Intelligent Management of Virtualised Computer Based Workloads and Systems

Submitted for the Degree of
Doctor of Philosophy
At the University of Northampton

2020

James Daniel Oakes

Intelligent Management of Virtualised Computer Based Workloads and Systems

© James Oakes 2020.

This thesis is copyright material and no quotation from it may be published without
proper acknowledgement.

© James Oakes, 2020 2 I P a g e

Intelligent Management of Virtualised Computer Based Workloads and Systems

Acknowledgements

| would like to acknowledge the support of my supervisory team, Dr Mark Johnson, Dr
James Xue and Dr Scott Turner for their invaluable advice and guidance throughout my
research degree. | dedicate this work to my three wonderful children, Joshua, Jacob and

Olivia.

© James Oakes, 2020 3 I P a g e

Intelligent Management of Virtualised Computer Based Workloads and Systems

Abstract

Managing the complexity within virtualised IT infrastructure platforms is a common
problem for many organisations today. Computer systems are often highly consolidated into
a relatively small physical footprint compared with previous decades prior to late 2000s, so
much thought, planning and control is necessary to effectively operate such systems within
the enterprise computing space. With the development of private, hybrid and public cloud
utility computing this has become even more relevant; this work examines how such cloud
systems are using virtualisation technology and embedded software to leverage advantages,
and it uses a fresh approach of developing and creating an Intelligent decision engine (expert
system). Its aim is to help reduce the complexity of managing virtualised computer-based
platforms, through tight integration, high-levels of automation to minimise human inputs,
errors, and enforce standards and consistency, in order to achieve better management and
control. The thesis investigates whether an expert system known as the Intelligent Decision
Engine (IDE) could aid the management of virtualised computer-based platforms. Through
conducting a series of mixed quantitative and qualitative experiments in the areas of research,
the initial findings and evaluation are presented in detail, using repeatable and observable
processes and provide detailed analysis on the recorded outputs. The results of the
investigation establish the advantages of using the IDE (expert system) to achieve the goal of
reducing the complexity of managing virtualised computer-based platforms. In each detailed
area examined, it is demonstrated how using a global management approach in combination
with VM provisioning, migration, failover, and system resource controls can create a powerful

autonomous system.

© James Oakes, 2020 4 I P a g e

Al
AMI
CLR
CLT
DaaS
DNS
ESX
FC
Gb
GB
GHz
GNU
HA
HyperV
ICMP
1/0
i86pc
laaS
IDE
IEEE
IOPS
loT
iSCSI
JSON
KBS

KVM

© James Oakes, 2020

Intelligent Management of Virtualised Computer Based Workloads and Systems

Abbreviations

Artificial Intelligence

Amazon Machine Image

Cognitive Load Rating

Cognitive Load Theory

Database as a Service

Domain Name Service

Elastic Sky X (VMware hypervisor)

Fibre Channel

Gigabits

Gigabytes

Gigahertz

Unix like operating system (free software foundation)
High Availability

Microsoft’s Hypervisor

Internet Control Message Protocol
Input/Output

8086 intel/AMD architecture
Infrastructure as a Service

Intelligent Decision/Design Engine
Institute of Engineering Electrical and Electronics
Input/Output Operations per second
Internet of Things

Internet Small Computer Systems Interface
JavaScript Object Notation

Knowledge Based System

Kernel-based Virtual Machine

S5|Page

LACP
LAMP
LAN
LDOM
LOM
LUN
Mb
MTBF
NAS
NFS
NGZ
N+1
OEM
00C
(ON)
OVM
Paa$S
PXE
RAM
RDBMS
RPM
Saa$s
SAIL
SAMP
SAN
SAS

SATA

© James Oakes, 2020

Intelligent Management of Virtualised Computer Based Workloads and Systems

Link Aggregation Control Protocol defined by IEEE 802.1ax

Linux Apache MySQL PHP

Local Area Network

Logical Domain

Lights Out Management

Logical Unit

Megabits

Meantime Between Failure

Network Attached Storage

Network Filesystem

Non-Global Zone, Solaris container
Indicates a resilient backup component is available
Oracle Enterprise Manager

Oracle Ops Center, formally Sun Management Center
Operating System

Oracle Virtual Machine Server

Platform as a Service

Pre-boot Execution Environment

Random Access Memory

Relational Database Management System
Redhat Package Manager

Software as a Service

Stanford Artificial Intelligence Language
Solaris Apache MySQL PHP

Storage Area Network

Serial Attached SCSI

Serial AT Attachment

6|Page

Intelligent Management of Virtualised Computer Based Workloads and Systems

SCSI Small Computer Systems Interface

Solaris OS Sun Microsystems Solaris Operating System (now Oracle)
SPARC Scalable Processor Architecture

SPoF Single Point of Failure

SSH Secure Shell

sundu SPARC-Enterprise SPARC V9 Unix Kernel

sundv SPARCV9 Unix Kernel

SunOS UNIX System V, now known as Solaris

TCP/IP Transmission Control Protocol / Internet Protocol

VAX Computers manufactured by Digital Equipment Corporation
VirtualBox Innotek/Sun’s type Il Hypervisor now owned by Oracle Corporation
VIP Virtual IP

VLAN Virtual LAN

VLAN Tagging VLAN encapsulation defined by IEEE 802.1Q

VM Virtual Machine

VMDK Virtual Machine Disk

vNAS Virtual Network Attached Storage

x86 Intel 8086 CPU Compatible Architectures

Xen Xen Hypervisor, Open-source virtualisation project
YAML YAML Ain't Markup Language

ZFS Zetabyte Filesystem

Zpool A ZFS dataset / pool

© James Oakes, 2020 7 I P a g e

Intelligent Management of Virtualised Computer Based Workloads and Systems

Nomenclature

Greek and Latin Script, Letters & Maths Symbols

roach:)

NS X3 uwxw X XS ySebb™

e~ 359

e Relating to Cluster Quorum

denotes a cluster node that is available or unavailable

denotes a cluster node that is unavailable

denotes the total number of cluster node votes possible

denotes the number of cluster node votes currently available

denotes the minimum number of votes needed to establish a quorum
denotes the ability to establish a cluster quorum

e Relating to Cognitive Load Rating

denotes the Cognitive Load Rating (CLR) for one task
denotes the Task Complexity

denotes the Process Mechanism

denotes the CLR for a set (sum) of tasks

denotes the number of tasks

denotes the task identifier

denotes the CLR mean average for a set of tasks

e Relating to User Task Complexity

denotes the derived result
denotes user input

denotes a simple task
denotes a moderate task
denotes a difficult task
denotes a manual task
denotes a semi-automatic task
denotes an automatic task

e Relating to VM provisioning Timing

denotes the total time to deploy a VM

denotes the task number

denotes the task identifier

denotes the participant time taken to complete a task (in seconds)
denotes the average (mean) participant time taken per task (in seconds)

© James Oakes, 2020

8|Page

Intelligent Management of Virtualised Computer Based Workloads and Systems

Table of Contents

CHAPTER 1: INTRODUCTIONuuiiitiiiiietiiiesecttiie s ettie s s eetaissesaanasssenasasssenssanseesnnsnssssnesnnseenes 20
00 = 7 1] 1= o T T N 20
1.1.1 Enterprise Computer VirtualiSationceiiiiiiiiiiiiieie ettt e e e e s rne e e e e e e 21
1.1.2 Type | Hypervisors: Advantages and Disadvantages........ccocuurieeieiiiiiiiiiiieiee et e e e e e e 24
1.1.3 Type Il Hypervisors: Advantages and Disadvantages........ccccuvveieeiiiiiiiiiiieeiee et e e e 24
1.1.4 Cloud Computing (Public, Hybrid and Private)ccueeeriiiieiiiiiiteeriiee ettt 24
1.1.5 Common Virtualisation Problems............eeeiiiiiiiieee et e e e 28
1.2 Thesis Motivation and AIMS.........iiiiiiiiieiiiiiiiiiiserrrr s rsssssssssssssssesssssssssssssssssssssssnnens 29
1.3 Thesis Benefits and Targeted Applicationsccccciiiiiiiiiiiiiiiiii e eens 30
1.4 Thesis LIMItatioNnscciiiiiiiiimiiiiiiiiieiniiiissnnenn s ssssse s s asse s s s e s sssssasnsssssssssssssnnnnnsnns 31
1.5 TheSisS SUMMAIY ..ciiiiiiiiiiiiiiiiiiiiiii e e e e e e s s e e e e e e e e s e e e e s eeeeeeeeeseesseesesesseeeeessessesssasaeasanns 34
CHAPTER 2: EXPERT, CLOUD AND VIRTUALISED SYSTEMSottt 36
8 B 130T LTt 4T R 36
2.2 Intelligent Organisationceeeeeeeeeeeeeeeeeneemmeenmmmmmmmmmsmmssssmsssnne 37
2.3 The Origins of Artificial INtellIGENCEceenennenennnnnnnsssssssssssssssssssssssssssssssssssssnnns 38
2.4 Expert System APPlICatioNs........ceeeeeeeeeeeeeeeeeeeeeeeeemmmmmmmmemmmmmmmmmmmmmsssnne 39
B 551 1o o Yo [8 ot o o PP UPPT PP 39
b B Y (0@ | RS 39
2LA. 3 IMIYCIN ittt ettt e ettt e e e e e s sttt e e e e e e e e bttt e e e e e e e e ettt eee e e e e e aa b raeeeeeeeaaabbraeeeeeeesaatrrraes 40
2.4 A INTERNIST A aiiiiitteee e e ettt e e e e ettt e e e e s sttt e e e e e e s bbbt aeeeeeeaaabbbbeeeeeessaaasbbbeeeeesssanbbbaeeeeesssnnnsbbeees 41
2.4.5 DENDRAL (DENDIItIC ALEOMTRM)eiiiiiiiie ettt ettt e ee e e e reee e e seree e s s ae e e s snraeeesnneeees 41
2.4.6 HEARSAY T AN 1l .eiiiiiiiiiiiiiieeee ettt e ettt e e e e s sttt et e e e e s s sttt e e e e e e s s s bt beaeeeeesssasbbbaeaeaeessnnnsbeneeas 42
2.4.7 MACSYMA (MAC's SYMDbBOIIC MANIPUIGLOL) .. .uviiiieiie ettt e e e e e searrae e e e e e e s e anbraeeas 42
2.4.8 PROSPECTORutttieetiiiiiiiiitteeesessitttteeeeeessasattaaeeeesessssabbeaeeeeesaaassbbeaeeaeesasasssbbaeeeaesssanssbeneaeeesssnnssssseees 42
2.4.9 Expert Systems: Why Have They Been ConsSidered?.......ccccceeeiiieieieiiiieiicceeeeeseeeeeeee s e e s 43
2.5 PUblic CloUd SYSTEMScceeeeeeeeeeieeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeneeeneeennansnssssssssssssssssssssssssnsssnnssssssssssnssssssssssssnnnnnnnnne 43
90 B 1o o Yo [8 ot o o PP PUPPT PP 43
R Y A @ 1Y IR A8 o LV AN I o - e o T X 44
2.5.3 Case StUAy 2: Oracle ClOUM e e e e e e e e e e e e e a e nan 47
2.5.4 Cloud Computing: How it Has Created Utility Based COmMpPUtiNg?.......cccoeiiiiiiiiiiiiiiiieiceeeeee e 49
2.6 Current Virtualisation and Cloud Management Approachesccccceeeeeeeeeeennneenennsensnnssssssssssssssssssssssses 50
N 570 B 1o oo 18 ot o o PP PPPPR TP 50
2.6.2 REVIEWEA APPIOGCNESeeeiee e e e e e e e e e e e e e e e e e e aaaaaaanaaannnnnnn 50
N ST N o ol [T o] 3 PP PRPPT TP 56

© James Oakes, 2020 9 I P a g e

Intelligent Management of Virtualised Computer Based Workloads and Systems

2.7 Intelligent System APPrOaChEs.ciiivieiiiiiiiiiiiiiiiiiiiiisirs s ss s sas s ssssas e ssssanssssssssesesssssesssssnsssns 61
2. 7. L INEFOAUCTION L. s 61
W B A\ I-{o] ¢ 11 14 o ST PR PP PUPRPPPP 61
2.7.3 T@XE VNN s 62
2.7.4 Natural LangUage ANAIYSIS ...ccceeiiiuieiiieeie ettt e e e ettt et e e e s st e e e e e s s sab e e e e e e e s s e b reeeas 63
2.7.5 Inference Engine (FOrward ChainiNg)ccooruiiiiiiiiee ettt et e st be e e s rabee e e saeeee s 64
2.7.6 COBNItIVE LOAT THEOIY ...ttt ettt e e et e e e e s st e e e e e e s s snnbbbbeeeeeessaanreaeeas 65
2.8 SUMMAIY . iiiiiiuunnieeniinesmnsssssesimmssssssssssssimsssnnssssssssss 66
2.8 L INEFOAUCTION L. s 66
2.8.2 GaAP ANAIY SIS s 67
B2 T 3 Yo Yo 1o Y= Yol TN 0 F=1 1 =T oo 68
R R VI o) oF- o o 1T PP PP PP PUPPUPPP 70
CHAPTER 3: METHODOLOGY AND EVALUATION STRATEGYccvvuiiiiiiiiiiiieiiiiieeeeiiieeeeviiineaeens 71
3.1 Methodology INtrodUCLION........cceeeeeeeeeeeeeeeeeeeeeeeneeeeeennneennenennsssanssnnne 71
3.2 Development FrameEWOIKceeeeeeeeeeeeeeeeememmmemmmmmmmmsmmmsmsssssmssnse 72
3.2, LA OratOry SEEUD .. s 72
3.2.2 SOftWare CoNfiGUIatioN e an 74
3.3 EVAlUQtioNn STrategycceiiiiiiiiiiinniiiiiiiiiiiinniniiiiiisisssseniiisssssssssssssissssssssnssssssssssssssssssssssssssssssssnsssssssssssnnes 74
3.3. 1 EVAlUQLioON APPIrOGCIESveiiiiiiieeiiiitee ettt e ettt e e e e e s s sttt e e e e e s s bbb ea e e e e e e s ssbbbbbeeeaeessananbreeeas 74
3.3.2 EXPert SYStem EVAlUGLiON....ccciiiiiiiiiiiieee ettt e st e e e e e st e e e e e st a e e e e e e s s e aabraees 75
3.3, EX PO I M ENE DOSIEN . . s 77
3.4 Qualitative Versus Quantitative Methods..........ccocccuriiiiiiiiiiinniniiiiniiniiniisnenissssseesssssssssee 78
3.4.1 QUAlItAtIVE EVAIUALION.....euiiieiiiieiiieiteeee e e st e e e e e s st e e e e e e e s s bbb r e e e e e e s s e aabreees 78
3.4.2 QUANTItAtiVe EVAIULION ...eviiiiiiiiiiiiieee et e e e e e e e st e e e e e e s st a e e e e e e s s e aabrrees 80
3.2.3 DAta ANAIY SIS .. an 82
3.5 Evaluation of Comparative SYStEMSccccvveeiiiiiiiiiiinnnneiiiiiiiiissieiiiiiissseetiiiiisssssssssisssssssssssssssssssssssses 83
3.5.1 Investigation 1: Autonomous VIM DeployMENtcc.eeeiiiiiiiiiiiiiiiiiiiieee et e e e e s 83
3.5.2 Investigation 2: Cognitive Complexity System EValuation..........occcviiieiieiiiiiiiiiieeieee e 85
3.5.3 Investigation 3: Workload Migration and Evacuation of VIMIS........ccooiiiiiiiiiiiiiiecccccscce e 87
3.5.4 Investigation 4: Overload of VM Memory Usage, Detection Time, and Resolution Time...................... 89
3.5.5 Investigation 5: Overload of VM CPU usage, Detection Time, and Resolution Time.........ccccceeeeeieiennn. 89
Y 4T 4= T U 90
CHAPTER 4: THE INTELLIGENT DECISION ENGINE........oiiiiieeeeeececeeeee et 92
4.1 Introducing the Intelligent DeciSion ENGINE........cccciiiiiiiiiiiiiiiiiiiiiccrsccssnnnns 92
4.2. IDE CharacteriStiCs ..ucccvevereeiiiiiissssnnneniiiiiissssssnneesinisssssssssessssssssssssssessssssssssssssesssssssssssssssssssssssssssnsasssssssssss 93
Ao DT =l O -1 a1 1- 1 o] o F POt 93
4.2.2 DeCiSion MakKingccooiiiiii 94
e B VI (=] ¢ o T =TT o o V1o V- U 94
4.2.4 Algorithms and ProCedUIES...........oooiiiiiiii e 94

© James Oakes, 2020 10 I P a g e

Intelligent Management of Virtualised Computer Based Workloads and Systems

4.3 IDE COMPONENTES ...ouuuuiiniiiiiiiiiiiiiiiiiiiiiiisiisiiiississsns 103
4.4 Defining the IDE IMOMElcciiiiicieereiiiiiccceceeesenssscsssennesessssssssssnneesessssssssnnnsessssssssssnsnsssssssssssssnnnasssnsss 108
4.5 Data-storage, Memory and Information Retrievalcccccceeeieiirvemeeiiiniiccnssenneneensccsssnnneesesessssssssnneessseas 109
4.5.1 Long Term STOrage StrateBY ...ccciiiiiiiiiiiiiiee e 109
4.5.2 Short and Medium Term Storage Strategy.......ccuuuiiiii ittt e e e e s eibrre e e e e e s eanes 109
4.6 Data Processing and Organisation.........ccccciiiiiiiiiiniiiiiiiiiiiiiiiiiiisssinsiiinisissiississsssssssssssssssssssssns 109
4.6.1 Data floOWS BETWEEN SYSTEIMSeiiiiiiiiiiiiiiee ettt e et e e ettt e e sttt e s satee e e s abte e e sttt e e s sabbeeessabeeessnbeeessnnees 110
4.6.2 Creating the Inference ENgINe ..., 111
4.6.3 System Self-management and Learning.........cccovvviiiiiiiii 111
4.6.4 System Real-time and SoUrce Data.........ccovviiiiiiiiec e, 112
4.7 System Availability and AULONOMYcccciiiiiiiiiiiiiiiinninnsssans 114
4.7.1 Establishing @ QUOIUMcccoiiiiii 115
4.7.2 CommMANd ZONE CONCEPL...ciiiieieiieee e 117
4.7.3 Keep AlIVe CritiCal PrOCESSEScciiieiii e 119
4.8 IDE Rule-base and INference ENGINE........ccccviiiiiiiiiiiiiiiiiiiiniiiiiiisssans 120
T N B g = (=Tl V=T o PP PRSPPI 120
4.8.2 PhysSical SYStemM EVENTS ..cccceeeeeeeeeeeeee e 120
4.8.3 VIM SYSTEM EVENTS ...iiiiiiiiiiiiee ettt s e e e e e e e et e e e e e e eeetba s eeeeeeeesbaaseeeeaeennsannnseaaaees 121
4.8 A TEXE ANAIYSIS.ccci i, 124
4.8.5 Knowledge Rule JUstificationsScoooiiiiiii i, 127
4.9 SUMMATY..ccetuuuriiieriiieenssssssissiirsssssssisssitssssssssssssttssssssssssssssesssnssssssssss 133
CHAPTER 5: SIMPLIFIED DEPLOYMENT OF VIRTUAL MACHINES........cccccooiiiiiiiiiiiiiiieeccciiinnn, 134
L% B 13 4 Yo 0 ot i oY TSP 134
5.2 Simplified VIVI PrOVISIONINGccceeeeeeeeeeeeeeeeeeeeeeeeemmmmmmmmmmmsmmsssmmssmssmsssnes 135
o {0 1T [=T Y Al o o Yol TP 135
5.2.1.1 Task Complexity DefiNitioncceiiiiiiiiiiiiiiiiiiieeieeeeeeeeeeeeeee e e e e e e eeeeeeeeeesssasesesesssaessseersrasssssnnes 135
LA A U =T o Y/ o 1=L TSP OPP PR POPPRTPPPPINN 137
LI I T 1= 1Y Y/ 1= PPPPPPPPRE 137
5.2.1.4 Process Types and Complexity Value Weightings...........ueveeiiiiiiiiiiiiiiiiiiiiiiiieieeseseesseesessesesssesenenes 138
5.2.1.5 User Results: Mode Average of Task Complexity Description...........ueeveeeeeeveeeeeeeeeeeeerieeeseseeennnnn. 139
5.2.1.6 VIM ProViSiONING PrOCESScicvtiiiiiieeeieeetiiiiiee e e e eetiise e e e e e e et as e e e e e e ettt e e eaeeeeasbaneeeeeaesstannseeaaaees 140
5.2.1.7 Hardware Provisioning PIatformeeiiiiiiiiiiiiiieieeeeeeeeeeeeeeeee e e e eeeaeasesssssasssssssssssssseanes 143
5.2.1.8 VIMI SiZiNG METNOUScciiiiiiiiiiiiiiiiieeeceeeee ettt ettt eeeeeeeeeeeseeessesssssasssasssssssssssssssssssssssssssssssnsssnnnnns 143
5.2.2 Experiment 1: VM Provisioning Timing COmMPariSON.........u.iieeiiiiiiiiiiieeeeeeetiiiineeeeseensiineeeeesessnnnnnns 144

LI A N oo o =1 1T 4 T o PP PPTPPPRPP 144
5.2.2.2 VM ProvisSioning EXPEIt USEISciuuiiiiiiiiii ittt e e e s e et e s e et s e s et e e e abs s e eab s e eabaneaenes 145
5.2.2.3 VM Provisioning EXPEriENCEU USEISeviiiiiiiiiiiiiiiieieieieeieseesessssessssrssessesssssssssssssssrsrsrrrar. 145
5.2.2.4 VM Provisioning NOVICE USEIS....ccuuuiiiiiiieiiiiiiee ettt e e s e et e e s et s e s et s e e st s e eaba s e earaeaenes 145
5.2.2.5 VM Provisioning BUild IMETNOASccciiiiiiiiiiiieeeieeeeeeeeeeeeeeeee ettt eeeeeeeeseaeaeeeessessssssssssssasssssanes 146
5.2.2.6 Re-visiting the IDE Provisioning Experiment with Queued Pre-built System Images...........c........ 146
5.2.3 Experiment 2: Cognitive Evaluation Performanceccoooooioiiieiiieeeeeeeceeeeeeeeeeeeeee e 146

© James Oakes, 2020 11 I P a g e

Intelligent Management of Virtualised Computer Based Workloads and Systems

5.2.3.1 Converting Qualitative Data into Quantitative Data: Is This Possible?cccccoviieiiiniieninnieens. 147
5.2.3.2 Cognitive EXPerimental PrOCESSccoiuiiiiiiiei ettt ettt ettt et e st e e s abee s 148
5.2.3.3 Cognitive Load Rating FOrMUIA.........coiiiiiiiiiiee ettt e e s aaee s 150
5.2.3.4 User Task CompleXity FOrMUIG.........oiiiiiiiiiiiie ettt ettt sttt s sabae e e s aaee e 151
5.2.3.5 Cognitive Load Rating Chart........oooeiiiiiiiiiee e e ee s 152

LR 33 T 1] N 152
5.3.1 VM Provisioning TiMed RESUILSueiiiiiiiiiiieee et e e s e e e e s s enbeeeees 152
oI J0 0 3T 0 T PP P PP PP P P PP PPPPPPPPPPPPPPPPPPRE 153

5.3 1.2 EXPEIIENCEM USEIS ..ceiiiiiiiiiiitieee e ettt e ettt e e e e ettt e e e e s st et e e e e e e e snnbbaeeeeeessesnnbrneeeeeesss 155
oI I8 7 [0) V[T =T PP P PP P PP PP PPPPPPPPPPPPPPPPPPRt 156
5.3.2 Aggregated VM Provisioning TiMed RESUILS.ceieiiieieieeeecececce s 158

o B = o= Al U =T PP UPTUPTRUPPPN 158
5.3.2.2 EXPEIIENCEA USEIS ...eeieeieeeiieieiieessaeeeaaa e e e aeeeeeeeeessaeesesssssssssssnnssnnnnnnnnnn 159
5.3.2.3 NOVICE USEIS...eiiiiiiiiiiiiiiiiiiitiittett ettt ettt ettt ettt ettt ettt ettt tae e e e et e et e e e ae e e aae e e e e e eeeeeeeeeeesenesensennnnnnnnnnnnn 161
5.3.3 Cognitive Load RAtiNg RESUILSuuuiieieciee e 163
5.3.4 OVEIAll RESUIES...ceieiiieeiee ettt e e e e et e e e e e e e sttt e e et e e e e s s sabbbbeeeeeessannbeneeas 164
5 SUMIMAIY .. iiiiiiiuneiiiiiiiieenssssssstiiressesssssssttmesssssssssssssessssssssssssssssssssssssssssessssssssssssessssssssssssssssssssssssssssssnnsssss 165
CHAPTER 6: IMPROVING WORKLOAD MIGRATION STRATEGIESccccooiiiiiiiiiiiiiiiieccciiiinnn, 167
R0 B 13N LT 4o N 167
6.2 Workload Migration Methods............cciiiiimmiiiiiiiinininnniiiiniieneeiniisssesiiissssssessisssssssssssssssssssss 167
6.3 EXPEIiMENT PrOCESS...cicvvuueiiiiiiiiennnniiiiisiiiessmmsiiieiiiesssesssisisiimesssssisesttresssssssssstttsssssssssssssssssssssssssssssssnsssss 168
6.4 Experiment 3: Workload Migration and Evacuation of VIMIS............eeeeeeeeeeeeemnnmnnnneeeeenseesssssssssssssssssssssnsnes 169
6.4.1 Experiment 3.1: IDE VM Migration/failoOver PrOCESScoccvveeieirieeeiirieeecitreeeeetee e setvee e staeeeeeaveee s 170
6.4.2 Experiment 3.2: vMotion VIM Migration/failover PrOCESScoccvveeeiiveeeeiiieeeeeeiteeeesetreeeesreeeesenveeens 172
6.4.3 Experiment 3.3: vMotion and XenMotion VM Migration/failover Process.........cccocveeveveeeeiirveeeeevnenn. 173
6.5 RESUILS 1ecieenneeiiiiiiisiinnnetiiiiiiisisnseetisissssssssssesssssssssssssssesssssssssssssssssssssssssssnsessssssssssssnssssssssssssssnnsnsssssssssse 175
6.6 SUMMAAIY...iiiiiiieuiiiiiiiiieiiueiiiitiitenteeiiitittessmessiiiettteessssssiesstteessssssssestteesssssssssssteessssssssssssteessssssssssssssnnssnss 179
CHAPTER 7: OPTIMISING PERFORMANCE AND AVAILABILITY OF VIRTUAL MACHINES 180
78 B 138 0T LT 4T N 180
7.2 EXPOIiMENT PrOCESS. .. ciceeeeeiiiiiiiienneniiietiiiennnsssieeiiteenmmsssssssstssnnsssssssssssssnsssssssssssssnnssssssssssssssssssssssssssnnnnnss 183
7.2.1IDE VM Performance AlgOrithim 183
7.2.2 VirtualBox Memory BalloOn DIiVET e e e e e e aan 184
7.2.3 Simulate VIM CPU and IMEMIOTY STIESS e e e e e e e e e e e e e e e e s s e s e e e e e a e e nan 185
7.2.4 Characteristics Compared Against Other STUIeSccooiiiiiiiiiieeee e 186
7.2.5 IDE Global ReSoUrce ManagemeENTt e n e nnnn 189
7.2.6 Comparative Methods ANalYSiSocciceieiieieieeeeece e e e e aan 189
7.3 Optimisation of System Performance and Availabilityccccccceiiiiiiiiiicnnnnininicnnnneeenesscceeeeeeesssesnns 193

© James Oakes, 2020 12 I P a g e

Intelligent Management of Virtualised Computer Based Workloads and Systems

7.3.1 x86-64-bit Architectures and Memory BallOONINGcoooiiiiiiiiiiiiiiiee e 193
7.3.2 x86-64-bit Architectures with CPU Hotplug FEatUres.........cocueiiiiiiiiiiiiie ettt 193
7.4 Experiment 4: Overload of VM Memory Usage, Detection Time, and Resolution Time..........ccccceeevinnnen. 194
7.4.1 IDE VM Memory BallOONING PrOCESSccoeiiuuiiiiiiiiieiiiiiteee e e e ettt e e e e sttt et e e e s s sibre e e e e s s s sanreneeas 194
7.4.2 Study 1 VM Memory BalloOn ProCESS......covuuiiiiiiee ettt ettt e e e e s st e e e s e s eneeas 194
7.4.3 Study 2 VM Memory BalloONn PrOCESS......coiuuuiiiiiiee ettt ettt et e e et e e s s e enbene s 196
7.5 Experiment 5: Overload of VM CPU usage, Detection Time, and Resolution Timeccccceeeeccveneeennencnns 197
7.5.1 IDE CPU HOEPIUZ PrOCESS ...ceeiiiiiiiiiiiiieeeeeeiiit ettt e e e e ettt e e e e e ettt e e e e e s s s bt tee e e e e e essnnbnaeeeeessssannbraeeas 197
7.5.2 StUAY 1 VIM CPU HOTPIUE PrOCESS ... s 198
7.5.3 StUdY 2 VIM CPU HOEPIUZ PrOCESS ... e 198
733 TN 198
7.6.1 IDE Characteristics (VirtualBoX BallOON)eeeeeeieieeeeeeeeeeeeeeeeeeeeeeeeeeeee e 200
7.6.2 Study 1 Characteristics (XenBallooNn)ccccuiiiiiiie et e e e e e e e e e e enaaaees 203
7.6.3 Study 2 Characteristics (IBallOON)uueiiiieiiiiiiieee et e e et e e e e e e s s eabare e e e e e e s ennreaeees 205
7.6.4 Platform Characteristic Scores (IDE, Study 1, StUAY 2)oeeiieeiiiiiiiiiieee e e 207
7.6.5 Binomial Scores (IDE, StUdy 1, STUAY 2) ...coieiiiiieeee ettt e s e e e e e s rrrree e e e e e e e snraae e e e e e e e sannrneeas 208
7.7 SUMMAIY .. iiiiienunniiiniiiiessssssssstimmsssssssssssttmsssesssnnsssss 209
CHAPTER 8: CONTRIBUTION, CONCLUSIONS AND FURTHER WORKccccvvtiiiiiiiiiinniciiiinnnn, 211
8.1 Thesis CONtIIDULION.....ccccueiiiiiiiiiiiinniiriiiiicsenrr s sasse s s s s s ssssssssssssssssssssnsnssssssssssssnnnsssnnas 211
8.1.1 Development of an Expert System Framework for Virtualised Computer Systemsccceeeeeveeeeennne 211
8.1.2 SIMPIified VIM ProViSIONING ... s 212
8.1.3 CLR formula to Determing Task COMPIEXItY.....ooeeeeeieeeeieeieieeeee e 213
8.1.4 Efficient VM Migration, Evacuation and Restart ROULINESccceeeeeiiieiiiiiiiiececce s 213
8.1.5 Global Scheduling Mechanism for CPU Hot-plug and Memory Resource Management..................... 213
8L 0 SUMIMIAIY ettt ettt ettt e et e ettt e e ett e e etaa e e e aaaa e e et e eaaaa e eesaneassanseaesanseensansenesnnsenntansesesnnseresnneennes 214
8.2 Overall Results and CONCIUSIONS.......ceeiiiiiiiiiiinnnnniiiiiiiiissnneeiiiiiisssseeniisissssssssessisssssssssssssssssssssssssssssssss 214
8.2.1 Simplified VM Deployment Experiment CONCIUSIONS.uiiieiiieieicccecce s 214
8.2.2 Cognitive Evaluation Performance Experiment CONCIUSIONS........ccooeiieeiiiiiiiiieeciee e e e 216
8.2.3 Workload Migration/Failover EXxperiment CONCIUSIONScvvieiiiieeeiirieeeciree ettt 217
8.2.4 Performance and Availability (CPU & Memory Overload) Experiment Conclusions...........ccccceeeeeennnn.. 217
8.2.5 SIgNIfICANCE OF RESUILS. .. .uueii e e e aan 218
8.3 FURUIE WK .. uuueeeiiiiiiiiiinnneeiiiiiisiisnssseniiiisssssssssesssissssssssssessnsssssssss 222
8.3.1 Prebuilding and QUEUING VIVIS..... ... e e e aan 222
8.3.2 Development with Additional Operating SYStEMS.iiiiieieice e 223
8.3.3 VirtualBox Teleport DeVEIOPMENT e ann 223
8.3.4 QUOIUM ClUSEEr NOGE TSTING e e e e e e e e e e e e e annn 223
e TR = To Yo 1 6] r= o3 D 13VZ=] [T o) 1 0=) 223
8.3.6 KNOWIEAZE RUIES ... e e e e e e e e e e e a e nnnnnnn 224
LS TR 2T L I 1V 224
8.3.8 Data SoUrces and TrigEer EVENTS e e e e e e e e ann 224
8.3.9 Laboratory Build for VMware, KVIM and Xen CIUSTEIScoiiiieiiicieiiccccccceceee e 224
8.3.10 Knowledge Rule TeSting With SLASiiiiceeeeeee e nas 225

© James Oakes, 2020 13 I P a g e

Intelligent Management of Virtualised Computer Based Workloads and Systems

8.3.11 Global ReSOUICE MaNAGEMENTuiiiiiiiieeiiee ettt ettt e ettt e e et e e e ettt e e s sbbe e e s sabee e e sbbeeessabaeeesnabaeens 225
8.3.12 Terraform, AWS CloudFormation and AMIS..........ooooeiiieeeeeeeeeeeeeeeeeeeeeeeeee e e 225
= o = 2 = L o TN 226
7Y o = V1 B) RN 237
APPENDIX A—VM DEPLOYMENT PROCESS......otiiiieiieiieeiieetee ettt ceaesinesaaees 237
AL EXPErt USErs RESUIESeuueeeiiiiiiiiiiiinnisnsisissississns 237
AL2 IDE RESUILS ...ttt e ettt e ettt ee e e e e e e e et e e e e e e e eaa b e eeeeeeaasaa i aeeeeseeasannnsaeessenssannneeeeseenstnnnaeeeesens 237
YN N 0 - Tol L3 =T U1 £ S PPOPURRURPRN 237
AL AWS RESUIES ...ttt e et e e e e e e e e et s e e eeeeeaa bt eeeeeseeasaaan s eeessensstanneeeeseenstannnseaasens 237
A.5 Experienced USers RESUILScccciiiiiiiiiiiiiiiinininisiissssissans 237
A LB IDE RESUILS ... eeeieiiiieee e e ettt ettt e e e e e e ettt e e e e e e eaa b e eeee s e e e s b e eeeeseessaaan s eeessenssaaansseesssenstannseeeesees 237
A7 OFACIE RESUILS .oevvtiiieeeeeeeeetcee e ettt e e e e ettt e e e e e e eee b et eeeseeaaba e eeeessessbaaaeeessesssananeeeeseessrrnnnseeesees 238
AL AWS RESUIES ...ttt et e ettt e e e e e e e et e e e e e e e e aa b b eeeeesesabaaseeesseessaaaneeesseesstannseaeeees 238
A.9 NOVICE USEIS RESUILS........cetiieeieeniieeiiiieeeenieeeetieeeensseeesteeennnsssseessseenssssssesssseesnnssssssssssssnsssssssssssssnnssnnnnssns 238
ALLO IDE RESUIES ..ottt e e et e e e e e e e e et e e e e e e e e aa b b eeeeeseeabaa s eeesseessaaansseeeseesstrnnseaasees 238
AL OracCle RESUILS .ovvvuiieeeieeeeiicee ettt ettt e e e e e e e et e e e e e e e e aa b e e eeeeseaabaa e eeessesssaaaseeeseesstnnnseaeeees 238
ALL2 AWS RESUIES ..ceevitiieeee ettt e ettt e e e e ettt e e e e e e e ee b e e eeeeeeaa b b eeeessesabaaan s eeesseessbaanseeeseesstrnnseeseees 238
APPENDIX B — BLIND PEER REVIEW COMMENTS (PUBLISHED PAPERS)cceeevviiiiiiiiiinnnn. 239
B.1 Simplified Deployment of Virtual Machines Using an Intelligent Design Engine (Oakes et al, 2016) 239
B.2 BlINA REVIEW L..oiviiieeieieeiiiiiee ettt e e e e ettt e e e e e e e e et e e e e e s e ee b e eeeeseesabaa s eeessesssbanneeesseessrannnaeaeeens 239
B.3 BlING REVIEW 2..eeieiieeeiieeeetiteee ettt e e e ettt e e e e e e e e ettt e e e e e s e e et bt e eees e e s s baa e eeeseessbbaseeesseessbaaseearees 240
B.4 Measuring and Reducing the Cognitive Load for End Users of Complex Systems (Oakes et al, 2019) 242
B.5 BlING REVIEW L..oiiriiieiiiieeiiiiiee ettt e ettt e e e e e e e e ettt e e e e s e ea bt e eeeseesabaa e eeeseessabaaseeesseessrraneeaanees 242
BB BlING REVIEW 2..oivriieei ittt e ettt e e e e e e et e e e e e s e e et bt e eeesee s e baa e eeeseessbbaseeesseessbransseaanens 243
APPENDIX C - VM PLATFORM BUILD PROCESS ...ttt ettt ev e 245
C.1 IDE PrOViSIONINE .. .ciiiiiieeueeiiiiiiiiennnniiiesiiiesnmsssiseiiessnnmssssssssessnnsssssssssssssnsssssssssssssssssssssssssssnsssssssssssssnnnsnss 245
(O3 Y LY 1= o] 101V 4 T=T 0 A =T o L3 245
C.3 Oracle Cloud ProViSiONINGcceeeeeeeeeeeeeeeeeeeeeeeememmmeemmmmmmsmmmssnnes 251
(O Y Y 1= o] Lo 1Y T=T 0 A =T oL 251
C.5 AWS CloUd ProViSIONING.....cceeeeeeeeeeeeeeeeeeeeeeeeeemeeeeenmenseesnmmsmsssnnen 256
(O oY A1V D= o Lo 1Y T=T 0 A =T o L3 256
APPENDIX D — IDE BUILD PROCEDURES.cuituiieieeeeeeeeeeee et ettt ettt et eee st sesensenseneeneeneens 266

© James Oakes, 2020 14 I P a g e

Intelligent Management of Virtualised Computer Based Workloads and Systems

D.L1 ProCEAUIE L...ccuuuireeeniirennnierennneerennsertensseseenssestenssesssnssesessssessssssessssssesensssessnssssssnsssssenssssssnssssssnssssssnsssssnnes 266
D.2 PrOCEAULIE 2...ceuuuireeeeierenenierennseerenssertenssestenssestanssessssssesessssesssssssssssssessssssesssssssssnssssssnssssssnsssssnssssssnsssssnnes 266
D.3 PrOCEAUIE 3cceeeeieeiiireeeienieeerreeennssseesseeennnssssesessesnnsssssssessennnssssssssssesnnsssssssesssnnnsssssssesssnnnsssssssesssnnnnnnns 267
D.4 PrOCEAUIE 4ceeeeeeeeiireeeeeeeeeetreeennsseeesseeennsssssesessesanssssssssssennnssssssssssssnnsssssssessssnnssssssssssssnnsssssssesssnnnnnnns 267
D.5 Source of KNOWIEAZE RUIES.......cceiiiiceirneeeiiieiccscnnnetensecesssnnnnesessssesssssnseessssssssssnnsessssssssssnnnsessssssssssnnnes 268
APPENDIX E—VM FAILOVER & MIGRATIONcvieiiitiieeeeeeeee ettt ettt e e e s 269
E.L IDE RESUIES ...ceireeeeenneeeiereenennneeeereeennnssseesseeennnsssssesssesnnssssssssssennnssssssssssssnnnsssssssssssnnsssssssssssnnssssssssesssnnnnnnns 269
APPENDIX F —=VM CPU AND MEMORY .oeriiiiiieiseteeteete ettt et e st esi st esa s saesaae e 269
F.1 IDE RESUILS ...eeeeeeeenneeeiieeenennneeereeeennsssneesseeennnssssseeseesnnssssssssssesnnssssssssssssnnnssssssssssssnsssssssssssasnnssssssesssnnnnnnes 269
APPENDIX G — ORIGINAL PROPOSAL ... cvuiiiiiiiiiiieiiieeiie et set st st ssbesbesbaesbesbaesbans 270
G.1 AIMS & ODJECLIVES ..cevveereeenennnnnnnnnnnnnnmnnmnnnsnsssnes 270

© James Oakes, 2020 15 I P a g e

Intelligent Management of Virtualised Computer Based Workloads and Systems

List of Figures

Figure 1.1 Example of Virtualisation of x86 hardware (public domain image)..........cccccevvvveeeeerinnnnns 22
Figure 1.2 Type | Hypervisor v TYPe Il HYPEIVISOIScoviiiiiiiiiiiieieeieeeeiiiiie e eeeeetiiee s e e e e eeviien e e e e eeees 23
Figure 1.3 Common Virtualisation Problemse s 29
Figure 2.1 Cloud Leaders Market Share (Source: Forbes, 2018)........cceeeeiiieciiireieeeeeeeiiciieeeeeee e e e 44
Figure 2.2 CloUd SEIVICE SACKuuuuiiiiei s 49
Figure 2.3 The MOSAIC ArCHItECIUIE ...uuueeiiiii s 54
Figure 2.4 Machine Event Response MeChaniSm...... ... s 63
Figure 2.5 Natural Learning Mechanism — Information Organisation.........ccccceeeeeeiiiiiiiiiiicniiiiecieienns 64
Figure 2.6 Machine Learning Mechanisms EVENt RESPONSE........uuuuuuuuuuuuiieeeeece e 65
Figure 3.1 Initial Laboratory SETUD e s 73
Figure 3.2 Final Minimum Laboratory SELUP s 73
Figure 4.1 IDE Program COMPONENTS ..c.uuuuureeeiiiiiiiiiiiineeeeeteeiitiiasseeeeteetsinsaseeseseeemmmnsnsessesseemmnnsnnens 103
Figure 4.2 IDE ArchiteCture MOEluuuueeuieiiii s 108
Figure 4.3 IDE NEtWOIK FIOWSuuuuuiiiiiiiiieiiitiit s 110
FISUIE 4.4 IDE TrigGer EVENTS ..uuieiiiieeiiiie ettt e et s ettt s e e et s s e e et s e eeeaa s e eeanasesesnansesennnns 120
Figure 4.5 IDE Example of FOrward-chaining ... 123
Figure 5.1 Cognitive Load Rating Chartuuuueeiiiii s 152
Figure 5.2 IDE Timed VM Provisioning — EXPEert USEISuuuuuuuuuuuuuuniiieieeceseessse s 153
Figure 5.3 Oracle Timed VM Provisioning — EXPert USEIS ... 154
Figure 5.4 AWS Timed VM Provisioning — EXPert USerS ..o 154
Figure 5.5 IDE Timed VM Provisioning — EXperienced USEIScccceeeiiieiiiiiiiiiiiieieccceeeeeee e 155
Figure 5.6 Oracle Timed VM Provisioning — EXperienced USerscccceeeeeeriiiiiiiiiiiiiiiieeeceeeeeeeeeeenn 155
Figure 5.7 AWS Timed VM Provisioning — Experienced USersS........cccoeeeeeiiiiiiiiiiiiiieieicceeceeeeeeee e 156
Figure 5.8 IDE Timed VM Provisioning — NOVICE USEIS.........uuuuuuuuicicicesseeessse e 156
Figure 5.9 Oracle Timed VM Provisioning — NOVICE USEIS........uuuuiiiiiiiiiceeseesesesee e 157
Figure 5.10 AWS Timed VM Provisioning — NOVICE USEIS.........uuuuuuiiiiieieieeesseeses s 157
Figure 5.11 IDE Aggregated Timed VM Provisioning — EXpert USErs.......ccccceeieeieiieiriiiiieiiieeieeeeeeeennnn 158
Figure 5.12 Oracle Aggregated Timed VM Provisioning — EXpert USers.......ccccceeeeeeieieieeiieiieeiieieennns 159
Figure 5.13 AWS Aggregated Timed VM Provisioning — EXpert USerscccccceeeeeeeeieiiiicceciiieeeeeeeannn 159
Figure 5.14 IDE Aggregated Timed VM Provisioning — Experienced USers........ccccoeeeeeereiieeiiieeesennnnns 160
Figure 5.15 Oracle Aggregated Timed VM Provisioning — Experienced Users.........cccceeeeeeeiieeennennnn. 160
Figure 5.16 AWS Aggregated Timed VM Provisioning — Experienced USersccccceeeeeeiiiiiiieceieennnn. 161
Figure 5.17 IDE Aggregated Timed VM Provisioning — NOViCe USerS......ccccceiieiieiiiiiiieieiciiieeeeeeeeennns 161
Figure 5.18 Oracle Aggregated Timed VM Provisioning — NoOVice USEersccccceeeiiiiieieiieiiiieeeeeeennnn 162
Figure 5.19 AWS Aggregated Timed VM Provisioning — NOVICe USErsS......cccccceeeieieeiiieieiiiiiiieeeaeeennns 162
Figure 5.20 CLR VM Provisioning — EXPErt USEIS.iiiiiuiiiiiiiieieeiie et eee e e ean e e eai e e eeaaaes 163
Figure 5.21 CLR VM Provisioning — EXperienced USEIS.ccuuuuuieeiieeiieeeiiiie e e e eeeevvee e e e e e eeeannne s 163
Figure 5.22 CLR VM Provisioning — NOVICE USEIS.ciuuuiiiiiiiie it e e e e e e eee e e eaan s e s ea e e eeaaaes 164
Figure 6.1 Experiment 3.1 VM Failover Method (IDE)...........iiicccccececeeeeee e 171
Figure 6.2 Experiment 3.2 VM Failover Method (StUAY 1)iiiiiiiiiiiieecccccceeecc e 172
Figure 6.3 Experiment 3.3 VM Failover Method study 2 (Feng et al, 2011)ccccoeeiiiiiiiiiiiiieciinnnn. 174
Figure 6.4 IDE VM Failure Detection Time Experiment 3.1 (IDE)uuuuiiiiiiiieiiiiiceceeeecee e 176
Figure 6.5 IDE VM Failure Detection and Migration Time Experiment 3.1 (IDE)cccceeeeeeeiieeeiennnnn. 176

© James Oakes, 2020 16 I P a g e

Intelligent Management of Virtualised Computer Based Workloads and Systems

Figure 6.6 Study 1 VM Failure Detection and Migration Time Experiment 3.2 (vMotion)................ 177
Figure 6.7 Study 2 VM Failure Detection and Migration Time Experiment 3.2 (vMotion)................ 177
Figure 6.8 Study 2 VM Failure Detection and Migration Time Experiment 3.2 (XenMotion)............ 178
Figure 6.9 Comparative Mean Average VM Migration Time for Experiments 3.1, 3.2 and 3.3......... 178
Figure 7.1 IDE VM Simulated Tests for Load Stress (USINg StresSS-Ng)........ccccvveeereeeeeicciviereeeeeeeennns 186
Figure 7.2 IDE Global Resource ManagemeENt e 193
Figure 7.3 IDE Performance Monitoring and Memory Ballooning Results.........ccccceeieiiiiiiiiiiiiiiinnnn. 194
Figure 7.4 Study 1 Xen Balloon Process (Zhang et al, 2017)cccuvveeeeeeeeiiiciiieeeee e e eccivreee e e e e 195
Figure 7.5 Study 1 VM Memory Balloon Process (Zhang et al, 2017)ccccvveeeeeeeeiciciieeeeeee e, 196
Figure 7.6 Study 2 iBalloon system overview (Zhang et al, 2016)........cccccceevviiiereiniieeeeinieereeniieennn 197
Figure 7.7 IDE Performance Monitoring and CPU Hot-plug RESUILScceeiiiiiiiiiiiiiiicccceceececa, 198
Figure 7.8 Binomial System Characteristic RESUILSccceviiiiiiiiiiiiiiiiee e 208

