisation technology to consolidate computer 

systems within the modern datacentre space. Ironically, while this event was something that 

was deemed beneficial in the IT industry using virtualised systems to reduce the need for 

physical system datacentre space, power consumption and cooling, there was one aspect that 

many organisations failed to factor in and that was the overhead of increased complexity due 

to the increased density ratios of VMs to physical (bare metal) systems (Rasmussen, 2009; Al-

Ou’n et al, 2015). Indeed, managing a set of physical computers with different hypervisors that 

are for example hosting hundreds (or even thousands) of Virtual Machines (VMs) with 

different operating systems is not a simple task, especially when you start considering inter-

dependencies (Su, K. et al, 2015). It is this challenge that leads to the possibility of using an 

intelligent system to manage such a complex virtualised environment; ultimately, this leads to 

the concept of machines managing machines, which is in part one of the motivations of the 

author’s research discussed later on (Gazis, 2016).  

The very idea of designing and building an intelligent system in order to simulate a human 

expert administrator that has some level of autonomy, logic processing and functional self-

awareness is an exciting prospect in terms of what potential it has to improve VM systems 

provisioning and management (Haugeland, 1989; Diao et al, 2009). Indeed, being able to 

imitate human natural intelligence and behaviours closely allows the system to exhibit 

synthetic intelligence when he or she interacts within the controlled environment (McCorduck 
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et al, 1977). The term ‘intelligent system’ can be described as having the means or ability to 

be able to analyse information, understand or make sense of it in the context of a certain 

knowledge area, and subsequently process and organise. Once organised, the information is 

then made accessible and used to create methods to build system and environmental 

interactions, which ultimately allows it to solve problems in an efficient or elegant way (Mei 

et al, 2010). Humans have long strived to imitate and replicate the processes and systems that 

exist in nature and in some way, transfer this expertise (expert knowledge) into machine like 

systems. The challenge to devise an intelligent expert system to provide knowledge for solving 

the complexity of managing enterprise virtualised systems is something that provides the 

opportunity to create a unique solution approach (Callaos, 1994; Spangler, 1991). 

The ability to extend the control of such intelligent systems is potentially further 

enhanced by network technology advances, that have resulted in many end-user devices now 

having an Internet Protocol (IP) address and connectivity to the internet; indeed, there are 

now literally billions of devices which represent a modern paradigm now known as the 

Internet of Things (IoT). Given this level of connectivity, either through data networks, mobile 

telecommunications, wireless protocols and others, it follows that this can be used as an 

advantage to control remote systems (Gazis, 2016; Jing, 2011). 

 

1.1.1 Enterprise Computer Virtualisation 

 

With the beginning of virtualisation on the x86 architectures, there has been a clear shift 

towards the use of popular hypervisors like VMware, Xen and others (Scroggins, 2013; Oludele 

et al, 2014); it was in the late 1990s that the first modern hypervisors began to make inroads 

into the datacentre space (Rosenblum, 2004). Below is a diagram that shows how 

virtualisation maps on to a physical host: 
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Figure 1.1 Example of Virtualisation of x86 hardware (public domain image) 

 

To provide further details of the above virtualisation example, the diagram figure 1.1 

shows a typical x86 computer. Such a system (like any) has a finite amount of CPU, memory, 

network and disk capacity and performance. Given that most enterprise computers now have 

a large amount of CPU cores, threads, physical RAM, multiple Network Interface Cards (NICs) 

and disks, for most types of applications it makes sense to divide these resources amongst the 

VMs that host them (Tsai, 2009). The hypervisor layer is the critical layer that manages the 

hardware resources (synchronising, queuing and scheduling), typically presenting virtual CPU, 

memory, network and disk devices (Lakshmi, 2010). These virtual devices are made available 

to the local VM and are assigned to it as resources.  

In the example figure 1.1 above, it is assumed there are three VMs that can divide the 

total resources available, therefore sharing the complete resource pool of the physical host 

computer. Each VM is often referred to as a guest of the physical host computer, in that it 

resides as an entity on that particular host system. Typically, a guest VM has its own operating 

system installed and configured. One of the advantages of virtualised systems is that each 
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guest may have a different operating system type, which can reside on the same physical host. 

For example, one VM may have a Linux type OS, another a Windows type OS and another a 

Solaris x86 type OS. In this way, virtualised systems provide a great deal of flexibility to the 

end-user, in terms of increasing the number of configuration permutations available and 

applications that can be installed, configured and supported (Wood, 2011).  

At this stage, it is worth highlighting the difference between type one and type two 

hypervisors. The figure below shows the fundamental differences: 

 

 

 

Figure 1.2 Type I Hypervisor v Type II Hypervisors 

 

As can be seen in figure 1.2, the fundamental difference is the fact that type one 

hypervisors install direct on to the physical system, whereas, the type two hypervisor requires 

a host operating system and then the addition of the type two hypervisor install on top 

(Morabito et al, 2015). There are various commercial and opensource type one and two 

hypervisors available for use. As an example, a popular commercial type I hypervisor would 

be VMWare ESXi, and for an opensource type two hypervisor Oracle’s Virtualbox 

(Bakhshayeshi, 2014).   



Intelligent Management of Virtualised Computer Based Workloads and Systems 

 

 

 

© James Oakes, 2020                                  24 | P a g e  

 

 

1.1.2 Type I Hypervisors: Advantages and Disadvantages 

 

• Hypervisor occupies less Random-Access Memory (RAM).  

• Relatively fast to re-install hypervisor. 

• Highly optimised for running virtual machines, which is the primary function. 

• Reduced driver support; only certain hardware is supported. 

 

1.1.3 Type II Hypervisors: Advantages and Disadvantages 

 

• Takes advantage of any hardware the host OS has driver support for.  

• Host OS allows greater potential to monitor and interact with (via client agents). 

• Possible to create multiple virtual machines of the identical guest OS as the host 

operating system, thus increasing performance and reducing overheads. 

• Advantageous for developer type environments, where access to multiple guest 

operating systems and their variants is required. 

Thus, there are different types of scenarios where the type one and type two hypervisors 

both have advantages and disadvantages. Either way, the type one or two hypervisor can 

both be used successfully to achieve virtualised systems deployments (Pagare and Koli, 2014). 

The next sections describe how this virtualisation technology has evolved into cloud-based 

services and how this is generally being applied and used within the IT enterprise space. 

 

1.1.4 Cloud Computing (Public, Hybrid and Private) 

 

Cloud based computing is a relatively new term used to describe the use of internet 

service-based computer resources. These cloud resources represent typical enterprise 
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datacentre systems, comprising of virtualised server hardware, network infrastructure, disk 

storage, and applications. In the case on public clouds, being an internet-based service allows 

organisations to acquire computer resources remotely at third-party hosted datacentres 

(Bhise and Mali, 2013). Very often these cloud service datacentre locations are based around 

different parts of the world and organised into functional operational regions (such as North 

America, or Western Europe). This is to allow end-user groups to take advantage of the cloud 

vendors distributed infrastructure and provide better resilience and availability of services 

(Larumbe and Sanso, 2011).  

Cloud based public services offer the advantage for organisations to setup their IT 

infrastructure very quickly, without any significant investment of their own in terms of 

purchasing computer hardware; the only minimal costs would be ensuring their own 

organisation has internet connectivity and suitable end-user devices, such as employee 

desktop or laptop computers. Nearly all public cloud infrastructure services offer a utility or 

‘pay as you go’ type cost model, whereby, the end-user organisation is charged directly for the 

use of compute resources based on how long (the amount of time) they need the type of 

resources they request, such as the amount of VMs they build, the amount of storage 

consumed, and the number of IPs required (Kokkinos et al, 2013).  

Indeed, cloud providers minimally provide what is known as Infrastructure as a Service 

(IaaS), as well as other service offerings that extend their capabilities beyond the base 

infrastructure functionality, into further areas. These layers on top are known as Platform as 

a Service (PaaS), which is essentially the mechanism responsible for configuring necessary 

middleware and integration on top of the infrastructure stack. Finally, advanced cloud 

providers have Software as a Service (SaaS), which provisions applications to enable a full end-

user interactive experience (Bojanova and Samba, 2011). 

Typically, the cloud infrastructure organisations hide the complexity and management of 

their infrastructures away from the end customer. This is advantageous, in that such 

organisations can provision their cloud systems quickly, focus their efforts primarily on 

development and their business needs. It should be noted, that while there are many 

advantages, some disadvantages exist; these are often security related, in that the 
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organisation data is stored in the cloud infrastructure potentially at any geographical location 

managed by the cloud vendor. Lack of awareness of the cloud pricing model may also be an 

inhibitor, if the organisation cloud administrators are not aware of how the cost model works 

and they do not follow strict housekeeping procedures (Imai et al, 2013). Maintenance 

schedules and terms of service offered are very specific around system patching and overall 

VM life-cycles. The aggressive maintenance schedules imposed mean that any organisation 

embracing cloud services, needs to have an operating model that fits such terms imposed by 

the service provider. 

Hybrid models adopt a slightly different approach. These are often more commonly 

found with established enterprise organisations who already have their own datacentres and 

investment in computer hardware and associated infrastructure (Hwang, 2016). Given the 

popularity of cloud computing, and the general strategic shift of many organisations to use 

such platforms, it is not unusual for there to exist a hybrid model. Usually, there are two 

fundamental drivers: 

• Enabling quick provisioning of resources (in effect a burst type model), so that extra 

computer resources can be acquired to support on-demand type services such as 

online marketing campaigns. 

• Migration and transformation from old deprecated (out of support) systems, into the 

cloud; for example, moving an on premise (traditional) email system to a vendor cloud 

service. 

• Having a dual approach (private or cloud) allows IT security to decide what applications 

and data may or may not be considered for migration to a public cloud service. 

• Changes to organisational workforce; often companies are adopting different ways of 

working and access via the internet to cloud type solutions offers easier ways of 

working. 

• Due to the nature of public cloud, it offers a convenient method to ensure continuity 

of service in the event of a local disaster, whereby data can be securely transmitted via 

the internet and service restored within that environment. 

 



Intelligent Management of Virtualised Computer Based Workloads and Systems 

 

 

 

© James Oakes, 2020                                  27 | P a g e  

 

Hybrid models therefore offer great flexibility for organisations to slowly transition, using 

a controlled approach, allowing them to decide to continue using their own private systems, 

or alternatively migrate services to the public cloud (Fadel and Fayoumi, 2013). 

Private cloud services follow the nature and build approach that a public cloud service 

provider would follow, apart from the fact that there is no internet of public access. Rather, 

the cloud service provides a private service to one or more specifically known organisations. 

Often, this model is followed by larger entities who want to move away from the traditional 

approach to building infrastructure systems, installing middleware and software applications. 

Instead, they perceive that a cloud like service model provides a much more agile method of 

satisfying their business IT requirements, while retaining full control and security. Therefore, 

being able to utilise cloud services, although taking a significant amount of initial investment 

enables organisations to acquire infrastructure resources in an efficient way. 

Indeed, many large cloud service providers now effectively bring their own proven cloud 

technology direct into their customer’s datacentres to enable them to leverage the delivery 

methods already tested, tried and proven. As an example, this would include as a minimum 

to support IaaS: 

• VM provisioning: build of virtual guest machines of various OS types. 

• Network provisioning: build of necessary network zones. 

• Security provisioning: enabling the opening of firewall ports between network 

zones. 

• Storage provisioning: enabling appropriate storage to be made available via 

network or Storage Area Network (SAN). 

There are many options to provide further functional layers on top of this basic one 

available, as discussed previously, PaaS, DaaS (Database as a Service), and finally SaaS (Jin, 

2016). 
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1.1.5 Common Virtualisation Problems  

 

The following figure 1.3 describes some of the problems encountered in virtualised 

environments. For this study, an examination of the following three principal areas is 

conducted: 

• Over-utilisation of a VM (or set of VMs) – whereby a combination of one of more CPU, 

Memory or I/O resources have become exhausted and the system has become very 

slow or even unresponsive (example figure 1.3, workload 2) 

• Under-utilisation of a VM (or set of VMs); this is where spare compute resource is not 

being used effectively (example figure 1.3, workload 3). This could be considered 

wasted resource. 

• Maintaining effective n+1 failover and high-availability while the virtualised platform 

is in operation (example figure 1.3, workload 4). A common issue, even on 

architectures designed to run in such a fashion, is for human configuration errors to 

be made, or systems to become overloaded accidently. On platforms with many 

hundreds or even thousands of VMs, it is a problem an administrator may overlook, 

resulting in a system that does not continue to function with its original objective of 

providing high availability. 
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Figure 1.3 Common Virtualisation Problems 

 

• Reducing the complexity of VM provisioning; many platforms use intricate processes 

and can be confusing to end-users. The build procedure often requires advanced 

technical skills to deploy systems (Scroggins, 2013). 

 

1.2 Thesis Motivation and Aims 

 

Within the enterprise computing space since the late 1990s, there has been a transition 

and evolution from single physical computer systems, on architectures such as Intel x86, Sun 

SPARC, HP PA-RISC, IBM POWER Series with a single OS instance. These have shifted towards 

fully virtualised platforms, running Hypervisors such as Xen, VMWare, VirtualBox and many 
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more, with many types of guest OSs and applications embedded.  

This development has been intriguing. Organisations generally have embraced the 

modern technology, and the ability to consolidate systems into fewer, more powerful 

machines. With the advent of cloud computing, it can be observed that commodity type x86 

architectures have taken a predominate hold, with huge distributed computing resources 

located around the world by various cloud vendors like Amazon, Rackspace, Google, IBM, 

Oracle and many more. 

In all this, it has been a continuous struggle to effectively manage such technologies in a 

seamless way, without having on hand lots of technical able people to administrate and 

control such platforms. Indeed, even maintaining build and configuration standards is an 

almost impossible task, given the number of possible permutations to build virtualised 

systems (Vrijders et al, 2016; Poghosyan et al, 2016). 

It is this concept, which has led the author to be motivated to want to research this 

particular field, in order to provide a better solution, method and process for managing and 

controlling such platforms. While it is impossible for a single researcher (on his or her own) to 

address every technology area that a cloud provider like Amazon Web Services or Oracle can, 

there is opportunity to demonstrate by focusing on a few areas how improvements can be 

realised. The author hopes that such an opportunity taken will provide some original and 

useful additional research outputs in the following key areas: 

• To develop a prototype system known as the Intelligent Decision Engine (IDE) to 

provide domain knowledge expertise around computer virtualisation and 

management. 

• To provide a simplified VM provisioning process. 

• To improve VM workload migration processes.  

• To improve VM performance and availability.  

1.3 Thesis Benefits and Targeted Applications 

 

The project aims to deliver some benefits for various end-user organisation types, who 
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use computer technology and require very fast, automated deployment of IT resources. 

Consider the example of an organisation that requires resources in a series of pre-engineered 

blocks; effectively private based IaaS units that minimally provide a necessary IT hardware 

footprint, with integrated networks, computer hardware, security, storage, software 

management and control. There are many scenarios where this might be useful: 

• Schools, universities, education – providing quick resources for classroom 

students, colleges, or university researchers. 

• Private and public sector industries (e.g. utilities and manufacturing), scientific 

government and military, using fast deployment of resources at any physical 

location, that may or may not be connected to the internet. Examples could be 

telecommunication providers, national health services, pharmaceuticals, or 

security, or military organisations that need to collect data and deploy IT based 

systems quickly, because of an incident or event. 

A specific example of this includes: 

 

• Purunak (1996) shows that multi-agent systems are in demand in industry and 

such rapid deployment of systems can provide benefits to organisations. 

1.4 Thesis Limitations 

 

As part of the undertaking of the project, there are several limitations that were 

encountered, that are acknowledged as follows: 

 

• The number of nodes in the IDE cluster was not tested beyond three nodes. This 

could extend to much larger numbers (i.e. hundreds of nodes), however, it is 

envisaged that that would be continued as future work. Consult section 4.7 for 

more details on system availability and clustering. 

• IDE Operating systems – Linux (CentOS) was the primary guest operating system 

tested; the Windows OS is also supported, but has not been developed against 
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extensively; again, this is envisaged as future work. 

• Physical computer, network and storage resources were limited to that 

described in the Laboratory setup in section 3.2.1, primarily as a result of having 

to keep financial costs within a constrained budget.  

• System data sources only tested against Linux (CentOS) platform during 

experiments. See section 4.6.4 for more details. Windows alerts/logs and events 

are expected to be captured at a future point. 

• The number of knowledge rules was purposefully limited to a relatively small 

number of 8, as defined in section 4.8.1, 4.8.2 and 4.8.3. The project limited the 

rules, in order to be able to test the fundamental functions (such as physical host 

and VM failure) of the intelligent design engine, without creating many 

additional rules at this stage, which could not be developed and tested fully at 

this stage. Justifications for the knowledge rules and why these were selected 

can be found in section 4.8.5. Of course, the system has been devised so 

additional rules can be created/added as part of future development; see 

section 8.3.6 future work for more details regarding this. As an example, the 

current IDE system did not include a specific knowledge rule for ‘filesystem full’ 

(warning/critical), however, this could be added in a later development stage. 

• The VM provisioning and cognitive load experiments in section 5.2.2 and  5.2.3 

respectively were snapshot (point in time) experiments, and not tested for 

repeatability (i.e. The user repetitively creating VMs); It would be 

expected/predicted for example, that the end-users would quickly move from 

the ‘novice’ group to ‘experienced’ should such future experiments be 

conducted; however, the results would need to be collected and analysed in 

detail to prove this hypothesis is either true, false or inconclusive. 

• The number of end-users which made up the experimentation process in 

chapter 5 was limited as defined in section 5.2.1.2. It is feasible that future work 

could be completed to include larger numbers of end-users.  
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• The hardware components used in section 5.2.1.7 was as kept close as could be 

made possible subject to physical costs. The IDE Platform used hardware of a 

lower specification for the provisioning tests, to avoid the costs of replacing for 

newer higher specification systems. Therefore, it is feasible that the results for 

the IDE could yet be improved if repeated using the latest compute resource 

type. 

• VM provisioning experiments did not use the potential queuing idea described 

in section 5.2.2.6; implementation and development of this idea could see large 

potential reduction time in provisioning, and it is described further in section 

8.3.1 future work. 

• The papers used to compare failover/VM migration times for vMotion and 

XenMotion were limited data sets of six iterations/tests; while the IDE could be 

repeat tested extensively (limitlessly), for even more detailed comparisons, a 

larger volume of repeat tests could be undertaken as described in further work 

section 8.3.9 by building local VMWare, KVM and Xen test clusters. 

• The IDE did not have a live migration facility yet developed (pending the use of 

VirtualBox teleport see future work in section 8.3.3), so the studies that were 

compared against were not functionally exact, however, the results from the IDE 

– even in the full restart migration scenario are promising, in that that the overall 

migration time was fast in comparison to the other studies described in chapter 

6. 

• The knowledge rules developed in section 4.8 and justified in section 4.8.5 could 

not all be tested through direct experimentation due to the limitation of time 

and resources to fully complete all the development and setup the appropriate 

test and experimentation process. The knowledge rules not fully tested at this 

stage are knowledge rule 1, 2, 3, and 8.  
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1.5 Thesis Summary 

 

This thesis aims to research a unique approach into how an Inference Engine (the IDE) can 

be used to leverage the use of expert domain knowledge to provide process and performance 

improvements in specifically three areas: 

• In chapter 2 an in-depth study of intelligent (expert) systems and virtualised 

technologies is undertaken, along with an examination of two public cloud providers; 

then a comparison of the features, quality and characteristics of the cloud vendors is 

highlighted by focusing on the relevant features that exist. 

• Chapter 3 considers the methodology and approach used to provide the platform and 

system to be utilised to perform and support the necessary experimentation phase. To 

compliment this, the formal metrics and expert user evaluation methods to be used 

are defined, to measure the success and value of the research and experiments carried 

out.  

• Chapter 4 explores the development and characteristics necessary of an expert system 

(the IDE) to aid and improve the way in which virtualised resources are effectively 

managed and controlled. 

• Chapter 5 specifically focuses on the core research outputs, including the following 

areas; the simplification of deployment of VMs, by using the IDE expert knowledge 

base, whereby the inference and logic engine are able to build and provision VMs with 

absolutely minimal information from the end-user, using a ‘one-click’ method. Minimal 

end-user inputs are required, such as hostname (or a reference to standards) and VM 

size, and VM type.  The IDE then completes the entire end-to-end provisioning process.  

• Chapter 6 continues by describing the means for improving methods for workload 

migration; it specifically targets new improved methods of event handling, resource 

re-location and effective processes to migrate workloads.  

• Chapter 7 examines ways to optimise VM performance and health, in the scenario of 

physical hardware failures, software failures, and human errors. 
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• Finally, in chapter 8 a review is conducted on the thesis contribution, to draw overall 

conclusions on each area of the work, by focusing on the results and their value to the 

research field; additionally, consideration is given to what further work can be done to 

enhance and continue the work already undertaken. 
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Chapter 2: Expert, Cloud and Virtualised Systems  
 

2.1 Introduction 

 

As part of the investigation into expert and intelligent systems within the field of 

systems virtualisation, it is necessary to analyse existing methods and work in the subject area 

to determine how best to approach the management of such compute platforms. This chapter 

pulls together some key areas that the author believes to be most relevant to the study 

undertaken. Firstly, the author examines in brief how the organisation of information is critical 

to being able to imitate human intelligence, in terms of the key traits that can be expected to 

be evident and observable. By ordering information and logically categorising it in such a way 

that it can be easily referenced, effectively made sense of and essentially used in some 

capacity to make decisions and reach an effective conclusion. Following this, a light overview 

of the origins of Artificial Intelligence is presented to allow the author to set the context for 

the reader, in particular around several key historical moments that have been fundamental 

to the advancement of human knowledge in the field of work that is being considered.  

The next area that is delved into in detail is that of expert systems; this type of system 

is essential for review as the methods and applications in this subject demonstrate how expert 

human domain knowledge can be applied to a variety of technology and scientific study areas. 

This provides the platform for the author to consider what knowledge domains have already 

had such applications made, such as in the medical field, along with the historical reported 

outcomes of such projects. It thus enables a comparison into the techniques used and allows 

for conclusions to be drawn to help provide insight into what techniques might be useful in 

the context of management of virtualised computer systems. Therefore, by reflecting on the 

lessons learnt from previous endeavours made in the field of expert systems, it makes 

common sense to consider combining, adapting and enhancing the most successful methods 

used (Crittenden, 1990). The next section examines two Public Cloud providers; one currently 

holds the largest commercial market share, and the other is less predominate, although clearly 

operating providing Enterprise Cloud services to global businesses. As Cloud computing is 
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considered to be leading the way in terms of automation and service-based delivery of IT, it is 

critical to investigate the mechanisms that such cloud providers use, to allow the author to 

compare those functional areas that correspond to the author’s study (Rokne, 2013).  

Following the focused review of two Cloud based providers, the analysis continues by 

considering other management approaches used by other researchers in the field of 

automation and management of virtualised computer systems. This is particularly useful, as it 

widens the overall view of what efforts are have already been made in this study area, along 

with strengths, weaknesses of each approach and an overall gap analysis. Finally, based on the 

gap analysis and weaknesses identified, we consider how the IDE could contribute to the field 

in several key areas by combining new algorithms, pattern analysis methods, natural language 

processing techniques, and an inference engine to improve the management of virtualised 

computer systems. This is captured, and an explanation is provided to show the advantages 

of using such a system in the overall context of existing works, systems and approaches. 

 

2.2 Intelligent Organisation 

 

The concept of Artificial Intelligence (AI), as opposed to natural occurring intelligence, is 

to enable computer systems designed and built by humans to exhibit intelligent behaviours to 

some degree or level (Callaos, 1994).  In respect of this, part of the objective of this work 

includes investigating the potential for a system to include some of the following 

characteristics: 

• The ability to keep itself functioning or rapidly replicate to survive. 

• To be able to make small functional improvements to itself; this has to be initially 

defined by its creator, with the possible potential to extend this function. 

• To have the necessary function to make decisions based on available information. 

• To have the function to be able to automatically invoke other programs as necessary, 

based on its own decision-making process. 

• To have the potential to change itself either by developing, analysing and modifying 
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its own routines and processes, or perhaps even introducing new processes and 

procedures altogether based on an evolutionary, or self-analytical development 

model. 

• The ability to organise, store information appropriately and retrieve it as necessary. 

The following sections will discuss in detail the critical areas for consideration in respect of 

how a system could utilise AI to effectively manage virtual machines. 

 

2.3  The Origins of Artificial Intelligence 

 

Humans have long been fascinated by the concept of transferring natural intelligence to 

their own mechanised creations. These ideas stretch back as far as writings recorded in Jewish 

history via the Ten Commandments and events recorded in Greek mythology (McCorduck et 

al, 1977). In more recent modern history, circa 1843, it was Charles Babbage and his colleague 

Countess Lovelace, who created the first general purpose computers, such as the Analytical 

Engine, which included an arithmetic unit and programs in the form of data punch cards, 

concepts which are familiar in modern computing (Tanenbaum, 2006). More recent is the 

achievement Alan Turing and his team made in breaking the German Enigma codes using the 

famous Turing machine, during World War II (Haugeland, 1989). 

As demonstrated above, it is feasible to therefore use computerised programmed systems 

to help simulate or imitate human like natural intelligence, in such a way as to perform 

complex tasks to help problem solve.   The author of this research aspires that the work 

undertaken will demonstrate benefits in the subject area of applying natural intelligence to 

complex virtualised compute platforms using existing and potentially new AI techniques. 
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2.4  Expert System Applications 

2.4.1 Introduction 

 

The following sections consider real word examples of expert systems. The case 

studies below are of importance, because despite being orientated towards other expert 

knowledge domains, the principles and techniques used can be applied equally to any expert 

system that uses a knowledge base and inference engine. In the cases below, this allows the 

study of similar approaches undertaken by other projects, and assists focus on the strengths 

and weaknesses of other systems to help overcome commonly encountered problems from 

the past; each system covered lists the advantages and disadvantages based on the approach 

taken by the creator. 

 

2.4.2 R1/XCON 

 

R1/XCON (Expert Configurator) was an expert system designed by Digital Equipment 

Corporation (DEC) to be a system configurator for computer hardware. It was developed in 

the 1970s to provide sales staff with expert domain knowledge around what components to 

include in Virtual Address Extension (VAX) computer hardware sales. The system ensured that 

systems were shipped complete with all necessary components and was a successful 

commercial example of the application of expert systems within industry (Winston and 

Prendergast, 1986).  

 

The advantages from this example of an expert system are: 

• It was a commercially successful application. 

• Proven quality in the domain of expertise – VAX computer systems configuration. 

• The closest example of how an expert system can be used in the field of computer 

engineering to demonstrate how configuration knowledge can be used to assemble 
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the complex list of components for VAX computer systems. This is probably the 

nearest comparative system to managing virtualised computer platforms. 

The main disadvantage from this example: 

• The R1/XCON system was very specific – its expert knowledge was narrow around the 

VAX-11/870 (McDermott, 1982). Conversely, some may not consider this a 

disadvantage at all, as being narrowly focused on a very small knowledge area could 

allow for the potential to focus the expertise to a greater level. 

2.4.3 MYCIN 

 

MYCIN is an example of an expert system developed at Stanford University in the 1970s, 

to support medical staff help diagnose bacterial infections and suggest an appropriate 

antibiotic treatment using its inference engine and knowledge base. There are many positive 

aspects from the system that was developed, primarily that its ability to correctly diagnose 

and prescribe correctly, out-performed medical staff during the trials and experimentation 

phase. Given the positive trials, MYCIN had only around six hundred rules, which given the 

relative complexity and permutations within the field (there are well over one hundred 

antibiotics types), leads us to the conclusion that it was in fact a successful expert system 

concept (Alty and Coombs, 1984). It was only the fact that there were ethical challenges 

presented, over who would be responsible for any mis-diagnosis, that inhibited its further 

progress into mainstream medical practice. In that respect, using an expert system purely in a 

computer management type environment (outside of medicine), reduces the risk of failure in 

terms of improving its potential to be able to be applied into its particular field of expertise 

(Musen et al, 2006).   

The advantages from this example of an expert system are: 

• Expert systems did provide improved diagnostics. 

• A relatively simple rule set provides the necessary functions. 

The main disadvantage from this example: 

• Ethical challenges due to the complexity of understanding who would be responsible 
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for a misdiagnosis, potentially resulting in patient harm. 

 

2.4.4 INTERNIST-I 

 

INTERNIST-I is another interesting expert system developed at the University of 

Pittsburgh, that captured the knowledge of just one medical expert Jack Meyers. Unlike other 

systems, INTERNIST-1 used an advanced ranking algorithm to arrive at a diagnosis of a 

disease. It excelled when only one disease was present, however, struggled to deal with more 

complex scenarios, where two or more were evidenced in a patient. Additionally, using a 

heuristic based problem-solving approach, it did not guarantee the best diagnosis method 

and the system interface was slow to operate, resulting in poor uptake by those medical 

professionals using it in the field (Miller et al, 1982; Ravindranath, 2015). 

 

The advantages from this example of an expert system are: 

• Powerful heuristic ranking system to provide most probable diagnostic.  

The main disadvantages from this example: 

• Narrow expert view – knowledge derived from one expert source only. 

• Poor at dealing with multiple problems, for example, patients with two or more 

illnesses. 

• Overly time-consuming user interface, resulting in poor uptake and use of the system. 

 

2.4.5 DENDRAL (DENDritic ALgorithm)  

 

This was a very early expert system, developed at Stanford University in mid 1960s 

(Feigenbaum and Buchanan, 1994). Its expert subject field was organic chemistry, with the 

objective of performing an analysis of molecular structures using mass spectra. The primary 

approach of the systems was to use a heuristic search/algorithm. The rule base was 

successfully engineered using the LISP programming language, which resulted in advances in 
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knowledge engineering which were made available and published (Lindsay et al, 1993). 

 

2.4.6 HEARSAY I and II  

 

Another example of an early expert system is Hearsay, developed at Carnegie-Mellon 

in the late 1960s (Reddy et al, 1976). The domain expertise was in the field natural speech 

understanding for structured database queries. The primary approach used a blackboard type 

problem solving method (a way of aggregating partial solutions to provide a complete one), 

through recorded application of ongoing expertise, to reach a consensus on the hypotheses 

using independent knowledge sources. The system was engineered using the Stanford 

Artificial Intelligence Language (SAIL), however, it was not very successful, initially. 

Nevertheless, it proved the feasibility of automated speech recognition and provided the 

inspiration for the development of other expert systems. 

 

2.4.7 MACSYMA (MAC’s SYmbolic MAnipulator) 

 

The system was developed at MIT from 1968 onwards. Its expert subject was to 

perform complex mathematical procedures (e.g. algebra), using a primary approach of brute 

force encoded algorithms. It too was engineered using LISP, and was a widely used, powerful 

system. It is available today as GNU freeware via Maxima (Fateman, 1989). 

 

2.4.8 PROSPECTOR 

 

Developed at SRI International, located at Menlo Park, California in late 1970s, with 

its expert subject field in exploratory geology and evaluation of geological sites. The primary 

approach of the control architecture involved the use of an inference network and a rule-

based judgmental reasoning system that evaluated the mineral potential of a site or region, 

with respect to inference network models of specific classes of ore deposit. The system was 

engineered using INTERLISP (a derivative of the LISP programming language). In one 
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controlled test, the expert system successfully identified a previously undiscovered site, thus 

further demonstrating its commercial viability (McCammon, 1989). 

 

2.4.9 Expert Systems: Why Have They Been Considered? 

 

The introduction of this section alluded to the point that expert system principles are 

a transferable feature across knowledge domains (Brooks and Heiser, 1979). Based on this 

idea of transferability, it enables the investigation to proceed on the basis that such systems 

can re-use, evaluate and improve previous methods undertaken. From the historical expert 

systems investigated, it appears that the management of virtualised computer systems has 

not previously been undertaken, or fully explored by other researchers; therefore, this can be 

considered a new knowledge domain in relation to currently available expert systems.  The 

above examples of the application of expert systems show how such methods can be applied 

to almost any field that requires human intelligence, demonstrated through problem solving 

skills.  

 

2.5 Public Cloud Systems 

2.5.1 Introduction 

 

Another area of investigation is public cloud service-based offerings, which have 

become popular since 2006 and the advent of Amazon and their elastic cloud service. Figure 

2.1 below provides a representation on the current market share figures for the various cloud 

providers – currently led by Amazon and Microsoft: 
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Cloud Computing Services Market Leaders 

Year 2017 2018 

Organisation % Market Share  

Amazon 40% 37% 

Microsoft 29% 30% 

Google 10% 10% 

IBM 7% 8% 

All others including Oracle Corporation        14% 15% 

Figure 2.1 Cloud Leaders Market Share (Source: Forbes, 2018) 

 

This is particularly of importance, because public cloud providers like Amazon and Microsoft 

lead the way in commercial offerings. It is therefore necessary to explore how these providers 

compare in certain key areas such as, expert systems and reasoning, systems (VM) 

provisioning, VM migration strategies and performance monitoring. 

 

2.5.2 Case Study 1: Amazon EC2 

 

Amazon’s EC2 public service is available via the internet in the form of Amazon web 

services. Like the following case study with Oracle’s Cloud, it is very useful to functionally 

compare the cognitive load complexity and performance of their systems, against the research 

areas addressed by this work (Plass et al, 2010). Amazon's Elastic Compute Cloud (EC2) offers 

a web-service compute service offering to its end-users. The compute service works on the 

basis of buying compute time, storage and network services based around a certain set of 

parameters supplied by the end-user. This invokes a computerised in-house cost/billing model 

based on the type of instance(s) configured and the amount of time the components runs for 

in hours, minutes and seconds (system uptime). Typically, this would be configured based on 

the machine type, operating system (OS), CPU processing, memory, storage and networks 

requirements. Other factors that would affect cost would include any applications that may 

be requested; for example, Oracle RDBMS, or Microsoft SQL server. Once configured, VMs are 
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then accessed remotely using standard access protocols, for example, secure shell (SSH).   

Amazon's EC2 is a public cloud solution that is service based, whereby, the infrastructure 

supporting the platform is largely transparent to the end-user (Amazon Web Services, 2015). 

The levels of automation behind the Amazon EC2 cloud are advanced, in terms of the level of 

automation, provisioning and resiliency achieved through their large-scale datacentre 

infrastructure footprint (Bhise and Mali, 2014; Awal et al, 2014). One of the key differences of 

the authors research project is to alleviate even further the inputs from the end-user, by 

introducing an Intelligent Decision Engine (IDE), with the goal of vastly reducing the 

complexity to an end-user via a one-click provisioning methodology, much the same way 

Amazon allow purchasing of retail items on-line via their website (Amazon Web Services, 

2015). Amazon's EC2 interface remains quite complex, aimed at developers and other 

advanced end-user computing groups, such as scientific research teams, Information 

Technology (IT) service businesses and IT departments (Akioka and Muraoka, 2010). 

Leading providers of Cloud services such as Amazon EC2 have a web service that uses an 

advanced/complex Browser User Interface (BUI); further to this, the end-user has the ability 

to configure certain application (PaaS) offerings such as a MySQL database, or Apache web 

server (amongst many other features). Below is a table which summarises the EC2 service 

areas Amazon provides in respect to the similar areas of investigation for this work; the 

specific target areas of the author’s study are highlighted to demonstrate the originality, which 

contribute to alternative strategies in the overall field of work. 

The following table summarises the AWS areas that are being analysed, compared and 

evaluated against the IDE and Oracle platforms: 

 

AWS Feature Description 

 

Comparative Project 
Investigation Area 

Machine 

Learning  

 

Allows you to build ‘smart’ applications, such 

as flagging fraudulent transactions and 

predicting user activity. This is an area of 

Investigation developed 

further in chapter 4 of 

this work under the 
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AWS Feature Description 

 

Comparative Project 
Investigation Area 

interest which is being investigated as part of 

the author’s research, however, the author is 

conducting more research effort around 

machine self-management, rather than smart 

end-user applications (for example, smart 

programs that analyse credit card spend 

patterns and analyse, risk assess them for 

suspicious activity).  

section The Intelligent 

Design engine (IDE). 

AWS seeks to apply its 

'machine learning' 

around applications 

rather than the 

'infrastructure layer' 

which is a perceived gap. 

EC2 (Elastic 

Compute) 

This is Amazon's standard compute 

provisioning platform. From here you can 

launch Amazon EC2 instances which are 

individual VMs made of CPU, Memory and 

Disk. The high-level process flows are generally 

understood; however, the actual detailed 

provisioning process is unknown.  This would 

specifically be referring to the code, logic and 

exact method (e.g. PXE boot, using image 

templates (AMIs), kickstart, or VM image 

snapshots). Most of this information is private 

to the company; they would not want to 

necessarily share their trade secrets. What is 

known is that the deployment mechanism is 

advanced and uses AMI (Amazon Machine 

Images), which is a quick and efficient 

provisioning method. This is an area of 

interest, which is being investigated as part of 

the author’s research work which undertakes 

an alternative one-click VM deployment 

VM Provisioning 

mechanisms are 

developed further in 

chapter 5 of this work 

under the section 

Simplified Deployment 

of Virtual Machines. 



Intelligent Management of Virtualised Computer Based Workloads and Systems 

 

 

 

© James Oakes, 2020                                  47 | P a g e  

 

AWS Feature Description 

 

Comparative Project 
Investigation Area 

strategy for small scale to large scale 

Enterprises. It offers an advantage for end-

users who are potentially less familiar with 

complex virtualised compute platforms and 

adds in considerable expert knowledge in 

order to provision VMs. This is to be compared 

and contrasted against the Simplified 

Deployment of Virtual Machines using an 

Intelligent Design Engine, using the evaluation 

strategy defined in section 3.3. 

CloudWatch 

(Area of 

Research) 

 

Monitoring for applications and resources – 

alarms and auto-scaling features. This is an 

area of interest, which is being investigated as 

part of the author’s research. 

 

These areas are 

developed further in 

chapter  6 and 7 of this 

work under the sections 

Improving Workload 

Migration Strategies and 

Optimising Performance 

and Availability of 

Virtual Machines. 

Table 2.1 Comparing AWS features 

 

2.5.3 Case Study 2: Oracle Cloud 

 

Oracle’s Public Cloud service, while advanced, is regarded as lagging behind the market 

leader cloud providers like Amazon and Microsoft (Serrano et al, 2015). However, it is 

interesting to examine a smaller niche cloud providers approach, such as Oracle, given their 

pedigree in the enterprise compute space (Finkle and Scoresby, 2012). Below, the table 

describes the essence of the core investigation areas that are to be undertaken in respect to 
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the Oracle cloud and the IDE and AWS platforms: 

 

Oracle Cloud 
Feature 

Description 

 

Comparative Project Investigation 
Area 

Oracle 

Advanced 

Analytics  

Oracle’s advanced analytics aims to 

provide the ability to mine large 

datasets that can predict customer 

behaviour, estimate values, profiling 

people or items, identify rare events 

or anomalies and organise items into 

baskets of co-occurring events.  

Investigation developed further in 

chapter 4 of this work under the 

section The Intelligent Design 

engine (IDE). As per AWS, this 

provides further evidence that 

most cloud providers are more 

interested in the AI aspects with 

regard to applications, rather than 

features lower in the stack e.g. 

infrastructure. This work 

concentrates on applying this to 

the lower down infrastructure 

components. 

Oracle Cloud 

Machine 

 

Provisioning, manage and maintain 

the Cloud Machine IaaS resources 

and PaaS infrastructure. 

 

VM Provisioning mechanisms are 

developed further in chapter 5 of 

this work under the section 

Simplified Deployment of Virtual 

Machines. 