© James Oakes, 2020 17 I P a g e

Intelligent Management of Virtualised Computer Based Workloads and Systems

List of Tables
Table 2.1 ComMPAring AWS fEatUIES. e s 47
Table 2.2 ComMpParing Oracle fEatUIESuu s 49
Table 2.3 Current Virtualisation/Cloud Management FINdINGScccoviieeeiiiiieeeeiiiieeeeeireeeeciveee e 61
TADIE 2.4 GAP AN@IYSIS..uuuuuuiiiiiiiiiieiti s 68
Table 2.5 APProach ChallENGES......uu e s 69
Table 2.6 ReSarch JUStifiCatioNsueuiei s 70
Table 3.1 Qualitative Experiment Methods 80
Table 3.2 Quantitative EXperiment Methodsuuuu s 82
Table 3.3 VM Deployment EXPerimENTuu e s 85
Table 3.4 VM Deployment Cognitive Load EXPeriment..... ..o 87
Table 3.5 VM Evacuation, Workload Migration and Load Management Experimentccccceeunn. 88
Table 3.6 VM Memory Overload, Detection and Resolution Experiment........ccccooeeviiiiiiiiiiiiiiiiciinnnn, 89
Table 3.7 VM CPU Overload, Detection and Resolution EXperiment.........cccccceeeeiiiiiiiiiiiciieiieeeeeeeennn 90
Table 4.1 Algorithm/Procedure 1: Remote System DiSCOVEIY......cvviieirirvereeiireeeeeireeeeeectreeeeesareeeeenns 95
Table 4.2 Algorithm/Procedure 2: Messaging Command ProCESS........ccuveveercuveeeeiiiveeeeeiiveeeeesveeeeens 96
Table 4.3 Algorithm/Procedure 3: TEXt MININGccoivivveiiiiiiieieeiiieeeeeeieeeeeeeireeeeeetreeeesebreeeessareeaeenns 96
Table 4.4 Algorithm/Procedure 4: Data Organisationccceeeeiiveeeeiiiieeeeeiiireeeeeeireeeeeeetreeeeeeaveeee e 97
Table 4.5 Algorithm/Procedure 5: Pattern Analysis and LEarningcccvveeeevcveeeeiiireeeeeiireeeeeiveeeeenns 98
Table 4.6 Algorithm/Procedure 6: Forward ChaiNing..........cccuvieeeiireeeeiiiieeeeeeiieeeeeereeeeeeeireeeeeeiveee e e 99
Table 4.7 Algorithm/Procedure 7: VIM DEPIOYMENTeeeeiireeiiiiiieeeeeireee et eeeireeeeeereeeeeeareee s 100
Table 4.8 Algorithm/Procedure 8: Preliminary Performance Monitoring.......ccccccevevveeeeenireeeeeennennn. 100
Table 4.9 Algorithm/Procedure 9: Event Trigger and Decision MaKingcccceeeveveeeeeiireeeeeecnnnnnn. 101
Table 4.10 Algorithm/Procedure 10: Self-MONItOriNG.......ccocvvveiiiiiieee et 102
Table 4.11 IDE Program FUNCEION SUITEuuuuuuiiiiiii s 107
Table 4.12 IDE RUle MatChing PrOCESSuuuuuuuuuuueuiiniiiii e aan 114
Table 4.13 IDE Cluster Resource EVACUALION........civiuiiiiiiiiee ettt sirnee e e e e e s s 118
Table 4.14 Event Knowledge Rule: Physical host dOWNueueiiiiicccc 120
Table 4.15 Event Knowledge Rule: Physical Host Memory Capacity.......cccceeeeeeeiiieiieeieciieieieeeieeeennns 121
Table 4.16 Event Knowledge Rule: Physical Host Memory CPU ... 121
Table 4.17 Event Knowledge Rule: Memory overloadccccccoiiiiiiiiiiiiiiicicccccccceccce e 122
Table 4.18 Event Knowledge Rule: CPU overload 122
Table 4.19 Event Knowledge Rule: VIM Miigration......... ... 123
Table 4.20 Event Knowledge Rule: VIM UNIreSpONSIVE.uuuuuuuuuie e 124
Table 4.21 Event Knowledge Rule: VIM EVACUATE........uuuuuuuei s 124
Table 4.22 Example of Keyword Pattern ANalysSiS..... ..o 125
Table 4.23 Example of Pattern Keyword MatChing....... ... i 126
Table 4.24 Knowledge Rules JUSTIfiCatioNSuuuuunuiie s 133
Table 5.1 Task COMPIEXITY RATING......uuuuuuiiiii s 136
Table 5.2 ENA-USEI TYPES .uuuuuruuuuiuuuinniniiiieuiiietnnenaaanannnnnannnnnnnannnannnannnnnnannnnnnnnnnnnnnnnnnnnnnnnnnnnnnaaaaaaaann 137
Table 5.3 Process Mechanism Definition...........ueviiiiiiiiieiee et esare e e e e e 138
Table 5.4 Process, Task, Sub-component DefinitioNns.........cccccceiciiiiiiiiiiiiiiie e 138
Table 5.5 VM Provisioning 10-Step Complexity (Mode AVErage)ccccceeeeeeeeeeiiiieiieieieeeeeeeeeeeeeeeennns 140

© James Oakes, 2020 18 I P a g e

Intelligent Management of Virtualised Computer Based Workloads and Systems

Table 5.6 VIV ProviSiONiNG SEQUENCEuuuuuuueiieiiii s 143
Table 5.7 Allocated VIM COMPULE RESOUITEuuuuuuiiiiiiiii s 143
Table 5.8 Similar Cognitive Load Studies (PaaS et al, 2003)ccuveeeeeeeeiiiciiieeeee e e e e e e e e e 149
Table 5.9 VM Provisioning EXperiment RESUIES.u s 164
Table 6.1 Simulated VM Failover/Migration IDE Preparation StEPSccceeeevcvveeeeriveeeesiiieeeeeireean 169
Table 6.2 Simulated VM Failover/Migration IDE StEPScccueeeeiiiiieeeeiiiieeeeeeireeeeecireeeeesrveeeesvreee s 169
Table 6.3 Experiment 3.1, Downtime and Total Migration Timed Results (IDE)ccccceeeeeeeennnns 172
Table 6.4 Experiment 3.2, Downtime and Total Migration Results vMotion (Shirinbab et al, 2016) 173
Table 6.5 Experiment 3.3, Downtime and Total Migration Results vMotion (Feng et al, 2011)........ 175
Table 6.6 Experiment 3.3, Downtime and Total Migration Results XenMotion (Feng et al, 2011) ... 175
Table 7.1 IDE VM Extended Performance Resource Management Algorithmcccoeeeiiiiiiiiiinnnn. 184
Table 7.2 Binomial Comparative Resource Performance Features/Characteristicscccceeeeeeeennne 187
Table 7.3 Experiment Balloon/HOtpIUG DIIVELScoicuiieeiiiieeecciiieeeceireee e eetee e e e stre e e e savaeeeesaraee s 189
Table 7.4 Comparative Performance Resource Management Studies........ccceeeeeeeeiiiiiiiiiiiiiiiisiininnns 192
Table 7.5 IDE Resource Management EValuation ... 202
Table 7.6 Study 1 Resource Management EValuation.........cccccccoiiiiiiiiiiiiiiciccicccc e 205
Table 7.7 Study 2 Resource Management EValuation..........cccccoooiiiiiiiiiiiiiiiiiciccccccccc e 207
Table 7.8 Overall System CharacterisStic SCOreSuuuuuuuuuuuuuuuniiieieeeee s 208
Table 8.1 Thesis CONtriDULIONSuuuiiiei s 214
Table 8.2 IDE versus AWS VM ProviSioning TiMe.........uuuuuiccc s 219
Table 8.3 IDE versus Oracle VM Provisioning TiMEuuuceee s 219
Table 8.4 IDE VErsuS AWS CLR......iiiiiiiiiiiiiieeie ettt e e e sttt e e e e s s s bbee e e e e e s s ssssabaaaeeeeesssnnnns 219
Table 8.5 IDE VErsuSs Oracle CLRcciiiiiiiiiiiiitiee e e ettt e e s sttt et e e e s s siirae e e e e e s s sssabbaaeeeeesssnnnns 220
Table 8.6 IDE v Paperl (vMotion) Avg. (Mean)Failover/Migration TiMecccceeevviveeeeeiireeeeennnnnn. 220
Table 8.7 IDE v Paperl (vMotion) Best Failover/Migration TIiMeccccvveeeeecveeeeiiiveeeceireeeeeevveene 220
Table 8.8 IDE v Paper2 (vMotion, XenMotion) Avg. (Mean) Failover/Migration Time............c......... 221
Table 8.9 IDE v Paper2 (vMotion, XenMotion) Best Failover/Migration Timecccccccoeevvereeenneenn. 221
Table 8.10 Platform Features, Availability and Capability SCOresccoooeieiiiiiiiiiiiiiciciciieceeecceee e, 222
Table 8.11 Platform Binomial Characteristic ASSESSMENt SCOIESevviieiiiiiiiiiieiieeeeiiiiireeeeeee e s 222

© James Oakes, 2020 19 I P a g e

Intelligent Management of Virtualised Computer Based Workloads and Systems

Chapter 1: Introduction

1.1 Background

In the 1960s it was IBM’s research Cambridge scientific centre (Massachusetts)
experiment with CP-40 that paved the way for the beginning of the full virtualisation of

computer systems (Pugh et al, 1991). Full virtualisation is defined as multiple operating system

instances sharing the same computer hardware resource. From there on developments have
continued on apace, and since the late 1990s onwards, there has been a shift in virtualising

computer systems on the more popular x86 system architectures (Rosenblum, 2004). This

progression has led to widespread use of virtualisation technology to consolidate computer
systems within the modern datacentre space. Ironically, while this event was something that
was deemed beneficial in the IT industry using virtualised systems to reduce the need for
physical system datacentre space, power consumption and cooling, there was one aspect that
many organisations failed to factor in and that was the overhead of increased complexity due

to the increased density ratios of VMs to physical (bare metal) systems (Rasmussen, 2009; Al-

Ou’n et al, 2015). Indeed, managing a set of physical computers with different hypervisors that

are for example hosting hundreds (or even thousands) of Virtual Machines (VMs) with
different operating systems is not a simple task, especially when you start considering inter-

dependencies (Su, K. et al, 2015). It is this challenge that leads to the possibility of using an

intelligent system to manage such a complex virtualised environment; ultimately, this leads to
the concept of machines managing machines, which is in part one of the motivations of the

author’s research discussed later on (Gazis, 2016).

The very idea of designing and building an intelligent system in order to simulate a human
expert administrator that has some level of autonomy, logic processing and functional self-
awareness is an exciting prospect in terms of what potential it has to improve VM systems

provisioning and management (Haugeland, 1989; Diao et al, 2009). Indeed, being able to

imitate human natural intelligence and behaviours closely allows the system to exhibit

synthetic intelligence when he or she interacts within the controlled environment (McCorduck

© James Oakes, 2020 20 I P a g e

Intelligent Management of Virtualised Computer Based Workloads and Systems

et al, 1977). The term ‘intelligent system’ can be described as having the means or ability to
be able to analyse information, understand or make sense of it in the context of a certain
knowledge area, and subsequently process and organise. Once organised, the information is
then made accessible and used to create methods to build system and environmental
interactions, which ultimately allows it to solve problems in an efficient or elegant way (Mei
et al, 2010). Humans have long strived to imitate and replicate the processes and systems that
exist in nature and in some way, transfer this expertise (expert knowledge) into machine like
systems. The challenge to devise an intelligent expert system to provide knowledge for solving
the complexity of managing enterprise virtualised systems is something that provides the

opportunity to create a unique solution approach (Callaos, 1994; Spangler, 1991).

The ability to extend the control of such intelligent systems is potentially further
enhanced by network technology advances, that have resulted in many end-user devices now
having an Internet Protocol (IP) address and connectivity to the internet; indeed, there are
now literally billions of devices which represent a modern paradigm now known as the
Internet of Things (loT). Given this level of connectivity, either through data networks, mobile
telecommunications, wireless protocols and others, it follows that this can be used as an

advantage to control remote systems (Gazis, 2016; Jing, 2011).

1.1.1 Enterprise Computer Virtualisation

With the beginning of virtualisation on the x86 architectures, there has been a clear shift

towards the use of popular hypervisors like VMware, Xen and others (Scroggins, 2013; Oludele

et al, 2014); it was in the late 1990s that the first modern hypervisors began to make inroads

into the datacentre space (Rosenblum, 2004). Below is a diagram that shows how

virtualisation maps on to a physical host:

© James Oakes, 2020 21 I P a g e

Intelligent Management of Virtualised Computer Based Workloads and Systems

Hypervisor - (Hyper-V, Xen, ESX Server)

Hardware - (CPU, Memory, NIC, Disk)

Figure 1.1 Example of Virtualisation of x86 hardware (public domain image)

To provide further details of the above virtualisation example, the diagram figure 1.1
shows a typical x86 computer. Such a system (like any) has a finite amount of CPU, memory,
network and disk capacity and performance. Given that most enterprise computers now have
a large amount of CPU cores, threads, physical RAM, multiple Network Interface Cards (NICs)
and disks, for most types of applications it makes sense to divide these resources amongst the
VMs that host them (Tsai, 2009). The hypervisor layer is the critical layer that manages the
hardware resources (synchronising, queuing and scheduling), typically presenting virtual CPU,
memory, network and disk devices (Lakshmi, 2010). These virtual devices are made available

to the local VM and are assigned to it as resources.

In the example figure 1.1 above, it is assumed there are three VMs that can divide the
total resources available, therefore sharing the complete resource pool of the physical host
computer. Each VM is often referred to as a guest of the physical host computer, in that it
resides as an entity on that particular host system. Typically, a guest VM has its own operating

system installed and configured. One of the advantages of virtualised systems is that each

© James Oakes, 2020 22 I Page

Intelligent Management of Virtualised Computer Based Workloads and Systems

guest may have a different operating system type, which can reside on the same physical host.
For example, one VM may have a Linux type OS, another a Windows type OS and another a
Solaris x86 type OS. In this way, virtualised systems provide a great deal of flexibility to the
end-user, in terms of increasing the number of configuration permutations available and

applications that can be installed, configured and supported (Wood, 2011).

At this stage, it is worth highlighting the difference between type one and type two

hypervisors. The figure below shows the fundamental differences:

Applications Applications
Guest 05 Guest 05
Hypervisor Hypervisor

Host 05
] |
| |
I I
Type 1 Hypervisor Type 2 Hypervisor

Figure 1.2 Type | Hypervisor v Type |l Hypervisors

As can be seen in figure 1.2, the fundamental difference is the fact that type one
hypervisors install direct on to the physical system, whereas, the type two hypervisor requires
a host operating system and then the addition of the type two hypervisor install on top

(Morabito et al, 2015). There are various commercial and opensource type one and two

hypervisors available for use. As an example, a popular commercial type | hypervisor would
be VMWare ESXi, and for an opensource type two hypervisor Oracle’s Virtualbox

(Bakhshayeshi, 2014).

© James Oakes, 2020 23 I P a g e

Intelligent Management of Virtualised Computer Based Workloads and Systems

1.1.2 Type | Hypervisors: Advantages and Disadvantages

e Hypervisor occupies less Random-Access Memory (RAM).
e Relatively fast to re-install hypervisor.
e Highly optimised for running virtual machines, which is the primary function.

e Reduced driver support; only certain hardware is supported.

1.1.3 Type Il Hypervisors: Advantages and Disadvantages

e Takes advantage of any hardware the host OS has driver support for.
e Host OS allows greater potential to monitor and interact with (via client agents).

e Possible to create multiple virtual machines of the identical guest OS as the host

operating system, thus increasing performance and reducing overheads.

e Advantageous for developer type environments, where access to multiple guest

operating systems and their variants is required.

Thus, there are different types of scenarios where the type one and type two hypervisors
both have advantages and disadvantages. Either way, the type one or two hypervisor can

both be used successfully to achieve virtualised systems deployments (Pagare and Koli, 2014).

The next sections describe how this virtualisation technology has evolved into cloud-based

services and how this is generally being applied and used within the IT enterprise space.

1.1.4 Cloud Computing (Public, Hybrid and Private)

Cloud based computing is a relatively new term used to describe the use of internet

service-based computer resources. These cloud resources represent typical enterprise

© James Oakes, 2020 24 I P a g e

Intelligent Management of Virtualised Computer Based Workloads and Systems

datacentre systems, comprising of virtualised server hardware, network infrastructure, disk
storage, and applications. In the case on public clouds, being an internet-based service allows
organisations to acquire computer resources remotely at third-party hosted datacentres

(Bhise and Mali, 2013). Very often these cloud service datacentre locations are based around

different parts of the world and organised into functional operational regions (such as North
America, or Western Europe). This is to allow end-user groups to take advantage of the cloud
vendors distributed infrastructure and provide better resilience and availability of services

(Larumbe and Sanso, 2011).

Cloud based public services offer the advantage for organisations to setup their IT
infrastructure very quickly, without any significant investment of their own in terms of
purchasing computer hardware; the only minimal costs would be ensuring their own
organisation has internet connectivity and suitable end-user devices, such as employee
desktop or laptop computers. Nearly all public cloud infrastructure services offer a utility or
‘pay as you go’ type cost model, whereby, the end-user organisation is charged directly for the
use of compute resources based on how long (the amount of time) they need the type of
resources they request, such as the amount of VMs they build, the amount of storage

consumed, and the number of IPs required (Kokkinos et al, 2013).

Indeed, cloud providers minimally provide what is known as Infrastructure as a Service
(laaS), as well as other service offerings that extend their capabilities beyond the base
infrastructure functionality, into further areas. These layers on top are known as Platform as
a Service (PaaS), which is essentially the mechanism responsible for configuring necessary
middleware and integration on top of the infrastructure stack. Finally, advanced cloud
providers have Software as a Service (SaaS), which provisions applications to enable a full end-

user interactive experience (Bojanova and Samba, 2011).

Typically, the cloud infrastructure organisations hide the complexity and management of
their infrastructures away from the end customer. This is advantageous, in that such
organisations can provision their cloud systems quickly, focus their efforts primarily on
development and their business needs. It should be noted, that while there are many

advantages, some disadvantages exist; these are often security related, in that the

© James Oakes, 2020 25 I P a g e

Intelligent Management of Virtualised Computer Based Workloads and Systems

organisation data is stored in the cloud infrastructure potentially at any geographical location
managed by the cloud vendor. Lack of awareness of the cloud pricing model may also be an
inhibitor, if the organisation cloud administrators are not aware of how the cost model works

and they do not follow strict housekeeping procedures (Imai et al, 2013). Maintenance

schedules and terms of service offered are very specific around system patching and overall
VM life-cycles. The aggressive maintenance schedules imposed mean that any organisation
embracing cloud services, needs to have an operating model that fits such terms imposed by

the service provider.

Hybrid models adopt a slightly different approach. These are often more commonly
found with established enterprise organisations who already have their own datacentres and
investment in computer hardware and associated infrastructure (Hwang, 2016). Given the
popularity of cloud computing, and the general strategic shift of many organisations to use
such platforms, it is not unusual for there to exist a hybrid model. Usually, there are two

fundamental drivers:

e Enabling quick provisioning of resources (in effect a burst type model), so that extra
computer resources can be acquired to support on-demand type services such as
online marketing campaigns.

e Migration and transformation from old deprecated (out of support) systems, into the
cloud; for example, moving an on premise (traditional) email system to a vendor cloud
service.

e Havingadual approach (private or cloud) allows IT security to decide what applications
and data may or may not be considered for migration to a public cloud service.

e Changes to organisational workforce; often companies are adopting different ways of
working and access via the internet to cloud type solutions offers easier ways of
working.

e Due to the nature of public cloud, it offers a convenient method to ensure continuity
of service in the event of a local disaster, whereby data can be securely transmitted via

the internet and service restored within that environment.

© James Oakes, 2020 26 I P a g e

Intelligent Management of Virtualised Computer Based Workloads and Systems

Hybrid models therefore offer great flexibility for organisations to slowly transition, using
a controlled approach, allowing them to decide to continue using their own private systems,

or alternatively migrate services to the public cloud (Fadel and Fayoumi, 2013).

Private cloud services follow the nature and build approach that a public cloud service
provider would follow, apart from the fact that there is no internet of public access. Rather,
the cloud service provides a private service to one or more specifically known organisations.
Often, this model is followed by larger entities who want to move away from the traditional
approach to building infrastructure systems, installing middleware and software applications.
Instead, they perceive that a cloud like service model provides a much more agile method of
satisfying their business IT requirements, while retaining full control and security. Therefore,
being able to utilise cloud services, although taking a significant amount of initial investment

enables organisations to acquire infrastructure resources in an efficient way.

Indeed, many large cloud service providers now effectively bring their own proven cloud
technology direct into their customer’s datacentres to enable them to leverage the delivery
methods already tested, tried and proven. As an example, this would include as a minimum

to support laaS:
e VM provisioning: build of virtual guest machines of various OS types.
e Network provisioning: build of necessary network zones.

e Security provisioning: enabling the opening of firewall ports between network

zones.

e Storage provisioning: enabling appropriate storage to be made available via

network or Storage Area Network (SAN).

There are many options to provide further functional layers on top of this basic one
available, as discussed previously, PaaS, DaaS (Database as a Service), and finally SaaS (Jin,

2016).

© James Oakes, 2020 27 I P a g e

Intelligent Management of Virtualised Computer Based Workloads and Systems

1.1.5 Common Virtualisation Problems

The following figure 1.3 describes some of the problems encountered in virtualised
environments. For this study, an examination of the following three principal areas is

conducted:

e Over-utilisation of a VM (or set of VMs) — whereby a combination of one of more CPU,
Memory or I/O resources have become exhausted and the system has become very

slow or even unresponsive (example figure 1.3, workload 2)

e Under-utilisation of a VM (or set of VMs); this is where spare compute resource is not
being used effectively (example figure 1.3, workload 3). This could be considered

wasted resource.

e Maintaining effective n+1 failover and high-availability while the virtualised platform
is in operation (example figure 1.3, workload 4). A common issue, even on
architectures designed to run in such a fashion, is for human configuration errors to
be made, or systems to become overloaded accidently. On platforms with many
hundreds or even thousands of VMs, it is a problem an administrator may overlook,
resulting in a system that does not continue to function with its original objective of

providing high availability.

© James Oakes, 2020 28 I P a g e

Intelligent Management of Virtualised Computer Based Workloads and Systems

Physical Computer Server Pool

(i . Common Network/Storage) @
= !
@ Workload 1 (Workload 2 N A = (@ Workload 4 N
0 N+1 Redundancy
ﬁloiiéhipel:n gzoifﬁzl:,, Workload 3 High Availability
2) 1% CPU Mo workload
Average High .
workl i Sibthlaad 10% Mem (Failover only)
{(Memary) Below average workload
(free capacity)
l_ _/ \\,_ /’f k _/ _ _/J

Above is an example of a server pool, demonstrating some of the typical problems virtualised systems
platforms encounter. In the example above we observe servers within the pool becoming overloaded with
resource requests such as the need for extra system memory (RAM), or conversely systems which are left
under utilised with light workloads and spare compute resource.

Figure 1.3 Common Virtualisation Problems

e Reducing the complexity of VM provisioning; many platforms use intricate processes
and can be confusing to end-users. The build procedure often requires advanced

technical skills to deploy systems (Scroggins, 2013).

1.2 Thesis Motivation and Aims

Within the enterprise computing space since the late 1990s, there has been a transition
and evolution from single physical computer systems, on architectures such as Intel x86, Sun
SPARC, HP PA-RISC, IBM POWER Series with a single OS instance. These have shifted towards

fully virtualised platforms, running Hypervisors such as Xen, VMWare, VirtualBox and many

© James Oakes, 2020 29 I P a g e

Intelligent Management of Virtualised Computer Based Workloads and Systems

more, with many types of guest OSs and applications embedded.

This development has been intriguing. Organisations generally have embraced the
modern technology, and the ability to consolidate systems into fewer, more powerful
machines. With the advent of cloud computing, it can be observed that commodity type x86
architectures have taken a predominate hold, with huge distributed computing resources
located around the world by various cloud vendors like Amazon, Rackspace, Google, IBM,

Oracle and many more.

In all this, it has been a continuous struggle to effectively manage such technologies in a
seamless way, without having on hand lots of technical able people to administrate and
control such platforms. Indeed, even maintaining build and configuration standards is an
almost impossible task, given the number of possible permutations to build virtualised

systems (Vrijders et al, 2016; Poghosyan et al, 2016).

It is this concept, which has led the author to be motivated to want to research this
particular field, in order to provide a better solution, method and process for managing and
controlling such platforms. While it is impossible for a single researcher (on his or her own) to
address every technology area that a cloud provider like Amazon Web Services or Oracle can,
there is opportunity to demonstrate by focusing on a few areas how improvements can be
realised. The author hopes that such an opportunity taken will provide some original and

useful additional research outputs in the following key areas:

e To develop a prototype system known as the Intelligent Decision Engine (IDE) to
provide domain knowledge expertise around computer virtualisation and

management.
e To provide a simplified VM provisioning process.
e Toimprove VM workload migration processes.

e Toimprove VM performance and availability.

1.3 Thesis Benefits and Targeted Applications

The project aims to deliver some benefits for various end-user organisation types, who

© James Oakes, 2020 30 I P a g e

Intelligent Management of Virtualised Computer Based Workloads and Systems

use computer technology and require very fast, automated deployment of IT resources.
Consider the example of an organisation that requires resources in a series of pre-engineered
blocks; effectively private based laaS units that minimally provide a necessary IT hardware
footprint, with integrated networks, computer hardware, security, storage, software

management and control. There are many scenarios where this might be useful:

e Schools, universities, education — providing quick resources for classroom

students, colleges, or university researchers.

e Private and public sector industries (e.g. utilities and manufacturing), scientific
government and military, using fast deployment of resources at any physical
location, that may or may not be connected to the internet. Examples could be
telecommunication providers, national health services, pharmaceuticals, or
security, or military organisations that need to collect data and deploy IT based

systems quickly, because of an incident or event.

A specific example of this includes:

e Purunak (1996) shows that multi-agent systems are in demand in industry and

such rapid deployment of systems can provide benefits to organisations.

1.4 Thesis Limitations

As part of the undertaking of the project, there are several limitations that were

encountered, that are acknowledged as follows:

e The number of nodes in the IDE cluster was not tested beyond three nodes. This
could extend to much larger numbers (i.e. hundreds of nodes), however, it is
envisaged that that would be continued as future work. Consult section 4.7 for

more details on system availability and clustering.

e IDE Operating systems — Linux (CentOS) was the primary guest operating system

tested; the Windows OS is also supported, but has not been developed against

© James Oakes, 2020 31 I P a g e

© James Oakes, 2020

Intelligent Management of Virtualised Computer Based Workloads and Systems

extensively; again, this is envisaged as future work.

Physical computer, network and storage resources were limited to that
described in the Laboratory setup in section 3.2.1, primarily as a result of having

to keep financial costs within a constrained budget.

System data sources only tested against Linux (CentOS) platform during
experiments. See section 4.6.4 for more details. Windows alerts/logs and events

are expected to be captured at a future point.

The number of knowledge rules was purposefully limited to a relatively small

number of 8, as defined in section 4.8.1, 4.8.2 and 4.8.3. The project limited the

rules, in order to be able to test the fundamental functions (such as physical host
and VM failure) of the intelligent design engine, without creating many
additional rules at this stage, which could not be developed and tested fully at
this stage. Justifications for the knowledge rules and why these were selected
can be found in section 4.8.5. Of course, the system has been devised so
additional rules can be created/added as part of future development; see
section 8.3.6 future work for more details regarding this. As an example, the
current IDE system did not include a specific knowledge rule for ‘filesystem full’

(warning/critical), however, this could be added in a later development stage.

The VM provisioning and cognitive load experiments in section 5.2.2 and 5.2.3

respectively were snapshot (point in time) experiments, and not tested for
repeatability (i.e. The user repetitively creating VMs); It would be
expected/predicted for example, that the end-users would quickly move from
the ‘novice’ group to ‘experienced’ should such future experiments be
conducted; however, the results would need to be collected and analysed in

detail to prove this hypothesis is either true, false or inconclusive.

The number of end-users which made up the experimentation process in
chapter 5 was limited as defined in section 5.2.1.2. It is feasible that future work

could be completed to include larger numbers of end-users.

32|Page

© James Oakes, 2020

Intelligent Management of Virtualised Computer Based Workloads and Systems

The hardware components used in section 5.2.1.7 was as kept close as could be
made possible subject to physical costs. The IDE Platform used hardware of a
lower specification for the provisioning tests, to avoid the costs of replacing for
newer higher specification systems. Therefore, it is feasible that the results for

the IDE could yet be improved if repeated using the latest compute resource

type.

VM provisioning experiments did not use the potential queuing idea described
in section 5.2.2.6; implementation and development of this idea could see large
potential reduction time in provisioning, and it is described further in section

8.3.1 future work.

The papers used to compare failover/VM migration times for vMotion and
XenMotion were limited data sets of six iterations/tests; while the IDE could be
repeat tested extensively (limitlessly), for even more detailed comparisons, a
larger volume of repeat tests could be undertaken as described in further work

section 8.3.9 by building local VMWare, KVM and Xen test clusters.

The IDE did not have a live migration facility yet developed (pending the use of
VirtualBox teleport see future work in section 8.3.3), so the studies that were
compared against were not functionally exact, however, the results from the IDE
—even in the full restart migration scenario are promising, in that that the overall
migration time was fast in comparison to the other studies described in chapter

6.

The knowledge rules developed in section 4.8 and justified in section 4.8.5 could
not all be tested through direct experimentation due to the limitation of time
and resources to fully complete all the development and setup the appropriate
test and experimentation process. The knowledge rules not fully tested at this

stage are knowledge rule 1, 2, 3, and 8.

33|Page

Intelligent Management of Virtualised Computer Based Workloads and Systems

1.5 Thesis Summary

This thesis aims to research a unique approach into how an Inference Engine (the IDE) can
be used to leverage the use of expert domain knowledge to provide process and performance

improvements in specifically three areas:

e In chapter 2 an in-depth study of intelligent (expert) systems and virtualised
technologies is undertaken, along with an examination of two public cloud providers;
then a comparison of the features, quality and characteristics of the cloud vendors is

highlighted by focusing on the relevant features that exist.

e Chapter 3 considers the methodology and approach used to provide the platform and
system to be utilised to perform and support the necessary experimentation phase. To
compliment this, the formal metrics and expert user evaluation methods to be used
are defined, to measure the success and value of the research and experiments carried

out.

e Chapter 4 explores the development and characteristics necessary of an expert system
(the IDE) to aid and improve the way in which virtualised resources are effectively

managed and controlled.

e Chapter 5 specifically focuses on the core research outputs, including the following
areas; the simplification of deployment of VMs, by using the IDE expert knowledge
base, whereby the inference and logic engine are able to build and provision VMs with
absolutely minimal information from the end-user, using a ‘one-click’ method. Minimal
end-user inputs are required, such as hostname (or a reference to standards) and VM

size,and VM type. The IDE then completes the entire end-to-end provisioning process.

e Chapter 6 continues by describing the means for improving methods for workload
migration; it specifically targets new improved methods of event handling, resource

re-location and effective processes to migrate workloads.

e Chapter 7 examines ways to optimise VM performance and health, in the scenario of

physical hardware failures, software failures, and human errors.

© James Oakes, 2020 34 I P a g e

Intelligent Management of Virtualised Computer Based Workloads and Systems

e Finally, in chapter 8 a review is conducted on the thesis contribution, to draw overall
conclusions on each area of the work, by focusing on the results and their value to the
research field; additionally, consideration is given to what further work can be done to

enhance and continue the work already undertaken.

© James Oakes, 2020 35 I P a g e

Intelligent Management of Virtualised Computer Based Workloads and Systems

Chapter 2: Expert, Cloud and Virtualised Systems

2.1 Introduction

As part of the investigation into expert and intelligent systems within the field of
systems virtualisation, it is necessary to analyse existing methods and work in the subject area
to determine how best to approach the management of such compute platforms. This chapter
pulls together some key areas that the author believes to be most relevant to the study
undertaken. Firstly, the author examines in brief how the organisation of information is critical
to being able to imitate human intelligence, in terms of the key traits that can be expected to
be evident and observable. By ordering information and logically categorising it in such a way
that it can be easily referenced, effectively made sense of and essentially used in some
capacity to make decisions and reach an effective conclusion. Following this, a light overview
of the origins of Artificial Intelligence is presented to allow the author to set the context for
the reader, in particular around several key historical moments that have been fundamental

to the advancement of human knowledge in the field of work that is being considered.

The next area that is delved into in detail is that of expert systems; this type of system
is essential for review as the methods and applications in this subject demonstrate how expert
human domain knowledge can be applied to a variety of technology and scientific study areas.
This provides the platform for the author to consider what knowledge domains have already
had such applications made, such as in the medical field, along with the historical reported
outcomes of such projects. It thus enables a comparison into the techniques used and allows
for conclusions to be drawn to help provide insight into what techniques might be useful in
the context of management of virtualised computer systems. Therefore, by reflecting on the
lessons learnt from previous endeavours made in the field of expert systems, it makes
common sense to consider combining, adapting and enhancing the most successful methods

used (Crittenden, 1990). The next section examines two Public Cloud providers; one currently

holds the largest commercial market share, and the other is less predominate, although clearly

operating providing Enterprise Cloud services to global businesses. As Cloud computing is

© James Oakes, 2020 36 I P a g e

Intelligent Management of Virtualised Computer Based Workloads and Systems

considered to be leading the way in terms of automation and service-based delivery of IT, it is
critical to investigate the mechanisms that such cloud providers use, to allow the author to

compare those functional areas that correspond to the author’s study (Rokne, 2013).

Following the focused review of two Cloud based providers, the analysis continues by
considering other management approaches used by other researchers in the field of
automation and management of virtualised computer systems. This is particularly useful, as it
widens the overall view of what efforts are have already been made in this study area, along
with strengths, weaknesses of each approach and an overall gap analysis. Finally, based on the
gap analysis and weaknesses identified, we consider how the IDE could contribute to the field
in several key areas by combining new algorithms, pattern analysis methods, natural language
processing techniques, and an inference engine to improve the management of virtualised
computer systems. This is captured, and an explanation is provided to show the advantages

of using such a system in the overall context of existing works, systems and approaches.

2.2 Intelligent Organisation

The concept of Artificial Intelligence (Al), as opposed to natural occurring intelligence, is
to enable computer systems designed and built by humans to exhibit intelligent behaviours to
some degree or level (Callaos, 1994). In respect of this, part of the objective of this work
includes investigating the potential for a system to include some of the following

characteristics:
e The ability to keep itself functioning or rapidly replicate to survive.

e To be able to make small functional improvements to itself; this has to be initially

defined by its creator, with the possible potential to extend this function.
e To have the necessary function to make decisions based on available information.

e To have the function to be able to automatically invoke other programs as necessary,

based on its own decision-making process.

e To have the potential to change itself either by developing, analysing and modifying

© James Oakes, 2020 37 I P a g e

Intelligent Management of Virtualised Computer Based Workloads and Systems

its own routines and processes, or perhaps even introducing new processes and
procedures altogether based on an evolutionary, or self-analytical development

model.
e The ability to organise, store information appropriately and retrieve it as necessary.

The following sections will discuss in detail the critical areas for consideration in respect of

how a system could utilise Al to effectively manage virtual machines.

2.3 The Origins of Artificial Intelligence

Humans have long been fascinated by the concept of transferring natural intelligence to
their own mechanised creations. These ideas stretch back as far as writings recorded in Jewish
history via the Ten Commandments and events recorded in Greek mythology (McCorduck et
al, 1977). In more recent modern history, circa 1843, it was Charles Babbage and his colleague
Countess Lovelace, who created the first general purpose computers, such as the Analytical
Engine, which included an arithmetic unit and programs in the form of data punch cards,

concepts which are familiar in modern computing (Tanenbaum, 2006). More recent is the

achievement Alan Turing and his team made in breaking the German Enigma codes using the

famous Turing machine, during World War Il (Haugeland, 1989).

As demonstrated above, it is feasible to therefore use computerised programmed systems
to help simulate or imitate human like natural intelligence, in such a way as to perform
complex tasks to help problem solve. The author of this research aspires that the work
undertaken will demonstrate benefits in the subject area of applying natural intelligence to

complex virtualised compute platforms using existing and potentially new Al techniques.

© James Oakes, 2020 38 I P a g e

Intelligent Management of Virtualised Computer Based Workloads and Systems

2.4 Expert System Applications

2.4.1 Introduction

The following sections consider real word examples of expert systems. The case
studies below are of importance, because despite being orientated towards other expert
knowledge domains, the principles and techniques used can be applied equally to any expert
system that uses a knowledge base and inference engine. In the cases below, this allows the
study of similar approaches undertaken by other projects, and assists focus on the strengths
and weaknesses of other systems to help overcome commonly encountered problems from
the past; each system covered lists the advantages and disadvantages based on the approach

taken by the creator.

2.4.2 R1/XCON

R1/XCON (Expert Configurator) was an expert system designed by Digital Equipment
Corporation (DEC) to be a system configurator for computer hardware. It was developed in
the 1970s to provide sales staff with expert domain knowledge around what components to
include in Virtual Address Extension (VAX) computer hardware sales. The system ensured that
systems were shipped complete with all necessary components and was a successful
commercial example of the application of expert systems within industry (Winston and

Prendergast, 1986).

The advantages from this example of an expert system are:
e |t was a commercially successful application.
e Proven quality in the domain of expertise — VAX computer systems configuration.

e The closest example of how an expert system can be used in the field of computer

engineering to demonstrate how configuration knowledge can be used to assemble

© James Oakes, 2020 39 I P a g e

Intelligent Management of Virtualised Computer Based Workloads and Systems

the complex list of components for VAX computer systems. This is probably the

nearest comparative system to managing virtualised computer platforms.
The main disadvantage from this example:

e The R1/XCON system was very specific — its expert knowledge was narrow around the

VAX-11/870 (McDermott, 1982). Conversely, some may not consider this a

disadvantage at all, as being narrowly focused on a very small knowledge area could

allow for the potential to focus the expertise to a greater level.

2.4.3 MYCIN

MYCIN is an example of an expert system developed at Stanford University in the 1970s,
to support medical staff help diagnose bacterial infections and suggest an appropriate
antibiotic treatment using its inference engine and knowledge base. There are many positive
aspects from the system that was developed, primarily that its ability to correctly diagnose
and prescribe correctly, out-performed medical staff during the trials and experimentation
phase. Given the positive trials, MYCIN had only around six hundred rules, which given the
relative complexity and permutations within the field (there are well over one hundred
antibiotics types), leads us to the conclusion that it was in fact a successful expert system

concept (Alty and Coombs, 1984). It was only the fact that there were ethical challenges

presented, over who would be responsible for any mis-diagnosis, that inhibited its further
progress into mainstream medical practice. In that respect, using an expert system purely in a
computer management type environment (outside of medicine), reduces the risk of failure in
terms of improving its potential to be able to be applied into its particular field of expertise

(Musen et al, 2006).

The advantages from this example of an expert system are:

e Expert systems did provide improved diagnostics.

e A relatively simple rule set provides the necessary functions.
The main disadvantage from this example:

e Ethical challenges due to the complexity of understanding who would be responsible

© James Oakes, 2020 40 I P a g e

Intelligent Management of Virtualised Computer Based Workloads and Systems

for a misdiagnosis, potentially resulting in patient harm.

2.4.4 INTERNIST-I

INTERNIST-I is another interesting expert system developed at the University of
Pittsburgh, that captured the knowledge of just one medical expert Jack Meyers. Unlike other
systems, INTERNIST-1 used an advanced ranking algorithm to arrive at a diagnosis of a
disease. It excelled when only one disease was present, however, struggled to deal with more
complex scenarios, where two or more were evidenced in a patient. Additionally, using a
heuristic based problem-solving approach, it did not guarantee the best diagnosis method
and the system interface was slow to operate, resulting in poor uptake by those medical

professionals using it in the field (Miller et al, 1982; Ravindranath, 2015).

The advantages from this example of an expert system are:

e Powerful heuristic ranking system to provide most probable diagnostic.
The main disadvantages from this example:

e Narrow expert view — knowledge derived from one expert source only.

e Poor at dealing with multiple problems, for example, patients with two or more

illnesses.

e Overly time-consuming user interface, resulting in poor uptake and use of the system.

2.4.5 DENDRAL (DENDritic ALgorithm)

This was a very early expert system, developed at Stanford University in mid 1960s

(Feigenbaum and Buchanan, 1994). Its expert subject field was organic chemistry, with the

objective of performing an analysis of molecular structures using mass spectra. The primary
approach of the systems was to use a heuristic search/algorithm. The rule base was

successfully engineered using the LISP programming language, which resulted in advances in

© James Oakes, 2020 41 I P a g e

Intelligent Management of Virtualised Computer Based Workloads and Systems

knowledge engineering which were made available and published (Lindsay et al, 1993).

2.4.6 HEARSAY |l and Il

Another example of an early expert system is Hearsay, developed at Carnegie-Mellon

in the late 1960s (Reddy et al, 1976). The domain expertise was in the field natural speech

understanding for structured database queries. The primary approach used a blackboard type
problem solving method (a way of aggregating partial solutions to provide a complete one),
through recorded application of ongoing expertise, to reach a consensus on the hypotheses
using independent knowledge sources. The system was engineered using the Stanford
Artificial Intelligence Language (SAIL), however, it was not very successful, initially.
Nevertheless, it proved the feasibility of automated speech recognition and provided the

inspiration for the development of other expert systems.

2.4.7 MACSYMA (MAC’s SYmbolic MAnipulator)

The system was developed at MIT from 1968 onwards. Its expert subject was to
perform complex mathematical procedures (e.g. algebra), using a primary approach of brute
force encoded algorithms. It too was engineered using LISP, and was a widely used, powerful

system. It is available today as GNU freeware via Maxima (Fateman, 1989).

2.4.8 PROSPECTOR

Developed at SRI International, located at Menlo Park, California in late 1970s, with
its expert subject field in exploratory geology and evaluation of geological sites. The primary
approach of the control architecture involved the use of an inference network and a rule-
based judgmental reasoning system that evaluated the mineral potential of a site or region,
with respect to inference network models of specific classes of ore deposit. The system was

engineered using INTERLISP (a derivative of the LISP programming language). In one

© James Oakes, 2020 42 I P a g e

Intelligent Management of Virtualised Computer Based Workloads and Systems

controlled test, the expert system successfully identified a previously undiscovered site, thus

further demonstrating its commercial viability (McCammon, 1989).

2.4.9 Expert Systems: Why Have They Been Considered?

The introduction of this section alluded to the point that expert system principles are

a transferable feature across knowledge domains (Brooks and Heiser, 1979). Based on this

idea of transferability, it enables the investigation to proceed on the basis that such systems
can re-use, evaluate and improve previous methods undertaken. From the historical expert
systems investigated, it appears that the management of virtualised computer systems has
not previously been undertaken, or fully explored by other researchers; therefore, this can be
considered a new knowledge domain in relation to currently available expert systems. The
above examples of the application of expert systems show how such methods can be applied

to almost any field that requires human intelligence, demonstrated through problem solving

skills.

2.5 Public Cloud Systems

2.5.1 Introduction

Another area of investigation is public cloud service-based offerings, which have
become popular since 2006 and the advent of Amazon and their elastic cloud service. Figure
2.1 below provides a representation on the current market share figures for the various cloud

providers — currently led by Amazon and Microsoft:

© James Oakes, 2020 43 I P a g e

Intelligent Management of Virtualised Computer Based Workloads and Systems

Cloud Computing Services Market Leaders
Year 2017 2018

Organisation % Market Share

Amazon 40% 37%
Microsoft 29% 30%
Google 10% 10%
IBM 7% 8%

All others including Oracle Corporation 14% 15%

Figure 2.1 Cloud Leaders Market Share (Source: Forbes, 2018)

This is particularly of importance, because public cloud providers like Amazon and Microsoft
lead the way in commercial offerings. It is therefore necessary to explore how these providers
compare in certain key areas such as, expert systems and reasoning, systems (VM)

provisioning, VM migration strategies and performance monitoring.

2.5.2 Case Study 1: Amazon EC2

Amazon’s EC2 public service is available via the internet in the form of Amazon web
services. Like the following case study with Oracle’s Cloud, it is very useful to functionally
compare the cognitive load complexity and performance of their systems, against the research

areas addressed by this work (Plass et al, 2010). Amazon's Elastic Compute Cloud (EC2) offers

a web-service compute service offering to its end-users. The compute service works on the
basis of buying compute time, storage and network services based around a certain set of
parameters supplied by the end-user. This invokes a computerised in-house cost/billing model
based on the type of instance(s) configured and the amount of time the components runs for
in hours, minutes and seconds (system uptime). Typically, this would be configured based on
the machine type, operating system (OS), CPU processing, memory, storage and networks
requirements. Other factors that would affect cost would include any applications that may

be requested; for example, Oracle RDBMS, or Microsoft SQL server. Once configured, VMs are

© James Oakes, 2020 44 I P a g e

Intelligent Management of Virtualised Computer Based Workloads and Systems

then accessed remotely using standard access protocols, for example, secure shell (SSH).

Amazon's EC2 is a public cloud solution that is service based, whereby, the infrastructure

supporting the platform is largely transparent to the end-user (Amazon Web Services, 2015).

The levels of automation behind the Amazon EC2 cloud are advanced, in terms of the level of
automation, provisioning and resiliency achieved through their large-scale datacentre

infrastructure footprint (Bhise and Mali, 2014; Awal et al, 2014). One of the key differences of

the authors research project is to alleviate even further the inputs from the end-user, by
introducing an Intelligent Decision Engine (IDE), with the goal of vastly reducing the
complexity to an end-user via a one-click provisioning methodology, much the same way

Amazon allow purchasing of retail items on-line via their website (Amazon Web Services,

2015). Amazon's EC2 interface remains quite complex, aimed at developers and other
advanced end-user computing groups, such as scientific research teams, Information

Technology (IT) service businesses and IT departments (Akioka and Muraoka, 2010).

Leading providers of Cloud services such as Amazon EC2 have a web service that uses an
advanced/complex Browser User Interface (BUI); further to this, the end-user has the ability
to configure certain application (PaaS) offerings such as a MySQL database, or Apache web
server (amongst many other features). Below is a table which summarises the EC2 service
areas Amazon provides in respect to the similar areas of investigation for this work; the
specific target areas of the author’s study are highlighted to demonstrate the originality, which
contribute to alternative strategies in the overall field of work.

The following table summarises the AWS areas that are being analysed, compared and

evaluated against the IDE and Oracle platforms:

AWS Feature | Description Comparative Project
Investigation Area

Machine Allows you to build ‘smart’ applications, such Investigation developed
Learning as flagging fraudulent transactions and further in chapter 4 of
predicting user activity. This is an area of this work under the

© James Oakes, 2020 45 I P a g e

Intelligent Management of Virtualised Computer Based Workloads and Systems

AWS Feature

Description

Comparative Project
Investigation Area

interest which is being investigated as part of
the author’s research, however, the author is
conducting more research effort around
machine self-management, rather than smart
end-user applications (for example, smart
programs that analyse credit card spend
patterns and analyse, risk assess them for

suspicious activity).

section The Intelligent
Design engine (IDE).
AWS seeks to apply its
'machine learning'
around applications
rather than the
'infrastructure layer'

which is a perceived gap.

EC2 (Elastic

Compute)

This is Amazon's standard compute
provisioning platform. From here you can
launch Amazon EC2 instances which are
individual VMs made of CPU, Memory and
Disk. The high-level process flows are generally
understood; however, the actual detailed
provisioning process is unknown. This would
specifically be referring to the code, logic and
exact method (e.g. PXE boot, using image
templates (AMls), kickstart, or VM image
snapshots). Most of this information is private
to the company; they would not want to
necessarily share their trade secrets. What is
known is that the deployment mechanism is
advanced and uses AMI (Amazon Machine
Images), which is a quick and efficient
provisioning method. This is an area of
interest, which is being investigated as part of
the author’s research work which undertakes

an alternative one-click VM deployment

VM Provisioning
mechanisms are
developed further in
chapter 5 of this work
under the section
Simplified Deployment

of Virtual Machines.

© James Oakes, 2020

46| Page

Intelligent Management of Virtualised Computer Based Workloads and Systems

AWS Feature | Description Comparative Project
Investigation Area

strategy for small scale to large scale
Enterprises. It offers an advantage for end-
users who are potentially less familiar with
complex virtualised compute platforms and
adds in considerable expert knowledge in
order to provision VMs. This is to be compared
and contrasted against the Simplified
Deployment of Virtual Machines using an
Intelligent Design Engine, using the evaluation

strategy defined in section 3.3.

CloudWatch | Monitoring for applications and resources — These areas are

(Area of alarms and auto-scaling features. This is an developed further in

Research) area of interest, which is being investigated as | chapter 6 and 7 of this
part of the author’s research. work under the sections

Improving Workload
Migration Strategies and
Optimising Performance
and Availability of

Virtual Machines.

Table 2.1 Comparing AWS features

2.5.3 Case Study 2: Oracle Cloud

Oracle’s Public Cloud service, while advanced, is regarded as lagging behind the market

leader cloud providers like Amazon and Microsoft (Serrano et al, 2015). However, it is

interesting to examine a smaller niche cloud providers approach, such as Oracle, given their

pedigree in the enterprise compute space (Finkle and Scoresby, 2012). Below, the table

describes the essence of the core investigation areas that are to be undertaken in respect to

© James Oakes, 2020 47 I P a g e

Intelligent Management of Virtualised Computer Based Workloads and Systems

the Oracle cloud and the IDE and AWS platforms:

behaviour, estimate values, profiling
people or items, identify rare events
or anomalies and organise items into

baskets of co-occurring events.

Oracle Cloud Description Comparative Project Investigation
Feature Area

Oracle Oracle’s advanced analytics aims to | Investigation developed further in
Advanced provide the ability to mine large chapter 4 of this work under the
Analytics datasets that can predict customer section The Intelligent Design

engine (IDE). As per AWS, this
provides further evidence that
most cloud providers are more
interested in the Al aspects with
regard to applications, rather than
features lower in the stack e.g.
infrastructure. This work
concentrates on applying this to
the lower down infrastructure

components.

Oracle Cloud

Provisioning, manage and maintain

VM Provisioning mechanisms are

on-premise, in a private cloud
and/or on Oracle’s public cloud
infrastructure. It maximises visibility

and control over services and

Machine the Cloud Machine laaS resources developed further in chapter 5 of
and Paas infrastructure. this work under the section
Simplified Deployment of Virtual
Machines.
Oracle Oracle Cloud Management allows These areas are developed further
Management | customers to build, deploy, and in chapter 6 and 7 of this work
Cloud operate application environments under the sections Improving

Workload Migration Strategies and
Optimising Performance and

Availability of Virtual Machines.

© James Oakes, 2020

48| Page

Intelligent Management of Virtualised Computer Based Workloads and Systems

Oracle Cloud Description Comparative Project Investigation
Feature Area

provides monitoring and reporting
solutions to ensure adherence to IT

standards and policies.

Table 2.2 Comparing Oracle features

2.5.4 Cloud Computing: How it Has Created Utility Based Computing?

Most public cloud systems are only visible to the end-user from an internet browser-
based interface. The complexity is hidden away purposefully, by design, and is presented as
a service, so end-users need not be concerned with the technology that powers and creates
VMs and containers (Biner, 2015). The typical cloud computing stack is represented as

follows:

Saa$ (Software as a Service)
Software Applications which are end-user ready,
such as Salesforce.com, Citrix WebEx or Office
365

Daa$ (Database as a Paas (Platform as a Service)
SENiCE) Operating Systern, Middleware & Application
software, such as Apache, Tomcat, PHP,
Development Kits, Runtime Engines

Stack

Dependency

Relational and NoSQL databases such as Cracle,
MysaL, DBE2, MongoDB

laa$ (Infrastructure as a

Service)
Physical Compute / Hypervisor /Storage /
Network / Security

Figure 2.2 Cloud Service Stack

As above in figure 2.2, the cloud stack begins with Infrastructure, and works its way

up to SaaS where end-user applications are made available directly to the user, such as a word

© James Oakes, 2020 49 I P a g e

Intelligent Management of Virtualised Computer Based Workloads and Systems

processing or email application. Public cloud systems use a variety of virtualisation technology

to achieve their goal of providing such services to their end-users (Bojanova and Samba,

2011). Therefore, it is of relevance that the interface and methods they use be compared
when considering how to improve aspects such as VM provisioning, performance monitoring,

and migration.

2.6 Current Virtualisation and Cloud Management Approaches

2.6.1 Introduction

Using expert systems in the medical field has been previously well developed,
understood and applied to the medical/clinical world; examples are MYCIN and INTERNIST-|
(see sections 2.4.3 and 2.4.4). They are particularly relevant in the case of the research,
because they identify the potential benefits that can be achieved by the application of expert
systems to problem solving within a knowledge domain, such as computer virtualisation, or
the clinical diagnosis of bacterial infections. The study now examines in detail some existing
methods and strategies employed by other research works to compare the strengths and
weaknesses of other similar works. These are examined in detail, and specific care is taken to
explain how this approach differs from those previously undertaken, by focusing on the

advantages and unique methodology and ideas of this research project.

2.6.2 Reviewed Approaches

Virtualisation now has many applications across all infrastructure components; not only
can computer hardware be virtualised, but so can other infrastructure components, such as
the network and storage devices. Given the potential to use this technology to save space,
power and consolidate systems, it makes sense for organisations to leverage this to their

advantage (Scroggins, 2013). The question of how organisations effectively manage these

complex environments forms the fundamental problem that this research work addresses;
with the IDE utilising Al features, the algorithms and methods employed help to reduce

complexity to end-user organisations, thus enabling the delivery of a fully virtualised compute

© James Oakes, 2020 50 I P a g e

Intelligent Management of Virtualised Computer Based Workloads and Systems

platform (Scroggins, 2013).

Given the various virtualised platforms now deployed in the field, attempts and
approaches have already been made to automate deployments of VMs and other such

hardware layers, for example, storage and network (Oludele et al, 2014). One interesting

approach described how resources can be automatically provisioned in virtualised

datacentres (Elprince, 2013). This study discusses how in the modern virtualised datacentre,

there is a requirement to automatically provision and manage resources effectively due to the
spiky nature of processing (i.e. a sudden shift upward in demand). One of the impacts of this
naturally occurring event is that breaches in Service Level Agreements (SLAs) can occur due
to VMs being impacted as they are under-resourced from a CPU, memory and storage point
of view. The proposal here to deal with such events was to create an autonomic resource

controller (Elprince, 2013). The system has two parts, a resource modeller (machine learning)

and a fuzzy tuner (fuzzy logic) that allows dynamic resource allocation (or changes) to VMs to
allow them to manage their computational load effectively. The resource controller also
attempted to ensure no SLA breaches were made. The first obstacle mentioned is dealing with
complexity of ensuring scalability (or elasticity) of virtualised systems. The system itself was
modelled using a data trace only, and not on a real interactive environment. While this
simulation provides real work-load patterns and opportunity to model different jobs,
scheduling, and priorities, it may not always provide a real-world complete data-set from all
relevant log files and system data. In this study, development and experiments are conducted
in a real lab-based environment to enable true testing against live systems. This provides
several advantages, the primary being that you can model the behaviour of intelligent systems
with a higher degree of certainty, in terms of being able to observe and record how things

operate and perform in a live situation (Elprince, 2013).

Nowadays, when you consider cloud services and their evolution and standard enterprise
model of delivery, there are a whole host of resources that require controlling such as

networks, servers, storage, applications and services (Bojanova and Samba, 2011). The

requirement for control is clear, in that all these hardware and software resources need
effectively managing, collectively and in harmony; one of the common disadvantages of

today's enterprise datacentres, is the silo approach taken by many organisations to their data

© James Oakes, 2020 51 I P a g e

Intelligent Management of Virtualised Computer Based Workloads and Systems

centre build and delivery mechanism. By adopting this old, non-agile model, they make it far
more difficult to automate delivery and manage the control of their systems, as
responsibilities across technology space, as described above are handled by separate teams.
This means it is advantageous to move away from diversified control mechanisms, and instead
use a single team or entity much like the IDE to achieve a centralised management approach

(Gren et al, 2014).

Another alternative approach was investigated to deploy VMs and applications using
OpenStack, which is an open source toolset designed to allow automatic cloud configurations

(Zhang and Shang, 2014). While some of the tasks were automated, there were several

additional add-ons that had to be configured such as:

* An algorithm to control the network IP addresses allocated.

* Having to convert ISO images to allow installation.

* Configuring Dynamic Host Configuration Protocol (DHCP), firewall, and SSH public key
infrastructure components.

* Shutting down the VM and registering in Glance (the OpenStack discovery and

registration module).

Based on the above, the devised system leaves many further opportunities for automation
and simplification of the VM deployment process and could be considered incomplete in its
development.

Interestingly, a recent investigation explored proactive management for cloud-based

architectures (Dong and Herbert, 2013). Rather than use a traditional method of reactive

management, they suggest that a far better management strategy is to be proactive rather
than to just react to occurring events. They programmed in certain intelligent traits, such as
suggestions for tasks to be carried out such as VM migration in the case of a set of criteria
being fulfilled. These suggestions are then evaluated in turn, to decide whether they should
be acted upon. The evaluation process used a manual cloud build methodology, using IBMs
SmartCloud, which was a noted problem, as the management system was not tightly

integrated into the VM provisioning process; inherently, not being tightly coupled, means the

© James Oakes, 2020 52 I P a g e

Intelligent Management of Virtualised Computer Based Workloads and Systems

intelligent system will struggle to manage the laaS (Infrastructure as a Service). For the actual
management aspect, a private cloud simulator was used to allow this process to allow the
theoretical management of between 50-500 VMs.

Further systems examine how workload schedulers can be applied to heterogeneous

systems, which are able to run a combination of workload types (Kim et al, 2011). This

methodology and approach are interesting; however, it differs in principle from the work being
carried out by this project, with the key differential being one uses a controlled, tightly
integrated modular approach. On the other hand, the alternative aims to generically schedule
workloads across various cloud and computer resources an organisation may have available.
This approach used CometCloud, a grid computing tool, designed towards heterogeneous
compute environments. Other approaches to managing virtualised environments have solely

addressed a single compute entity, like CPU resource (Menasce and Bennani, 2006). Their

work demonstrates the ability to dynamically provision CPU shares to various VMs, depending
on overall systems priorities; however, this work presents opportunity to build further on
performance management aspects.

A Distributed Artificial Intelligence (DAI) system consists of multiple physically separated
processing machines, with each having at least one expert system or knowledge source. No
one node has the ability to entirely solve a problem. Instead, it must work together in a co-
operative manner in order to resolve a problem. Typically, such a multi-agent system
comprises of a number of components, described as a receiver and transmitter, meta-level
knowledge, planner, scheduler, blackboard, solver and multiple knowledge sources. The
components rely on interactions between themselves, with the receiver/transmitter using a
defined protocol and language set to communicate with other nodes. Meta level knowledge
allows for general node or environment awareness, so the problem once defined at a high
level can be addressed and resolved by the correct candidate node. Task planning allows a
specific problem to be broken down into a structured set of sub-tasks that can be addressed
in a logical order by one or multiple nodes. The scheduler’s goal is to decide upon the most
effective way of reaching an overall solution by prioritising and ordering sub-tasks. In order
to work effectively, the blackboard is used and accessed by each node as required, to allow

node-to-node communications, with information and data stored about plans, tasks and

© James Oakes, 2020 53 I P a g e

Intelligent Management of Virtualised Computer Based Workloads and Systems

results. Finally, the solver is responsible for reaching the end objective of a final solution by
tracking and determining the best path forward for all sub-tasks to complete (Yang et al,
1985).

An exciting work around the use of the mOSAIC framework has been completed to work
to provision an laaS/PaaS environment with intelligent management to help manage
distributed cloud resources. The primary advantage of the tool is the fact it is geared towards
any cloud platform service and can be considered vendor agnostic. This provides a great deal
of flexibility, in that it can be applied and used and configured against various cloud platforms.
On the other hand, however, the main drawback is the complex configuration and setup of
the framework, along with the dependency for Al and automation that does not work by

default without a considerable amount of customisation (Sandru et al, 2012). The mOSAIC

product comprises of numerous modules shown in figure 2.3:

Cloud-enabled mOSAIC Paa$ and laas Vendor backends
applications
Application support Public
APl implementations an infrastructure

Amazon |
Java and Python Eclipse plug-ins Semantic query builder
cloudlets Flexiscale I
Frontends (cmdl, web) Pattern builder

- Java connectors WMware I

Observation (KV, MQ, DFS, HTTPgw) Backends (web services) Reasoner
applications GoGrid |

— Pythen, Erlang, Node.js Configuration tools M e

y g CloudSigma l

Earth

connectors (KV, MQ)

Intelligent Portable Testbed Cluster Search engine
maintenance ; NIIF l
Demo applications l .
system . Ontologies
— T CloudBurst l
Information Rackspace I
e Software platform support Infrastructure support
Platform’s core p pplicat service Cloud Agency et I
" Register & Discover compans Message Transfer Protocol l Hostko I
Model Packager & Deployer S Mediator I
exploration N K Priv
service etworking rivate
HEEEE Meter I infrastructure
= . Benchmark
. Monitor — Archiver I Eucalyptus I
Analysis -
of Operate & Maintain Application support ey pere l OpenNebula l
structures components
—— Scheduler & Scaler OpenStack I
Deployable COTS Aeencv service companents
Interoperability support (RabbitMQ, Riak, CouchDB, Broker DeltaCloud]
Usar community MySQL, Redis, HTTPg)
developed it Scaling agents
ablications Drivers(AMQP,Riak,HDFS,53) Commantty
PP! Credential service e ! Vendor agents developed adapters

Figure 2.3 The moSAIC Architecture

© James Oakes, 2020 54 I Page

Intelligent Management of Virtualised Computer Based Workloads and Systems

The above architecture demonstrates the product is feature rich; however, the
framework requires a large amount of configuration, especially around specific vendor
agents. This leads to the conclusion that the architecture components require considerable
post-deployment activities to produce automated processes (such as VM deployment) for the

organisation that uses the framework.

It follows, that if a system can be created to hold expert human knowledge, it can be
applied to any field of human expertise. As part of the output of this work, the author
endeavours to apply Al strategies in a novel way to help manage virtualised compute
platforms more effectively. Indeed, at a very high level initially, this can be described as

follows. To develop and build an expert system (IDE) which uses the following techniques:

* Data text mining and analysis to extract (quick and slow methods) from the platform,
both real-time information and retrospective data analysis methods to help re-
evaluate rules and logic base; typically, this would involve the identification of critical
log and information files to allow the system to process and perform its own analytics.
In effect, this is a three-step phase, with 1) identification of critical files — the system
must be able to determine this and 2) real-time extractor — critical platform updates

3) retrospective extractor — thinking extractor and textual analyser.

* Performance and availability monitoring; the system needs to control all physical
infrastructure components, and virtualised systems (VMs, Storage and Network). This
includes application of SLAs and predictive failover for all VMs, with shadow instances
for critical VMs. Some of this capability already exists in market leading commercial
products; as an example, VMware are using similar systems with features such as

Distributed Resource Scheduling and High Availability (Shirinbab et al, 2016). The goal

is to improve the approach employed by using new techniques to enhance the overall
performance using dynamic resizing of resources and faster failure detection and

recovery times.

* Rule based and forward chaining decision making allows information to be extracted,

© James Oakes, 2020 55 I P a g e

Intelligent Management of Virtualised Computer Based Workloads and Systems

processed and applied to the virtualised platform. As an example, this would include
building a forward chain for new VMs based in information available in the knowledge

base.

2.6.3 Conclusions

The following table describes the conclusions drawn from the areas investigated, with

analysis of the strengths and weaknesses for each finding:

Author(s)/Date | Summary of findings Strengths and Weaknesses
Oludele et al Attempts to fully automate VM Requirement to build and improve
2014 deployments. on this methodology, as

automation techniques are not

fully developed.

Elprince, 2013a Automatic provisioning of A useful model which can be

resources in virtualised improved upon in terms of adding

datacentres. more automation steps.

Elprince, 2013b Creation of an autonomic The idea of a resource controller is

resource controller. novel; however, it is concentrated
mainly on prediction of the
resources in a certain application

may need in a VM container.

Elprince, 2013c

Resource modeller/controller
uses (machine learning) and a
fuzzy tuner (fuzzy logic) that
allows dynamic resource

allocation.

The approach primarily uses Fuzzy
logic, which deals with partial
truths, as opposed to Boolean
values which are true or false only.
As part of this work, further

opportunities are available to

© James Oakes, 2020

S56|Page

Intelligent Management of Virtualised Computer Based Workloads and Systems

Author(s)/Date

Summary of findings

Strengths and Weaknesses

investigate and apply other Al
techniques to modelling and
control, such as natural language
processing, forward chaining and

text mining.

Bojanova and

Samba, 2011

Enterprise infrastructure delivery

models applied into the cloud.

Interesting discussion on cloud
architectures, which highlights how
important delivery models will be
in this particular field. Presents the
idea that this area of work will be
critical to shaping the future of
cloud/virtualised computing

environments.

Gren et al, 2014

Automate delivery and manage
the control of their systems by

using centralised management

Argues for centralised
management of distributed

systems. Centralised services must,

systems. however, be resilient.
Zhang and Investigation into deploying VMs | An interesting approach using
Shang, 2014 and applications using OpenStack. However, there is
OpenStack. limited effort into how Al
techniques may be applied to the
environment and numerous
manual steps listed, such as setting
up a cloud computing platformin
OpenStack. This in itself adds
considerable complexity to the
end-user.
Dong and Study into proactive Concentrates primarily on cloud

© James Oakes, 2020

57|Page

Intelligent Management of Virtualised Computer Based Workloads and Systems

Author(s)/Date

Summary of findings

Strengths and Weaknesses

Herbert, 2013

management for cloud-based

architectures.

management; however, the
Operational Management Service
(OMS) requires the build of at least
5 virtual machines in order to
function, implying there are
multiple steps for the end-users to

effectively use the tool.

Kim et al, 2011

Feasibility of application of
workload schedulers to

heterogeneous systems.

This study focused on using a tool
call CometCloud which is a
framework for supporting
workloads across distributed
systems, such as Public cloud,
Private cloud, Private clusters and
so on. The ideas presented are
interesting; however, in the paper
the experiment phase describes a
large amount of manual build
steps, such as configuring and
building public cloud VMs. In other
words, automated VM and system
provisioning did not appear to

feature.

Menasce and

Bennani, 2006a

Work around the dynamic VM

allocation of resources.

Primarily deals with dynamic CPU
resource allocation only, leaving
potential for lots of other resource
controls such as memory, network

and disk 1/0.

© James Oakes, 2020

58| Page

Intelligent Management of Virtualised Computer Based Workloads and Systems

Author(s)/Date

Summary of findings

Strengths and Weaknesses

Yang et al, 1985

Distributed Artificial Intelligence
(DAI) system consists of multiple
physically separated processing
machines, with each having at

least one knowledge source.

An interesting approach using
distributed expert system
components, however, this model,
although effective at delegating
load and tasks across multiple
agents, presents the possibility of
have more single points of failure,
due to the single entities requiring
replication (such as the ‘solver’ or
‘scheduler’); further work is
needed to ensure each critical
component is highly available.
Questions also remain over the
ability of the system to perform
and effectively problem solve
when using the black-board to
communicate and share

information with other nodes.

Sandru et al,

2012

This paper discusses the use of
the mOSAIC framework to
provide laaS and PaaS, which
attempt to use the tool to
deliver automated provisioning
of various cloud infrastructure
and middleware components;
for example, VMs, RabbitMQ,
and MySQL.

The cloud management approach
used is vendor agnostic, which can
be perceived as a strength, as this
allows the tool to be customised
against any cloud provisioning
service. However, this does leave
the complexity of having to create
the agents to support the
multitude of vendors. The Al

techniques are not fully explained,

© James Oakes, 2020

59|Page

Intelligent Management of Virtualised Computer Based Workloads and Systems

Bankole, 2013

three methods for predicting
cloud resource utilisation of web
applications using three machine
learning techniques. Firstly,
using a Neural Network,
secondly via Linear Regression,
and finally using Support Vector

Regression (SVR).

Author(s)/Date | Summary of findings Strengths and Weaknesses
with only minimal references
which allude to it being a
necessary component to manage
the complexity of the platform.
Ajila and This paper discusses in detail The prediction model is interesting

as the authors compare three
different machine learning
strategies. They determine
through their experimentation that
the SVR method is most effective
at resource prediction and
adaptation. However, little
information is made available on
how once the information is
collated, VMs in the cloud are
automatically modified should it
be determined they require more

or less compute resource.

Tian et al, 2012

This work considers using a
Decision model for provisioning
VMs on Amazon EC2, in terms of
providing cost optimisation and

capacity planning.

An investigation into how to best
acquire Amazon EC2
resources/capacity based on three
different pricing models. Those
types are on-demand instances,
spot instances and reserved
instances. The idea was to reduce
the cost to a minimum for EC2
provisioning plans. The results

showed a promising strategy for

© James Oakes, 2020

60|Page

Intelligent Management of Virtualised Computer Based Workloads and Systems

Author(s)/Date | Summary of findings Strengths and Weaknesses

reducing overall cost, as well as
little advantage to using spot

pricing for short-term planning.

Lokshina and Discusses the feasibility of using | Looks at how an expert system can
Insinga, 2004 an expert system as a use a combination of event driven

replacement for a human system | decision making, utilising forward-
administrator, acting in a chaining to reach conclusions on
support function. how to problem solve in a
distributed and heterogeneous

computing environment.

Table 2.3 Current Virtualisation/Cloud Management Findings

2.7 Intelligent System Approaches

2.7.1 Introduction

Given the gaps and challenges identified, a further examination and consideration of
intelligent systems is undertaken in the areas of algorithms, pattern analysis, machine learning

and inference engine. These areas are explained in detail below:

2.7.2 Algorithms

An algorithm is a step of sequenced actions that can be made up of a combination of

reasoning, mathematical calculations and processing tasks (Huang et al, 2012). They link

intrinsically to expert systems methodologies described in the above examples in section 2.4,

which are essentially made up of a single or series of algorithms (Mulayim and Alaybeyoglu,

2016; Wenbin et al, 2010; Ashouri and Savoji, 2004). Instead of being clinically based, the

knowledge domain of this investigation is focused on the application (knowledge engineering)

© James Oakes, 2020 61 I P a g e

Intelligent Management of Virtualised Computer Based Workloads and Systems

of those principles to virtualised computer systems. Indeed, the field of expert systems (and
associated algorithms) are equally applicable in helping to solve any type of problem that

requires a level of human natural intelligence to create a solution (Durkin, 1990; Beckman,

1990). Currently, this research field is wide and intensive as the studies examined

demonstrate. As examples, consider further that significant efforts are being made in:

e Autonomic virtualised environments; the concept of automatically assigning CPU
resources dynamically within a virtualised computational environment (Menasce and

Bennani, 2006).

e Autonomous resource provisioning; the idea here is to design an autonomic resource
controller capable of learning adaptively, by utilising Machine Learning techniques,
effectively being able to make resource changes to meet Service Level Agreements

(Elprince, 2013).

e Predicting cloud resource using support vector regression (Ajila and Bankole, 2013).

2.7.3 Text Mining

The IDE proposes using data text mining processes to analyse key data and log files (Wong

and Manickam, 2010). This enables quick extraction of key data to enable the platform to

make decisions and trigger key events. Examples of platform events specific to this work
include VM deployment, VM failure, VM migration, and intervention to improve VM
performance. Analysis of patterns is essential for the system to be able to perform two critical

activities:
e Event response (reactive) based on real-time data.
e Event prediction (proactive) based on historical analysis.

The first activity, event response, is a classical trait for an expert system to exhibit (Kulikowski,

1980; Lokshina and Insinga, 2004). Usually, a pattern of events is recognised, and a conclusion

reached through logically joining those identified patterns to match an event response using

© James Oakes, 2020 62 I P a g e

Intelligent Management of Virtualised Computer Based Workloads and Systems

a method such as forward chaining (Windriyani et al, 2013). Once matched and initiated, a

series (or even single) of actions are performed to provide a satisfactory system response;
once completed, the tasks carried out can be evaluated and measured as successful or non-
successful. Likewise, a further less common method is to use historical or collected data to
proactively perform a set of actions, again using a method such as forward chaining (Kwon,

2012). Figure 2.4 demonstrates the basic approach:

Real-time / Rule Matching Aggregation of

Event Response

Rule
Conclusions

Proactive Event

. Process
Observation

Figure 2.4 Machine Event Response Mechanism

For example, you may be able to predict busy system times, such as just before batch
processes start at 7pm on a Sunday evening. Therefore, it would be feasible to predict this
event due to pattern analysis of historical data and invoke a procedure to increase CPU and
memory available, to allow the system to perform more effectively. It is an objective for this

work to incorporate both methods to support the IDE function.

2.7.4 Natural Language Analysis

Natural language processing is used to understand and organise information (Lebowitz,
1983). The IDE aims to use a knowledge base, with a thesaurus, an English based lexicon,
along with grammatical rules to allow the system to make sense of all collected platform data

and thus classify and formulate appropriately (Gaikwad and Joshi, 2016). Through

organisation of information, the system will be able to use these resources to build a

sequence of reasoning steps. Figure 2.5 demonstrates the process:

© James Oakes, 2020 63 I P a g e

Intelligent Management of Virtualised Computer Based Workloads and Systems

Start

Historical/real- Lexicon /
time event data

Thesaurus

Organise data Classification of

data (grammar
rules)

into stores

Figure 2.5 Natural Learning Mechanism — Information Organisation

2.7.5 Inference Engine (Forward Chaining)

Inference engine architectures can use backward and forward chains to logically create
rules or new facts about the knowledge domain they operate in. With forward chaining,
known facts are connected together to result in a new conclusion or fact. Conversely, with
backward chaining, a desired goal is stated, and the facts required to achieve this goal are

reverse engineered (Mettrey, 1991). Given the two approaches, initially an examination of

forward chaining to build reasoning and conclusions (facts) will be undertaken. This will result
in a suitable knowledge rule-based approach for managing complex procedures within the

virtualisation of computer systems context (Spangler, 1991). The platform will therefore be

expected to make data driven decisions, which are triggered primarily by real time events
from information collected from the various components, such as VMs, storage and network
devices. By utilising forwarding chaining of statements, this enables the system to reach a
conclusion and invoke necessary functions described above to satisfy event responses or

event predictions (Novaliendry et al, 2015). The premise at a simple level is presented as

follows:

© James Oakes, 2020 64 I P a g e

Intelligent Management of Virtualised Computer Based Workloads and Systems

Yes

Analysis against Decision — Create new
existing event create new :> rule, conclusion

possibilities event/rules

Systematic

comparison of
event data

i

and event

Figure 2.6 Machine Learning Mechanisms Event Response

2.7.6 Cognitive Load Theory

Cognitive Load Theory (CLT) emerged in the late 1980s, as a branch of cognitive
science, with several key researchers involved in studies around how users are impacted by

mental load during problem solving exercises (Sweller et al, 1998; Paas et al, 2003). The key

idea introduced, was being able to measure and capture the amount of mental power, or
mental effort that is required to complete a certain task or set of tasks (process), in a
controlled experiment setting. According to Paas and his colleagues, CLT is concerned with
the design of instructional methods that efficiently use people’s limited cognitive processing
capacity to apply acquired knowledge and skills to new situations, for example the transfer of

knowledge (Paas et al, 1994).

Analytical methods are directed at estimating the mental load and collect subjective
data with techniques such as expert opinion and analytical data, with techniques such as
mathematical models and task analysis. Empirical methods, which are directed at estimating
the mental effort and the performance, gather subjective data using rating scales. The
application of rating scale techniques are based on the assumption that people are able to
introspect on their cognitive processes and to report the amount of mental effort expended.
Although self-ratings may appear questionable, it has been demonstrated that people are
quite capable of giving a numerical indication of their perceived mental burden (Gopher and

Braune, 1984).

© James Oakes, 2020 65 I P a g e

Intelligent Management of Virtualised Computer Based Workloads and Systems

2.8 Summary

2.8.1 Introduction

Throughout chapter 2, there is an overall review of the foundation, origins and
motivations around the historical work done around Al and its many branches. By alluding to
the origins and early success stories, we set the scene for further developments around expert
systems (of all types), by highlighting their suitability towards imitating the way humans
problem solve. Furthermore, an in-depth discussion of two well-known public cloud
organisations brings the study up to the most current recent technology advances made. This
allows for comparisons to be made in the areas being examined by this investigation.
Following this, a detailed analysis of current research initiatives in the field allows a
comprehensive view of what has been achieved to date, how this work fits into the existing
body of knowledge; additionally, discussion around the identified gaps and expected
challenges helps define and justify the future effort and work undertaken by this project. By
completing this, it allows us to finally review some of the identified Al techniques that are
deemed most likely to provide the best results for the intelligent management of virtualised

computer systems.

© James Oakes, 2020 66 I P a g e

Intelligent Management of Virtualised Computer Based Workloads and Systems

2.8.2 Gap Analysis

The following table describes and captures those areas that are deemed to form part of

the gap analysis from the literature reviewed in the field:

Subject Area

Gap Analysis Conclusion

Expert systems
application to virtualised
computer management
platforms and cloud-

based systems.

The author believes the work to be unique, in that no existing
expert systems exist within the knowledge domain of

virtualised computer management (Duda and Shortliffe, 1983).

Event detection
combined with forward
chaining (inference) to
improve automated

system response.

Examining existing work in the field of virtualisation, suggests
little has been done around combining system event driven
response with forwarding chaining to allow an expert system to
evaluate and perform an automated reaction for example

cause, effect and response (Anicic et al, 2009; Lokshina and

Insinga, 2004).

Natural language
processing for text
analysis and advanced

trigger generation.

Work to integrate natural language processing techniques for
text-based analysis of the virtualised platform environment
data to improve trigger detection and effective event response

strategy (Gandhe et al, 2013).

Simplified one-click VM

deployment.

Investigation into the reduction of the cognitive load rating for
complex user activities like building and deploying VMs. From
analysis undertaken of literature so far, opportunity exists to
simplify processes and minimise required human interventions

(Oakes et al, 2016).

VM performance and

availability.

Builds on existing work completed around the dynamic
allocation of resources (like CPU, Memory and Disk) by utilising

the event driven processes and inference capability to drive

© James Oakes, 2020

67|Page

Intelligent Management of Virtualised Computer Based Workloads and Systems

Subject Area Gap Analysis Conclusion

intelligent decision making on how best to increase or remove
resources, in conjunction with service level agreements

without the need for human intervention (Antonescu et al,

2013; Sarathy et al, 2010).

VM Migration. Work to improve existing methods around VM migration
between hosts and automated balancing workloads, by
examining how to reduce service outage time, without the

requirement for human intervention (Benet et al, 2016).

Table 2.4 Gap Analysis

2.8.3 Approach Challenges

The table below describes the challenges, analysis and conclusions that were reached

based on the options available for the project:

Challenges Analysis/Conclusion
Distributed versus As part of the solution approach, it is important to decide
centralised which design is the better suited to solving the problem (Yang

management approach. | et al, 1985).

Conclusion: Choose centralised management.

Functional capability Any solution provided requires an initial starting point.
prioritisation. Deciding on what functional capability is critical in managing
the project effectively. Rather than over-extend the initial
capability, it is deemed advantageous to focus on the most
critical functionality required and deliver the perceived
improvements.

Conclusion: Prioritised IDE functional capability areas as per

section 1.2 Motivation and Aims.

© James Oakes, 2020 68 I P a g e

Intelligent Management of Virtualised Computer Based Workloads and Systems

Challenges

Analysis/Conclusion

Deciding which Al
strategies are the most
effective to utilise with

the IDE.

There are many Al strategies/approaches available, which could
be selected to support the IDE. Choosing the most appropriate
Al component is critical to the project. Current areas
considered:

e Fuzzy Logic - Partial v Absolute truth (Elprince, 2013)

e Support Vector Machines (Ajila and Bankole, 2013)

e Machine Learning (Arnaldo et al, 2015; Melekhova,

2013)

e Data/Text Mining (Prangchumpol et al, 2009)

e Natural Language Processing (Mei and Cheng, 2010)

e Forward and backward chaining (Anicic et al, 2009)

e Expert systems (Spanger, 1991; Lokshina and Insinga,

2004)
Conclusion: Choose expert systems, based on the analysis

completed in chapter 2 and section 2.4.

Overcoming on-premise
private and hybrid cloud

limitations.

Optimising on-premise private/hybrid cloud management

techniques (Dong and Herbert, 2013; Jin et al, 2016; Zhang et

al, 2014)
Conclusion: Choose a private cloud management approach to
explore tight integration, improved automation, better

controls, based on section 2.6.2 Reviewed Approaches.

© James Oakes, 2020

Table 2.5 Approach Challenges

69|Page

Intelligent Management of Virtualised Computer Based Workloads and Systems

2.8.4 Justifications

The following table highlights the justifications for the decisions and choices made for

each of the proposed areas of investigation:

Justifications

Analysis/Conclusion

Reducing Cognitive Load
for complex VM
provisioning and

management tasks.

Working to reduce complexity of VM provisioning and
management by developing high levels of automation, reduced
requirements for human inputs and improved automation

(Sweller, 1988).

Improved Automation.

Working towards full automation and minimal human

intervention for any functional procedures, such as VM
provisioning, VM performance monitoring and migration (Benet

et al, 2016; Steinder et al, 2007).

Selection of most
appropriate Al

strategies.

Use of natural language process to aid understanding of
log/textual outputs, complimented by the selection of text-
based analysis for improved/automatic pattern recognition,
event processing and selection of forward chaining to reach facts

(Anicic, 2009; Mettrey, 1991).

Simplification of VM

deployment.

Minimisation of end-user inputs and full automation of

provisioning VMs (Oakes et al, 2016).

Table 2.6 Research Justifications

Based on the justifications described in table 2.6, it is feasible to move forward into

the methodology in chapter 3, which describes in more detail the experiment processes and

mechanisms used to evaluate the IDE and other comparative virtualised management

platforms.

© James Oakes, 2020

70|Page

Intelligent Management of Virtualised Computer Based Workloads and Systems

Chapter 3: Methodology and Evaluation Strategy

3.1 Methodology Introduction

The methods used for the investigation work include the build and development of a
prototype laboratory environment to support the experimentation processes undertaken for
the IDE and associated functions. By using this platform, it enables functional testing of all the
infrastructure components in unison and allows development of program code, algorithms
and system interactions. It is envisaged that once the platform reaches a mature configuration
point, the build could be easily replicated using automatic system package type installation on
standard Linux type systems. This would enable the easy deployment of additional evaluation
systems that are effectively replicas of the initial primary system. In this way, the evaluation
processes can be carried out easily, without transporting excessive amounts of hardware and
system configuration data (from the development laboratory). Simply, this could be a set of

software components for:

e A software package to configure the IDE with the primary, secondary and tertiary

systems.
e A software package to configure the Network Attached Storage (NAS) appliance.
e A software package for all required local source/packaged repository software.
e Asoftware package to allow platform internet access (direct, or via a proxy).

Using these software deployment packages, it should be feasible to easily replicate the
experimental development platform, assuming the standard hardware devices are physically

available:

e At least 3 x86 architecture computers (Compute, minimum: 8GB memory, 2 internal

disks, 2 CPU Cores at 2GHz or higher, 1 x 1Gb Network Interface).

e Atleast 1 Network Attached Storage Appliance (Storage, minimum: Dual 1Gb network,

4 disks, 7200RPM, SATA/SAS/FC).

© James Oakes, 2020 71 I P a g e

Intelligent Management of Virtualised Computer Based Workloads and Systems

e At least 2 Network Switches (Network, minimum: 16 x 1Gb ports).

e At least 1 x86 computer to act as a router/gateway for internet access (optional); this
must have at least 1 physical network interface and a wireless network interface.
(Network/Compute, minimum: 4GB memory, 1 internal disk, 2 CPU Cores at 2GHz or

higher, 1 x 1Gb Network Interface).

3.2 Development Framework

The development framework is very important for the project to progress; the aim is to
control code releases using the Redhat Hat Package (RPM) format and source control versions
appropriately. This method will allow control of four key RPM software bundles (listed above),
which will be version tested together and the results recorded, to build up a valid laboratory

set of working configurations. It can be summarised as follows:

e RPM — All software will be bundled into Package format for ease of installation

and distribution.

e Source code — all code will be version controlled in a system.

3.2.1 Laboratory Setup

The laboratory setup for the design, build and experimentation phase included setting
up an initially small scale set of systems; the approach taken was to build a single x86 IDE
server —the primary system which controls all aspects of the environment. In the final model
design, there will be a primary and secondary system to provide high availability. Further to
this, three other x86 systems are required to perform normal VM build, development and test
operations. This platform would allow for all activities to be carried out on a small scale, with
the view of acquiring more powerful systems further into the research process, for example,
when experiments demanded higher performing systems specifications. Below is a diagram

of the initial and final laboratory setup:

© James Oakes, 2020 72 I P a g e

Intelligent Management of Virtualised Computer Based Workloads and Systems

i) The initial simple configuration:

Laboratory Setup (Initial Development)

IDE x86 Primary Server
4 Core [/ 4 Threads / 8GB RAM
Host O5: CentO5S
VM Guest OS (various)

(1 GbE LAN

Physical Farm x86 Server
2 Core / 2 Threads / 4GB RAM

Host 05: CentOS Physical Farm NAS Ready — Network

Host O5:
CentOS v b.x

Comms:
SSH Tunnels
SSH RSA Keys

Hypervisor:

Type ll

Oracle Virtualbox
Oracle Virtualbox
Extension Pack

Guest OS Types:

CentOS xvb.x

Windows XP
Professional

Windows 7 Professional
Windows 10 Professional
Solaris 10x86

Solaris 11x86

Network Speed:
Single Network

Database Stack:
MySQL 5.x
MongoDB

Programming:
C/C++

PHP

Unix Script

Web Presentation:
Apache

Storage:

Network Attached
Storage

RAID-1 (Mirror)

2 Disks

Protocols:
iSCSI/NFS/SMB/CIFS

VM Guest OS (various) Attached Storage (SMB/CIFS/NFS 1GbE
IDE %86 Secondary Server Server)
Figure 3.1 Initial Laboratory Setup
i) The final configuration as a recommended minimum:

Laboratory Setup (End Stage & Experimental Development)

IDE xB6 Primary Server
10 Core / 20 Threads / 128GB
RAM
Host OS: CentOS
VM Guest OS5 (various)

L 10 GbE LAN (Multiple VLANS 802.1Q (taggi

Physical Farm x86 Server
10 Core / 20 Threads / 128GB RAM
Host 05: CentOS
VM Guest OS (various)
IDE x86 Secondary Server

Physical Farm NAS Ready — Network
Attached Storage (SMB/CIFS/NFS
Server)

Host OS:
CentOS v 6.x

Comms:
SSH Tunnels
S5H R5A Keys

Hypervisor:

Type ll

Oracle Virtualbox
Oracle Virtualbox
Extension Pack

Guest OS Types:

CentOS xvb.x

Windows XP
Professional

Windows 7 Professional
Windows 10 Professional
Solaris 10x86

Solaris 11x86

Network Speed:
10GbE Dual Network
Switches

VLAN tagging

LACP (link/port
aggregation)

Database Stack:
MySQL 5.x
MongoDB

Programming:
C/C++

PHP

Unix Script

Web Presentation:
Apache

Storage:

Network Attached
Storage

RAID-5

(Stripe with Parity)

3+ Disks

2+ aggregated network
connections

Protocols:
iSCSI/NFS/SMB/CIFS

Figure 3.2 Final Minimum Laboratory Setup

© James Oakes, 2020

73|Page

Intelligent Management of Virtualised Computer Based Workloads and Systems

3.2.2 Software Configuration

The software configuration of the IDE platform is fully automated; there exists a number
of software Redhat Packages (RPMs) that make up the core of the programs required for the

system to function. Please see Appendix B for full details.

3.3 Evaluation Strategy

3.3.1 Evaluation Approaches

There are several different approaches that can be used in evaluating complex expert
systems. In the case of the IDE and its associated functional components, a combination of
two approaches have been chosen to provide both empirical evidence comprising of
gualitative data based on user feedback, and formal performance metrics providing measured
outputs made up of quantitative data. It is the goal of this work to produce results output that
have a combination of qualitative and quantitative methods. Some effort has also been taken
to evaluate and test methods to convert qualitative feedback and accurately define and assign
numerical values to help better represent user feedback in charts and graph format. Carefully
constructed process and thought are placed into such a method to ensure fair, robust and
meaningful values are accurately gathered and presented. Section 5.2.3.1 explains this

approach in detail (Srnka and Koeszegi, 2007).

Therefore, the two combinations are summarised below:

e The first evaluation method will use qualitative methods collated by obtaining expert
user feedback via interviews. This will be obtained through live demonstrations similar
to the RAND (Research AND Development) framework methodology (Rothenburg et
al, 1987). Therefore, a collection of expert qualitative data will be created based on a
set of structured interview questions, through interviewing three independent groups
with a defined experience and capability rating in the field of computer-based

virtualisation (see section 5.2.1.2 for definitions).

© James Oakes, 2020 74 I P a g e

Intelligent Management of Virtualised Computer Based Workloads and Systems

e The second evaluation method will use several quantitative simulations with formal
metrics, that will specifically target key system functions in performance aspects, such

as deployment of virtual machines and migration of virtual machines (Chen and Suen,

1993).

The objective is to use a combination of complimentary methods. Thus, the desired
outcome is to create a richer and more robust evaluation methodology by using both
gualitative and quantitative data. Qualitative data that focuses and reflects on the
characteristics and capabilities of the system, rather than just its features alone, and
guantitative data that measures specific system functions. The following sections discuss

these two approaches in more detail.

3.3.2 Expert System Evaluation

In chapter 2, section 2.4 an examination of how real life examples of expert systems
can be used as a way to assist with automated complex decision making processes is
discussed. It was established that such systems have a broad application to problem solving,
and the examples included medical diagnosis assistance, and system configurators. Section
2.4.9 provided the basis and justification as to why expert systems had been considered as a
feasible way of utilising expert knowledge to manage complex systems and processes. A
variety of existing and known methods are used to evaluate the IDE and comparative systems,

using experimentation process; they are described further below:

e The expert system rules are fired and tested using a simple first-come first-
served approach, and are therefore ordered in priority. This avoids complex
conflict sets, whereby many rules may be valid to execute, and provides a clear

conflict resolution strategy (Mettrey, 1991; Alty and Coombs, 1984).

e Additionally, a mixture of evaluation methods is employed to test the IDE. This
includes, traditional qualitative and quantitative evaluation methods, as

described in section 3.4.1 and 3.4.2 respectively, as well as less well known

methods such as measuring the characteristics and features of expert systems

and their capability (Beckman, 1990; Rothenburg et al, 1987).

© James Oakes, 2020 75 I P a g e

Intelligent Management of Virtualised Computer Based Workloads and Systems

e Mixed quantitative and qualitative methods are used to measure VM and
cognitive load, and are used with the end-user participant groups to test the
IDE expert system. The experiments are devised in section 3.5.1 for
investigation 1, Autonomous VM Deployment, and in section 3.5.2

investigation 2, Cognitive Complexity System Evaluation (Massimiliano and

Tamburri, 2017).

e (Quantitative methods are employed in section 3.5.3 for investigation 3,
Workload Migration and Evacuation of VMs to investigate the IDE performance

against comparative systems (Madarasz et al, 2014).

e For the performance management evaluation process, section 3.5.4 describes
investigation 4, the Overload of VM Memory, and section 3.5.5 investigation 5
the Overload of VM CPU. A series of simulated experiments are to be
conducted to evaluate how well the global resource manager for the IDE
performs in comparison to other similar studies. As an extension to testing the
effectiveness of all the resource management systems, a binomial evaluation
is used in chapter 7.6.5 to enrich and provide details on the features and

characteristics of the IDE and comparative systems (Conrath and Sharma,

1991).

As demonstrated above, the author is using a wide variety of standard evaluation
methods (qualitative or quantitative), which are well known, tried and tested. As alluded to,
there are several less well known approaches used by some researchers, however, for the
most part these have been avoided unless it was apparent additional methods were needed
or useful, as in the case where qualitative or quantitative methods would not suffice entirely;
for example determining the effectiveness and capability of the global resource management
features of a system like the IDE. Therefore, with the exception of some influences from
researchers such as Contrath and Sharma and their use of the binomial evaluation method,
and Rothenburg and his colleagues at the RAND institute, the methods remain standard where

possible.

As described earlier in section 3.3.1 the RAND work establishes some other useful

© James Oakes, 2020 76 I P a g e

Intelligent Management of Virtualised Computer Based Workloads and Systems

methods for evaluating expert systems, which have been partly considered and incorporated

(Rothenburg et al, 1987). One of the points suggested as providing additional value is

evaluating the expert system capabilities, and that is explored further as part of this work. In

chapter 7, section 7.6.1, 7.6.2 and 7.6.3, the IDE and comparative tools are analysed, scored,

and the results presented.

3.3.3 Experiment Design

The following points detail how and why the experiments were devised:

Experiment 1 (section 3.5.1) and Experiment 2 (section 3.5.2): Autonomous VM
deployment, and Cognitive Complexity System Evaluation. This experiment was
created and based around the 10-step procedure to provision VMs. The author used
empirical observation methods to initially work through each of the key stages (10-
Steps), to determine what inputs are required and necessary for a system to create
and provision a VM, for example selecting the required CPU, memory, and disk
parameters. The process methods to achieve this is consistent for the IDE, AWS and

Oracle platforms, and hence repeatable for each (Massimiliano and Tamburri, 2017;

Bhise and Mali, 2013).

Experiment 3 (section 3.5.3): Workload Migration and Evacuation of VMs. The author
realised early on at the proposal stage, that this area was a key element to
management. Similar studies have been done using other technologies, such as
VMWare vMotion and XenMotion. Migration, evacuation and failover of VMs are key
to maintaining availability, and therefore can be considered a fundamental process for

the intelligent management of virtualised platforms (Benet et al, 2016; Feng et al,

2011; Shirinbab et al, 2016; Toyoshima et al, 2010; Calzolari, 2006; Wood, 2011).

Experiment 4 (section 3.5.4) and Experiment 5 (section 3.5.5): Overload of VM
Memory Usage, Detection Time and Resolution Time, and Overload of CPU Memory

Usage, Detection Time and Resolution Time. As with VM provisioning, and migration

© James Oakes, 2020 77 I P a g e

Intelligent Management of Virtualised Computer Based Workloads and Systems

and failover, this is another critical area for the effective control of virtual machines.
Utilising a global performance management strategy for the flexible consumption of
CPU and memory is regarded as important feature of an intelligent management

system (Flinta et al 2017; Imai et al 2013; Jeong and Lee 2012; Jing 2011).

3.4 Qualitative Versus Quantitative Methods

There was a desire to provide a mixture of both qualitative and quantitative studies to
enhance the overall data set, with the objective of providing a richer set of results for
evaluation. This is backed up by the concept of utilising mixed-methods. The aim of such
mixed-methods is to support the cause and effect claims (analysis and conclusion) by
combining multiple types of data, from various sources, to allow analyses that provide
software practitioners and academics a solid rationale, balanced and practical value to the

research results and conclusions reached (Massimiliano and Tamburri, 2017).

3.4.1 Qualitative Evaluation

For the five experiments, it was not deemed appropriate to use this method for all as
described by the following table, primarily because of the type of measurements that could

be taken require some form of human interaction:

Experiment | Experiment Qualitative | Justification of Method
No Description Evaluation
(Yes/No)
1 Simplified VM Yes Interactive systems such as the AWS,
provisioning. Oracle and IDE public/private cloud
platforms allow for direct user interaction
and experience using the system interface,

© James Oakes, 2020 78 I P a g e

Intelligent Management of Virtualised Computer Based Workloads and Systems

memory usage,

detection Time,

Experiment | Experiment Qualitative | Justification of Method
No Description Evaluation
(Yes/No)

albeit being automated for many of the
provisioning features. This therefore allows
opportunity for structured qualitative user
feedback.
Justification: Human Interactive.

2 VM Provisioning | Yes Using structured qualitative feedback from
cognitive the end-users of the system provides the
evaluation ability to create a model to collate the user
performance. experiences and convert that data from

words to numbers. (Srnka and Koeszegi,
2007).
Justification: Human Interactive.

3 Workload No This feature within the tested platforms is
Migration and an automatic system event, whereby it
Evacuation of detects a full VM failure, and works to
VM. evacuate and migrate the resource to a

remaining healthy host. This means such
an event/task can be easily observed and
quantified, but as it does not involve the
end-user experience as such, there is no
possibility to extract qualitative data.
Justification: Non-human Interactive.

4 Overload of VM | No This type of event is detected

automatically by the platform and steps

are taken to resolve. This experiment does

© James Oakes, 2020

79| Page

Intelligent Management of Virtualised Computer Based Workloads and Systems

CPU usage,
detection time,
and resolution

time.

Experiment | Experiment Qualitative | Justification of Method
No Description Evaluation
(Yes/No)
and resolution not involve the end-user and involves
time. observations of the platform behaviour
only.
Justification: Non-human Interactive.
5 Overload of VM | No This type of event is detected

automatically by the platform and steps
are taken to resolve. This experiment does
not involve the end-user and involves
observations of the platform behaviour

only.

Justification: Non-human Interactive.