Oracle 

Management 

Cloud 

Oracle Cloud Management allows 

customers to build, deploy, and 

operate application environments 

on-premise, in a private cloud 

and/or on Oracle’s public cloud 

infrastructure. It maximises visibility 

and control over services and 

These areas are developed further 

in chapter 6 and 7 of this work 

under the sections Improving 

Workload Migration Strategies and 

Optimising Performance and 

Availability of Virtual Machines. 
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Oracle Cloud 
Feature 

Description 

 

Comparative Project Investigation 
Area 

provides monitoring and reporting 

solutions to ensure adherence to IT 

standards and policies. 

Table 2.2 Comparing Oracle features 

 

2.5.4 Cloud Computing: How it Has Created Utility Based Computing? 

 

Most public cloud systems are only visible to the end-user from an internet browser-

based interface. The complexity is hidden away purposefully, by design, and is presented as 

a service, so end-users need not be concerned with the technology that powers and creates 

VMs and containers (Biner, 2015). The typical cloud computing stack is represented as 

follows: 

 
Figure 2.2 Cloud Service Stack 

 

As above in figure 2.2, the cloud stack begins with Infrastructure, and works its way 

up to SaaS where end-user applications are made available directly to the user, such as a word 
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processing or email application. Public cloud systems use a variety of virtualisation technology 

to achieve their goal of providing such services to their end-users (Bojanova and Samba, 

2011). Therefore, it is of relevance that the interface and methods they use be compared 

when considering how to improve aspects such as VM provisioning, performance monitoring, 

and migration. 

 

2.6 Current Virtualisation and Cloud Management Approaches 

2.6.1 Introduction 

 

Using expert systems in the medical field has been previously well developed, 

understood and applied to the medical/clinical world; examples are MYCIN and INTERNIST-I 

(see sections 2.4.3 and 2.4.4). They are particularly relevant in the case of the research, 

because they identify the potential benefits that can be achieved by the application of expert 

systems to problem solving within a knowledge domain, such as computer virtualisation, or 

the clinical diagnosis of bacterial infections. The study now examines in detail some existing 

methods and strategies employed by other research works to compare the strengths and 

weaknesses of other similar works. These are examined in detail, and specific care is taken to 

explain how this approach differs from those previously undertaken, by focusing on the 

advantages and unique methodology and ideas of this research project. 

 

2.6.2 Reviewed Approaches 

 

Virtualisation now has many applications across all infrastructure components; not only 

can computer hardware be virtualised, but so can other infrastructure components, such as 

the network and storage devices. Given the potential to use this technology to save space, 

power and consolidate systems, it makes sense for organisations to leverage this to their 

advantage (Scroggins, 2013). The question of how organisations effectively manage these 

complex environments forms the fundamental problem that this research work addresses; 

with the IDE utilising AI features, the algorithms and methods employed help to reduce 

complexity to end-user organisations, thus enabling the delivery of a fully virtualised compute 
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platform (Scroggins, 2013).  

Given the various virtualised platforms now deployed in the field, attempts and 

approaches have already been made to automate deployments of VMs and other such 

hardware layers, for example, storage and network (Oludele et al, 2014). One interesting 

approach described how resources can be automatically provisioned in virtualised 

datacentres (Elprince, 2013). This study discusses how in the modern virtualised datacentre, 

there is a requirement to automatically provision and manage resources effectively due to the 

spiky nature of processing (i.e. a sudden shift upward in demand). One of the impacts of this 

naturally occurring event is that breaches in Service Level Agreements (SLAs) can occur due 

to VMs being impacted as they are under-resourced from a CPU, memory and storage point 

of view. The proposal here to deal with such events was to create an autonomic resource 

controller (Elprince, 2013). The system has two parts, a resource modeller (machine learning) 

and a fuzzy tuner (fuzzy logic) that allows dynamic resource allocation (or changes) to VMs to 

allow them to manage their computational load effectively. The resource controller also 

attempted to ensure no SLA breaches were made. The first obstacle mentioned is dealing with 

complexity of ensuring scalability (or elasticity) of virtualised systems. The system itself was 

modelled using a data trace only, and not on a real interactive environment. While this 

simulation provides real work-load patterns and opportunity to model different jobs, 

scheduling, and priorities, it may not always provide a real-world complete data-set from all 

relevant log files and system data. In this study, development and experiments are conducted 

in a real lab-based environment to enable true testing against live systems. This provides 

several advantages, the primary being that you can model the behaviour of intelligent systems 

with a higher degree of certainty, in terms of being able to observe and record how things 

operate and perform in a live situation (Elprince, 2013).   

Nowadays, when you consider cloud services and their evolution and standard enterprise 

model of delivery, there are a whole host of resources that require controlling such as 

networks, servers, storage, applications and services (Bojanova and Samba, 2011). The 

requirement for control is clear, in that all these hardware and software resources need 

effectively managing, collectively and in harmony; one of the common disadvantages of 

today's enterprise datacentres, is the silo approach taken by many organisations to their data 
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centre build and delivery mechanism. By adopting this old, non-agile model, they make it far 

more difficult to automate delivery and manage the control of their systems, as 

responsibilities across technology space, as described above are handled by separate teams. 

This means it is advantageous to move away from diversified control mechanisms, and instead 

use a single team or entity much like the IDE to achieve a centralised management approach 

(Gren et al, 2014). 

Another alternative approach was investigated to deploy VMs and applications using 

OpenStack, which is an open source toolset designed to allow automatic cloud configurations 

(Zhang and Shang, 2014). While some of the tasks were automated, there were several 

additional add-ons that had to be configured such as: 

 

• An algorithm to control the network IP addresses allocated. 

• Having to convert ISO images to allow installation. 

• Configuring Dynamic Host Configuration Protocol (DHCP), firewall, and SSH public key 

infrastructure components. 

• Shutting down the VM and registering in Glance (the OpenStack discovery and 

registration module). 

 

Based on the above, the devised system leaves many further opportunities for automation 

and simplification of the VM deployment process and could be considered incomplete in its 

development. 

Interestingly, a recent investigation explored proactive management for cloud-based 

architectures (Dong and Herbert, 2013). Rather than use a traditional method of reactive 

management, they suggest that a far better management strategy is to be proactive rather 

than to just react to occurring events. They programmed in certain intelligent traits, such as 

suggestions for tasks to be carried out such as VM migration in the case of a set of criteria 

being fulfilled. These suggestions are then evaluated in turn, to decide whether they should 

be acted upon. The evaluation process used a manual cloud build methodology, using IBMs 

SmartCloud, which was a noted problem, as the management system was not tightly 

integrated into the VM provisioning process; inherently, not being tightly coupled, means the 
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intelligent system will struggle to manage the IaaS (Infrastructure as a Service). For the actual 

management aspect, a private cloud simulator was used to allow this process to allow the 

theoretical management of between 50-500 VMs. 

Further systems examine how workload schedulers can be applied to heterogeneous 

systems, which are able to run a combination of workload types (Kim et al, 2011). This 

methodology and approach are interesting; however, it differs in principle from the work being 

carried out by this project, with the key differential being one uses a controlled, tightly 

integrated modular approach. On the other hand, the alternative aims to generically schedule 

workloads across various cloud and computer resources an organisation may have available. 

This approach used CometCloud, a grid computing tool, designed towards heterogeneous 

compute environments. Other approaches to managing virtualised environments have solely 

addressed a single compute entity, like CPU resource (Menasce and Bennani, 2006). Their 

work demonstrates the ability to dynamically provision CPU shares to various VMs, depending 

on overall systems priorities; however, this work presents opportunity to build further on 

performance management aspects. 

A Distributed Artificial Intelligence (DAI) system consists of multiple physically separated 

processing machines, with each having at least one expert system or knowledge source. No 

one node has the ability to entirely solve a problem. Instead, it must work together in a co-

operative manner in order to resolve a problem. Typically, such a multi-agent system 

comprises of a number of components, described as a receiver and transmitter, meta-level 

knowledge, planner, scheduler, blackboard, solver and multiple knowledge sources. The 

components rely on interactions between themselves, with the receiver/transmitter using a 

defined protocol and language set to communicate with other nodes. Meta level knowledge 

allows for general node or environment awareness, so the problem once defined at a high 

level can be addressed and resolved by the correct candidate node. Task planning allows a 

specific problem to be broken down into a structured set of sub-tasks that can be addressed 

in a logical order by one or multiple nodes. The scheduler’s goal is to decide upon the most 

effective way of reaching an overall solution by prioritising and ordering sub-tasks. In order 

to work effectively, the blackboard is used and accessed by each node as required, to allow 

node-to-node communications, with information and data stored about plans, tasks and 
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results. Finally, the solver is responsible for reaching the end objective of a final solution by 

tracking and determining the best path forward for all sub-tasks to complete (Yang et al, 

1985).  

An exciting work around the use of the mOSAIC framework has been completed to work 

to provision an IaaS/PaaS environment with intelligent management to help manage 

distributed cloud resources. The primary advantage of the tool is the fact it is geared towards 

any cloud platform service and can be considered vendor agnostic. This provides a great deal 

of flexibility, in that it can be applied and used and configured against various cloud platforms. 

On the other hand, however, the main drawback is the complex configuration and setup of 

the framework, along with the dependency for AI and automation that does not work by 

default without a considerable amount of customisation (Sandru et al, 2012). The mOSAIC 

product comprises of numerous modules shown in figure 2.3: 

 
Figure 2.3 The moSAIC Architecture 
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The above architecture demonstrates the product is feature rich; however, the 

framework requires a large amount of configuration, especially around specific vendor 

agents. This leads to the conclusion that the architecture components require considerable 

post-deployment activities to produce automated processes (such as VM deployment) for the 

organisation that uses the framework. 

It follows, that if a system can be created to hold expert human knowledge, it can be 

applied to any field of human expertise. As part of the output of this work, the author 

endeavours to apply AI strategies in a novel way to help manage virtualised compute 

platforms more effectively. Indeed, at a very high level initially, this can be described as 

follows. To develop and build an expert system (IDE) which uses the following techniques: 

 

• Data text mining and analysis to extract (quick and slow methods) from the platform, 

both real-time information and retrospective data analysis methods to help re-

evaluate rules and logic base; typically, this would involve the identification of critical 

log and information files to allow the system to process and perform its own analytics. 

In effect, this is a three-step phase, with 1) identification of critical files – the system 

must be able to determine this and 2) real-time extractor – critical platform updates 

3) retrospective extractor – thinking extractor and textual analyser. 

 

• Performance and availability monitoring; the system needs to control all physical 

infrastructure components, and virtualised systems (VMs, Storage and Network). This 

includes application of SLAs and predictive failover for all VMs, with shadow instances 

for critical VMs. Some of this capability already exists in market leading commercial 

products; as an example, VMware are using similar systems with features such as 

Distributed Resource Scheduling and High Availability (Shirinbab et al, 2016). The goal 

is to improve the approach employed by using new techniques to enhance the overall 

performance using dynamic resizing of resources and faster failure detection and 

recovery times. 

 

• Rule based and forward chaining decision making allows information to be extracted, 
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processed and applied to the virtualised platform. As an example, this would include 

building a forward chain for new VMs based in information available in the knowledge 

base. 

 

2.6.3 Conclusions 

 

The following table describes the conclusions drawn from the areas investigated, with 

analysis of the strengths and weaknesses for each finding: 

 

Author(s)/Date Summary of findings  Strengths and Weaknesses 
 

Oludele et al, 

2014 

Attempts to fully automate VM 

deployments. 

 

Requirement to build and improve 

on this methodology, as 

automation techniques are not 

fully developed. 

Elprince, 2013a Automatic provisioning of 

resources in virtualised 

datacentres. 

 

A useful model which can be 

improved upon in terms of adding 

more automation steps. 

Elprince, 2013b Creation of an autonomic 

resource controller. 

 

The idea of a resource controller is 

novel; however, it is concentrated 

mainly on prediction of the 

resources in a certain application 

may need in a VM container.  

Elprince, 2013c Resource modeller/controller 

uses (machine learning) and a 

fuzzy tuner (fuzzy logic) that 

allows dynamic resource 

allocation. 

The approach primarily uses Fuzzy 

logic, which deals with partial 

truths, as opposed to Boolean 

values which are true or false only. 

As part of this work, further 

opportunities are available to 
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Author(s)/Date Summary of findings  Strengths and Weaknesses 
 

investigate and apply other AI 

techniques to modelling and 

control, such as natural language 

processing, forward chaining and 

text mining. 

Bojanova and 

Samba, 2011 

Enterprise infrastructure delivery 

models applied into the cloud. 

Interesting discussion on cloud 

architectures, which highlights how 

important delivery models will be 

in this particular field. Presents the 

idea that this area of work will be 

critical to shaping the future of 

cloud/virtualised computing 

environments. 

Gren et al, 2014 Automate delivery and manage 

the control of their systems by 

using centralised management 

systems. 

Argues for centralised 

management of distributed 

systems. Centralised services must, 

however, be resilient. 

Zhang and 

Shang, 2014 

Investigation into deploying VMs 

and applications using 

OpenStack. 

An interesting approach using 

OpenStack. However, there is 

limited effort into how AI 

techniques may be applied to the 

environment and numerous 

manual steps listed, such as setting 

up a cloud computing platform in 

OpenStack. This in itself adds 

considerable complexity to the 

end-user. 

Dong and Study into proactive Concentrates primarily on cloud 
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Author(s)/Date Summary of findings  Strengths and Weaknesses 
 

Herbert, 2013 management for cloud-based 

architectures. 

management; however, the 

Operational Management Service 

(OMS) requires the build of at least 

5 virtual machines in order to 

function, implying there are 

multiple steps for the end-users to 

effectively use the tool. 

Kim et al, 2011 Feasibility of application of 

workload schedulers to 

heterogeneous systems. 

This study focused on using a tool 

call CometCloud which is a 

framework for supporting 

workloads across distributed 

systems, such as Public cloud, 

Private cloud, Private clusters and 

so on. The ideas presented are 

interesting; however, in the paper 

the experiment phase describes a 

large amount of manual build 

steps, such as configuring and 

building public cloud VMs. In other 

words, automated VM and system 

provisioning did not appear to 

feature. 

Menasce and 

Bennani, 2006a 

Work around the dynamic VM 

allocation of resources. 

Primarily deals with dynamic CPU 

resource allocation only, leaving 

potential for lots of other resource 

controls such as memory, network 

and disk I/O. 
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Author(s)/Date Summary of findings  Strengths and Weaknesses 
 

Yang et al, 1985 Distributed Artificial Intelligence 

(DAI) system consists of multiple 

physically separated processing 

machines, with each having at 

least one knowledge source. 

 

An interesting approach using 

distributed expert system 

components, however, this model, 

although effective at delegating 

load and tasks across multiple 

agents, presents the possibility of 

have more single points of failure, 

due to the single entities requiring 

replication (such as the ‘solver’ or 

‘scheduler’); further work is 

needed to ensure each critical 

component is highly available. 

Questions also remain over the 

ability of the system to perform 

and effectively problem solve 

when using the black-board to 

communicate and share 

information with other nodes. 

Sandru et al, 

2012 

This paper discusses the use of 

the mOSAIC framework to 

provide IaaS and PaaS, which 

attempt to use the tool to 

deliver automated provisioning 

of various cloud infrastructure 

and middleware components; 

for example, VMs, RabbitMQ, 

and MySQL. 

The cloud management approach 

used is vendor agnostic, which can 

be perceived as a strength, as this 

allows the tool to be customised 

against any cloud provisioning 

service. However, this does leave 

the complexity of having to create 

the agents to support the 

multitude of vendors. The AI 

techniques are not fully explained, 
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Author(s)/Date Summary of findings  Strengths and Weaknesses 
 

with only minimal references 

which allude to it being a 

necessary component to manage 

the complexity of the platform. 

Ajila and 

Bankole, 2013 

This paper discusses in detail 

three methods for predicting 

cloud resource utilisation of web 

applications using three machine 

learning techniques. Firstly, 

using a Neural Network, 

secondly via Linear Regression, 

and finally using Support Vector 

Regression (SVR). 

The prediction model is interesting 

as the authors compare three 

different machine learning 

strategies. They determine 

through their experimentation that 

the SVR method is most effective 

at resource prediction and 

adaptation. However, little 

information is made available on 

how once the information is 

collated, VMs in the cloud are 

automatically modified should it 

be determined they require more 

or less compute resource. 

Tian et al, 2012 This work considers using a 

Decision model for provisioning 

VMs on Amazon EC2, in terms of 

providing cost optimisation and 

capacity planning. 

An investigation into how to best 

acquire Amazon EC2 

resources/capacity based on three 

different pricing models. Those 

types are on-demand instances, 

spot instances and reserved 

instances. The idea was to reduce 

the cost to a minimum for EC2 

provisioning plans. The results 

showed a promising strategy for 
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Author(s)/Date Summary of findings  Strengths and Weaknesses 
 

reducing overall cost, as well as 

little advantage to using spot 

pricing for short-term planning. 

Lokshina and 

Insinga, 2004 

Discusses the feasibility of using 

an expert system as a 

replacement for a human system 

administrator, acting in a 

support function. 

Looks at how an expert system can 

use a combination of event driven 

decision making, utilising forward-

chaining to reach conclusions on 

how to problem solve in a 

distributed and heterogeneous 

computing environment. 

Table 2.3 Current Virtualisation/Cloud Management Findings 

 

2.7 Intelligent System Approaches  

2.7.1 Introduction 

 

Given the gaps and challenges identified, a further examination and consideration of 

intelligent systems is undertaken in the areas of algorithms, pattern analysis, machine learning 

and inference engine. These areas are explained in detail below: 

 

2.7.2 Algorithms  

 

An algorithm is a step of sequenced actions that can be made up of a combination of 

reasoning, mathematical calculations and processing tasks (Huang et al, 2012). They link 

intrinsically to expert systems methodologies described in the above examples in section 2.4, 

which are essentially made up of a single or series of algorithms (Mülayim and Alaybeyoğlu, 

2016; Wenbin et al, 2010; Ashouri and Savoji, 2004). Instead of being clinically based, the 

knowledge domain of this investigation is focused on the application (knowledge engineering) 
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of those principles to virtualised computer systems. Indeed, the field of expert systems (and 

associated algorithms) are equally applicable in helping to solve any type of problem that 

requires a level of human natural intelligence to create a solution (Durkin, 1990; Beckman, 

1990). Currently, this research field is wide and intensive as the studies examined 

demonstrate. As examples, consider further that significant efforts are being made in: 

 

• Autonomic virtualised environments; the concept of automatically assigning CPU 

resources dynamically within a virtualised computational environment (Menasce and 

Bennani, 2006).  

• Autonomous resource provisioning; the idea here is to design an autonomic resource 

controller capable of learning adaptively, by utilising Machine Learning techniques, 

effectively being able to make resource changes to meet Service Level Agreements 

(Elprince, 2013). 

• Predicting cloud resource using support vector regression (Ajila and Bankole, 2013). 

 

2.7.3 Text Mining 

 

The IDE proposes using data text mining processes to analyse key data and log files (Wong 

and Manickam, 2010). This enables quick extraction of key data to enable the platform to 

make decisions and trigger key events. Examples of platform events specific to this work 

include VM deployment, VM failure, VM migration, and intervention to improve VM 

performance. Analysis of patterns is essential for the system to be able to perform two critical 

activities: 

• Event response (reactive) based on real-time data.  

• Event prediction (proactive) based on historical analysis.  

The first activity, event response, is a classical trait for an expert system to exhibit (Kulikowski, 

1980; Lokshina and Insinga, 2004). Usually, a pattern of events is recognised, and a conclusion 

reached through logically joining those identified patterns to match an event response using 
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a method such as forward chaining (Windriyani et al, 2013). Once matched and initiated, a 

series (or even single) of actions are performed to provide a satisfactory system response; 

once completed, the tasks carried out can be evaluated and measured as successful or non-

successful.   Likewise, a further less common method is to use historical or collected data to 

proactively perform a set of actions, again using a method such as forward chaining (Kwon, 

2012). Figure 2.4 demonstrates the basic approach: 

 

 

  

 

Figure 2.4 Machine Event Response Mechanism 

 

For example, you may be able to predict busy system times, such as just before batch 

processes start at 7pm on a Sunday evening. Therefore, it would be feasible to predict this 

event due to pattern analysis of historical data and invoke a procedure to increase CPU and 

memory available, to allow the system to perform more effectively. It is an objective for this 

work to incorporate both methods to support the IDE function. 

2.7.4 Natural Language Analysis  

 

Natural language processing is used to understand and organise information (Lebowitz, 

1983). The IDE aims to use a knowledge base, with a thesaurus, an English based lexicon, 

along with grammatical rules to allow the system to make sense of all collected platform data 

and thus classify and formulate appropriately (Gaikwad and Joshi, 2016). Through 

organisation of information, the system will be able to use these resources to build a 

sequence of reasoning steps. Figure 2.5 demonstrates the process: 
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Figure 2.5 Natural Learning Mechanism – Information Organisation 

 

2.7.5 Inference Engine (Forward Chaining) 

 

Inference engine architectures can use backward and forward chains to logically create 

rules or new facts about the knowledge domain they operate in. With forward chaining, 

known facts are connected together to result in a new conclusion or fact. Conversely, with 

backward chaining, a desired goal is stated, and the facts required to achieve this goal are 

reverse engineered (Mettrey, 1991). Given the two approaches, initially an examination of 

forward chaining to build reasoning and conclusions (facts) will be undertaken. This will result 

in a suitable knowledge rule-based approach for managing complex procedures within the 

virtualisation of computer systems context (Spangler, 1991). The platform will therefore be 

expected to make data driven decisions, which are triggered primarily by real time events 

from information collected from the various components, such as VMs, storage and network 

devices. By utilising forwarding chaining of statements, this enables the system to reach a 

conclusion and invoke necessary functions described above to satisfy event responses or 

event predictions (Novaliendry et al, 2015). The premise at a simple level is presented as 

follows: 
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Figure 2.6 Machine Learning Mechanisms Event Response 

 

2.7.6 Cognitive Load Theory  

 

 Cognitive Load Theory (CLT) emerged in the late 1980s, as a branch of cognitive 

science, with several key researchers involved in studies around how users are impacted by 

mental load during problem solving exercises  (Sweller et al, 1998;  Paas et al, 2003). The key 

idea introduced, was being able to measure and capture the amount of mental power, or 

mental effort that is required to complete a certain task or set of tasks (process), in a 

controlled experiment setting.  According to Paas and his colleagues, CLT is concerned with 

the design of instructional methods that efficiently use people’s limited cognitive processing 

capacity to apply acquired knowledge and skills to new situations, for example the transfer of 

knowledge (Paas et al, 1994).   

Analytical methods are directed at estimating the mental load and collect subjective 

data with techniques such as expert opinion and analytical data, with techniques such as 

mathematical models and task analysis. Empirical methods, which are directed at estimating 

the mental effort and the performance, gather subjective data using rating scales. The 

application of rating scale techniques are based on the assumption that people are able to 

introspect on their cognitive processes and to report the amount of mental effort expended. 

Although self-ratings may appear questionable, it has been demonstrated that people are 

quite capable of giving a numerical indication of their perceived mental burden (Gopher and 

Braune, 1984). 
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2.8 Summary  

2.8.1 Introduction 

 

Throughout chapter 2, there is an overall review of the foundation, origins and 

motivations around the historical work done around AI and its many branches. By alluding to 

the origins and early success stories, we set the scene for further developments around expert 

systems (of all types), by highlighting their suitability towards imitating the way humans 

problem solve. Furthermore, an in-depth discussion of two well-known public cloud 

organisations brings the study up to the most current recent technology advances made. This 

allows for comparisons to be made in the areas being examined by this investigation. 

Following this, a detailed analysis of current research initiatives in the field allows a 

comprehensive view of what has been achieved to date, how this work fits into the existing 

body of knowledge; additionally, discussion around the identified gaps and expected 

challenges helps define and justify the future effort and work undertaken by this project. By 

completing this, it allows us to finally review some of the identified AI techniques that are 

deemed most likely to provide the best results for the intelligent management of virtualised 

computer systems. 
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2.8.2 Gap Analysis 

 

The following table describes and captures those areas that are deemed to form part of 

the gap analysis from the literature reviewed in the field: 

 

Subject Area Gap Analysis Conclusion 
 

Expert systems 

application to virtualised 

computer management 

platforms and cloud-

based systems. 

The author believes the work to be unique, in that no existing 

expert systems exist within the knowledge domain of 

virtualised computer management (Duda and Shortliffe, 1983). 

Event detection 

combined with forward 

chaining (inference) to 

improve automated 

system response. 

Examining existing work in the field of virtualisation, suggests 

little has been done around combining system event driven 

response with forwarding chaining to allow an expert system to 

evaluate and perform an automated reaction for example 

cause, effect and response (Anicic et al, 2009; Lokshina and 

Insinga, 2004). 

Natural language 

processing for text 

analysis and advanced 

trigger generation. 

Work to integrate natural language processing techniques for 

text-based analysis of the virtualised platform environment 

data to improve trigger detection and effective event response 

strategy (Gandhe et al, 2013). 

Simplified one-click VM 

deployment. 

Investigation into the reduction of the cognitive load rating for 

complex user activities like building and deploying VMs. From 

analysis undertaken of literature so far, opportunity exists to 

simplify processes and minimise required human interventions 

(Oakes et al, 2016). 

VM performance and 

availability. 

Builds on existing work completed around the dynamic 

allocation of resources (like CPU, Memory and Disk) by utilising 

the event driven processes and inference capability to drive 
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Subject Area Gap Analysis Conclusion 
 

intelligent decision making on how best to increase or remove 

resources, in conjunction with service level agreements 

without the need for human intervention (Antonescu et al, 

2013; Sarathy et al, 2010).  

VM Migration. Work to improve existing methods around VM migration 

between hosts and automated balancing workloads, by 

examining how to reduce service outage time, without the 

requirement for human intervention (Benet et al, 2016). 

Table 2.4 Gap Analysis 

 

2.8.3 Approach Challenges 

 

The table below describes the challenges, analysis and conclusions that were reached 

based on the options available for the project: 

 

Challenges Analysis/Conclusion 
 

Distributed versus 

centralised 

management approach. 

As part of the solution approach, it is important to decide 

which design is the better suited to solving the problem (Yang 

et al, 1985). 

Conclusion: Choose centralised management. 

Functional capability 

prioritisation. 

Any solution provided requires an initial starting point. 

Deciding on what functional capability is critical in managing 

the project effectively. Rather than over-extend the initial 

capability, it is deemed advantageous to focus on the most 

critical functionality required and deliver the perceived 

improvements. 

Conclusion: Prioritised IDE functional capability areas as per 

section 1.2 Motivation and Aims.  
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Challenges Analysis/Conclusion 
 

Deciding which AI 

strategies are the most 

effective to utilise with 

the IDE. 

There are many AI strategies/approaches available, which could 

be selected to support the IDE. Choosing the most appropriate 

AI component is critical to the project. Current areas 

considered: 

• Fuzzy Logic - Partial v Absolute truth (Elprince, 2013)  

• Support Vector Machines (Ajila and Bankole, 2013) 

• Machine Learning (Arnaldo et al, 2015; Melekhova, 

2013) 

• Data/Text Mining  (Prangchumpol et al, 2009) 

• Natural Language Processing (Mei and Cheng, 2010) 

• Forward and backward chaining (Anicic et al, 2009) 

• Expert systems (Spanger, 1991; Lokshina and Insinga, 

2004) 

Conclusion: Choose expert systems, based on the analysis 

completed in chapter 2 and section 2.4. 

Overcoming on-premise 

private and hybrid cloud 

limitations. 

Optimising on-premise private/hybrid cloud management 

techniques (Dong and Herbert, 2013; Jin et al, 2016; Zhang et 

al, 2014) 

Conclusion: Choose a private cloud management approach to 

explore tight integration, improved automation, better 

controls, based on section 2.6.2 Reviewed Approaches. 

Table 2.5 Approach Challenges 

  



Intelligent Management of Virtualised Computer Based Workloads and Systems 

 

 

 

© James Oakes, 2020                                  70 | P a g e  

 

2.8.4 Justifications 

 

The following table highlights the justifications for the decisions and choices made for 

each of the proposed areas of investigation: 

 

Justifications  Analysis/Conclusion 
 

Reducing Cognitive Load 

for complex VM 

provisioning and 

management tasks. 

Working to reduce complexity of VM provisioning and 

management by developing high levels of automation, reduced 

requirements for human inputs and improved automation 

(Sweller, 1988). 

Improved Automation.  Working towards full automation and minimal human 

intervention for any functional procedures, such as VM 

provisioning, VM performance monitoring and migration (Benet 

et al, 2016; Steinder et al, 2007). 

Selection of most 

appropriate AI 

strategies. 

Use of natural language process to aid understanding of 

log/textual outputs, complimented by the selection of text-

based analysis for improved/automatic pattern recognition, 

event processing and selection of forward chaining to reach facts 

(Anicic, 2009; Mettrey, 1991). 

Simplification of VM 

deployment. 

Minimisation of end-user inputs and full automation of 

provisioning VMs (Oakes et al, 2016). 

Table 2.6 Research Justifications 

 

Based on the justifications described in table 2.6, it is feasible to move forward into 

the methodology in chapter 3, which describes in more detail the experiment processes and 

mechanisms used to evaluate the IDE and other comparative virtualised management 

platforms.   
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Chapter 3: Methodology and Evaluation Strategy 
 

3.1 Methodology Introduction 

 

The methods used for the investigation work include the build and development of a 

prototype laboratory environment to support the experimentation processes undertaken for 

the IDE and associated functions. By using this platform, it enables functional testing of all the 

infrastructure components in unison and allows development of program code, algorithms 

and system interactions.  It is envisaged that once the platform reaches a mature configuration 

point, the build could be easily replicated using automatic system package type installation on 

standard Linux type systems. This would enable the easy deployment of additional evaluation 

systems that are effectively replicas of the initial primary system. In this way, the evaluation 

processes can be carried out easily, without transporting excessive amounts of hardware and 

system configuration data (from the development laboratory). Simply, this could be a set of 

software components for: 

• A software package to configure the IDE with the primary, secondary and tertiary 

systems. 

• A software package to configure the Network Attached Storage (NAS) appliance. 

• A software package for all required local source/packaged repository software. 

• A software package to allow platform internet access (direct, or via a proxy). 

Using these software deployment packages, it should be feasible to easily replicate the 

experimental development platform, assuming the standard hardware devices are physically 

available: 

• At least 3 x86 architecture computers (Compute, minimum: 8GB memory, 2 internal 

disks, 2 CPU Cores at 2GHz or higher, 1 x 1Gb Network Interface). 

• At least 1 Network Attached Storage Appliance (Storage, minimum:  Dual 1Gb network, 

4 disks, 7200RPM, SATA/SAS/FC). 
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• At least 2 Network Switches (Network, minimum: 16 x 1Gb ports). 

• At least 1 x86 computer to act as a router/gateway for internet access (optional); this 

must have at least 1 physical network interface and a wireless network interface. 

(Network/Compute, minimum: 4GB memory, 1 internal disk, 2 CPU Cores at 2GHz or 

higher, 1 x 1Gb Network Interface). 

3.2 Development Framework 

 

The development framework is very important for the project to progress; the aim is to 

control code releases using the Redhat Hat Package (RPM) format and source control versions 

appropriately. This method will allow control of four key RPM software bundles (listed above), 

which will be version tested together and the results recorded, to build up a valid laboratory 

set of working configurations. It can be summarised as follows: 

• RPM – All software will be bundled into Package format for ease of installation 

and distribution. 

• Source code – all code will be version controlled in a system. 

3.2.1 Laboratory Setup 

 

The laboratory setup for the design, build and experimentation phase included setting 

up an initially small scale set of systems; the approach taken was to build a single x86 IDE 

server – the primary system which controls all aspects of the environment. In the final model 

design, there will be a primary and secondary system to provide high availability. Further to 

this, three other x86 systems are required to perform normal VM build, development and test 

operations. This platform would allow for all activities to be carried out on a small scale, with 

the view of acquiring more powerful systems further into the research process, for example, 

when experiments demanded higher performing systems specifications. Below is a diagram 

of the initial and final laboratory setup: 
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i) The initial simple configuration: 

 

Figure 3.1 Initial Laboratory Setup 

 

ii) The final configuration as a recommended minimum: 

 

 

Figure 3.2 Final Minimum Laboratory Setup 
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3.2.2 Software Configuration 

 

The software configuration of the IDE platform is fully automated; there exists a number 

of software Redhat Packages (RPMs) that make up the core of the programs required for the 

system to function. Please see Appendix B for full details. 

 

3.3 Evaluation Strategy 

 

3.3.1 Evaluation Approaches 

 

There are several different approaches that can be used in evaluating complex expert 

systems. In the case of the IDE and its associated functional components, a combination of 

two approaches have been chosen to provide both empirical evidence comprising of 

qualitative data based on user feedback, and formal performance metrics providing measured 

outputs made up of quantitative data. It is the goal of this work to produce results output that 

have a combination of qualitative and quantitative methods. Some effort has also been taken 

to evaluate and test methods to convert qualitative feedback and accurately define and assign 

numerical values to help better represent user feedback in charts and graph format. Carefully 

constructed process and thought are placed into such a method to ensure fair, robust and 

meaningful values are accurately gathered and presented. Section 5.2.3.1 explains this 

approach in detail (Srnka and Koeszegi, 2007). 

Therefore, the two combinations are summarised below: 

• The first evaluation method will use qualitative methods collated by obtaining expert 

user feedback via interviews. This will be obtained through live demonstrations similar 

to the RAND (Research AND Development) framework methodology (Rothenburg et 

al, 1987). Therefore, a collection of expert qualitative data will be created based on a 

set of structured interview questions, through interviewing three independent groups 

with a defined experience and capability rating in the field of computer-based 

virtualisation (see section 5.2.1.2 for definitions). 
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• The second evaluation method will use several quantitative simulations with formal 

metrics, that will specifically target key system functions in performance aspects, such 

as deployment of virtual machines and migration of virtual machines (Chen and Suen, 

1993). 

The objective is to use a combination of complimentary methods. Thus, the desired 

outcome is to create a richer and more robust evaluation methodology by using both 

qualitative and quantitative data. Qualitative data that focuses and reflects on the 

characteristics and capabilities of the system, rather than just its features alone, and 

quantitative data that measures specific system functions. The following sections discuss 

these two approaches in more detail. 

3.3.2 Expert System Evaluation  

 

In chapter 2, section 2.4 an examination of how real life examples of expert systems 

can be used as a way to assist with automated complex decision making processes is 

discussed. It was established that such systems have a broad application to problem solving, 

and the examples included medical diagnosis assistance, and system configurators. Section 

2.4.9 provided the basis and justification as to why expert systems had been considered as a 

feasible way of utilising expert knowledge to manage complex systems and processes. A 

variety of existing and known methods are used to evaluate the IDE and comparative systems, 

using experimentation process; they are described further below: 

• The expert system rules are fired and tested using a simple first-come first-

served approach, and are therefore ordered in priority. This avoids complex 

conflict sets, whereby many rules may be valid to execute, and provides a clear 

conflict resolution strategy (Mettrey, 1991; Alty and Coombs, 1984).  

• Additionally, a mixture of evaluation methods is employed to test the IDE. This 

includes, traditional qualitative and quantitative evaluation methods, as 

described in section 3.4.1 and 3.4.2 respectively, as well as less well known 

methods such as measuring the characteristics and features of expert systems 

and their capability (Beckman, 1990; Rothenburg et al, 1987). 
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• Mixed quantitative and qualitative methods are used to measure VM and 

cognitive load, and are used with the end-user participant groups to test the 

IDE expert system. The experiments are devised in section 3.5.1 for 

investigation 1, Autonomous VM Deployment, and in section 3.5.2 

investigation 2, Cognitive Complexity System Evaluation (Massimiliano and 

Tamburri, 2017). 

• Quantitative methods are employed in section 3.5.3 for investigation 3, 

Workload Migration and Evacuation of VMs to investigate the IDE performance 

against comparative systems (Madarasz et al, 2014). 

• For the performance management evaluation process, section 3.5.4 describes 

investigation 4, the Overload of VM Memory, and section 3.5.5 investigation 5 

the Overload of VM CPU. A series of simulated experiments are to be 

conducted to evaluate how well the global resource manager for the IDE 

performs in comparison to other similar studies. As an extension to testing the 

effectiveness of all the resource management systems, a binomial evaluation 

is used in chapter 7.6.5 to enrich and provide details on the features and 

characteristics of the IDE and comparative systems (Conrath and Sharma, 

1991). 

As demonstrated above, the author is using a wide variety of standard evaluation 

methods (qualitative or quantitative), which are well known, tried and tested.  As alluded to, 

there are several less well known approaches used by some researchers, however, for the 

most part these have been avoided unless it was apparent additional methods were needed 

or useful, as in the case where qualitative or quantitative methods would not suffice entirely; 

for example determining the effectiveness and capability of the global resource management 

features of a system like the IDE. Therefore, with the exception of some influences from 

researchers such as Contrath and Sharma and their use of the binomial evaluation method, 

and Rothenburg and his colleagues at the RAND institute, the methods remain standard where 

possible.  

As described earlier in section 3.3.1 the RAND work establishes some other useful 
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methods for evaluating expert systems, which have been partly considered and incorporated 

(Rothenburg et al, 1987). One of the points suggested as providing additional value is 

evaluating the expert system capabilities, and that is explored further as part of this work. In 

chapter 7, section 7.6.1, 7.6.2 and 7.6.3, the IDE and comparative tools are analysed, scored, 

and the results presented. 

 

3.3.3 Experiment Design  

 

The following points detail how and why the experiments were devised: 

• Experiment 1 (section 3.5.1) and Experiment 2 (section 3.5.2): Autonomous VM 

deployment, and Cognitive Complexity System Evaluation. This experiment was 

created and based around the 10-step procedure to provision VMs. The author used 

empirical observation methods to initially work through each of the key stages (10-

Steps), to determine what inputs are required and necessary for a system to create 

and provision a VM, for example selecting the required CPU, memory, and disk 

parameters. The process methods to achieve this is consistent for the IDE, AWS and 

Oracle platforms, and hence repeatable for each  (Massimiliano and Tamburri, 2017; 

Bhise and Mali, 2013).  

• Experiment 3 (section 3.5.3): Workload Migration and Evacuation of VMs. The author 

realised early on at the proposal stage, that this area was a key element to 

management. Similar studies have been done using other technologies, such as 

VMWare vMotion and XenMotion. Migration, evacuation and failover of VMs are key 

to maintaining availability, and therefore can be considered a fundamental process for 

the intelligent management of virtualised platforms (Benet et al, 2016; Feng et al, 

2011; Shirinbab et al, 2016; Toyoshima et al, 2010; Calzolari, 2006; Wood, 2011).  

• Experiment 4 (section 3.5.4) and Experiment 5 (section 3.5.5): Overload of VM 

Memory Usage, Detection Time and Resolution Time, and Overload of CPU Memory 

Usage, Detection Time and Resolution Time. As with VM provisioning, and migration 
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and failover, this is another critical area for the effective control of virtual machines. 

Utilising a global performance management strategy for the flexible consumption of 

CPU and memory is regarded as important feature of an intelligent management 

system (Flinta et al 2017; Imai et al 2013; Jeong and Lee 2012; Jing 2011).  

 

3.4 Qualitative Versus Quantitative Methods 

 

There was a desire to provide a mixture of both qualitative and quantitative studies to 

enhance the overall data set, with the objective of providing a richer set of results for 

evaluation. This is backed up by the concept of utilising mixed-methods. The aim of such 

mixed-methods is to support the cause and effect claims (analysis and conclusion) by 

combining multiple types of data, from various sources, to allow analyses that provide 

software practitioners and academics a solid rationale, balanced and practical value to the 

research results and conclusions reached (Massimiliano and Tamburri, 2017). 