Table 3.1 Qualitative Experiment Methods

3.4.2 Quantitative Evaluation

For the five experiments, it was appropriate to use this method for all as described by
the following table, primarily because for each, there was opportunity to collect meaningful

measurable data:

Experiment | Experiment Quantitative | Justification of Method
No Description Evaluation
(Yes/No)
1 Simplified VM | Yes Data is collected from the provisioning
provisioning. process for all platforms in respect to the

timings for each of the 10-steps identified.

Section 5.2.1 explains in further detail.

© James Oakes, 2020 80 I P a g e

Intelligent Management of Virtualised Computer Based Workloads and Systems

Experiment | Experiment Quantitative | Justification of Method
No Description Evaluation
(Yes/No)
Justification: Measurable metrics available.
2 VM Yes Qualitative data is taken from the end-
provisioning users of the VM provisioning process and
cognitive converted into quantitative data, to
evaluation provide a mix-method analysis (Srnka and
performance. Koeszegi, 2007;Massimiliano and Tamburri,
2017).
Justification: Measurable metrics available.
3 Workload Yes This experiment phase will support the
migration and detection process for a VM failure and
evacuation of subsequent evacuation and migration to a
VMs remaining healthy host. The timing related
data associated with this process will be
available.
Justification: Measurable metrics available.
4 Overload of Yes This type of event is detected
VM memory automatically by the platform and steps
usage, are taken to resolve. This experiment will
detection time, involve being able to time the observations
and resolution of the platform behaviour in respect to
time. how it can (dynamically) balloon a VMs
memory and resolve any resource issue.
Justification: Measurable metrics available.
5 Overload of Yes This type of event is detected

VM CPU usage,

automatically by the platform and steps

© James Oakes, 2020

8l|Page

Intelligent Management of Virtualised Computer Based Workloads and Systems

Experiment | Experiment Quantitative | Justification of Method
No Description Evaluation
(Yes/No)
detection time, are taken to resolve. This experiment will
and resolution involve being able to time the observations
time. of the platform behaviour in respect to

how it can (dynamically) increase a VMs
CPU allocation and resolve any resource

issue.

Justification: Measurable metrics available.

Table 3.2 Quantitative Experiment Methods

3.4.3 Data Analysis

This will be conducted using well-known established methods (Xu and Liu, 2003;

Madarasz et al, 2014):

e Providing three user groups to represent a combined total of ninety-three users for
the IDE, AWS and Oracle platform experiments made up of, thirty-one novice users,

thirty-one experienced and thirty-one expert users. See section 5.2.2.2,5.2.2.3 and

5.2.2.4 respectively for details on how these groups are defined. Having a
reasonable sized set of controlled end-user groups will provide a wider and richer
set of results for analysis, and improves the reliability of subsequent drawn

conclusions.

e Using observation techniques to record events, outcomes and timings during the

experiment process.

e Comparison of data against multiple similar academic studies using comparative
tools; for example, the IDE provisioning with AWS and Oracle cloud provisioning

techniques.

© James Oakes, 2020 82 I P a g e

Intelligent Management of Virtualised Computer Based Workloads and Systems

e Recording the data associated with timed experiments, to produce tables and

charts to allow for visual representation in graphical form.

e Interpretation of statistical data using mathematical methods, for example
determining sum or averages such as the mean, mode and median for

substantiating results, outcomes and conclusions.

3.5 Evaluation of Comparative Systems

The following five experiments capture the fundamental processes the IDE aims to
deliver against, as per the initial project proposal — see Appendix G for more details. They are

undertaken in a controlled way and use a simulated, step by step approach to record results.

3.5.1 Investigation 1: Autonomous VM Deployment

The following mechanism is designed to evaluate the deployment process of VMs. It
involves a study of the time taken to create a virtual machine compared to other case studies.
This would include the process time to evaluate cloud build questions/response against the

automation processes of the IDE.

Experiment Flow | Process Description Methodology Result
Access the The end-user must be Browser based IDE v AWS v Oracle
provisioning able to access the access via the Record the time
system. provisioning platforms to | internet or private taken to perform
provide an interface to cloud system via a .
(e.g. gain access to
produce the deployed local network. the system and
VMs. authenticate).
Configure role. The end-user must have | Observe and allow | IDE v AWS v Oracle
the relevant access the system to

Record the time
control and permission to | configure

© James Oakes, 2020 83 I P a g e

Intelligent Management of Virtualised Computer Based Workloads and Systems

Experiment Flow

Process Description

Methodology

Result

create VMs.

appropriately.

taken to perform

the configuration.

Select compute as
the option for VM

deployment.

Use the VM (Compute)
provisioning process via

the BUI.

The end-user must
be able to locate
the compute
provisioning

mechanism.

IDE v AWS v Oracle
- record the time
taken to access the
VM provisioning

tool.

Select the image
you wish to use to
install to the VM

(OS type/version).

There must be a data
source to install an OS

image.

The end-user must
be able to locate an
appropriate data

install source.

IDE v AWS v Oracle
- record the time
taken to access the

data source.

Select the VM
CPU, memory, and

disk parameters.

The VM must have
parameters associated

with its configuration.

The end-user must
specify appropriate

CPU, memory and

IDE v AWS v Oracle
- record the time

taken to provide

associated.

the VM to use.

disk values. the VM shell
parameters.
Define VM The VM requires IP All the additional IDE v AWS v Oracle
parameters. configuration, software parameters must - record the time
packages and OS release | be provided to the | taken to provide
version specified. provisioning the additional
system. parameters.
Define VM The VM requires at least | All disk devices IDE v AWS v Oracle
storage. one virtual disk must be defined for | - record the time

taken to provide
the disk

information

© James Oakes, 2020

84|Page

Intelligent Management of Virtualised Computer Based Workloads and Systems

Experiment Flow | Process Description Methodology Result
parameters.
Add SSH Key, To access the VM, an The public and IDE v AWS v Oracle

create a key and

upload the pubic

appropriate secure key

mechanism must be in

private key must be

deployed to the

- record the time

taken to setup and

key. place to allow the user to | system to allow provide the key to
access the VM post access. allow access.
deployment.

VM creation This is the actual time Observe the IDE v AWS v Oracle

process. taken to install and installation process | - record the time

configure the VM using

the OS data source.

mechanism.

taken to install the
OS and provision

the VM.

Process for
accessing the VM
via the internet, or

via network.

The VM must be
accessible via the
network/firewalls post
install. Therefore, it must
be available over the

network or internet.

All network access
protocols like SSH
must be working;
the end-user must
be able to login to

the VM.

IDE v AWS v Oracle
- record the time
taken to access
and login to the
VM.

Table 3.3 VM Deployment Experiment

3.5.2 Investigation 2: Cognitive Complexity System Evaluation

The steps below in table 3.4 will be followed to formally evaluate the VM provisioning

process using a structured feedback survey from the three groups, namely those characterised

into groups of novice, experienced and expert users:

© James Oakes, 2020

85|Page

Intelligent Management of Virtualised Computer Based Workloads and Systems

hosthame and size

classification.

manual

(description).

Experiment Flow VM Data Parameter Methodology Result
Gathering
Obtain VM Data source method. Automatic or IDE v AWS v

Oracle - observe
the complexity for
each end-user and

record results.

Obtain VM size

parameters

(CPU/Memory/Disk).

Data source method.

Automatic or
manual

(description).

IDEv AWS v
Oracle - observe
the complexity for
each end-user and

record results.

VM shell creation.

Data source method.

Automatic or
manual

(description).

IDE v AWS v
Oracle - observe
the complexity for
each end-user and

record results.

VM guest

installation.

Data source method.

Automatic or
manual

(description).

IDE v AWS v
Oracle — observe
the complexity for
each end-user and

record results.

VM Post installation

methods.

Data source method.

Automatic or
manual

(description).

IDE v AWS v
Oracle - observe
the complexity for
each end-user and

record results.

© James Oakes, 2020

86|Page

Intelligent Management of Virtualised Computer Based Workloads and Systems

Experiment Flow VM Data Parameter Methodology Result
Gathering
VM access method Data source method. Automatic or IDEv AWS v

and authentication. manual Oracle — observe

(description). the complexity for
each end-user and

record results.

Table 3.4 VM Deployment Cognitive Load Experiment

3.5.3 Investigation 3: Workload Migration and Evacuation of VMs

This experiment set analyses the following three scenarios listed in table 3.5:
e When does a VM need to evacuate?

e Time policy, critical services weighting; for example, when moving a VM of least

importance (i.e. a VM hosting non critical applications).

e Scenario based evaluation of the IDE VM migration versus XenMotion and VMWare’s

vMotion.

e Utilisation strategy percentage use of resources, detection time, inference and

subsequent actions.

Experiment Flow

Process Description

Methodology

Result

Evacuation
Scenario 1: VM

failure.

Simulation of VM
failure and

subsequent actions.

Simulate VM failure
event, ensure VM
fails, then observe
the resulting actions

to the event.

IDE versus XenMotion
and VMWare’s

vMotion.

Record the failure
time, VM failure time

and VM restored

© James Oakes, 2020

87|Page

Intelligent Management of Virtualised Computer Based Workloads and Systems

Experiment Flow

Process Description

Methodology

Result

time.

Evacuation
Scenario 2:

Physical Host

Simulation of
physical host failure

and subsequent

Simulate physical
host failure event,

ensure VM fails,

IDE versus XenMotion
and VMWare’s

vMotion.

Redistribution and
equalisation of
platform VM load
based against

defined SLA.

view with distributed
load with some
physicals overloaded
with VMs, with high
CPU/memory load,
and with some
physicals
underutilised. The
expectation is a
controlled
redistribution of
resources subject to
no impact to agreed

SLAs.

hosts and a defined
number of VMs.
Create the scenario
of one overloaded
physical system, one
within normal
operating levels and
one under-utilised.
Demonstrate the
behaviour of each
platform under the
scenario-controlled

conditions.

failure. actions. then observe the Record the failure
resulting actions to time, VM failure time
the event. and VM restored
time.
Evacuation Simulation of Simulate a platform | IDE versus XenMotion
Scenario 3: platform resource with three physical and VMWare’s

vMotion.

Record the start time
of the scenario,
create the situation
and the observe the
redistribution of load
and the platform
actions. Determine
the overall result for
each platform, in
terms of the final
configuration and
overall distributed
load (ideally evenly

loaded systems).

Table 3.5 VM Evacuation, Workload Migration and Load Management Experiment

© James Oakes, 2020

88|Page

Intelligent Management of Virtualised Computer Based Workloads and Systems

3.5.4 Investigation 4: Overload of VM Memory Usage, Detection Time, and

Resolution Time

Simulate memory use to threshold (based on expert standards), detect, invoke actions:

Experiment Flow

Process Description

Methodology

Result

Simulate VM
memory load over
a set period of
time (defined in

minutes).

Load simulator to
drive the memory
load of a single VM
to create overload
(for example over
75%, for a period >5

minutes).

Deploy a VM,
simulate the load on
the system against
memory, and
perform controlled

experiment.

IDE versus XenMotion
and VMWare’s

vMotion.

Record the overload
process experiment,
memory values, and
detection time of the
event occurring, and
resolution time —
these would be the
systems’ automatic

resolution steps.

Table 3.6 VM Memory Overload, Detection and Resolution Experiment

3.5.5 Investigation 5: Overload of VM CPU usage, Detection Time, and Resolution

Time

Simulate CPU clock time to threshold (based on expert standards), detect, and invoke actions:

© James Oakes, 2020

89|Page

Intelligent Management of Virtualised Computer Based Workloads and Systems

Experiment Flow Process Description | Methodology Result

Simulate VM CPU Load Simulator to Deploy a VM, IDE versus XenMotion

load over a set drive the CPU load simulate the load on | and VMWare’s

period of time of a single VM to the system against vMotion.

(defined in create overload (for | CPU, and perform Record the overload

minutes). example over 75%, controlled .

process experiment,

for a period >5 experiment. CPU values, and
minutes).

detection time of the
event occurring, and
resolution time —
these would be the
systems’ automatic

resolution steps.

Table 3.7 VM CPU Overload, Detection and Resolution Experiment

3.6 Summary

At the beginning of the chapter the development framework is introduced, as a means
for supporting the IDE system. It proposes a method for deploying a suitable laboratory setup
as well as software configuration, to enable the delivery of the IDE experimentation process.
A mixed approach is used for evaluating the systems under investigation, using empirical
evidence collected through observational data from end-users participants. The data sets
collected are to be analysed using quantitative and qualitative methods to ensure the output
results are as rich and diverse as possible, in terms of being able to analyse measurable
processes and interpret the cognitive end-user experience during system use. The work
comprises of five principle investigations, in the areas of autonomous VM deployments,
cognitive load analysis, workload migration and failover methods, and global resource

management of memory and CPU resources. The next chapter discusses the characteristics

© James Oakes, 2020 90 I P a g e

Intelligent Management of Virtualised Computer Based Workloads and Systems

and components of the IDE framework and the way in which it is used to enhance the

management of virtualised computer based systems and workloads.

© James Oakes, 2020 91 I P a g e

Intelligent Management of Virtualised Computer Based Workloads and Systems

Chapter 4: The Intelligent Decision Engine

4.1 Introducing the Intelligent Decision Engine

The potential for automated intelligent systems being able to interface into complex
computer infrastructures, poses an opportunity to vastly improve the control, management
and end-user experience of virtualised computing platforms. Having the ability to leverage an
Artificial Intelligence (Al) system to enable this is a possible way of accomplishing a primary
project objective (Appendix G). As part of this investigation, there has been an emphasis on
development work to create an Intelligent Decision Engine (IDE), to assist managing

virtualised computer systems; typically, this would include the control of:

Data-storage, memory and information retrieval.
Data processing and organisation.

Data flows between systems.

Creating intelligent rules and procedures.
System self-management and self-learning.

System real-time data processing and decision making.

N o un N

System availability and autonomy (High Availability and recovery).

As part of the objectives of the proposal, this included a detailed analysis of other
intelligent computerised management systems available (see section 3.5). While the list of
systems is quite extensive, the author has concentrated on AWS to attempt to compare and
contrast the methods and processes, against the area of research being conducted within this
thesis.

For this research proposal it is not feasible to address all the areas Amazon Web Services
(AWS) currently span, or any other mainstream cloud-based provider, such as Oracle, IBM or

Rackspace (Finkle and Scoresby, 2012; Hwang, 2015; Ullah et al, 2016). While the investigative

work does cover some wider areas, by way of re-focusing, the author’s proposal includes three

specific areas of analysis and development.

© James Oakes, 2020 92 I P a g e

Intelligent Management of Virtualised Computer Based Workloads and Systems

e The IDE - Systems Intelligent Management; creating an intelligent method of deploying
and managing VMs, including the development of highly automated programmed

methods and algorithms, using different data storage strategies.

e Workload migration — the movement of virtualised computer resources based on

performance metrics and ensuring High Availability (HA) of VMs.

e Systems performance and health monitoring — establishing metrics around virtualised
resources and interpreting large amounts of real-time data, allowing it to feed into the

IDE for processing.

4.2. IDE Characteristics

The following sections examine fundamental areas of investigation, and the traits
developed for the IDE. A detailed explanation is provided below around the characteristics
that have been designed and inbuilt into the expert system to assist with the automatic

management of virtualised computer-based platforms.

4.2.1 Data Organisation

Organisation of information is critical for the effective management, storage, retrieval,
processing and intelligent machine decision making. The IDE uses the following combination

to organise data:

e A shared structured filesystem, with data files stored on a NAS system. This allows

instant access to data from any cluster node.

e A Relational database to maintain long-term information, knowledge rules,

metadata, and statistics.

© James Oakes, 2020 93 I P a g e

Intelligent Management of Virtualised Computer Based Workloads and Systems

4.2.2 Decision Making

The ability for the IDE to be able to perform decision making is critical. The methods for
processing and decision making are comprised around the forward-chaining method. This has

been selected primarily for the following fundamental reasons:

e The ability to be driven from events occurring.
e The ability to chain events together, to lead to a conclusion and consequent action.
e The ability to reason toward a goal, rather than from one (backward chaining).

e Backward chain reasoning something that is discussed further in section 8.3.6.

4.2.3 System Learning

The concept that the system can analyse patterns and learn from their available data set,
is a possibility for intelligent machines. Computerised systems are effective at handling large
amounts of I/0 (Input and Output). Such systems invariably generate lots of information and
data. Being able to manage the data and store it in a meaningful way represents a challenge.
Indeed, many organisations are now investing in big data analytics using computer software
packages designed to make sense of vast amounts of data, such as log files, access lists, error

logs and many other types of stored information (Jin et al, 2016).

4.2.4 Algorithms and Procedures

The IDE uses the following algorithms, devised by the author, to enable the system to
make intelligent based decisions. These are inbuilt into the system to enable the
experimentation phase to compare against other systems and platforms selected (see section
3.5 Comparative Systems). The definition of an algorithm is “a set of mathematical
instructions or rules that, especially if given to a computer, will help to calculate an answer to

a problem” (Cambridge Advanced Learner's Dictionary, 2019). The IDE’s principle algorithms

and procedures are explained in detail below:

© James Oakes, 2020 94 I P a g e

Intelligent Management of Virtualised Computer Based Workloads and Systems

e Algorithm/Procedure 1: Remote system discovery mechanism, with system OS
fingerprint analysis and advanced OS system type detection. This algorithm allows for
the discovery of systems on the network, within managed subnet ranges, which can
be brought under IDE control. This does assume that the system hypervisor matches
those that the IDE presently understands, for example VirtualBox. Additionally, a
network scanner, such as nmap can be utilised with this algorithm to fingerprint the
remote system OS. Once a system is detected, scanned and a connection tested
successfully, the IDE can use an initial set of credentials to place its SSH public key

securely on the remote system to allow full control from that point forward.

// High level discovery and analysis algorithm

INPUT: network scan range, and all known hosts
OUTPUT: Return all remote host values, fingerprints and status

FOR each network

FOR each IP

Scan IP address
Use ICMP protocol stack to establish TCP/IP connectivity status
Use network analyser to finger print analyse any unknown hosts
Use SSH process to determine access status
Establish access and control if able
RETURN (return code)

END FOR

END FOR

FOR each discovered host
Use SSH process to determine access status
Establish access and control if able
RETURN (return code)
END FOR

// End of algorithm

Table 4.1 Algorithm/Procedure 1: Remote System Discovery

e Algorithm/Procedure 2: Improved system communication strategy using SSH to build
a secure framework for remote host management and control groups. The SSH
framework allows for commands, code and scripts to be executed automatically using
key exchanges for authorisation across remotely controlled systems. Return codes are

received back to the IDE master to enable it to determine the outcome of executed

commands.

© James Oakes, 2020 95 I P a g e

Intelligent Management of Virtualised Computer Based Workloads and Systems

// High level command execution/messaging algorithm

INPUT: all known controlled hosts, or a subset of controlled hosts
OUTPUT: command status return codes

FOR each host
Use SSH framework to execute remote command/script/code
RETURN (return code)
END FOR
// End of algorithm

Table 4.2 Algorithm/Procedure 2: Messaging Command Process

e Algorithm/Procedure 3: Improved data extraction and analysis methods to enable two
methods of a) quick response and b) slower background analysis of environment data,
to allow for reference knowledge data to be added and cleansed. This procedure
allows the IDE to probe all the remote managed system text files identified in section
4.8.4. The algorithm works through each identified knowledge source and will check
for certain known patterns and keywords. The relevant data is extracted locally, and

is sent back for centralised processing.

// High level text mining algorithm

INPUT: all known controlled hosts, or a subset of controlled hosts
OUTPUT: key message string(s), criticality

FOR each host
Text mine for all IDE key phrases of interest against all files

FOR each file

Analyse IDE knowledge base (thesaurus, lexicon, and grammatical entities) against
Key phrases
Check each file status, check for text-based files of interest
Auto process for key phrases

Extract, compress and return data collection/information
RETURN (return code)

END FOR

END FOR

// End of algorithm

Table 4.3 Algorithm/Procedure 3: Text Mining

© James Oakes, 2020 96 I P a g e

Intelligent Management of Virtualised Computer Based Workloads and Systems

e Algorithm/Procedure 4: Information and knowledge organisation to process and
create core and reference data, which affects how the forward chaining mechanisms
work when the IDE is decision making. The IDE makes specific use of two distinct data
store systems for unstructured, and for structured data. Each data store also retains a
filesystem cache for high speed data access to recently accessed or used data. Thus,

depending on the type of data, determines where it is stored and retained.

// High level data organisation algorithm

INPUT: datdfile (structured/unstructured)
OUTPUT: process completed flag

FOR each datafile
IF data is structured THEN
Organise data into structured store
Place in data cache for analysis
ENDIF
IF data is unstructured THEN
Organise data into non-structured store
Place in data cache for analysis
ENDIF
RETURN (return code)
END FOR

// End of algorithm

Table 4.4 Algorithm/Procedure 4: Data Organisation

e Algorithm/Procedure 5: Pattern analysis and learning from data. The intention is to
use this mechanism to create new knowledge rules based on previously unidentified
triggers, that may not be initially dealt with effectively by the existing minimalist
ruleset. This particular algorithm is a precursor leading to the experimental process
required to develop the additional work identified in section 8.3.6, regarding the

invention and build of new knowledge rules.

© James Oakes, 2020

97|Page

Intelligent Management of Virtualised Computer Based Workloads and Systems

// High level pattern analysis and learning algorithm

INPUT: data cache (structured/unstructured)
OUTPUT: process completed flag

FOR each data store
WHILE data cache not empty
IF data is structured THEN
Review tables and data and match against known triggers
IF new trigger required THEN
Determine trigger type
Create trigger
ENDIF
Review tables and data and match against known conditions
IF new condition required THEN
Create condition set (condition1) ... (condition x)
Link trigger event
ENDIF
ENDIF
IF data is unstructured THEN
Create new objects
Create new tree structures
ENDIF
RETURN (return code)
END WHILE
END FOR

// End of algorithm

Table 4.5 Algorithm/Procedure 5: Pattern Analysis and Learning

e Algorithm/Procedure 6: Knowledge based forward chaining. This procedure creates
the framework for connecting either single or multiple system or platform events
together, and then enabling the evaluation of the appropriate conditions as listed in

section 4.8.1, then subsequently calling the necessary consequent to remediate the

condition.

© James Oakes, 2020 98 I P a g e

Intelligent Management of Virtualised Computer Based Workloads and Systems

// Forward chaining algorithm

INPUT: real time and trailing data feed
OUTPUT: forward chaining result

// Dynamic Forward Chaining
WHILE (conditions)
Reference Known Conditions AND analyse for triggers
IF (condition 1) and (condition 2) ... (condition x) THEN
Result (x) AND Execute trigger actions
ENDIF
RETURN (return code)

END WHILE

// End of algorithm

Table 4.6 Algorithm/Procedure 6: Forward Chaining

e Algorithm/Procedure 7: VM deployment mechanism used by the IDE builds forward
chained rules, to allow it to provision and deliver VMs. This procedure directly
automates the build and delivery of VMs, as described by section 5.2 Simplified VM
Provisioning (Oakes et al, 2016).

// VM shell deployment algorithm

INPUT: VM size parameter, VM type parameter
OUTPUT: Return configured/built VM

FOR each VM
FUNCTION Lookup VM values (condition1, condition 2)
IF VM (standard configuration)
FOR each value
Allocate VM parameter
END FOR
ELSE (custom)
Allocate hard VM parameters
END IF
END FUNCTION

FUNCTION Provision VM Shell (Hostname, CPU, Memory, OS Disk, Application Disk, Data Disk,
CPU execution Cap)

FOR each value

Add shell value

END FOR

Write shell values

Commit shell
END FUNCTION

© James Oakes, 2020 99 I P a g e

Intelligent Management of Virtualised Computer Based Workloads and Systems

FUNCTION Install VM
Initialise VM shell
Connect boot ISO to VM shell
Network install VM
END FUNCTION

FUNCTION Post Configure VM
Execution post install configuration
Reboot VM
Health Check VM
END FUNCTION
RETURN (return code)
END FOR

// End of algorithm

Table 4.7 Algorithm/Procedure 7: VM Deployment

e Algorithm/Procedure 8: VM performance and monitoring management (preliminary).
This was the initial procedure defined to work generically with identified system
thresholds described in section 4.8. Chapter 7 builds on this, and creates an extended

or enhanced algorithm in section 7.2.1 for managing CPU and memory resource.

// VM performance and monitoring algorithm

INPUT: VM host
OUTPUT: VM performance and health status

FOR each VM
IF VM down THEN
Invoke recovery processes
ENDIF
IF VM performance > system alert thresholds THEN
WHILE VM performance degraded
Invoke analysis against knowledge base
Invoke performance improvement processes
check performance
END WHILE
ENDIF
RETURN (return code)
END FOR

// End of algorithm

Table 4.8 Algorithm/Procedure 8: Preliminary Performance Monitoring

© James Oakes, 2020 100 I P a g e

Intelligent Management of Virtualised Computer Based Workloads and Systems

e Algorithm/Procedure 9: Real-time platform event trigger, with decision processing-
based delivery event response. This algorithm addresses trigger alert events, which
are manifest through the search and evaluation process of live data sources as
described in section 4.6.4, and the text analysis for keywords and patterns listed in
section 4.8.4. By utilising these two techniques, the procedure below allows for rule
matching and forward-chaining functions to execute and fire knowledge rules as

appropriate.

// Platform event trigger algorithm

INPUT: Event trap
OUTPUT: Event response

WHILE Trap events true
FOR EACH Trap event
Search and evaluate trap against knowledge base
Match for trigger response
IF match on trigger response THEN
Perform platform response
END IF
RETURN (return code)
END FOR
END WHILE

// End of algorithm

Table 4.9 Algorithm/Procedure 9: Event Trigger and Decision Making

e Algorithm/Procedure 10: Self-monitoring and high availability (HA) features. The IDE
system uses its own mechanism to maintain HA in the event that the primary IDE
service is interrupted for an unexpected reason, such as a hardware or software
failure. If this occurs the procedure below is invoked to bring services automatically
back online on an alternative node in the quickest way possible. This mechanism uses
the quorum algorithm defined in section 4.7.1, in order to establish a cluster majority,

to avoid and mitigate against any split brain type scenario from occurring.

© James Oakes, 2020 101 I P a g e

Intelligent Management of Virtualised Computer Based Workloads and Systems

// Platform self-monitoring algorithm

INPUT: Quorum vote count, health check
OUTPUT: IDE response

IF IDE failure detected THEN
IF (IDE primary down true AND Quorum votes >= Quorum value) THEN
// when primary faults
Failover from primary on to secondary
Check Quorum, Failover and Primary server
Alert response on failed component
END IF

IF (IDE primary up true AND IDE secondary failover up true AND Quorum votes >= Quorum value) THEN

// when primary is repaired failback
Check Quorum, Failover and Primary server
Rebalance cluster and failover IDE from secondary to primary
END IF
IF (Quorum votes < Quorum value) THEN
// more than a single failure has occurred (no quorum reached)
Check Quorum, Failover and Primary server
Report critical IDE error
Alert Response
Manual Intervention to recover
END IF
END IF
RETURN (return code)

// End of algorithm

© James Oakes, 2020

Table 4.10 Algorithm/Procedure 10: Self-Monitoring

102|Page

Intelligent Management of Virtualised Computer Based Workloads and Systems

4.3 IDE Components

The diagram below outlines the high-level components for the IDE:

IDE Program Logical Interactions

C Infrastructure Platform (Compute, Disk, Network, Storage)

ik

)

VM

VM Deploy Workload
Program Migration
Program

Dataln Learning
Processing || and Analysis
Program Program

)

Remote
Monitoring
Program

Decision Control Program

Self Healing Program > (Self Monitoring Program

CRlTREMT
485 f 8|05 UOD BANIEISIU|

C

{3

NoSQL (Short-
term data
structures)

Dynamic

Data Storage

T,
A

Relational
Database
(Long term/
Archive data)

"\q.._‘_________._,_,__/’

Figure 4.1 IDE Program Components

© James Oakes, 2020

103|Page

Intelligent Management of Virtualised Computer Based Workloads and Systems

The concept ideas presented in figure 4.1 provide the basis and opportunity to create
an IDE based on a set of functional computer programs. While intelligent programs can exist
in an isolated environment, equally, they can also exist in a distributed and interactive
environment; this in fact presents an opportunity to more closely mimic natural 'social

interaction' with other systems, by sharing information between entities (Callaos, 1994).

Table 4.11 below, discusses the elements captured in figure 4.1 above and discusses in
detail how these elements will interact with each component, and the envisaged benefits

based on the research conducted in the field leading to a desired IDE end state.

Program Element Description, Role and Envisaged Benefits

Decision Control Program. The Decision Control Program is at the very core of the IDE.
This particular program needs to be efficient and potentially
based on a typical Unix C like daemon program (Kwon, 2012).
This program will construct dynamic decision tables based on
data inputs and interacts with other programs defined in

figure 4.1. Its function must include:

* Build dynamic decision-making tables (as necessary).

* Suggest/Modify/Improve static decision tables
(background).

* Provision to process real-time data and interact with
other programs effectively.

* Analysis and rationale of old data from short and long
term sources.

* Use its compute facility effectively (scale up or down
thresholds).

* Handle interrupts, inputs and outputs.

© James Oakes, 2020 104 I P a g e

Intelligent Management of Virtualised Computer Based Workloads and Systems

Program Element

Description, Role and Envisaged Benefits

VM Deploy Program.

The VM Deploy program implements an advanced unique
one-click deploy mechanism (ref to paper), using a
combination of advanced deployment tools. The program

must allow:

* One-click web based VM provisioning.

* Fully automated VM deployment.

VM Workload Migration

Program.

The VM Migration program handles the movement of VM
resources, either to manage computer resources or as a

result of failure of systems. This facility must:

* Migrate VMs as a result of performance
issues/thresholds.

* Migrate VMs as a result of hardware failure detection.

* Migrate with minimal VM downtime.

* Migrate in a fully automated way.

Data in Processing Program.

The Data in Processing program is responsible for collecting
and managing data inputs from the VM platform
environment, storing it in an appropriate data-store

(depending on defined criteria), either in:

e Short-term (NoSQL) / File-based.

* Long-term (relational/archive).

and in the background handle:

© James Oakes, 2020

105|Page

Intelligent Management of Virtualised Computer Based Workloads and Systems

Program Element

Description, Role and Envisaged Benefits

* Data transference.

* Data archive (big data management).

Learning and Analysis

Program.

The Learning and Analysis program is initially responsible for

developing small new components:

* Hints and tips based on data.
* Data rules for dynamic decision tables.
* VM analysis reports.

* New system functionality invention/development.

Note, this last initiative is quite ambitious. While it does not
make up a specific investigation for this project, it remains a

desirable characteristic for the system.

Remote Monitoring Program.

The Remote Monitoring Program interacts with all VM
elements on the virtualised platform. The program is able to
continually and dynamically monitor all VM hosts and the

overall platform health. Monitoring would include:

* Network monitoring using base utilities such as ICMP
Ping.

e System kernel and OS monitoring.

¢ System log monitoring.

* Performance monitoring (CPU, Memory, I/0).

e Hypervisor health monitoring.

Self-Monitoring Program.

Self-monitoring program is text interactive, includes a

console feed, Browser User Interface (BUI) and is has the

© James Oakes, 2020

106|Page

Intelligent Management of Virtualised Computer Based Workloads and Systems

Program Element

Description, Role and Envisaged Benefits

function of monitoring the health of the suite of programs

(Calzolari, 2006). Critically, there will always be at least three

components running; a master instance, and two shadow

instances, which must always run on separate physical hosts.

The purpose of this is to:

* Ensure no Single Point of Failure (SpoF) in existence in
the system.
* Ensure there is always one master instance running,

and two shadow instances.

Self-Healing Program.

© James Oakes, 2020

The Self-Healing Program reacts to the self-monitoring
program and takes corrective actions to ensure its continuing
operation in the face of failure of a single or any number of

components.

* Ensure there is a process defined to convert a shadow
to master instance (and vice versa).

* Ensure there is a facility to spawn new shadow.
instances where possible (for example in clusters

greater than 3 physical hosts).

Table 4.11 IDE Program Function Suite

107|Page

Intelligent Management of Virtualised Computer Based Workloads and Systems

4.4 Defining the IDE Model

Below is diagram figure 4.2 showing the process and interaction of the decision engine,

and its overall architecture and design:

Al Code

Applications and Databases (3 physical host upwards)

x86 Physical x86 Physical x86 Physical
host 1 host 2 host 3

Oracle VirtualBox (hypervisor)

Figure 4.2 IDE Architecture Model

© James Oakes, 2020 108 I Page

Intelligent Management of Virtualised Computer Based Workloads and Systems

4.5 Data-storage, Memory and Information Retrieval

As with any intelligent system, information must be stored, ordered and arranged in
such a way as to allow efficient location and retrieval (Cattell, 2010). Given the amount of
information required for storage, there are several ways this can be achieved. Typically, in an
intelligent system, there is usually a requirement for short-term (fast data access) and long-
term memory (archive/slow data access). This requirement can be potentially solved and
mapped within typical computing architectures to RAM (Random Access Memory) and disk
storage, for example SAS (Serial Attached SCSI) or another such like device. As in the example
of a human subject, short-term memory structures (frequently accessed) usually outperform
long-term (infrequently accessed) memory and likewise in a computer system, the same

principle holds true (Sanzo et al, 2012; Sweller, 1998).

4.5.1 Long Term Storage Strategy

The author proposes a relational database mechanism such as MySQL as a long-term

storage strategy (Martin et al, 2007). Section 4.2.1 provides additional details, along with

Appendix D.

4.5.2 Short and Medium Term Storage Strategy

The author proposes using a NoSQL, or bespoke file(s)-based solution using a
mechanism such as MongoDB as a short-medium storage strategy (Cattell, 2010). Section

4.2.1 provides additional details, along with Appendix D.

4.6 Data Processing and Organisation

The IDE stores and processes information continually and real-time. In order to
perform these types of activities it needs to handle and organise the data effectively, using
several mechanisms, depending on the type of task or activity the following methods are

employed:

© James Oakes, 2020 109 I P a g e

Intelligent Management of Virtualised Computer Based Workloads and Systems

e A Relational Database structure — designed for long term storage on information such
as cluster nodes, cluster configuration, IP and Network information, nodes
information, and critical log warning and alerts. Additional knowledge rules are also

stored here to enable reference.

e Custom File-based configuration and cache — designed to manage globally shared
lookup data for activities such as recording the quorum vote, cluster health status, and
acting as a general fast data cache. In memory structures are used in conjunction for

very fast response and low latency tasks.

4.6.1 Data flows Between Systems

The following diagram illustrates the data flows between the systems and explains in
detail how the IDE communicates with cluster nodes, and extracts information for processing
and sends commands to remote nodes, based on the expert rules employed to manage the
virtualised platform in an intelligent fashion. Below is a diagram showing the network protocol

flows between the IDE systems:

Laboratory Setup (End Stage & TCP Flows) Network Protocols
SMB/CIFS —TCP/445
IDE %86 Primary (Cluster Node) Sacureshel —TCP/22
o SecureFTP —TCP/22
10 Core / 20 Threads / 128GB SertiraCopy —TCP/22
RAM NFSv4 — TCP/2049
Host 05: CentOS i _TCP 443
VM Guest OS (various) =
HTTR[S)—
5/5H_." SFTP/SCP
P sssT PisCP f
£ 10 GbE LAN (Multiple ILANs 802.1C (tagging)) RIS ()
T 4

T CIFS/SMBN?

HTTR(S)

T SSH/SFTRfSCR————

FS/SME/NF
Physical Farm x86 Server (Cluster
Nodes)
10 Core / 20 Threads / 128GB RAM
Host OS: CentO5S
VM Guest OS (various)
IDE x86 Secondary Server

Physical Farm NAS Ready — Network
Attached Storage (SMB/CIFS/NFS
Server)

Figure 4.3 IDE Network Flows

© James Oakes, 2020 110 I P a g e

Intelligent Management of Virtualised Computer Based Workloads and Systems

4.6.2 Creating the Inference Engine

The inference engine is covered extensively in section 4.8. The purpose for the
inference engine is to enable the IDE system to be able to reason on the information it gathers
and then be able to infer and make decisions based on that data, to manage VMs and the
virtualised platform more effectively. The act of Inference is defined in the Cambridge
Dictionary as “a guess that you make or an opinion that you form based on the information

that you have” (Cambridge Advanced Learners Dictionary, 2019).

4.6.3 System Self-management and Learning

A critical part of the IDE is to have the concept of self-management; this specifically covers

these areas, as follows:

e High availability and being able to maintain the system and its services within the

cluster framework.

e Maintain data repositories, cleanse, order, and archive data as necessary and maintain

filesystem structure sizes to ensure they do not fill up.

e Text analysis from log files — using the data extracted and pattern matched against

trigger rules, to take necessary actions.

e Migration of VMs as necessary due to a complete failure scenario (i.e. crash and restart

VM and its services).

e Resizing (dynamically) of VMs as necessary to accommodate extra memory and CPU

increases.

e Learning from typical application sizing footprint, depending of the software deployed

for example, Apache, Apache Tomcat, MySQL and so on.

e The ability to learn and manage aggregation of application and database footprints for

VMs.

© James Oakes, 2020 111 I P a g e

Intelligent Management of Virtualised Computer Based Workloads and Systems

4.6.4 System Real-time and Source Data

For the system to manage virtualised systems effectively, it must be able to perform

the following two functions:
e Real-time data processing.
e Decision making capability, based around forward-chaining.

Forward chaining begins with the source data set that is made available to the decision
engine; for example, it uses knowledge rules to match against the relevant data from the end
user, or a system log file, until a decision, or interpretation can be made. This is reached by
analysing the available rules until a conditional match (or set of matched conditions) can be
satisfied, for example by using an if clause statement. If the conditions are true, then a
resulting action can be triggered, or invoked to perform a remedial task (or set of tasks) for

the managed systems, with the goal of resolving a certain issue (Martin et al, 2007). The

Inference engine will continue to iterate through this process until a goal is reached, upon
where it is executes its matching rule and then continues to iterate. In terms of real-time data
sources, the following generic log file data inputs are available on CentOS Linux systems (data

sources):
e /var/log/messages (generic system)
e /var/log/auth.log (security logs)
e /var/log/secure (security logs)
e /var/log/boot.log (boot up issues)
e /var/log/dmesg (system boot up console)
e /var/log/kern.log (kernel messages)
e /var/log/faillog (failed login attempts)
e /var/log/cron (cronjobs output)

e /var/log/yum.log (new packages)

© James Oakes, 2020 112 I P a g e

Intelligent Management of Virtualised Computer Based Workloads and Systems

e /var/log/mail.log (smtp log)
e /var/log/httpd (apache logs)

e /var/log/mysql.log (db logs)

Interface Rules, to search against the following defined condition types; see section 4.8.1 for

trigger events, and section 4.8.5 for more detail on the justifications:

1. Physical host down - evacuate all VMs (path to truth, rule match). This rule applies when a
physical host fails, typically as a result of a hardware failure. Such events are relatively
common depending on the amount of physical hardware deployed, and the mean-time
between failure rate. Should this event occur, all VMs should be evacuated and restarted on

alternative healthy nodes in order to maintain high hvailability (Tsai, 2009).

2. Physical host memory capacity hit - migrate VMs back within memory threshold (path to
truth, rule match). As with any physical system, there are always limits to memory resource.
Therefore, it is necessary to be able to migrate VMs and virtual resources to other physical
systems, in order to distribute the load across the platform as evenly as possible (Sarathy et
al, 2010).

3. Physical host CPU capacity hit - migrate VMs back within CPU threshold (path to truth, rule
match). This explanation is the same as rule 2 above, but for CPU rather than memory

resource.

4. VM memory overload - threshold hit, dynamically resize VM (path to truth, rule match). The
virtual machine’s allocated memory is at capacity, or underutilised, and requires resizing

(Antonescu et al, 2013; Dhiman, 2011).

5. VM CPU overload - threshold hit, dynamically resize VM (path to truth, rule match). This

explanation is the same as rule 4 above, but for CPU rather than memory resource.

6. VM Migration - system wide re-utilisation algorithm and no SLA impact - move resources
(path to truth, rule match). This rule allows for the movement of VMs within the managed

platform environment (Benet et al, 2016; Shirinbab and Lundberg, 2016).

© James Oakes, 2020 113 I P a g e

Intelligent Management of Virtualised Computer Based Workloads and Systems

7. VM unresponsive, hung-state or non-accessible - evacuate to new (path to truth, rule
match). Should a VM no longer be operational, a hard restart is required, or failing that an

evacuation to a new physical host (Shirinbab et al, 2016).

8. VM compulsory move - Unable to dynamically resize the VM for rule 2 or 3 due to physical
resource constraints, therefore, forced to move and relocate the VM to new a physical host

with sufficient spare capacity. (path to truth, rule match).

The matching process is described as follows:

WHILE true
DO
FOR EACH host
evaluate all real-time data sources text
evaluate critical alerts text
search through forward chains
IF pattern match true
invoke trigger (consequent)
ENDIF
DONE

Table 4.12 IDE Rule Matching Process

4.7 System Availability and Autonomy

Traditional clusters often use a common standard deployment of two-nodes plus a

'quorum device' (Vogels et al, 1998). Such a device is normally configured to provide a 'third

vote' mechanism, such as race condition to place a SCSI reservation on disk. In days gone by
when hardware was relatively expensive, this was a good option; however, given the fact that
x86 commodity hardware is now so cheap comparatively, having a minimum of three nodes
in a cluster is a simple and optimal method to achieve high availability of systems, thus

eradicating Single Points of Failure (White et al, 2004). Therefore, to maintain simplicity, it is

instead proposed to use a simple formula defined below in section 4.7.1.

© James Oakes, 2020 114 I P a g e

Intelligent Management of Virtualised Computer Based Workloads and Systems

4.7.1 Establishing a Quorum

Quorum Definition: When a cluster node fails, or when a subset of nodes lose contact
with another subset, the surviving remnant of nodes need to verify that they now constitute
the majority of the cluster nodes that remain. If they cannot confirm that, they will go offline,
and cease to operate as a protective measure to mitigate against events that can happen such
as ‘split brain’, where a cluster partitions into two or more parts, which simultaneously believe
they have a majority quorum and attempt to run services. An event such as this can lead to
data corruption, which is a highly undesirable outcome. Therefore, the concept ofa
majority only works If there more than 50% of cluster node votes available (rounded up) to

establish a quorum. For an IDE cluster, the minimum starting number of cluster nodes is three.

The mechanism is represented as below:

e Where 71 denotes a cluster node that is available or unavailable

e Where € denotes a cluster node that is unavailable

Where T denotes the total number of cluster node votes possible (each node has one vote)

T=Xn (1)

Where v denotes the number of cluster node votes currently available

v= T—¢€ (2)

Where @ is the minimum number of votes to establish a quorum, which is always an integer;

when a cluster has an even number of total cluster nodes step 3a is followed, or if an odd

number of cluster nodes exist, step 3b is followed. For example:

© James Oakes, 2020 115 I P a g e

Intelligent Management of Virtualised Computer Based Workloads and Systems

Where there are an even number of cluster nodes

if (Tmod 2) = 0 then @ = —+1 (3a)

or where there are an odd number of cluster nodes

else w = |§| (3b)

Where g denotes the ability to establish a cluster quorum

if v > wthenp (4)

As an example scenario, take a 3-node healthy cluster.

1 is the sum of current number of cluster nodes, available or not available, which is 3
(step 1)

v is the total number of active healthy node votes, so 3 minus O (step 2)

w is 3 divided by 2 rounded up (an integer), so 1.5 rounded up to 2 (step 3b)
Therefore is possible as 2 is greater or equal to 2; therefore, the cluster can establish

a quorum (step 4)

As an alternative example, take a 3-node cluster with only 2 healthy nodes, assuming 1 has

failed.

n is the sum of current number of cluster nodes, available or not available, which is 3
(step 1)

v is the total number of active healthy node votes, so 3 minus 1, resulting in 2 (step 2)
w is 3 divided by 2 rounded up (an integer), so 1.5 rounded up to 2 (step 3b)
Therefore g is possible as 2 is greater or equal to 2; therefore, the cluster can establish

a quorum (step 4)

© James Oakes, 2020 116 I P a g e

Intelligent Management of Virtualised Computer Based Workloads and Systems

As a further example, take a 3-node cluster with only 1 healthy node, assuming 2 have failed.
e 1 isthe sum of current number of cluster nodes, available or not available, which is 3
(step 1)
e v js the total number of active healthy node votes, so 3 minus 2, resulting in 1 (step 2)
e w is 3divided by 2 rounded up (an integer), so 1.5 rounded up to 2 (step 3b)
e Therefore p is not possible as 1 is not greater or equal to 2; therefore, the cluster cannot

establish a quorum (step 4)

As a final example, take a 4-node cluster healthy cluster

e 1 is the sum of current number of cluster nodes, available or not available, which is 4
(step 1)

e v js the total number of active healthy node votes, so 4 minus O, resulting in 4 (step 2)

e w is 4 divided by 2, plus 1 resulting 3 (step 3a — remember this cluster has an even
number of cluster nodes)

e Therefore g is possible as 4 is greater or equal to 3; therefore, the cluster can establish

a quorum (step 4)

Examples of valid cluster node configurations are any number of nodes three or more
(e.g. 3, 4,5 and so on). This simplified method eradicates the need for adding a special vote,

such as a SCSI disk reservation, or a witness node.

4.7.2 Command Zone Concept

The command zone operates and hosts all the intelligence for the clustered systems.
It is essential that this always remains active, otherwise the cluster automatic intelligent
management will fail to continue to operate. Within the cluster, all machines are connected
to the core highly available network — this can be any pre-defined network address range with

static IP addresses assigned; for example, this could be an internal private IP address range

© James Oakes, 2020 117 I P a g e

Intelligent Management of Virtualised Computer Based Workloads and Systems

within an organisation, such as network 192.168.1.0 with a 24-bit netmask.

Every system connected in the cluster needs to be constantly aware of the other machine

statuses. There are only three possible results:

* Online with resource capability (i.e. compute resource available).
e Online but with no resource capability (i.e. compute resource exhausted).

e System down and unavailable.

As discussed previously, the minimum number of machines in the cluster must be three
(see section 4.7.1); the cluster may scale indefinitely, such is the design. Each machine within
the cluster probes the other systems systematically and reports the status output to a file
stored on a highly available NFS (Network Filesystem) share. Each system then routinely
interrogates the share to determine the status of the cluster. Where two independent
machines both identify another system is down and unavailable, and or the machine itself
reports it is isolated, the cluster will immediately seek to evacuate and establish the
unavailable systems workload on other available systems. This is demonstrated by the

procedure below:

INPUTS: cluster_node_list, cluster_resource_list, cluster_active_node_list, cluster_inactive_node_list
OUTPUTS: cluster_resource_evacuation_notification, cluster_resource_running_notification

WHILE true
DO
FOR EACH cluster_resource
IF cluster_resource failed AND on inactive_node THEN
IF cluster_cpu+mem_space >= sum(cluster_resources_cpu+mem) THEN
Evacuate cluster_resource and start on least loaded remaining node
Send evacuation notice
ELSE
Unable to evacuate cluster_resource due to space constraint
ENDIF
ENDIF
DONE

Table 4.13 IDE Cluster Resource Evacuation

© James Oakes, 2020 118 I P a g e

Intelligent Management of Virtualised Computer Based Workloads and Systems

4.7.3 Keep Alive Critical Processes

There are four principles that are required to operate a cluster.

e The Command System (IDE) must always remain alive in the cluster, until such time as

a Quorum can no longer be achieved.
e A Quorum must be maintained to operate the cluster.
e Each node must be able to monitor the health of every other node in the cluster.
e The network the cluster operates on must be Highly Available (HA) with no SPoF.
The following processes are therefore deemed critical and must operate as follows:
e One or more slave node(s): [ide_slave_node]
e One master node: [ide_master_node]

e One shadow master node: [ide_shadow_node]

© James Oakes, 2020 119 I P a g e

Intelligent Management of Virtualised Computer Based Workloads and Systems

4.8 IDE Rule-base and Inference Engine

4.8.1 IDE Trigger Events

Below is a diagram showing the initial IDE Trigger event mechanism:

IDE Physical and Virtual VM Detected Events

PHYS Event
Host Down

PHYS Event
Memory Capacity

PHYS Event
CPU Capacity

VM Event
Migration

VM Event
Evacuate

VM Event
Memory

VM Event
CcPU

VM Event
Unresponsive

Do nothing

“
2
=
w
@
]
3
1]
=
fir]

Do nothing

2
=
2
2
W
=

CPU usage

Do nothing

Migrate VM(s)
Migrate Vv

4
£
3
2
H
o

Evacuate VM?

Evaauate VM

Kt

Y-

N

Do nothing

Balloon
Memory?

T

Balloon

Increase

Soft intervention
Forceful Intervention

Live Reporting

Physical host
platform
capacity

Service
Level Status

Virtual Machine
capacity

Platform
Operational
Standards

Informational
Live Events

Rule Based (Forward Chain Procedures)

Physical Cluster

Capacity

VM Memory Physical Mem >
High & Evacuate VM Service Live 80% &
Sustained Time Sustained Time

5 Physical CPU >
VM CPU High & Balloon VM Service Not A
Sustained Time Memory Live Sastalied THiie
VM Under i i) Physical Under
Utilised & it Service Re- Utilised &
Resize balance Rebalance
VM VM Physical Host
Unavailable Unresponsive Unavailable
Mgrate UM Physical Node
Capacity

Platform Text Analysis

Key Words
Identifcation

Key File
Identification

Invocation Event
Triggers

Search Pattern
Mechanism

Figure 4.4 IDE Trigger Events

4.8.2 Physical System Events

System event number

1

System event description

Physical host down.

Rule match

Physical machine down AND all local (guest) VMs down.

Conclusion

Evacuate all VMs to most appropriate remaining good
systems using most effective load-balancing strategy.

Event response

Recovery of all VMs from failed physical host to other
remaining systems.

© James Oakes, 2020

Table 4.14 Event Knowledge Rule: Physical host down

120|Page

Intelligent Management of Virtualised Computer Based Workloads and Systems

System event number 2

System event description Physical host memory capacity Exceeded AND time period >
15 minutes.

Rule match Physical machine physical memory > 80% AND no SLA

breach will be invoked because of migration.

Conclusion Migrate VMs to most appropriate remaining good systems
using most effective load-balancing strategy.

Event response Migrate VMs UNTIL physical memory within threshold.

Table 4.15 Event Knowledge Rule: Physical Host Memory Capacity

System event number 3

System event description Physical Host CPU capacity exceeded AND time period > 15
minutes.

Rule match Physical machine physical CPU > 80% AND no SLA breach will

be invoked because of migration.

Conclusion Migrate VMs to most appropriate remaining good systems
using most effective load-balancing strategy.

Event response Migrate VM(s) UNTIL physical CPU within threshold.

Table 4.16 Event Knowledge Rule: Physical Host Memory CPU

4.8.3 VM System Events

Sections 4.2.3 and 4.6.3 describe how the IDE intends to learn by continually self-
evaluating its own event possibility matrix, by creating new event types as necessary, with
appropriate rules and event responses. For example, event type 4 ‘VM system memory
overload’ could be an event that does not currently exist; therefore, it is created as an event.
The rule required to match that event could be system memory at utilisation of over 75% and

for a sustained time period of more than 5 minutes (see table 4.17). The conclusion is to

© James Oakes, 2020 121 I P a g e

Intelligent Management of Virtualised Computer Based Workloads and Systems

provide more memory and the event response is to dynamically re-size the VM by adding an

extra 25% memory. Table 4.17 describes the values:

System event number

4

System event description

VM system memory overload.

Rule match System memory utilisation > 75% AND time period > 5
minutes.
Conclusion Provide additional memory to the VM.

Event response

Invoke dynamic VM memory re-size +25% of original total.

Table 4.17 Event Knowledge Rule: Memory overload

Another example could be event type 5 ‘system CPU overload’ that follows a similar

approach to table 4.17 ‘VM system memory overload’. Table 4.18 describes the values:

System event number

5

System event description

VM System CPU overload.

Rule match

System CPU utilisation > 75% AND time period > 5 minutes.

Conclusion

Provide additional CPU to the VM.

Event response

Invoke dynamic VM CPU re-size +25% of original total, or by
a minimum of one CPU core, whichever is larger.

Table 4.18 Event Knowledge Rule: CPU overload

Based on the example certain events being successfully captured (or detected) as listed

in table 4.17 and 4.18 above, further development possibilities are considered particular

around forward-chaining (or forward-reasoning). To provide a little more context, figure 4.5

below provides an example of forward chaining in relation to how a CPU management alert

is handled:

© James Oakes, 2020

122|Page

Intelligent Management of Virtualised Computer Based Workloads and Systems

2 Alert on
| application
\ Performance -/

Isthe system

(up (ICMP 1
A test)?
Yes/ —t \49
- = -"'-'-Can\.roL.l-"' -
(Isthe kernel '-.I f logininto \
A responsive? ! \ system /
) K __console? -~
v / x
~ Are /7 canyou :
i application \ | login to the |
\ processes / system? }
> normal? &~ SO
— Mo
Yes
'"Eénsum[l:'né" = " Hasa
mare than \ process \
75% total / become /
; CPU? - No B, rogue?
Yes / S \ e TIREET___
-"Kb_[;iicatiéﬁ" = o~ Check
Utilising -.I F. System
excessive / \ Memory I
o EBEE. . Performance -

Figure 4.5 IDE Example of Forward-chaining

Thus, we can consider that this is exactly the type of mechanism (forward-chaining) that
provides unique opportunity to use an inference engine to explore innovative ways of

effectively managing virtualised cloud-based systems.

System event number 6
System event description VM Migration.
Rule match No SLA breach AND system wide utilisation re-balance of

Resource (Performance Optimisation).

Conclusion Migrate the VM to a new Physical host.

Event response Invoke VM migration routine based on continuous VM load-
balancing strategy.

Table 4.19 Event Knowledge Rule: VM Migration

© James Oakes, 2020 123 I P a g e

Intelligent Management of Virtualised Computer Based Workloads and Systems

System event number

7

System event description

VM Unresponsive.

Rule match VM does not respond within 10 seconds AND VM
inaccessible (1 attempt to access).
Conclusion Evacuate the VM to a new Physical host.

Event response

Attempt one local restart of VM and then Invoke VM
migration routine to new appropriate physical host.

Table 4.20 Event Knowledge Rule: VM Unresponsive

System event number

8

System event description

VM Evacuate.

Rule match Unable to increase CPU (Local physical limit) OR Memory
(Local physical limit) dynamically due to performance alert
AND SLA not breached by VM migration.

Conclusion Evacuate the VM to a new Physical host.

Event response

Migrate VM to new most appropriate physical host.

4.8.4 Text Analysis

Table 4.21 Event Knowledge Rule: VM Evacuate

In addition to section 4.6.4, which discusses the data sources that are used by the IDE,

it is necessary to perform continual analysis and pattern matching to extract useful

information from those files listed, to be able to invoke rule matches and complete forward-

chain type reasoning on event driven data sets acquired by the IDE and the aggregation of

useful data, to link events together (Anicic et al, 2009; Mei, L. and Cheng, 2010). The following

table provides examples of pattern keywords used by the IDE to help monitor trigger events

and through forward-chain reasoning potentially invoke one of its matching rules in its

knowledge base.

© James Oakes, 2020

124|Page

Intelligent Management of Virtualised Computer Based Workloads and Systems

Pattern Keyword Data Type Information Priority Relevance
%error% varchar High
%warning% varchar Medium
%critical% varchar High
%full% varchar Medium
%lock% varchar Low
%failed% varchar High
%evacuate% varchar Medium
%invalid% varchar Low
%fatal% varchar High
%not found% varchar Medium
%missing% varchar Low
%invalid% varchar Low
%terminated% varchar Medium
%abort% varchar High
%execute% varchar Medium
%kernel% varchar High
%memory% varchar High
%cpu% varchar High

Table 4.22 Example of Keyword Pattern Analysis

Typically, the information and data extracted using this process is extracted in a priority

order and then aggregated together to begin the rule matching and forward-chaining process,

or perhaps even the ability to predict where resources may be required (Flinta et al, 2017).

© James Oakes, 2020

125|Page

Intelligent Management of Virtualised Computer Based Workloads and Systems

Upon successful matching of keyword patterns, analysis work is undertaken to ascertain if the
pattern and associated string is of relevance to the system. For example, the following table
provides sample pattern matches and their entire string. Being able to then determine the
status and value of the information is critical for the IDE to be able to decide whether to take

any further actions on an event driven forward chain event.

Pattern Keywords Associated Matched String (non-case sensitive)

%warning% /dev/mapper/vg_appl2-lv_root: *¥******x*x*x WARNING:

Filesystem still has errors * %%k

%critical% passwd: Critical error - immediate abort

%full% ERROR cannot create datafile
/vol/data/standalone/journals/logfile-321497.db: filesystem
full

%error% ERROR cannot create datafile

/vol/data/standalone/journals/logfile-890354.db: filesystem full

%kernel% AND kernel: Out of memory: Kill process 8796 (mysqld) score 719 or

%memory% sacrifice child

Table 4.23 Example of Pattern Keyword Matching

In the table above we can see the last row as an example shows two keyword matches
for a single detected string from a data source discussed in section 4.6.4; typically this type of
message would be found in /var/log/messages data source. Intelligent information retrieval
is a key aspect for Al systems, and it is an excellent mechanism for the IDE to adopt, in order
to support the forward-chain reasoning methodology, discussed previously in section 4.8.3

and figure 4.5 (Mei and Cheng, 2010). By utilising such a retrieval method, the system can

correlate particular events happening in real-time on the system and wider platform, and
subsequently check to match those detected events to an appropriate knowledge rule and its

consequential action (Melekhova, 2013; Matthias, 2008).

© James Oakes, 2020 126 I P a g e

Intelligent Management of Virtualised Computer Based Workloads and Systems

4.8.5 Knowledge Rule Justifications

The following examines the knowledge rules defined in sections 4.8.1, 4.8.2 and 4.8.3

and defines and justifies the reasons why these rules are beneficial, worthy of inclusion and

useful for the IDE platform function.

down.

system fails as a result of either human
error, data corruption, or hardware

failure, such as a disk, memory, or CPU

Knowledge | Knowledge Knowledge Rule Justification Testing Through

Rule ID Rule Direct
Description Experimentation

1 Physical host | Justification: A physical computer Not fully tested,

see limitations in
section 1.4 and

future work in

fault. sections 8.3.3
Human error can occur at any time, and 8.3.5 for
although the IDE aims through its more detail.
automation and Al/knowledge rules to Some work

remove the need for human
intervention where possible because of
this risk, although it is vital to
understand that this access is not
restricted and is allowed. Human
interventions can be easily be mistaken
and often be inconsistent, as
administrators often perform their
duties based upon their personal
preference for completing a certain task
using certain method.

Data corruption can occur, when a
particular data set has its integrity

compromised, either through

simulating basic
host failure was
completed in
chapter 6 around
this, but more
can be done as
described in

future work.

© James Oakes, 2020

127|Page

Intelligent Management of Virtualised Computer Based Workloads and Systems

Knowledge
Rule ID

Knowledge
Rule
Description

Knowledge Rule Justification

Testing Through
Direct
Experimentation

inconsistent writes, multiple data access
requests, where one is perhaps
unauthorised, unexpected or unknown.
The result is a data set that is no longer
trustworthy, inconsistent, incomplete,
inaccurate, and even possibly
unreadable.

Hardware failures are inevitable events,
that will occur to any computer system,
or set of systems. Typically, all systems
have a mean-time between failure
(MTBF) rate, which means that a
computer system may fail at any given
moment, due to power loss, or a CPU,
memory, system board, |/O adapter, or

disk fault.

Physical host
memory
capacity

exceeded.

Any guest systems (VMs) as defined in
figure 1.1 show that it is feasible for a
physical host to run short of memory,
through explained reasons, such as a
too highly consolidated VM (guest) to
physical (host) ratio, or unexplained
means, such as a hypervisor failing to
manage a memory leak or another
unexpected platform event. If this
becomes apparent over a sustained

period of time, actions are needed to

Not fully tested,
see limitations in
section 1.4 and
future work in
section 8.3 for

more detail.

© James Oakes, 2020

128|Page

Intelligent Management of Virtualised Computer Based Workloads and Systems

Knowledge
Rule ID

Knowledge
Rule
Description

Knowledge Rule Justification

Testing Through
Direct
Experimentation

alleviate this situation. Hence, this
knowledge rule once its conditions are
met, will seek to alleviate the situation

automatically (Sanzo et al, 2012; Chen

et al, 2013).

Physical host
CPU capacity

Exceeded.

Any guest systems (VMs) as defined in
figure 1.1 show that it is feasible for a
physical host to run short of CPU,
through explained reasons, such as a
too highly consolidated VM (guest) to
physical (host) ratio, or unexplained
means, such as a hypervisor failing to
manage a shared CPU cores or another
unexpected platform event. If this
becomes apparent over a sustained
period of time, actions are needed to
alleviate this situation. Hence this
knowledge rule once its conditions are
met, will seek to resolve the error

condition automatically (Makridis et al

2017; Ismail and Riasetiawan, 2016).

Not fully tested,
see limitations in
section 1.4 and
future work in
section 8.3 for

more detail.

VM System
memory

overload.

This rule deals directory with a guest
VM over utilising its allocated memory
for a sustained period of time. This rule
is essential to allow for a global
resource scheduling mechanism,

whereby the IDE can monitor all of its

Partially tested in

chapter 7.

© James Oakes, 2020

129|Page

Intelligent Management of Virtualised Computer Based Workloads and Systems

Knowledge
Rule ID

Knowledge
Rule
Description

Knowledge Rule Justification

Testing Through
Direct
Experimentation

VMs across the platform and manage
the hypervisor layer effectively with
respect to memory management
(dynamic ballooning add/reduce and
resizing). Chapter 7 deals with this in
greater detail, as it highlights the
benefits of implementing this within the

platform (Zhang et al, 2017; Zhang et al,

2016).

VM System

CPU overload.

This rule deals directory with a guest
VM over utilising its allocated CPU cores
for a sustained period of time. This rule
is essential to allow for a global
resource scheduling mechanism,
whereby the IDE can monitor all of its
VMs across the platform and manage
the hypervisor layer effectively with
respect to CPU management (dynamic
Hotplug add/remove and resizing).
Chapter 7 deals with this in greater
detail, as it highlights the benefits of
implementing this within the platform

(Zhang et al, 2017; Zhang et al, 2016).

Partially tested in
Chapter 7.

VM

Migration.

Based on workload balancing strategy,
and sometimes the result the
invocation of high resource contention

within the IDE platform, it may be

Partially tested in

chapter 6.

© James Oakes, 2020

130|Page

Intelligent Management of Virtualised Computer Based Workloads and Systems

Knowledge
Rule ID

Knowledge
Rule
Description

Knowledge Rule Justification

Testing Through
Direct
Experimentation

necessary to migrate VMs between
physical hosts, to better align VM
resource management, either to free up
memory, CPU or other physical
resources such as network or /0.
Other reasons for migration, could
include running VMs across different
physical hosts (i.e. not collating them)
and introducing negative affinities in
order to ensure for example, that two
VM web-servers run on different hosts.
In the event of a hardware issue type
event where one fails for any reason,
the other VM web server will remain
online. Chapter 6 expands on how the
IDE makes use of work load
balancing/availability strategies
especially for unplanned failure type
events; note, that the limitations
section 1.4 discusses live migration for
planned migration events and the
future work section 8.3.3 goes into
additional detail on what work could be

considered (Feng et al, 2011; Shirinbab

and Lundberg, 2016).

VM

Unresponsive.

The IDE continually self-monitors the

platform it manages and checks all

Partially tested in

chapter 6.

© James Oakes, 2020

131|Page

Intelligent Management of Virtualised Computer Based Workloads and Systems

Knowledge
Rule ID

Knowledge
Rule
Description

Knowledge Rule Justification

Testing Through
Direct
Experimentation

virtual resources for their availability.
Should a VM become unresponsive to
health check probes and the IDE is
unable to access the guest VM, steps
will be taken to restart the VM locally to
make it once again available, or if that
fails, an evacuation, failover and restart
will be completed. Chapter 6 provides
more detail with an example of a
simulated VM failure, and how the
system deals with and recovers from

this situation (Benet et al, 2016).

VM Evacuate.

Occasionally on the IDE platform, it may
happen that an attempt to dynamically
add CPU or memory resources, or even
a hard resize/restart for a VM fails,
because there is simply not enough
resource remaining on the physical host
where the guest VM resides. In this
case, there is no option but to consider
an evacuation and migration of the VM
in question, or perhaps one of less
importance in terms of avoiding an SLA
breach, to another physical host. Should
an option be feasible the IDE system will
attempt to evacuate and move the

selected guest VM to an appropriate

Not fully tested,
see limitations in
section 1.4 and
future work in
section 8.3 for

more detail.

© James Oakes, 2020

132|Page

Intelligent Management of Virtualised Computer Based Workloads and Systems

Knowledge | Knowledge Knowledge Rule Justification Testing Through
Rule ID Rule Direct
Description Experimentation

physical host with suitable remaining

resources (Feng et al, 2016).

Table 4.24 Knowledge Rules Justifications

4.9 Summary

This chapter has described how the IDE is the key framework for extending control
and management over virtualised computer systems. The characteristics of the system allow
it to organise its data structures to store key information in relation to the managed systems.
Additionally, the embedded knowledge rules allow the IDE to take actions to improve VM
provisioning processes, failover or migrate VMs as required to restore services, or rebalance
resources across the platform, through interpretation of real-time data to allow the
invocation and execution of knowledge rules and its consequent. The appropriate algorithm
is then used to determine how to best recover, remediate or resolve the consequent; for
example, using the forward-chaining algorithm to knowledge rule match as required. The
next sections cover how the IDE interacts with its controlled components over the network,
and the data sources it uses as its real-time inputs, which are analysed for key text patterns
as well as the retention of that useful information, for example relating to VM or application
sizing. Next the way the IDE maintains its high availability is covered in detail, and data of the
knowledge rules are discussed, highlighting how they cover critical system events. Finally,
some justifications are provided as to why each of the knowledge rules were selected and
chosen for inclusion into the IDE system. The next chapter addresses the experiment

processes undertaken, the results gathered, and includes a summary view on the outputs.

© James Oakes, 2020 133 I P a g e

Intelligent Management of Virtualised Computer Based Workloads and Systems

Chapter 5: Simplified Deployment of Virtual Machines

5.1 Introduction

Developing the ideas from the motivation and aims listed in section 1.2 of this work,

experiments were conducted to help demonstrate that VMs could be provisioned in a

simplified way. There are two main areas that are covered by the experiment process; they

are based on the methodology approach defined in section 3.5.1 and 3.5.2 respectively:

e Real-time experiments to compare and measure how long it took the three end-

user group types defined in section 5.2.1 to provision a single VM across the

platforms described in section 5.2.2; this was a one-off experiment which took a

considerable amount of elapsed time, using the three platforms see Appendix A,

with data sourced from anonymous distributed users, who self-categorised

themselves based on the criteria described in section 5.2.1.2. Once the groups

reached 31 in total, they were then closed to new users; please see section 1.4

which discusses and identifies the limitations with respect to the number of

participants in the study.

e The participants in the study had the following characteristics:

©)

© James Oakes, 2020

Population: A large selection of cloud administrators, including even those

not working professionally in IT.

Target population technical ability: Mixed ability of novice, experienced,

expert users of cloud systems.

Study population: Voluntary, 3 anonymous groups of 31 users, for a grand

total of 93 users, who have self-categorised their ability.

Sample error for estimate: Low, as clearly defined steps 1 to 10, with the

goal to provision a VM, were provided to the participants.

Studies related to problem discovery show that a user participant group

size of around 30 users will capture around 97-99% of all issues. Increasing

134|Page

Intelligent Management of Virtualised Computer Based Workloads and Systems

this to around 90 users, should capture nearly all problems, or around 98-
100% of issues; therefore, the numbers in the study provide a strong basis
to show that the participant numbers are viable for the experiments

conducted (Macefield, 2009; Faulkner, 2003).

e Additionally, following experiment 1, and the testing around VM provisioning
timing which yielded quantitative data, based on similar studies it was
determined that the experiment process could be widened to take advantage of
the qualitative data also obtained. By using the available results, it would be
beneficial to be able to measure the cognitive load complexity on the end-user

delivery of VMs (Oakes et al, 2019; Rothenburg et al, 1987). Therefore, significant

effort has been made as part of this research to investigate how to measure and

reduce the complexity of building virtual machines (Plass et al, 2010). Section

5.2.3 describes the experiment process and presents the findings in greater

detail.

5.2 Simplified VM Provisioning

5.2.1 Experiment Process
The process to evaluate the IDE simplified VM deployment mechanism is as follows,

using several experiment processes/parameters that are defined in the sections below.

5.2.1.1 Task Complexity Definition

Defining task complexity and associated subjective techniques more often than not
involve a set of questions containing one or many semantic differential scales, on which the
participant can indicate their personal experience, in respect to cognitive load during the

experiment process (Paas et al, 2003). Similar scales have been developed by researchers

previously, who based it on a measure of the perceived task difficulty (Borg et al, 1971; Gopher

and Braune, 1984). In Paas’s study, participants had to report their invested mental effort on

a symmetrical scale ranging from 1 (very, very low mental effort) to 9 (very, very high mental

effort) after each problem during training and testing. Using a similar method, the following

© James Oakes, 2020 135 I P a g e

Intelligent Management of Virtualised Computer Based Workloads and Systems

table describes the guide for process complexity for tasks defined in section 5.2.1.4. Note for
the 10-step VM provisioning process expanded in section 5.2.1.6, each step can be considered

as ‘task’ made up of ‘sub-tasks’.

Process Complexity Key | Definition

Simple Intuitive, no training required. An example of a simple tasks
would be answering a question such as: “What is your age?”,
accessing a URL via a browser to load a website, or sending a

10-20 worded SMS (Short Message Service) message.

Moderate Basic training required, some experience and know-how
necessary to execute the task. An example of a moderate
complex tasks would be following a recipe with 3-4
ingredients to prepare and make a meal, writing a BASIC
computer program to calculate the Body Mass Index (BMI)
value of a human being, or being able to describe and use
Pythagoras theorem to calculate the length of the

hypotenuse.

Difficult Advanced training required, experience essential on how to
implement and complete the task. Examples of a difficult task
would be completing a residential home extension architectural
drawing to conform to local government planning and building
regulations, being able to write a computer program to
graphically draw a chessboard or being able to explain in a
classroom the full implementation of Internet Protocol version
4 (IPv4), providing examples of network classes, subnets and

network routing.

Table 5.1 Task Complexity Rating

© James Oakes, 2020 136 I P a g e

Intelligent Management of Virtualised Computer Based Workloads and Systems

5.2.1.2 User Types

As part of the experiment process, the volunteer user participants were able to
anonymously define themselves into one of three designated groups by self-determining

which group they belonged to as defined in each of the definitions:

End-User Type Definition Quantity of
Users in the
group

Novice User A user with little (less than a year) or no formal 31

training in computer science and no work

experience in computing disciplines.

Experienced User A user with some training in computing disciplines, | 31
up to A-level standard, with some formal training

or 1-3 years’ work experience in the field.

Expert User A user with training in computing disciplines, with a | 31
bachelor’s degree level or above, or with more

than 5 years’ work experience in the field.

Table 5.2 End-User Types

5.2.1.3 Task Types

Task types for the experiment are listed below. Importantly, each task type is based

on the requirement or non-requirement for human/end-user inputs.

Task Type Definition

Manual All sub-components of the task require manual user inputs.

© James Oakes, 2020 137 I P a g e

Intelligent Management of Virtualised Computer Based Workloads and Systems

Task Type

Definition

Semi-Automated

Some of the sub-components of the task require manual user

inputs, some are automated.

Automated

No sub-components of the task require any user inputs.

Table 5.3 Process Mechanism Definition

5.2.1.4 Process Types and Complexity Value Weightings

The table below features definitions of how the process analysis was broken down into

the tasks and sub-task components. For the purposes of this experiment and calculating the

user feedback, we acknowledge sub-components of tasks, but never ask the users to provide

their results at this level of granularity; instead, we take and record the qualitative result given

at the task level:

Process/Task/Sub- | Definition
components

A set of tasks which make up a complete process flow; for example,
Process the steps/tasks required for the building of a virtual machine.

An action, which is part of a process, such as creating an RSA public
Task

and private key pair for a user and then deploying it.

Sub-Component

A task may be made up of sub-components, such as key generation,
key distribution, and setting key permissions, and testing the private

and public key handshake.

© James Oakes, 2020

Table 5.4 Process, Task, Sub-component Definitions

138|Page

5.2.1.5 User Results: Mode Average of Task Complexity Description

Intelligent Management of Virtualised Computer Based Workloads and Systems

The following table allows for a reliable method of obtaining a mode average (most

frequent) of the end-users interpretation of the task complexity description: this is either

simple, moderate, or difficult. Therefore, as an example for step 8 (create and add SSH key),

Oracle cloud, the mode average, or most common description recorded was ‘difficult’.

User Type User Step Qualitative Qualitative Qualitative
Numbers | Number | Mode Average | Mode Average | Mode Average

Complexity Complexity Complexity
Description Description Description
(Oracle) (AWS) (IDE)

Novice, 3groups |1 Simple Simple Simple

Experienced, | of 1-31

and Expert

Novice, 3groups |2 Simple Moderate Simple

Experienced, | of 1-31

and Expert

Novice, 3groups |3 Simple Simple Simple

Experienced, | of 1-31

and Expert

Novice, 3groups |4 Simple Moderate Simple

Experienced, | of 1-31

and Expert

Novice, 3groups |5 Simple Moderate Simple

Experienced, | of 1-31

and Expert

Novice, 3 groups | 6 Moderate Difficult Simple

Experienced, | of 1-31

and Expert

Novice, 3groups |7 Moderate Moderate Simple

Experienced, | of 1-31

and Expert

Novice, 3groups | 8 Difficult Difficult Simple

Experienced, | of 1-31

and Expert

Novice, 3groups |9 Simple Simple Simple

Experienced, | of 1-31

and Expert

© James Oakes, 2020

139|Page

Intelligent Management of Virtualised Computer Based Workloads and Systems

User Type User Step Qualitative Qualitative Qualitative
Numbers | Number | Mode Average | Mode Average | Mode Average

Complexity Complexity Complexity
Description Description Description
(Oracle) (AWS) (IDE)

Novice, 3groups | 10 Moderate Difficult Simple

Experienced, | of 1-31

and Expert

Table 5.5 VM Provisioning 10-Step Complexity (Mode Average)

5.2.1.6 VM Provisioning Process

During the evaluation and experiment process, there were 10 steps for VM

provisioning that were followed, using empirical testing methods, whereby users were

allowed to evaluate the IDE, AWS and Oracle VM provisioning platforms each in turn, while

under observation by a moderator who used an unobtrusive approach as a ‘fly on the wall’

(Seaman, 1999). The provisioning steps are defined as follows, based on the methodology

described in section 3.5.1, and using the complexity guide and mode values from the previous

section 5.2.1.5, which are incorporated in the table below:

Step | Description | Process Information Complexity | Complexity | Complex
No Mechanism Input Amazon Oracle ity IDE
Web Cloud Provisio
M = Manual Services (Mode) ning
A = Automatic (Mode) (Mode)
S = Semi-
Automatic
2
2|2 |w
c | = |2
Step | Cloud This is the M M M | Simple Simple Simple
1 Provisioning | process
Access. needed to
access and
authenticate
to use the
cloud

© James Oakes, 2020

140|Page

Intelligent Management of Virtualised Computer Based Workloads and Systems

Step
No

Description

Process
Mechanism

Information
Input

M = Manual
A = Automatic
S = Semi-
Automatic

Oracle
AWS
IDE

Complexity
Amazon
Web
Services
(Mode)

Complexity
Oracle
Cloud
(Mode)

Complex
ity IDE
Provisio
ning
(Mode)

platform,
typically
username/
password.

Step

Configure
Role.

Setting up
role-based
access
controls, such
as
administrator.

Simple

Moderate

Simple

Step

Select
compute as
the option
for VM
deployment

Public cloud
offerings
prefer to
allow manual
choices for
other
offerings such
as Daas, PaaS
or SaaS. This
experiment
only deals
with laaS.

Simple

Simple

Simple

Step

Select the
image you
wish to use
toinstall to
the VM (OS
type/version

).

Typically, the
OS version
and software
packages,
add-on’s and
any other
supporting
application

Simple

Moderate

Simple

© James Oakes, 2020

141|Page

Intelligent Management of Virtualised Computer Based Workloads and Systems

Step | Description | Process Information Complexity | Complexity | Complex
No Mechanism Input Amazon Oracle ity IDE
Web Cloud Provisio
M = Manual Services (Mode) ning
A = Automatic (Mode) (Mode)
S = Semi-
Automatic
2
3 2 | w
o < (=]
software.
Step | Select the VM Shell S S S Simple Moderate | Simple
5 VM CPU, parameter
memory, definition
and Disk phase.
Parameters.
Step | Define VM Define, IP S S A Moderate Difficult Simple
6 Parameters. | addresses,
netmasks, OS
version,
packages and
other such
configurable
parameters.
Step | Define VM Select type S A A Moderate Moderate | Simple
7 Storage. and amount
of disk
storage to
use.
Step | Add SSH Generation of | S S A Difficult Difficult Simple
8 key, createa | an
key and appropriate
upload the SSH
pubic key. encryption
key to secure
communicatio
ns and
authenticatio
ns.
Step | VM creation | VM shell A A A Simple Simple Simple
9 process. creation,
install and
boot process.

© James Oakes, 2020

142 |Page

Intelligent Management of Virtualised Computer Based Workloads and Systems

Step | Description | Process Information Complexity | Complexity | Complex
No Mechanism Input Amazon Oracle ity IDE
Web Cloud Provisio
M = Manual Services (Mode) ning
A = Automatic (Mode) (Mode)
S = Semi-
Automatic
9
3 2 | w
o < (=]
Step | Process for | Typically M M A Moderate Difficult Simple
10 accessing involves
the VM via opening up
the internet, | Firewall ports
or via to access e.g.
network. TCP 22 SSH.

Table 5.6 VM Provisioning Sequence

5.2.1.7 Hardware Provisioning Platform

VM container parameters are defined as follows, using by default the smallest VM

component available for each platform for the initial testing/experimentation:

VM CPU Cores Memory | Disk (GB) | Architecture | Hypervisor

Vendor (GB)

Type

Oracle | 1 (Intel Xeon processor | 7.5GB 34GB x86 Oracle Cloud
E5 Series, 3.3 GHz). (OVM).

AWS 1 (Intel Xeon processor | 8GB 8GB x86 AWS (Xen).
E5 Series, 3.3 GHz).

IDE 1 (Intel Celeron 2GB 8GB x86 Oracle
Processor 1017U, 1.6 VirtualBox.
GHz).

Table 5.7 Allocated VM Compute Resource

5.2.1.8 VM Sizing Methods

This section examines allocation of CPU and Memory resource for VMs and the most

© James Oakes, 2020

143 |Page

Intelligent Management of Virtualised Computer Based Workloads and Systems

effective approach using a minimum recommended model, and a scale-up as required
methodology to help avoid over commitment of resources and potentially under-utilised

systems. The IDE approach to sizing consists of:

e Assigning minimal recommended memory and CPU for a particular OS flavour
supported. Research suggests that minimalisation is an optimal approach to use to

effectively utilise l1aaS platforms (Stage et al, 2009). This immediately avoids waste, as

Piraghaj et al show in their research (2015, p. 33); therefore, this ensures VMs are
functioning at the minimal recommended level of resources, thus avoiding over-

allocating CPU and memory from the outset.

e Expand and balloon memory (grow/shrink) as required by the applications; note, most
support for memory ballooning requires 64-bit operating systems, that theoretically
allows support up to 2%* bytes (~16 exabytes) for dynamic memory allocation/de-

allocation and garbage collection (Liu et al, 2015).

e Memory/CPU monitoring agents running via IDE will continually monitor the entire
environment, allowing for dynamic changes to occur as appropriate (i.e. shrink or
expand resources). This will support the continual resource re-assessment of VMs to

allow them to increase or reduce as needed.

5.2.2 Experiment 1: VM Provisioning Timing Comparison

5.2.2.1 Formalisation

Where T is the total time to deploy a VM

Where n stands for the task number
Where t stands for the task identifier

Where 0 is the participant time taken to complete a task (in seconds)

Where ¢ is the average (mean) participant time per task (in seconds)

To find the total time to complete the 10-Step VM provisioning process we use the following:

© James Oakes, 2020 144 I P a g e

Intelligent Management of Virtualised Computer Based Workloads and Systems

t=1
(1)

To find the average time per step for each user:

=16
Y= 10

(2)

5.2.2.2 VM Provisioning Expert Users

The following table records in Appendix A.1 the observed time in seconds (sec) taken
for each step, for a total of 31 expert users (see definition above); a time of zero represents

automatic processing, with no necessary end-user intervention.

5.2.2.3 VM Provisioning Experienced Users

The following table records in Appendix A.5 show the observed time in seconds (sec)
taken for each step, for a total of 31 experienced users (see definition above); a time of zero

represents automatic processing, with no necessary end-user intervention.

5.2.2.4 VM Provisioning Novice Users

The following table records in Appendix A.9 show the observed time in seconds (sec)
taken for each step, for a total of 31 novice users (see definition above); a time of zero
represents automatic processing, with no necessary end-user intervention. A time recorded
as 9999 represents a user who was unable to complete a task, due to having a lack of

knowledge, or understanding.

© James Oakes, 2020 145 I P a g e

Intelligent Management of Virtualised Computer Based Workloads and Systems

5.2.2.5 VM Provisioning Build Methods

The VM build methods are recorded in Appendix C; there is a sequence recorded for
each platform which are AWS, Oracle and the IDE respectively. Each user listed in section
5.2.1.2 accessed each platform in turn, to perform the 10-step provisioning steps listed in
section 5.2.1.6, and recorded their timings for each step. These results can be found in

Appendix A and graphed and presented in section 5.3.1.

5.2.2.6 Re-visiting the IDE Provisioning Experiment with Queued Pre-built System
Images

It was determined that step 9 (of the VM provisioning process) time could almost be
eliminated by adopting a new process, whereby, the IDE system pre-built VMs, which have
their system configuration put into a unconfigured status, for example, using the ‘sys-

unconfig’ (sys-unconfig, 2019) command will achieve this on Linux type systems, and allow re-

configuration. This approach makes system performance and time to build somewhat
irrelevant, due to the pre-build and dynamic reconfiguration process continually running in
the background, anticipating a future build. This method effectively allows the IDE to store
pre-built system (queued) images, which it can choose to keep in reserve to act as a future
build pipeline supply. This work is a possible future development, described further in section

8.3.1.

5.2.3 Experiment 2: Cognitive Evaluation Performance

Every task a person undertakes requires a certain amount of cognitive power, or

mental effort, in order to enact to conclusion (Sweller, 1998; Yang et al, 2017). As an example,

this could be from a singular simple task, such as clicking a mouse button, to a set of activities
that need to be carried out in a specific sequence in order to complete an overall task
successfully, such as cooking a meal using a set of ingredients and following a recipe. The

guestion that rises from this, is how can the complexity of a task or set of tasks be measured,

© James Oakes, 2020 146 I P a g e

Intelligent Management of Virtualised Computer Based Workloads and Systems

and is it possible to understand the cognitive load for a user or group of users? The evidence
from other studies and this work suggest it is feasible to understand this, and similar
experiments in controlled conditions have provided evidence and results that demonstrate

how to measure cognitive load (Pass et al, 1994; Pass et al, 2003; Kotova, 2016).

Within the field of work, this method of study is generally referred to as Cognitive Load
Theory (CLT) in relation to task orientated problem solving. One requirement for making this
feasible is because, like most processes, there is usually a start and an end, and a subsequent
number of tasks in-between that are usually performed in a certain sequence. Once the
process completes, this can result in a successful end and objective being met, or perhaps
even in a full or partial failure. Understanding the sum of all the tasks in process is therefore

essential to be able to measure the overall complexity load (Feinberg, 2000). Some processes

are simple, for example pressing a power on or off button on a Television (TV) remote control.
Consider that there are a few steps to this process, one locating the TV remote, two locating
the correct button (power), and three physically pressing this button, to achieve the desired
effect (e.g. switching the TV on/off). Conversely, other processes can be considered complex,
such as the creation of a Virtual Machine (VM), due to the number of steps and the inherent

know-how and technical expertise required to complete (Selvi et al, 2014).

5.2.3.1 Converting Qualitative Data into Quantitative Data: Is This Possible?

Further to existing studies, this paper examines how the cognitive load for a complex
process (set of tasks) can be measured using a unique formula and method, referred to as the
Complexity Load Rating (CLR). The work examines the feasibility and challenges around
recording qualitative feedback and results from end-users, and proposes a method to

translate this into numerical or quantitative data (Green, 2001; Srnka and Koeszegi, 2007;

Verdinelli, and Scagnoli, 2013; Franzosi, 2004). The results are then calculated for each group

of users and are then evaluated to present evidence on how a complex process (such as VM

provisioning) can be simplified as a result of the steps being developed with higher levels of

© James Oakes, 2020 147 I P a g e

Intelligent Management of Virtualised Computer Based Workloads and Systems

automation and the use of pre-coded system intelligence (Oakes et al, 2016; Lokshina and

Insinga, 2004; Menasce and Bennani, 2006).

5.2.3.2 Cognitive Experimental Process

How to measure the cognitive load of a task is based upon the following general

conditions, described by the qualitative (subjective) terms below:

1) The end-user interpretation of the task as either simple, moderate or difficult.
2) Is the task (or set of tasks) which make up the process automated, semi-automatic, or

manual.

It is important when collecting qualitative data, that not too many options are
presented for the end-user evaluation data outputs, based on their experience and the
experiment process undertaken. For example, allowing human test subjects to input
unstructured data such as free-text, or even handwritten text, makes the collation and
analysis of data somewhat more difficult to interpret, simply because of the number of

permutations and recognition of what the written data means (Rusu et al, 2013).

Therefore, in the context of this study, when we refer to task complexity, this is defined
or described (subjectively) by the end-user as simple, moderate or difficult. Furthermore,
each task undertaken has a process mechanism described as either automatic, semi-
automatic, or manual. Of the three process outcomes, if a task is automated it requires no
input, and is automatically set to simple; semi-automatic and manual task steps therefore

require partial or full end-user inputs and can receive a simple, moderate or difficult rating.

It is natural that humans prefer providing qualitative feedback for some activity they

personally take part in (Lui et al, 2017). Simple statements of whether something was good

or bad is often typical of how people prefer to relate their experiences (Austermann and

Yamada, 2008). By capturing all the tasks for a process, it is possible to begin to measure the

© James Oakes, 2020 148 I P a g e

Intelligent Management of Virtualised Computer Based Workloads and Systems

results from the experimentation method by converting qualitative data into quantitative

data, thus, in effect, performing a translation of words into numbers (Franzosi, 2004). This

leads us to the next phase of the experiment framework on how to use these sets of
parameter variables, for Task Complexity (Table 5.1) and Process Mechanism (Table 5.3), by
creating a unique method for measuring the Cognitive Load Rating (CLR) for a task or set of
tasks; in this study we examine the complete process, of how an end-user would deploy a VM
within a computer based cloud environment, as described in the 10-step provisioning process
in section 5.2.1.6. Note, that this exercise was completed as a one-off (snapshot) exercise,
and end-users were not able to repeat the experimental tests, either immediately following,

or at a later point in time; see limitations for more detail in section 1.4.

The cognitive experiment process invoked is very similar to other studies in the field,
as listed in section 2.7.6, although it does utilise its own scaling systems and devised formula
as described below in section 5.2.3.3. Similar previous studies for cognitive load are listed in

table 5.8 below:

Studies That Measured Cognitive Load and Calculated Mental Efficiency and the Measurement Technigue They Used

Studies Cognitive Load Measurement Technique Mental Efficiency
Sweller (1988) PS. ST

Paas (1992) RS9

Paaz & van Mermiénboer (1993) RSO ME
Paasz & van Memiénboer (1994b) RS9 HEV ME
Cerpa, Chandler, & Sweller (1996) RS9 ME
Chandler & Sweller (1996) 5T

Marcus, Cooper, & Sweller (1996) RS87. 8T ME
Tindall-Ford, Chandler, & Sweller (1997) RS7 ME
Yeung, Jin, & Sweller (1997) RS9 ME
de Croock, van Memiénboer, d& Paas (1998) RSO

Kalyuga, Chandler, & Sweller (1998) RS7 ME
Kalyuga, Chandler, & Sweller (1999) RS7 ME
Tuovinen & Sweller (1999) RSO ME
Yeung (1999) RS9 ME
Kalyuga. Chandler, & Sweller (2000) RS7 ME
Kalyuga, Chandler, & Sweller (2001) RS7 ME
Ealyuga, Chandler, Tuovinen, & Sweller (2001) RS9 ME
Mayer & Chandler (2001) RST

Pollock, Chandler, & Sweller (2002) RS7 ME
Stark, Mandl, Gruber, & Fenkl (2002) k50

Tabbers, Martens, & van Mermié&nboer (2002) RS9

Tabbers, Martens, & van Memiénboer (in press) RS9

Wan Gerven, Paas, van Memiénboer, Hendriks, & Schooide (2002) RS9 ME
Wan Gerven, Paas, van Memiénboer, & Schmidt (2002a) RSO ME
Wan Gerven, Paas, van Memiénboer, & Schmidt (2002b) FR

Wan Gerven, Paas, van Memiénboer, & Schmidt (2002c) RS9 ST ME
van Memignboer, Schimuman, de Croock, & Paaz (2002) RSO ME

Note. Studies are listed in chronological order. PS = production system; 5T = secondary task technique; F.S = rating scale (9-point or 7-peint scale); ME =
mental efficiency; HR'V = heart rate variability; PE. = pupillary responses.

Table 5.8 Similar Cognitive Load Studies (PaaS et al, 2003)

© James Oakes, 2020 149 I P a g e

Intelligent Management of Virtualised Computer Based Workloads and Systems

The CLR formula used below does not include monitoring any participant physiological
aspects, such as heart rate variability, or pupillary responses. The reason for this exclusion is
to avoid the collection of personal data relating to the study participants, to maintain
simplicity for the experiment using a Rating Scale (RS), and the known task automation

classification.

5.2.3.3 Cognitive Load Rating Formula

The proposed formula for measuring the complexity of a singular task is as follows:

Where the Cognitive Load Rating (CLR) for one task stands for 5
Where Task Complexity stands for A

Where Process Mechanism stands for @

B=Ax® (1)

This general formula can be applied to any process type, or cumulatively to a set of processes,
and is not just applicable to the field of computer science and VM provisioning. In order to
apply this formula to a set of processes it is necessary to make this calculation able to measure

the sum complexity of a set of tasks, represented as follows:

Where A stands for the CLR for a set (sum) of tasks
Where n stands for the number of tasks

Where t stands for the task identifier

A= Zt=1(A X 0)
(2)

© James Oakes, 2020 150 I P a g e

Intelligent Management of Virtualised Computer Based Workloads and Systems

Additionally, the formula can then be adjusted to work out the mean average of a process’s
task complexity, by using the following method (divides by the total number of tasks

represented by n):

Where K stands for the CLR mean average for a set of tasks

_ I, (4x0)

n

K

(3)

The CLR calculation for each user task results are derived in detail using the following formula

described in the next section.

5.2.3.4 User Task Complexity Formula

Where R is the derived result
Where p is the user input
Where s is simple

Where m is moderate
Where d is difficult

Where x is manual

Where y is semi-automatic

Where z is automatic

R =

(u=(sAx)»(1x10)) V (u=(mAx)—>(3 x10)) Vv

(p=(dAx) >(5x10)) V(u=(sAy)=>(1x5)V

(p=(mAy)=>(3x5)) V(u=(WdAy) »(5%x5))V

(u=(sAz)=>(1x1))Vv(p=(mAz)->(3x1))V
(p=@Az) »(5x1))

© James Oakes, 2020 151 I P a g e

Intelligent Management of Virtualised Computer Based Workloads and Systems

5.2.3.5 Cognitive Load Rating Chart

The following chart provides the CLR scale, on how difficult a set of tasks are for an
end-user; the guide below provides the information on how to rate each overall process, in

terms of the mental power requirement:

CLR Guide
&0
50
40
30
= 20
[V}
10 I
| I
X 0, 5, u o L. L Q.‘.-
i o i S o &
'5((5' 2.{(; @Sg '25(\@ {‘\& ‘6& »2.6& *’6‘2’
3 4 o\ o & 4 3
a\i \:r{) d}i & \)ku c.‘ (_\ 3
il i <® o & & & &
&_\}'5‘1 N SS‘Q b\q{“ @'ﬁ\ Q‘*ﬁ\ Lﬁ\&?
+ & <+ & &
2 t}-ﬁ -QD
o A o™
B 4‘__’4-“
<&

Mental Power Requirement

Figure 5.1 Cognitive Load Rating Chart

5.3 Results

5.3.1 VM Provisioning Timed Results

The following graphs represent the VM provisioning results from the Novice,
Experienced and Expert user groups for each of the 10-steps in the provisioning process; note

that the conclusions can be found in section 8.2.1:

© James Oakes, 2020 152 I Page

Intelligent Management of Virtualised Computer Based Workloads and Systems

5.3.1.1 Expert Users

The charts below show the results for the ‘expert’ user group, who performed the VM

provisioning experiment on all platforms; the first graph of results presented is for the IDE

(expert users):

IDE VM Provisioning Timings (Expert Users)

muserl muser2 muser3
user4 muserS museré

muser7 muser8 muser9

1400
Wuser10 muserll muserl2
1200
muser13 muser14 muser15
1000
» user 16 muser 17 muser 18
T 800
o
S : g muser19 muser20 wuser21
& 600 ———]
— user 22 muser 23 muser 24
400 A
565 p user 25 = user 26 = user 27
. N
0 A user 28 muser 29 w user 30
1 2 4 user 31
Z 5
6 7 5 user 1

10
VM Provisioning Step No.

Figure 5.2 IDE Timed VM Provisioning — Expert Users

© James Oakes, 2020 153 I Page

Intelligent Management of Virtualised Computer Based Workloads and Systems

The second graph of results presented is for the Oracle cloud platform (expert users):

Oracle VM Provisioning Timings (Expert Users)

1000

800

600

Seconds
Users

400

200

VM Provisioning - 10 Step Sequence

Figure 5.3 Oracle Timed VM Provisioning — Expert Users

The third graph of results presented is for the AWS cloud platform (expert users):

AWS VM Provisioning Timings (Expert Users)

Users

200
100
0
2 3, g user2
5
3 7 user 1

10
VM Provisioning - 10 Step Sequence

Figure 5.4 AWS Timed VM Provisioning — Expert Users

© James Oakes, 2020

muserl W user 2 m user 3
user 4 W user5 Wuser6
m user7 m user 8 m user 9
muser10 muserll muser12
muser13 wmuserl4 muserl5
muser1l6 muserl7 muser18
Wuser1l9 Wuser20 muser2l
user 22 muser23 muser24
user 25 user 26 user 27
user 28 m user 29 user 30
user 31
Wuserl W user 2 Wuser3
user 4 W ousers W user 6
W user7 W user8 Wuser9
muser10 muserll W user 12
Wuser13 m user 14 wuser 15
= user 16 m user 17 muser 18
w user 19 w user 20 W user 21
user 22 m user 23 w user 24
user 25 user 26 user 27
user 28 m user 29 user 30
user 31

154|Page

Intelligent Management of Virtualised Computer Based Workloads and Systems

5.3.1.2 Experienced Users

The charts below show the results for the ‘experienced’ user group, who performed
the VM provisioning experiment on all platforms; the first graph of results presented is for the

IDE (experienced users):

IDE VM Provisioning Timings (Experienced Users)

muserl muser2 muser3

user4 MWuser5 Muser6

1600 Wuser7 muser8 muser9
1400 muser10 muser1l muserl2
1200 muser13 muser14 wmuser15

w» 1000

° @user16 MWuser17 Muser18

g 8w “— §

U = -

w ey =) wuser19 muser20 muser2l

600 “
400 .-___-" user 22 muser23 muser24
A
200 e SN g us::‘ﬁ user 25 user 26 user27
A
0 user 4
1 q user 3 user 28 mWuser29 ©user 30
2 3 4 —— user 2
5 6 usert user 31
7 8

VM Provisioning Step No.
Figure 5.5 IDE Timed VM Provisioning — Experienced Users

The second graph of results presented is for the Oracle cloud platform (experienced users):

Oracle VM Provisioning Timings (Experienced Users)

muserl W user 2 muser3
user 4 muser5 muser6

muser? muser 8 muser9

2000 muser10 muserll muserl2
muser13 muser14 muserlS
1500
” BMuser1l6 Muserl7 Muserls
2 B =
g 1000 e Buser19 muser20 muser2l
@ =}
v user22 Muser23 Wuser24
500
user 25 user 26 user 27
0 user 28 M user 29 user 30

user 31

VM Provisioning - 10 Step Sequence

Figure 5.6 Oracle Timed VM Provisioning — Experienced Users

© James Oakes, 2020 155 I Page

Intelligent Management of Virtualised Computer Based Workloads and Systems

The third graph of results presented is for the AWS cloud platform (experienced users):

AWS VM Provisioning Timings (Experienced Users)

Muserl ®Wuser2 Muser3
user4 muser5 muser6

muser7 muser8 muser9

900
Wuser10 Wuser1l Muserl2
800
700 Wuser13 muser14 muserl5
" 600 suser16 muser17 muserl18
g 500
£ muser19 muser20 muser2l
& 400 g
=1
300 user 22 ®user23 muser24
200
user 25 user26 - user27
100 _—
0 . user28 muser29 & user30
1
2
3 4 . user 31

VM Provisioning - 10 Step Sequence

Figure 5.7 AWS Timed VM Provisioning — Experienced Users

5.3.1.2 Novice Users
The charts below show the results for the ‘novice’ user group, who performed the VM

provisioning experiment on all platforms; the first graph of results presented is for the IDE

(Novice users):

IDE VM Provisioning Timings (Novice Users)

Muserl muser2 muser3
user4 Muser5 Museré

muser7 muser8 muserg

1600

1400 muser10 muser1l muser12

1200 muser13 muser14 wmuser15
§ 1000 wuser 16 muser17 muserl18
L% 8 E Wuser 19 muser20 muser2l

\ l.‘ 13
00 : ek) ‘ . user 10
400 i — user22 muser23 muser24
r

; 7
200 - :" §r e user25 ©user26 ©user27
" ' user5
0 7 user 4 user 28 wuser 29 user 30
1 2 user 3
3 i user 2 user 31
5 6 7 user 1
8 9
10

VM Provisioning Step No.