 

3.4.1 Qualitative Evaluation 

 

For the five experiments, it was not deemed appropriate to use this method for all as 

described by the following table, primarily because of the type of measurements that could 

be taken require some form of human interaction: 

 

Experiment 
No 

Experiment 
Description 

 

Qualitative 
Evaluation 
(Yes/No) 

Justification of Method 

1 Simplified VM 

provisioning. 

Yes Interactive systems such as the AWS, 

Oracle and IDE public/private cloud 

platforms allow for direct user interaction 

and experience using the system interface, 
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Experiment 
No 

Experiment 
Description 

 

Qualitative 
Evaluation 
(Yes/No) 

Justification of Method 

albeit being automated for many of the 

provisioning features. This therefore allows 

opportunity for structured qualitative user 

feedback. 

Justification: Human Interactive. 

2 VM Provisioning 

cognitive 

evaluation 

performance. 

Yes Using structured qualitative feedback from 

the end-users of the system provides the 

ability to create a model to collate the user 

experiences and convert that data from 

words to numbers. (Srnka and Koeszegi, 

2007). 

Justification: Human Interactive. 

3 Workload 

Migration and 

Evacuation of 

VMs. 

No This feature within the tested platforms is 

an automatic system event, whereby it 

detects a full VM failure, and works to 

evacuate and migrate the resource to a 

remaining healthy host. This means such 

an event/task can be easily observed and 

quantified, but as it does not involve the 

end-user experience as such, there is no 

possibility to extract qualitative data. 

Justification: Non-human Interactive. 

4 Overload of VM 

memory usage, 

detection Time, 

No This type of event is detected 

automatically by the platform and steps 

are taken to resolve. This experiment does 
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Experiment 
No 

Experiment 
Description 

 

Qualitative 
Evaluation 
(Yes/No) 

Justification of Method 

and resolution 

time. 

not involve the end-user and involves 

observations of the platform behaviour 

only. 

Justification: Non-human Interactive. 

5 Overload of VM 

CPU usage, 

detection time, 

and resolution 

time. 

 

No This type of event is detected 

automatically by the platform and steps 

are taken to resolve. This experiment does 

not involve the end-user and involves 

observations of the platform behaviour 

only. 

Justification: Non-human Interactive. 

Table 3.1 Qualitative Experiment Methods 

3.4.2 Quantitative Evaluation 

 

For the five experiments, it was appropriate to use this method for all as described by 

the following table, primarily because for each, there was opportunity to collect meaningful 

measurable data: 

 

 

Experiment 
No 

Experiment 
Description 

 

Quantitative 
Evaluation 
(Yes/No) 

Justification of Method 

1 Simplified VM 

provisioning. 

Yes Data is collected from the provisioning 

process for all platforms in respect to the 

timings for each of the 10-steps identified. 

Section 5.2.1 explains in further detail. 
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Experiment 
No 

Experiment 
Description 

 

Quantitative 
Evaluation 
(Yes/No) 

Justification of Method 

Justification: Measurable metrics available. 

2 VM 

provisioning 

cognitive 

evaluation 

performance. 

Yes Qualitative data is taken from the end-

users of the VM provisioning process and 

converted into quantitative data, to 

provide a mix-method analysis (Srnka and 

Koeszegi, 2007;Massimiliano and Tamburri, 

2017). 

Justification: Measurable metrics available. 

3 Workload 

migration and 

evacuation of 

VMs 

Yes This experiment phase will support the 

detection process for a VM failure and 

subsequent evacuation and migration to a 

remaining healthy host. The timing related 

data associated with this process will be 

available. 

Justification: Measurable metrics available. 

4 Overload of 

VM memory 

usage, 

detection time, 

and resolution 

time. 

Yes This type of event is detected 

automatically by the platform and steps 

are taken to resolve. This experiment will 

involve being able to time the observations 

of the platform behaviour in respect to 

how it can (dynamically) balloon a VMs 

memory and resolve any resource issue. 

Justification: Measurable metrics available. 

5 Overload of 

VM CPU usage, 

Yes This type of event is detected 

automatically by the platform and steps 
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Experiment 
No 

Experiment 
Description 

 

Quantitative 
Evaluation 
(Yes/No) 

Justification of Method 

detection time, 

and resolution 

time. 

are taken to resolve. This experiment will 

involve being able to time the observations 

of the platform behaviour in respect to 

how it can (dynamically) increase a VMs 

CPU allocation and resolve any resource 

issue. 

Justification: Measurable metrics available. 

Table 3.2 Quantitative Experiment Methods 

 

3.4.3 Data Analysis 

 

This will be conducted using well-known established methods (Xu and Liu, 2003; 

Madarasz et al, 2014): 

• Providing three user groups to represent a combined total of ninety-three users for 

the IDE, AWS and Oracle platform experiments made up of, thirty-one novice users, 

thirty-one experienced and thirty-one expert users. See section 5.2.2.2, 5.2.2.3 and 

5.2.2.4 respectively for details on how these groups are defined. Having a 

reasonable sized set of controlled end-user groups will provide a wider and richer 

set of results for analysis, and improves the reliability of subsequent drawn 

conclusions. 

• Using observation techniques to record events, outcomes and timings during the 

experiment process. 

• Comparison of data against multiple similar academic studies using comparative 

tools; for example, the IDE provisioning with AWS and Oracle cloud provisioning 

techniques. 
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• Recording the data associated with timed experiments, to produce tables and 

charts to allow for visual representation in graphical form. 

• Interpretation of statistical data using mathematical methods, for example 

determining sum or averages such as the mean, mode and median for 

substantiating results, outcomes and conclusions. 

3.5 Evaluation of Comparative Systems 

 

The following five experiments capture the fundamental processes the IDE aims to 

deliver against, as per the initial project proposal – see Appendix G for more details. They are 

undertaken in a controlled way and use a simulated, step by step approach to record results. 

3.5.1 Investigation 1: Autonomous VM Deployment  

 

The following mechanism is designed to evaluate the deployment process of VMs. It 

involves a study of the time taken to create a virtual machine compared to other case studies. 

This would include the process time to evaluate cloud build questions/response against the 

automation processes of the IDE. 

 

Experiment Flow Process Description Methodology Result 

 

Access the 

provisioning 

system. 

The end-user must be 

able to access the 

provisioning platforms to 

provide an interface to 

produce the deployed 

VMs. 

Browser based 

access via the 

internet or private 

cloud system via a 

local network. 

IDE v AWS v Oracle 

Record the time 

taken to perform 

(e.g. gain access to 

the system and 

authenticate). 

Configure role.  The end-user must have 

the relevant access 

control and permission to 

Observe and allow 

the system to 

configure 

IDE v AWS v Oracle 

Record the time 
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Experiment Flow Process Description Methodology Result 

 

create VMs. appropriately. taken to perform 

the configuration. 

Select compute as 

the option for VM 

deployment. 

Use the VM (Compute) 

provisioning process via 

the BUI. 

The end-user must 

be able to locate 

the compute 

provisioning 

mechanism. 

IDE v AWS v Oracle 

- record the time 

taken to access the 

VM provisioning 

tool. 

Select the image 

you wish to use to 

install to the VM 

(OS type/version).  

There must be a data 

source to install an OS 

image.  

The end-user must 

be able to locate an 

appropriate data 

install source. 

IDE v AWS v Oracle 

- record the time 

taken to access the 

data source. 

Select the VM 

CPU, memory, and 

disk parameters.  

The VM must have 

parameters associated 

with its configuration. 

The end-user must 

specify appropriate 

CPU, memory and 

disk values. 

IDE v AWS v Oracle 

- record the time 

taken to provide 

the VM shell 

parameters. 

Define VM 

parameters.  

The VM requires IP 

configuration, software 

packages and OS release 

version specified. 

All the additional 

parameters must 

be provided to the 

provisioning 

system. 

IDE v AWS v Oracle 

- record the time 

taken to provide 

the additional 

parameters. 

Define VM 

storage.  

The VM requires at least 

one virtual disk 

associated. 

All disk devices 

must be defined for 

the VM to use. 

IDE v AWS v Oracle 

- record the time 

taken to provide 

the disk 

information 
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Experiment Flow Process Description Methodology Result 

 

parameters. 

Add SSH Key, 

create a key and 

upload the pubic 

key.  

To access the VM, an 

appropriate secure key 

mechanism must be in 

place to allow the user to 

access the VM post 

deployment. 

The public and 

private key must be 

deployed to the 

system to allow 

access. 

IDE v AWS v Oracle 

- record the time 

taken to setup and 

provide the key to 

allow access. 

VM creation 

process. 

This is the actual time 

taken to install and 

configure the VM using 

the OS data source. 

Observe the 

installation process 

mechanism. 

IDE v AWS v Oracle 

- record the time 

taken to install the 

OS and provision 

the VM. 

Process for 

accessing the VM 

via the internet, or 

via network.  

The VM must be 

accessible via the 

network/firewalls post 

install. Therefore, it must 

be available over the 

network or internet. 

All network access 

protocols like SSH 

must be working; 

the end-user must 

be able to login to 

the VM. 

IDE v AWS v Oracle 

- record the time 

taken to access 

and login to the 

VM. 

Table 3.3 VM Deployment Experiment 

3.5.2 Investigation 2: Cognitive Complexity System Evaluation  

 

The steps below in table 3.4 will be followed to formally evaluate the VM provisioning 

process using a structured feedback survey from the three groups, namely those characterised 

into groups of novice, experienced and expert users: 
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Experiment Flow VM Data Parameter 
Gathering 

 

Methodology Result 

Obtain VM 

hostname and size 

classification. 

Data source method. Automatic or 

manual 

(description). 

IDE v AWS v 

Oracle - observe 

the complexity for 

each end-user and 

record results. 

Obtain VM size 

parameters 

(CPU/Memory/Disk). 

Data source method. Automatic or 

manual 

(description). 

IDE v AWS v 

Oracle - observe 

the complexity for 

each end-user and 

record results. 

VM shell creation. Data source method. Automatic or 

manual 

(description). 

IDE v AWS v 

Oracle - observe 

the complexity for 

each end-user and 

record results. 

VM guest 

installation. 

Data source method. Automatic or 

manual 

(description). 

IDE v AWS v 

Oracle – observe 

the complexity for 

each end-user and 

record results. 

VM Post installation 

methods. 

Data source method. Automatic or 

manual 

(description). 

IDE v AWS v 

Oracle - observe 

the complexity for 

each end-user and 

record results. 
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Experiment Flow VM Data Parameter 
Gathering 

 

Methodology Result 

VM access method 

and authentication. 

Data source method. Automatic or 

manual 

(description). 

IDE v AWS v 

Oracle – observe 

the complexity for 

each end-user and 

record results. 

Table 3.4 VM Deployment Cognitive Load Experiment 

3.5.3 Investigation 3: Workload Migration and Evacuation of VMs  

 

This experiment set analyses the following three scenarios listed in table 3.5: 

• When does a VM need to evacuate? 

• Time policy, critical services weighting; for example, when moving a VM of least 

importance (i.e. a VM hosting non critical applications). 

• Scenario based evaluation of the IDE VM migration versus XenMotion and VMWare’s 

vMotion. 

• Utilisation strategy percentage use of resources, detection time, inference and 

subsequent actions. 

 

Experiment Flow Process Description Methodology Result 

 

Evacuation 

Scenario 1: VM 

failure. 

Simulation of VM 

failure and 

subsequent actions. 

Simulate VM failure 

event, ensure VM 

fails, then observe 

the resulting actions 

to the event. 

IDE versus XenMotion 

and VMWare’s 

vMotion. 

Record the failure 

time, VM failure time 

and VM restored 
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Experiment Flow Process Description Methodology Result 

 

time. 

Evacuation 

Scenario 2: 

Physical Host 

failure. 

Simulation of 

physical host failure 

and subsequent 

actions. 

Simulate physical 

host failure event, 

ensure VM fails, 

then observe the 

resulting actions to 

the event. 

IDE versus XenMotion 

and VMWare’s 

vMotion. 

Record the failure 

time, VM failure time 

and VM restored 

time. 

Evacuation 

Scenario 3: 

Redistribution and 

equalisation of 

platform VM load 

based against 

defined SLA. 

Simulation of 

platform resource 

view with distributed 

load with some 

physicals overloaded 

with VMs, with high 

CPU/memory load, 

and with some 

physicals 

underutilised. The 

expectation is a 

controlled 

redistribution of 

resources subject to 

no impact to agreed 

SLAs. 

Simulate a platform 

with three physical 

hosts and a defined 

number of VMs. 

Create the scenario 

of one overloaded 

physical system, one 

within normal 

operating levels and 

one under-utilised. 

Demonstrate the 

behaviour of each 

platform under the 

scenario-controlled 

conditions. 

IDE versus XenMotion 

and VMWare’s 

vMotion. 

Record the start time 

of the scenario, 

create the situation 

and the observe the 

redistribution of load 

and the platform 

actions. Determine 

the overall result for 

each platform, in 

terms of the final 

configuration and 

overall distributed 

load (ideally evenly 

loaded systems). 

Table 3.5 VM Evacuation, Workload Migration and Load Management Experiment 
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3.5.4 Investigation 4: Overload of VM Memory Usage, Detection Time, and 
Resolution Time 

 

Simulate memory use to threshold (based on expert standards), detect, invoke actions: 

 

Experiment Flow Process Description Methodology Result 

 

Simulate VM 

memory load over 

a set period of 

time (defined in 

minutes). 

Load simulator to 

drive the memory 

load of a single VM 

to create overload 

(for example over 

75%, for a period >5 

minutes). 

Deploy a VM, 

simulate the load on 

the system against 

memory, and 

perform controlled 

experiment. 

IDE versus XenMotion 

and VMWare’s 

vMotion. 

Record the overload 

process experiment, 

memory values, and 

detection time of the 

event occurring, and 

resolution time – 

these would be the 

systems’ automatic 

resolution steps. 

Table 3.6 VM Memory Overload, Detection and Resolution Experiment 

 

3.5.5 Investigation 5: Overload of VM CPU usage, Detection Time, and Resolution 
Time 

 

Simulate CPU clock time to threshold (based on expert standards), detect, and invoke actions: 
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Experiment Flow Process Description Methodology Result 

 

Simulate VM CPU 

load over a set 

period of time 

(defined in 

minutes). 

Load Simulator to 

drive the CPU load 

of a single VM to 

create overload (for 

example over 75%, 

for a period >5 

minutes). 

Deploy a VM, 

simulate the load on 

the system against 

CPU, and perform 

controlled 

experiment. 

IDE versus XenMotion 

and VMWare’s 

vMotion. 

Record the overload 

process experiment, 

CPU values, and 

detection time of the 

event occurring, and 

resolution time – 

these would be the 

systems’ automatic 

resolution steps. 

Table 3.7 VM CPU Overload, Detection and Resolution Experiment 

 

3.6 Summary 

 

At the beginning of the chapter the development framework is introduced, as a means 

for supporting the IDE system. It proposes a method for deploying a suitable laboratory setup 

as well as software configuration, to enable the delivery of the IDE experimentation process. 

A mixed approach is used for evaluating the systems under investigation, using empirical 

evidence collected through observational data from end-users participants. The data sets 

collected are to be analysed using quantitative and qualitative methods to ensure the output 

results are as rich and diverse as possible, in terms of being able to analyse measurable 

processes and interpret the cognitive end-user experience during system use.  The work 

comprises of five principle investigations, in the areas of autonomous VM deployments, 

cognitive load analysis, workload migration and failover methods, and global resource 

management of memory and CPU resources. The next chapter discusses the characteristics 
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and components of the IDE framework and the way in which it is used to enhance the 

management of virtualised computer based systems and workloads. 
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Chapter 4: The Intelligent Decision Engine  
 

4.1 Introducing the Intelligent Decision Engine  

 

The potential for automated intelligent systems being able to interface into complex 

computer infrastructures, poses an opportunity to vastly improve the control, management 

and end-user experience of virtualised computing platforms. Having the ability to leverage an 

Artificial Intelligence (AI) system to enable this is a possible way of accomplishing a primary 

project objective (Appendix G). As part of this investigation, there has been an emphasis on 

development work to create an Intelligent Decision Engine (IDE), to assist managing 

virtualised computer systems; typically, this would include the control of: 

 

1. Data-storage, memory and information retrieval. 

2. Data processing and organisation. 

3. Data flows between systems. 

4. Creating intelligent rules and procedures. 

5. System self-management and self-learning. 

6. System real-time data processing and decision making. 

7. System availability and autonomy (High Availability and recovery). 

 

As part of the objectives of the proposal, this included a detailed analysis of other 

intelligent computerised management systems available (see section 3.5). While the list of 

systems is quite extensive, the author has concentrated on AWS to attempt to compare and 

contrast the methods and processes, against the area of research being conducted within this 

thesis. 

For this research proposal it is not feasible to address all the areas Amazon Web Services 

(AWS) currently span, or any other mainstream cloud-based provider, such as Oracle, IBM or 

Rackspace (Finkle and Scoresby, 2012; Hwang, 2015; Ullah et al, 2016). While the investigative 

work does cover some wider areas, by way of re-focusing, the author’s proposal includes three 

specific areas of analysis and development. 
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• The IDE - Systems Intelligent Management; creating an intelligent method of deploying 

and managing VMs, including the development of highly automated programmed 

methods and algorithms, using different data storage strategies. 

 

• Workload migration – the movement of virtualised computer resources based on 

performance metrics and ensuring High Availability (HA) of VMs. 

 

• Systems performance and health monitoring – establishing metrics around virtualised 

resources and interpreting large amounts of real-time data, allowing it to feed into the 

IDE for processing. 

 

4.2. IDE Characteristics 

 

The following sections examine fundamental areas of investigation, and the traits 

developed for the IDE. A detailed explanation is provided below around the characteristics 

that have been designed and inbuilt into the expert system to assist with the automatic 

management of virtualised computer-based platforms.  

 

4.2.1 Data Organisation 

 

Organisation of information is critical for the effective management, storage, retrieval, 

processing and intelligent machine decision making. The IDE uses the following combination 

to organise data: 

• A shared structured filesystem, with data files stored on a NAS system. This allows 

instant access to data from any cluster node. 

• A Relational database to maintain long-term information, knowledge rules, 

metadata, and statistics. 
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4.2.2 Decision Making 

 

The ability for the IDE to be able to perform decision making is critical. The methods for 

processing and decision making are comprised around the forward-chaining method. This has 

been selected primarily for the following fundamental reasons: 

• The ability to be driven from events occurring. 

• The ability to chain events together, to lead to a conclusion and consequent action. 

• The ability to reason toward a goal, rather than from one (backward chaining). 

• Backward chain reasoning something that is discussed further in section 8.3.6. 

 

4.2.3 System Learning 

 

The concept that the system can analyse patterns and learn from their available data set, 

is a possibility for intelligent machines. Computerised systems are effective at handling large 

amounts of I/O (Input and Output). Such systems invariably generate lots of information and 

data. Being able to manage the data and store it in a meaningful way represents a challenge. 

Indeed, many organisations are now investing in big data analytics using computer software 

packages designed to make sense of vast amounts of data, such as log files, access lists, error 

logs and many other types of stored information (Jin et al, 2016). 

 

4.2.4 Algorithms and Procedures 

 

The IDE uses the following algorithms, devised by the author, to enable the system to 

make intelligent based decisions. These are inbuilt into the system to enable the 

experimentation phase to compare against other systems and platforms selected (see section 

3.5 Comparative Systems). The definition of an algorithm is “a set of mathematical 

instructions or rules that, especially if given to a computer, will help to calculate an answer to 

a problem” (Cambridge Advanced Learner's Dictionary, 2019). The IDE’s principle algorithms 

and procedures are explained in detail below: 
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• Algorithm/Procedure 1: Remote system discovery mechanism, with system OS 

fingerprint analysis and advanced OS system type detection. This algorithm allows for 

the discovery of systems on the network, within managed subnet ranges, which can 

be brought under IDE control. This does assume that the system hypervisor matches 

those that the IDE presently understands, for example VirtualBox. Additionally, a 

network scanner, such as nmap can be utilised with this algorithm to fingerprint the 

remote system OS. Once a system is detected, scanned and a connection tested 

successfully, the IDE can use an initial set of credentials to place its SSH public key 

securely on the remote system to allow full control from that point forward. 

 

 
// High level discovery and analysis algorithm  
 
INPUT: network scan range, and all known hosts 
OUTPUT: Return all remote host values, fingerprints and status 
 
 FOR each network 
     FOR each IP  
          Scan IP address 
          Use ICMP protocol stack to establish TCP/IP connectivity status 
          Use network analyser to finger print analyse any unknown hosts 
          Use SSH process to determine access status 
       Establish access and control if able 
   RETURN (return code) 
 END FOR 
END FOR 
 
FOR each discovered host 
 Use SSH process to determine access status 
 Establish access and control if able 
RETURN (return code) 
END FOR 
     
// End of algorithm 

 
Table 4.1 Algorithm/Procedure 1: Remote System Discovery 

 

• Algorithm/Procedure 2: Improved system communication strategy using SSH to build 

a secure framework for remote host management and control groups. The SSH 

framework allows for commands, code and scripts to be executed automatically using 

key exchanges for authorisation across remotely controlled systems. Return codes are 

received back to the IDE master to enable it to determine the outcome of executed 

commands. 
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// High level command execution/messaging algorithm  
 
INPUT: all known controlled hosts, or a subset of controlled hosts 
OUTPUT: command status return codes 
 
FOR each host 
  Use SSH framework to execute remote command/script/code 
          RETURN (return code) 
       END FOR 
// End of algorithm 

 
Table 4.2 Algorithm/Procedure 2: Messaging Command Process 

 

• Algorithm/Procedure 3: Improved data extraction and analysis methods to enable two 

methods of a) quick response and b) slower background analysis of environment data, 

to allow for reference knowledge data to be added and cleansed. This procedure 

allows the IDE to probe all the remote managed system text files identified in section 

4.8.4. The algorithm works through each identified knowledge source and will check 

for certain known patterns and keywords. The relevant data is extracted locally, and 

is sent back for centralised processing. 

 

 
// High level text mining algorithm  
 
INPUT: all known controlled hosts, or a subset of controlled hosts 
OUTPUT: key message string(s), criticality 
 
FOR each host 
  Text mine for all IDE key phrases of interest against all files 
    FOR each file 
      Analyse IDE knowledge base (thesaurus, lexicon, and grammatical entities) against  
             Key phrases 
      Check each file status, check for text-based files of interest 
      Auto process for key phrases 
     Extract, compress and return data collection/information 
     RETURN (return code) 
            END FOR 
       END FOR 
 
// End of algorithm 

 
Table 4.3 Algorithm/Procedure 3: Text Mining 
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• Algorithm/Procedure 4: Information and knowledge organisation to process and 

create core and reference data, which affects how the forward chaining mechanisms 

work when the IDE is decision making. The IDE makes specific use of two distinct data 

store systems for unstructured, and for structured data. Each data store also retains a 

filesystem cache for high speed data access to recently accessed or used data. Thus, 

depending on the type of data, determines where it is stored and retained. 

 

 
// High level data organisation algorithm  
 
INPUT: datafile (structured/unstructured) 
OUTPUT: process completed flag 

 
FOR each datafile 

  IF data is structured THEN  
             Organise data into structured store  
   Place in data cache for analysis 
          ENDIF 
          IF data is unstructured THEN 
   Organise data into non-structured store  
   Place in data cache for analysis 
         ENDIF 
         RETURN (return code) 
      END FOR 
 

// End of algorithm 

 

Table 4.4 Algorithm/Procedure 4: Data Organisation 

 

• Algorithm/Procedure 5: Pattern analysis and learning from data. The intention is to 

use this mechanism to create new knowledge rules based on previously unidentified 

triggers, that may not be initially dealt with effectively by the existing minimalist 

ruleset. This particular algorithm is a precursor leading to the experimental process 

required to develop the additional work identified in section 8.3.6, regarding the 

invention and build of new knowledge rules. 
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// High level pattern analysis and learning algorithm  
 
INPUT: data cache (structured/unstructured) 
OUTPUT: process completed flag 

        
FOR each data store 
  WHILE data cache not empty 

    IF data is structured THEN 
               Review tables and data and match against known triggers       

       IF new trigger required THEN 
         Determine trigger type 
         Create trigger  
       ENDIF 
      Review tables and data and match against known conditions 
      IF new condition required THEN 
        Create condition set (condition1) … (condition x) 
        Link trigger event 
     ENDIF 
            ENDIF 
            IF data is unstructured THEN 
     Create new objects 
     Create new tree structures 
           ENDIF  

RETURN (return code) 
         END WHILE 
      END FOR 
 

 // End of algorithm 

 
Table 4.5 Algorithm/Procedure 5: Pattern Analysis and Learning 

 

• Algorithm/Procedure 6: Knowledge based forward chaining. This procedure creates 

the framework for connecting either single or multiple system or platform events 

together, and then enabling the evaluation of the appropriate conditions as listed in 

section 4.8.1, then subsequently calling the necessary consequent to remediate the 

condition. 
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// Forward chaining algorithm 
  
INPUT: real time and trailing data feed 
OUTPUT: forward chaining result 
 
// Dynamic Forward Chaining 
WHILE (conditions) 

 Reference Known Conditions AND analyse for triggers  
      IF (condition 1) and (condition 2) … (condition x) THEN  
        Result (x) AND Execute trigger actions 
      ENDIF 
  RETURN (return code) 
END WHILE   
  
// End of algorithm 

 
Table 4.6 Algorithm/Procedure 6: Forward Chaining 

 

• Algorithm/Procedure 7: VM deployment mechanism used by the IDE builds forward 

chained rules, to allow it to provision and deliver VMs. This procedure directly 

automates the build and delivery of VMs, as described by section 5.2 Simplified VM 

Provisioning (Oakes et al, 2016). 

 

 
// VM shell deployment algorithm  
 
INPUT: VM size parameter, VM type parameter 
OUTPUT: Return configured/built VM 

        
FOR each VM 

          FUNCTION Lookup VM values (condition1, condition 2) 
   IF VM (standard configuration) 
              FOR each value 

       Allocate VM parameter  
      END FOR 
  ELSE (custom) 
        Allocate hard VM parameters    
    END IF 

          END FUNCTION 
 
          FUNCTION Provision VM Shell (Hostname, CPU, Memory, OS Disk, Application Disk, Data Disk, 
          CPU execution Cap) 
            FOR each value 
       Add shell value 
            END FOR 
            Write shell values  
            Commit shell 
          END FUNCTION 
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          FUNCTION Install VM 
   Initialise VM shell 
            Connect boot ISO to VM shell 
            Network install VM 
          END FUNCTION 
 
          FUNCTION Post Configure VM 
           Execution post install configuration 
          Reboot VM 
          Health Check VM  
         END FUNCTION 
         RETURN (return code) 
       END FOR 

 
// End of algorithm 

 

Table 4.7 Algorithm/Procedure 7: VM Deployment 

 

• Algorithm/Procedure 8: VM performance and monitoring management (preliminary). 

This was the initial procedure defined to work generically with identified system 

thresholds described in section 4.8. Chapter 7 builds on this, and creates an extended 

or enhanced algorithm in section 7.2.1 for managing CPU and memory resource. 

 

 
// VM performance and monitoring algorithm  
 
INPUT: VM host 
OUTPUT: VM performance and health status 
 
FOR each VM 
 IF VM down THEN 
     Invoke recovery processes 
  ENDIF  
          IF VM performance > system alert thresholds THEN 
   WHILE VM performance degraded 
      Invoke analysis against knowledge base 
     Invoke performance improvement processes 
     check performance 
   END WHILE 
          ENDIF 
        RETURN (return code) 
END FOR 
  
      // End of algorithm 

 
Table 4.8 Algorithm/Procedure 8: Preliminary Performance Monitoring 
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• Algorithm/Procedure 9: Real-time platform event trigger, with decision processing-

based delivery event response. This algorithm addresses trigger alert events, which 

are manifest through the search and evaluation process of live data sources as 

described in section 4.6.4, and the text analysis for keywords and patterns listed in 

section 4.8.4. By utilising these two techniques, the procedure below allows for rule 

matching and forward-chaining functions to execute and fire knowledge rules as 

appropriate. 

 

 
// Platform event trigger algorithm  
 
INPUT: Event trap 
OUTPUT: Event response 
 
     WHILE Trap events true 
       FOR EACH Trap event  
 Search and evaluate trap against knowledge base 
 Match for trigger response 
   IF match on trigger response THEN 
     Perform platform response  
  END IF 
 RETURN (return code) 
        END FOR 
      END WHILE 
 
      // End of algorithm 

 
Table 4.9 Algorithm/Procedure 9: Event Trigger and Decision Making 

 

 

• Algorithm/Procedure 10: Self-monitoring and high availability (HA) features. The IDE 

system uses its own mechanism to maintain HA in the event that the primary IDE 

service is interrupted for an unexpected reason, such as a hardware or software 

failure. If this occurs the procedure below is invoked to bring services automatically 

back online on an alternative node in the quickest way possible. This mechanism uses 

the quorum algorithm defined in section 4.7.1, in order to establish a cluster majority, 

to avoid and mitigate against any split brain type scenario from occurring. 
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// Platform self-monitoring algorithm  
 
INPUT: Quorum vote count, health check 
OUTPUT: IDE response 
 

        IF IDE failure detected THEN 
  IF (IDE primary down true AND Quorum votes >= Quorum value) THEN  
      // when primary faults 
       Failover from primary on to secondary 
       Check Quorum, Failover and Primary server 
       Alert response on failed component 
          END IF 
          IF (IDE primary up true AND IDE secondary failover up true AND Quorum votes >= Quorum value) THEN 
     // when primary is repaired failback 
  Check Quorum, Failover and Primary server 
     Rebalance cluster and failover IDE from secondary to primary 
          END IF 
          IF (Quorum votes < Quorum value) THEN 
    // more than a single failure has occurred (no quorum reached) 
             Check Quorum, Failover and Primary server   

  Report critical IDE error 
  Alert Response 
   Manual Intervention to recover 

            END IF 
         END IF 
        RETURN (return code) 

 
// End of algorithm 

 

Table 4.10 Algorithm/Procedure 10: Self-Monitoring 
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4.3 IDE Components 

 

The diagram below outlines the high-level components for the IDE: 

 

 
Figure 4.1 IDE Program Components 

 
 



Intelligent Management of Virtualised Computer Based Workloads and Systems 

 

 

 

© James Oakes, 2020                                  104 | P a g e  

 

The concept ideas presented in figure 4.1 provide the basis and opportunity to create 

an IDE based on a set of functional computer programs. While intelligent programs can exist 

in an isolated environment, equally, they can also exist in a distributed and interactive 

environment; this in fact presents an opportunity to more closely mimic natural 'social 

interaction' with other systems, by sharing information between entities (Callaos, 1994).   

Table 4.11 below, discusses the elements captured in figure 4.1 above and discusses in 

detail how these elements will interact with each component, and the envisaged benefits 

based on the research conducted in the field leading to a desired IDE end state. 

 

Program Element Description, Role and Envisaged Benefits 
 

Decision Control Program. The Decision Control Program is at the very core of the IDE. 

This particular program needs to be efficient and potentially 

based on a typical Unix C like daemon program (Kwon, 2012). 

This program will construct dynamic decision tables based on 

data inputs and interacts with other programs defined in 

figure 4.1. Its function must include: 

 

• Build dynamic decision-making tables (as necessary). 

• Suggest/Modify/Improve static decision tables 

(background). 

• Provision to process real-time data and interact with 

other programs effectively. 

• Analysis and rationale of old data from short and long 

term sources. 

• Use its compute facility effectively (scale up or down 

thresholds). 

• Handle interrupts, inputs and outputs. 
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Program Element Description, Role and Envisaged Benefits 
 

VM Deploy Program. The VM Deploy program implements an advanced unique 

one-click deploy mechanism (ref to paper), using a 

combination of advanced deployment tools. The program 

must allow: 

 

• One-click web based VM provisioning. 

• Fully automated VM deployment. 

VM Workload Migration 

Program. 

The VM Migration program handles the movement of VM 

resources, either to manage computer resources or as a 

result of failure of systems. This facility must: 

 

• Migrate VMs as a result of performance 

issues/thresholds. 

• Migrate VMs as a result of hardware failure detection. 

• Migrate with minimal VM downtime. 

• Migrate in a fully automated way. 

 

Data in Processing Program. The Data in Processing program is responsible for collecting 

and managing data inputs from the VM platform 

environment, storing it in an appropriate data-store 

(depending on defined criteria), either in: 

 

• Short-term (NoSQL) / File-based. 

• Long-term (relational/archive). 

 

and in the background handle: 
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Program Element Description, Role and Envisaged Benefits 
 

• Data transference. 

• Data archive (big data management). 

 

Learning and Analysis 

Program. 

The Learning and Analysis program is initially responsible for 

developing small new components: 

 

• Hints and tips based on data. 

• Data rules for dynamic decision tables. 

• VM analysis reports. 

• New system functionality invention/development. 

 

Note, this last initiative is quite ambitious. While it does not 

make up a specific investigation for this project, it remains a 

desirable characteristic for the system. 

Remote Monitoring Program. The Remote Monitoring Program interacts with all VM 

elements on the virtualised platform. The program is able to 

continually and dynamically monitor all VM hosts and the 

overall platform health. Monitoring would include: 

 

• Network monitoring using base utilities such as ICMP 

Ping. 

• System kernel and OS monitoring. 

• System log monitoring. 

• Performance monitoring (CPU, Memory, I/O). 

• Hypervisor health monitoring. 

Self-Monitoring Program. Self-monitoring program is text interactive, includes a 

console feed, Browser User Interface (BUI) and is has the 



Intelligent Management of Virtualised Computer Based Workloads and Systems 

 

 

 

© James Oakes, 2020                                  107 | P a g e  

 

Program Element Description, Role and Envisaged Benefits 
 

function of monitoring the health of the suite of programs 

(Calzolari, 2006). Critically, there will always be at least three 

components running; a master instance, and two shadow 

instances, which must always run on separate physical hosts. 

 

The purpose of this is to: 

 

• Ensure no Single Point of Failure (SpoF) in existence in 

the system. 

• Ensure there is always one master instance running, 

and two shadow instances. 

Self-Healing Program. The Self-Healing Program reacts to the self-monitoring 

program and takes corrective actions to ensure its continuing 

operation in the face of failure of a single or any number of 

components. 

 

• Ensure there is a process defined to convert a shadow 

to master instance (and vice versa). 

• Ensure there is a facility to spawn new shadow. 

instances where possible (for example in clusters 

greater than 3 physical hosts). 

Table 4.11 IDE Program Function Suite 
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4.4 Defining the IDE Model 

 

Below is diagram figure 4.2 showing the process and interaction of the decision engine, 

and its overall architecture and design: 

 

 
Figure 4.2 IDE Architecture Model 
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4.5 Data-storage, Memory and Information Retrieval 

 

As with any intelligent system, information must be stored, ordered and arranged in 

such a way as to allow efficient location and retrieval (Cattell, 2010). Given the amount of 

information required for storage, there are several ways this can be achieved. Typically, in an 

intelligent system, there is usually a requirement for short-term (fast data access) and long-

term memory (archive/slow data access). This requirement can be potentially solved and 

mapped within typical computing architectures to RAM (Random Access Memory) and disk 

storage, for example SAS (Serial Attached SCSI) or another such like device. As in the example 

of a human subject, short-term memory structures (frequently accessed) usually outperform 

long-term (infrequently accessed) memory and likewise in a computer system, the same 

principle holds true (Sanzo et al, 2012; Sweller, 1998). 

4.5.1 Long Term Storage Strategy 

 

The author proposes a relational database mechanism such as MySQL as a long-term 

storage strategy (Martin et al, 2007). Section 4.2.1 provides additional details, along with 

Appendix D. 

4.5.2 Short and Medium Term Storage Strategy 

 

The author proposes using a NoSQL, or bespoke file(s)-based solution using a 

mechanism such as MongoDB as a short-medium storage strategy (Cattell, 2010). Section 

4.2.1 provides additional details, along with Appendix D. 

4.6 Data Processing and Organisation 

 

The IDE stores and processes information continually and real-time. In order to 

perform these types of activities it needs to handle and organise the data effectively, using 

several mechanisms, depending on the type of task or activity the following methods are 

employed: 
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• A Relational Database structure – designed for long term storage on information such 

as cluster nodes, cluster configuration, IP and Network information, nodes 

information, and critical log warning and alerts. Additional knowledge rules are also 

stored here to enable reference. 

• Custom File-based configuration and cache – designed to manage globally shared 

lookup data for activities such as recording the quorum vote, cluster health status, and 

acting as a general fast data cache. In memory structures are used in conjunction for 

very fast response and low latency tasks. 

4.6.1 Data flows Between Systems 

 

The following diagram illustrates the data flows between the systems and explains in 

detail how the IDE communicates with cluster nodes, and extracts information for processing 

and sends commands to remote nodes, based on the expert rules employed to manage the 

virtualised platform in an intelligent fashion. Below is a diagram showing the network protocol 

flows between the IDE systems: 

 

Figure 4.3 IDE Network Flows 
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4.6.2 Creating the Inference Engine 

 

The inference engine is covered extensively in section 4.8. The purpose for the 

inference engine is to enable the IDE system to be able to reason on the information it gathers 

and then be able to infer and make decisions based on that data, to manage VMs and the 

virtualised platform more effectively. The act of Inference is defined in the Cambridge 

Dictionary as “a guess that you make or an opinion that you form based on the information 

that you have” (Cambridge Advanced Learners Dictionary, 2019). 

4.6.3 System Self-management and Learning 

 

A critical part of the IDE is to have the concept of self-management; this specifically covers 

these areas, as follows: 

• High availability and being able to maintain the system and its services within the 

cluster framework. 

• Maintain data repositories, cleanse, order, and archive data as necessary and maintain 

filesystem structure sizes to ensure they do not fill up. 

• Text analysis from log files – using the data extracted and pattern matched against 

trigger rules, to take necessary actions. 

• Migration of VMs as necessary due to a complete failure scenario (i.e. crash and restart 

VM and its services). 

• Resizing (dynamically) of VMs as necessary to accommodate extra memory and CPU 

increases. 

• Learning from typical application sizing footprint, depending of the software deployed 

for example, Apache, Apache Tomcat, MySQL and so on.  

• The ability to learn and manage aggregation of application and database footprints for 

VMs. 
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4.6.4 System Real-time and Source Data  

 

For the system to manage virtualised systems effectively, it must be able to perform 

the following two functions: 

• Real-time data processing. 

• Decision making capability, based around forward-chaining. 

Forward chaining begins with the source data set that is made available to the decision 

engine; for example, it uses knowledge rules to match against the relevant data from the end 

user, or a system log file, until a decision, or interpretation can be made. This is reached by 

analysing the available rules until a conditional match (or set of matched conditions) can be 

satisfied, for example by using an if clause statement. If the conditions are true, then a  

resulting action can be triggered, or invoked to perform a remedial task (or set of tasks) for 

the managed systems, with the goal of resolving a certain issue (Martin et al, 2007). The 

Inference engine will continue to iterate through this process until a goal is reached, upon 

where it is executes its matching rule and then continues to iterate. In terms of real-time data 

sources, the following generic log file data inputs are available on CentOS Linux systems (data 

sources): 

• /var/log/messages (generic system) 

• /var/log/auth.log (security logs) 

• /var/log/secure (security logs) 

• /var/log/boot.log (boot up issues) 

• /var/log/dmesg (system boot up console) 

• /var/log/kern.log (kernel messages) 

• /var/log/faillog (failed login attempts) 

• /var/log/cron (cronjobs output) 

• /var/log/yum.log (new packages) 
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• /var/log/mail.log (smtp log) 

• /var/log/httpd (apache logs) 

• /var/log/mysql.log (db logs) 

 

Interface Rules, to search against the following defined condition types; see section 4.8.1 for 

trigger events, and section 4.8.5 for more detail on the justifications: 

1. Physical host down - evacuate all VMs (path to truth, rule match). This rule applies when a 

physical host fails, typically as a result of a hardware failure. Such events are relatively 

common depending on the amount of physical hardware deployed, and the mean-time 

between failure rate. Should this event occur, all VMs should be evacuated and restarted on  

alternative healthy nodes in order to maintain high hvailability (Tsai, 2009).   