Figure 5.8 IDE Timed VM Provisioning — Novice Users

© James Oakes, 2020 156 I Page

Intelligent Management of Virtualised Computer Based Workloads and Systems

The second graph of results presented is for the Oracle cloud platform (Novice users):

Oracle VM Provisioning Timings (Novice Users)

muserl muser2 muser3
user4 Muser5 MWuser6
muser7 muser8 muser9

Huser10 Muserll Muserl2

10000
muser13 muserl4 muserl5
8000 f- Muser16 Muser17 Muser18
[
2 5000 ¥ : N muser19 muser20 muser21
= bR 2
S y ! § user22 muser23 W user24
& 4000 2 W
”' .' (] ke ? user25 muser26 m user27
/ 7
2000 v \\' " e user 28 muser29 m user30
2 ' v user s
0 [} g user 31
Gl user 3
2 3 a4 user 2
5
6 7 user 1
8 9

10
VM Provisioning - 10 Step Sequence

Figure 5.9 Oracle Timed VM Provisioning — Novice Users

The third graph of results presented is for the AWS cloud platform (Novice users):

AWS VM Provisioning Timings (Novice Users)

muserl muser2 muser3

user4d muser5 Wuser6

- user muser7 m®user8 muser9
10000 ugléeigg wuser 10 muser1l muser12
9000 £
2000 2 muser13 muser1l4 wmuserl5
7000 Wuser16 muser17 museri8
& 6000
é 5000 2 muser19 muser20 muser2l
@ w
< 4000 -‘--— 2 user 22 Wuser23 Wuser24
3000 —— Y uage s iy
2000 A — L™ w,"?; user25 © user26 user27
1000 2 ' N n ol user 6
5 P Sy LiJ usc;rﬁ user 28 W user 29 user 30
p' user
1 2 3 , e u;::;” user 31
5 6 7 user 1
B 9
10

VM Provisioning - 10 Step Sequence

Figure 5.10 AWS Timed VM Provisioning — Novice Users

© James Oakes, 2020 157 I Page

Intelligent Management of Virtualised Computer Based Workloads and Systems

5.3.2 Aggregated VM Provisioning Timed Results

The following graphs show the aggregated total timed VM provisioning results for

Expert, Experienced and Novice users; note that the conclusions can be found in section 8.2.1:

5.3.2.1 Expert Users

The charts below show the results for the ‘expert’ user group, who performed the VM
provisioning experiment on all platforms; the first graph of results presented are for the IDE
(expert):

IDE VM Provisioning Total Timings (Expert Users)

1600
1400
1200
1000

800

Seconds

600

400

200

[rp——

Total VM Provisioning Time
muserl Muser2 Muser3 muserd Muser5 Muser6 Muser7 Muser8 Wuser9 ®user 10 Muser 11 M user 12 W user 13 m user 14 W user 15 W user 16

m user 17 m user 18 m user 19 m user 20 muser 21 m user 22 m user 23 m user 24 m user 25 m user 26 m user 27 = user 28 m user 29 m user 30 m user 31

Figure 5.11 IDE Aggregated Timed VM Provisioning — Expert Users

© James Oakes, 2020 158 I Page

Intelligent Management of Virtualised Computer Based Workloads and Systems

The second graph of results presented are the for the Oracle cloud platform (expert):

Oracle VM Provisioning Total Timings (Expert Users)

3000

2500

=

Total VM provisioning time
muserl muser2 muser3 muserd4 muser5 museré muser7 mUser8 muser9 muser 10muser 11 muser 12 m user 13 m user 14 m user 15 m user 16

W user 17 W user 18 W user 19 W user 20 W user 21 = user 22 W user 23 W user 24 W user 25 W user 26 W user 27 © user 28 W user 29 W user 30 = user 31

Figure 5.12 Oracle Aggregated Timed VM Provisioning — Expert Users

The third graph of results presented are the for the AWS cloud platform (expert):

AWS VM Provisioning Total Timings (Expert Users)

1800

1600

1400

1200

» 1000
=
2
5
3

v 800

600

400

200

0

=

s
Total VM Provisioning Time
muserl muser2 muser3 muser4 muser5 muser6 muser7 muser8 muser9 muser10muser 11muser 12 muser 13 muser 14 m user 15 m user 16

B user 17 B user 18 W user 19 M user 20 W user 21 i user 22 W user 23 W user 24 W user 25 W user 26 W user 27 | user 28 W user 29 W user 30 ¥ user 31

Figure 5.13 AWS Aggregated Timed VM Provisioning — Expert Users

5.3.2.2 Experienced Users

The charts below show the results for the ‘experienced’ user group, who performed

© James Oakes, 2020 159 I Page

Intelligent Management of Virtualised Computer Based Workloads and Systems

the VM provisioning experiment on all platforms; the first graph of results presented are for
the IDE (experienced):

IDE VM Provisioning Total Timings (Experienced Users)

f
Total VM Provisioning Time
muserl muser2 muser3 muser4 muser5 muserc muser7 muser8 muser9 muser10muser 11 muser 12 muser 13 m user 14 muser 15 m user 16

1800

1600

1200

W user 17 muser 18 m user 19 m user 20 W user 21 = user 22 W user 23 W user 24 ® user 25 W user 26 W user 27 - user 28 W user 29 W user 30 = user 31

Figure 5.14 IDE Aggregated Timed VM Provisioning — Experienced Users

The second graph of results presented are the for the Oracle cloud platform (experienced):

Oracle VM Provisioning Total Timings (Experienced Users)

3500
3000
2500
B
5 2000
g
]
1500
1000
500
0

Total VM provisioning time
muserl muser2 muser3 muser4 muser5 muser6 muser7 muser8 muser9 muser 10 muser 11 muser 12 m user 13 m user 14 m user 15 m user 16

W user 17 M user 18 M user 19 W user 20 Muser 21 = user 22 W user 23 M user 24 M user 25 W user 26 M user 27 " user 28 W user 29 W user 30 = user 31

Figure 5.15 Oracle Aggregated Timed VM Provisioning — Experienced Users

© James Oakes, 2020 160 I Page

Intelligent Management of Virtualised Computer Based Workloads and Systems

The third graph of results presented are the for the AWS cloud platform (experienced):

AWS VM Provisioning Total Timings (Experienced Users)

Total VM Provisiening Time
Wuserl Wuser2 Muser3 Wuser4 Muser5 Muser6 Muser7 Muser8 Wuser9 Muser 10 Muser 11 M user 12 W user 13 W user 14 W user 15 W user 16
W user 17 W user 18 W user 19 W user 20 W user 21 = user 22 Muser 23 W user 24 W user 25 W user 26 W user 27 user 28 M user 29 W user 30 = user 31

1800

Figure 5.16 AWS Aggregated Timed VM Provisioning — Experienced Users

5.3.2.3 Novice Users

The charts below show the results for the ‘novice’ user group, who performed the VM
provisioning experiment on all platforms; the first graph of results presented are for the IDE
(Novice):

IDE VM Provisioning Total Timings (Novice Users)

2000

1800
1600
1400
1200
"
8
& 1000
T
&
800
600
400
200
0

1
Total VM Provisioning Time
muserl Wuser2 Wuser3 muser4d Wuser5 Muser6 Muser7 Muser8 Muser9 Muser 10 M user 11 W user 12 W user 13 W user 14 W user 15 user 16

muser 17 muser 18 m user 19 m user 20 m user 21 m user 22 m user 23 m user 24 m user 25 m user 26 m user 27 = user 28 m user 29 m user 30 m user 31

Figure 5.17 IDE Aggregated Timed VM Provisioning — Novice Users

© James Oakes, 2020 161 I Page

Intelligent Management of Virtualised Computer Based Workloads and Systems

The second graph of results presented are the for the Oracle cloud platform (Novice):

Oracle VM Provisioning Total Timings (Novice Users)

40000

35000

30000

25000

15000

10000

5000
0 1

Total VM provisioning time
Muserl Muser2 Muser3 muser4 Muser5 Muser6 Muser7 Muser8 Muser9 muser10 M user 11 Muser 12 W user 13 W user 14 muser 15 W user 16

Seconds
N
g
g

muser 17 m user 18 m user 19 m user 20 m user 21 m user 22 W user 23 m user 24 m user 25 m user 26 m user 27 - user 28 m user 29 m user 30 m user 31

Figure 5.18 Oracle Aggregated Timed VM Provisioning — Novice Users

The third graph of results presented are the for the AWS cloud platform (Novice):

AWS VM Provisioning Total Timings (Novice Users)

35000

30000
25000
20000
15000
10000
5000
0

1
Total VM Provisioning Time
Muserl Wuser? Wuser3 muser4 Muser5 Muser6 Muser7 Muser8 Muser9 M user10 M user 11 Muser 12 M user 13 Muser 14 Muser 15 M user 16

Seconds

Wuser 17 muser 18 W user 19 m user 20 W user 21 W user 22 W user 23 W user 24 W user 25 W user 26 W user 27 " user 28 W user 29 W user 30 = user 31

Figure 5.19 AWS Aggregated Timed VM Provisioning — Novice Users

© James Oakes, 2020 162 I Page

Intelligent Management of Virtualised Computer Based Workloads and Systems

5.3.3 Cognitive Load Rating Results

As part of the experiments undertaken, three principle sets of results for the end-user

demographic were collected. These include expert, experienced and novice user groups (as

defined previously in table 5.2 End-User Types). Each user was observed, and the result for

the 10-step VM Provisioning process are listed in table 5.6 VM provisioning sequence; the

results below provide the output for 3 sets of users listed in figure 5.20 (experts users), 5.21

(experienced users) and 5.22 (novice users) respectively, which describe the cognitive load

experienced by each group of users, as described by the CLR guide in section 5.2.3.5:

The charts below show the combined results for all three experimental platforms (IDE,

Oracle and AWS), who performed the cognitive evaluation performance; the first graph of

CLR results presented are the for the ‘expert’ user group:

15

CLR RATING

5

CLR VM Provisioning Experiment - Expert Users

- | LT TN | Y _/\/ S —
. \//\/ NA” S \/ ’ ’

OracleCognitive Load Rating

IDE Cognitive Load Rating

4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 2% 27 28 29 30 31

EXPERT USER IDENTITY NO

Figure 5.20 CLR VM Provisioning — Expert Users.

The second graph of CLR results presented are the for the ‘experienced’ user group:

15

CLR RATING

© James Oakes, 2020

/N
10 \

CLR VM Provisioning Experiment - Experienced Users

—
/\/\/ — AWS Cognitive Load Rating

\/ Oracle Cognitive Load Rating

IDE Cognitive Load Rating

/\/ \\// NN ~ /]

4 5 3 7 B g 10 11 12 13 14 15 1} 17 18 18 20 21 22 23 24 25 % 17 28 29 30 31

EXPERIENCED USER IDENTITY NO

Figure 5.21 CLR VM Provisioning — Experienced Users.

163|Page

Intelligent Management of Virtualised Computer Based Workloads and Systems

The third graph of CLR results presented are the for the ‘novice’ user group:

CLR VM Provisioning Experiment - Novice Users

AWS Cognitive Load Rating

CLR RATING

Oracle Cognitive Load Rating

IDE CogniiveLoad Rating

1 2 3 4 5 6 7 8 9 0 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
NOVICE USER IDENTITY NO

Figure 5.22 CLR VM Provisioning — Novice Users.

Note that the conclusions for the experiment can be found in section 8.2.2.

5.3.4 Overall Results

Table 5.9 below summarises the results for VM provisioning times and the CLR for the

AWS, Oracle and IDE platforms respectively:

Tested Platform and User Mean Average VM Mean Average CLR

Group Provisioning Time (Sec) (Descriptor) - See CLR guide
chartin section 5.2.3.5

AWS Novice Users 9999* Medium

Oracle Novice Users 9999* Medium-High

IDE Novice Users 1578 Low

AWS Experienced Users 1464 Low-Medium

Oracle Experienced Users 3237 Medium-High

IDE Experienced Users 1372 Very-Low

AWS Expert Users 1382 Low-Medium

Oracle Expert Users 2362 Medium

IDE Expert Users 1231 Low

Table 5.9 VM Provisioning Experiment Results

* 9999 results are recorded where end user participant groups were unable to complete the VM provisioning process.

© James Oakes, 2020 164 I P a g e

Intelligent Management of Virtualised Computer Based Workloads and Systems

Note, the table provides an average VM provisioning time for each participant group,
with the appropriate CLR descriptor; the descriptors are an average of the entire sequence of
the provisioning 10-steps, therefore, this should be taken into account, even though for step
8 (SSH Key) the novice groups for AWS and Oracle platforms generally failed to load a public
key, and the majority described the cognitive load for this step as an ‘Exceptionally high
requirement’. The significance of the results are discussed in more detail for each platform in

Chapter 8.

5.4 Summary

This chapter is key in providing the details and results of two of the five experiment
processes conducted as part of this study. Firstly, the VM simplified deployment experiment
was described with the 10-step procedure for end-user participants, along with the controls
to provide definitions, user types, complexity value weightings and task types. The end-user
results are then captured, recorded and presented in graph format. Secondly, the end-user
experience data is captured to analyse the cognitive load and mental power requirement for
each of the respective systems, using the CLR formula to allow a comparison against the
cognitive load guide chart. As with the first experiment, the data is presented graphically. The
results generated for both experiments show a reduction in VM provisioning time for the IDE
and a lower mental power requirement, when compared to the other platforms, which are
AWS and Oracle respectively. The three key groups show a similar pattern, albeit with reduced
times for provisioning for ‘expert’ and ‘experienced’ level users. For the IDE, step 9
accumulates most of the VM build time, due to the fact most of the other steps are automatic,
or semi-automatic. In comparison, the standard AWS and Oracle end-user cloud provisioning
platform interface (see Appendix C) has a requirement for more manual user inputs, thus
adding more time to the aggregated VM provisioning time. Typically, we observe time
consuming manual inputs around step 8, the SSH-key load, and additionally for the Oracle

cloud, step 4 selecting the machine image and step 6 for defining the VM parameters. Novice

© James Oakes, 2020 165 I P a g e

Intelligent Management of Virtualised Computer Based Workloads and Systems

VM provisioning end-user results show that the SSH-key load at step 8 was for the most part,
too challenging to complete. Finally, we compare the cognitive load rating results for the
expert, experienced and novice end-user groups, to ascertain how mentally challenging the
participants found the experimental VM provisioning exercises. The next chapter discusses

experiment 3, which addresses VM workload, migration and failover strategies.

© James Oakes, 2020 166 I P a g e

Intelligent Management of Virtualised Computer Based Workloads and Systems

Chapter 6: Improving Workload Migration Strategies

6.1 Introduction

For most organisations, being able to maintain highly available (HA) systems is

essential to ensure their business operations continue to run effectively (Fernado et al, 2016).

As discussed previously in section 4.7, we examined in detail how the IDE maintains HA using
a cluster and quorum voting mechanism. Public cloud vendors like AWS and Oracle hide this
complexity from their customers and end-users, by using concepts such as regions, which are
physically distinct geographical locations, such as Western Europe London, or the US East
North Virginia; most regions have at least two physically separate datacentres to make them
resilient to local failures, and each datacentre has its own Reliability, Availability, and

Serviceable (RAS) features, such as redundant power, network switches, servers and so on.

Some of the users are therefore unaware of the engineering expertise, effort and cost
associated with creating this type of availability and resiliency, which is one of the reasons for

the commercial success of such platforms (Kokkinos et al, 2013). That being the case, because

many commercial cloud providers keep the complexity and know-how as intellectual property
secrets, this makes it harder for researchers to compare and study such technologies in lab-

based experimental conditions (Hataba and EI-Mahdy, A, 2012). Therefore, as part of this

work, we analyse two well-known VM failover technologies called XenMotion and vMotion,
for which there are available comparative studies completed, to allow a detailed analysis and

comparison against the IDE failover/migration process (Feng et al, 2011; Shirinbab and

Lundberg, 2016).

6.2 Workload Migration Methods

There are several workload migration methods available, however, this study approach
initially begins with the ‘full restart’ VM scenario, although comparisons are made against ‘live

migration” methodologies, and the results obtained therein (Feng et al, 2011; Shirinbab and

© James Oakes, 2020 167 I P a g e

Intelligent Management of Virtualised Computer Based Workloads and Systems

Lundberg, 2016). It was beyond the scope of this investigation to address the in-memory/disk

VM replication migration aspects described below (e.g. using VirtualBox teleport); please see
limitations section 1.4 which describe the constraints, and section 8.3.3 that describes the
further work to be completed in this area. The commonly available migration/failover

methods include the following techniques and methods:

e VM ‘“full restart’” and migration scenario; VM OS is stopped abruptly, crashes, or

halts as a result of a physical host failure, typically an uncontrolled failure.

e Planned VM in-memory migration (VM migrates between two physical hosts, and
has its memory replicated and is restarted; typically used as a controlled failover);
this method being controlled, usually results in less actual downtime of the VM
and its associated services, especially when used in-conjunction with ‘live

migration’ techniques.
The next section provides details on the experiment process employed as part of the

experiment.

6.3 Experiment Process

The experiment process covered two principle components or stages, listed as follows:

e Detection of a simulated VM failure event via loss of the physical host machine,
measured in time taken (seconds).
e Migration and restart of the failed VM to the point it is restarted and operational

once more, again measured in time taken (seconds).

The details are described in the two tables below, firstly the preparation steps to ensure the

experiment is valid, and secondly the failover/migration process is implemented:

© James Oakes, 2020 168 I P a g e

Intelligent Management of Virtualised Computer Based Workloads and Systems

process.

Step No Description Measurement/Observation

1 Ensure IDE Cluster is online and Observation of cluster health.
operational — 3 node cluster.

2 Ensure VM test subject is up and Observation/log into VM and
running and is also accessible (e.g. ensure working normally; note,
using secure shell). the physical host where the VM is

operational (resident).
Table 6.1 Simulated VM Failover/Migration IDE Preparation Steps
Step No Description Measurement/Observation
1 Invoke Simulated Failure event. Observation of physical host
failure event for guest VM.

2 IDE detection time of failure event. Observe and record the time taken

to complete the detection process.

3 IDE Failover/migration and restart VM | Observe and record the time taken

to complete the detection process.

Table 6.2 Simulated VM Failover/Migration IDE Steps

6.4 Experiment 3: Workload Migration and Evacuation of VMs

The subsections below show the three experiments (3.1, 3.2 and 3.3) conducted

around the VM migration/failover processes for the IDE, vMotion (study 1), and vMotion and

XenMotion (study 2) respectively.

Considerable effort has been made to ensure the

comparisons are as closely matched as possible; some of the experiment conditions vary

slightly, but this is noted by the study and highlighted to allow clear results, with

acknowledged (minor) differences. The key elements are described here:

© James Oakes, 2020

169|Page

Intelligent Management of Virtualised Computer Based Workloads and Systems

e Network bandwidth; this is especially relevant for failover, where there is no
shared storage and the network is used to physically copy the VM container
devices, such as virtual disks e.g. Virtual Machine Disks (VMDKs). For the
experiments which used shared storage such as NAS, this is of little impact to
the experiment process in terms of adding time to the migration/failover
event.

e CPU/Memory; it is important that the base operating system has the
recommended hardware resources are available for CPU/Storage/Memory. For
VMs heavily laden with applications and databases, this can affect the
migration/failover time. To avoid this as a complication factor, VMs with the
base OS installed were used, and it was ensured that any applications had the
recommended memory/CPU available.

e VM Storage type; very significant if using shared cluster storage, such as NAS
or SAN. In cases, where there is no shared storage between cluster nodes, the
VM'’s virtual disks (operating system, applications, and databases), need to be
copied to the target system as part of the process. This creates very intensive
network traffic (due to replication), and usually results in longer sustained

outages (Awal et al, 2014; Toyoshima et al, 2010).

e Operating system — Linux (Redhat 6x, or CentOS 6.x, ensuring that the OS

instance and applications have the recommended resources available (Redhat

2019).

6.4.1 Experiment 3.1: IDE VM Migration/failover Process

It was expected that the invocation of IDE rule listed in section 4.8.2 and table 4.14
IDE knowledge rule, would take effect as part of the experiment process, to evacuate the
failed VM from the failure physical host for that particular guest VM. As part of the

experiment, this rule was observed to detect the failure event, and invoke its knowledge rule

© James Oakes, 2020 170 I P a g e

Intelligent Management of Virtualised Computer Based Workloads and Systems

and consequence, which was to perform a migration and failover to a new healthy cluster

node. The diagram below in figure 6.1 illustrates the process.

e Node CPU/Memory: 4 Core / 4 Threads / 1.6GHz / 8GB RAM
e Network Bandwidth: 1Gb

e Storage: Shared — NAS

e Hypervisor: VirtualBox 5.2

e QOperating System: Cent0S 6.2

Laboratory Setup (Initial Development)

IDE %86 Primary Server
4 Core /4 Threads / 8GB RAM
Host OS: CentOS
WM Guest OS (various)

1. IDE Detection of VM failure

(1 GBE LAN)

2. WM Migration/Failover

Physical Farm NAS Ready — Network
Attached Storage {SMB/CIFS/NFS
Physical Farm x86 Server Server)
2 Core / 2 Threads /4GB RAM
Host OS5: CentO5
VM Guest QS (various)
IDE %86 Secondary Server

Figure 6.1 Experiment 3.1 VM Failover Method (IDE)

Following the experiment, each test result iteration (Test ID) was recorded 1-6, and
had its VM downtime, with detection of the physical host/VM failure listed, along with the

notation of the available network bandwidth for potential consumption.

© James Oakes, 2020 171 I P a g e

Intelligent Management of Virtualised Computer Based Workloads and Systems

Network Bandwidth Speed (Gb)

Test ID | Downtime (sec) / Storage Type Total Migration
Maximum Detection Time (sec) / Time (sec)

1 14.22 /7.34 / 1Gb NAS 21.56
2 15.10/7.22 / 1Gb NAS 22.32
3 16.45 /7.56 / 1Gb NAS 24.01
4 15.30/7.13 / 1Gb NAS 22.43
5 15.21/7.21/ 1Gb NAS 22.42
6 14.96 /7.19 / 1Gb NAS 22.15

Table 6.3 Experiment 3.1, Downtime and Total Migration Timed Results (IDE)

6.4.2 Experiment 3.2: vMotion VM Migration/failover Process

The process below shows the details on the vMotion migration/failover process;

The methodology for the experiment is captured in detail with the diagram below:

Node CPU/Memory: 12 Core / 24 Threads / 2GHz / 128GB RAM
e Network Bandwidth: 10Gb

e Storage: Shared - virtual NAS

e Hypervisor: ESXi 5.5

e Operating System: Redhat 6.2

VMuware Cluster (ESXi)

RAID7+1 (SMB/CIFS/NFS Server)

Physical Farm x86 Server
2x6 Core / 24 Threads / 128GBE RAM
Host OS: RHEL 6.2
VM Guest OS (various)
ESXi v5.5 (vMotion)

|

|

|

|

|

|

:
= AT

|

|

|

|

|

|

|

|

|
|
|
|
|
|
|
| Physical Farm NAS Compuverde —
|
|
|
|
|
|

Figure 6.2 Experiment 3.2 VM Failover Method (study 1)

© James Oakes, 2020

Network Attached Storage, 7 Disks,

172 |Page

Intelligent Management of Virtualised Computer Based Workloads and Systems

Comparative study 1 (Shirinbab and Lundberg, 2016) shows that several experiment

tests were completed with a maximum down-time and overall total migration time listed in
table 6.4 below; note the value for Downtime and Maximum Response Time are combined in

this experiment:

TestID | Downtime & Storage Type Total Migration
Maximum Response Time (sec) / Time (sec)
Network Bandwidth Speed (Gb)

1 2.21/10Gb vNAS 30
2 4.01 / 10Gb vNAS 38
3 2.17 / 10Gb vNAS 48
4 4.94 / 10Gb vNAS 52
5 2.92 /10Gb vNAS 48
6 4.48 / 10Gb vNAS 53

Table 6.4 Experiment 3.2, Downtime and Total Migration Results vMotion (Shirinbab et al, 2016)

It should be highlighted that the network bandwidth available for the experiment was
10Gb, which exceeded the other experiments; however, it can be discounted as a large
advantage, as the process utilised shared storage (vNAS) for the VM’s virtual disks (Aladyshev
et al, 2018). Therefore, this avoided the requirement for virtual disk replication, which would

incur high network 1/0.

6.4.3 Experiment 3.3: vMotion and XenMotion VM Migration/failover Process

For comparative study 2 (Feng et al, 2011), the process below shows the details on the

vMotion and XenMotion migration/failover mechanism:

© James Oakes, 2020 173 I P a g e

Intelligent Management of Virtualised Computer Based Workloads and Systems

e Node CPU/Memory: 12 Core / 24 Threads / 2.66 GHz / 24GB RAM
e Network Bandwidth: from 100Mb to 1Gb (sliding upwards)

e Storage: SAN (Shared - Storage Area Network)

e Hypervisor: ESXi 4.1 & Citrix XenServer 5.6

e QOperating System: not specified

|
|
|
SO S A O ——
|
|

l |
| I
: I
| . Swich | | Swilch 2 : I
AN ¢ — g | Virtual N - —

| - §N “ [| I WAN e Fr :"l u i I
|~ SR | | : . |
: Sever A — | | Sever B |
| Shared Storage = = | | I
SAN = I | |
i o e -/

Figure 6.3 Experiment 3.3 VM Failover Method study 2 (Feng et al, 2011)

Note, in this experiment, we observe a sliding scale in time (listed in tables 6.5 and
6.6), representing the difference in available bandwidth for the VM migration/failover event
to consume. The study initially throttles the bandwidth heavily at only 100Mb; for each test
the bandwidth is increased (doubled initially, then by 200Mb) and the results (1-6) are
compiled based on a network bandwidth speed rate from 100Mb-1000Mb (scaled up
bandwidth with each integration). This still provides interesting comparative results;
however, as discussed, the experiment utilises shared SAN storage, and the IDE and previous
study 1 both operate their platforms using 1000Mb (or 1Gb) network speeds, which is
equivalent for at least the last test — number/ID 6. It can be observed that there are vastly
reducing total migration times in the results complied in tables 6.5 and 6.6. Note, this study
has two sets of results available, one for vMotion, and the other for XenMotion, which is
useful in terms of being able to analyse two alternative hypervisor technologies against the

IDE.

The following table has the vMotion results for study 2:

© James Oakes, 2020 174 I P a g e

Intelligent Management of Virtualised Computer Based Workloads and Systems

TestID Downtime & Storage Type Total Migration
Maximum Response Time (sec) / Time (sec)
Network Bandwidth Speed

1 Not recorded / 100Mb SAN 150
2 Not recorded / 200Mb SAN 90
3 Not recorded / 400Mb SAN 50
4 Not recorded / 600Mb SAN 40
5 Not recorded / 800Mb SAN 30
6 Not recorded / 1Gb SAN 20

Table 6.5 Experiment 3.3, Downtime and Total Migration Results vMotion (Feng et al, 2011)

The following table has the XenMotion results for study 2:

Test ID Downtime / Storage Type Total Migration
Maximum Response Time (sec) / Time (sec)
Network Bandwidth Speed

1 Not recorded / 100Mb SAN 700
2 Not recorded / 200Mb SAN 400
3 Not recorded / 400Mb SAN 200
4 Not recorded / 600Mb SAN 120
5 Not recorded / 800Mb SAN 100
6 Not recorded / 1Gb SAN 80
Table 6.6 Experiment 3.3, Downtime and Total Migration Results XenMotion (Feng et al, 2011)
6.5 Results

The charts below show the event VM failure detection time for the IDE, based on
system becoming aware of the failure event described earlier in section 6.4.1. Note that the
conclusions from the experiment can be found in section 8.2.3, along with notes in the further
work section 8.3.9 , which provide more information on a detailed laboratory analysis and
study opportunity, focused on a vMotion and XenMotion configuration and build, to enable

the exact same tests for all three platforms investigated during experiments 3.1, 3.2 and 3.3.

© James Oakes, 2020 175 I P a g e

Intelligent Management of Virtualised Computer Based Workloads and Systems

The following chart show the IDE failure detection time for a VM failure event (VM

down):

WM Failure Event Detection Time
716
75

o 74

72

m Event Detection Time
7.1 I
6.9

Testl Test2 Testd Testd Testd Testh

{
~

Detection

B

Test Mo.

Figure 6.4 IDE VM Failure Detection Time Experiment 3.1 (IDE)

Additionally, the migration time is included in the chart below to show the overall time to

complete the end-to-end event detection, migration and failover process:

Event Detection + VM Migration (Full Restart)

30.00
— 25.00
w
n
S 20.00
=
o]
&
=< 15.00
+ m Detection Time
.E 10.00 m VI Migration Time
i3
]
w
o 500

0.00
1 2 3 4 5 &
Test Mo.

Figure 6.5 IDE VM Failure Detection and Migration Time Experiment 3.1 (IDE)

© James Oakes, 2020 176 I Page

Intelligent Management of Virtualised Computer Based Workloads and Systems

The graph below shows study 1 results for VM migration and full restart:

Event Detection + VM Migration (Full Restart)

I I I I I I o
0
1 2 3 4 5 &

Test Mo.

5 3

&

[
=1

Datection + Migration (Sec)
L
&

=
=]

Figure 6.6 Study 1 VM Failure Detection and Migration Time Experiment 3.2 (vMotion)

The graph below shows study 2 results for VM migration and full restart for part a (vMotion):

Event Detection + VM Migration (Full Restart)

g

3

120

50 m VM Migraion Time
40
2 I i =
0
1 2 3 4 5 &

Test MNo.

g

Detection + Migration (Sec)
a8

=1

Figure 6.7 Study 2 VM Failure Detection and Migration Time Experiment 3.2 (vMotion)

© James Oakes, 2020 177 I Page

Intelligent Management of Virtualised Computer Based Workloads and Systems

The graph below shows study 2 results for VM migration and full restart for part b

(XenMotion):

Event Detection + VM Migration (Full Restart)

I I m VM Migr aion Time
1 2 3 4 5 &

Test No.

g 8 8

2

Detection + Migration (Sec)
(=] (411
g 8§ §

g

=]

Figure 6.8 Study 2 VM Failure Detection and Migration Time Experiment 3.2 (XenMotion)

The graph below shows the IDE, studyl, and study 2 results (part a and b) and the mean

average time in seconds for VM migration and full restart:

Comparison of IDE, vMotion and XenMotion VM Migration

500.00
266.67

250.00
n
T 200.00
[=]
o
=
wi
= m IDE VM Migration Experiment 3.1
S 150.00
= m vM otion VM Migration Experiment 3.3
%" m Xenhotion VM Migration Experiment 3.3
= 100.00 m vMotion VM Migration Experiment 3.2
=

63.33
50.00 4483

= -
-]

Fauk Detection and VM M igration Process

(Mean Average)

Figure 6.9 Comparative Mean Average VM Migration Time for Experiments 3.1, 3.2 and 3.3

© James Oakes, 2020 178 I Page

Intelligent Management of Virtualised Computer Based Workloads and Systems

6.6 Summary

This chapter provides the detail for experiment three, which is concerned with VM
migration/failover strategies to improve availability of virtualised systems and resources. Two
approaches are considered, firstly around full VM restart and secondly around live VM
migration. This experiment deals with the full restart scenario following a physical or virtual
system failure event. During the experiment, a simulated failure is invoked to allow the IDE
to take the necessary intervention steps to recover the VM and associated resources. The
experiment captures the amount of time the IDE takes to migrate and failover the VM and its
resources, to the point where it has been successfully restarted. The IDE results are then
compared against two independent papers, which utilise two well-known products vMotion
and XenMotion to demonstrate similar VM migration and failover processes. The IDE
performs well when compared with its lower average failure detection and migration VM
failover time. The following chapter discusses the final two experiments on the topic of global

resource management of virtualised computer systems.

© James Oakes, 2020 179 I P a g e

Intelligent Management of Virtualised Computer Based Workloads and Systems

Chapter 7: Optimising Performance and Availability of
Virtual Machines

7.1 Introduction

In this chapter we examine the concept of managing VM resources online using direct
invention of a system to change resource parameter settings, such as CPU and memory, with
the desired goal of being able to dynamically change these values without interruption to
service, while the system is live and in a running state. It important at this point to define the
difference between global and local resource management; the definitions are given below

for the purposes of this study:

e A local resource management strategy features the resource controls (e.g. for
CPU/memory) being applied to a single physical host and its associated local guest
VMs. The control never extends to other physical hosts, and there is no overall
global view of a pool of physical hosts clustered, either locally or in a
remote/distributed fashion.

e A global resource management strategy features resource controls (e.g. for
CPU/memory and I/0) being extended across an entire cluster of physical systems
and their associated VMs. The resource scheduler is able to continually work and

control the overall global capacity/performance across all physical hosts.

There are two resource management scenarios that the IDE can currently work with

based on its rule-base, which are as follows:

e A scenario 1 whereby a physical host in the cluster (globally managed) is running
short on memory or CPU resource, and it needs to start evacuating guest VMs (in
least important order to service) to another physical host in the cluster to free up

resources. Please see section 4.8.2 physical system events for more details.

© James Oakes, 2020 180 I P a g e

Intelligent Management of Virtualised Computer Based Workloads and Systems

e A scenario 2 where a single VM has CPU and/or memory resource issues, and it
needs to be given more in order to keep itself processing and functioning
effectively. The IDE system will attempt to dynamically resize the VM accordingly
based on the physical resources remaining within the cluster in the most effective

way possible. Please see section 4.8.3 VM system events for more details.

As part of this study we examine scenario 2 in detail, while comparing the IDE function
and capability to two similar studies on memory and CPU resource management techniques

in virtualised environments (Zhang et al, 2017; Zhang et al, 2016). The first study looks at

automated memory management on a physical system with VMs using the Xen Balloon driver;
the second uses an iBalloon driver to help dynamically manage and optimise physical systems
with VMs, initially using the KVM (Kernel-based Virtual Machine) driver. The aim is to work
onthe IDE’s rules to test and ensure they are invoking correctly as described earlier by section
4.8.3 VM System events, tables 4.17 (Memory overload) and 4.18 (CPU overload). They
describe the automatic intervention being taken against a VM during a sustained 5-minute
interval where the CPU and/or memory is utilised above a 75% threshold for either total, as
reported by the system performance measurement tools; for example, Linux OS monitoring

tools such as vmstat, iostat, and top (Lui et al, 2015).

More details on the knowledge rules and justifications for those figures can be found
in section 4.8.5 where we explore in depth in the reasons for certain thresholds (such of VM
memory utilisation). Consequently, the questions that arise from this potentially complex

resource management process are:

e How long should the intelligent systems wait in terms of time (seconds) before

taking direct intervention? (Song et al, 2013; Ismail and Riasetiawan, 2016)

e How often (frequency) should the VM performance statistics be sampled? This
would include taking a resource snapshot samples at point in time intervals to

record CPU and memory usage on the VM (Jeong and Lee, 2012).

e Should VM'’s resources only ever grow, rather than grow and shrink? What is the

most effective method for the virtualised platform, for example a grow only policy,

© James Oakes, 2020 181 I P a g e

Intelligent Management of Virtualised Computer Based Workloads and Systems

or a grow and shrink policy (Makridis et al, 2017)

e By what amount should CPU and/or memory be increased, and should there be
safety thresholds? For example, the ‘intelligent system’ may add an arbitrary figure
of 25% additional CPU and/or memory resource for a VM which has passed its
thresholds for a sustained period of time. However, if there were a process on the

system that had become rogue (Joy et al, 2014), and it continued to consume

resources, a never-ending pattern of adding additional resource could potentially
be used to exhaust all resources, and even starve the physical host, if safety

features are not built in to the intelligent system (Hwang et al, 2010; Chen et al,

2013).

e What comparative features and methods are used by each of the systems, and
what are the most effective? For example, examination of the key areas would
include:

o VM resource measurement poll interval.

o VM resource grow and/or shrink policy.

o VM resource increase strategy.

o VM sustained time threshold trigger (for CPU and memory).

o Overall time taken to resolve a resource issue affecting a VM.

The answers to these questions, are not necessarily easy to identify, as there can be a
number of events that compound to cause single or multiple effects, such as a number of
rogue processes consuming CPU resource, or a process with a memory leak so consuming all
memory (RAM). Killing off these processes, and restarting could potentially resolve the issue;
however, as a complication, once restarted, they could begin to malfunction again, thus
creating a repeat problem. Therefore, being able to spot and identify a re-occurring pattern
is a useful technique for CPU and memory resource management function. As part of the
discovery process, in terms of being able to test and observe and compare similar methods,
further experiments are conducted based on the rules created to enhance system utilisation

and better manage VMs within the virtualised environments.

© James Oakes, 2020 182 I P a g e

Intelligent Management of Virtualised Computer Based Workloads and Systems

7.2 Experiment Process

The experiment process looks to take advantage of existing hypervisor memory

balloon drivers, as well as CPU hot-plug drivers (VirtualBox Memory, 2019; VirtualBox CPU

2019). Table 7.3 identifies the drivers used by each unique study. This is critical, as the
performance strategy for each approach must use that type of hypervisor technology driver
to enable dynamic resource controls and implement the most effective performance
management approach. In addition to the preliminary VM performance algorithm found in
table 4.8 'Preliminary Performance Monitoring’, the capability is extended further in table 7.1,
by moving from an initial preliminary performance algorithm, which explains at a high level
how the IDE manages generic resource controls, to how, in this instance, it specifically controls
CPU and memory resource. This extended algorithm builds on the preliminary idea by
extracting the specific knowledge performance rules found at tables 4.17 and 4.18, and
introduces controls and processes around CPU and memory resource; for example, by setting
threshold alert values, the interval sampling rate, overall monitoring period and the resulting

specific consequent actions to be invoked:

7.2.1 IDE VM Performance Algorithm

// IDE VM Performance Algorithm

INPUT: VM Knowledge CPU/Memory Performance Rules
OUTPUT: Return performance metrics, and invoke CPU / Memory resource management if needed

WHILE True
SSH-to S{host} & Run Local Perf Script
Capture 75% values for Total CPU & Memory respectively (thresholds)
FOR each second up to 300
Sleep 1
Use local perf tools to capture stats
Let Total CPU%+=CPU Performance Increment Value
Let Total Memory%+=Memory Performance increment Value
END FOR
Evaluate 5 (Total CPU%) / 300
Evaluate 5 (Total Memory%) / 300

IF (Average Total CPU% >= 75% average) THEN
Invoke VM CPU HOT PLUG + 25% or+1 CPU Core
END IF

© James Oakes, 2020 183 I P a g e

Intelligent Management of Virtualised Computer Based Workloads and Systems

IF (Average Total Memory% >= 75% average) THEN
Invoke VM Memory Balloon + 25%
IF VM Memory Balloon Exhausted THEN
Invoke VM Restart/Memory Resize
END IF
END IF
DONE

// End of algorithm

Table 7.1 IDE VM Extended Performance Resource Management Algorithm

7.2.2 VirtualBox Memory Balloon Driver

It should be noted that the VirtualBox balloon driver works by overcommitting
memory to the VM or set of VMs during its initial configuration. The memory remains in a
committed state within a managed reserve pool by the hypervisor. Therefore, a strategy is
needed to develop a memory reserve pool to allow the VM to flex upwards or downloads as
necessary for example by 25%. The only way to currently manage and resize the VM
CPU/memory maximums is to power it off and the physically alter the VM parameters as
needed, and then restart. Therefore, this means that if the ‘over-commit memory’ value is not
sufficient (or high enough) in size, the only option is to then perform a controlled stop of the

VM and then resize and power on and restart the VM (Zhang et al, 2016).

With the build of the VM we allow an overcommit of 25% of the total memory
allocated for the VM, to provide dynamic memory ballooning potential. The upfront over
commitment later enables the IDE global resource scheduler to flex the memory up to a 25%
increase at a given point in time. The exact amount of overcommitment is one of the critical
questions, as there is a trade-off, in that it is reserved upfront by the hypervisor and may not
be used outside that framework easily, and it can result in an under-utilisation of the overall
system memory resources. Therefore, providing some potential for dynamic memory
allocation/ballooning is useful, without diminishing the overall memory utilisation too

excessively (Chen et al, 2013).

© James Oakes, 2020 184 I P a g e

Intelligent Management of Virtualised Computer Based Workloads and Systems

7.2.3 Simulate VM CPU and Memory Stress

To perform the experiment and create the correct simulation for constrained CPU and

memory resource we use the stress utility to perform this process (Ismail and Riasetiawan,

2016). As part of the author’s experiment process described in section 7.4 and 7.5, the
following stress-ng command is used to simulate systems resource stress on CPU and memory

respectively.
Where x is equal to the number of CPU cores the VM has:
e stress-ng --vm 4 —vm-bytes 85% --timeout 300s -v

The above command runs a simulated stress event against the memory resource for VM and

will consume up to 85% of the overall resource available and then cease after 300 seconds.
e stress-ng --c [x] -| 85 —timeout 300s -v

The above command runs a simulated stress event against the CPU resource for VM and will

consume up to 85% of the overall resource available and then cease after 300 seconds.

The following graph at figure 7.1 shows the simulated stressed VM under load for 300
seconds (a 5-minute period), while experiencing a high (but expected) sustained CPU and
memory load, as a result of the above commands. As can be observed, the CPU and memory
load average are ~80-83% during the monitoring period for each critical resource, as is the
intention for the experiment process. This is performed in order to observe the IDE knowledge
rules invoke and trigger a response, as defined in the VM System events and tables 4.17

(Memory overload) and 4.18 (CPU overload):

© James Oakes, 2020 185 I P a g e

Intelligent Management of Virtualised Computer Based Workloads and Systems

IDEVM % Memory & CPU Utilisation (stress-ng)

83.50
. g3.00
u
a
. B7 50
l:..l;‘: hhhhh
=
=) 82.00
=
ET]
£ 81.50
]
O
= B1.00
g
T R
= 20.50
i}
w
= 80.00
—oen
' 1 2 3 4 5 B
—g—Iemory Utilsation. 83.01 81.81 8022 g2.12 B2.52 g2.84
=g CP Ll Utllisaion B1.13 B0.95 BD.97 BD.77 B1.28 E0.E4
ests 1-6

Figure 7.1 IDE VM Simulated Tests for Load Stress (using stress-ng)

7.2.4 Characteristics Compared Against Other Studies

The following table describes the characteristics (binomial yes-no) and controls that
could be potentially applied to a dynamic resource manager/scheduler for virtualised systems.
This is useful, because it shows the overall capability being provided by each of the studies
experimental approach. Having more characteristics available potentially allows for improved
resource management for VMs, due to it being feature rich and having less requirement for

any manual human/administrator type interventions (Rothenberg et al, 2017; Chen and Suen,

1993; Conrath and Sharma, 1991).

© James Oakes, 2020 186 I P a g e

Intelligent Management of Virtualised Computer Based Workloads and Systems

Reference | Available Features IDE Study1 Study2
no (VirtualBox | (Xen (iBalloon,
Driver) Balloon, Zhang et
Zhang et al, | al, 2016)
2017)
1 Dynamic CPU increase. Yes No No
2 Dynamic memory increase. Yes Yes Yes
3 Dynamic I/O increase (Network, No No No
Storage).
4 Automatic resource issue Yes Yes Yes
detection.
5 Dynamic CPU reduction. Yes No No
6 Dynamic memory reduction. Yes Yes Yes
7 Dynamic 1/O reduction. No No No
8 x64-bit architectures support Yes Yes Yes

(Balloon Driver).

9 x32-bit architectures support No Yes No
(Balloon Driver).

10 Manual administrator No No Yes
intervention required to increase
(Balloon) Memory.

11 Manual administrator No No No
intervention required to increase
(Hot-plug) CPUs.

12 Manual administrator No Yes Yes
configuration and setup of
resource management utility.

13 Is the solution a global resource Yes Yes Yes
scheduler?
14 Is the global scheduler part of an Yes No No

Integrated System?

Table 7.2 Binomial Comparative Resource Performance Features/Characteristics

It is necessary at this point, to provide some additional detail regarding the

characteristics and properties of the features listed in table 7.2. Reference points, 1, 2, 3, 5, 6

© James Oakes, 2020 187 I P a g e

Intelligent Management of Virtualised Computer Based Workloads and Systems

and 7 are parameters that can be potentially altered, that have a direct effect the resource
capability for a VM. In this case, the ability to add or reduce CPU, memory or I/O resource for
a VM. 1/0 resource could include adding or removing network capability such as virtual
network interfaces (vNICs), storage devices or fibre channel host-bus adapters. All such
functions involve direct communication and manipulation of the hypervisor layer of the
system, in this case either VirtualBox, Xen or KVM. Reference points 4 and 13 are quite closely
linked, although subtly different. Point 4 includes automatic detection of resource issues could
be either a local or global function; in other words, it could run locally on a single physical
host, or be globally managed across an entire suite of systems. This leads us to reference point
13, global scheduling, which is the ability for a system to monitor and control resources across
the entire collection of machines it administers. For example, you may have a local scheduler,
running on a single machine, where the context is management of just that local system,
irrespective of the wider view of the entire cluster of managed systems. A global resource
scheduler on the other hand, has an entire view of the cluster and uses algorithms to control

resources across the entire pool it manages.

This is advantageous because it potentially allows for the more flexible use of
resources, whereby a system which is not as busy for a time can lend its resources back into a
collective pool, to be consumed and used by a system demanding more resource. This ability
to variate resource controls across a group of systems is therefore is an attractive feature.
Reference points 8 and 9 are interesting, as they revolve around support for 32-bit and 64-bit
architectures respectively. 32-bit support is available for the legacy architectures, however,
the practical use of this is somewhat limited by the fact that 32-bit systems have a maximum

of 4096MB (4GiB) of addressable memory (Adl-Tabatabai et al, 2004). This hard limit is

compared to 64-bit systems, which can manage up to 16 exabytes of memory (Mohammad

and Ramananjaneyulu, 2012). The final point 14, critically records if the system has been

integrated as part of an overall controlled system. This is very important as it means the
resource (global) scheduler feature can contribute to a list of compounded benefits for a
systems overall management capability; in other words, build a critical mass of useful
characteristics that can be argued as substantiating the features of an ‘intelligent system’

(Guerlain et al, 2000). The following balloon drivers were used by each comparative study:

© James Oakes, 2020 188 I P a g e

Intelligent Management of Virtualised Computer Based Workloads and Systems

Study/Engine Hypervisor Driver
IDE VirtualBox Balloon Driver / CPU Hotplug
Driver

Study 1 — Xen Balloon (Zhang et al, 2017) Xen Balloon Driver

Study 2 —iBalloon Service (Zhang et al, KVM (Kernel-based VM) Balloon Driver
2016)

Table 7.3 Experiment Balloon/Hotplug Drivers

7.2.5 IDE Global Resource Management

The diagram below in figure 7.2 explains how the IDE addresses global resource

management in the following ways:

e Using an SSH probe monitor to remotely access and measure performance
against all platform physical hosts and guest VMs to enable the retrieval and

analysis of all performance data and metrics.

e Where appropriate using local VM CPU hotplug and memory ballooning

techniques to increase or reduce resources.

e Where appropriate re-balancing and moving guest VMs to alternative physical

hosts.

7.2.6 Comparative Methods Analysis

The following table highlights the three methods undertaken by each study with
respect to the global performance resource management of virtualised computer systems; it
includes the author’s IDE solution, and comparative work completed in study 1’s XenBalloon,

and study 2’s iBalloon investigation (Zhang et al, 2017;Zhang et al, 2016). A critical analysis

© James Oakes, 2020 189 I P a g e

Intelligent Management of Virtualised Computer Based Workloads and Systems

for each platform is provided, and a review of the strengths and weaknesses for each method

is highlighted:
Platform Name / General Features | Strengths Weaknesses
Intelligent Decision Engine (IDE) / I. Global HA [. Only supports
management the VirtualBox

The IDE uses a global management
system utilising an SSH control
algorithm for remote hosts.
Additionally, it makes use of its
expert system knowledge rules to
apply them consistently across the
entire platform. It is able to
dynamically control the reduction
and increase of memory and CPU
for VMs, which includes reduction
down to a minimum of 1 CPU core

per VM.

VI.

technique for

remote hosts.

Expert
Knowledge rules
for the
application of
consistent
platform
behaviour, and
for adaptive

rules.

Dynamic
Reduction of

Memory.

Dynamic increase

of Memory.

Dynamic
Reduction of CPU
corestoa

minimum of 1.

Dynamic increase

of CPU cores.

Balloon driver,
and hot-plug

features.

The IDE is highly
integrated,
meaning it can
only be deployed
as a whole entity,

or not at all.

© James Oakes, 2020

190|Page

Intelligent Management of Virtualised Computer Based Workloads and Systems

Study 1 uses an automatic memory
control process for guest VMs on
physical hosts. It uses a global
resource scheduling mechanism,
with a resulting toolkit which is
opensource. The system runs a VM
called domain 0, which has
privileges to perform hypervisor
operations across the platform. It
uses linear equations to determine
target VM memory, and uses a
memory overcommitment
ballooning technique. It can
increase or lower memory
allocation and is able to balance
memory across the managed

platform.

technique for

remote hosts

Opensource
software;
potentially easy
toinstall as an
add-on, as it has
been built as a

toolkit.

Dynamic
Reduction of

Memory.

Dynamic increase

of Memory.

Platform Name / General Features | Strengths Weaknesses

Study 1 (Xen Balloon, Zhang et al, I. Global I. Only supports
2017

2017)/ management the XenBalloon

driver.

Does not support
dynamic
reduction of CPU

cores.

Does not support
dynamic increase

of CPU cores.

Has no
documented HA

features.

© James Oakes, 2020

191|Page

Intelligent Management of Virtualised Computer Based Workloads and Systems

Platform Name / General Features | Strengths Weaknesses

Study 2 (iBalloon, Zhang et al, I. Global I. Only supports
201

2016) / management the KVM Balloon

Study 2 has adopted the following
process for its memory
management of VMs. It runs two
principle user processes, or
programs to simultaneously
manage the platform. The first, is a
VM monitor daemon that
continually analyses the memory
resources. In conjunction, a
balancer process daemon is able to
change the memory resource
parameters for VMs, by interfacing
with the remote hosts KVM balloon
driver to dynamically change

values.

technique for

remote hosts
Dynamic
Reduction of

Memory.

Dynamic increase

of Memory.

driver.

Does not support
dynamic
reduction of CPU

cores.

Does not support
dynamic increase

of CPU cores.

Has no
documented HA
features, and
two independent
daemons which
must both be

available.

Table 7.4 Comparative Performance Resource Management Studies

© James Oakes, 2020

192|Page

Intelligent Management of Virtualised Computer Based Workloads and Systems

IDE Global Resource Scheduler (CPU & Memory)

s Capability to detect performance issues (Physical Host/Guest VMs)
* Modify VM CPU/Memory resources
¢ Migrate guest VMs to free up or balance CPU/Memory resources

IDE %86 Primary (Cluster Node)
Server
10 Core / 20 Threads / 128GB
RAM
Host O5: CentQ5

IDE 55H Monitor Probe /Performance Health Check WM Guest OS (various)

2 Guest VMs m

T 10 GbE LAN (Multiple VIANs 802.1Q (tagging)) 0

2.VM CPU/Mem

o
e M e
Resource Scaling
Change

3 Guest VMs 1. Resource constrained VM Detection 2 Guest VMs

Physical Farm NAS Ready — Network

[3.Resource VM I\u_@g_ratinnﬁall@ Attached Storage (SMB/CIFS/NFS
Server)

Physical Farm x86 Server (Cluster
Nodes)
10 Core / 20 Threads / 128GEB RAM
Host O5: CentOS
VM Guest OS (various)
IDE x86 Secondary Server

Figure 7.2 IDE Global Resource Management

7.3 Optimisation of System Performance and Availability

7.3.1 x86-64-bit Architectures and Memory Ballooning

Most architectures do not support the memory ballooning function for 32-bit OS
systems which have a maximum of 4096MB addressable memory, compared to more modern

64-bit OS systems which can address ~16 exabytes.

7.3.2 x86-64-bit Architectures with CPU Hotplug Features

Most 64-bit architectures support CPU hot-plug features. In the case of VMs, this
allows the hypervisor to provision extra CPUs up to the maximum allowed or reduce them to

a minimum of one (usually listed as CPU 0).

© James Oakes, 2020 193 I P a g e

Intelligent Management of Virtualised Computer Based Workloads and Systems

7.4 Experiment 4: Overload of VM Memory Usage, Detection Time, and
Resolution Time

7.4.1 IDE VM Memory Ballooning Process

In figure 7.3 below, we observe the results of the IDE VM memory ballooning process
while under a simulated memory stress event, as described in section 7.2.3 to enable the
demonstration of the ballooning process. As VMs within the IDE platform have an over-
commitment of memory by 25%, this therefore allows the monitoring period of 300 seconds
(5 minutes) to evaluate the VM memory capacity and utilisation state. Once the knowledge
rule is validated, the forward-chain reasoning process is initiated, and steps taken to provide

the VM with addition memory resource using the balloon driver technique.

Event Detection + Memory Resource Management

307.00

306.00

305.00
o 304.00
w
A 303.00
S 302.00
E 301.00
A 300.00

299 00

298.00

297 .00

Test1 Test2 Test3 Testd Test5 Test&
Test Mo.
W IDE VM Memory Resource Detection (Seconds) W IDE VM Memory balloon addition (Seconds)

Figure 7.3 IDE Performance Monitoring and Memory Ballooning Results

7.4.2 Study 1 VM Memory Balloon Process

Study 1 utilised the following mechanisms to deliver a memory management system:

e Automatic memory control for physical/guest VMs.

© James Oakes, 2020 194 I Page

Intelligent Management of Virtualised Computer Based Workloads and Systems

e Aglobal resource scheduling mechanism.

e Runs a VM called domain 0 which has privileges to perform hypervisor operations.

e Uses linear equations to determine target VM memory.

e Uses memory overcommitment.

e Canincrease or lower memory allocation.

e Can balance memory across the managed platform.

The diagram in figure 7.4 shows how the Xen Balloon driver manages memory

between VMs (Guest OS’s). This method for memory ballooning is utilised by the author of

study 1.

i___: frame D ballooned page D page used by balloon driver ‘:I page used by Guest 0OS

VM1 VM2 VM1 VM2
Guest OS Guest OS5 Guest OS Guest 05
pages @ T @ pages @ l T @ pages pages
—=
A
A A

frames v v hypervisor hypervisor

[T

L_d 1 | | 1 [| 1 | | | | pages remapped

Figure 7.4 Study 1 Xen Balloon Process (Zhang et al, 2017)

The diagram in figure 7.5 below shows study 1’s global resource management process

using Domain-0 as the control system, to manage memory resources through the ballooning

process.

© James Oakes, 2020

195|Page

Intelligent Management of Virtualised Computer Based Workloads and Systems

Domain-0 Domain-U
client g
server [---—-ooopege-
roc
g -t-» balloon P
% |
= |
-
e]
[=] | 2T n
0 - Domain-U
= |
] f 2
A - client | ———
i
i
|
database L) bailoan proc

Figure 7.5 Study 1 VM Memory Balloon Process (Zhang et al, 2017)

7.4.3 Study 2 VM Memory Balloon Process

Study 2 (iBalloon) adopted the following mechanism for its memory management approach:

e Runs two principle daemons/user processes simultaneously to manage the platform.
e A VM monitor daemon to continually analyse the memory resource.

e A balancer process daemon which changes the memory resource parameters by

interfacing into the KVM balloon driver.

The diagram below at figure 7.6 shows the iBalloon memory management process.
Notice the different levels of separation (granularity) between the hypervisor (guest levels)

and the physical host (Host levels).

© James Oakes, 2020 196 I P a g e

Intelligent Management of Virtualised Computer Based Workloads and Systems

Guest WM Jproc virtual
user level PR | file system
Guest ViV VM _ Balloon
Eernel level nemany driver
Per-V'M log files Global bit map
Communication 01100
Channel] 1‘_"
Host ' Balancer
user level VM Memory Balloon
classifier balancer executor
Host n _
e Virtual balloon device

Figure 7.6 Study 2 iBalloon system overview (Zhang et al, 2016)

7.5 Experiment 5: Overload of VM CPU usage, Detection Time, and Resolution
Time

7.5.1 IDE CPU Hotplug Process

The IDE uses (as it does with memory management) a standard five-minute poll
interval with a sample per second taken. As with the memory stress simulation listed in section
7.2.3, in this case the CPU is driven above the threshold alert over the monitoring period. This
is turn allows us to demonstrate that the IDE can dynamically increase (hot-plug) spare CPU
cores and makes the additional compute power available to the VM in around 5-7 seconds.

Figure 7.7 shows the detail for detection and the actual CPU hot-plug process time taken:

© James Oakes, 2020 197 I P a g e

Intelligent Management of Virtualised Computer Based Workloads and Systems

Event Detection + CPU Resource Management

308.00
T 308.00
n
=
= 304.00
]
(]
= 30200
+
& 300.00
]
o
D 298.00
o

296.00

Test 1 Test2 Test3 Test4 Tests Testb
Test Mo.
W IDE VM CPU Resource lsue Detection (Seconds) W IDE VM CPU Resource addition (Seconds)

Figure 7.7 IDE Performance Monitoring and CPU Hot-plug Results

7.5.2 Study 1 VM CPU Hotplug Process

Study 1 (Xen Balloon) does not feature a CPU hot-plug process, nor a global CPU

resource scheduling system.

7.5.3 Study 2 VM CPU Hotplug Process

Study 2 (iBalloon) does not feature a CPU hot-plug process, nor a global CPU resource

scheduling system.

7.6 Results

Based on the characteristics of the features enabled by all the studies listed in section
7.2.4 and table 7.2, it is possible to perform an evaluation on the results by examining and
comparing the overall capabilities for each experiment, which includes the IDE, study 1 (Xen
Balloon) and Study 2 (iBalloon). As discussed earlier, the resource management of VMs is a
complex matter, and a certain process for handling events is not necessarily something that
can be described as “the best”, simply by being the quickest to perform a dynamic memory

increase (ballooning) for a VM, which for example, has had a short memory spike up to 90%

© James Oakes, 2020 198 I Page

Intelligent Management of Virtualised Computer Based Workloads and Systems

for 1 minute, or by adding (hot-plugging) a CPU to a VM which has had its CPU peak at 85%

for 20 seconds.

There were several questions raised at the beginning of this chapter which alluded to

how, why and what method and approach is the best. The answers are not immediately clear;

however, we

can evaluate the characteristics, features and scheduling mechanism to

determine the overall effectiveness of intelligently managing virtualised resources, in a similar

fashion adopted by Rothenberg and his fellow researchers (Rothenberg et al, 2017; Conrath

and Sharma, 1991). Based similarly on these approaches (of expert system evaluation), the

table below summarises each of those initial questions and provides a mixture of qualitative

and quantitative feedback on the three different approaches to the process for the IDE, study

1 and study 2.

Scoring is performed using the following method; for feature availability:
If there is feature is available a score of 3 is allocated.
If the feature is emerging and partially developed, then it receives a score of 2.

If the feature has been designed, but not evaluated or experimented against at

all, then it receives a score of 1.

If there is no feature, then a score of 0 is allocated.

For feature capability:

© James Oakes, 2020

If the feature worked effectively during experimentation, then a score of 3 is

allocated.

If the feature worked with mixed results during experimentation, then a score

of 2 is allocated.

If the feature worked, but fails to deliver any perceived benefits, then a score

of 1 is allocated.

If there is no feature, then a score of O is allocated.

199|Page

Intelligent Management of Virtualised Computer Based Workloads and Systems

7.6.1 IDE Characteristics (VirtualBox Balloon)

resource be

increased

CPUs.

7.5.1.

Study Question System Feature Feature Result

Reference Characteristic Available | Availability Score
(Yes/No/ | {Av)and [Av/Cp]
Unknown) Capability (Cp)

1 (IDE) How long a VM poll interval, Yes 5-minute poll | 3/3
period and performance interval, data
should a VM | result processing. collected each
be second.
monitored Results
for, before evaluated by
taking IDE after each
intervention? 5-minute

sample period
against
knowledge
rules as per
section 7.2.1.

1 (IDE) How often IDE Performance Yes CPU and 3/3
should be Sampling frequency memory stats
performance | for each VM. collected
stats be every second,
sampled as per section
during the 7.2.1
poll interval?

1 (IDE) Can CPU Ability to hotplug Yes As per section | 3/3

© James Oakes, 2020

200|Page

Intelligent Management of Virtualised Computer Based Workloads and Systems

Study Question System Feature Feature Result
Reference Characteristic Available | Availability Score
(Yes/No/ | {Av) and [Av/Cp]
Unknown) Capability (Cp)
and
decreased?
1 (IDE) Can memory | Ability to balloon Yes As per section |3/3
resource be | memory. 7.4.1.
increased
and
decreased?
1 (IDE) Can /0O Ability to increase No Not available. [0/0
resource be or reduce 1/0O for
increased network or disk.
and
decreased?
1 (IDE) How well do | Proactive Yes As per section |2/2
the monitoring and 7.2.1.
ballooning reaction to
and CPU resource shortage
hotplug or observed waste
features events.
safeguard
and protect
the
Hosts/Guest
VMs?
1 (IDE) How The ability for the Yes As per section | 2/2

© James Oakes, 2020

201 |Page

Intelligent Management of Virtualised Computer Based Workloads and Systems

Study
Reference

Question

System
Characteristic

Feature
Available

(Yes/No/
Unknown)

Feature
Availability
(Av) and
Capability (Cp)

Result

Score
[Av/Cp]

advanced are
the overall
platform
management
features and
can the
system
globally
resource

manage?

management
control system to
communicate/issue
commands to other
hosts under its

control.

7.2.1,74.1

and 7.5.1.
Further testing
and
experiments
can be
conducted as
per section

8.3.11.

© James Oakes, 2020

Table 7.5 IDE Resource Management Evaluation

202|Page

Intelligent Management of Virtualised Computer Based Workloads and Systems

7.6.2 Study 1 Characteristics (XenBalloon)

Study Question System Feature Feature Result

reference Characteristic Available | Availability (Av) | Score
(Yes/No/ and Capability [Av/Cp]
Unknown) (Cp)

Study 1 How long a VM poll interval, | Unknown | Implied feature, | 1/1

VM period should | and as per sections

Memory a VM be performance 7.2.4,7.4.2 and

Balloon monitored result 7.5.2.

Process for, before processing.

(Zhang et | taking

al, 2017) intervention?

Study 1 How often Performance Unknown | Implied feature, | 1/1
should be sampling as per sections
performance | frequency for 7.2.4,7.4.2 and
stats be each VM. 7.5.2.
sampled
during the
poll interval?

Study 1 Can CPU Ability to No Not available. 0/0
resource be hotplug CPUs.
increased
and
decreased?

Study 1 Can memory | Ability to Yes Feature 3/3
resource be balloon available, as per
increased memory. sections 7.2.4
and

© James Oakes, 2020

203|Page

Intelligent Management of Virtualised Computer Based Workloads and Systems

Study Question System Feature Feature Result
reference Characteristic Available | Availability (Av) | Score
(Yes/No/ and Capability [Av/Cp]
Unknown) (Cp)
decreased? and 7.4.2.
Study 1 Can /O Ability to No Not available. 0/0
resource be | increase or
increased reduce 1/0O for
and network or disk.
decreased?
Study 1 How well do | Proactive Yes Feature 2/2
the monitoring and available, as per
ballooning reaction to sections 7.2.4,
and CPU resource 7.4.2 and 7.5.2.
hotplug shortage or Note, the ability
features observed waste is implied as
safeguard events. tested against
and protect 10 VM,
the however, not
Hosts/Guest available for
VMs? CPU hotplug.
Study 1 How The ability for Yes Feature 2/2

advanced are
the overall
platform
management
features and
can the

system

the
management
control system
to

communicate/

issue commands

available, as per
sections 7.2.4,

7.4.2 and 7.5.2.

Note, the
feature is
implied as

tested against

© James Oakes, 2020

204|Page

Intelligent Management of Virtualised Computer Based Workloads and Systems

Study Question System Feature Feature Result
reference Characteristic Available | Availability (Av) | Score
(Yes/No/ and Capability [Av/Cp]
Unknown) (Cp)

globally to other hosts 10 VM.

resource under its

manage? control.

Table 7.6 Study 1 Resource Management Evaluation
7.6.3 Study 2 Characteristics (iBalloon)
Study Question System Feature Feature Result
Reference Characteristic Available | Availability Score
(Yes/No/ (Av) alj?l [Av/Cp]
Unknown) Capability
(Cp)

Study 2 How long a VM poll interval, Yes Feature 2/2
iBalloon period should | and performance present, as
system a VM be result processing. per sections
overview | monitored 7.24,7.43
(Zhang et | for, before and 7.5.3.
al, 2016) | taking

intervention?
Study 2 How often Performance Yes Varying 2/2

should be sampling frequency interval

performance | for each VM. frequency

stats be with

sampled min/max, as

© James Oakes, 2020

205|Page

Intelligent Management of Virtualised Computer Based Workloads and Systems

Study Question System Feature Feature Result
Reference Characteristic Available | Availability Score
(Yes/No/ (Av) ar_u_:l [Av/Cp]
Unknown) Capability
(Cp)
during the per sections
poll interval? 7.2.4,7.43
and 7.5.3.

Study 2 Can CPU Ability to hotplug No Not available. | 0/0
resource be CPUs.
increased
and
decreased?

Study 2 Can memory | Ability to balloon Yes Feature 3/3
resource be memory. available, as
increased per sections
and 7.2.4 and
decreased? 7.4.3.

Study 2 Canl/O Ability to increase No Not available. |0/0
resource be or reduce 1/O for
increased network or disk.
and
decreased?

Study 2 How well do | Proactive Yes Feature 2/2
the monitoring and available, as
ballooning reaction to per sections
and CPU resource shortage 7.24,7.43
hotplug or observed waste and 7.5.3.
features events. Note, the

© James Oakes, 2020

206 |Page

Intelligent Management of Virtualised Computer Based Workloads and Systems

Study Question System Feature Feature Result
Reference Characteristic Available | Availability Score
(Yes/No/ (Av) ar_u_:l [Av/Cp]
Unknown) Capability
(Cp)
safeguard ability is
and protect implied as
the tested against
Hosts/Guest 4 \VMs.
VMs? However, not
available for
CPU hotplug.
Study 2 How The ability for the Feature 2/2
advanced are | management available, as
the overall control system to per sections
platform communicate/issue 7.2.4,7.43
management | commands to other and 7.5.3.
features and | hosts under its Note, the
can the control. feature is
system implied as
globally tested against
resource 4 VMs.
manage?

Table 7.7 Study 2 Resource Management Evaluation

7.6.4 Platform Characteristic Scores (IDE, Study 1, Study 2)

The following table provides indicative score values (%) for the identified features and
characteristics for the IDE, Study 1 (XenBalloon) and Study 2 (iBalloon). The score values are
able to reflect the feature availability and capability that the 3 systems have to offer, in terms

of ‘intelligent management’ of virtualised platforms, with the higher value indicating such.

© James Oakes, 2020 207 I P a g e

Intelligent Management of Virtualised Computer Based Workloads and Systems

IDE Study 1 (XenBalloon) | Study 2 (iBalloon)
Total Characteristic | 30 out of a possible | 18 out of a possible 22 out of a possible
Score (%) 42 (71%). 42 (43%). 42 (52%).

Table 7.8 Overall System Characteristic Scores %

As table 7.8 only provides indicative results, as at this stage, it would be necessary to
rebuild the platforms in study 1 and study 2, to perform a detailed re-test and comparison.

Section 8.3.9 deals with the opportunities to develop this work further.

7.6.5 Binomial Scores (IDE, Study 1, Study 2)

The following chart figure 7.8 displays the binomial results from table 7.2, which again

provides an indication of the capability and feature richness, within each investigated

platform.
Binominal System Characteristics Results
12
1 111 111 1 111 111 1 11 1 1 111 1
1
£ 08
3
a
8
o
g 08
E
(=3
[=
@ 04
0.2
00 000 00 000 offo 0 00 00 00 m 1DE (VirtuaiBox)
0
o ™ o 5 Y m Studyl(Xen Balloon)
_\t’.g;e’ z,b& . ’&é\ &c“ é-‘o‘:\ §o° @é\ o8 & b‘{\\(\ \{5‘0 4 \s\ﬁk i J\}é\\ N
< \\\é oS o 5 @b\} & ¥ Q{? {59 _};a & & &é W5 m Study2 (iBalloon)
- o
B S O R A A L A
& ‘ggf“ & ey < & & & & a s o & b
& & & & F d &£ & ¥ NS
) & ¢ @ & F§ F ¢ » o
2 o &) N F o o & A Y
G‘Q & & & zf’b’ o w R c-?\\')
& g ot o & Y R oF 2% &
N 5&4@ & E @edo & & &\go oF
& ¥ & & o ¥ & J
&P "?!‘ Q?!' OE\\ ‘S} "—F.'L _\Q," \&0
o h @ 5 2 & : o
& £ & # A S
& & & o & K
A vud @? <&
& o &
& £ & 6
5) <5\
o & &
& & i
& 3
w LS)
.?_\)

System Characteristic Descriptor

Figure 7.8 Binomial System Characteristic Results

© James Oakes, 2020 208 I Page

Intelligent Management of Virtualised Computer Based Workloads and Systems

The greater the number of features that work together in combination, the more
potential that the system can be regarded as ‘being intelligent’ (see section 2.6.2 on reviewed
approaches, and section 4.2 for details on the traits for intelligent systems). Note that the
conclusions for this chapter can be found in section 8.2.4 for memory overload and 8.2.5 for

CPU overload experiments.

7.7 Summary

The final two experiments covered in this chapter discuss global resource
management, in particular around CPU hotplug and memory ballooning features. The IDE
utilises its extended performance algorithm to manage CPU and memory resource across its
controlled physical hosts and their virtualised system components. This allows for ballooning
using the VirtualBox driver to facilitate the over allocation of memory resource to enable
system memory to be dynamically increased or reduced as desired, to match the VMs
requirement for performance. The system characteristics and features are compared, and
additionally include global management capabilities for each comparative platform as
highlighted in table 7.2. The IDE is again contrast against two alternative similar papers which
present their results on their resource management processes. The first study utilises a pure
global memory management system using the XenBalloon driver, and the second study uses
a custom iBalloon system, which is a control system built on top of the underlying KVM
memory balloon driver. An analysis and simple scoring mechanism are used to measure each
of the capabilities and features of the system. By using this scoring approach, it is possible to
calculate overall results for each system, and determine how effective the overall
performance management is for the IDE, study 1 and study 2 respectively. In addition, a
simple binomial procedure is used to represent all platform characteristics that are available,
thus allowing additional comparisons to be made on the richness and depth of each global
resource management system. The last chapter discusses the contribution of the thesis,

converges the results for all five experiments undertaken, and provides a suitable conclusion

© James Oakes, 2020 209 I P a g e

Intelligent Management of Virtualised Computer Based Workloads and Systems

for each area of investigation. Finally, each potential area for further work is considered with

a view to providing an introduction into a new research area, topic or sub-topic.

© James Oakes, 2020 210 I P a g e

Intelligent Management of Virtualised Computer Based Workloads and Systems

Chapter 8: Contribution, Conclusions and

Further Work

8.1Thesis Contribution

The following sections summarise the main contribution of this work to the field of

virtualised computer management:

8.1.1 Development of an Expert System Framework for Virtualised Computer

Systems

The work proposed and developed the use of an expert system (IDE) framework to

enhance the management of virtualised computer-based systems, and enable fast real-time

decision making within a complex virtualised computer environment, with the purpose of

having control of VMs, workloads and other virtualised components. The decision engine

controlled several core functions, described by chapters 5 (VM provisioning), 6 (VM

migration/failover) and 7 (VM resource management), which were investigated through

experimentation. The IDE itself remains open to be developed further, as its functionality can

be extended through the development and addition of knowledge rules and their associated

automation code routines. The following areas were investigated as part of the IDE

framework:

© James Oakes, 2020

Remote system discovery mechanism, with system OS fingerprint analysis and

advanced OS system type detection; see algorithm/procedure 1, table 4.1.

Improved system communication strategy using SSH to build a secure
framework for remote host management and control; see

algorithm/procedure 2, table 4.2.

Improved data extraction and analysis approach to enable two methods of 1)
quick response and 2) slower background analysis of environment data to allow

for reference knowledge information to be added and cleansed; see

211 |Page

Intelligent Management of Virtualised Computer Based Workloads and Systems

algorithm/procedure 3, table 4.3.

e Information and knowledge organisation to process and create reference data
structures, which affects how the forward chaining mechanisms work when

the IDE is decision making; see algorithm/procedure 4, table 4.4.

e Improved pattern analysis and learning from data; see algorithm/procedure 5,

table 4.5.

e Construction of a knowledge based forward chained events algorithm; see

algorithm/procedure 6, table 4.6.

e Development of an advanced VM deployment/provisioning mechanism; see

algorithm/procedure 7, table 4.7.

e Creation of a preliminary and extended VM performance and monitoring
management mechanism; see algorithm/procedure 8, table 4.8 for the

preliminary, and table 7.1 for the extended.

e Real-time platform event trigger with a decision processing-based delivery

event response; see algorithm/procedure 9, table 4.9.

e Improved self-monitoring and high availability features; see

algorithm/procedure 10, table 4.10.

Consult chapter 4 ‘The intelligent Decision Engine’ for further information.

8.1.2 Simplified VM Provisioning

Based on the findings in chapter 5, a simplified VM provisioning methodology was
provided, along with improved delivery times through automation and intelligent decision-
making utilising the IDE processes. This included the ability to deploy VMs using a web
browser interface utilising a ‘1 click’ VM deployment mechanism, and the simplification of VM

provisioning for end-users through higher levels of automation. This resulted in an overall

© James Oakes, 2020 212 I P a g e

Intelligent Management of Virtualised Computer Based Workloads and Systems

end-user VM provision time reduction (i.e. an aggregated user experience build-time
reduction for VMs). Consult chapter 5 and section 5.2.2 ‘Experiment 1: VM Provisioning

Timing Comparison’ for more information on the outcomes.

8.1.3 CLR formula to Determine Task Complexity

An algorithm was devised for the analysis of a Cognitive Load Rating (CLR) for human
interactions, using a computer system and its interface, such as a VM provisioning mechanism.
This provided a method for conversion of qualitative data into quantitative data (i.e. words to
numbers); please see section 3.4.1 for more information. This method and approach could be
used against any type of system, where user survey feedback is acquired and processed.
Consult section 5.2.3 ‘Experiment 2: Cognitive Evaluation Performance’ for addition

information.

8.1.4 Efficient VM Migration, Evacuation and Restart Routines

It was demonstrated how VMs can be migrated and evacuated more effectively using
the IDE in a ‘full-restart’ scenario, compared to other studies using alternative technologies
such as vMotion and XenMotion. This included improving VM failover patterns utilising the
IDE to perform VM relocation as necessary, and faster average VM fault detection and failover
processes. Please refer to chapter 6 for further in-depth analysis and discussion, along with
the details described in section 6.4 ‘Experiment 3: Workload Migration and Evacuation of

VMs'.

8.1.5 Global Scheduling Mechanism for CPU Hot-plug and Memory Resource
Management

Evidence was provided to show how VMs can be protected even more effectively from

an overload of CPU and/or memory consumption, when compared to other research papers

© James Oakes, 2020 213 I P a g e

Intelligent Management of Virtualised Computer Based Workloads and Systems

on vMotion and XenMotion. This included the faster detection of VM CPU and memory
performance issues, dynamic VM CPU and memory resource resizing, and faster VM recovery
should full failure events occur. This is described further in section 7.4 ‘Experiment 4: Overload
of VM Memory Usage, Detection Time, and Resolution Time’ and 7.5 ‘Experiment 5: Overload

of VM CPU usage, Detection Time, and Resolution Time'.

8.1.6 Summary

The knowledge areas this thesis contributes towards are summarised in the table below:

e Creation of the Intelligent Decision Engine (IDE). Then the subsequent utilisation of
this framework to contribute to the following topics:

i. The simplification of the VM deployment mechanism.
ii. The reduction of the CLR for the VM provisioning process.
iii. Improvement of the IDE VM migration/failover average time.

iv. Enhancement of the IDE global performance and availability
management capability.

Table 8.1 Thesis Contributions

8.2 Overall Results and Conclusions

The next sections provide details on the conclusions reached, based on the data and

results recorded in each of the experiment sections.

8.2.1 Simplified VM Deployment Experiment Conclusions

The results for the conclusions reached are recorded in section 5.3. They are focused
on the provisioning aspect of VMs, in terms of being able to prove that the IDE could
efficiently deliver new VMs in the least amount of time, using the 10-step technique described
by section 5.2.1.6 ‘VM Provisioning Process’. This was completed anonymously by 3 groups

of users classified as, expert, experienced, and novice. Results for each group of 31 users were

© James Oakes, 2020 214 I P a g e

Intelligent Management of Virtualised Computer Based Workloads and Systems

recorded in turn, while using each different platform (IDE, AWS and Oracle) and graphed for

each of the 10-steps. Each end-user was therefore able to provision a VM in a certain amount

of time, summarised as follows:

For the IDE platform, ‘Expert’, ‘Experienced’ and ‘Novice’ users averaged 1231,
1372 and 1578 seconds respectively to provision a VM.

For the AWS platform, ‘Expert’ and ‘Experienced’ users averaged 1382 and
1464 seconds respectively, to provision a VM. Unfortunately, for ‘Novice’ users,
all but one of the 31 users were unable to complete the provisioning process.
For the Oracle platform, ‘Expert’ and ‘Experienced’ users averaged 2362 and
3237 seconds respectively, to provision a VM. Unfortunately, for ‘Novice’ users,

all but one of the 31 users were unable to complete the provisioning process.

The reason for the IDE outperforming the other two platforms during provisioning was

primarily as a result of the extra level of automation for the 10-steps. This is especially true

for step 8, which includes the mechanism to copy over the SSH keys to ensure the user can

access the VM. As this was automated for the IDE provisioning process, the users did not need

to manually perform this step. It is true, that once a step has been automated, it becomes a

simple step irrespective of its actual complexity, because the code created takes this mental

effort away from the end-user. In other words, the complexity is hidden by the automatically

executed code, which performs the necessary tasks on behalf of the user. Again, the results

backup the fact that for each platform there were the following step mechanisms listed:

© James Oakes, 2020

For the IDE provisioning platform, there were 7 automatic, 2 semi-automatic

and 1 manual step recorded.

For the AWS provisioning platform, there were 3 automatic steps, 5 semi-

automatic and 2 manual steps recorded.

For the Oracle provisioning platform, there were 1 automatic, 7 semi-

automatic and 2 manual steps recorded.

215|Page

Intelligent Management of Virtualised Computer Based Workloads and Systems

Therefore, it can be concluded from the results, that as the number of steps that are
automated increases, the more fast, efficient, consistent, and reliable the VM provisioning
process is. For example, even when using the AWS platform and AMIs for the provisioning
process, time is lost, by having steps which require human administrative intervention. End
to end automation eradicates these negative aspects, and results in an overall reduction in

VM delivery time.

8.2.2 Cognitive Evaluation Performance Experiment Conclusions

In addition to the VM provisioning experiment, it was possible to extract some
gualitative feedback using a process to convert ‘words to numbers’ as previously discussed in

sections 3.4.1 and 5.2.3.1. This data provided an alternative set of results presented in section

5.3.3 and were intended to provide a complimentary viewpoint. For each of the 3 user groups,
feedback was provided based on the ‘cognitive load’ experience for each end-user, described
in section 5.2.3. For the ‘expert’, ‘experienced’ and ‘novice’ groups, we have the overall

following conclusions, based on section 5.2.3.5 the ‘Cognitive Load Rating’ chart:

e ‘Expert’, ‘Experienced’ and ‘Novice’ users using the IDE platform had an
average CLR result of 6.77, 5.38, and 7.89, which according to the CLR chart
guide indicates they found the cognitive load to have a mental power

requirement of ‘Low’, ‘Very-Low’ and ‘Low’ respectively.

e ‘Expert’, ‘Experienced’ and ‘Novice’ users using the AWS platform had an
average CLR result of 13.3, 13.72 and 17.69, which according to the CLR chart
guide indicates they found the cognitive load to have a mental power

requirement of ‘Low-Medium’, ‘Low-Medium’ and ‘Medium’ respectively.

o ‘Expert’, ‘Experienced’ and ‘Novice’ users using the Oracle platform had an
average CLR result of 20.42, 22.46 and 25.45, which according to the CLR chart

guide indicates they found the cognitive load to have a mental power

© James Oakes, 2020 216 I P a g e

Intelligent Management of Virtualised Computer Based Workloads and Systems

requirement of ‘Medium’, ‘Medium-High’ and ‘Medium-High’ respectively.

8.2.3 Workload Migration/Failover Experiment Conclusions

As part of the IDE’s control mechanism over potentially large numbers is was crucial to
be able to test how effective it is as managing the migration, failover or evacuation of VMs

under certain conditions, such as a physical host failure. Sections 6.4, 6.4.1, 6.4.2 and 6.4.3

examine the experiment process, and section 6.5 confirms the results:

e The IDE was able to achieve an average migration/failover time for a VM in a

time of 22.48 seconds, with a best time of 21.56 seconds.

e Study 1 (vMotion) was able to achieve an average migration/failover time for a

VM in a time of 44.83 seconds, with a best time of 30 seconds.

e Study 2 (vMotion) was able to achieve an average migration/failover time for a

VM in a time of 63.33 seconds, with a best time of 20 seconds.

e Study 2 (XenMotion) was able to achieve an average migration/failover time

fora VM in a time of 266.67 seconds, with a best time of 80 seconds.

From the findings, we can observe that the IDE had the best average migration/failover
time, but not the best individual time, which was for a study 2 (vMotion) failover experiment,
where the network bandwidth peaked at 1Gb/s. Based on this, further work can be completed

to try to improve the IDE, using the ‘teleport’ feature as described in section 8.3.3.

8.2.4 Performance and Availability (CPU & Memory Overload) Experiment

Conclusions

The Performance and availability experiments described in section 7.2 provide a view

© James Oakes, 2020 217 I P a g e

Intelligent Management of Virtualised Computer Based Workloads and Systems

into the resource management capability for the IDE platform, study 1 (XenBalloon) and study
2 (iBalloon). The results are presented in section 7.6, and are focused around the capability,
features and richness of the functionality offered by each respective system, rather than the
speed to complete a particular task, such as increasing (ballooning) the memory ina VM. The
indicative results and findings are presented below, based on tables 7.5, 7.6 and 7.7. Note,
the higher percentage indicates a better result, and the possible 42 is calculated as 7 primary

characteristic areas, each with a potential score of 6:

e The IDE had a ‘feature availability and capability’ score of 30 out of a possible

42 (71%).

e Study 1 (XenBalloon) had a ‘feature availability and capability’ score of 18 out
of a possible 42 (43%).

e Study 2 (iBalloon) has a ‘feature availability and capability’ score of 22 out of a

possible 42 (52%).

Further to this, a binomial evaluation based in figure 7.8 containing detailed

features/characteristics, which are summarised as below:

e The IDE had a binomial ‘characteristic’ score of 11 out of a possible 14 (79%).

e Study 1 (XenBalloon) had a binomial ‘characteristic’ score of 7 out of a possible

14 (50%).

e Study 2 (iBalloon) has a binomial ‘characteristic’ score of 5 out of a possible 14

(36%).

8.2.5 Significance of Results

The following section takes the results obtained and shows the significance of the IDE

versus the alternative systems involved in the experimentation process; namely, the AWS and

© James Oakes, 2020 218 I P a g e

Intelligent Management of Virtualised Computer Based Workloads and Systems

Oracle platforms for experiment 1 and 2, then the alternative study papers compared against

for experiments 3, 4 and 5. Firstly, the results are shown in the following tables for experiment

1-VM provisioning time:

End-User IDE (sec) / AWS (sec) Platform, Percentage (%) Faster Provisioning
group Provisioning time
Expert 1231 /1382 IDE / 12.27% faster provisioning time
Experienced | 1372 / 1464 IDE / 6.71% faster provisioning time
Novice 1578 / N/A* IDE / unable to present comparative data*
Table 8.2 IDE versus AWS VM Provisioning Time

* Novice users in the experiment failed to complete the VM provisioning process.
End-User IDE (sec) / Oracle (sec) | Platform / Percentage (%) Faster Provisioning
group
Expert 1231 /2362 IDE / 91.88% faster provisioning time
Experienced | 1372 / 3237 IDE / 135.93% faster provisioning time
Novice 1578 / N/A* IDE / unable to present comparative data*

Table 8.3 IDE versus Oracle VM Provisioning Time

* Novice users in the experiment failed to complete the VM provisioning process.

Secondly, the following tables for experiment 2 VM provisioning are shown, which

highlight the improvement in the CLR for the IDE platform (see section 5.2.3.5 for the CLR

guide chart):

End-User IDE (CLR) / AWS (CLR) | Platform / Percentage (%) Improved CLR
group

Expert 6.77 / 13.30 IDE / 96.45% improved CLR

Experienced | 5.38 / 13.72 IDE / 155.02% improved CLR

Novice 7.89/17.69 IDE / 124.21% improved CLR

© James Oakes, 2020

Table 8.4 IDE versus AWS CLR

219|Page

Intelligent Management of Virtualised Computer Based Workloads and Systems

End-User IDE (CLR) / Oracle (CLR) | Platform / Percentage (%) Improved CLR
group

Expert 6.77 / 20.42 IDE / 201.62% improved CLR

Experienced | 5.38 /22.46 IDE / 317.47% improved CLR

Novice 7.89/ 25.45 IDE / 222.56% improved CLR

Table 8.5 IDE versus Oracle CLR

Thirdly, the following tables for experiment 3 — VM Failover/migration between

physical host timings are shown:

IDE Average Paper 1 (vMotion) Platform / Percentage (%) Improved
Failover/Migration Mean Average for Mean Average Failover/Migration
Time (Sec) Failover/Migration Time | Time
(Sec)
22.48 44.83 IDE / 99.42% improved
Failover/Migration time

Table 8.6 IDE v Paperl (vMotion) Avg. (Mean)Failover/Migration Time

IDE Best Paper 1 (vMotion) Best | Platform / Percentage (%) Improved

Failover/Migration Failover/Migration Time | Best Failover/Migration Time

Time (Sec) (Sec)

21.56 30.00 IDE / 39.15% improved
Failover/Migration time

Table 8.7 IDE v Paper1 (vMotion) Best Failover/Migration Time

© James Oakes, 2020 220 I P a g e

Intelligent Management of Virtualised Computer Based Workloads and Systems

IDE Average

Failover/Migration

Paper 2 (vMotion)

Mean Average

Platform / Percentage (%) Improved

for Mean Average Failover/Migration

Time (Sec) Failover/Migration Time | Time
(Sec)
22.48 63.33 IDE, 181.72% improved
Failover/Migration time
IDE Average Paper 2 (XenMotion) Platform / Percentage (%) Improved

Failover/Migration

Mean Average

for Mean Average

Time (Sec) Failover/Migration Time | Failover/Migration Time
(Sec)
22.48 266.67 IDE, 1086.25% improved

Failover/Migration time

Table 8.8 IDE v Paper2 (vMotion, XenMotion) Avg. (Mean) Failover/Migration Time

IDE Best

Failover/Migration

Paper 2 (vMotion) Best

Failover/Migration Time

Platform / Percentage (%) Improved

Best Failover/Migration Time

Time (Sec) (Sec)

21.56 20.00 vMotion, 7.8% improved
Failover/Migration time

IDE Best | Paper 2 (XenMotion) | Platform / Percentage (%) Improved

Failover/Migration

Time (Sec)

Best Failover/Migration

Time (Sec)

Best Failover/Migration Time

21.56

80.00

IDE, 271.06% improved

Failover/Migration time

Table 8.9 IDE v Paper2 (vMotion, XenMotion) Best Failover/Migration Time

© James Oakes, 2020

221|Page

Intelligent Management of Virtualised Computer Based Workloads and Systems

Experiments 4 and 5 are related to the global performance management of the
platforms, in relation to resource controls over consumables such as CPU and memory. The
results are presented for the characteristics and feature richness (based on tables 7.5, 7.6 and

7.7), and additionally, for the binomial system analysis (see figure 7.8):

Platform Percentage (%) Feature Availability and Capability Score

(Note: A higher % indicates a stronger capability)

IDE 71%
Study1 (XenBalloon) 43%
Study?2 (iBalloon) 53%

Table 8.10 Platform Features, Availability and Capability Scores

Platform Percentage (%) Binomial Characteristic Assessment Score

(Note: A higher % indicates a stronger platform characteristic

richness)
IDE 79%
Study1 (XenBalloon) 50%
Study? (iBalloon) 36%

Table 8.11 Platform Binomial Characteristic Assessment Scores

8.3 Future Work

Following the work conducted as part of this research project, there is opportunity for
a considerable amount of future work to continue, to build on the work completed so far;

some of the areas identified are as follows:

8.3.1 Prebuilding and Queuing VMs

To develop and add in a prebuilt VM build for each OS type, which is queued and

© James Oakes, 2020 222 I P a g e

Intelligent Management of Virtualised Computer Based Workloads and Systems

waiting for deployment. It would be feasible to build many VMs for each OS type and have a
gueuing pipeline system in place; section 5.2.2.6 developed this idea initially, however, it is
beyond the scope of this thesis to fully develop this to fruition. It is anticipated, pending
further experimentation and result outcomes, that this would reduce VM provisioning time

even further.

8.3.2 Development with Additional Operating Systems

The majority of the development was completed against the Linux CentOS operating
system; therefore, further work and experiments are required against other operating system

types, including Windows, AIX and Solaris.

8.3.3 VirtualBox Teleport Development

Memory VM replication and migration/failover so far has concentrated on VM ‘failed
state’ and ‘full restart’ scenarios — see section 6.2 and 6.3 for more details. Further work is
needed to utilise the VirtualBox ‘teleport’ function to develop advanced ‘live migration’

techniques further for the IDE (VirtualBox, 2019).

8.3.4 Quorum Cluster Node Testing

The IDE was developed and tested using 3-node clusters. It is desirable to test a larger

cluster node configuration > 3 IDE nodes, as per section 4.7.

8.3.5 Bootstrap Development

It would be beneficial for the IDE to be able to self-replicate its core functions. Each
IDE cluster should be able to create (generate) another. Further to section 3.2, the idea would
be to increase the IDE to use larger scale systems, by additional testing of the
integrated/engineered hardware components; for example, being able to deploy repeatable
IDE ‘building blocks’, comprising of the same CPU, memory and storage stack. The goal would

be for the re-creation of the IDE from a standard bare metal hardware configuration (e.g. a

© James Oakes, 2020 223 I P a g e

Intelligent Management of Virtualised Computer Based Workloads and Systems

boot-strap type function with access to a global code repository source - always on).

8.3.6 Knowledge Rules

There is opportunity to increase the number of knowledge rules for additional expert
system functionality, e.g. filesystem capacity, or storage devices that are at full capacity (or
nearing full) are good examples that could be considered. Additionally, backward chain
reasoning could be considered, whereby the system works to achieve a set of goals; this could
be very useful for proactive type initiatives, such as reducing the number of known security

vulnerabilities a system has.

8.3.7 Self-Learning

Self-development of knowledge rules — internal introspection and a self-learning
function could be added to create new rules. This would include understanding its learning
requirements, developing its learning goals and how to achieve them, identifying the
resources needed to support the learning process, and evaluating the outcomes. A validation
and scoring system could also work to rank each knowledge rule, to ensure they are

functioning as purposed.

8.3.8 Data Sources and Trigger Events

Development and testing of additional data sources for trigger events to those defined
in sections 4.8.1 and 4.8.4. Additional exploration into the virtual platform, to determine what

other data sources could be useful, as well as the identification of new trigger events.

8.3.9 Laboratory Build for VMware, KVM and Xen Clusters

A VMWare, KVM and Xen cluster build using the same hardware as the IDE stack, to

enable direct experimental ‘failover testing’ and ‘resource management’ testing with real

© James Oakes, 2020 224 I P a g e

Intelligent Management of Virtualised Computer Based Workloads and Systems

VMWare, KVM and Xen systems, to allow for better comparisons against each in a laboratory
setting. This would build additional data on top of the similar studies examined in chapter 6

and chapter 7.

8.3.10 Knowledge Rule Testing with SLAs

Further experimental testing of the IDE knowledge rules listed in section 4.8 and 4.8.5.
Extra validation and checks to be conducted on the existing rule set with a Service Level
Agreement (SLA) in place; to be investigated as to how this would impact the consequent(s)

for invoked knowledge rules.

8.3.11 Global Resource Management

Further global platform management as discussed in section 7.2.5 is required to
ensure other areas are built on, including the continual reduction of resource waste.
Investigation to continue on how to make the global resource management process even

more effective and efficient.

8.3.12 Terraform, AWS CloudFormation and AMls

Perform an analysis on the IDE against Terraform and AWS CloudFormation with AMls
(A common DevOps AWS approach) in a laboratory type exercise. This work would produce
interesting results, as AWS CloudFormation and Terraform provide ‘infrastructure as code’
provisioning modules, which would first need to be developed using notation such as YAML

or JSON.