2. Physical host memory capacity hit - migrate VMs back within memory threshold (path to 

truth, rule match). As with any physical system, there are always limits to memory resource. 

Therefore, it is necessary to be able to migrate VMs and virtual resources to other physical 

systems, in order to distribute the load across the platform as evenly as possible (Sarathy et 

al, 2010). 

3. Physical host CPU capacity hit - migrate VMs back within CPU threshold (path to truth, rule 

match). This explanation is the same as rule 2 above, but for CPU rather than memory 

resource. 

4. VM memory overload - threshold hit, dynamically resize VM (path to truth, rule match). The 

virtual machine’s allocated memory is at capacity, or underutilised, and requires resizing 

(Antonescu et al, 2013; Dhiman, 2011). 

5. VM CPU overload - threshold hit, dynamically resize VM (path to truth, rule match). This 

explanation is the same as rule 4 above, but for CPU rather than memory resource. 

6. VM Migration - system wide re-utilisation algorithm and no SLA impact - move resources 

(path to truth, rule match). This rule allows for the movement of VMs within the managed 

platform environment (Benet et al, 2016; Shirinbab and Lundberg, 2016). 
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7. VM unresponsive, hung-state or non-accessible - evacuate to new (path to truth, rule 

match). Should a VM no longer be operational, a hard restart is required, or failing that an 

evacuation to a new physical host (Shirinbab et al, 2016). 

8. VM compulsory move - Unable to dynamically resize the VM for rule 2 or 3 due to physical 

resource constraints, therefore, forced to move and relocate the VM to new a physical host 

with sufficient spare capacity. (path to truth, rule match).  

The matching process is described as follows: 

 
WHILE true 
DO 
  FOR EACH host  
     evaluate all real-time data sources text 
     evaluate critical alerts text 
     search through forward chains  
       IF pattern match true 
          invoke trigger (consequent) 
       ENDIF 
DONE 

 

Table 4.12 IDE Rule Matching Process 

4.7 System Availability and Autonomy 

 

Traditional clusters often use a common standard deployment of two-nodes plus a 

'quorum device' (Vogels et al, 1998). Such a device is normally configured to provide a 'third 

vote' mechanism, such as race condition to place a SCSI reservation on disk. In days gone by 

when hardware was relatively expensive, this was a good option; however, given the fact that 

x86 commodity hardware is now so cheap comparatively, having a minimum of three nodes 

in a cluster is a simple and optimal method to achieve high availability of systems, thus 

eradicating Single Points of Failure (White et al, 2004). Therefore, to maintain simplicity, it is 

instead proposed to use a simple formula defined below in section 4.7.1. 
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4.7.1 Establishing a Quorum 

 

Quorum Definition: When a cluster node fails, or when a subset of nodes lose contact 

with another subset, the surviving remnant of nodes need to verify that they now constitute 

the majority of the cluster nodes that remain. If they cannot confirm that, they will go offline, 

and cease to operate as a protective measure to mitigate against events that can happen such 

as ‘split brain’, where a cluster partitions into two or more parts, which simultaneously believe 

they have a majority quorum and attempt to run services. An event such as this can lead to 

data corruption, which is a highly undesirable outcome. Therefore, the concept of a 

majority only works If there more than 50% of cluster node votes available (rounded up) to 

establish a quorum. For an IDE cluster, the minimum starting number of cluster nodes is three. 

The mechanism is represented as below: 

 

• Where 𝜂 denotes a cluster node that is available or unavailable 

• Where 𝜖 denotes a cluster node that is unavailable 

 

Where Τ denotes the total number of cluster node votes possible (each node has one vote) 

 

𝑇 = ∑ 𝜂          (1) 

 

Where  𝜐 denotes the number of cluster node votes currently available 

 

𝜐 =   Τ −  𝜖        (2) 

 

Where 𝜛 is the minimum number of votes to establish a quorum, which is always an integer; 

when a cluster has an even number of total cluster nodes step 3a is followed, or if an odd 

number of cluster nodes exist, step 3b is followed. For example: 
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Where there are an even number of cluster nodes 

 

𝑖𝑓 (Τ mod 2) = 0 then  𝜛 =
Τ

2
+ 1      (3a) 

 

or where there are an odd number of cluster nodes 

   

             𝑒𝑙𝑠𝑒  𝜛 =  |
Τ

2
|                             (3b) 

 

Where 𝜚 denotes the ability to establish a cluster quorum 

 

𝑖𝑓 𝜐 ≥  𝜛 then 𝜚           (4) 

 

As an example scenario, take a 3-node healthy cluster.  

 

• 𝜂 is the sum of current number of cluster nodes, available or not available, which is 3 

(step 1) 

• 𝜐 is the total number of active healthy node votes, so 3 minus 0 (step 2) 

• 𝜛 is 3 divided by 2 rounded up (an integer), so 1.5 rounded up to 2 (step 3b) 

• Therefore 𝜚 is possible as 2 is greater or equal to 2; therefore, the cluster can establish 

a quorum (step 4) 

 

As an alternative example, take a 3-node cluster with only 2 healthy nodes, assuming 1 has 

failed.  

• 𝜂 is the sum of current number of cluster nodes, available or not available, which is 3 

(step 1) 

• 𝜐 is the total number of active healthy node votes, so 3 minus 1, resulting in 2 (step 2) 

• 𝜛 is 3 divided by 2 rounded up (an integer), so 1.5 rounded up to 2 (step 3b) 

• Therefore 𝜚 is possible as 2 is greater or equal to 2; therefore, the cluster can establish 

a quorum (step 4) 
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As a further example, take a 3-node cluster with only 1 healthy node, assuming 2 have failed.  

• 𝜂 is the sum of current number of cluster nodes, available or not available, which is 3 

(step 1) 

• 𝜐 is the total number of active healthy node votes, so 3 minus 2, resulting in 1 (step 2) 

• 𝜛 is 3 divided by 2 rounded up (an integer), so 1.5 rounded up to 2 (step 3b) 

• Therefore 𝜚 is not possible as 1 is not greater or equal to 2; therefore, the cluster cannot 

establish a quorum (step 4) 

 

As a final example, take a 4-node cluster healthy cluster 

 

• 𝜂 is the sum of current number of cluster nodes, available or not available, which is 4 

(step 1) 

• 𝜐 is the total number of active healthy node votes, so 4 minus 0, resulting in 4 (step 2) 

• 𝜛 is 4 divided by 2, plus 1 resulting 3 (step 3a – remember this cluster has an even 

number of cluster nodes) 

• Therefore 𝜚 is possible as 4 is greater or equal to 3; therefore, the cluster can establish 

a quorum (step 4) 

 

Examples of valid cluster node configurations are any number of nodes three or more 

(e.g. 3, 4, 5 and so on). This simplified method eradicates the need for adding a special vote, 

such as a SCSI disk reservation, or a witness node. 

 

4.7.2 Command Zone Concept 

 

The command zone operates and hosts all the intelligence for the clustered systems. 

It is essential that this always remains active, otherwise the cluster automatic intelligent 

management will fail to continue to operate. Within the cluster, all machines are connected 

to the core highly available network – this can be any pre-defined network address range with 

static IP addresses assigned; for example, this could be an internal private IP address range 
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within an organisation, such as network 192.168.1.0 with a 24-bit netmask. 

 

Every system connected in the cluster needs to be constantly aware of the other machine 

statuses. There are only three possible results: 

 

• Online with resource capability (i.e. compute resource available). 

• Online but with no resource capability (i.e. compute resource exhausted). 

• System down and unavailable. 

 

As discussed previously, the minimum number of machines in the cluster must be three 

(see section 4.7.1); the cluster may scale indefinitely, such is the design.  Each machine within 

the cluster probes the other systems systematically and reports the status output to a file 

stored on a highly available NFS (Network Filesystem) share. Each system then routinely 

interrogates the share to determine the status of the cluster. Where two independent 

machines both identify another system is down and unavailable, and or the machine itself 

reports it is isolated, the cluster will immediately seek to evacuate and establish the 

unavailable systems workload on other available systems. This is demonstrated by the 

procedure below: 

 

 
 
INPUTS: cluster_node_list, cluster_resource_list, cluster_active_node_list, cluster_inactive_node_list 
OUTPUTS: cluster_resource_evacuation_notification, cluster_resource_running_notification 
 
WHILE true 
DO 
  FOR EACH cluster_resource 
       IF cluster_resource failed AND on inactive_node THEN 
          IF cluster_cpu+mem_space >= sum(cluster_resources_cpu+mem) THEN 
              Evacuate cluster_resource and start on least loaded remaining node 
              Send evacuation notice   
          ELSE 
              Unable to evacuate cluster_resource due to space constraint 
          ENDIF 
      ENDIF 
DONE 

 

Table 4.13 IDE Cluster Resource Evacuation 
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4.7.3 Keep Alive Critical Processes 

 

There are four principles that are required to operate a cluster. 

• The Command System (IDE) must always remain alive in the cluster, until such time as 

a Quorum can no longer be achieved. 

• A Quorum must be maintained to operate the cluster. 

• Each node must be able to monitor the health of every other node in the cluster. 

• The network the cluster operates on must be Highly Available (HA) with no SPoF. 

The following processes are therefore deemed critical and must operate as follows: 

• One or more slave node(s): [ide_slave_node] 

• One master node: [ide_master_node] 

• One shadow master node: [ide_shadow_node] 
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4.8 IDE Rule-base and Inference Engine 

4.8.1 IDE Trigger Events 

Below is a diagram showing the initial IDE Trigger event mechanism: 

 
Figure 4.4 IDE Trigger Events 

4.8.2 Physical System Events 

 

System event number 1 

System event description Physical host down. 

Rule match Physical machine down AND all local (guest) VMs down. 

Conclusion Evacuate all VMs to most appropriate remaining good 

systems using most effective load-balancing strategy. 

Event response Recovery of all VMs from failed physical host to other 

remaining systems. 

Table 4.14 Event Knowledge Rule: Physical host down 
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System event number 2 

System event description Physical host memory capacity Exceeded AND time period > 

15 minutes. 

Rule match Physical machine physical memory > 80% AND no SLA 

breach will be invoked because of migration. 

Conclusion Migrate VMs to most appropriate remaining good systems 

using most effective load-balancing strategy. 

Event response Migrate VMs UNTIL physical memory within threshold. 

Table 4.15 Event Knowledge Rule: Physical Host Memory Capacity 

 

System event number 3 

System event description Physical Host CPU capacity exceeded AND time period > 15 

minutes. 

Rule match  Physical machine physical CPU > 80% AND no SLA breach will 

be invoked because of migration. 

Conclusion Migrate VMs to most appropriate remaining good systems 

using most effective load-balancing strategy. 

Event response Migrate VM(s) UNTIL physical CPU within threshold. 

Table 4.16 Event Knowledge Rule: Physical Host Memory CPU 

 

4.8.3 VM System Events 

 

Sections 4.2.3 and 4.6.3 describe how the IDE intends to learn by continually self-

evaluating its own event possibility matrix, by creating new event types as necessary, with 

appropriate rules and event responses. For example, event type 4 ‘VM system memory 

overload’ could be an event that does not currently exist; therefore, it is created as an event. 

The rule required to match that event could be system memory at utilisation of over 75% and 

for a sustained time period of more than 5 minutes (see table 4.17). The conclusion is to 
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provide more memory and the event response is to dynamically re-size the VM by adding an 

extra 25% memory. Table 4.17 describes the values: 

 

System event number 4 

System event description VM system memory overload. 

Rule match  System memory utilisation > 75% AND time period > 5 

minutes. 

Conclusion Provide additional memory to the VM. 

Event response Invoke dynamic VM memory re-size +25% of original total. 

Table 4.17 Event Knowledge Rule: Memory overload 

 

Another example could be event type 5 ‘system CPU overload’ that follows a similar 

approach to table 4.17 ‘VM system memory overload’. Table 4.18 describes the values: 

 

System event number 5 

System event description VM System CPU overload. 

Rule match  System CPU utilisation > 75% AND time period > 5 minutes. 

Conclusion Provide additional CPU to the VM. 

Event response Invoke dynamic VM CPU re-size +25% of original total, or by 

a minimum of one CPU core, whichever is larger. 

Table 4.18 Event Knowledge Rule: CPU overload 

 

Based on the example certain events being successfully captured (or detected) as listed 

in table 4.17 and 4.18 above, further development possibilities are considered particular 

around forward-chaining (or forward-reasoning).  To provide a little more context, figure 4.5 

below provides an example of forward chaining in relation to how a CPU management alert 

is handled: 
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Figure 4.5 IDE Example of Forward-chaining 

 
Thus, we can consider that this is exactly the type of mechanism (forward-chaining) that 

provides unique opportunity to use an inference engine to explore innovative ways of 

effectively managing virtualised cloud-based systems.  

 

System event number 6 

System event description VM Migration. 

Rule match  No SLA breach AND system wide utilisation re-balance of 

Resource (Performance Optimisation). 

Conclusion Migrate the VM to a new Physical host. 

Event response Invoke VM migration routine based on continuous VM load-

balancing strategy. 

Table 4.19 Event Knowledge Rule: VM Migration 
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System event number 7 

System event description VM Unresponsive. 

Rule match  VM does not respond within 10 seconds AND VM 

inaccessible (1 attempt to access). 

Conclusion Evacuate the VM to a new Physical host. 

Event response Attempt one local restart of VM and then Invoke VM 

migration routine to new appropriate physical host. 

Table 4.20 Event Knowledge Rule: VM Unresponsive 

 

System event number 8 

System event description VM Evacuate. 

Rule match  Unable to increase CPU (Local physical limit) OR Memory 

(Local physical limit) dynamically due to performance alert 

AND SLA not breached by VM migration. 

Conclusion Evacuate the VM to a new Physical host. 

Event response Migrate VM to new most appropriate physical host. 

Table 4.21 Event Knowledge Rule: VM Evacuate 

 

4.8.4 Text Analysis  

 

 In addition to section 4.6.4, which discusses the data sources that are used by the IDE, 

it is necessary to perform continual analysis and pattern matching to extract useful 

information from those files listed, to be able to invoke rule matches and complete forward-

chain type reasoning on event driven data sets acquired by the IDE and the aggregation of 

useful data, to link events together (Anicic et al, 2009; Mei, L. and Cheng, 2010). The following 

table provides examples of pattern keywords used by the IDE to help monitor trigger events 

and through forward-chain reasoning potentially invoke one of its matching rules in its 

knowledge base. 
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Pattern Keyword Data Type Information Priority Relevance 

%error% varchar High 

%warning% varchar Medium 

%critical% varchar High 

%full% varchar Medium 

%lock% varchar Low 

%failed% varchar High 

%evacuate% varchar Medium 

%invalid% varchar Low 

%fatal% varchar High 

%not found% varchar Medium 

%missing% varchar Low 

%invalid% varchar Low 

%terminated% varchar Medium 

%abort% varchar High 

%execute% varchar Medium 

%kernel% varchar High 

%memory% varchar High 

%cpu% varchar High 

Table 4.22 Example of Keyword Pattern Analysis 

 Typically, the information and data extracted using this process is extracted in a priority 

order and then aggregated together to begin the rule matching and forward-chaining process, 

or perhaps even the ability to predict where resources may be required (Flinta et al, 2017). 
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Upon successful matching of keyword patterns, analysis work is undertaken to ascertain if the 

pattern and associated string is of relevance to the system. For example, the following table 

provides sample pattern matches and their entire string. Being able to then determine the 

status and value of the information is critical for the IDE to be able to decide whether to take 

any further actions on an event driven forward chain event. 

 

Pattern Keywords Associated Matched String (non-case sensitive) 
 

%warning% /dev/mapper/vg_app12-lv_root: ********** WARNING: 

Filesystem still has errors ********** 

%critical% passwd: Critical error - immediate abort 

%full% ERROR cannot create datafile 

/vol/data/standalone/journals/logfile-321497.db: filesystem 

full 

%error% ERROR cannot create datafile 

/vol/data/standalone/journals/logfile-890354.db: filesystem full 

%kernel% AND 

%memory% 

kernel: Out of memory: Kill process 8796 (mysqld) score 719 or 

sacrifice child 

Table 4.23 Example of Pattern Keyword Matching 

 

In the table above we can see the last row as an example shows two keyword matches 

for a single detected string from a data source discussed in section 4.6.4; typically this type of 

message would be found in /var/log/messages data source. Intelligent information retrieval 

is a key aspect for AI systems, and it is an excellent mechanism for the IDE to adopt, in order 

to support the forward-chain reasoning methodology, discussed previously in section 4.8.3 

and figure 4.5 (Mei and Cheng, 2010). By utilising such a retrieval method, the system can 

correlate particular events happening in real-time on the system and wider platform, and 

subsequently check to match those detected events to an appropriate knowledge rule and its 

consequential action (Melekhova, 2013; Matthias, 2008). 
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4.8.5 Knowledge Rule Justifications 

 

The following examines the knowledge rules defined in sections 4.8.1, 4.8.2 and 4.8.3 

and defines and justifies the reasons why these rules are beneficial, worthy of inclusion and 

useful for the IDE platform function. 

Knowledge 
Rule ID 

Knowledge 
Rule 
Description 

Knowledge Rule Justification 
 

Testing Through 
Direct 
Experimentation 
 

1 Physical host 

down. 

Justification: A physical computer 

system fails as a result of either human 

error, data corruption, or hardware 

failure, such as a disk, memory, or CPU 

fault. 

Human error can occur at any time, 

although the IDE aims through its 

automation and AI/knowledge rules to 

remove the need for human 

intervention where possible because of 

this risk, although it is vital to 

understand that this access is not 

restricted and is allowed. Human 

interventions can be easily be mistaken 

and often be inconsistent, as 

administrators often perform their 

duties based upon their personal 

preference for completing a certain task 

using certain method.  

Data corruption can occur, when a 

particular data set has its integrity 

compromised, either through 

Not fully tested, 

see limitations in 

section 1.4 and 

future work in 

sections 8.3.3 

and 8.3.5 for 

more detail. 

Some work 

simulating basic 

host failure was 

completed in 

chapter 6 around 

this, but more 

can be done as 

described in 

future work. 
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Knowledge 
Rule ID 

Knowledge 
Rule 
Description 

Knowledge Rule Justification 
 

Testing Through 
Direct 
Experimentation 
 

inconsistent writes, multiple data access 

requests, where one is perhaps 

unauthorised, unexpected or unknown. 

The result is a data set that is no longer 

trustworthy, inconsistent, incomplete, 

inaccurate, and even possibly 

unreadable. 

Hardware failures are inevitable events, 

that will occur to any computer system, 

or set of systems. Typically, all systems 

have a mean-time between failure 

(MTBF) rate, which means that a 

computer system may fail at any given 

moment, due to power loss, or a CPU, 

memory, system board, I/O adapter, or 

disk fault. 

2 Physical host 

memory 

capacity 

exceeded. 

Any guest systems (VMs) as defined in 

figure 1.1 show that it is feasible for a 

physical host to run short of memory, 

through explained reasons, such as a 

too highly consolidated VM  (guest) to 

physical (host) ratio, or unexplained 

means, such as a hypervisor failing to 

manage a memory leak or another 

unexpected platform event. If this 

becomes apparent over a sustained 

period of time, actions are needed to 

Not fully tested, 

see limitations in 

section 1.4 and 

future work in 

section 8.3 for 

more detail. 
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Knowledge 
Rule ID 

Knowledge 
Rule 
Description 

Knowledge Rule Justification 
 

Testing Through 
Direct 
Experimentation 
 

alleviate this situation. Hence, this 

knowledge rule once its conditions are 

met, will seek to alleviate the situation 

automatically (Sanzo et al, 2012; Chen 

et al, 2013). 

3 Physical host 

CPU capacity 

Exceeded. 

Any guest systems (VMs) as defined in 

figure 1.1 show that it is feasible for a 

physical host to run short of CPU, 

through explained reasons, such as a 

too highly consolidated VM  (guest) to 

physical (host) ratio, or unexplained 

means, such as a hypervisor failing to 

manage a shared CPU cores or another 

unexpected platform event. If this 

becomes apparent over a sustained 

period of time, actions are needed to 

alleviate this situation. Hence this 

knowledge rule once its conditions are 

met, will seek to resolve the error 

condition automatically (Makridis et al, 

2017; Ismail and Riasetiawan, 2016). 

Not fully tested, 

see limitations in 

section 1.4 and 

future work in 

section 8.3 for 

more detail. 

4 VM System 

memory 

overload. 

This rule deals directory with a guest 

VM over utilising its allocated memory 

for a sustained period of time. This rule 

is essential to allow for a global 

resource scheduling mechanism, 

whereby the IDE can monitor all of its 

Partially tested in 

chapter 7. 
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Knowledge 
Rule ID 

Knowledge 
Rule 
Description 

Knowledge Rule Justification 
 

Testing Through 
Direct 
Experimentation 
 

VMs across the platform and manage 

the hypervisor layer effectively with 

respect to memory management 

(dynamic ballooning add/reduce and 

resizing). Chapter 7 deals with this in 

greater detail, as it highlights the 

benefits of implementing this within the 

platform (Zhang et al, 2017; Zhang et al, 

2016). 

5 VM System 

CPU overload. 

This rule deals directory with a guest 

VM over utilising its allocated CPU cores 

for a sustained period of time. This rule 

is essential to allow for a global 

resource scheduling mechanism, 

whereby the IDE can monitor all of its 

VMs across the platform and manage 

the hypervisor layer effectively with 

respect to CPU management (dynamic 

Hotplug add/remove and resizing). 

Chapter 7 deals with this in greater 

detail, as it highlights the benefits of 

implementing this within the platform 

(Zhang et al, 2017; Zhang et al, 2016). 

Partially tested in 

Chapter 7. 

6 VM 

Migration. 

Based on workload balancing strategy, 

and sometimes the result the 

invocation of high resource contention 

within the IDE platform, it may be 

Partially tested in 

chapter 6. 
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Knowledge 
Rule ID 

Knowledge 
Rule 
Description 

Knowledge Rule Justification 
 

Testing Through 
Direct 
Experimentation 
 

necessary to migrate VMs between 

physical hosts, to better align VM 

resource management, either to free up 

memory, CPU or other physical 

resources such as network or I/O.  

Other reasons for migration, could 

include running VMs across different 

physical hosts (i.e. not collating them) 

and introducing negative affinities in 

order to ensure for example, that two 

VM web-servers run on different hosts. 

In the event of a hardware issue type 

event where one fails for any reason, 

the other VM web server will remain 

online. Chapter 6 expands on how the 

IDE makes use of work load 

balancing/availability strategies 

especially for unplanned failure type 

events; note, that the limitations 

section 1.4 discusses live migration for 

planned migration events and the 

future work section 8.3.3 goes into 

additional detail on what work could be 

considered (Feng et al, 2011; Shirinbab 

and Lundberg, 2016). 

7 VM 

Unresponsive. 

The IDE continually self-monitors the 

platform it manages and checks all 

Partially tested in 

chapter 6. 
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Knowledge 
Rule ID 

Knowledge 
Rule 
Description 

Knowledge Rule Justification 
 

Testing Through 
Direct 
Experimentation 
 

virtual resources for their availability. 

Should a VM become unresponsive to 

health check probes and the IDE is 

unable to access the guest VM, steps 

will be taken to restart the VM locally to 

make it once again available, or if that 

fails, an evacuation, failover and restart 

will be completed. Chapter 6 provides 

more detail with an example of a 

simulated VM failure, and how the 

system deals with and recovers from 

this situation (Benet et al, 2016). 

8 VM Evacuate. Occasionally on the IDE platform, it may 

happen that an attempt to dynamically 

add CPU or memory resources, or even 

a hard resize/restart for a VM fails, 

because there is simply not enough 

resource remaining on the physical host 

where the guest VM resides. In this 

case, there is no option but to consider 

an evacuation and migration of the VM 

in question, or perhaps one of less 

importance in terms of avoiding an SLA 

breach, to another physical host. Should 

an option be feasible the IDE system will 

attempt to evacuate and move the 

selected guest VM to an appropriate 

Not fully tested, 

see limitations in 

section 1.4 and 

future work in 

section 8.3 for 

more detail. 
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Knowledge 
Rule ID 

Knowledge 
Rule 
Description 

Knowledge Rule Justification 
 

Testing Through 
Direct 
Experimentation 
 

physical host with suitable remaining 

resources (Feng et al, 2016). 

Table 4.24 Knowledge Rules Justifications 

4.9 Summary 

 

This chapter has described how the IDE is the key framework for extending control 

and management over virtualised computer systems. The characteristics of the system allow 

it to organise its data structures to store key information in relation to the managed systems. 

Additionally, the embedded knowledge rules allow the IDE to take actions to improve VM 

provisioning processes, failover or migrate VMs as required to restore services, or rebalance 

resources across the platform, through interpretation of real-time data to allow the 

invocation and execution of knowledge rules and its consequent.  The appropriate algorithm 

is then used to determine how to best recover, remediate or resolve the consequent; for 

example, using the forward-chaining algorithm to knowledge rule match as required.  The 

next sections cover how the IDE interacts with its controlled components over the network, 

and the data sources it uses as its real-time inputs, which are analysed for key text patterns 

as well as the retention of that useful information, for example relating to VM or application 

sizing. Next the way the IDE maintains its high availability is covered in detail, and data of the 

knowledge rules are discussed, highlighting how they cover critical system events. Finally, 

some justifications are provided as to why each of the knowledge rules were selected and 

chosen for inclusion into the IDE system. The next chapter addresses the experiment 

processes undertaken, the results gathered, and includes a summary view on the outputs.  
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Chapter 5: Simplified Deployment of Virtual Machines 
 

5.1 Introduction 

 

Developing the ideas from the motivation and aims listed in section 1.2 of this work, 

experiments were conducted to help demonstrate that VMs could be provisioned in a 

simplified way. There are two main areas that are covered by the experiment process; they 

are based on the methodology approach defined in section 3.5.1 and 3.5.2 respectively: 

• Real-time experiments to compare and measure how long it took the three end-

user group types defined in section 5.2.1 to provision a single VM across the 

platforms described in section 5.2.2; this was a one-off experiment which took a 

considerable amount of elapsed time, using the three platforms see Appendix A, 

with data sourced from anonymous distributed users, who self-categorised 

themselves based on the criteria described in section 5.2.1.2. Once the groups 

reached 31 in total, they were then closed to new users; please see section 1.4 

which discusses and identifies the limitations with respect to the number of 

participants in the study.  

• The participants in the study had the following characteristics: 

o Population: A large selection of cloud administrators, including even those 

not working professionally in IT. 

o Target population technical ability: Mixed ability of novice, experienced, 

expert users of cloud systems. 

o Study population: Voluntary, 3 anonymous groups of 31 users, for a grand 

total of 93 users, who have self-categorised their ability. 

o Sample error for estimate: Low, as clearly defined steps 1 to 10, with the 

goal to provision a VM, were provided to the participants. 

o Studies related to problem discovery show that a user participant group 

size of around 30 users will capture around 97-99% of all issues. Increasing 
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this to around 90 users, should capture nearly all problems, or around 98-

100% of issues; therefore, the numbers in the study provide a strong basis 

to show that the participant numbers are viable for the experiments 

conducted (Macefield, 2009; Faulkner, 2003). 

• Additionally, following experiment 1, and the testing around VM provisioning 

timing which yielded quantitative data, based on similar studies it was 

determined that the experiment process could be widened to take advantage of 

the qualitative data also obtained. By using the available results, it would be 

beneficial to be able to measure the cognitive load complexity on the end-user 

delivery of VMs (Oakes et al, 2019; Rothenburg et al, 1987). Therefore, significant 

effort has been made as part of this research to investigate how to measure and 

reduce the complexity of building virtual machines (Plass et al, 2010). Section 

5.2.3 describes the experiment process and presents the findings in greater 

detail. 

5.2 Simplified VM Provisioning 

5.2.1 Experiment Process 

The process to evaluate the IDE simplified VM deployment mechanism is as follows, 

using several experiment processes/parameters that are defined in the sections below. 

5.2.1.1 Task Complexity Definition 

 

Defining task complexity and associated subjective techniques more often than not 

involve a set of questions containing one or many semantic differential scales, on which the 

participant can indicate their personal experience, in respect to cognitive load during the 

experiment process (Paas et al, 2003). Similar scales have been developed by researchers 

previously, who based it on a measure of the perceived task difficulty (Borg et al, 1971; Gopher 

and Braune, 1984). In Paas’s study, participants had to report their invested mental effort on 

a symmetrical scale ranging from 1 (very, very low mental effort) to 9 (very, very high mental 

effort) after each problem during training and testing. Using a similar method, the following 
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table describes the guide for process complexity for tasks defined in section 5.2.1.4. Note for 

the 10-step VM provisioning process expanded in section 5.2.1.6, each step can be considered 

as ‘task’ made up of ‘sub-tasks’.  

 

Process Complexity Key Definition 

Simple Intuitive, no training required. An example of a simple tasks 

would be answering a question such as: “What is your age?”, 

accessing a URL via a browser to load a website, or sending a 

10-20 worded SMS (Short Message Service) message. 

Moderate Basic training required, some experience and know-how 

necessary to execute the task. An example of a moderate 

complex tasks would be following a recipe with 3-4 

ingredients to prepare and make a meal, writing a BASIC 

computer program to calculate the Body Mass Index (BMI) 

value of a human being, or being able to describe and use 

Pythagoras theorem to calculate the length of the 

hypotenuse. 

Difficult  Advanced training required, experience essential on how to 

implement and complete the task. Examples of a difficult task 

would be completing a residential home extension architectural 

drawing to conform to local government planning and building 

regulations, being able to write a computer program to 

graphically draw a chessboard or being able to explain in a 

classroom the full implementation of Internet Protocol version 

4 (IPv4), providing examples of network classes, subnets and 

network routing. 

Table 5.1 Task Complexity Rating 
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5.2.1.2 User Types 

 

As part of the experiment process, the volunteer user participants were able to 

anonymously define themselves into one of three designated groups by self-determining 

which group they belonged to as defined in each of the definitions: 

   

End-User Type 

 

 

Definition 

 

Quantity of 
Users in the 
group 

Novice User A user with little (less than a year) or no formal 

training in computer science and no work 

experience in computing disciplines.  

31 

Experienced User A user with some training in computing disciplines, 

up to A-level standard, with some formal training 

or 1-3 years’ work experience in the field. 

31 

Expert User  A user with training in computing disciplines, with a 

bachelor’s degree level or above, or with more 

than 5 years’ work experience in the field. 

31 

Table 5.2 End-User Types 

 

5.2.1.3 Task Types 

 

Task types for the experiment are listed below. Importantly, each task type is based 

on the requirement or non-requirement for human/end-user inputs. 

 

Task Type Definition 

 

Manual All sub-components of the task require manual user inputs. 
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Task Type Definition 

 

Semi-Automated 

Some of the sub-components of the task require manual user 

inputs, some are automated. 

Automated No sub-components of the task require any user inputs. 

Table 5.3 Process Mechanism Definition 

5.2.1.4 Process Types and Complexity Value Weightings 

 

The table below features definitions of how the process analysis was broken down into 

the tasks and sub-task components. For the purposes of this experiment and calculating the 

user feedback, we acknowledge sub-components of tasks, but never ask the users to provide 

their results at this level of granularity; instead, we take and record the qualitative result given 

at the task level: 

 

Process/Task/Sub-
components  

Definition 

Process  

A set of tasks which make up a complete process flow; for example, 

the steps/tasks required for the building of a virtual machine. 

 

Task 
An action, which is part of a process, such as creating an RSA public 

and private key pair for a user and then deploying it. 

Sub-Component 

A task may be made up of sub-components, such as key generation, 

key distribution, and setting key permissions, and testing the private 

and public key handshake. 

Table 5.4 Process, Task, Sub-component Definitions 
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5.2.1.5 User Results: Mode Average of Task Complexity Description 

 

The following table allows for a reliable method of obtaining a mode average (most 

frequent) of the end-users interpretation of the task complexity description: this is either 

simple, moderate, or difficult. Therefore, as an example for step 8 (create and add SSH key), 

Oracle cloud, the mode average, or most common description recorded was ‘difficult’. 

 

User Type User 
Numbers 

Step 
Number 

Qualitative 
Mode Average 
Complexity 
Description  
(Oracle) 

Qualitative 
Mode Average 
Complexity 
Description  
(AWS) 

Qualitative 
Mode Average 
Complexity 
Description 
(IDE) 
 

Novice, 
Experienced, 
and Expert  

3 groups 
of 1-31 

1 Simple Simple Simple 

Novice, 
Experienced, 
and Expert  

3 groups 
of 1-31 

2 Simple Moderate Simple 

Novice, 
Experienced, 
and Expert  

3 groups 
of 1-31 

3 Simple Simple Simple 

Novice, 
Experienced, 
and Expert  

3 groups 
of 1-31 

4 Simple Moderate Simple 

Novice, 
Experienced, 
and Expert  

3 groups 
of 1-31 

5 Simple Moderate Simple 

Novice, 
Experienced, 
and Expert  

3 groups 
of 1-31 

6 Moderate Difficult Simple 

Novice, 
Experienced, 
and Expert  

3 groups 
of 1-31 

7 Moderate Moderate Simple 

Novice, 
Experienced, 
and Expert  

3 groups 
of 1-31 

8 Difficult Difficult Simple 

Novice, 
Experienced, 
and Expert  

3 groups 
of 1-31 

9 Simple Simple Simple 
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User Type User 
Numbers 

Step 
Number 

Qualitative 
Mode Average 
Complexity 
Description  
(Oracle) 

Qualitative 
Mode Average 
Complexity 
Description  
(AWS) 

Qualitative 
Mode Average 
Complexity 
Description 
(IDE) 
 

Novice, 
Experienced, 
and Expert  

3 groups 
of 1-31 

10 Moderate Difficult Simple 

Table 5.5 VM Provisioning 10-Step Complexity (Mode Average) 

5.2.1.6 VM Provisioning Process  

 

During the evaluation and experiment process, there were 10 steps for VM 

provisioning that were followed, using empirical testing methods, whereby users were 

allowed to evaluate the IDE, AWS and Oracle VM provisioning platforms each in turn, while 

under observation by a moderator who used an unobtrusive approach as a  ‘fly on the wall’ 

(Seaman, 1999). The provisioning steps are defined as follows, based on the methodology 

described in section 3.5.1, and using the complexity guide and mode values from the previous 

section 5.2.1.5, which are incorporated in the table below: 

 

Step  
No 

Description Process 
Mechanism 

Information 
Input  
 
M = Manual 
A = Automatic 
S = Semi-
Automatic 
 

Complexity 
Amazon 
Web 
Services 
(Mode) 

Complexity 
Oracle 
Cloud 
(Mode) 

Complex
ity IDE  
Provisio
ning 
(Mode) 

O
ra

cl
e

 

A
W

S 

ID
E 

Step 
1 

Cloud 
Provisioning 
Access.  

This is the 
process 
needed to 
access and 
authenticate 
to use the 
cloud 

M M M Simple Simple Simple 
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Step  
No 

Description Process 
Mechanism 

Information 
Input  
 
M = Manual 
A = Automatic 
S = Semi-
Automatic 
 

Complexity 
Amazon 
Web 
Services 
(Mode) 

Complexity 
Oracle 
Cloud 
(Mode) 

Complex
ity IDE  
Provisio
ning 
(Mode) 

O
ra

cl
e

 

A
W

S 

ID
E 

platform, 
typically 
username/ 
password. 
 

Step 
2 

Configure 
Role.  

Setting up 
role-based 
access 
controls, such 
as 
administrator. 
 

S A  A Simple Moderate Simple 

Step 
3 

Select 
compute as 
the option 
for VM 
deployment  

Public cloud 
offerings 
prefer to 
allow manual 
choices for 
other 
offerings such 
as DaaS, PaaS 
or SaaS. This 
experiment 
only deals 
with IaaS. 
 

S S S Simple Simple Simple 

Step 
4 

Select the 
image you 
wish to use 
to install to 
the VM (OS 
type/version
).  

Typically, the 
OS version 
and software 
packages, 
add-on’s and 
any other 
supporting 
application 

S S A Simple Moderate Simple 
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Step  
No 

Description Process 
Mechanism 

Information 
Input  
 
M = Manual 
A = Automatic 
S = Semi-
Automatic 
 

Complexity 
Amazon 
Web 
Services 
(Mode) 

Complexity 
Oracle 
Cloud 
(Mode) 

Complex
ity IDE  
Provisio
ning 
(Mode) 

O
ra

cl
e

 

A
W

S 

ID
E 

software. 

Step 
5 

Select the 
VM CPU, 
memory, 
and Disk 
Parameters. 

VM Shell 
parameter 
definition 
phase. 

S S S Simple Moderate Simple 

Step 
6 

Define VM 
Parameters.  

Define, IP 
addresses, 
netmasks, OS 
version, 
packages and 
other such 
configurable 
parameters. 

S S A Moderate Difficult Simple 

Step 
7 

Define VM 
Storage.  

Select type 
and amount 
of disk 
storage to 
use. 

S A A Moderate Moderate Simple 

Step 
8 

Add SSH 
key, create a 
key and 
upload the 
pubic key.   

Generation of 
an 
appropriate 
SSH 
encryption 
key to secure 
communicatio
ns and 
authenticatio
ns. 

S S A Difficult Difficult Simple 

Step 
9 

VM creation 
process. 

VM shell 
creation, 
install and 
boot process. 

A A A Simple Simple Simple 
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Step  
No 

Description Process 
Mechanism 

Information 
Input  
 
M = Manual 
A = Automatic 
S = Semi-
Automatic 
 

Complexity 
Amazon 
Web 
Services 
(Mode) 

Complexity 
Oracle 
Cloud 
(Mode) 

Complex
ity IDE  
Provisio
ning 
(Mode) 

O
ra

cl
e

 

A
W

S 

ID
E 

Step 
10 

Process for 
accessing 
the VM via 
the internet, 
or via 
network. 

Typically 
involves 
opening up 
Firewall ports 
to access e.g. 
TCP 22 SSH. 

M M A Moderate Difficult 

 

Simple 

Table 5.6 VM Provisioning Sequence 

5.2.1.7 Hardware Provisioning Platform 

 

VM container parameters are defined as follows, using by default the smallest VM 

component available for each platform for the initial testing/experimentation: 

VM 
Vendor 
Type 

CPU Cores  Memory 
(GB) 

Disk (GB) Architecture Hypervisor 

Oracle  1 (Intel Xeon processor 
E5 Series, 3.3 GHz). 

7.5GB 34GB x86 Oracle Cloud 
(OVM). 

AWS  1 (Intel Xeon processor 
E5 Series, 3.3 GHz). 

8GB 8GB x86 AWS (Xen). 

IDE 1 (Intel Celeron 
Processor 1017U, 1.6 
GHz). 

2GB 8GB x86 Oracle 
VirtualBox. 

Table 5.7 Allocated VM Compute Resource 

5.2.1.8 VM Sizing Methods  

 

This section examines allocation of CPU and Memory resource for VMs and the most 
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effective approach using a minimum recommended model, and a scale-up as required 

methodology to help avoid over commitment of resources and potentially under-utilised 

systems. The IDE approach to sizing consists of: 

• Assigning minimal recommended memory and CPU for a particular OS flavour 

supported. Research suggests that minimalisation is an optimal approach to use to 

effectively utilise IaaS platforms (Stage et al, 2009). This immediately avoids waste, as 

Piraghaj et al show in their research (2015, p. 33); therefore, this ensures VMs are 

functioning at the minimal recommended level of resources, thus avoiding over-

allocating CPU and memory from the outset. 

• Expand and balloon memory (grow/shrink) as required by the applications; note, most 

support for memory ballooning requires 64-bit operating systems, that theoretically 

allows support up to 264 bytes (~16 exabytes) for dynamic memory allocation/de-

allocation and garbage collection (Liu et al, 2015).   

• Memory/CPU monitoring agents running via IDE will continually monitor the entire 

environment, allowing for dynamic changes to occur as appropriate (i.e. shrink or 

expand resources). This will support the continual resource re-assessment of VMs to 

allow them to increase or reduce as needed. 

 

5.2.2 Experiment 1: VM Provisioning Timing Comparison 

5.2.2.1 Formalisation 

 

Where 𝒯 is the total time to deploy a VM 

Where n stands for the task number  

Where t stands for the task identifier 

Where 𝜃 is the participant time taken to complete a task (in seconds) 

Where 𝜓 is the average (mean) participant time per task (in seconds) 

 

To find the total time to complete the 10-Step VM provisioning process we use the following: 
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𝒯 = ∑ 𝜃
n

t=1
 

(1) 

To find the average time per step for each user: 

 

𝜓 =
∑ 𝜃n

t=1

10
 

(2) 

 

5.2.2.2 VM Provisioning Expert Users 

 

The following table records in Appendix A.1 the observed time in seconds (sec) taken 

for each step, for a total of 31 expert users (see definition above); a time of zero represents 

automatic processing, with no necessary end-user intervention. 

 

5.2.2.3 VM Provisioning Experienced Users 

 

The following table records in Appendix A.5 show the observed time in seconds (sec) 

taken for each step, for a total of 31 experienced users (see definition above); a time of zero 

represents automatic processing, with no necessary end-user intervention. 

 

5.2.2.4 VM Provisioning Novice Users 

 

The following table records in Appendix  A.9   show the observed time in seconds (sec) 

taken for each step, for a total of 31 novice users (see definition above); a time of zero 

represents automatic processing, with no necessary end-user intervention. A time recorded 

as 9999 represents a user who was unable to complete a task, due to having a lack of 

knowledge, or understanding. 
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5.2.2.5 VM Provisioning Build Methods 

 

The VM build methods are recorded in Appendix C; there is a sequence recorded for 

each platform which are AWS, Oracle and the IDE respectively. Each user listed in section 

5.2.1.2 accessed each platform in turn, to perform the 10-step provisioning steps listed in 

section 5.2.1.6, and recorded their timings for each step. These results can be found in 

Appendix A and graphed and presented in section 5.3.1. 

5.2.2.6 Re-visiting the IDE Provisioning Experiment with Queued Pre-built System 
Images 

 

It was determined that step 9 (of the VM provisioning process) time could almost be 

eliminated by adopting a new process, whereby, the IDE system pre-built VMs, which have 

their system configuration put into a unconfigured status, for example, using the ‘sys-

unconfig’ (sys-unconfig, 2019) command will achieve this on Linux type systems, and allow re-

configuration. This approach makes system performance and time to build somewhat 

irrelevant, due to the pre-build and dynamic reconfiguration process continually running in 

the background, anticipating a future build. This method effectively allows the IDE to store 

pre-built system (queued) images, which it can choose to keep in reserve to act as a future 

build pipeline supply. This work is a possible future development, described further in section 

8.3.1. 

 

5.2.3 Experiment 2: Cognitive Evaluation Performance 

 

Every task a person undertakes requires a certain amount of cognitive power, or 

mental effort, in order to enact to conclusion (Sweller, 1998; Yang et al, 2017). As an example, 

this could be from a singular simple task, such as clicking a mouse button, to a set of activities 

that need to be carried out in a specific sequence in order to complete an overall task 

successfully, such as cooking a meal using a set of ingredients and following a recipe. The 

question that rises from this, is how can the complexity of a task or set of tasks be measured, 



Intelligent Management of Virtualised Computer Based Workloads and Systems 

 

 

 

© James Oakes, 2020                                  147 | P a g e  

 

and is it possible to understand the cognitive load for a user or group of users? The evidence 

from other studies and this work suggest it is feasible to understand this, and similar 

experiments in controlled conditions have provided evidence and results that demonstrate 

how to measure cognitive load (Pass et al, 1994; Pass et al, 2003; Kotova, 2016).  

 

Within the field of work, this method of study is generally referred to as Cognitive Load 

Theory (CLT) in relation to task orientated problem solving. One requirement for making this 

feasible is because, like most processes, there is usually a start and an end, and a subsequent 

number of tasks in-between that are usually performed in a certain sequence. Once the 

process completes, this can result in a successful end and objective being met, or perhaps 

even in a full or partial failure. Understanding the sum of all the tasks in process is therefore 

essential to be able to measure the overall complexity load (Feinberg, 2000). Some processes 

are simple, for example pressing a power on or off button on a Television (TV) remote control. 

Consider that there are a few steps to this process, one locating the TV remote, two locating 

the correct button (power), and three physically pressing this button, to achieve the desired 

effect (e.g. switching the TV on/off).  Conversely, other processes can be considered complex, 

such as the creation of a Virtual Machine (VM), due to the number of steps and the inherent 

know-how and technical expertise required to complete (Selvi et al, 2014).  

 

5.2.3.1 Converting Qualitative Data into Quantitative Data: Is This Possible?  

 

Further to existing studies, this paper examines how the cognitive load for a complex 

process (set of tasks) can be measured using a unique formula and method, referred to as the 

Complexity Load Rating (CLR). The work examines the feasibility and challenges around 

recording qualitative feedback and results from end-users, and proposes a method to 

translate this into numerical or quantitative data (Green, 2001; Srnka and Koeszegi, 2007; 

Verdinelli,  and Scagnoli, 2013; Franzosi, 2004). The results are then calculated for each group 

of users and are then evaluated to present evidence on how a complex process (such as VM 

provisioning) can be simplified as a result of the steps being developed with higher levels of 
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automation and the use of pre-coded system intelligence (Oakes et al, 2016; Lokshina and 

Insinga, 2004; Menasce and Bennani, 2006). 

 

5.2.3.2 Cognitive Experimental Process 

 

How to measure the cognitive load of a task is based upon the following general 

conditions, described by the qualitative (subjective) terms below: 

 

1) The end-user interpretation of the task as either simple, moderate or difficult. 

2) Is the task (or set of tasks) which make up the process automated, semi-automatic, or 

manual. 

 

It is important when collecting qualitative data, that not too many options are 

presented for the end-user evaluation data outputs, based on their experience and the 

experiment process undertaken. For example, allowing human test subjects to input 

unstructured data such as free-text, or even handwritten text, makes the collation and 

analysis of data somewhat more difficult to interpret, simply because of the number of 

permutations and recognition of what the written data means (Rusu et al, 2013).   

Therefore, in the context of this study, when we refer to task complexity, this is defined 

or described (subjectively) by the end-user as simple, moderate or difficult. Furthermore, 

each task undertaken has a process mechanism described as either automatic, semi-

automatic, or manual. Of the three process outcomes, if a task is automated it requires no 

input, and is automatically set to simple; semi-automatic and manual task steps therefore 

require partial or full end-user inputs and can receive a simple, moderate or difficult rating.  

It is natural that humans prefer providing qualitative feedback for some activity they 

personally take part in (Lui et al, 2017). Simple statements of whether something was good 

or bad is often typical of how people prefer to relate their experiences (Austermann and 

Yamada, 2008). By capturing all the tasks for a process, it is possible to begin to measure the 
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results from the experimentation method by converting qualitative data into quantitative 

data, thus, in effect, performing a translation of words into numbers (Franzosi, 2004). This 

leads us to the next phase of the experiment framework on how to use these sets of 

parameter variables, for Task Complexity (Table 5.1) and Process Mechanism (Table  5.3), by 

creating a unique method for measuring the Cognitive Load Rating (CLR) for a task or set of 

tasks; in this study we examine the complete process, of how an end-user would deploy a VM 

within a computer based cloud environment, as described in the 10-step provisioning process 

in section 5.2.1.6. Note, that this exercise was completed as a one-off (snapshot) exercise, 

and end-users were not able to repeat the experimental tests, either immediately following, 

or at a later point in time; see limitations for more detail in section 1.4. 

The cognitive experiment process invoked is very similar to other studies in the field, 

as listed in section 2.7.6, although it does utilise its own scaling systems and devised formula 

as described below in  section 5.2.3.3. Similar previous studies for cognitive load are listed in 

table 5.8 below:    

 

Table 5.8 Similar Cognitive Load Studies (PaaS et al, 2003) 
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The CLR formula used below does not include monitoring any participant physiological 

aspects, such as heart rate variability, or pupillary responses. The reason for this exclusion is 

to avoid the collection of personal data relating to the study participants, to maintain 

simplicity for the experiment using a Rating Scale (RS), and the known task automation 

classification.  

5.2.3.3 Cognitive Load Rating Formula  

 

The proposed formula for measuring the complexity of a singular task is as follows: 

 

Where the Cognitive Load Rating (CLR) for one task stands for 𝛽 

Where Task Complexity stands for ∆ 

Where Process Mechanism stands for ∅  

 

𝛽 =∆ x ∅    (1) 

 

This general formula can be applied to any process type, or cumulatively to a set of processes, 

and is not just applicable to the field of computer science and VM provisioning. In order to 

apply this formula to a set of processes it is necessary to make this calculation able to measure 

the sum complexity of a set of tasks, represented as follows: 

 

Where 𝜆 stands for the CLR for a set (sum) of tasks  

Where n stands for the number of tasks 

Where t stands for the task identifier 

 

𝜆 = ∑ (∆ x ∅)
n

t=1
 

           (2) 
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Additionally, the formula can then be adjusted to work out the mean average of a process’s 

task complexity, by using the following method (divides by the total number of tasks 

represented by n): 

 

Where 𝛫 stands for the CLR mean average for a set of tasks  

 

𝛫 =
∑  (∆ x ∅)n

t=1

n
 

           (3) 

 
 

The CLR calculation for each user task results are derived in detail using the following formula 

described in the next section. 

 

5.2.3.4 User Task Complexity Formula  

 
Where R is the derived result 

Where 𝜇 is the user input 

Where s is simple 

Where m is moderate 

Where d is difficult 

Where x is manual  

Where y is semi-automatic 

Where z is automatic 

 
R =  

( 𝜇 = ( s ∧  x ) → ( 1 × 10 ))   ∨   ( 𝜇 = ( m ∧ x ) → ( 3 ×  10 ))  ∨   
( 𝜇 = ( d  ∧  x)   → ( 5 ×  10 ))  ∨  ( 𝜇 = ( s ∧  y ) → ( 1 ×  5 ))  ∨   
( 𝜇 = ( m ∧  y ) → ( 3 ×  5 ))   ∨  ( 𝜇 = (d  ∧  y)   → ( 5 ×  5 ))   ∨   
( 𝜇 = ( s ∧  z ) → ( 1 ×  1 ))  ∨  ( 𝜇 = ( m ∧  z ) → ( 3 ×  1 ))   ∨   

( 𝜇 = (d  ∧  z)   → ( 5 ×  1 )) 
 



Intelligent Management of Virtualised Computer Based Workloads and Systems 

 

 

 

© James Oakes, 2020                                  152 | P a g e  

 

5.2.3.5 Cognitive Load Rating Chart  

 

The following chart provides the CLR scale, on how difficult a set of tasks are for an 

end-user; the guide below provides the information on how to rate each overall process, in 

terms of the mental power requirement: 

 

 

Figure 5.1 Cognitive Load Rating Chart 

 

5.3 Results  

 

5.3.1 VM Provisioning Timed Results 

 

The following graphs represent the VM provisioning results from the Novice, 

Experienced and Expert user groups for each of the 10-steps in the provisioning process; note 

that the conclusions can be found in section 8.2.1: 
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5.3.1.1 Expert Users 

 

 The charts below show the results for the ‘expert’ user group, who performed the VM 

provisioning experiment on all platforms; the first graph of results presented is for the IDE 

(expert users): 

 

 

Figure 5.2 IDE Timed VM Provisioning – Expert Users 
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The second graph of results presented is for the Oracle cloud platform (expert users): 

 

Figure 5.3 Oracle Timed VM Provisioning – Expert Users 

The third graph of results presented is for the AWS cloud platform (expert users): 

 

Figure 5.4 AWS Timed VM Provisioning – Expert Users 
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5.3.1.2 Experienced Users 

 

The charts below show the results for the ‘experienced’ user group, who performed 

the VM provisioning experiment on all platforms; the first graph of results presented is for the 

IDE (experienced users): 

 

Figure 5.5 IDE Timed VM Provisioning – Experienced Users 

The second graph of results presented is for the Oracle cloud platform (experienced users): 

 

Figure 5.6 Oracle Timed VM Provisioning – Experienced Users 
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The third graph of results presented is for the AWS cloud platform (experienced users): 

 

Figure 5.7 AWS Timed VM Provisioning – Experienced Users 

5.3.1.2 Novice Users 

The charts below show the results for the ‘novice’ user group, who performed the VM 

provisioning experiment on all platforms; the first graph of results presented is for the IDE 

(Novice users):  

 
Figure 5.8 IDE Timed VM Provisioning – Novice Users 



Intelligent Management of Virtualised Computer Based Workloads and Systems 

 

 

 

© James Oakes, 2020                                  157 | P a g e  

 

The second graph of results presented is for the Oracle cloud platform (Novice users): 

 

Figure 5.9 Oracle Timed VM Provisioning – Novice Users 

 

The third graph of results presented is for the AWS cloud platform (Novice users): 

 

Figure 5.10 AWS Timed VM Provisioning – Novice Users 
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5.3.2 Aggregated VM Provisioning Timed Results 

 

The following graphs show the aggregated total timed VM provisioning results for 

Expert, Experienced and Novice users; note that the conclusions can be found in section 8.2.1: 

5.3.2.1 Expert Users 

 

The charts below show the results for the ‘expert’ user group, who performed the VM 

provisioning experiment on all platforms; the first graph of results presented are for the IDE 

(expert): 

  

Figure 5.11 IDE Aggregated Timed VM Provisioning – Expert Users 
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The second graph of results presented are the for the Oracle cloud platform (expert): 

 

 

Figure 5.12 Oracle Aggregated Timed VM Provisioning – Expert Users 

 

The third graph of results presented are the for the AWS cloud platform (expert): 

 

Figure 5.13 AWS Aggregated Timed VM Provisioning – Expert Users 

 

5.3.2.2 Experienced Users 

 

The charts below show the results for the ‘experienced’ user group, who performed 
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the VM provisioning experiment on all platforms; the first graph of results presented are for 

the IDE (experienced): 

 

Figure 5.14 IDE Aggregated Timed VM Provisioning – Experienced Users 

 

The second graph of results presented are the for the Oracle cloud platform (experienced): 

 

Figure 5.15 Oracle Aggregated Timed VM Provisioning – Experienced Users 
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The third graph of results presented are the for the AWS cloud platform (experienced): 

 

 

Figure 5.16 AWS Aggregated Timed VM Provisioning – Experienced Users 

 

5.3.2.3 Novice Users 

The charts below show the results for the ‘novice’ user group, who performed the VM 

provisioning experiment on all platforms; the first graph of results presented are for the IDE 

(Novice): 

 

Figure 5.17 IDE Aggregated Timed VM Provisioning – Novice Users 
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The second graph of results presented are the for the Oracle cloud platform (Novice): 

 

 

Figure 5.18 Oracle Aggregated Timed VM Provisioning – Novice Users 

 

The third graph of results presented are the for the AWS cloud platform (Novice): 

 

Figure 5.19 AWS Aggregated Timed VM Provisioning – Novice Users 
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5.3.3 Cognitive Load Rating Results 

 

As part of the experiments undertaken, three principle sets of results for the end-user 

demographic were collected. These include expert, experienced and novice user groups (as 

defined previously in table 5.2 End-User Types). Each user was observed, and the result for 

the 10-step VM Provisioning process are listed in table 5.6 VM provisioning sequence; the 

results below provide the output for 3 sets of users listed in figure 5.20 (experts users), 5.21 

(experienced users) and 5.22 (novice users) respectively, which describe the cognitive load 

experienced by each group of users, as described by the CLR guide in section 5.2.3.5:  

 

The charts below show the combined results for all three experimental platforms (IDE, 

Oracle and AWS), who performed the cognitive evaluation performance; the first graph of 

CLR results presented are the for the ‘expert’ user group: 

 

Figure 5.20 CLR VM Provisioning – Expert Users. 

The second graph of CLR results presented are the for the ‘experienced’ user group: 

 
Figure 5.21 CLR VM Provisioning – Experienced Users. 
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The third graph of CLR results presented are the for the ‘novice’ user group: 

 
Figure 5.22 CLR VM Provisioning – Novice Users. 

Note that the conclusions for the experiment can be found in section 8.2.2. 

5.3.4 Overall Results 

 

Table 5.9 below summarises the results for VM provisioning times and the CLR for the 

AWS, Oracle and IDE platforms respectively: 

Tested Platform and User 

Group 

Mean Average VM 

Provisioning Time (Sec) 

Mean Average CLR 

(Descriptor) - See CLR guide 

chart in section 5.2.3.5 

AWS Novice Users 9999* Medium 

Oracle Novice Users 9999* Medium-High 

IDE Novice Users 1578 Low 

AWS Experienced Users 1464 Low-Medium 

Oracle Experienced Users 3237 Medium-High 

IDE Experienced Users 1372 Very-Low 

AWS Expert Users 1382 Low-Medium 

Oracle Expert Users 2362 Medium 

IDE Expert Users 1231 Low 

Table 5.9 VM Provisioning Experiment Results 

* 9999 results are recorded where end user participant groups were unable to complete the VM provisioning process. 
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Note, the table provides an average VM provisioning time for each participant group, 

with the appropriate CLR descriptor; the descriptors are an average of the entire sequence of 

the provisioning 10-steps, therefore, this should be taken into account, even though for step 

8 (SSH Key) the novice groups for AWS and Oracle platforms generally failed to load a public 

key, and the majority described the cognitive load for this step as an ‘Exceptionally high 

requirement’. The significance of the results are discussed in more detail for each platform in 

Chapter 8. 

 

5.4 Summary 

 

This chapter is key in providing the details and results of two of the five experiment 

processes conducted as part of this study. Firstly, the VM simplified deployment experiment 

was described with the 10-step procedure for end-user participants, along with the controls 

to provide definitions, user types, complexity value weightings and task types. The end-user 

results are then captured, recorded and presented in graph format. Secondly, the end-user 

experience data is captured to analyse the cognitive load and mental power requirement for 

each of the respective systems, using the CLR formula to allow a comparison against the 

cognitive load guide chart. As with the first experiment, the data is presented graphically. The 

results generated for both experiments show a reduction in VM provisioning time for the IDE 

and a lower mental power requirement, when compared to the other platforms, which are 

AWS and Oracle respectively. The three key groups show a similar pattern, albeit with reduced 

times for provisioning for ‘expert’ and ‘experienced’ level users. For the IDE, step 9 

accumulates most of the VM build time, due to the fact most of the other steps are automatic, 

or semi-automatic. In comparison, the standard AWS and Oracle end-user cloud provisioning 

platform interface (see Appendix C) has a requirement for more manual user inputs, thus 

adding more time to the aggregated VM provisioning time. Typically, we observe time 

consuming manual inputs around step 8, the SSH-key load, and additionally for the Oracle 

cloud, step 4 selecting the machine image and step 6 for defining the VM parameters. Novice 
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VM provisioning end-user results show that the SSH-key load at step 8 was for the most part, 

too challenging to complete. Finally, we compare the cognitive load rating results for the 

expert, experienced and novice end-user groups, to ascertain how mentally challenging the 

participants found the experimental VM provisioning exercises. The next chapter discusses 

experiment 3, which addresses VM workload, migration and failover strategies.    
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Chapter 6: Improving Workload Migration Strategies 
 

6.1 Introduction 

 

For most organisations, being able to maintain highly available (HA) systems is 

essential to ensure their business operations continue to run effectively (Fernado et al, 2016). 

As discussed previously in section 4.7, we examined in detail how the IDE maintains HA using 

a cluster and quorum voting mechanism. Public cloud vendors like AWS and Oracle hide this 

complexity from their customers and end-users, by using concepts such as regions, which are 

physically distinct geographical locations, such as Western Europe London, or the US East 

North Virginia; most regions have at least two physically separate datacentres to make them 

resilient to local failures, and each datacentre has its own Reliability, Availability, and 

Serviceable (RAS) features, such as redundant power, network switches, servers and so on.  

Some of the users are therefore unaware of the engineering expertise, effort and cost 

associated with creating this type of availability and resiliency, which is one of the reasons for 

the commercial success of such platforms (Kokkinos et al, 2013). That being the case, because 

many commercial cloud providers keep the complexity and know-how as intellectual property 

secrets, this makes it harder for researchers to compare and study such technologies in lab-

based experimental conditions (Hataba and El-Mahdy, A, 2012). Therefore, as part of this 

work, we analyse two well-known VM failover technologies called XenMotion and vMotion, 

for which there are available comparative studies completed, to allow a detailed analysis and 

comparison against the IDE failover/migration process (Feng et al, 2011; Shirinbab and 

Lundberg, 2016). 

 

6.2 Workload Migration Methods 

 

There are several workload migration methods available, however, this study approach 

initially begins with the ‘full restart’ VM scenario, although comparisons are made against ‘live 

migration’ methodologies, and the results obtained therein (Feng et al, 2011; Shirinbab and 
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Lundberg, 2016). It was beyond the scope of this investigation to address the in-memory/disk 

VM replication migration aspects described below (e.g. using VirtualBox teleport); please see 

limitations section 1.4 which describe the constraints, and section 8.3.3 that describes the 

further work to be completed in this area. The commonly available migration/failover 

methods include the following techniques and methods: 

• VM ‘full restart’ and migration scenario; VM OS is stopped abruptly, crashes, or 

halts as a result of a physical host failure, typically an uncontrolled failure. 

• Planned VM in-memory migration (VM migrates between two physical hosts, and 

has its memory replicated and is restarted; typically used as a controlled failover); 

this method being controlled, usually results in less actual downtime of the VM 

and its associated services, especially when used in-conjunction with ‘live 

migration’ techniques. 

The next section provides details on the experiment process employed as part of the 

experiment. 

6.3 Experiment Process 

 

The experiment process covered two principle components or stages, listed as follows: 

• Detection of a simulated VM failure event via loss of the physical host machine, 

measured in time taken (seconds). 

• Migration and restart of the failed VM to the point it is restarted and operational 

once more, again measured in time taken (seconds). 

 

The details are described in the two tables below, firstly the preparation steps to ensure the 

experiment is valid, and secondly the failover/migration process is implemented: 
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Step No Description Measurement/Observation 

 

1 Ensure IDE Cluster is online and 

operational – 3 node cluster. 

Observation of cluster health. 

2 Ensure VM test subject is up and 

running and is also accessible (e.g. 

using secure shell). 

Observation/log into VM and 

ensure working normally; note, 

the physical host where the VM is 

operational (resident). 

Table 6.1 Simulated VM Failover/Migration IDE Preparation Steps 

 

Step No Description Measurement/Observation 

 

1 Invoke Simulated Failure event. Observation of physical host 

failure event for guest VM. 

2 IDE detection time of failure event. Observe and record the time taken 

to complete the detection process. 

3 IDE Failover/migration and restart VM 

process. 

Observe and record the time taken 

to complete the detection process. 

Table 6.2 Simulated VM Failover/Migration IDE Steps 

 

6.4 Experiment 3: Workload Migration and Evacuation of VMs  

 

The subsections below show the three experiments (3.1, 3.2 and 3.3) conducted 

around the VM migration/failover processes for the IDE, vMotion (study 1), and vMotion and 

XenMotion (study 2) respectively.  Considerable effort has been made to ensure the 

comparisons are as closely matched as possible; some of the experiment conditions vary 

slightly, but this is noted by the study and highlighted to allow clear results, with 

acknowledged (minor) differences. The key elements are described here: 
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• Network bandwidth; this is especially relevant for failover, where there is no 

shared storage and the network is used to physically copy the VM container 

devices, such as virtual disks e.g. Virtual Machine Disks (VMDKs). For the 

experiments which used shared storage such as NAS, this is of little impact to 

the experiment process in terms of adding time to the migration/failover 

event. 

• CPU/Memory; it is important that the base operating system has the 

recommended hardware resources are available for CPU/Storage/Memory. For 

VMs heavily laden with applications and databases, this can affect the 

migration/failover time. To avoid this as a complication factor, VMs with the 

base OS installed were used, and it was ensured that any applications had the 

recommended memory/CPU available. 

• VM Storage type; very significant if using shared cluster storage, such as NAS 

or SAN. In cases, where there is no shared storage between cluster nodes, the 

VM’s virtual disks (operating system, applications, and databases), need to be 

copied to the target system as part of the process. This creates very intensive 

network traffic (due to replication), and usually results in longer sustained 

outages (Awal et al, 2014; Toyoshima et al, 2010). 

• Operating system – Linux (Redhat 6x, or CentOS 6.x, ensuring that the OS 

instance and applications have the recommended resources available (Redhat, 

2019). 

 

6.4.1 Experiment 3.1: IDE VM Migration/failover Process 

 

It was expected that the invocation of IDE rule listed in  section 4.8.2 and table 4.14 

IDE knowledge rule, would take effect as part of the experiment process, to evacuate the 

failed VM from the failure physical host for that particular guest VM. As part of the 

experiment, this rule was observed to detect the failure event, and invoke its knowledge rule 
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and consequence, which was to perform a migration and failover to a new healthy cluster 

node. The diagram below in figure 6.1 illustrates the process. 

• Node CPU/Memory: 4 Core / 4 Threads / 1.6GHz / 8GB RAM 

• Network Bandwidth: 1Gb 

• Storage: Shared – NAS 

• Hypervisor: VirtualBox 5.2  

• Operating System:  CentOS 6.2 

 

Figure 6.1 Experiment 3.1 VM Failover Method (IDE) 

 

Following the experiment, each test result iteration (Test ID) was recorded 1-6, and 

had its VM downtime, with detection of the physical host/VM failure listed, along with the 

notation of the available network bandwidth for potential consumption.  
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Test ID  Downtime (sec) /  
Maximum Detection Time (sec) / 
Network Bandwidth Speed (Gb) 
  

Storage Type Total Migration 
Time (sec) 

1 14.22 / 7.34 / 1Gb NAS 21.56  

2  15.10 / 7.22 / 1Gb NAS 22.32  

3  16.45 / 7.56 / 1Gb NAS 24.01  

4  15.30 / 7.13 / 1Gb NAS 22.43  

5  15.21 / 7.21 / 1Gb NAS 22.42  

6  14.96 / 7.19 / 1Gb NAS 22.15 
Table 6.3 Experiment 3.1, Downtime and Total Migration Timed Results (IDE) 

 

6.4.2 Experiment 3.2: vMotion VM Migration/failover Process 

The process below shows the details on the vMotion migration/failover process; 

The methodology for the experiment is captured in detail with the diagram below: 

 

• Node CPU/Memory: 12 Core / 24 Threads / 2GHz / 128GB RAM 

• Network Bandwidth: 10Gb 

• Storage: Shared - virtual NAS 

• Hypervisor: ESXi 5.5  

• Operating System:  Redhat 6.2 

 

 

Figure 6.2 Experiment 3.2 VM Failover Method (study 1) 
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Comparative study 1 (Shirinbab and Lundberg, 2016) shows that several experiment 

tests were completed with a maximum down-time and overall total migration time listed in 

table 6.4 below; note the value for Downtime and Maximum Response Time are combined in 

this experiment: 

 

 

Test ID  Downtime &  
Maximum Response Time (sec) / 
Network Bandwidth Speed (Gb) 
  

Storage Type 
 

Total Migration 
Time (sec) 

1 2.21 / 10Gb vNAS 30 

2  4.01 / 10Gb vNAS 38 

3  2.17 / 10Gb vNAS 48 

4  4.94 / 10Gb vNAS 52 

5  2.92 / 10Gb vNAS 48 

6  4.48 / 10Gb vNAS 53 
Table 6.4 Experiment 3.2, Downtime and Total Migration Results vMotion (Shirinbab et al, 2016) 

 

It should be highlighted that the network bandwidth available for the experiment was 

10Gb, which exceeded the other experiments; however, it can be discounted as a large 

advantage, as the process utilised shared storage (vNAS) for the VM’s virtual disks (Aladyshev 

et al, 2018). Therefore, this avoided the requirement for virtual disk replication, which would 

incur high network I/O. 

 

6.4.3 Experiment 3.3: vMotion and XenMotion VM Migration/failover Process 

 

For comparative study 2 (Feng et al, 2011), the process below shows the details on the 

vMotion and XenMotion migration/failover mechanism: 
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• Node CPU/Memory: 12 Core / 24 Threads / 2.66 GHz / 24GB RAM 

• Network Bandwidth: from 100Mb to 1Gb (sliding upwards) 

• Storage: SAN (Shared - Storage Area Network) 

• Hypervisor: ESXi 4.1 & Citrix XenServer 5.6  

• Operating System:  not specified   

 

 

Figure 6.3 Experiment 3.3 VM Failover Method study 2 (Feng et al, 2011) 

 

Note, in this experiment, we observe a sliding scale in time (listed in tables 6.5 and 

6.6), representing the difference in available bandwidth for the VM migration/failover event 

to consume. The study initially throttles the bandwidth heavily at only 100Mb; for each test 

the bandwidth is increased (doubled initially, then by 200Mb) and the results (1-6) are 

compiled based on a network bandwidth speed rate from 100Mb-1000Mb (scaled up 

bandwidth with each integration).  This still provides interesting comparative results; 

however, as discussed, the experiment utilises shared SAN storage, and the IDE and previous 

study 1 both operate their platforms using 1000Mb (or 1Gb) network speeds, which is 

equivalent for at least the last test – number/ID 6.  It can be observed that there are vastly 

reducing total migration times in the results complied in tables 6.5 and 6.6. Note, this study 

has two sets of results available, one for vMotion, and the other for XenMotion, which is 

useful in terms of being able to analyse two alternative hypervisor technologies against the 

IDE. 

The following table has the vMotion results for study 2: 
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Test ID  Downtime &  
Maximum Response Time (sec) / 
Network Bandwidth Speed 
  

Storage Type Total Migration 
Time (sec) 

1 Not recorded / 100Mb SAN 150  

2  Not recorded / 200Mb SAN 90  

3  Not recorded / 400Mb SAN 50  

4  Not recorded / 600Mb SAN 40  

5  Not recorded / 800Mb SAN 30  

6  Not recorded / 1Gb SAN 20 
 Table 6.5 Experiment 3.3, Downtime and Total Migration Results vMotion (Feng et al, 2011) 

 

The following table has the XenMotion results for study 2: 

 

Test ID  Downtime /  
Maximum Response Time (sec) /  
Network Bandwidth Speed 
  

Storage Type Total Migration 
Time (sec) 

1 Not recorded / 100Mb SAN 700  

2  Not recorded / 200Mb SAN 400  

3  Not recorded / 400Mb SAN 200  

4  Not recorded / 600Mb SAN 120  

5  Not recorded / 800Mb SAN 100  

6  Not recorded / 1Gb SAN 80 
 Table 6.6 Experiment 3.3, Downtime and Total Migration Results XenMotion (Feng et al, 2011) 

6.5 Results 

 

The charts below show the event VM failure detection time for the IDE, based on 

system becoming aware of the failure event described earlier in section 6.4.1. Note that the 

conclusions from the experiment can be found in section 8.2.3, along with notes in the further 

work section 8.3.9 , which provide more information on a detailed laboratory analysis and 

study opportunity, focused on a vMotion and XenMotion configuration and build, to enable 

the exact same tests for all three platforms investigated during experiments 3.1, 3.2 and 3.3. 
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The following chart show the IDE failure detection time for a VM failure event (VM 

down): 

 

 

Figure 6.4 IDE VM Failure Detection Time Experiment 3.1 (IDE) 

Additionally, the migration time is included in the chart below to show the overall time to 

complete the end-to-end event detection, migration and failover process: 

 

 

Figure 6.5 IDE VM Failure Detection and Migration Time Experiment 3.1 (IDE) 
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The graph below shows study 1 results for VM migration and full restart: 

 

Figure 6.6 Study 1 VM Failure Detection and Migration Time Experiment 3.2 (vMotion) 

 

The graph below shows study 2 results for VM migration and full restart for part a (vMotion): 

 

 

 

Figure 6.7 Study 2 VM Failure Detection and Migration Time Experiment 3.2 (vMotion) 



Intelligent Management of Virtualised Computer Based Workloads and Systems 

 

 

 

© James Oakes, 2020                                  178 | P a g e  

 

The graph below shows study 2 results for VM migration and full restart for part b 

(XenMotion): 

 

Figure 6.8 Study 2 VM Failure Detection and Migration Time Experiment 3.2 (XenMotion) 

The graph below shows the IDE, study1, and study 2 results (part a and b) and the mean 

average time in seconds for VM migration and full restart: 

 

Figure 6.9 Comparative Mean Average VM Migration Time for Experiments 3.1, 3.2 and 3.3 
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6.6 Summary 

 

This chapter provides the detail for experiment three, which is concerned with VM 

migration/failover strategies to improve availability of virtualised systems and resources. Two 

approaches are considered, firstly around full VM restart and secondly around live VM 

migration. This experiment deals with the full restart scenario following a physical or virtual 

system failure event. During the experiment, a simulated failure is invoked to allow the IDE 

to take the necessary intervention steps to recover the VM and associated resources. The 

experiment captures the amount of time the IDE takes to migrate and failover the VM and its 

resources, to the point where it has been successfully restarted. The IDE results are then 

compared against two independent papers, which utilise two well-known products vMotion 

and XenMotion to demonstrate similar VM migration and failover processes. The IDE 

performs well when compared with its lower average failure detection and migration VM 

failover time. The following chapter discusses the final two experiments on the topic of global 

resource management of virtualised computer systems. 
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Chapter 7: Optimising Performance and Availability of 
Virtual Machines 

 

7.1 Introduction 

 

In this chapter we examine the concept of managing VM resources online using direct 

invention of a system to change resource parameter settings, such as CPU and memory, with 

the desired goal of being able to dynamically change these values without interruption to 

service, while the system is live and in a running state. It important at this point to define the 

difference between global and local resource management; the definitions are given below 

for the purposes of this study: 

• A local resource management strategy features the resource controls (e.g. for 

CPU/memory) being applied to a single physical host and its associated local guest 

VMs. The control never extends to other physical hosts, and there is no overall 

global view of a pool of physical hosts clustered, either locally or in a 

remote/distributed fashion. 

• A global resource management strategy features resource controls (e.g. for 

CPU/memory and I/O) being extended across an entire cluster of physical systems 

and their associated VMs. The resource scheduler is able to continually work and 

control the overall global capacity/performance across all physical hosts. 

 

There are two resource management scenarios that the IDE can currently work with 

based on its rule-base, which are as follows: 

• A scenario 1 whereby a physical host in the cluster (globally managed) is running 

short on memory or CPU resource, and it needs to start evacuating guest VMs (in 

least important order to service) to another physical host in the cluster to free up 

resources. Please see section 4.8.2 physical system events for more details. 
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• A scenario 2 where a single VM has CPU and/or memory resource issues, and it 

needs to be given more in order to keep itself processing and functioning 

effectively. The IDE system will attempt to dynamically resize the VM accordingly 

based on the physical resources remaining within the cluster in the most effective 

way possible. Please see section 4.8.3 VM system events for more details. 

  

As part of this study we examine scenario 2 in detail, while comparing the IDE function 

and capability to two similar studies on memory and CPU resource management techniques 

in virtualised environments (Zhang et al, 2017; Zhang et al, 2016). The first study looks at 

automated memory management on a physical system with VMs using the Xen Balloon driver; 

the second uses an iBalloon driver to help dynamically manage and optimise physical systems 

with VMs, initially using the KVM (Kernel-based Virtual Machine) driver. The aim is to work 

on the IDE’s rules to test and ensure they are invoking correctly as described earlier by section 

4.8.3 VM System events, tables 4.17 (Memory overload) and 4.18 (CPU overload). They 

describe the automatic intervention being taken against a VM during a sustained 5-minute 

interval where the CPU and/or memory is utilised above a 75% threshold for either total, as 

reported by the system performance measurement tools; for example, Linux OS monitoring 

tools such as vmstat, iostat, and top (Lui et al, 2015).  

More details on the knowledge rules and justifications for those figures can be found 

in section 4.8.5 where we explore in depth in the reasons for certain thresholds (such of VM 

memory utilisation). Consequently, the questions that arise from this potentially complex 

resource management process are: 

• How long should the intelligent systems wait in terms of time (seconds) before 

taking direct intervention? (Song et al, 2013; Ismail and Riasetiawan, 2016) 

• How often (frequency) should the VM performance statistics be sampled? This 

would include taking a resource snapshot samples at point in time intervals to 

record CPU and memory usage on the VM (Jeong and Lee, 2012). 

• Should VM’s resources only ever grow, rather than grow and shrink? What is the 

most effective method for the virtualised platform, for example a grow only policy, 
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or a grow and shrink policy (Makridis et al, 2017) 

• By what amount should CPU and/or memory be increased, and should there be 

safety thresholds? For example, the ‘intelligent system’ may add an arbitrary figure 

of 25% additional CPU and/or memory resource for a VM which has passed its 

thresholds for a sustained period of time. However, if there were a process on the 

system that had become rogue (Joy et al, 2014), and it continued to consume 

resources, a never-ending pattern of adding additional resource could potentially 

be used to exhaust all resources, and even starve the physical host, if safety 

features are not built in to the intelligent system (Hwang et al, 2010; Chen et al, 

2013). 

• What comparative features and methods are used by each of the systems, and 

what are the most effective? For example, examination of the key areas would 

include: 

o VM resource measurement poll interval. 

o VM resource grow and/or shrink policy. 

o VM resource increase strategy. 

o VM sustained time threshold trigger (for CPU and memory). 

o Overall time taken to resolve a resource issue affecting a VM. 

 

The answers to these questions, are not necessarily easy to identify, as there can be a 

number of events that compound to cause single or multiple effects, such as a number of 

rogue processes consuming CPU resource, or a process with a memory leak so consuming all 

memory (RAM). Killing off these processes, and restarting could potentially resolve the issue; 

however, as a complication, once restarted, they could begin to malfunction again, thus 

creating a repeat problem. Therefore, being able to spot and identify a re-occurring pattern 

is a useful technique for CPU and memory resource management function. As part of the 

discovery process, in terms of being able to test and observe and compare similar methods, 

further experiments are conducted based on the rules created to enhance system utilisation 

and better manage VMs within the virtualised environments.   
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7.2 Experiment Process 

 

The experiment process looks to take advantage of existing hypervisor memory 

balloon drivers, as well as CPU hot-plug drivers (VirtualBox Memory, 2019; VirtualBox CPU 

2019). Table 7.3 identifies the drivers used by each unique study. This is critical, as the 

performance strategy for each approach must use that type of hypervisor technology driver 

to enable dynamic resource controls and implement the most effective performance 

management approach. In addition to the preliminary VM performance algorithm found in 

table 4.8 ’Preliminary Performance Monitoring’, the capability is extended further in table 7.1, 

by moving from an initial preliminary performance algorithm, which explains at a high level 

how the IDE manages generic resource controls, to how, in this instance, it specifically controls 

CPU and memory resource. This extended algorithm builds on the preliminary idea by 

extracting the specific knowledge performance rules found at tables 4.17 and 4.18, and 

introduces controls and processes around CPU and memory resource; for example, by setting 

threshold alert values, the interval sampling rate, overall monitoring period and the resulting 

specific consequent actions to be invoked: 

7.2.1 IDE VM Performance Algorithm 

 
// IDE VM Performance Algorithm  

 
INPUT: VM Knowledge CPU/Memory Performance Rules 
OUTPUT: Return performance metrics, and invoke CPU / Memory resource management if needed 
 
WHILE True 
  SSH-to ${host} & Run Local Perf Script   
  Capture 75% values for Total CPU & Memory respectively (thresholds) 
    FOR each second up to 300  
         Sleep 1 
         Use local perf tools to capture stats 
         Let Total CPU%+=CPU Performance Increment Value 
         Let Total Memory%+=Memory Performance increment Value 
     END FOR 
   Evaluate ∑ (Total CPU%) / 300 
   Evaluate ∑ (Total Memory%) / 300 
 
    IF (Average Total CPU% >= 75% average) THEN 
       Invoke VM CPU HOT PLUG + 25% or+1 CPU Core 
    END IF 
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   IF (Average Total Memory% >= 75% average) THEN 
       Invoke VM Memory Balloon + 25%  
         IF VM Memory Balloon Exhausted THEN 
           Invoke VM Restart/Memory Resize 
         END IF 
    END IF    
DONE 
     
// End of algorithm 

 

Table 7.1 IDE VM Extended Performance Resource Management Algorithm 

7.2.2 VirtualBox Memory Balloon Driver 

 

It should be noted that the VirtualBox balloon driver works by overcommitting 

memory to the VM or set of VMs during its initial configuration. The memory remains in a 

committed state within a managed reserve pool by the hypervisor. Therefore, a strategy is 

needed to develop a memory reserve pool to allow the VM to flex upwards or downloads as 

necessary for example by 25%. The only way to currently manage and resize the VM 

CPU/memory maximums is to power it off and the physically alter the VM parameters as 

needed, and then restart. Therefore, this means that if the ‘over-commit memory’ value is not 

sufficient (or high enough) in size, the only option is to then perform a controlled stop of the 

VM and then resize and power on and restart the VM (Zhang et al, 2016).  

With the build of the VM we allow an overcommit of 25% of the total memory 

allocated for the VM, to provide dynamic memory ballooning potential. The upfront over 

commitment later enables the IDE global resource scheduler to flex the memory up to a 25% 

increase at a given point in time. The exact amount of overcommitment is one of the critical 

questions, as there is a trade-off, in that it is reserved upfront by the hypervisor and may not 

be used outside that framework easily, and it can result in an under-utilisation of the overall 

system memory resources. Therefore, providing some potential for dynamic memory 

allocation/ballooning is useful, without diminishing the overall memory utilisation too 

excessively (Chen et al, 2013). 
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7.2.3 Simulate VM CPU and Memory Stress 

 

To perform the experiment and create the correct simulation for constrained CPU and 

memory resource we use the stress utility to perform this process (Ismail and Riasetiawan, 

2016).  As part of the author’s experiment process described in section 7.4 and 7.5, the 

following stress-ng command is used to simulate systems resource stress on CPU and memory 

respectively.  

Where x is equal to the number of CPU cores the VM has: 

• stress-ng --vm 4 –vm-bytes 85% --timeout 300s -v 

The above command runs a simulated stress event against the memory resource for VM and 

will consume up to 85% of the overall resource available and then cease after 300 seconds. 

• stress-ng --c [x] -l 85 –timeout 300s -v 

The above command runs a simulated stress event against the CPU resource for VM and will 

consume up to 85% of the overall resource available and then cease after 300 seconds. 

The following graph at figure 7.1 shows the simulated stressed VM under load for 300 

seconds (a 5-minute period), while experiencing a high (but expected) sustained CPU and 

memory load, as a result of the above commands. As can be observed, the CPU and memory 

load average are ~80-83% during the monitoring period for each critical resource, as is the 

intention for the experiment process. This is performed in order to observe the IDE knowledge 

rules invoke and trigger a response, as defined in the VM System events and tables 4.17 

(Memory overload) and 4.18 (CPU overload):  
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Figure 7.1 IDE VM Simulated Tests for Load Stress (using stress-ng) 

 

7.2.4 Characteristics Compared Against Other Studies 

 

The following table describes the characteristics (binomial yes-no) and controls that 

could be potentially applied to a dynamic resource manager/scheduler for virtualised systems. 

This is useful, because it shows the overall capability being provided by each of the studies 

experimental approach. Having more characteristics available potentially allows for improved 

resource management for VMs, due to it being feature rich and having less requirement for 

any manual human/administrator type interventions (Rothenberg et al, 2017; Chen and Suen, 

1993; Conrath and Sharma, 1991).  
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Reference 
no 

Available Features IDE 
(VirtualBox 
Driver) 

Study1 
(Xen 
Balloon, 
Zhang et al, 
2017) 

 

Study2 
(iBalloon, 
Zhang et 
al, 2016)  

 

1 Dynamic CPU increase. Yes No No 

2 Dynamic memory increase. Yes Yes Yes 

3 Dynamic I/O increase (Network, 
Storage). 

No No No 

4 Automatic resource issue 
detection. 

Yes Yes Yes 

5 Dynamic CPU reduction. Yes No No 

6 Dynamic memory reduction. Yes Yes Yes 

7 Dynamic I/O reduction. No No No 

8 x64-bit architectures support 
(Balloon Driver). 

Yes Yes Yes 

9 x32-bit architectures support 
(Balloon Driver). 

No Yes No 

10 Manual administrator 
intervention required to increase 
(Balloon) Memory. 

No No Yes 

11 Manual administrator 
intervention required to increase 
(Hot-plug) CPUs. 

No No No 

12 Manual administrator 
configuration and setup of 
resource management utility. 

No Yes Yes 

13 Is the solution a global resource 
scheduler? 

Yes Yes Yes 

14 Is the global scheduler part of an 
Integrated System? 

Yes No No 

Table 7.2 Binomial Comparative Resource Performance Features/Characteristics 

 

It is necessary at this point, to provide some additional detail regarding the 

characteristics and properties of the features listed in table 7.2. Reference points, 1, 2, 3, 5, 6 
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and 7 are parameters that can be potentially altered, that have a direct effect the resource 

capability for a VM. In this case, the ability to add or reduce CPU, memory or I/O resource for 

a VM. I/O resource could include adding or removing network capability such as virtual 

network interfaces (vNICs), storage devices or fibre channel host-bus adapters. All such 

functions involve direct communication and manipulation of the hypervisor layer of the 

system, in this case either VirtualBox, Xen or KVM. Reference points 4 and 13 are quite closely 

linked, although subtly different. Point 4 includes automatic detection of resource issues could 

be either a local or global function; in other words, it could run locally on a single physical 

host, or be globally managed across an entire suite of systems. This leads us to reference point 

13, global scheduling, which is the ability for a system to monitor and control resources across 

the entire collection of machines it administers. For example, you may have a local scheduler, 

running on a single machine, where the context is management of just that local system, 

irrespective of the wider view of the entire cluster of managed systems. A global resource 

scheduler on the other hand, has an entire view of the cluster and uses algorithms to control 

resources across the entire pool it manages.  

This is advantageous because it potentially allows for the more flexible use of 

resources, whereby a system which is not as busy for a time can lend its resources back into a 

collective pool, to be consumed and used by a system demanding more resource. This ability 

to variate resource controls across a group of systems is therefore is an attractive feature. 

Reference points 8 and 9 are interesting, as they revolve around support for 32-bit and 64-bit 

architectures respectively. 32-bit support is available for the legacy architectures, however, 

the practical use of this is somewhat limited by the fact that 32-bit systems have a maximum 

of 4096MB (4GiB) of addressable memory (Adl-Tabatabai et al, 2004). This hard limit is 

compared to 64-bit systems, which can manage up to 16 exabytes of memory (Mohammad 

and Ramananjaneyulu, 2012). The final point 14, critically records if the system has been 

integrated as part of an overall controlled system. This is very important as it means the 

resource (global) scheduler feature can contribute to a list of compounded benefits for a 

systems overall management capability; in other words, build a critical mass of useful 

characteristics that can be argued as substantiating the features of an ‘intelligent system’ 

(Guerlain et al, 2000). The following balloon drivers were used by each comparative study: 
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Study/Engine Hypervisor Driver 

 

IDE VirtualBox Balloon Driver / CPU Hotplug 
Driver 

Study 1 – Xen Balloon (Zhang et al, 2017) Xen Balloon Driver 

Study 2 – iBalloon Service (Zhang et al, 
2016) 

KVM (Kernel-based VM) Balloon Driver 

Table 7.3 Experiment Balloon/Hotplug Drivers  

 

7.2.5 IDE Global Resource Management 

 

The diagram below in figure 7.2 explains how the IDE addresses global resource 

management in the following ways: 

 

• Using an SSH probe monitor to remotely access and measure performance 

against all platform physical hosts and guest VMs to enable the retrieval and 

analysis of all performance data and metrics. 

• Where appropriate using local VM CPU hotplug and memory ballooning 

techniques to increase or reduce resources. 

• Where appropriate re-balancing and moving guest VMs to alternative physical 

hosts. 

7.2.6 Comparative Methods Analysis 

 

The following table highlights the three methods undertaken by each study with 

respect to the global performance resource management of virtualised computer systems; it 

includes the author’s IDE solution, and comparative work completed in study 1’s XenBalloon, 

and study 2’s iBalloon investigation (Zhang et al, 2017;Zhang et al, 2016). A critical analysis 
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for each platform is provided, and a review of the strengths and weaknesses for each method 

is highlighted: 

Platform Name / General Features Strengths Weaknesses 

 

Intelligent Decision Engine (IDE) /  

 

The IDE uses a global management 

system utilising an SSH control 

algorithm for remote hosts. 

Additionally, it makes use of its 

expert system knowledge rules to 

apply them consistently across the 

entire platform. It is able to 

dynamically control the reduction 

and increase of memory and CPU 

for VMs, which includes reduction 

down to a minimum of 1 CPU core 

per VM.    

 

 

I. Global HA 

management 

technique for 

remote hosts. 

II. Expert 

Knowledge rules 

for the 

application of 

consistent 

platform 

behaviour, and 

for adaptive 

rules. 

III. Dynamic 

Reduction of 

Memory. 

IV. Dynamic increase 

of Memory. 

V. Dynamic 

Reduction of CPU 

cores to a 

minimum of 1. 

VI. Dynamic increase 

of CPU cores. 

I. Only supports 

the  VirtualBox 

Balloon driver, 

and hot-plug 

features. 

II. The IDE is highly 

integrated, 

meaning it can 

only be deployed 

as a whole entity, 

or not at all. 
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Platform Name / General Features Strengths Weaknesses 

 

Study 1 (Xen Balloon, Zhang et al, 
2017) / 

 

Study 1 uses an automatic memory 

control process for guest VMs on 

physical hosts. It uses a global 

resource scheduling mechanism, 

with a resulting toolkit which is 

opensource. The system runs a VM 

called domain 0, which has 

privileges to perform hypervisor 

operations across the platform. It 

uses linear equations to determine 

target VM memory, and uses a 

memory overcommitment 

ballooning technique. It can 

increase or lower memory 

allocation and is able to balance 

memory across the managed 

platform. 

 

 

I. Global 

management 

technique for 

remote hosts 

II. Opensource 

software; 

potentially easy 

to install as an 

add-on, as it has 

been built as a 

toolkit. 

III. Dynamic 

Reduction of 

Memory. 

IV. Dynamic increase 

of Memory. 

 

 

 

 

 

 

 

 

 

I. Only supports 

the  XenBalloon 

driver. 

II. Does not support 

dynamic 

reduction of CPU 

cores.  

III. Does not support 

dynamic increase 

of CPU cores. 

IV. Has no 

documented HA 

features. 
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Platform Name / General Features Strengths Weaknesses 

 

Study 2 (iBalloon, Zhang et al, 
2016) / 

 

Study 2 has adopted the following 

process for its memory 

management of VMs. It runs two 

principle user processes, or 

programs to simultaneously 

manage the platform. The first, is a 

VM monitor daemon that 

continually analyses the memory 

resources. In conjunction, a 

balancer process daemon is able to 

change the memory resource 

parameters for VMs, by interfacing 

with the remote hosts KVM balloon 

driver to dynamically change 

values. 

 

 

I. Global 

management 

technique for 

remote hosts 

II. Dynamic 

Reduction of 

Memory. 

III. Dynamic increase 

of Memory. 

 

 

I. Only supports 

the  KVM Balloon 

driver. 

II. Does not support 

dynamic 

reduction of CPU 

cores.  

III. Does not support 

dynamic increase 

of CPU cores. 

IV. Has no 

documented HA 

features, and 

two independent 

daemons which 

must both be 

available. 

 

 

Table 7.4 Comparative Performance Resource Management Studies  
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Figure 7.2 IDE Global Resource Management 

7.3 Optimisation of System Performance and Availability 

7.3.1 x86-64-bit Architectures and Memory Ballooning 

 

Most architectures do not support the memory ballooning function for 32-bit OS 

systems which have a maximum of 4096MB addressable memory, compared to more modern 

64-bit OS systems which can address ~16 exabytes. 

7.3.2 x86-64-bit Architectures with CPU Hotplug Features 

 

Most 64-bit architectures support CPU hot-plug features. In the case of VMs, this 

allows the hypervisor to provision extra CPUs up to the maximum allowed or reduce them to 

a minimum of one (usually listed as CPU 0). 
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7.4 Experiment 4: Overload of VM Memory Usage, Detection Time, and 
Resolution Time 

7.4.1 IDE VM Memory Ballooning Process 

 

In figure 7.3 below, we observe the results of the IDE VM memory ballooning process 

while under a simulated memory stress event, as described in section 7.2.3 to enable the 

demonstration of the ballooning process. As VMs within the IDE platform have an over-

commitment of memory by 25%, this therefore allows the monitoring period of 300 seconds 

(5 minutes) to evaluate the VM memory capacity and utilisation state. Once the knowledge 

rule is validated, the forward-chain reasoning process is initiated, and steps taken to provide 

the VM with addition memory resource using the balloon driver technique.  

 

 
Figure 7.3 IDE Performance Monitoring and Memory Ballooning Results 

 

7.4.2 Study 1 VM Memory Balloon Process 

 

Study 1 utilised the following mechanisms to deliver a memory management system: 

• Automatic memory control for physical/guest VMs. 
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• A global resource scheduling mechanism. 

• Runs a VM called domain 0 which has privileges to perform hypervisor operations. 

• Uses linear equations to determine target VM memory. 

• Uses memory overcommitment. 

• Can increase or lower memory allocation. 

• Can balance memory across the managed platform. 

 

The diagram in figure 7.4 shows how the Xen Balloon driver manages memory 

between VMs (Guest OS’s). This method for memory ballooning is utilised by the author of 

study 1. 

 

Figure 7.4 Study 1 Xen Balloon Process (Zhang et al, 2017) 

 

The diagram in figure 7.5 below shows study 1’s global resource management process 

using Domain-0 as the control system, to manage memory resources through the ballooning 

process. 
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Figure 7.5 Study 1 VM Memory Balloon Process (Zhang et al, 2017) 

 

 

7.4.3 Study 2 VM Memory Balloon Process 

 

Study 2 (iBalloon) adopted the following mechanism for its memory management approach: 

 

• Runs two principle daemons/user processes simultaneously to manage the platform. 

• A VM monitor daemon to continually analyse the memory resource. 

• A balancer process daemon which changes the memory resource parameters by 

interfacing into the KVM balloon driver. 

 

 The diagram below at figure 7.6 shows the iBalloon memory management process. 

Notice the different levels of separation (granularity) between the hypervisor (guest levels) 

and the physical host (Host levels).  
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Figure 7.6 Study 2 iBalloon system overview (Zhang et al, 2016) 

 

7.5 Experiment 5: Overload of VM CPU usage, Detection Time, and Resolution 
Time 

 

7.5.1 IDE CPU Hotplug Process 

 

The IDE uses (as it does with memory management) a standard five-minute poll 

interval with a sample per second taken. As with the memory stress simulation listed in section 

7.2.3, in this case the CPU is driven above the threshold alert over the monitoring period. This 

is turn allows us to demonstrate that the IDE can dynamically increase (hot-plug) spare CPU 

cores and makes the additional compute power available to the VM in around 5-7 seconds. 

Figure 7.7 shows the detail for detection and the actual CPU hot-plug process time taken: 
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Figure 7.7 IDE Performance Monitoring and CPU Hot-plug Results 

7.5.2 Study 1 VM CPU Hotplug Process 

 

Study 1 (Xen Balloon) does not feature a CPU hot-plug process, nor a global CPU 

resource scheduling system. 

7.5.3 Study 2 VM CPU Hotplug Process 

 

Study 2 (iBalloon) does not feature a CPU hot-plug process, nor a global CPU resource 

scheduling system. 

7.6 Results  

 

Based on the characteristics of the features enabled by all the studies listed in section 

7.2.4 and table 7.2, it is possible to perform an evaluation on the results by examining and 

comparing the overall capabilities for each experiment, which includes the IDE, study 1 (Xen 

Balloon) and Study 2 (iBalloon). As discussed earlier, the resource management of VMs is a 

complex matter, and a certain process for handling events is not necessarily something that 

can be described as “the best”, simply by being the quickest to perform a dynamic memory 

increase (ballooning) for a VM, which for example, has had a short memory spike up to 90% 
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for 1 minute, or by adding (hot-plugging) a CPU to a VM which has had its CPU peak at 85% 

for 20 seconds.  

There were several questions raised at the beginning of this chapter which alluded to 

how, why and what method and approach is the best. The answers are not immediately clear; 

however, we can evaluate the characteristics, features and scheduling mechanism to 

determine the overall effectiveness of intelligently managing virtualised resources, in a similar 

fashion adopted by Rothenberg and his fellow researchers (Rothenberg et al, 2017; Conrath 

and Sharma, 1991). Based similarly on these approaches (of expert system evaluation), the 

table below summarises each of those initial questions and provides a mixture of qualitative 

and quantitative feedback on the three different approaches to the process for the IDE, study 

1 and study 2. Scoring is performed using the following method; for feature availability: 

• If there is feature is available a score of 3 is allocated. 

• If the feature is emerging and partially developed, then it receives a score of 2. 

• If the feature has been designed, but not evaluated or experimented against at 

all, then it receives a score of 1. 

• If there is no feature, then a score of 0 is allocated. 

For feature capability: 

• If the feature worked effectively during experimentation, then a score of 3 is 

allocated. 

• If the feature worked with mixed results during experimentation, then a score 

of 2 is allocated. 

• If the feature worked, but fails to deliver any perceived benefits, then a score 

of 1 is allocated. 

• If there is no feature, then a score of 0 is allocated. 
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7.6.1 IDE Characteristics (VirtualBox Balloon) 

 

Study 
Reference  

Question System 
Characteristic 

Feature 
Available 

(Yes/No/ 
Unknown)  

 

Feature 
Availability 
(Av) and 
Capability (Cp)  

Result  

Score 
[Av/Cp] 

1 (IDE) How long a 

period 

should a VM 

be 

monitored 

for, before 

taking 

intervention? 

VM poll interval, 

and performance 

result processing. 

Yes 5-minute poll 

interval, data 

collected each 

second. 

Results 

evaluated by 

IDE after each 

5-minute 

sample period 

against 

knowledge 

rules as per 

section 7.2.1.  

3 / 3 

1 (IDE) How often 

should be 

performance 

stats be 

sampled 

during the 

poll interval? 

IDE Performance 

Sampling frequency 

for each VM. 

Yes CPU and 

memory stats 

collected 

every second, 

as per section 

7.2.1 

3 / 3 

1 (IDE) Can CPU 

resource be 

increased 

Ability to hotplug 

CPUs.  

Yes As per section 

7.5.1.  

3 / 3 
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Study 
Reference  

Question System 
Characteristic 

Feature 
Available 

(Yes/No/ 
Unknown)  

 

Feature 
Availability 
(Av) and 
Capability (Cp)  

Result  

Score 
[Av/Cp] 

and 

decreased? 

1 (IDE) Can memory 

resource be 

increased 

and 

decreased? 

Ability to balloon 

memory. 

Yes As per section 

7.4.1. 

3 / 3 

1 (IDE) Can I/O 

resource be 

increased 

and 

decreased? 

Ability to increase 

or reduce I/O for 

network or disk. 

No Not available. 0 / 0 

1 (IDE) How well do 

the 

ballooning 

and CPU 

hotplug 

features 

safeguard 

and protect 

the 

Hosts/Guest 

VMs? 

Proactive 

monitoring and 

reaction to 

resource shortage 

or observed waste 

events. 

Yes As per section 

7.2.1.  

2 / 2 

1 (IDE) How The ability for the Yes As per section 2 / 2 
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Study 
Reference  

Question System 
Characteristic 

Feature 
Available 

(Yes/No/ 
Unknown)  

 

Feature 
Availability 
(Av) and 
Capability (Cp)  

Result  

Score 
[Av/Cp] 

advanced are 

the overall 

platform 

management 

features and 

can the 

system 

globally 

resource 

manage? 

management 

control system to 

communicate/issue 

commands to other 

hosts under its 

control. 

7.2.1, 7.4.1 

and 7.5.1. 

Further testing 

and 

experiments 

can be 

conducted as 

per section 

8.3.11. 

Table 7.5 IDE Resource Management Evaluation 
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7.6.2 Study 1 Characteristics (XenBalloon) 

 

Study 
reference  

Question System 
Characteristic 

Feature 
Available 

(Yes/No/ 
Unknown)  

 

Feature 
Availability (Av) 
and Capability 
(Cp)  

Result 
Score 
[Av/Cp] 

Study 1 

VM 

Memory 

Balloon 

Process 

(Zhang et 

al, 2017) 

How long a 

period should 

a VM be 

monitored 

for, before 

taking 

intervention? 

VM poll interval, 

and 

performance 

result 

processing. 

Unknown Implied feature, 

as per sections 

7.2.4, 7.4.2 and 

7.5.2. 

1 / 1 

Study 1 How often 

should be 

performance 

stats be 

sampled 

during the 

poll interval? 

Performance 

sampling 

frequency for 

each VM. 

Unknown Implied feature, 

as per sections 

7.2.4, 7.4.2 and 

7.5.2. 

1 / 1 

Study 1 Can CPU 

resource be 

increased 

and 

decreased? 

Ability to 

hotplug CPUs.  

No Not available. 0 / 0 

Study 1 Can memory 

resource be 

increased 

and 

Ability to 

balloon 

memory. 

Yes Feature 

available, as per 

sections 7.2.4 

3 / 3 
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Study 
reference  

Question System 
Characteristic 

Feature 
Available 

(Yes/No/ 
Unknown)  

 

Feature 
Availability (Av) 
and Capability 
(Cp)  

Result 
Score 
[Av/Cp] 

decreased? and 7.4.2. 

Study 1 Can I/O 

resource be 

increased 

and 

decreased? 

Ability to 

increase or 

reduce I/O for 

network or disk. 

No Not available. 0 / 0 

Study 1 How well do 

the 

ballooning 

and CPU 

hotplug 

features 

safeguard 

and protect 

the 

Hosts/Guest 

VMs? 

Proactive 

monitoring and 

reaction to 

resource 

shortage or 

observed waste 

events. 

Yes Feature 

available, as per 

sections 7.2.4, 

7.4.2 and 7.5.2. 

Note, the ability 

is implied as 

tested against 

10 VMs, 

however, not 

available for 

CPU hotplug. 

2 / 2 

Study 1 How 

advanced are 

the overall 

platform 

management 

features and 

can the 

system 

The ability for 

the 

management 

control system 

to 

communicate/ 

issue commands 

Yes Feature 

available, as per 

sections 7.2.4, 

7.4.2 and 7.5.2. 

Note, the 

feature is 

implied as 

tested against 

2 / 2 
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Study 
reference  

Question System 
Characteristic 

Feature 
Available 

(Yes/No/ 
Unknown)  

 

Feature 
Availability (Av) 
and Capability 
(Cp)  

Result 
Score 
[Av/Cp] 

globally 

resource 

manage? 

to other hosts 

under its 

control. 

10 VMs. 

Table 7.6 Study 1 Resource Management Evaluation 

 

7.6.3 Study 2 Characteristics (iBalloon) 

 

 

Study 
Reference  

Question System 
Characteristic 

Feature 
Available 

(Yes/No/ 
Unknown)  

 

Feature 
Availability 
(Av) and 
Capability 
(Cp)  

Result 
Score 
[Av/Cp] 

Study 2 

iBalloon 

system 

overview 

(Zhang et 

al, 2016) 

How long a 

period should 

a VM be 

monitored 

for, before 

taking 

intervention? 

VM poll interval, 

and performance 

result processing. 

Yes Feature 

present, as 

per sections 

7.2.4, 7.4.3 

and 7.5.3. 

2 / 2 

Study 2 How often 

should be 

performance 

stats be 

sampled 

Performance 

sampling frequency 

for each VM. 

Yes Varying 

interval 

frequency 

with 

min/max, as 

2 / 2 
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Study 
Reference  

Question System 
Characteristic 

Feature 
Available 

(Yes/No/ 
Unknown)  

 

Feature 
Availability 
(Av) and 
Capability 
(Cp)  

Result 
Score 
[Av/Cp] 

during the 

poll interval? 

per sections 

7.2.4, 7.4.3 

and 7.5.3. 

Study 2 Can CPU 

resource be 

increased 

and 

decreased? 

Ability to hotplug 

CPUs.  

No Not available. 0 / 0 

Study 2 Can memory 

resource be 

increased 

and 

decreased? 

Ability to balloon 

memory. 

Yes Feature 

available, as 

per sections 

7.2.4 and 

7.4.3. 

3 / 3 

Study 2 Can I/O 

resource be 

increased 

and 

decreased? 

Ability to increase 

or reduce I/O for 

network or disk. 

No Not available. 0 / 0 

Study 2 How well do 

the 

ballooning 

and CPU 

hotplug 

features 

Proactive 

monitoring and 

reaction to 

resource shortage 

or observed waste 

events. 

Yes Feature 

available, as 

per sections 

7.2.4, 7.4.3 

and 7.5.3. 

Note, the 

2 / 2 



Intelligent Management of Virtualised Computer Based Workloads and Systems 

 

 

 

© James Oakes, 2020                                  207 | P a g e  

 

Study 
Reference  

Question System 
Characteristic 

Feature 
Available 

(Yes/No/ 
Unknown)  

 

Feature 
Availability 
(Av) and 
Capability 
(Cp)  

Result 
Score 
[Av/Cp] 

safeguard 

and protect 

the 

Hosts/Guest 

VMs? 

ability is 

implied as 

tested against 

4 VMs. 

However, not 

available for 

CPU hotplug. 

Study 2 How 

advanced are 

the overall 

platform 

management 

features and 

can the 

system 

globally 

resource 

manage? 

The ability for the 

management 

control system to 

communicate/issue 

commands to other 

hosts under its 

control. 

 Feature 

available, as 

per sections 

7.2.4, 7.4.3 

and 7.5.3. 

Note, the 

feature is 

implied as 

tested against 

4 VMs. 

2 / 2 

Table 7.7 Study 2 Resource Management Evaluation 

7.6.4 Platform Characteristic Scores (IDE, Study 1, Study 2) 

 

The following table provides indicative score values (%) for the identified features and 

characteristics for the IDE, Study 1 (XenBalloon) and Study 2 (iBalloon). The score values are 

able to reflect the feature availability and capability that the 3 systems have to offer, in terms 

of ‘intelligent management’ of virtualised platforms, with the higher value indicating such. 
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 IDE  Study 1 (XenBalloon)  Study 2 (iBalloon)  

Total Characteristic 

Score (%)  

30 out of a possible 

42 (71%). 

18 out of a possible 

42 (43%). 

22 out of a possible 

42 (52%). 

Table 7.8 Overall System Characteristic Scores % 

 

As table 7.8 only provides indicative results, as at this stage, it would be necessary to 

rebuild the platforms in study 1 and study 2, to perform a detailed re-test and comparison. 

Section 8.3.9 deals with the opportunities to develop this work further. 

7.6.5 Binomial Scores (IDE, Study 1, Study 2) 

 

The following chart figure 7.8 displays the binomial results from table 7.2, which again 

provides an indication of the capability and feature richness, within each investigated 

platform.  

 

Figure 7.8 Binomial System Characteristic Results 
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The greater the number of features that work together in combination, the more 

potential that the system can be regarded as ‘being intelligent’ (see section 2.6.2 on reviewed 

approaches, and section 4.2 for details on the traits for intelligent systems). Note that the 

conclusions for this chapter can be found in section 8.2.4 for memory overload and 8.2.5 for 

CPU overload experiments. 

 

7.7 Summary 
 

The final two experiments covered in this chapter discuss global resource 

management, in particular around CPU hotplug and memory ballooning features. The IDE 

utilises its extended performance algorithm to manage CPU and memory resource across its 

controlled physical hosts and their virtualised system components. This allows for ballooning 

using the VirtualBox driver to facilitate the over allocation of memory resource to enable 

system memory to be dynamically increased or reduced as desired, to match the VMs 

requirement for performance. The system characteristics and features are compared, and 

additionally include global management capabilities for each comparative platform as 

highlighted in table 7.2. The IDE is again contrast against two alternative similar papers which 

present their results on their resource management processes. The first study utilises a pure 

global memory management system using the XenBalloon driver, and the second study uses 

a custom iBalloon system, which is a control system built on top of the underlying KVM 

memory balloon driver. An analysis and simple scoring mechanism are used to measure each 

of the capabilities and features of the system. By using this scoring approach, it is possible to 

calculate overall results for each system, and determine how effective the overall 

performance management is for the IDE, study 1 and study 2 respectively.  In addition, a 

simple binomial procedure is used to represent all platform characteristics that are available, 

thus allowing additional comparisons to be made on the richness and depth of each global 

resource management system. The last chapter discusses the contribution of the thesis, 

converges the results for all five experiments undertaken, and provides a suitable conclusion 
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for each area of investigation.  Finally, each potential area for further work is considered with 

a view to providing an introduction into a new research area, topic or sub-topic.        
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 Chapter 8: Contribution, Conclusions and  

Further Work 

8.1 Thesis Contribution 

 

The following sections summarise the main contribution of this work to the field of 

virtualised computer management: 

 

8.1.1 Development of an Expert System Framework for Virtualised Computer 
Systems 

 

The work proposed and developed the use of an expert system (IDE) framework to 

enhance the management of virtualised computer-based systems, and enable fast real-time 

decision making within a complex virtualised computer environment, with the purpose of 

having control of VMs, workloads and other virtualised components. The decision engine 

controlled several core functions, described by chapters 5 (VM provisioning), 6 (VM 

migration/failover) and 7 (VM resource management), which were investigated through 

experimentation.  The IDE itself remains open to be developed further, as its functionality can 

be extended through the development and addition of knowledge rules and their associated 

automation code routines. The following areas were investigated as part of the IDE 

framework:  

• Remote system discovery mechanism, with system OS fingerprint analysis and 

advanced OS system type detection; see algorithm/procedure 1, table 4.1. 

• Improved system communication strategy using SSH to build a secure 

framework for remote host management and control; see 

algorithm/procedure 2, table 4.2. 

• Improved data extraction and analysis approach to enable two methods of 1) 

quick response and 2) slower background analysis of environment data to allow 

for reference knowledge information to be added and cleansed; see 
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algorithm/procedure 3, table 4.3. 

• Information and knowledge organisation to process and create reference data 

structures, which affects how the forward chaining mechanisms work when 

the IDE is decision making; see algorithm/procedure 4, table 4.4. 

• Improved pattern analysis and learning from data; see algorithm/procedure 5, 

table 4.5. 

• Construction of a knowledge based forward chained events algorithm; see 

algorithm/procedure 6, table 4.6. 

• Development of an advanced VM deployment/provisioning mechanism; see 

algorithm/procedure 7, table 4.7. 

• Creation of a preliminary and extended VM performance and monitoring 

management mechanism; see algorithm/procedure 8, table 4.8 for the 

preliminary, and table 7.1 for the extended. 

• Real-time platform event trigger with a decision processing-based delivery 

event response; see algorithm/procedure 9, table 4.9. 

• Improved self-monitoring and high availability features; see 

algorithm/procedure 10, table 4.10. 

 

Consult chapter 4 ‘The intelligent Decision Engine’ for further information. 

 

8.1.2 Simplified VM Provisioning 

 

Based on the findings in chapter 5, a simplified VM provisioning methodology was 

provided, along with improved delivery times through automation and intelligent decision-

making utilising the IDE processes. This included the ability to deploy VMs using a web 

browser interface utilising a ‘1 click’ VM deployment mechanism, and the simplification of VM 

provisioning for end-users through higher levels of automation.  This resulted in an overall 
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end-user VM provision time reduction (i.e. an aggregated user experience build-time 

reduction for VMs). Consult chapter 5 and section 5.2.2 ‘Experiment 1: VM Provisioning 

Timing Comparison’ for more information on the outcomes.  

 

8.1.3 CLR formula to Determine Task Complexity 

 

An algorithm was devised for the analysis of a Cognitive Load Rating (CLR) for human 

interactions, using a computer system and its interface, such as a VM provisioning mechanism. 

This provided a method for conversion of qualitative data into quantitative data (i.e. words to 

numbers); please see section 3.4.1 for more information. This method and approach could be 

used against any type of system, where user survey feedback is acquired and processed. 

Consult section 5.2.3 ‘Experiment 2: Cognitive Evaluation Performance‘ for addition 

information. 

8.1.4 Efficient VM Migration, Evacuation and Restart Routines 

 

It was demonstrated how VMs can be migrated and evacuated more effectively using 

the IDE in a ‘full-restart’ scenario, compared to other studies using alternative technologies 

such as vMotion and XenMotion. This included improving VM failover patterns utilising the 

IDE to perform VM relocation as necessary, and faster average VM fault detection and failover 

processes. Please refer to chapter 6 for further in-depth analysis and discussion, along with 

the details described in section 6.4 ‘Experiment 3: Workload Migration and Evacuation of 

VMs’.  

 

8.1.5 Global Scheduling Mechanism for CPU Hot-plug and Memory Resource 
Management  

 

Evidence was provided to show how VMs can be protected even more effectively from 

an overload of CPU and/or memory consumption, when compared to other research papers 
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on vMotion and XenMotion. This included the faster detection of VM CPU and memory 

performance issues, dynamic VM CPU and memory resource resizing, and faster VM recovery 

should full failure events occur. This is described further in section 7.4 ‘Experiment 4: Overload 

of VM Memory Usage, Detection Time, and Resolution Time’ and 7.5 ‘Experiment 5: Overload 

of VM CPU usage, Detection Time, and Resolution Time’.  

8.1.6 Summary  

 

The knowledge areas this thesis contributes towards are summarised in the table below: 

 

• Creation of the Intelligent Decision Engine (IDE). Then the subsequent utilisation of 
this framework to contribute to the following topics: 

i. The simplification of the VM deployment mechanism. 

ii. The reduction of the CLR for the VM provisioning process. 

iii. Improvement of the IDE VM migration/failover average time. 

iv. Enhancement of the IDE global performance and availability 
management capability. 

Table 8.1 Thesis Contributions 

 

8.2 Overall Results and Conclusions 

 

The next sections provide details on the conclusions reached, based on the data and 

results recorded in each of the experiment sections. 

8.2.1 Simplified VM Deployment Experiment Conclusions 

 

The results for the conclusions reached are recorded in section 5.3. They are focused 

on the provisioning aspect of VMs, in terms of being able to prove that the IDE could 

efficiently deliver new VMs in the least amount of time, using the 10-step technique described 

by section 5.2.1.6 ‘VM Provisioning Process’. This was completed anonymously by 3 groups 

of users classified as, expert, experienced, and novice. Results for each group of 31 users were 
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recorded in turn, while using each different platform (IDE, AWS and Oracle) and graphed for 

each of the 10-steps. Each end-user was therefore able to provision a VM in a certain amount 

of time, summarised as follows: 

• For the IDE platform, ‘Expert’, ‘Experienced’ and ‘Novice’ users averaged 1231, 

1372 and 1578 seconds respectively to provision a VM. 

• For the AWS platform, ‘Expert’ and ‘Experienced’ users averaged 1382 and 

1464 seconds respectively, to provision a VM. Unfortunately, for ‘Novice’ users, 

all but one of the 31 users were unable to complete the provisioning process. 

• For the Oracle platform, ‘Expert’ and ‘Experienced’ users averaged 2362 and 

3237 seconds respectively, to provision a VM. Unfortunately, for ‘Novice’ users, 

all but one of the 31 users were unable to complete the provisioning process. 

 

The reason for the IDE outperforming the other two platforms during provisioning was 

primarily as a result of the extra level of automation for the 10-steps. This is especially true 

for step 8, which includes the mechanism to copy over the SSH keys to ensure the user can 

access the VM. As this was automated for the IDE provisioning process, the users did not need 

to manually perform this step. It is true, that once a step has been automated, it becomes a 

simple step irrespective of its actual complexity, because the code created takes this mental 

effort away from the end-user. In other words, the complexity is hidden by the automatically 

executed code, which performs the necessary tasks on behalf of the user. Again, the results 

backup the fact that for each platform there were the following step mechanisms listed: 

 

• For the IDE provisioning platform, there were 7 automatic, 2 semi-automatic 

and 1 manual step recorded. 

• For the AWS provisioning platform, there were 3 automatic steps, 5 semi-

automatic and 2 manual steps recorded. 

• For the Oracle provisioning platform, there were 1 automatic, 7 semi-

automatic and 2 manual steps recorded. 
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Therefore, it can be concluded from the results, that as the number of steps that are 

automated increases, the more fast, efficient, consistent, and reliable the VM provisioning 

process is. For example, even when using the AWS platform and AMIs for the provisioning 

process, time is lost, by having steps which require human administrative intervention. End 

to end automation eradicates these negative aspects, and results in an overall reduction in 

VM delivery time. 

 

8.2.2 Cognitive Evaluation Performance Experiment Conclusions 

 

In addition to the VM provisioning experiment, it was possible to extract some 

qualitative feedback using a process to convert ‘words to numbers’ as previously discussed in 

sections 3.4.1 and 5.2.3.1. This data provided an alternative set of results presented in section 

5.3.3 and were intended to provide a complimentary viewpoint. For each of the 3 user groups, 

feedback was provided based on the ‘cognitive load’ experience for each end-user, described 

in section 5.2.3. For the ‘expert’, ‘experienced’ and ‘novice’ groups, we have the overall 

following conclusions, based on section 5.2.3.5 the ‘Cognitive Load Rating’ chart: 

• ‘Expert’, ‘Experienced’ and ‘Novice’ users using the IDE platform had an 

average CLR result of 6.77, 5.38, and 7.89, which according to the CLR chart 

guide indicates they found the cognitive load to have a mental power 

requirement of ‘Low’, ‘Very-Low’ and ‘Low’ respectively. 

• ‘Expert’, ‘Experienced’ and ‘Novice’ users using the AWS platform had an 

average CLR result of 13.3, 13.72 and 17.69, which according to the CLR chart 

guide indicates they found the cognitive load to have a mental power 

requirement of ‘Low-Medium’, ‘Low-Medium’ and ‘Medium’ respectively. 

• ‘Expert’, ‘Experienced’ and ‘Novice’ users using the Oracle platform had an 

average CLR result of 20.42, 22.46 and 25.45, which according to the CLR chart 

guide indicates they found the cognitive load to have a mental power 
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requirement of ‘Medium’, ‘Medium-High’ and ‘Medium-High’ respectively. 

 

 

8.2.3 Workload Migration/Failover Experiment Conclusions 

 

As part of the IDE’s control mechanism over potentially large numbers is was crucial to 

be able to test how effective it is as managing the migration, failover or evacuation of VMs 

under certain conditions, such as a physical host failure. Sections 6.4, 6.4.1, 6.4.2 and 6.4.3 

examine the experiment process, and section 6.5 confirms the results: 

• The IDE was able to achieve an average migration/failover time for a VM in a 

time of 22.48 seconds, with a best time of 21.56 seconds. 

• Study 1 (vMotion) was able to achieve an average migration/failover time for a 

VM in a time of 44.83 seconds, with a best time of 30 seconds. 

• Study 2 (vMotion) was able to achieve an average migration/failover time for a 

VM in a time of 63.33 seconds, with a best time of 20 seconds. 

• Study 2 (XenMotion) was able to achieve an average migration/failover time 

for a VM in a time of 266.67 seconds, with a best time of 80 seconds. 

 

From the findings, we can observe that the IDE had the best average migration/failover 

time, but not the best individual time, which was for a study 2 (vMotion) failover experiment, 

where the network bandwidth peaked at 1Gb/s. Based on this, further work can be completed 

to try to improve the IDE, using the ‘teleport’ feature as described in section 8.3.3. 

 

8.2.4 Performance and Availability (CPU & Memory Overload) Experiment 
Conclusions 

 

The Performance and availability experiments described in section 7.2 provide a view 
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into the resource management capability for the IDE platform, study 1 (XenBalloon) and study 

2 (iBalloon). The results are presented in section 7.6, and are focused around the capability, 

features and richness of the functionality offered by each respective system, rather than the 

speed to complete a particular task, such as increasing (ballooning) the memory in a VM.  The 

indicative results and findings are presented below, based on tables 7.5, 7.6 and 7.7.  Note, 

the higher percentage indicates a better result, and the possible 42 is calculated as 7 primary 

characteristic areas, each with a potential score of 6: 

 

• The IDE had a ‘feature availability and capability’ score of 30 out of a possible 

42 (71%).  

• Study 1 (XenBalloon) had a ‘feature availability and capability’ score of 18 out 

of a possible 42 (43%).  

• Study 2 (iBalloon) has a ‘feature availability and capability’ score of 22 out of a 

possible 42 (52%). 

 

Further to this, a binomial evaluation based in figure 7.8 containing detailed 

features/characteristics, which are summarised as below: 

 

• The IDE had a binomial ‘characteristic’ score of 11 out of a possible 14 (79%). 

• Study 1 (XenBalloon) had a binomial ‘characteristic’ score of 7 out of a possible 

14 (50%). 

• Study 2 (iBalloon) has a binomial ‘characteristic’ score of 5 out of a possible 14 

(36%). 

8.2.5 Significance of Results 

 

The following section takes the results obtained and shows the significance of the IDE 

versus the alternative systems involved in the experimentation process; namely, the AWS and 
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Oracle platforms for experiment 1 and 2, then the alternative study papers compared against 

for experiments 3, 4 and 5. Firstly, the results are shown in the following tables for experiment 

1 – VM provisioning time: 

 

End-User 

group 

IDE (sec) / AWS (sec) 

Provisioning time 

Platform, Percentage (%) Faster Provisioning 

Expert 1231 / 1382 IDE / 12.27% faster provisioning time 

Experienced 1372 / 1464 IDE / 6.71% faster provisioning time 

Novice 1578 / N/A* IDE / unable to present comparative data* 

Table 8.2 IDE versus AWS VM Provisioning Time 

* Novice users in the experiment failed to complete the VM provisioning process. 

 

End-User 

group 

IDE (sec) / Oracle (sec) Platform / Percentage (%) Faster Provisioning 

Expert 1231 / 2362 IDE / 91.88% faster provisioning time 

Experienced 1372 / 3237 IDE / 135.93% faster provisioning time 

Novice 1578 / N/A* IDE / unable to present comparative data* 

Table 8.3 IDE versus Oracle VM Provisioning Time 

* Novice users in the experiment failed to complete the VM provisioning process. 

 

Secondly, the following tables for experiment 2 VM provisioning are shown, which 

highlight the improvement in the CLR for the IDE platform (see section 5.2.3.5 for the CLR 

guide chart): 

 

End-User 

group 

IDE (CLR) / AWS (CLR) Platform / Percentage (%) Improved CLR 

Expert 6.77 / 13.30 IDE / 96.45% improved CLR 

Experienced 5.38 / 13.72 IDE / 155.02% improved CLR 

Novice 7.89 / 17.69 IDE / 124.21% improved CLR 

Table 8.4 IDE versus AWS CLR 
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End-User 

group 

IDE (CLR) / Oracle (CLR) Platform / Percentage (%) Improved CLR 

Expert 6.77 / 20.42 IDE / 201.62% improved CLR 

Experienced 5.38 / 22.46 IDE / 317.47% improved CLR 

Novice 7.89 / 25.45 IDE / 222.56% improved CLR 

Table 8.5 IDE versus Oracle CLR 

 

Thirdly, the following tables for experiment 3 – VM Failover/migration between 

physical host timings are shown: 

IDE Average 

Failover/Migration 

Time (Sec) 

 Paper 1 (vMotion) 

Mean Average 

Failover/Migration Time 

(Sec) 

Platform / Percentage (%) Improved 

for Mean Average Failover/Migration 

Time  

22.48 44.83 IDE / 99.42% improved 

Failover/Migration time 

Table 8.6 IDE v Paper1 (vMotion) Avg. (Mean)Failover/Migration Time 

 

IDE Best 

Failover/Migration 

Time (Sec) 

 Paper 1 (vMotion) Best 

Failover/Migration Time 

(Sec) 

Platform / Percentage (%) Improved 

Best Failover/Migration Time  

21.56 30.00 IDE / 39.15% improved 

Failover/Migration time 

Table 8.7 IDE v Paper1 (vMotion) Best Failover/Migration Time 
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IDE Average 

Failover/Migration 

Time (Sec) 

 Paper 2 (vMotion) 

Mean Average 

Failover/Migration Time 

(Sec) 

Platform / Percentage (%) Improved 

for Mean Average Failover/Migration 

Time  

22.48 63.33 IDE, 181.72% improved 

Failover/Migration time 

 

 

 

IDE Average 

Failover/Migration 

Time (Sec) 

 Paper 2 (XenMotion) 

Mean Average 

Failover/Migration Time 

(Sec) 

Platform / Percentage (%) Improved 

for Mean Average 

Failover/Migration Time  

22.48 266.67 IDE, 1086.25% improved 

Failover/Migration time 

Table 8.8 IDE v Paper2 (vMotion, XenMotion) Avg. (Mean) Failover/Migration Time 

 

IDE Best 

Failover/Migration 

Time (Sec) 

 Paper 2 (vMotion) Best 

Failover/Migration Time 

(Sec) 

Platform / Percentage (%) Improved 

Best Failover/Migration Time  

21.56 20.00 vMotion, 7.8% improved 

Failover/Migration time 

IDE Best 

Failover/Migration 

Time (Sec) 

 Paper 2 (XenMotion) 

Best Failover/Migration 

Time (Sec) 

Platform / Percentage (%) Improved 

Best Failover/Migration Time  

21.56 80.00 IDE, 271.06% improved 

Failover/Migration time 

Table 8.9 IDE v Paper2 (vMotion, XenMotion) Best  Failover/Migration Time 
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Experiments 4 and 5 are related to the global performance management of the 

platforms, in relation to resource controls over consumables such as CPU and memory. The 

results are presented for the characteristics and feature richness (based on tables 7.5, 7.6 and 

7.7), and additionally, for the binomial system analysis (see figure 7.8): 

 

Platform  Percentage (%) Feature Availability and Capability Score  

(Note: A higher % indicates a stronger capability) 

IDE 71% 

Study1 (XenBalloon) 43% 

Study2 (iBalloon) 53% 

Table 8.10 Platform Features, Availability and Capability Scores 

 

Platform  Percentage (%) Binomial Characteristic Assessment Score  

(Note: A higher % indicates a stronger platform characteristic 

richness) 

IDE 79% 

Study1 (XenBalloon) 50% 

Study2 (iBalloon) 36% 

Table 8.11 Platform Binomial Characteristic Assessment Scores 

 

8.3 Future Work 

 

Following the work conducted as part of this research project, there is opportunity for 

a considerable amount of future work to continue, to build on the work completed so far; 

some of the areas identified are as follows: 

8.3.1 Prebuilding and Queuing VMs 

 

To develop and add in a prebuilt VM build for each OS type, which is queued and 
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waiting for deployment. It would be feasible to build many VMs for each OS type and have a 

queuing pipeline system in place; section 5.2.2.6 developed this idea initially, however, it is 

beyond the scope of this thesis to fully develop this to fruition. It is anticipated, pending 

further experimentation and result outcomes, that this would reduce VM provisioning time 

even further. 

8.3.2 Development with Additional Operating Systems 

 

The majority of the development was completed against the Linux CentOS operating 

system; therefore, further work and experiments are required against other operating system 

types, including Windows, AIX and Solaris. 

8.3.3 VirtualBox Teleport Development 

 

Memory VM replication and migration/failover so far has concentrated on VM ‘failed 

state’ and ‘full restart’ scenarios – see section 6.2 and 6.3 for more details. Further work is 

needed to utilise the VirtualBox ‘teleport’ function to develop advanced ‘live migration’ 

techniques further for the IDE (VirtualBox, 2019). 

8.3.4 Quorum Cluster Node Testing 

 

The IDE was developed and tested using 3-node clusters. It is desirable to test a larger 

cluster node configuration > 3 IDE nodes, as per section 4.7. 

8.3.5 Bootstrap Development 

 

It would be beneficial for the IDE to be able to self-replicate its core functions. Each 

IDE cluster should be able to create (generate) another. Further to section 3.2, the idea would 

be to increase the IDE to use larger scale systems, by additional testing of the 

integrated/engineered hardware components; for example, being able to deploy repeatable 

IDE ‘building blocks’, comprising of the same CPU, memory and storage stack. The goal would 

be for the re-creation of the IDE from a standard bare metal hardware configuration (e.g. a 
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boot-strap type function with access to a global code repository source - always on). 

 

8.3.6 Knowledge Rules  

 

There is opportunity to increase the number of knowledge rules for additional expert 

system functionality, e.g. filesystem capacity, or storage devices that are at full capacity (or 

nearing full) are good examples that could be considered. Additionally, backward chain 

reasoning could be considered, whereby the system works to achieve a set of goals; this could 

be very useful for proactive type initiatives, such as reducing the number of known security 

vulnerabilities a system has.  

8.3.7 Self-Learning 

 

Self-development of knowledge rules – internal introspection and a self-learning 

function could be added to create new rules. This would include understanding its learning 

requirements, developing its learning goals and how to achieve them, identifying the 

resources needed to support the learning process, and evaluating the outcomes. A validation 

and scoring system could also work to rank each knowledge rule, to ensure they are 

functioning as purposed. 

8.3.8 Data Sources and Trigger Events 

 

Development and testing of additional data sources for trigger events to those defined 

in sections 4.8.1 and 4.8.4. Additional exploration into the virtual platform, to determine what 

other data sources could be useful, as well as the identification of new trigger events. 

8.3.9 Laboratory Build for VMware, KVM and Xen Clusters  

 

A VMWare, KVM and Xen cluster build using the same hardware as the IDE stack, to 

enable direct experimental ‘failover testing’ and ‘resource management’ testing with real 



Intelligent Management of Virtualised Computer Based Workloads and Systems 

 

 

 

© James Oakes, 2020                                  225 | P a g e  

 

VMWare, KVM and Xen systems, to allow for better comparisons against each in a laboratory 

setting. This would build additional data on top of the similar studies examined in chapter 6 

and chapter 7. 

8.3.10 Knowledge Rule Testing with SLAs 

 

Further experimental testing of the IDE knowledge rules listed in section 4.8 and 4.8.5.  

Extra validation and checks to be conducted on the existing rule set with a Service Level 

Agreement (SLA) in place; to be investigated as to how this would impact the consequent(s) 

for invoked knowledge rules. 

  

8.3.11 Global Resource Management 

 

Further global platform management as discussed in section 7.2.5 is required to 

ensure other areas are built on, including the continual reduction of resource waste. 

Investigation to continue on how to make the global resource management process even 

more effective and efficient. 

 

8.3.12 Terraform, AWS CloudFormation and AMIs  

 

Perform an analysis on the IDE against Terraform and AWS CloudFormation with AMIs 

(A common DevOps AWS approach) in a laboratory type exercise. This work would produce 

interesting results, as AWS CloudFormation and Terraform provide ‘infrastructure as code’ 

provisioning modules, which would first need to be developed using notation such as YAML 

or JSON. 

  



Intelligent Management of Virtualised Computer Based Workloads and Systems 

 

 

 

© James Oakes, 2020                                  226 | P a g e  

 

References 
 
Adl-Tabatabai, A., Bharadwaj, J., Cierniak, M., Eng, M., Fang, J., Lewis, B., Murphy, B. and Stichnoth J. (2004). 
Improving 64-Bit Java IPF Performance by Compressing Heap References, Proceedings of the International 
Symposium on Code Generation and Optimization   

Aladyshev, O., Baranov, A., Ionin, R., Kiselev, E., and Shabanov, B. (2018). Variants of Deployment the High-
Performance Computing in Clouds, IEEE Conference of Russian Young Researchers in Electrical and Electronic 
Engineering (EIConRus) 

Al-Ou’n, A., Kiran, M., and Kouvatsos, D. (2015). Using Agent-based VM Placement Policy, IEEE 3rd 

International Conference on Future Internet of Things and Cloud 

Alty, J. L., and Coombs, M. J., (1984). Expert systems: concepts and examples, John Wiley and Sons, Inc., New 

York, NY 

Ajila, S. and Bankole, A., (2013). Cloud Client Prediction Models Using Machine Learning Techniques. IEEE 37th 
Annual Computer Software and Applications Conference 

Akioka, S. and Muraoka, Y., (2010). HPC benchmarks on Amazon EC2. IEEE 24th International Conference on 
Advanced Information Networking and Applications Workshops  

Anicic, D., Fodor, P., Stuhmer R., and Stojanovic N., (2009). Event-driven Approach for Logic-based Complex 
Event Processing, International Conference on Computational Science and Engineering 

Antonescu, A., Oprescu, A., Demchenko, Y., Laat C. D., Braun T., (2013). Dynamic Optimization of SLA-Based 
Services Scaling Rules, IEEE International Conference on Cloud Computing Technology and Science 

Amazon Web Services, (2015). Amazon Elastic Compute Cloud - User Guide for Linux API Version. Amazon Web 
Services 

Arnaldo, I., Veeramachaneni, K., Song, A. and O’Reilly, U., (2015). Bring Your Own Learner! A Cloud-Based, 
Data-Parallel Commons for Machine Learning. IEEE Computational intelligence magazine 

Ashouri K., and Savoji, M.H, (2004). Automatic and Accurate Pitch Marking of Speech Signal using an Expert 
System Based on Logical Combinations of Different Algorithms Outputs, 12th European Signal Processing 
Conference 

Austermann A., and Yamada, S. (2008). “Good Robot”, “Bad Robot” – Analyzing Users’ Feedback in a Human-
Robot Teaching Task, Proceedings of the 17th IEEE International Symposium on Robot and Human Interactive 
Communication, Technische Universität München, Munich, Germany, August 1-3 

Awal, A., Shoeb, M., Hasan, R., Haque, M. and Hu, M., (2014). A Comparative Study on I/O Performance 
between Compute and Storage Optimized Instances of Amazon EC2. IEEE International Conference on Cloud 
Computing  

Bakhshayeshi, R., (2014). Performance Analysis of Virtualized Environments using HPC Challenge Benchmark 

Suite and Analytical, Iranian Conference on Intelligent Systems (ICIS) 

Beckman, T., J. (1990). Methods for Selecting Promising Expert System Applications, Proceedings, The Fifth 

Annual AI Systems in Government Conference, IEEE 



Intelligent Management of Virtualised Computer Based Workloads and Systems 

 

 

 

© James Oakes, 2020                                  227 | P a g e  

 

Benet C. H., Noghani K. A., and Kassler, A. J. (2016). Minimizing Live VM Migration Downtime Using OpenFlow 

based Resiliency Mechanisms, 5th IEEE International Conference on Cloud Networking 

Bhise, V. and Mali, A., (2013). Cloud Resource Provisioning for Amazon EC2. IEEE - 31661, 4th ICCCNT July 4-6, 
Tiruchengode, India 

Biner M. (2015). Cloud Computing and Management Processes, DOI: 10.1109/ECAI.2015.7301151, ECAI, 
Bucharest 

Bojanova, I. and Samba, A., (2011). Analysis of Cloud Computing Delivery Architecture Models. Workshops of 
International Conference on Advanced Information Networking and Applications 

Borg, G., Bratfisch, O., and Dornic, S. (1971). On the problems of perceived difficulty. Scandinavian Journal of 
Psychology, 12(4), 249–260 

Brooks R. E. and Heiser, J., F., (1979). Transferability of a Rule-Based Control Structure to a New Knowledge 

Domain, AMIA Annual Symposium Proceedings 

Callaos, B., (1994). Artificial Organizational Intelligence. Expert Systems for Development, Proceedings of 
International Conference of The World Congress on Expert Systems 

Calzolari, F., (2006). High Availability Using Virtualisation, University of Pisa 

Cambridge Advanced Learner's Dictionary (2019), [online]. Available from: 
https://dictionary.cambridge.org/dictionary/english/algorithm Cambridge: Cambridge University Press 
[06/07/2019] 

Cambridge Advanced Learner's Dictionary (2019), [online]. Available from: 
https://dictionary.cambridge.org/dictionary/english/inference Cambridge: Cambridge University Press 
[06/07/2019] 

Cattell, R. (2010). Scalable SQL and NoSQL Data Stores, ACM SIGMOD Record archive Volume 39 Issue 4, 
December, Pages 12-27 

Chen, X., Chen, W., Long, P., Lu, Z., and Wang Z. (2013) SEMMA: Secure Efficient Memory Management 
Approach in Virtual Environment, International Conference on Advanced Cloud and Big Data 

Chen, Z. and Suen, C.Y., (1993). Evaluating Expert Systems by Formal Metrics. Proceedings of Canadian 
Conference on Electrical and Computer Engineering  

Conde, C. and Narin, A., (2012). Development and Test on Amazon Web Services. Amazon Web Services 

Conrath D. and Sharma, R. (1991). Evaluating Expert Systems Using A Multiple-Criteria, Multiple-Stakeholder 
Approach, Proceedings of the IEEE/ACM International Conference on Developing and Managing Expert System 
Programs 

Crittenden, R., (1990). Building on success-lessons learned (expert systems). Proceedings IEEE Conference on 
Managing Expert System Programs and Projects 

Dhiman, G., (2011). Dynamic Workload Characterization for Energy Efficient Computing, University of 
California, San Diego  

https://dictionary.cambridge.org/dictionary/english/algorithm
https://dictionary.cambridge.org/dictionary/english/inference


Intelligent Management of Virtualised Computer Based Workloads and Systems 

 

 

 

© James Oakes, 2020                                  228 | P a g e  

 

Diao, L., Zuo, M. and Liu, Q., (2009). The Artificial Intelligence in Personal Knowledge Management. Second 
International Symposium on Knowledge Acquisition and Modeling  

Dong D., and Herbert J., (2013). A Proactive Cloud Management Architecture for Private Clouds, IEEE Sixth 
International Conference on Cloud Computing 

Duda, R. O., and Shortliffe, E., (1983). Expert System Research. Science (New York, N.Y.). 220. 261-8. 
10.1126/science.6340198. 

Durkin, J., (1990). Research Review: Application of Expert Systems in the Sciences, The Ohio Journal of Science, 
v90, n5, 171-179 

Elprince, N., (2013). Autonomous Resource Provision in Virtual Data Centers, 2013 IFIP/IEEE International 
Symposium on Integrated Network Management 

Fateman R. J., (1989). A Review of Macsyma, IEEE Transactions on Knowledge and Data Engineering, Vol. I, No. 
I, March 1989 

Fadel, A. S., Fayoumi, A. G., (2013). 14th ACIS Cloud Resource Provisioning and Bursting Approaches. 

International Conference on Software Engineering, Artificial Intelligence, Networking and Parallel/Distributed 

Computing 

Faulkner, L. (2003). Beyond the five-user assumption: Benefits of increased sample sizes in usability testing. 
Behavior Research Methods, Instruments and Computers, 35(3), 379-383. 

Feigenbaum E. A., and Buchanan B. G, (1994). DENDRAL and Meta-DENDRAL: roots of knowledge systems and 

expert system applications. Artificial intelligence in perspective, Pages 233-240, MIT Press Cambridge, MA, USA 

Feinberg, S. and Murphy, M. (2000). Applying Cognitive Load Theory to the Design of Web-Based Instruction, 
18th Annual Conference on Computer Documentation Technology and Teamwork Proceedings 

Feng, X., Tang, J., Luo, X., and Jin, Y. (2011) A Performance Study of Live VM migration Technologies: vMotion 

vs XenMotion, SPIE-OSA-IEEE/Vol. 8310 831018-2, Asia Communications and Photonics 

Ferraris, F., Franceschelli, D., Gioiosa, M., Lucia, D., Ardagna, D., Di Nitto, E. and Sharif, T., (2012). Evaluating 
the Auto Scaling Performance of Flexiscale and Amazon EC2 Clouds. 14th International Symposium on Symbolic 
and Numeric Algorithms for Scientific Computing 

Fernando, D., Bagdi, H., Hu, Y., Yang, P., Gopalan, K., Kamhoua, C., and Kwiat, K. (2016). Quick Eviction of 
Virtual Machines Through Proactive Live Snapshots, IEEE/ACM 9th International Conference on Utility and 
Cloud Computing 

Finkle, T. A., and Scoresby, R. B., (2012). Larry Ellison and Oracle Corporation, Journal of the International 

Academy for Case Studies, Volume 18, Number 7  

Flinta, C. Johnsson, A., Ahmed, J., Moradi, F., Pasquini, R., and Stadler, R. (2017). Real-Time Resource Prediction 

Engine for Cloud Management, IFIP/IEEE International Symposium on Integrated Network Management 

Franzosi, R. (2004).  From Words to Numbers: Narrative, data, and social science, Cambridge University Press 

Forbes (2018), [online]. Available from: https://www.forbes.com/sites/louiscolumbus/2018/09/23/roundup-
of-cloud-computing-forecasts-and-market-estimates-2018/#29474389507b Forbes: [1/04/2020] 

https://www.forbes.com/sites/louiscolumbus/2018/09/23/roundup-of-cloud-computing-forecasts-and-market-estimates-2018/#29474389507b
https://www.forbes.com/sites/louiscolumbus/2018/09/23/roundup-of-cloud-computing-forecasts-and-market-estimates-2018/#29474389507b


Intelligent Management of Virtualised Computer Based Workloads and Systems 

 

 

 

© James Oakes, 2020                                  229 | P a g e  

 

Gandhe, A., Qin, L., Metze, F., Rudnicky, A., Lane I., and Eck, M. (2013) Using Web Text to Improve Keyword 

Spotting in Speech, 2013 IEEE Workshop on Automatic Speech Recognition and Understanding, IEEE Workshop 

on Automatic Speech Recognition and Understanding 

Gazis, V., (2016). A Survey of Standards for Machine-to-Machine and the Internet of Things, IEEE 
Communications Surveys & Tutorials 

Gaikwad G., Joshi D. J., (2016). Multiclass Mood Classification on Twitter using Lexicon Dictionary and Machine 
Learning Algorithms, International Conference on Inventive Computation Technologies (ICICT) 

Gopher, D. and Braune, R. (1984). On the Psychophysics of Workload: Why Bother with Subjective Measures? 
Human Factors: The Journal of the Human Factors and Ergonomics Society, Volume: 26 issue: 5, pages: 519-532 

Green E. C., (2001). Can Qualitative Research Produce Reliable Quantitative Findings? Field Methods, Vol. 13, 
No. 1, February 2001 3–19, Sage Publications, Inc. 

Gren L., Torkar R., Feldt R. (2014). Work Motivational Challenges Regarding the Interface Between Agile Teams 
and a Non-Agile Surrounding Organization: A Case Study. 978-0-7695-5222-4/14 IEEE DOI 
10.1109/AGILE.2014.13 

Guerlain, S., Brown, D. and Mastrangelo, C. (2000). Intelligent Decision Support Systems, IEEE International 
Conference on Systems, Man and Cybernetics. 'Cybernetics Evolving to Systems, Humans, Organizations, and 
Their Complex Interactions 

Hataba, M. and El-Mahdy, A. (2012). Cloud Protection by Obfuscation: Techniques and Metrics, Seventh 
International Conference on P2P, Parallel, Grid, Cloud and Internet Computing 

Haugeland, J., (1989). Artificial Intelligence: The very Idea. pp. 124, MIT Press, Cambridge, MA 

Hill, Z. and Humphrey, M., (2009). A Quantitative Analysis of High Performance Computing with Amazon’s EC2 
Infrastructure: The Death of the Local Cluster? Grid Computing, 10th IEEE/ACM International Conference on 
Grid Computing 

Hwang J., (2015). Computing Resource Transformation, Consolidation, and Decomposition in Hybrid Clouds, 
IBM T.J. Watson Research Center, 978-3-901882-77-7 IFIP 

Hwang, J., (2016). Toward Beneficial Transformation of Enterprise Workloads to Hybrid Clouds. IEEE 

Transactions on Network and Service Management, Vol. 13, No. 2, June 2016  

Hwang, W., Roh, Y., Park, Y., Park, K., and Park K. H. (2010). HyperDealer: Reference-pattern-aware Instant 
Memory Balancing for Consolidated Virtual Machines, IEEE 3rd International Conference on Cloud Computing 

Huang, L., Milne, D., Frank, E., Witten, I. H., (2012). Learning a Concept-based Document Similarity Measure, 

Journal of the American Society for Information Science and Technology banner, Volume 63, Issue8, August 

2012, Pages 1593-1608 

Imai, S., Chestna, T. and Varela, C., (2013). Accurate Resource Prediction for Hybrid IaaS Clouds Using 
Workload-Tailored Elastic Compute Units. IEEE/ACM 6th International Conference on Utility and Cloud 
Computing 

Ismail H. and Riasetiawan M. (2016). CPU and Memory Performance Analysis on Dynamic and Dedicated 
Resource Allocation using XenServer in Data Center Environment, 2nd International Conference on Science and 
Technology-Computer (ICST), Yogyakarta, Indonesia 



Intelligent Management of Virtualised Computer Based Workloads and Systems 

 

 

 

© James Oakes, 2020                                  230 | P a g e  

 

Jeong, H. and Lee, S. (2012). Dynamic CPU Resource Allocation for Multicore CE Devices Running Multiple 
Operating Systems, IEEE International Conference on Consumer Electronics (ICCE) 

Jin, H., Kai, Z., Zhijun, W., and Jinzhou, Y., (2016). PaaS Construction of Large Scale Enterprise. IEEE 

International Conference on Cloud Computing and Big Data Analysis Discussion on Private Cloud  

Jing, X., (2011). Autonomic application and resource management in virtualized Distributed Computing 
Systems, University of Florida  

Jing-xue Lui, J. and Fei, Q., (2005). The Arithmetic Research of Intelligence Retrieval Based on Commanding 
Decision-Making. Proceedings of the Fourth International Conference on Machine Learning and Cybernetics, 
Guangzhou, 18-21 August  

Joy, M., Mueller, W., and Rammig, F. (2014). Source Code Annotated Memory Leak Detection for Soft Real Time 
Embedded Systems with Resource Constraints, IEEE 12th International Conference on Dependable, Autonomic 
and Secure Computing 

Katz, J., Papadopoulos, P. and Bruno, G., (2002). Leveraging Standard Core Technologies to Pragmatically Build 
Linux Cluster Appliances, Proceeding of the IEEE International Conference on Cluster Computer 

Kotova, E., (2016). Intellectual Support of the Learning Content Planning Considering the Cognitive Load, XIX 
IEEE International Conference on Soft Computing and Measurements. 

Kim, H., El-Khamra, Y., Rodero, I., Jha, S. and Parashar, M., (2011). Autonomic Management of Application 
Workflows on Hybrid Computing Infrastructure. Scientific Programming 19, pg. 75–89, IOS Press  

Kokkinos, P., Varvarigou, T., kretsis, A., Soumplis, P. and Varvarigos, E., (2013). Cost and Utilization 
Optimization of Amazon EC2 instances. IEEE Sixth International Conference on Cloud Computing  

Kulikowski, C., A., (1980). Artificial Intelligence Methods and Systems for Medical Consultation, IEEE 
Transactions on Pattern Analysis and Machine Intelligence, Vol. Pami-2, No. 5 

Kwon K., (2012). Forward Reasoning via Sequential Queries in Logic Programming, ISSN 1392–124X 

Information Technology and Control, Vol. 41 

Lakshmi, J., (2010). System Virtualization in the Multi-core Era - a QoS Perspective, Supercomputer Education 
and Research Center Indian Institute of Science  

Lokshina, I. and Insinga, R. (2004), Expert System Supporting System Administrators Managing in a Distributed, 
Heterogeneous Environment, Joint IST Workshop on Mobile Future and the Symposium on Trends in 
Communications 

Larumbe, F., Sanso B., (2012). Optimal Location of Data Centers and Software Components in Cloud Computing 

Network Design, 2012 12th IEEE/ACM International Symposium on Cluster, Cloud and Grid Computing 

Lindsay R. K., Buchanan B. G., Feigenbaum, E. A., Lederberg, J. (1993) DENDRAL: A Case Study of the First 

Expert System for Scientific Hypothesis Formation, Artificial Intelligence, Volume 61, Issue 2, June 1993, Pages 

209-261 

Lebowitz, M., (1983). Generalization from Natural Language Text, Cognitive Science, Volume 7, Issue 1 January 

1983, Pages 1–40 



Intelligent Management of Virtualised Computer Based Workloads and Systems 

 

 

 

© James Oakes, 2020                                  231 | P a g e  

 

Liu, H., Jin, H., Liao, X., Deng, W., He, B., and Xu, C. (2015) IEEE Hotplug or Ballooning: A Comparative Study on 

Dynamic Memory Management Techniques for Virtual Machines, IEEE Transactions on Parallel and Distributed 

Systems, Vol. 26, No. 5  

Lui, X., Zeng, S., Guo J. and Zhou, G. (2017). Human Workload Monitoring Method Considering Qualitative and 

Quantitative Data Fusion, Second International Conference on Reliability Systems Engineering, IEEE 

Macefield, R. (2009). How to Specify the Participant Group Size for Usability Studies: A Practitioner’s Guide, 

Journal of Usability Studies, Vol. 5, Issue 1, November 2009, pp. 34-45 

Madarasz, L., Lazar, T., Gaspar V., and Andoga, R. (2014). Perspectives in Evaluating Quality of Complex 

Technical Systems, IEEE International Symposium on Intelligent Control (ISIC), IEEE Multi-conference on 

Systems and Control, October 8-10. Antibes, France 

Makridis, E., Deliparaschos, K., Kalyvianakiy, E. and Charalambous, T. (2017). Dynamic CPU Resource 

Provisioning in Virtualized Servers using Maximum Correntropy Criterion Kalman Filters, 22nd IEEE 

International Conference on Emerging Technologies and Factory Automation (ETFA) 

Martin, T., Azvine, B. and Shen, Y., (2007). Computational Intelligence Support for Smart Queries and Adaptive 
Data. IEEE Symposium on Computational Intelligence in Security and Defense Applications 

Massimiliano, P. D. and Tamburri, D. A. (2017). Combining Quantitative and Qualitative Studies in Empirical 
Software Engineering Research, IEEE/ACM 39th IEEE International Conference on Software Engineering 
Companion 

Matthias, K., (2008). Towards autonomic management in system administration, University of Oslo 
Department of Informatics  

McCammon R. B., (1989). Prospector II Expert System, Prospector II U.S. Geological Survey, VA 22092  

McCorduck, P., Minsky, M., Selfridge, O.G., Beranek, B. and Simon, H.A., (1977). History of Artificial 
Intelligence. International Joint Conference on Artificial Intelligence, pp. 951-952, 953 

McDermott, J., (1982). Artificial Intelligence, R1: A Rule-Based Configure of Computer Systems, Volume 19, 

Issue 1, September 1982, Pages 39-88, Elsevier 

Melekhova, A., (2013). Machine Learning in Virtualization: Estimate A Virtual Machine’s Working Set Size, IEEE 

Sixth International Conference on Cloud Computing 

Mei, L. and Cheng, F., (2010). The Use of Artificial Intelligence in the Information Retrieval System Epoch-
making Changes in Information Retrieval System. Information Management and Engineering (ICIME), The 2nd 
IEEE International Conference 

Menasce, D. and Bennani, M., (2006). International Conference on Autonomic and Autonomous Systems 
ICAS06, Volume: 00, Issue: C, IEEE 

Mettrey, W. (1991). A Comparative Evaluation of Expert System Tools, Computer, Volume: 24, Issue: 2 

Miller R. A., Pople H. E., Myers J. D., (1982). Internist-1, An Experimental Computer Based Diagnostic 

Consultant for General Internal Medicine. New England Journal of Medicine, 307(8), 468-476 

http://www.sciencedirect.com/science/journal/00043702/19/1
http://www.sciencedirect.com/science/journal/00043702/19/1


Intelligent Management of Virtualised Computer Based Workloads and Systems 

 

 

 

© James Oakes, 2020                                  232 | P a g e  

 

Mohammad, I., and Ramananjaneyulu K. (2012). FPGA Implementation of a 64-Bit RISC Processor Using VHDL, 

International Journal of Engineering Research and Applications (IJERA), Vol. 2, Issue 3, May-Jun 2012, pp.2544-

2549 

Morabito, R., Kjällman, J., and Komu, M., (2015). Hypervisors vs. Lightweight Virtualization: A Performance 

Comparison, 2015 IEEE International Conference on Cloud Engineering 

Mülayim, N. and Alaybeyoğlu, A., (2016). Designing of an expert system based on firefly algorithm for diagnosis 
of Heart Disease, 20th National Biomedical Engineering Meeting (BIYOMUT), 1-4 

Musen M.A., Shahar Y., Shortliffe E.H. (2006) Clinical Decision-Support Systems. In: Shortliffe E.H., Cimino J.J. 
(eds) Biomedical Informatics. Health Informatics. Springer, New York, NY 

Nath, A., Das, S. and Chakrabarti, A., (2010). Data Hiding and Retrieval. International Conference on 
Computational Intelligence and Communication Networks 

Novaliendry P. D., Yang C., Labukti, A.D.G., (2015). The Expert System Application for Diagnosing Human 
Vitamin Deficiency Through Forward Chaining Method, International Conference on Information and 
Communication Technology Convergence (ICTC) 

Oakes, J., Johnson, M., Xue, J. and Turner, S., (2016). Simplified Deployment of Virtual Machines using an 
Intelligent Design Engine. SAI Computing Conference 2016 July 13-15, London, UK 

Oakes, J., Johnson, M., Xue, J., and Turner, S. (2020) Measuring and Reducing the Cognitive Load for the End 
Users of Complex Systems. In: Bi Y., Bhatia R., Kapoor S. (eds) Intelligent Systems and Applications. IntelliSys 
2019. Advances in Intelligent Systems and Computing, vol 1037. Springer. 

Oludele, A., Ogu E., C., Shade, K., Chinecherem, U., (2014). On the evolution of virtualization and Cloud 
Computing: A review. Journal of Computer Sciences and Applications, Volume 2, Issue 3, Pages 40-43   

Padala, P., (2010). Automated Management of Virtualized Data Centers, University of Michigan 

Pagare, J. and Koli, N., (2014). A technical review on comparison of Xen and KVM hypervisors: An analysis of 

virtualization technologies. International Journal of Advanced Research in Computer and Communication 

Engineering Vol. 3, Issue 12, December 2014 

Prangchumpol, D., Sanguansintukul, S. and Tantasanawong, P. (2009). Server Virtualization by User Behaviour 
Model using a Data Mining Technique – A Preliminary Study. International Conference for Internet Technology 
and Secured Transactions: ICITST 

Parunak H., V., D., (1996). “Go to the Ant”: Engineering Principles from Natural Multi-Agent Systems, Annals of 

Operations Research, Special Issue on Artificial Intelligence and Management Science 

Piraghaj, S. F., Dastjerdi, A. V, Calheiros, R. N., and Buyya, R. (2015). Efficient Virtual Machine Sizing for Hosting 

Containers as a Service, 2015 IEEE World Congress on Services 

Paas, F., Merrienboer, J., (1994). Measurement of Cognitive Load in Instructional Research, Perceptual and 

Motor Skills, p79, 419-430. 

Paas, F., Tuovinen, J., Tabbers, H., and Gerven, P. (2003). Cognitive Load Measurement as a Means to Advance 

Cognitive Load Theory, Educational Psychologist, p.63–71, Lawrence Erlbaum Associates, Inc. 

Plass, J. L., Moreno, R., & Brünken, R. (2010). Cognitive Load Theory. Cambridge: Cambridge University Press  



Intelligent Management of Virtualised Computer Based Workloads and Systems 

 

 

 

© James Oakes, 2020                                  233 | P a g e  

 

Prathibha, D., Latha, B. and Sumathi, G., (2014). Efficient Scheduling of Workflow in Cloud Environment Using 
Billing Model Aware Task Clustering. Journal of Theoretical and Applied Information Technology 31st July 2014, 
Vol. 65 (No.3) 

Prodan, R., Sperk, M. and Ostermann, S., (2012). Evaluating High-Performance Computing on Google App 
Engine. IEEE SOFTWARE 

Poghosyan A., V., Harutyunyan, A., N., Grigoryan, N., M., (2016). Managing Cloud Infrastructures by a Multi-
layer Data Analytics, IEEE International Conference on Autonomic Computing (ICAC) 

Pugh, Emerson W.; Johnson, Lyle R.; Palmer, John H., (1991). IBM's 360 and Early 370 Systems. Cambridge MA: 
MIT Press 

Ranjan, R. and Zhao, L., (2013). Peer-to-peer service provisioning in cloud computing environments. Journal 

Supercomputing (2013) 65:154–184 DOI 10.1007/s11227-011-0710-5 

Rasmussen E. R., (2009). Reducing IT Costs and Increasing IT Efficiency by Integrating Platform Virtualization in 

the Enterprise, University of Oregon  

Ravindranath, K. R., (2015). Clinical decision Support System for Heart Diseases Using Extended Sub Tree, 

International Conference on Pervasive Computing (ICPC) 

Reddy D. R., Erman L. D., Fennell R. D., and Neely R. B., (1976). The Hearsay-I Speech Understanding System: An 

Example of the Recognition Process, IEEE Transactions on Computers, Vol. C-25, No. 4, April 1976 

Redhat (2019). [online]. Available from: https://access.redhat.com/documentation/en-
us/red_hat_enterprise_linux/6/html/virtualization_host_configuration_and_guest_installation_guide/chap-
virtualization_host_configuration_and_guest_installation_guide-system_requirements, Redhat: Redhat 
Incorporated, wholly owned by IBM Corporation [13/10/2019] 

Rokne, J., (2013). Computing: Transforming Information Technology. IEEE Computer Society, Cloud Computing 

Rosenblum M., (2004). The Reincarnation of Virtual Machines, Stanford University and VMWare 

Rothenburg, J., Paul, J., Kameny, I., Kipps, J. and Swenson, M., (1987). Evaluation Expert Systems: A Framework 

and Methodology, Defense Advanced Research Projects Agency 

Rusu, O., Halcu, I., Grigoriu, O., Neculoiu, G., Sandulescu, V., Marinescu, M., and Marinescu V. (2013). 
Converting Unstructured and Semi-structured Data into Knowledge, 11th RoEduNet International Conference, 
IEEE 

Sandru, C., Petcu D., Munteanu V. I., (2012). Building an Open-Source Platform-as-a-Service with Intelligent 

Management of Multiple Cloud Resources, IEEE/ACM Fifth International Conference on Utility and Cloud 

Computing 

Sanzo, P., Rughetti, D., Ciciani, B. and Quaglia, F., (2012). Auto-tuning of Cloud-based In-memory Transactional 
Data Grids via Machine Learning. IEEE Second Symposium on Network Cloud Computing and Applications  

Sarathy, V., Narayan, P. and Mikkilineni, R., (2010). Next Generation Cloud Computing Architecture Enabling 

Real-time Dynamism for Shared Distributed Physical Infrastructure, Workshops on Enabling Technologies: 

Infrastructure for Collaborative Enterprises 

Schiller, K., (2011). Amazon EC2 Outage Highlights Risks. Volume 28, Number 6, www.infotoday.com  

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/6/html/virtualization_host_configuration_and_guest_installation_guide/chap-virtualization_host_configuration_and_guest_installation_guide-system_requirements
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/6/html/virtualization_host_configuration_and_guest_installation_guide/chap-virtualization_host_configuration_and_guest_installation_guide-system_requirements
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/6/html/virtualization_host_configuration_and_guest_installation_guide/chap-virtualization_host_configuration_and_guest_installation_guide-system_requirements
http://www.infotoday.com/


Intelligent Management of Virtualised Computer Based Workloads and Systems 

 

 

 

© James Oakes, 2020                                  234 | P a g e  

 

Scroggins, R., (2013). Virtualization Technology Literature Review.  Vol 13, Global Journal of Computer Science 
and Technology 

Seaman, C. B., (1999). Qualitative methods in empirical studies of software engineering, IEEE Transactions on 
Software Engineering, vol. 25, no. 4, pp. 557-572, July-Aug. 1999 

Selvi, S., Valliyammai, C., and Dhatchayani, V., (2014) Resource Allocation Issues and Challenges in Cloud 
Computing, International Conference on Recent Trends in Information Technology 

Serrano N., Gallardo G., Hernantes J., (2015). Infrastructure as a Service and Cloud Technologies, IEEE Software 

32 (2), 30-36 

Shirinbab S. and Lundberg L. (2016). Performance Implications of Resource Over-Allocation during the Live 

Migration, IEEE 8th International Conference on Cloud Computing Technology and Science 

Shirinbab, S., Lundberg, L. and Håkansson J. (2016). Comparing Automatic Load Balancing using VMware DRS 

with a Human Expert, IEEE International Conference on Cloud Engineering Workshop 

Song, Y., Sun, Y., and Shi W. (2013). A Two-Tiered On-Demand Resource Allocation Mechanism for VM-Based 

Data Centers, IEEE Transactions on Services Computing, Vol. 6, No. 1, January-March 

Spangler, W.E., (1991). The Role of Artificial Intelligence in Understanding the Strategic Decision-Making 
Process. IEEE Transactions on Knowledge and Data Engineering, Vol. 3, No. 2 

SPARC International Inc, V., (1992). The SPARC Architecture Manual v8. Version 8 ed. SPARC International.  

Srnka K. J. and Koeszegi, S. T. (2007). From Words to Numbers: How to Transform Qualitative Data into 
Meaningful Quantitative Results, Schmalenbach Business Review, Vol. 59 

Stage, A., Setzer, T., and Bichler, M. (2009). Automated Capacity Management and Selection of Infrastructure-
as-a-Service Providers, IFIP/IEEE Intl. Symposium on Integrated Network Management — Workshops 

Steinder, M., Whalley I., Carrerat D., Gawedat I. and Chess D. (2007). Server Virtualization in Autonomic 
Management of Heterogeneous Workloads, 1-4244-0799-0/07, IEEE 

Su, K., (2015). Affinity and Conflict-Aware Placement of Virtual Machines in Heterogeneous Data Centers, IEEE 
Twelfth International Symposium on Autonomous Decentralized Systems 

Sweller, J. (1988). Cognitive Load During Problem Solving: Effects on Learning, Cognitive Science 12, p.257-285 

Tanenbaum, A.S., ed, (2006). Structured Computer Organization. 5th ed. Prentice Hall 

Tian, C., Wang, Y., Qi, F. and Yin, B., (2012). Decision Model for Provisioning Virtual Resources in Amazon EC2. 
2012 8th International Conference on Network and Service Management (CNSM 2012): Short Paper 

Toyoshima, S., Yamaguchi, S. and Oguchi, M., (2010). Storage Access Optimization with Virtual Machine 
Migration and Basic Performance Analysis of Amazon EC2. IEEE 24th International Conference on Advanced 
Information Networking and Applications Workshops 

Tsai, C., (2009). System Architectures with Virtualized Resources in a Large-Scale Computing Infrastructure, The 
University of Michigan 



Intelligent Management of Virtualised Computer Based Workloads and Systems 

 

 

 

© James Oakes, 2020                                  235 | P a g e  

 

Ullah S., Awan, M., Khiyal, S (2016). A Price-Performance Analysis of EC2, Google Compute and Rackspace 
Cloud Providers for Scientific Computing, Journal of Mathematics and Computer Science 16, p. 178–192 

Unix.com (2019), [online]. Available from: https://www.unix.com/man-page/centos/8/SYS-UNCONFIG/ 
Unix.com: Free Unix Support [10/09/2019] 

Vanmechelen, K., De Munck, S. and Broeckhove, J., (2013). Simulation Modelling Practice and Theory. 
Simulation Modelling Practice and Theory 34 (2013)126–143 

Vanmechelen, K., De Munck, S. and Broeckhove, J., (2012). Conservative Distributed Discrete Event Simulation 
on Amazon EC2. 2012 12th IEEE/ACM International Symposium on Cluster, Cloud and Grid Computing 

Verdinelli, S., and Scagnoli, N., (2013) Data Display in Qualitative Research, International Journal of Qualitative 
Methods 

Virtualbox.org (2019), [online]. Available from: https://www.virtualbox.org/manual/ch04.html#guestadd-
balloon VirtualBox: virtualbox.org [17/11/2019] 

Virtualbox.org (2019), [online]. Available from: https://www.virtualbox.org/manual/ch09.html#cpuhotplug 
VirtualBox: virtualbox.org [17/11/2019] 

Virtualbox.org (2019), [online]. Available from: https://www.virtualbox.org/manual/ch07.html#teleporting 

VirtualBox: virtualbox.org [21/11/2019] 

Vogels, W., Dumitriu, D., Birman K., Gamache R., Massa M., Short R., Vert J., Barrera J., and Gray J. (1998). The 
Design and Architecture of the Microsoft Cluster Service-a Practical Approach to High-Availability and 
Scalability, Digest of Papers. Twenty-Eighth Annual International Symposium on Fault-Tolerant Computing 
(Cat. No.98CB36224), IEEE 

Vrijders, S., Maffione, V., Staessens, D., Salvestrini, F., Biancani, M., Grasa, E., Colle, D., Pickavet, M., Barron, J., 
and Day, J., (2016). Reducing the Complexity of Virtual Machine Networking, IEEE Communications Magazine, 
p.152-158 

Wang, G. and Ng, T., (2010). The Impact of Virtualization on Network Performance of Amazon EC2 Data Center. 
IEEE Infocom 2010 proceedings  

Wenbin, C., Xiaoling, L., Yijun, L. and Yu, F., (2010). A Machine Learning Algorithm for Expert System Based on 
MYCIN Model. 2nd International Conference on Computer Engineering and Technology 

White S.R., Hanson J.E., Whalley I., Chess D.M. and Kephart J.O. (2004) An Architectural Approach to 
Autonomic Computing, International Conference on Autonomic Computing, Proceedings. 

Wikimedia.org (2019), [online]. Available from: wikimedia.org Wikimedia: wikimedia.org [21/12/2019] 

Windriyani, P., & Kom, S., Wiharto, W., and Widya S., S. (2013). Expert System for Detecting Mental Disorder 

with Forward Chaining Method. 10.1109/ICTSS.2013.6588068.  

Winston P., and Prendergast K. (1986). XCON: An Expert Configuration System at Digital Equipment 

Corporation, MIT Press 

Wong, D. and Manickam, S., (2010). Intelligent Expertise Classification Approach: An Innovative Artificial 
Intelligence Approach to Accelerate Network Data Visualization. 2010 3rd International Conference on 
Advanced Computer Theory and Engineering (ICACTE) 

https://www.unix.com/man-page/centos/8/SYS-UNCONFIG/
https://www.virtualbox.org/manual/ch04.html#guestadd-balloon
https://www.virtualbox.org/manual/ch04.html#guestadd-balloon
https://www.virtualbox.org/manual/ch09.html#cpuhotplug
https://www.virtualbox.org/manual/ch07.html#teleporting
https://commons.wikimedia.org/wiki/File:Hardware_Virtualization.JPG


Intelligent Management of Virtualised Computer Based Workloads and Systems 

 

 

 

© James Oakes, 2020                                  236 | P a g e  

 

Wood, T., (2011). Improving Data Center Resource Management Deployment and Availability with 
Virtualization, University of Massachusetts 

Wright, F.L. and Gdowski, S., (1987) An Artificial Intelligence Schema to Perform Automatic Santization of Data. 
Monarch Systems Inc, Beverly Hills, California 

Xiong, P., (2012). Dynamic Monitoring Modeling and Management of Performance and Resources For 
Applications In The Cloud, Georgia Institute of Technology 

Xu W. and Liu, X. (2003). Research on Evaluating Methods of Projects for Complex Systems, Proceedings of the 
Second International Conference on Machine Learning and Cybernetics, Xa'an, 2-5 November 

Xue, J., (2009). Performance Evaluation and Resource Management in Enterprise Systems, University of 
Warwick 

Yang J. D., Huhns M. N., and Stephens, L. M., (1985). An Architecture for Control and Communications in 
Distributed Artificial Intelligence Systems, IEEE transactions on Systems, Man, and cybernetics, Vol. SMC-15, 
No. 3 

Yang, R., Wei, W., and Cummins, M. (2017). Application of Cognitive Load Theory to the Design and Evaluation 

of Usability Study of mHealth applications: Opportunities and challenges IEEE International Conference on 

Healthcare Informatics  

Zhang, R. and Shang, Y., (2014). An Automatic Deployment Mechanism on Cloud Computing Platform. Cloud 
Computing Technology and Science (CloudCom), 2014 IEEE 6th International Conference  

Zhang, W., Xie, H. and Hsu, C. (2017). Automatic Memory Control of Multiple Virtual Machines on a 
Consolidated Server, IEEE Transactions on Cloud Computing, Vol. 5, NO. 1, January-March 

Zhang, Q., Liu, L., Ren, J., Su, G., and Iyengar, A. (2016). iBalloon: Efficient VM Memory Balancing as a Service, 
IEEE International Conference on Web Services 

  



Intelligent Management of Virtualised Computer Based Workloads and Systems 

 

 

 

© James Oakes, 2020                                  237 | P a g e  

 

Appendix 
 

Appendix A – VM Deployment Process  

 

A.1 Expert Users Results 

A.2 IDE Results 

 

A.3 Oracle Results 

 

A.4 AWS Results 

 
 

A.5 Experienced Users Results 

A.6 IDE Results 

 

Step 

Number
IDE Provisioning (sec)

user 1 user 2 user 3 user 4 user 5 user 6 user 7 user 8 user 9 user 10 user 11 user 12 user 13 user 14 user 15 user 16 user 17 user 18 user 19 user 20 user 21 user 22 user 23 user 24 user 25 user 26 user 27 user 28 user 29 user 30 user 31

1 18 25 21 17 19 14 19 24 23 25 21 13 18 22 23 13 27 12 17 25 16 19 20 21 22 27 19 21 18 16 13

2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

5 11 14 7 12 19 21 12 15 8 4 18 19 12 13 9 10 16 19 18 14 6 11 18 27 28 12 11 6 10 13 16

6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

7 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

9 1214 1212 1190 1156 1176 1123 1214 1212 1190 1156 1176 1311 1113 1361 1221 1231 1225 1123 1155 1119 1191 1232 1172 1143 1166 1274 1282 1180 1127 1198 1286

10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Total Time 1243 1251 1218 1185 1214 1158 1245 1251 1221 1185 1215 1343 1143 1396 1253 1254 1268 1154 1190 1158 1213 1262 1210 1191 1216 1313 1312 1207 1155 1227 1315

Oracle Cloud (sec)

user 1 user 2 user 3 user 4 user 5 user 6 user 7 user 8 user 9 user 10 user 11 user 12 user 13 user 14 user 15 user 16 user 17 user 18 user 19 user 20 user 21 user 22 user 23 user 24 user 25 user 26 user 27 user 28 user 29 user 30 user 31

20 25 21 19 22 20 22 21 19 23 20 25 21 19 24 20 27 21 19 13 20 19 21 18 21 20 17 21 19 29 20

124 133 110 99 156 122 134 101 99 143 113 133 109 99 142 115 133 97 99 101 165 129 110 99 164 131 133 110 99 147 123

10 12 14 9 17 9 8 14 9 12 13 15 14 8 10 15 9 13 8 17 9 12 19 9 11 15 16 14 9 17 21

153 120 112 175 194 153 174 120 195 192 152 137 112 170 176 179 183 199 112 158 176 137 155 145 187 196 122 160 143 126 114

63 59 44 67 79 93 57 85 70 83 56 78 62 72 59 65 71 69 76 73 79 68 80 62 91 58 94 82 65 75 88

265 250 350 267 385 305 240 380 299 346 274 247 267 380 242 246 285 230 385 269 296 275 291 358 243 241 382 386 286 275 263

69 55 45 25 56 53 28 25 51 47 57 36 46 60 37 39 63 44 31 70 50 71 59 38 36 25 48 49 29 64 25

631 659 704 840 622 856 673 680 875 695 712 709 683 684 842 791 803 818 648 646 828 711 607 697 784 663 737 852 865 609 776

35 129 65 79 46 122 70 111 91 37 119 70 45 66 123 98 117 94 110 56 98 37 39 47 84 107 35 90 119 81 108

984 912 801 704 913 782 906 935 791 835 815 692 857 705 938 728 761 893 691 773 928 791 751 919 681 919 777 940 841 681 839

2354 2354 2266 2284 2490 2515 2312 2472 2499 2413 2331 2142 2216 2263 2593 2296 2452 2478 2179 2176 2649 2250 2132 2392 2302 2375 2361 2704 2475 2104 2377

AWS (sec)

user 1 user 2 user 3 user 4 user 5 user 6 user 7 user 8 user 9 user 10 user 11 user 12 user 13 user 14 user 15 user 16 user 17 user 18 user 19 user 20 user 21 user 22 user 23 user 24 user 25 user 26 user 27 user 28 user 29 user 30 user 31

16 18 15 12 17 20 15 15 15 17 15 15 16 18 16 20 15 19 15 16 20 19 15 20 20 22 20 18 17 16 19

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

15 20 30 21 28 19 17 15 24 11 26 28 16 35 22 26 23 29 27 20 35 21 26 19 28 24 25 28 23 33 29

14 25 35 18 25 23 21 19 41 32 41 21 33 29 23 16 21 39 25 11 15 25 33 36 35 33 21 42 39 28 35

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

650 451 489 598 755 610 697 432 521 751 750 457 541 615 539 541 656 662 709 604 677 744 702 480 736 533 686 493 445 570 473

122 129 111 118 144 113 103 141 141 112 153 121 109 144 106 133 103 102 113 121 153 123 143 113 134 126 152 112 105 104 137

601 622 587 499 659 683 552 570 584 595 504 624 644 645 485 693 692 642 661 606 490 684 587 545 480 503 601 588 532 608 535

1418 1265 1267 1266 1628 1468 1405 1192 1326 1518 1489 1266 1359 1486 1191 1429 1510 1493 1550 1378 1390 1616 1506 1213 1433 1241 1505 1281 1161 1359 1228

Step Number IDE Provisioning (sec)

user 1 user 2 user 3 user 4 user 5 user 6 user 7 user 8 user 9 user 10 user 11 user 12 user 13 user 14 user 15 user 16 user 17 user 18 user 19 user 20 user 21 user 22 user 23 user 24 user 25 user 26 user 27 user 28 user 29 user 30 user 31

1 20 23 34 17 37 38 25 23 23 30 24 29 36 34 33 21 24 22 19 31 32 45 44 19 37 25 38 41 42 27 38

2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

5 12 15 5 15 13 16 13 12 13 19 19 18 13 13 11 16 16 11 13 18 15 13 16 11 14 12 12 14 19 17 18

6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

7 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

9 1233 1323 1421 1321 1466 1282 1181 1530 1519 1160 1190 1289 1415 1332 1120 1472 1537 1545 1421 1383 1443 1205 1224 1114 1209 1248 1395 1435 1275 1344 1118

10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Total Time 1265 1361 1460 1353 1516 1336 1219 1565 1555 1209 1233 1336 1464 1379 1164 1509 1577 1578 1453 1432 1490 1263 1284 1144 1260 1285 1445 1490 1336 1388 1174
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A.7 Oracle Results 

 

A.8 AWS Results 

 

A.9 Novice Users Results 

A.10 IDE Results 

 

A.11 Oracle Results 

 

A.12 AWS Results 

 
  

Oracle Cloud (sec)

user 1 user 2 user 3 user 4 user 5 user 6 user 7 user 8 user 9 user 10 user 11 user 12 user 13 user 14 user 15 user 16 user 17 user 18 user 19 user 20 user 21 user 22 user 23 user 24 user 25 user 26 user 27 user 28 user 29 user 30 user 31

24 33 53 24 63 49 32 69 30 34 40 33 60 39 65 45 50 29 27 61 64 25 58 27 34 71 25 63 52 60 40

125 144 164 142 113 115 134 155 116 153 141 138 168 165 165 162 118 127 123 160 148 101 119 122 120 162 148 139 146 133 136

11 15 14 8 24 12 16 8 26 14 26 23 19 19 28 28 17 30 22 19 11 26 17 26 15 31 23 18 28 17 10

145 123 111 153 156 151 110 169 114 118 150 134 176 150 172 171 149 168 157 125 117 115 144 165 112 154 140 179 134 177 117

55 45 65 35 80 73 83 58 86 52 52 78 63 87 76 95 92 45 71 45 53 69 83 85 58 52 46 50 47 77 48

301 360 404 360 502 369 434 373 294 315 416 471 285 443 292 335 421 516 389 308 359 400 390 515 464 476 480 512 339 284 451

76 43 47 55 43 48 62 86 70 68 48 60 40 68 49 71 63 67 86 61 52 88 57 78 67 53 58 61 67 83 64

1024 1040 1264 1405 1399 980 1298 1072 1221 1449 1254 1126 1068 1226 1105 1083 1394 1033 1458 1167 1116 1018 1023 1178 1051 1385 1014 1416 1289 1328 1472

32 45 68 42 49 57 49 58 46 32 26 43 61 52 66 67 30 37 49 31 55 61 51 69 58 38 53 41 43 38 47

1321 1710 1211 1040 1198 880 1155 1245 1312 1365 762 1254 1109 1382 771 783 839 754 1342 1247 1273 958 1138 810 1375 940 1154 996 1291 1087 866

3114 3558 3401 3264 3627 2734 3373 3293 3315 3600 2915 3360 3049 3631 2789 2840 3173 2806 3724 3224 3248 2861 3080 3075 3354 3362 3141 3475 3436 3284 3251

AWS (sec)

user 1 user 2 user 3 user 4 user 5 user 6 user 7 user 8 user 9 user 10 user 11 user 12 user 13 user 14 user 15 user 16 user 17 user 18 user 19 user 20 user 21 user 22 user 23 user 24 user 25 user 26 user 27 user 28 user 29 user 30 user 31

14 11 19 21 14 21 27 18 19 27 21 14 19 31 29 13 10 20 31 10 29 31 13 24 20 18 24 23 28 17 30

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 21 45 43 22 41 32 24 19 25 36 40 40 14 15 34 17 13 36 23 32 46 17 31 15 24 26 29 26 49 22

15 21 41 41 21 34 36 27 29 49 36 43 46 40 40 31 20 12 20 20 35 36 38 14 30 31 45 21 33 39 42

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

724 532 865 489 713 713 771 536 681 762 715 484 506 804 630 554 475 514 804 534 770 489 704 808 693 768 722 498 692 527 521

142 127 121 126 123 129 129 117 129 132 153 146 132 151 152 120 122 138 140 120 125 126 132 147 146 132 154 122 133 142 151

587 601 543 511 690 586 547 572 632 515 489 627 566 573 599 679 662 640 612 680 686 604 567 554 571 695 652 640 553 617 677

1498 1313 1634 1231 1583 1524 1542 1294 1509 1510 1450 1354 1309 1613 1465 1431 1306 1337 1643 1387 1677 1332 1471 1578 1475 1668 1623 1333 1465 1391 1443

Step 

Number
IDE Provisioning (sec)

user 1 user 2 user 3 user 4 user 5 user 6 user 7 user 8 user 9 user 10 user 11 user 12 user 13 user 14 user 15 user 16 user 17 user 18 user 19 user 20 user 21 user 22 user 23 user 24 user 25 user 26 user 27 user 28 user 29 user 30 user 31

1 109 54 209 27 321 231 80 154 344 178 313 255 112 112 319 150 256 126 190 164 220 177 235 159 282 289 95 206 206 63 63

2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

5 35 61 31 12 34 40 76 35 31 71 24 17 18 44 29 22 45 66 76 51 73 53 57 78 34 44 28 20 68 17 28

6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

7 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

9 1321 1218 1423 1219 1336 1325 1247 1325 1493 1236 1365 1290 1500 1423 1433 1319 1341 1384 1318 1222 1345 1365 1333 1366 1428 1270 1315 1394 1471 1413 1472

10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Total Time1465 1333 1663 1258 1691 1596 1403 1514 1868 1485 1702 1562 1630 1579 1781 1491 1642 1576 1584 1437 1638 1595 1625 1603 1744 1603 1438 1620 1745 1493 1563

Oracle Cloud (sec)

user 1 user 2 user 3 user 4 user 5 user 6 user 7 user 8 user 9 user 10 user 11 user 12 user 13 user 14 user 15 user 16 user 17 user 18 user 19 user 20 user 21 user 22 user 23 user 24 user 25 user 26 user 27 user 28 user 29 user 30 user 31

129 35 194 24 311 297 299 144 203 185 237 246 330 106 59 112 106 340 242 287 310 136 153 315 194 346 116 277 149 304 199

309 645 260 654 345 546 395 642 594 419 576 382 268 537 254 412 498 460 553 624 664 463 314 534 527 524 319 500 636 348 596

43 34 23 9 32 38 41 35 30 48 43 37 30 44 48 34 38 47 47 41 38 37 38 38 44 50 45 30 32 49 35

236 312 345 176 342 218 219 349 327 301 275 239 292 230 221 226 259 226 353 233 230 346 257 335 248 300 307 265 339 348 289

134 197 98 142 164 135 142 184 139 173 119 213 150 168 166 213 126 130 175 192 151 172 210 209 159 149 95 201 106 169 144

2135 2567 1987 1943 2798 2542 2408 2151 2453 2519 2352 1802 2612 2222 2464 2153 2216 2863 2109 2854 2121 2772 2843 2412 2830 1889 1870 2584 2036 2803 2077

49 54 75 35 79 63 41 69 58 65 75 69 79 67 67 61 41 52 70 76 81 69 62 81 62 51 47 53 45 61 80

9999 9999 9999 9999 9999 9999 9999 9999 9999 1199 9999 9999 9999 9999 9999 9999 9999 9999 9999 9999 9999 9999 9999 9999 9999 9999 9999 9999 9999 9999 9999

9999 9999 9999 9999 9999 9999 9999 9999 9999 97 9999 9999 9999 9999 9999 9999 9999 9999 9999 9999 9999 9999 9999 9999 9999 9999 9999 9999 9999 9999 9999

9999 9999 9999 9999 9999 9999 9999 9999 9999 1456 9999 9999 9999 9999 9999 9999 9999 9999 9999 9999 9999 9999 9999 9999 9999 9999 9999 9999 9999 9999 9999

33032 33841 32979 32980 34068 33836 33542 33571 33801 6462 33674 32985 33758 33371 33276 33208 33281 34115 33546 34304 33592 33992 33874 33921 34061 33306 32796 33907 33340 34079 33417

AWS (sec)

user 1 user 2 user 3 user 4 user 5 user 6 user 7 user 8 user 9 user 10 user 11 user 12 user 13 user 14 user 15 user 16 user 17 user 18 user 19 user 20 user 21 user 22 user 23 user 24 user 25 user 26 user 27 user 28 user 29 user 30 user 31

136 43 132 29 294 166 131 170 207 50 155 151 231 145 119 294 100 129 256 177 95 152 30 115 77 166 205 102 72 208 84

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 21 45 43 22 18 44 49 23 42 15 45 45 16 30 33 27 24 41 18 29 22 34 45 47 33 32 29 46 33 22

15 21 41 41 21 36 36 49 50 25 30 28 16 36 40 47 37 19 28 28 36 35 34 34 15 50 22 45 28 48 22

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

9999 9999 9999 9999 9999 9999 9999 9999 9999 987 9999 9999 9999 9999 9999 9999 9999 9999 9999 9999 9999 9999 9999 9999 9999 9999 9999 9999 9999 9999 9999

9999 9999 9999 9999 9999 9999 9999 9999 9999 92 9999 9999 9999 9999 9999 9999 9999 9999 9999 9999 9999 9999 9999 9999 9999 9999 9999 9999 9999 9999 9999

9999 9999 9999 9999 9999 9999 9999 9999 9999 1216 9999 9999 9999 9999 9999 9999 9999 9999 9999 9999 9999 9999 9999 9999 9999 9999 9999 9999 9999 9999 9999

30164 30082 30215 30110 30334 30217 30208 30265 30277 2412 30197 30221 30289 30194 30186 30371 30161 30169 30322 30220 30157 30206 30095 30191 30136 30246 30256 30173 30143 30286 30125
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Appendix B – Blind Peer Review Comments (Published Papers) 

B.1 Simplified Deployment of Virtual Machines Using an Intelligent Design Engine 
(Oakes et al, 2016) 

 

B.2 Blind Review 1 

 
Review Questions:   
 

Detailed Comments The paper presents and interesting mechanism to 
enable simplified deployment of VMs.  
 
It is mainly focused on the implementation details rather 
on the mechanism advantages, comparisons and 
motivation.  
 
The presentation should be improved. E.g. the quality of 
figure 2 is very bad, and the procedures should be 
declared as such, not as figures. 
 
The related work should be improved, and the position 
of the proposal should be made more clear.  
 

Please rate your satisfaction 
with the basic sections 
(introduction, conclusion, 
works cited, etc.)? 

Fair. 

The material is ordered in a 
way that is logical, clear, and 
easy to follow? 

Good. 

The writer adequately 
summarizes and discusses the 
topic? 

Good. 

The writer makes some 
contribution of thought to the 
paper or merely summarizes 
data or publications? 

Good. 

The writer introduces and 
documents sources adequately 
and appropriately? 

Fair. 

The formatting of the 
manuscript is in accordance to 
the prescribed paper format? 

Fair. 
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The paragraphs and sentences 
are cohesive (flow together 
smoothly without disruption in 
the train of thought)? 

Fair. 

Potential interest to research 
community 

Acceptable. 

Originality of the work Acceptable. 

Significance of the main idea(s) Acceptable. 

Technical quality of the paper Acceptable. 

Author response No concerns with review comments raised. 

 

B.3 Blind Review 2 

 

Detailed Comments This paper proposes an alternative solution for the 
deployment of an intelligent private or public cloud 
compute platform, built around a set of predefined rule-
based parameters with the purpose of providing a 
simplified process for provisioning VMs. 
 
The paper reads more like a technical project report 
than a research paper. The main problem with this 
paper is that it does not clearly identify how it is 
different and better than previous work in this area. 
 
The presentation and writing of the paper should also be 
improved. The paper's writing and organization need 
significant improvement in order for it to be readable 
and technically clear. 
 
The main weakness of the paper lies in its lack of 
originality and novelty; without any performance 
evaluation and comparison with other implementations 
to show its advantages or uniqueness. 
 

Please rate your satisfaction 
with the basic sections 
(introduction, conclusion, 
works cited, etc.)? 

Fair. 

The material is ordered in a 
way that is logical, clear, and 
easy to follow? 

Fair. 
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The writer adequately 
summarizes and discusses the 
topic? 

Poor. 

The writer makes some 
contribution of thought to the 
paper or merely summarizes 
data or publications? 

Poor. 

The writer introduces and 
documents sources adequately 
and appropriately? 

Poor. 
 
 

The formatting of the 
manuscript is in accordance to 
the prescribed paper format? 

Fair. 

The paragraphs and sentences 
are cohesive (flow together 
smoothly without disruption in 
the train of thought)? 

Fair. 

Potential interest to research 
community 

Unattractive. 

Originality of the work Unattractive. 

Significance of the main idea(s) Unattractive. 

Technical quality of the paper Unattractive. 

Author response At the time the paper was written only the provisioning 
mechanism, IDE engine, and preliminary evaluation 
results were available. There has since been significant 
work completed to provide further evidence that the 
simplified VM deployment approach does reduce the 
time to create and access VMs, reduce human errors, 
and improve build consistency. The additional details 
can be found in section 5.2 ‘Simplified VM Provisioning’, 
section 5.3.1 ‘VM Provisioning Timed Results’ and 
section 5.3.2 ‘Aggregated VM Provisioning Results’. 
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B.4 Measuring and Reducing the Cognitive Load for End Users of Complex Systems 
(Oakes et al, 2019) 

 

B.5 Blind Review 1 

 

Detailed Comments This paper examines a method and approach to 
measure how complex a system is to use, and how to 
reduce the complexity of such systems by minimising 
the requirement for human inputs as much as possible, 
in order to reduce the cognitive load for that user, or 
group of users.  
 
This paper addresses a study completed around using 
virtualised computer management systems interfaces of 
two well-known products AWS, Oracle Cloud, and 
compares the complexity of the steps and interface for 
end users to a private cloud less well-known system 
called the IDE.  
 
This paper is very well written. I have just one 
suggestion. The virtualised computer management 
systems introduced in this paper are very powerful. 
They can be potentially applicable to the study of social 
opinion evolution.  
 
See the seminal paper 'Hybrid consensus for averager-
copier-voter networks with non-rational agents'. This 
future direction can be mentioned in the conclusion 
section to further guide the readers and establish a new 
connection to a wider audience. 

Please rate your satisfaction 
with the basic sections 
(introduction, conclusion, 
works cited, etc.)? 
 

Good. 
 

The material is ordered in a 
way that is logical, clear, and 
easy to follow? 
 

Very Good. 
 

The writer adequately 
summarizes and discusses the 
topic? 

Good. 
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The writer makes some 
contribution of thought to the 
paper or merely summarizes 
data or publications? 

Good. 

The writer introduces and 
documents sources adequately 
and appropriately? 

Very Good. 

The formatting of the 
manuscript is in accordance to 
the prescribed paper format? 

Very Good. 
 

The paragraphs and sentences 
are cohesive (flow together 
smoothly without disruption in 
the train of thought)? 

Very Good. 
 

Are there any grammar, 
punctuation, or spelling 
errors? 

Little error. 

Author Response No concerns with review comments raised. 
 

 

B.6 Blind Review 2 

 

Detailed Comments 
 

The paper lacks crucial parts: related work, evaluation. 
 
Limitation of the study must be highlighted. 
 
Add portion of discussion to share your thoughts. 
 
Future work is not explained / more analysis of results is 
needed. More conclusions and recommendations, also. 
 
References must be recent; references older than five 
years should only be cited if necessary. 

Please rate your satisfaction 
with the basic sections 
(introduction, conclusion, 
works cited, etc.)? 

Fair. 
 

The material is ordered in a 
way that is logical, clear, and 
easy to follow? 

Fair. 
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The writer adequately 
summarizes and discusses the 
topic? 

Fair. 
 

The writer makes some 
contribution of thought to the 
paper or merely summarizes 
data or publications? 

Fair. 
 

The writer introduces and 
documents sources adequately 
and appropriately? 

Fair. 
 

The formatting of the 
manuscript is in accordance to 
the prescribed paper format? 

Fair. 
 

The paragraphs and sentences 
are cohesive (flow together 
smoothly without disruption in 
the train of thought)? 

Fair. 
 

Are there any grammar, 
punctuation, or spelling 
errors? 

No. 
 

Author response No concerns with review comments raised. 
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Appendix C - VM Platform Build Process 

 

C.1 IDE Provisioning  

 

The following appendix details the process experiment steps for deploying as simply 
as possible a VM using the IDE. 

 

C.2 VM Deployment Steps 

 

Step 1 &2: IDE access internally web-based on private network: 

 

 

 

Step 3, 4, 5, 6, 7, and 8: Select one click deploy VM – web browser output: 
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Step 9 Kickstart configuration, build and install example: 
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Step 9: VM automatically created & running: 
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Step 10: Process for accessing the VM – automatic SSH access and secure RSA key installed: 

 

 

Automatic key SSH RSA configuration and subsequent access: 
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C.3 Oracle Cloud Provisioning 

 

The following appendix details the process experiment steps for deploying as simply as 
possible a VM in the Oracle Cloud; the know-how required to provision a VM is considerable 
in terms of complexity. 

C.4 VM Deployment Steps 

• Step 1: Access Oracle Cloud: 

 

• Step 2: Configure Role: 
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• Step 3: Select compute as the option for VM deployment: 

 

 

 

• Step 4: Select the image you wish to use to install to the VM (OS version): 

 

• Step 5: Select the VM CPU and Memory Parameters: 
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• Step 6: Define VM Parameters: 

 

 

• Step 7: Define VM Storage: 

 

 

  



Intelligent Management of Virtualised Computer Based Workloads and Systems 

 

 

 

© James Oakes, 2020                                  254 | P a g e  

 

 

• Step 8: Add SSH key, create a key and upload the pubic key: 

 

 

• Step 9: VM Creation process: 
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• Step 10: Process for accessing the VM via the internet: 
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C.5 AWS Cloud Provisioning 

 

The following appendix details the process experiment steps for deploying as simply as 
possible a VM in the AWS Cloud; the know-how required to provision a VM is considerable in 
terms of complexity. 

 

C.6 VM Deployment Steps 

 

• Step 1 and 2 – Login and obtain role/access: 

 

  



Intelligent Management of Virtualised Computer Based Workloads and Systems 

 

 

 

© James Oakes, 2020                                  257 | P a g e  

 

 

• Step 3 – Select Compute & Quick Launch: 
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• Step 4,5,6 and 7 – Configure VM parameters, OS image and more: 
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• Step 8 – configure SSH key: 
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• Step 9 & 10 – VM creation process: 
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• Step 10 – Connect to your VM instance: 

 

 

 

 

  



Intelligent Management of Virtualised Computer Based Workloads and Systems 

 

 

 

© James Oakes, 2020                                  266 | P a g e  

 

Appendix D – IDE Build Procedures 

D.1 Procedure 1  

 

 
 

D.2 Procedure 2 
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D.3 Procedure 3 

 

 

D.4 Procedure 4 
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D.5 Source of Knowledge Rules 

 

• Knowledge rules: 
o Simple set of initial rules (expert heuristic knowledge, e.g. self-discovery) 
o Avoid having redundant rules within the set (i.e. rules not used). 

 

• Focus on doing things well (e.g. high utilisation/relevance of rules), with a structured 
set of situations based on the subjects areas investigated. 
 

• Source of knowledge rules is based on: 
o The authors expert knowledge.  

 

• Supporting common-sense of rules/actions from other experts in the same field of 
study  
 

• Avoidance of: 
o Subsequent human modification.  
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Appendix E – VM Failover & Migration 

 

E.1 IDE Results 

 

 
 

Appendix F – VM CPU and Memory  

 

F.1 IDE Results 

 

 
  

Fault Detection and VM Migration Process

Test 1 Test 2 Test 3 Test 4 Test 5 Test 6 Migration Mean Avg (seconds)

IDE

IDE VM Migration/Restart 14.22 15.10 16.45 15.30 15.21 14.96 15.21

IDE VM Failure Detection 7.34 7.22 7.56 7.13 7.21 7.19 7.28

21.56 22.32 24.01 22.43 22.42 22.15 22.48

Study 2(vMotion)

Study2 (XenMotion)

Paper 2 A performance study of live VM migration technologies

vMotion (Seconds) - Bandwidth 150 90 50 40 30 20 63.33

XenMotion (Seconds) - Bandwidth 700 400 200 120 100 80 266.67

vMotion (Seconds) - Latency 30 120 700 800 900 1000 591.67

XenMotion (Seconds) - Latency 150 175 300 450 600 750 404.17

vMotion (Seconds) - Packet loss 20 100 300 600 700 700 403.33

XenMotion (Seconds) - Packet loss 75 125 200 250 275 280 200.83

Study 1 (vMotion only)

Paper 1 Performance Implications of Resource OverAllocation during the Live Migration 

vMotion (Seconds) 30 38 48 52 48 53 44.83

CPU and Memory Resource Issue Detection

Test 1 Test 2 Test 3 Test 4 Test 5 Test 6 Average Time

IDE

IDE VM CPU Resource Issue Detection (Seconds) 300.00 300.00 300.00 300.00 300.00 300.00 300.00

IDE VM Memory Resource Detection (Seconds) 300.00 300.00 300.00 300.00 300.00 300.00 300.00

IDE VM CPU Resource addition (Seconds) 5.32 4.56 5.28 7.26 6.61 7.43 6.08

IDE VM Memory balloon addition (Seconds) 5.51 4.15 5.13 4.12 5.95 4.94 4.97

IDE average CPU util % over 300 (Seconds) 81.13 80.95 80.97 80.77 81.28 80.84

IDE average Mem util % over 300 (Seconds) 83.01 81.81 80.92 82.12 82.62 82.84
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Appendix G – Original Proposal  

 

G.1 Aims & Objectives 

 
 

1. Perform a detailed investigation and analysis of existing computer virtualisation and 
intelligent management systems, in order to provide underpinnings and evidence of 
originality of the project. 

 
2. Design and develop a real-time system performance monitoring tool to provide 

statistical data on CPU/Memory/IO usage and health, enabling data to be gathered 
reliably from all remote systems ready for processing by the planned intelligent 
management system. 

 
3. Investigate relevant Artificial Intelligence (AI) techniques for use within the 

development of an Intelligent Decision Engine (IDE) to automatically manage 
workloads and virtualised components. 

 
4. Integrate the system performance monitoring tool with the IDE to enable it to process 

real-time data inputs and make effective management decisions/actions based on the 
data feeds/analysis. 

 
5. Undertake a series of experimental trials to evaluate the performance monitoring tool 

and the IDE, within a suitable development framework using formulated test scenarios 
and data. 

 
6. To undertake a live demonstration of the final working platform as a proof of concept 

in operation.  
 