© James Oakes, 2020 225 I P a g e

Intelligent Management of Virtualised Computer Based Workloads and Systems

References

Adl-Tabatabai, A., Bharadwaj, J., Cierniak, M., Eng, M., Fang, J., Lewis, B., Murphy, B. and Stichnoth J. (2004).
Improving 64-Bit Java IPF Performance by Compressing Heap References, Proceedings of the International
Symposium on Code Generation and Optimization

Aladyshey, O., Baranov, A., lonin, R., Kiselev, E., and Shabanov, B. (2018). Variants of Deployment the High-
Performance Computing in Clouds, IEEE Conference of Russian Young Researchers in Electrical and Electronic
Engineering (EIConRus)

Al-Ou’n, A., Kiran, M., and Kouvatsos, D. (2015). Using Agent-based VM Placement Policy, IEEE 3rd
International Conference on Future Internet of Things and Cloud

Alty, J. L., and Coombs, M. J., (1984). Expert systems: concepts and examples, John Wiley and Sons, Inc., New
York, NY

Ajila, S. and Bankole, A., (2013). Cloud Client Prediction Models Using Machine Learning Techniques. |EEE 37th
Annual Computer Software and Applications Conference

Akioka, S. and Muraoka, Y., (2010). HPC benchmarks on Amazon EC2. |EEE 24th International Conference on
Advanced Information Networking and Applications Workshops

Anicic, D., Fodor, P., Stuhmer R., and Stojanovic N., (2009). Event-driven Approach for Logic-based Complex
Event Processing, International Conference on Computational Science and Engineering

Antonescu, A., Oprescu, A., Demchenko, Y., Laat C. D., Braun T., (2013). Dynamic Optimization of SLA-Based
Services Scaling Rules, |IEEE International Conference on Cloud Computing Technology and Science

Amazon Web Services, (2015). Amazon Elastic Compute Cloud - User Guide for Linux API Version. Amazon Web
Services

Arnaldo, I., Veeramachaneni, K., Song, A. and O’Reilly, U., (2015). Bring Your Own Learner! A Cloud-Based,
Data-Parallel Commons for Machine Learning. IEEE Computational intelligence magazine

Ashouri K., and Savoji, M.H, (2004). Automatic and Accurate Pitch Marking of Speech Signal using an Expert
System Based on Logical Combinations of Different Algorithms Outputs, 12th European Signal Processing
Conference

Austermann A., and Yamada, S. (2008). “Good Robot”, “Bad Robot” — Analyzing Users’ Feedback in a Human-
Robot Teaching Task, Proceedings of the 17th IEEE International Symposium on Robot and Human Interactive
Communication, Technische Universitdat Miinchen, Munich, Germany, August 1-3

Awal, A., Shoeb, M., Hasan, R., Haque, M. and Hu, M., (2014). A Comparative Study on I/0 Performance
between Compute and Storage Optimized Instances of Amazon EC2. IEEE International Conference on Cloud
Computing

Bakhshayeshi, R., (2014). Performance Analysis of Virtualized Environments using HPC Challenge Benchmark
Suite and Analytical, Iranian Conference on Intelligent Systems (ICIS)

Beckman, T., J. (1990). Methods for Selecting Promising Expert System Applications, Proceedings, The Fifth
Annual Al Systems in Government Conference, IEEE

© James Oakes, 2020 226 I P a g e

Intelligent Management of Virtualised Computer Based Workloads and Systems

Benet C. H., Noghani K. A., and Kassler, A. J. (2016). Minimizing Live VM Migration Downtime Using OpenFlow
based Resiliency Mechanisms, 5th IEEE International Conference on Cloud Networking

Bhise, V. and Mali, A., (2013). Cloud Resource Provisioning for Amazon EC2. |EEE - 31661, 4th ICCCNT July 4-6,
Tiruchengode, India

Biner M. (2015). Cloud Computing and Management Processes, DOI: 10.1109/ECAI.2015.7301151, ECAI,
Bucharest

Bojanova, I. and Samba, A., (2011). Analysis of Cloud Computing Delivery Architecture Models. Workshops of
International Conference on Advanced Information Networking and Applications

Borg, G., Bratfisch, O., and Dornic, S. (1971). On the problems of perceived difficulty. Scandinavian Journal of
Psychology, 12(4), 249-260

Brooks R. E. and Heiser, J., F., (1979). Transferability of a Rule-Based Control Structure to a New Knowledge
Domain, AMIA Annual Symposium Proceedings

Callaos, B., (1994). Artificial Organizational Intelligence. Expert Systems for Development, Proceedings of
International Conference of The World Congress on Expert Systems

Calzolari, F., (2006). High Availability Using Virtualisation, University of Pisa

Cambridge Advanced Learner's Dictionary (2019), [online]. Available from:
https://dictionary.cambridge.org/dictionary/english/algorithm Cambridge: Cambridge University Press
[06/07/2019]

Cambridge Advanced Learner's Dictionary (2019), [online]. Available from:
https://dictionary.cambridge.org/dictionary/english/inference Cambridge: Cambridge University Press
[06/07/2019]

Cattell, R. (2010). Scalable SQL and NoSQL Data Stores, ACM SIGMOD Record archive Volume 39 Issue 4,
December, Pages 12-27

Chen, X., Chen, W., Long, P., Lu, Z., and Wang Z. (2013) SEMMA: Secure Efficient Memory Management
Approach in Virtual Environment, International Conference on Advanced Cloud and Big Data

Chen, Z. and Suen, C.Y., (1993). Evaluating Expert Systems by Formal Metrics. Proceedings of Canadian
Conference on Electrical and Computer Engineering

Conde, C. and Narin, A., (2012). Development and Test on Amazon Web Services. Amazon Web Services
Conrath D. and Sharma, R. (1991). Evaluating Expert Systems Using A Multiple-Criteria, Multiple-Stakeholder
Approach, Proceedings of the IEEE/ACM International Conference on Developing and Managing Expert System

Programs

Crittenden, R., (1990). Building on success-lessons learned (expert systems). Proceedings IEEE Conference on
Managing Expert System Programs and Projects

Dhiman, G., (2011). Dynamic Workload Characterization for Energy Efficient Computing, University of
California, San Diego

© James Oakes, 2020 227 I P a g e

https://dictionary.cambridge.org/dictionary/english/algorithm
https://dictionary.cambridge.org/dictionary/english/inference

Intelligent Management of Virtualised Computer Based Workloads and Systems

Diao, L., Zuo, M. and Liu, Q., (2009). The Artificial Intelligence in Personal Knowledge Management. Second
International Symposium on Knowledge Acquisition and Modeling

Dong D., and Herbert J., (2013). A Proactive Cloud Management Architecture for Private Clouds, IEEE Sixth
International Conference on Cloud Computing

Duda, R. O., and Shortliffe, E., (1983). Expert System Research. Science (New York, N.Y.). 220. 261-8.
10.1126/science.6340198.

Durkin, J., (1990). Research Review: Application of Expert Systems in the Sciences, The Ohio Journal of Science,
v90, n5, 171-179

Elprince, N., (2013). Autonomous Resource Provision in Virtual Data Centers, 2013 IFIP/IEEE International
Symposium on Integrated Network Management

Fateman R. J., (1989). A Review of Macsyma, IEEE Transactions on Knowledge and Data Engineering, Vol. |, No.
I, March 1989

Fadel, A. S., Fayoumi, A. G., (2013). 14th ACIS Cloud Resource Provisioning and Bursting Approaches.
International Conference on Software Engineering, Artificial Intelligence, Networking and Parallel/Distributed
Computing

Faulkner, L. (2003). Beyond the five-user assumption: Benefits of increased sample sizes in usability testing.
Behavior Research Methods, Instruments and Computers, 35(3), 379-383.

Feigenbaum E. A., and Buchanan B. G, (1994). DENDRAL and Meta-DENDRAL: roots of knowledge systems and
expert system applications. Artificial intelligence in perspective, Pages 233-240, MIT Press Cambridge, MA, USA

Feinberg, S. and Murphy, M. (2000). Applying Cognitive Load Theory to the Design of Web-Based Instruction,
18th Annual Conference on Computer Documentation Technology and Teamwork Proceedings

Feng, X., Tang, J., Luo, X., and Jin, Y. (2011) A Performance Study of Live VM migration Technologies: vMotion
vs XenMotion, SPIE-OSA-IEEE/Vol. 8310 831018-2, Asia Communications and Photonics

Ferraris, F., Franceschelli, D., Gioiosa, M., Lucia, D., Ardagna, D., Di Nitto, E. and Sharif, T., (2012). Evaluating
the Auto Scaling Performance of Flexiscale and Amazon EC2 Clouds. 14th International Symposium on Symbolic
and Numeric Algorithms for Scientific Computing

Fernando, D., Bagdi, H., Hu, Y., Yang, P., Gopalan, K., Kamhoua, C., and Kwiat, K. (2016). Quick Eviction of
Virtual Machines Through Proactive Live Snapshots, IEEE/ACM 9th International Conference on Utility and
Cloud Computing

Finkle, T. A., and Scoresby, R. B., (2012). Larry Ellison and Oracle Corporation, Journal of the International
Academy for Case Studies, Volume 18, Number 7

Flinta, C. Johnsson, A., Ahmed, J., Moradi, F., Pasquini, R., and Stadler, R. (2017). Real-Time Resource Prediction
Engine for Cloud Management, IFIP/IEEE International Symposium on Integrated Network Management

Franzosi, R. (2004). From Words to Numbers: Narrative, data, and social science, Cambridge University Press

Forbes (2018), [online]. Available from: https://www.forbes.com/sites/louiscolumbus/2018/09/23/roundup-
of-cloud-computing-forecasts-and-market-estimates-2018/#29474389507b Forbes: [1/04/2020]

© James Oakes, 2020 228 I P a g e

https://www.forbes.com/sites/louiscolumbus/2018/09/23/roundup-of-cloud-computing-forecasts-and-market-estimates-2018/#29474389507b
https://www.forbes.com/sites/louiscolumbus/2018/09/23/roundup-of-cloud-computing-forecasts-and-market-estimates-2018/#29474389507b

Intelligent Management of Virtualised Computer Based Workloads and Systems

Gandhe, A,, Qin, L., Metze, F., Rudnicky, A., Lane I., and Eck, M. (2013) Using Web Text to Improve Keyword
Spotting in Speech, 2013 IEEE Workshop on Automatic Speech Recognition and Understanding, IEEE Workshop
on Automatic Speech Recognition and Understanding

Gatzis, V., (2016). A Survey of Standards for Machine-to-Machine and the Internet of Things, IEEE
Communications Surveys & Tutorials

Gaikwad G., Joshi D. J., (2016). Multiclass Mood Classification on Twitter using Lexicon Dictionary and Machine
Learning Algorithms, International Conference on Inventive Computation Technologies (ICICT)

Gopher, D. and Braune, R. (1984). On the Psychophysics of Workload: Why Bother with Subjective Measures?
Human Factors: The Journal of the Human Factors and Ergonomics Society, Volume: 26 issue: 5, pages: 519-532

Green E. C., (2001). Can Qualitative Research Produce Reliable Quantitative Findings? Field Methods, Vol. 13,
No. 1, February 2001 3-19, Sage Publications, Inc.

Gren L., Torkar R., Feldt R. (2014). Work Motivational Challenges Regarding the Interface Between Agile Teams
and a Non-Agile Surrounding Organization: A Case Study. 978-0-7695-5222-4/14 |EEE DOI
10.1109/AGILE.2014.13

Guerlain, S., Brown, D. and Mastrangelo, C. (2000). Intelligent Decision Support Systems, IEEE International
Conference on Systems, Man and Cybernetics. 'Cybernetics Evolving to Systems, Humans, Organizations, and
Their Complex Interactions

Hataba, M. and EI-Mahdy, A. (2012). Cloud Protection by Obfuscation: Techniques and Metrics, Seventh
International Conference on P2P, Parallel, Grid, Cloud and Internet Computing

Haugeland, J., (1989). Artificial Intelligence: The very Idea. pp. 124, MIT Press, Cambridge, MA

Hill, Z. and Humphrey, M., (2009). A Quantitative Analysis of High Performance Computing with Amazon’s EC2
Infrastructure: The Death of the Local Cluster? Grid Computing, 10th IEEE/ACM International Conference on
Grid Computing

Hwang J., (2015). Computing Resource Transformation, Consolidation, and Decomposition in Hybrid Clouds,
IBM T.J. Watson Research Center, 978-3-901882-77-7 IFIP

Hwang, J., (2016). Toward Beneficial Transformation of Enterprise Workloads to Hybrid Clouds. |EEE
Transactions on Network and Service Management, Vol. 13, No. 2, June 2016

Hwang, W., Roh, Y., Park, Y., Park, K., and Park K. H. (2010). HyperDealer: Reference-pattern-aware Instant
Memory Balancing for Consolidated Virtual Machines, IEEE 3rd International Conference on Cloud Computing

Huang, L., Milne, D., Frank, E., Witten, |. H., (2012). Learning a Concept-based Document Similarity Measure,
Journal of the American Society for Information Science and Technology banner, Volume 63, Issue8, August
2012, Pages 1593-1608

Imai, S., Chestna, T. and Varela, C., (2013). Accurate Resource Prediction for Hybrid laaS Clouds Using
Workload-Tailored Elastic Compute Units. IEEE/ACM 6th International Conference on Utility and Cloud
Computing

Ismail H. and Riasetiawan M. (2016). CPU and Memory Performance Analysis on Dynamic and Dedicated
Resource Allocation using XenServer in Data Center Environment, 2nd International Conference on Science and
Technology-Computer (ICST), Yogyakarta, Indonesia

© James Oakes, 2020 229 I P a g e

Intelligent Management of Virtualised Computer Based Workloads and Systems

Jeong, H. and Lee, S. (2012). Dynamic CPU Resource Allocation for Multicore CE Devices Running Multiple
Operating Systems, |IEEE International Conference on Consumer Electronics (ICCE)

Jin, H., Kai, Z., Zhijun, W., and Jinzhou, Y., (2016). PaaS Construction of Large Scale Enterprise. |EEE
International Conference on Cloud Computing and Big Data Analysis Discussion on Private Cloud

Jing, X., (2011). Autonomic application and resource management in virtualized Distributed Computing
Systems, University of Florida

Jing-xue Lui, J. and Fei, Q., (2005). The Arithmetic Research of Intelligence Retrieval Based on Commanding
Decision-Making. Proceedings of the Fourth International Conference on Machine Learning and Cybernetics,
Guangzhou, 18-21 August

Joy, M., Mueller, W., and Rammig, F. (2014). Source Code Annotated Memory Leak Detection for Soft Real Time
Embedded Systems with Resource Constraints, IEEE 12th International Conference on Dependable, Autonomic
and Secure Computing

Katz, J., Papadopoulos, P. and Bruno, G., (2002). Leveraging Standard Core Technologies to Pragmatically Build
Linux Cluster Appliances, Proceeding of the IEEE International Conference on Cluster Computer

Kotova, E., (2016). Intellectual Support of the Learning Content Planning Considering the Cognitive Load, XIX
IEEE International Conference on Soft Computing and Measurements.

Kim, H., El-Khamra, Y., Rodero, I., Jha, S. and Parashar, M., (2011). Autonomic Management of Application
Workflows on Hybrid Computing Infrastructure. Scientific Programming 19, pg. 75-89, 10S Press

Kokkinos, P., Varvarigou, T., kretsis, A., Soumplis, P. and Varvarigos, E., (2013). Cost and Utilization
Optimization of Amazon EC2 instances. |IEEE Sixth International Conference on Cloud Computing

Kulikowski, C., A., (1980). Artificial Intelligence Methods and Systems for Medical Consultation, IEEE
Transactions on Pattern Analysis and Machine Intelligence, Vol. Pami-2, No. 5

Kwon K., (2012). Forward Reasoning via Sequential Queries in Logic Programming, 1ISSN 1392—-124X
Information Technology and Control, Vol. 41

Lakshmi, J., (2010). System Virtualization in the Multi-core Era - a QoS Perspective, Supercomputer Education
and Research Center Indian Institute of Science

Lokshina, I. and Insinga, R. (2004), Expert System Supporting System Administrators Managing in a Distributed,
Heterogeneous Environment, Joint IST Workshop on Mobile Future and the Symposium on Trends in
Communications

Larumbe, F., Sanso B., (2012). Optimal Location of Data Centers and Software Components in Cloud Computing
Network Design, 2012 12th IEEE/ACM International Symposium on Cluster, Cloud and Grid Computing

Lindsay R. K., Buchanan B. G., Feigenbaum, E. A., Lederberg, J. (1993) DENDRAL: A Case Study of the First
Expert System for Scientific Hypothesis Formation, Artificial Intelligence, Volume 61, Issue 2, June 1993, Pages
209-261

Lebowitz, M., (1983). Generalization from Natural Language Text, Cognitive Science, Volume 7, Issue 1 January
1983, Pages 1-40

© James Oakes, 2020 230 I P a g e

Intelligent Management of Virtualised Computer Based Workloads and Systems

Liu, H., Jin, H., Liao, X., Deng, W., He, B., and Xu, C. (2015) IEEE Hotplug or Ballooning: A Comparative Study on
Dynamic Memory Management Techniques for Virtual Machines, IEEE Transactions on Parallel and Distributed
Systems, Vol. 26, No. 5

Lui, X., Zeng, S., Guo J. and Zhou, G. (2017). Human Workload Monitoring Method Considering Qualitative and
Quantitative Data Fusion, Second International Conference on Reliability Systems Engineering, IEEE

Macefield, R. (2009). How to Specify the Participant Group Size for Usability Studies: A Practitioner’s Guide,
Journal of Usability Studies, Vol. 5, Issue 1, November 2009, pp. 34-45

Madarasz, L., Lazar, T., Gaspar V., and Andoga, R. (2014). Perspectives in Evaluating Quality of Complex
Technical Systems, IEEE International Symposium on Intelligent Control (ISIC), IEEE Multi-conference on
Systems and Control, October 8-10. Antibes, France

Makridis, E., Deliparaschos, K., Kalyvianakiy, E. and Charalambous, T. (2017). Dynamic CPU Resource
Provisioning in Virtualized Servers using Maximum Correntropy Criterion Kalman Filters, 22nd |EEE
International Conference on Emerging Technologies and Factory Automation (ETFA)

Martin, T., Azvine, B. and Shen, Y., (2007). Computational Intelligence Support for Smart Queries and Adaptive
Data. IEEE Symposium on Computational Intelligence in Security and Defense Applications

Massimiliano, P. D. and Tamburri, D. A. (2017). Combining Quantitative and Qualitative Studies in Empirical
Software Engineering Research, IEEE/ACM 39th IEEE International Conference on Software Engineering
Companion

Matthias, K., (2008). Towards autonomic management in system administration, University of Oslo
Department of Informatics

McCammon R. B., (1989). Prospector Il Expert System, Prospector Il U.S. Geological Survey, VA 22092

McCorduck, P., Minsky, M., Selfridge, O.G., Beranek, B. and Simon, H.A., (1977). History of Artificial
Intelligence. International Joint Conference on Artificial Intelligence, pp. 951-952, 953

McDermott, J., (1982). Artificial Intelligence, R1: A Rule-Based Configure of Computer Systems, Volume 19,
Issue 1, September 1982, Pages 39-88, Elsevier

Melekhova, A., (2013). Machine Learning in Virtualization: Estimate A Virtual Machine’s Working Set Size, |EEE
Sixth International Conference on Cloud Computing

Mei, L. and Cheng, F., (2010). The Use of Artificial Intelligence in the Information Retrieval System Epoch-
making Changes in Information Retrieval System. Information Management and Engineering (ICIME), The 2nd
IEEE International Conference

Menasce, D. and Bennani, M., (2006). International Conference on Autonomic and Autonomous Systems
ICAS06, Volume: 00, Issue: C, IEEE

Mettrey, W. (1991). A Comparative Evaluation of Expert System Tools, Computer, Volume: 24, Issue: 2

Miller R. A., Pople H. E., Myers J. D., (1982). Internist-1, An Experimental Computer Based Diagnostic
Consultant for General Internal Medicine. New England Journal of Medicine, 307(8), 468-476

© James Oakes, 2020 231 I P a g e

http://www.sciencedirect.com/science/journal/00043702/19/1
http://www.sciencedirect.com/science/journal/00043702/19/1

Intelligent Management of Virtualised Computer Based Workloads and Systems

Mohammad, I., and Ramananjaneyulu K. (2012). FPGA Implementation of a 64-Bit RISC Processor Using VHDL,
International Journal of Engineering Research and Applications (IJERA), Vol. 2, Issue 3, May-Jun 2012, pp.2544-
2549

Morabito, R., Kjdllman, J., and Komu, M., (2015). Hypervisors vs. Lightweight Virtualization: A Performance
Comparison, 2015 IEEE International Conference on Cloud Engineering

Milayim, N. and Alaybeyoglu, A., (2016). Designing of an expert system based on firefly algorithm for diagnosis
of Heart Disease, 20th National Biomedical Engineering Meeting (BIYOMUT), 1-4

Musen M.A., Shahar Y., Shortliffe E.H. (2006) Clinical Decision-Support Systems. In: Shortliffe E.H., Cimino J.J.
(eds) Biomedical Informatics. Health Informatics. Springer, New York, NY

Nath, A., Das, S. and Chakrabarti, A., (2010). Data Hiding and Retrieval. International Conference on
Computational Intelligence and Communication Networks

Novaliendry P. D., Yang C., Labukti, A.D.G., (2015). The Expert System Application for Diagnosing Human
Vitamin Deficiency Through Forward Chaining Method, International Conference on Information and
Communication Technology Convergence (ICTC)

Oakes, J., Johnson, M., Xue, J. and Turner, S., (2016). Simplified Deployment of Virtual Machines using an
Intelligent Design Engine. SAl Computing Conference 2016 July 13-15, London, UK

Oakes, J., Johnson, M., Xue, J., and Turner, S. (2020) Measuring and Reducing the Cognitive Load for the End
Users of Complex Systems. In: Bi Y., Bhatia R., Kapoor S. (eds) Intelligent Systems and Applications. IntelliSys
2019. Advances in Intelligent Systems and Computing, vol 1037. Springer.

Oludele, A., Ogu E., C., Shade, K., Chinecherem, U., (2014). On the evolution of virtualization and Cloud
Computing: A review. Journal of Computer Sciences and Applications, Volume 2, Issue 3, Pages 40-43

Padala, P., (2010). Automated Management of Virtualized Data Centers, University of Michigan

Pagare, J. and Koli, N., (2014). A technical review on comparison of Xen and KVM hypervisors: An analysis of
virtualization technologies. International Journal of Advanced Research in Computer and Communication
Engineering Vol. 3, Issue 12, December 2014

Prangchumpol, D., Sanguansintukul, S. and Tantasanawong, P. (2009). Server Virtualization by User Behaviour
Model using a Data Mining Technique — A Preliminary Study. International Conference for Internet Technology
and Secured Transactions: ICITST

Parunak H., V., D., (1996). “Go to the Ant”: Engineering Principles from Natural Multi-Agent Systems, Annals of
Operations Research, Special Issue on Artificial Intelligence and Management Science

Piraghaj, S. F., Dastjerdi, A. V, Calheiros, R. N., and Buyya, R. (2015). Efficient Virtual Machine Sizing for Hosting
Containers as a Service, 2015 IEEE World Congress on Services

Paas, F., Merrienboer, J., (1994). Measurement of Cognitive Load in Instructional Research, Perceptual and
Motor Skills, p79, 419-430.

Paas, F., Tuovinen, J., Tabbers, H., and Gerven, P. (2003). Cognitive Load Measurement as a Means to Advance
Cognitive Load Theory, Educational Psychologist, p.63—71, Lawrence Erlbaum Associates, Inc.

Plass, J. L., Moreno, R., & Briinken, R. (2010). Cognitive Load Theory. Cambridge: Cambridge University Press

© James Oakes, 2020 232 I P a g e

Intelligent Management of Virtualised Computer Based Workloads and Systems

Prathibha, D., Latha, B. and Sumathi, G., (2014). Efficient Scheduling of Workflow in Cloud Environment Using
Billing Model Aware Task Clustering. Journal of Theoretical and Applied Information Technology 31st July 2014,
Vol. 65 (No.3)

Prodan, R., Sperk, M. and Ostermann, S., (2012). Evaluating High-Performance Computing on Google App
Engine. |IEEE SOFTWARE

Poghosyan A., V., Harutyunyan, A., N., Grigoryan, N., M., (2016). Managing Cloud Infrastructures by a Multi-
layer Data Analytics, 1EEE International Conference on Autonomic Computing (ICAC)

Pugh, Emerson W.; Johnson, Lyle R.; Palmer, John H., (1991). IBM's 360 and Early 370 Systems. Cambridge MA:
MIT Press

Ranjan, R. and Zhao, L., (2013). Peer-to-peer service provisioning in cloud computing environments. Journal
Supercomputing (2013) 65:154-184 DOI 10.1007/s11227-011-0710-5

Rasmussen E. R., (2009). Reducing IT Costs and Increasing IT Efficiency by Integrating Platform Virtualization in
the Enterprise, University of Oregon

Ravindranath, K. R., (2015). Clinical decision Support System for Heart Diseases Using Extended Sub Tree,
International Conference on Pervasive Computing (ICPC)

Reddy D. R., Erman L. D., Fennell R. D., and Neely R. B., (1976). The Hearsay-I Speech Understanding System: An
Example of the Recognition Process, IEEE Transactions on Computers, Vol. C-25, No. 4, April 1976

Redhat (2019). [online]. Available from: https://access.redhat.com/documentation/en-

us/red hat enterprise linux/6/html/virtualization host configuration and guest installation guide/chap-
virtualization host configuration and guest installation guide-system requirements, Redhat: Redhat
Incorporated, wholly owned by IBM Corporation [13/10/2019]

Rokne, J., (2013). Computing: Transforming Information Technology. IEEE Computer Society, Cloud Computing

Rosenblum M., (2004). The Reincarnation of Virtual Machines, Stanford University and VMWare

Rothenburg, J., Paul, J., Kameny, I., Kipps, J. and Swenson, M., (1987). Evaluation Expert Systems: A Framework
and Methodology, Defense Advanced Research Projects Agency

Rusu, 0., Halcu, 1., Grigoriu, O., Neculoiu, G., Sandulescu, V., Marinescu, M., and Marinescu V. (2013).
Converting Unstructured and Semi-structured Data into Knowledge, 11th RoEduNet International Conference,
IEEE

Sandru, C., Petcu D., Munteanu V. |., (2012). Building an Open-Source Platform-as-a-Service with Intelligent
Management of Multiple Cloud Resources, IEEE/ACM Fifth International Conference on Utility and Cloud
Computing

Sanzo, P., Rughetti, D., Ciciani, B. and Quaglia, F., (2012). Auto-tuning of Cloud-based In-memory Transactional
Data Grids via Machine Learning. |IEEE Second Symposium on Network Cloud Computing and Applications

Sarathy, V., Narayan, P. and Mikkilineni, R., (2010). Next Generation Cloud Computing Architecture Enabling
Real-time Dynamism for Shared Distributed Physical Infrastructure, Workshops on Enabling Technologies:

Infrastructure for Collaborative Enterprises

Schiller, K., (2011). Amazon EC2 Outage Highlights Risks. Volume 28, Number 6, www.infotoday.com

© James Oakes, 2020 233 I P a g e

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/6/html/virtualization_host_configuration_and_guest_installation_guide/chap-virtualization_host_configuration_and_guest_installation_guide-system_requirements
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/6/html/virtualization_host_configuration_and_guest_installation_guide/chap-virtualization_host_configuration_and_guest_installation_guide-system_requirements
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/6/html/virtualization_host_configuration_and_guest_installation_guide/chap-virtualization_host_configuration_and_guest_installation_guide-system_requirements
http://www.infotoday.com/

Intelligent Management of Virtualised Computer Based Workloads and Systems

Scroggins, R., (2013). Virtualization Technology Literature Review. Vol 13, Global Journal of Computer Science
and Technology

Seaman, C. B., (1999). Qualitative methods in empirical studies of software engineering, IEEE Transactions on
Software Engineering, vol. 25, no. 4, pp. 557-572, July-Aug. 1999

Selvi, S., Valliyammai, C., and Dhatchayani, V., (2014) Resource Allocation Issues and Challenges in Cloud
Computing, International Conference on Recent Trends in Information Technology

Serrano N., Gallardo G., Hernantes J., (2015). Infrastructure as a Service and Cloud Technologies, |IEEE Software
32 (2), 30-36

Shirinbab S. and Lundberg L. (2016). Performance Implications of Resource Over-Allocation during the Live
Migration, |IEEE 8th International Conference on Cloud Computing Technology and Science

Shirinbab, S., Lundberg, L. and Hakansson J. (2016). Comparing Automatic Load Balancing using VMware DRS
with a Human Expert, IEEE International Conference on Cloud Engineering Workshop

Song, Y., Sun, Y., and Shi W. (2013). A Two-Tiered On-Demand Resource Allocation Mechanism for VM-Based
Data Centers, IEEE Transactions on Services Computing, Vol. 6, No. 1, January-March

Spangler, W.E., (1991). The Role of Artificial Intelligence in Understanding the Strategic Decision-Making
Process. |IEEE Transactions on Knowledge and Data Engineering, Vol. 3, No. 2

SPARC International Inc, V., (1992). The SPARC Architecture Manual v8. Version 8 ed. SPARC International.

Srnka K. J. and Koeszegi, S. T. (2007). From Words to Numbers: How to Transform Qualitative Data into
Meaningful Quantitative Results, Schmalenbach Business Review, Vol. 59

Stage, A., Setzer, T., and Bichler, M. (2009). Automated Capacity Management and Selection of Infrastructure-
as-a-Service Providers, IFIP/IEEE Intl. Symposium on Integrated Network Management — Workshops

Steinder, M., Whalley I., Carrerat D., Gawedat I. and Chess D. (2007). Server Virtualization in Autonomic
Management of Heterogeneous Workloads, 1-4244-0799-0/07, IEEE

Su, K., (2015). Affinity and Conflict-Aware Placement of Virtual Machines in Heterogeneous Data Centers, IEEE
Twelfth International Symposium on Autonomous Decentralized Systems

Sweller, J. (1988). Cognitive Load During Problem Solving: Effects on Learning, Cognitive Science 12, p.257-285
Tanenbaum, A.S., ed, (2006). Structured Computer Organization. 5th ed. Prentice Hall

Tian, C., Wang, Y., Qi, F. and Yin, B., (2012). Decision Model for Provisioning Virtual Resources in Amazon EC2.
2012 8th International Conference on Network and Service Management (CNSM 2012): Short Paper

Toyoshima, S., Yamaguchi, S. and Oguchi, M., (2010). Storage Access Optimization with Virtual Machine
Migration and Basic Performance Analysis of Amazon EC2. IEEE 24th International Conference on Advanced
Information Networking and Applications Workshops

Tsai, C., (2009). System Architectures with Virtualized Resources in a Large-Scale Computing Infrastructure, The
University of Michigan

© James Oakes, 2020 234 I P a g e

Intelligent Management of Virtualised Computer Based Workloads and Systems
Ullah S., Awan, M., Khiyal, S (2016). A Price-Performance Analysis of EC2, Google Compute and Rackspace
Cloud Providers for Scientific Computing, Journal of Mathematics and Computer Science 16, p. 178-192

Unix.com (2019), [online]. Available from: https://www.unix.com/man-page/centos/8/SYS-UNCONFIG/
Unix.com: Free Unix Support [10/09/2019]

Vanmechelen, K., De Munck, S. and Broeckhove, J., (2013). Simulation Modelling Practice and Theory.
Simulation Modelling Practice and Theory 34 (2013)126-143

Vanmechelen, K., De Munck, S. and Broeckhove, J., (2012). Conservative Distributed Discrete Event Simulation
on Amazon EC2. 2012 12th IEEE/ACM International Symposium on Cluster, Cloud and Grid Computing

Verdinelli, S., and Scagnoli, N., (2013) Data Display in Qualitative Research, International Journal of Qualitative
Methods

Virtualbox.org (2019), [online]. Available from: https://www.virtualbox.org/manual/ch04.html#guestadd-
balloon VirtualBox: virtualbox.org [17/11/2019]

Virtualbox.org (2019), [online]. Available from: https://www.virtualbox.org/manual/ch09.html#cpuhotplug
VirtualBox: virtualbox.org [17/11/2019]

Virtualbox.org (2019), [online]. Available from: https://www.virtualbox.org/manual/ch07.html#teleporting
VirtualBox: virtualbox.org [21/11/2019]

Vogels, W., Dumitriu, D., Birman K., Gamache R., Massa M., Short R., Vert J., Barrera J., and Gray J. (1998). The
Design and Architecture of the Microsoft Cluster Service-a Practical Approach to High-Availability and
Scalability, Digest of Papers. Twenty-Eighth Annual International Symposium on Fault-Tolerant Computing
(Cat. N0.98CB36224), IEEE

Vrijders, S., Maffione, V., Staessens, D., Salvestrini, F., Biancani, M., Grasa, E., Colle, D., Pickavet, M., Barron, J.,
and Day, J., (2016). Reducing the Complexity of Virtual Machine Networking, IEEE Communications Magazine,
p.152-158

Wang, G. and Ng, T., (2010). The Impact of Virtualization on Network Performance of Amazon EC2 Data Center.
IEEE Infocom 2010 proceedings

Wenbin, C., Xiaoling, L., Yijun, L. and Yu, F., (2010). A Machine Learning Algorithm for Expert System Based on
MYCIN Model. 2nd International Conference on Computer Engineering and Technology

White S.R., Hanson J.E., Whalley I., Chess D.M. and Kephart J.0. (2004) An Architectural Approach to
Autonomic Computing, International Conference on Autonomic Computing, Proceedings.

Wikimedia.org (2019), [online]. Available from: wikimedia.org Wikimedia: wikimedia.org [21/12/2019]

Windriyani, P., & Kom, S., Wiharto, W., and Widya S., S. (2013). Expert System for Detecting Mental Disorder
with Forward Chaining Method. 10.1109/ICTSS.2013.6588068.

Winston P., and Prendergast K. (1986). XCON: An Expert Configuration System at Digital Equipment
Corporation, MIT Press

Wong, D. and Manickam, S., (2010). Intelligent Expertise Classification Approach: An Innovative Artificial
Intelligence Approach to Accelerate Network Data Visualization. 2010 3rd International Conference on
Advanced Computer Theory and Engineering (ICACTE)

© James Oakes, 2020 235 I P a g e

https://www.unix.com/man-page/centos/8/SYS-UNCONFIG/
https://www.virtualbox.org/manual/ch04.html#guestadd-balloon
https://www.virtualbox.org/manual/ch04.html#guestadd-balloon
https://www.virtualbox.org/manual/ch09.html#cpuhotplug
https://www.virtualbox.org/manual/ch07.html#teleporting
https://commons.wikimedia.org/wiki/File:Hardware_Virtualization.JPG

Intelligent Management of Virtualised Computer Based Workloads and Systems

Wood, T., (2011). Improving Data Center Resource Management Deployment and Availability with
Virtualization, University of Massachusetts

Wright, F.L. and Gdowski, S., (1987) An Artificial Intelligence Schema to Perform Automatic Santization of Data.
Monarch Systems Inc, Beverly Hills, California

Xiong, P., (2012). Dynamic Monitoring Modeling and Management of Performance and Resources For
Applications In The Cloud, Georgia Institute of Technology

Xu W. and Liu, X. (2003). Research on Evaluating Methods of Projects for Complex Systems, Proceedings of the
Second International Conference on Machine Learning and Cybernetics, Xa'an, 2-5 November

Xue, J., (2009). Performance Evaluation and Resource Management in Enterprise Systems, University of
Warwick

Yang J. D., Huhns M. N., and Stephens, L. M., (1985). An Architecture for Control and Communications in
Distributed Artificial Intelligence Systems, IEEE transactions on Systems, Man, and cybernetics, Vol. SMC-15,
No. 3

Yang, R., Wei, W., and Cummins, M. (2017). Application of Cognitive Load Theory to the Design and Evaluation

of Usability Study of mHealth applications: Opportunities and challenges IEEE International Conference on
Healthcare Informatics

Zhang, R. and Shang, Y., (2014). An Automatic Deployment Mechanism on Cloud Computing Platform. Cloud
Computing Technology and Science (CloudCom), 2014 |EEE 6th International Conference

Zhang, W., Xie, H. and Hsu, C. (2017). Automatic Memory Control of Multiple Virtual Machines on a
Consolidated Server, IEEE Transactions on Cloud Computing, Vol. 5, NO. 1, January-March

Zhang, Q., Liu, L., Ren, J., Su, G., and lyengar, A. (2016). iBalloon: Efficient VM Memory Balancing as a Service,
IEEE International Conference on Web Services

© James Oakes, 2020 236 I P a g e

Intelligent Management of Virtualised Computer Based Workloads and Systems

Appendix

Appendix A — VM Deployment Process

A.1 Expert Users Results

A.2 IDE Results

Step IDE Provisioning (sec)
Number
user1 |user2 [user3 [user4 |user5|user6 |user7 |user8 |user9 [user10 |user11 |user 12 |user 13 |user 14 luser 15 |user 16 [user 17 [user 18 |user 19 |user 20 [user 21 |user 22 |user 23 |user 24 [user 25 |user 26 |user 27 |user 28 |user 29 |user 30 |user 31

1 18 25 21 17 19 14 19 24 23 25 21 13 18 22 23 13 27 12 17 25 16 19 20 21 22 27 19 21 18 16 13

2 0

3 0

4 0

5 11 14 7 12 19 21 12 15 8 14 18 19 12 13 9 10 16 19 18 14 6 11 18 27 28 12 11 6 10 13 16

6 0

7 0

8 0

9 1214 1212 1190 1156 1176 |1123 1214 1212 1190 1156 1176 1311 1113 1361 1221 1231 1225 1123 1155 1119 1191 1232 1172 1143 1166 1274 1282 1180 1127 1198 1286
10 0

| Total Time [1243 1251 1218 1185 1214 |1158 1245 1251 1221 1185 1215 1343 1143 1396 1253 1254 1268 1154 1190 1158 1213 1262 1210 1191 1216 1313 1312 1207 1155 1227 1315
A.3 Oracle Results

Oracle Cloud (sec)

user 1|user 2 |user 3 |user 4 |user 5 user 6 user 7. user 8 user 9 user 10 |user 11 fuser12 Juser13 |user14 |user15 |user16 [user17 |user18 |user19 [user20 [user2l [user22 |user23 [user24 |user25 |user26 [user27 |user28 |user29 |user30 |user31
20 25 121 19 22 20 22 21 19 23 20 25 21 19 24 20 27 13 20 19 21 18 21 120 17 21 19 29 20
124 133 110 199 156 122 134 101 199 109 199 142 115 133 101 165 129 110 \29 164 131 133 110 F@ 147 123
10 12 14 9 17 9 8 14 9 14 10 15 9 17 9 12 19 9 11 15 16 14 9 17 21

158 176 137 155 145 187 196 122 160 |143 126 114
73 79

984

A.4 AWS Results

IAWS (sec)

10 0 0 0 10 0

10 0 0 0 10 0
16 ES 22 26 23 29 27 20 35 21 26 19 28 24 33 29
33 29 23 16 21 39 25 11 15 25 33 36 35 33 28 35
541 615 539 541 656 662 709 604 677 744 702 480 736 533 570 473
109 144 106 133 103 102 113 121 153 123 143 113 134 126 104 137
s [oas Jams o3 [e02 Joa2 [ot Joos a0 [esa Jsa7 [sas [aso__ 503 e [s35
1359 1486 1191 1429 1510 1493 1550 1378 1390 1616 1506 1213 1433 1241 1359 1228

A5 E i

.5 Experienced Users Results

A.6 IDE Results

|Step Number [IDE Provisioning (sec)

2 0 0 10 10 0 0 0 0 0 10 10 10 0 0 0 0 0 10 0 0 0 0 0 10 0 0 0 0 10 0 0

5 12 15 5 15 13 16 13 12 13 19 19 18 13 13 11 16 16 11 13 18 15 13 16 11 14 12 12 14 19 17 18

18 0 0 10 10 0 0 0 0 0 10 10 10 0 0 0 0 0 10 0 0 0 0 0 10 0 0 0 0 10 0 0

9 1233 1323 1421 1321 1466 1282 1181 1530 [1519 1160 1190 1289 1415 1332 1120 1472 1537 1545 1421 1383 1443 1205 1224 1114 1209 1248 1395 1435 1275 1344 1118

|Total Time 1265 1361 1460 1353 1516 1336 1219 1565 1555 1209 1233 1336 1464 1379 1164 1509 1577 1578 1453 1432 1490 1263 1284 1144 1260 1285 1445 1490 1336 1388 1174

© James Oakes, 2020

237 |Page

A.7 Oracle Results

Intelligent Management of Virtualised Computer Based Workloads and Systems

|Oracle Cloud (sec)
76 143 147 55 143 148 162 86 70 168 48 160 140 68 149 71 63 167 86 61 152 88 57 78 67 153 58 61 67 83 164
32 145 68 42 149 57 149 58 146 132 26 143 61 6. 67 30 37 5 1 51 69 58 138 53 141 143 38
A.8 AWS Results
|AWS (sec)
0 0 0 0 0 10 0 0 0 0 0 0 0 10 0 0 10 0 0 0 0 0 0 0 10 0 0 0 0 0 0
10 0 0 0 0 10 0 0 10 0 0 0 0 10 0 0 10 0 0 0 0 0 0 0 10 0 0 0 0 0 0
.

A.9 Novice Users Results
A.10 IDE Results
[step)
Number |IDE Provisioning (sec)

user 1 |user2 |user3 |user4 |user5 |user6 |user7 |user8 |user9 |user 10|user 11|user 12 |user 13 |user 14 user 15 |user 16 |user17 |user18 |user19 |user20 |user2l |user22 |user23 |user24 |user2s |user26 |user27 |user28 |user29 |user30 |user3i
1 109 54 209 27 321 231 80 154 178 313 255 112 112 319 150 256 126 190 164 @ 177 235 159 282 289 195 | 2(206 63 63
2 0 10 0 0 0 0 0 0 10 0 0 0 0 0 0 10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 10
3 0 0 0 0 0 0 0 0 10 0 0 0 0 0 0 10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
14 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
6 0 10 0 10 0 0 0 0 10 0 0 0 0 0 0 10 0 0 0 0 0 0 0 0 0 0 0 0 10 0 10
7 0 10 0 10 0 0 0 0 10 0 0 0 0 0 0 10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 10
8 0 10 0 0 0 0 0 0 10 0 0 0 0 0 0 10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 10
9 1321 1218 1423 1219 1336 1325 1247 1325 1493 1236 1365 1290 1500 1423 1433 1319 1341 1384 1318 1222 1345 1365 1333 1366 1428 1270 1315 1394 1471 1413 1472
10 0 10 0 0 0 0 0 0 10 0 0 0 0 0 0 10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
| Total Timq 1465 1333 1663 1258 1691 1596 1403 1514 1868 1485 1702 1562 1630 1579 1781 1491 1642 1576 1584 1437 1638 1595 1625 1603 1744 1603 1438 1620 1745 1493 1563
A.11 Oracle Results
|Oracle Cloud (sec)
A.12 AWS Results
IAWS (sec)

© James Oakes, 2020

238|Page

Intelligent Management of Virtualised Computer Based Workloads and Systems

Appendix B — Blind Peer Review Comments (Published Papers)

B.1 Simplified Deployment of Virtual Machines Using an Intelligent Design Engine

(Oakes et al, 2016)

B.2 Blind Review 1

Review Questions:

Detailed Comments

The paper presents and interesting mechanism to
enable simplified deployment of VMs.

It is mainly focused on the implementation details rather
on the mechanism advantages, comparisons and
motivation.

The presentation should be improved. E.g. the quality of
figure 2 is very bad, and the procedures should be
declared as such, not as figures.

The related work should be improved, and the position
of the proposal should be made more clear.

Please rate your satisfaction
with the basic sections
(introduction, conclusion,
works cited, etc.)?

Fair.

The material is ordered in a
way that is logical, clear, and
easy to follow?

Good.

The writer adequately
summarizes and discusses the
topic?

Good.

The writer makes some
contribution of thought to the
paper or merely summarizes
data or publications?

Good.

The writer introduces and

and appropriately?

documents sources adequately

Fair.

The formatting of the
manuscript is in accordance to
the prescribed paper format?

Fair.

© James Oakes, 2020

239|Page

Intelligent Management of Virtualised Computer Based Workloads and Systems

The paragraphs and sentences | Fair.

are cohesive (flow together

smoothly without disruption in

the train of thought)?

Potential interest to research Acceptable.
community

Originality of the work Acceptable.
Significance of the main idea(s) | Acceptable.
Technical quality of the paper | Acceptable.

Author response

No concerns with review comments raised.

B.3 Blind Review 2

Detailed Comments

This paper proposes an alternative solution for the
deployment of an intelligent private or public cloud
compute platform, built around a set of predefined rule-
based parameters with the purpose of providing a
simplified process for provisioning VMs.

The paper reads more like a technical project report
than a research paper. The main problem with this
paper is that it does not clearly identify how it is
different and better than previous work in this area.

The presentation and writing of the paper should also be
improved. The paper's writing and organization need
significant improvement in order for it to be readable
and technically clear.

The main weakness of the paper lies in its lack of
originality and novelty; without any performance
evaluation and comparison with other implementations
to show its advantages or uniqueness.

way that is logical, clear, and
easy to follow?

Please rate your satisfaction Fair.
with the basic sections

(introduction, conclusion,

works cited, etc.)?

The material is ordered in a Fair.

© James Oakes, 2020

240|Page

Intelligent Management of Virtualised Computer Based Workloads and Systems

The writer adequately
summarizes and discusses the
topic?

Poor.

The writer makes some
contribution of thought to the
paper or merely summarizes
data or publications?

Poor.

The writer introduces and
documents sources adequately
and appropriately?

Poor.

The formatting of the
manuscript is in accordance to
the prescribed paper format?

Fair.

The paragraphs and sentences
are cohesive (flow together
smoothly without disruption in
the train of thought)?

Fair.

Potential interest to research
community

Unattractive.

Originality of the work

Unattractive.

Significance of the main idea(s)

Unattractive.

Technical quality of the paper

Unattractive.

Author response

At the time the paper was written only the provisioning
mechanism, IDE engine, and preliminary evaluation
results were available. There has since been significant
work completed to provide further evidence that the
simplified VM deployment approach does reduce the
time to create and access VMs, reduce human errors,
and improve build consistency. The additional details
can be found in section 5.2 ‘Simplified VM Provisioning’,
section 5.3.1 ‘VM Provisioning Timed Results’ and
section 5.3.2 ‘Aggregated VM Provisioning Results’.

© James Oakes, 2020

241 |Page

Intelligent Management of Virtualised Computer Based Workloads and Systems

B.4 Measuring and Reducing the Cognitive Load for End Users of Complex Systems

(Oakes et al, 2019)

B.5 Blind Review 1

Detailed Comments

This paper examines a method and approach to
measure how complex a system is to use, and how to
reduce the complexity of such systems by minimising
the requirement for human inputs as much as possible,
in order to reduce the cognitive load for that user, or
group of users.

This paper addresses a study completed around using
virtualised computer management systems interfaces of
two well-known products AWS, Oracle Cloud, and
compares the complexity of the steps and interface for
end users to a private cloud less well-known system
called the IDE.

This paper is very well written. | have just one
suggestion. The virtualised computer management
systems introduced in this paper are very powerful.
They can be potentially applicable to the study of social
opinion evolution.

See the seminal paper 'Hybrid consensus for averager-
copier-voter networks with non-rational agents'. This
future direction can be mentioned in the conclusion
section to further guide the readers and establish a new
connection to a wider audience.

Please rate your satisfaction
with the basic sections
(introduction, conclusion,
works cited, etc.)?

Good.

The material is ordered in a
way that is logical, clear, and
easy to follow?

Very Good.

The writer adequately
summarizes and discusses the
topic?

Good.

© James Oakes, 2020

242 |Page

Intelligent Management of Virtualised Computer Based Workloads and Systems

The writer makes some
contribution of thought to the
paper or merely summarizes
data or publications?

Good.

The writer introduces and
documents sources adequately
and appropriately?

Very Good.

The formatting of the
manuscript is in accordance to
the prescribed paper format?

Very Good.

The paragraphs and sentences
are cohesive (flow together
smoothly without disruption in
the train of thought)?

Very Good.

Are there any grammar,
punctuation, or spelling
errors?

Little error.

Author Response

No concerns with review comments raised.

B.6 Blind Review 2

Detailed Comments

The paper lacks crucial parts: related work, evaluation.
Limitation of the study must be highlighted.
Add portion of discussion to share your thoughts.

Future work is not explained / more analysis of results is
needed. More conclusions and recommendations, also.

References must be recent; references older than five
years should only be cited if necessary.

way that is logical, clear, and
easy to follow?

Please rate your satisfaction Fair.
with the basic sections

(introduction, conclusion,

works cited, etc.)?

The material is ordered in a Fair.

© James Oakes, 2020

243 |Page

Intelligent Management of Virtualised Computer Based Workloads and Systems

The writer adequately
summarizes and discusses the
topic?

Fair.

The writer makes some
contribution of thought to the
paper or merely summarizes
data or publications?

Fair.

The writer introduces and
documents sources adequately
and appropriately?

Fair.

The formatting of the
manuscript is in accordance to
the prescribed paper format?

Fair.

The paragraphs and sentences
are cohesive (flow together
smoothly without disruption in
the train of thought)?

Fair.

Are there any grammar,
punctuation, or spelling
errors?

No.

Author response

No concerns with review comments raised.

© James Oakes, 2020

244 |Page

Intelligent Management of Virtualised Computer Based Workloads and Systems

Appendix C - VM Platform Build Process

C.1 IDE Provisioning

The following appendix details the process experiment steps for deploying as simply
as possible a VM using the IDE.

C.2 VM Deployment Steps

Step 1 &2: IDE access internally web-based on private network:

Hostname: saturn Hint: Enter hostname of the VM
VM Size: small Hint: Small, Medium or Large
Server: server_21 Hint: Host System

Deploy VM

Step 3,4,5, 6,7, and 8: Select one click deploy VM — web browser output:

© James Oakes, 2020 245 I P a g e

Intelligent Management of Virtualised Computer Based Workloads and Systems

7= 192.168.3.250/system phy v @ | [Bv Google 2 »

begin creation.saturnsmallserver_21

fusr/binfsudo fserver/scripts/nyx_createvm.sh saturn small server_21
Pseudo-terminal will not be allocated because stdin is not a terminal. Failed to
open the X 11 display! ssh -t -X root@ server_21 /server/scripts
myx_vboxcreate.sh saturn small Pseudo-terminal will not be allocated because
stdin is not a terminal.
0%...10%...20%...30%...40%...50%...60%...70%...80%...90%... 100% Interface
'vboxnet]5' was successfully created Virtual machine 'saturn’ is created and
registered. UUID: cel 77659-02 1a-47e3-b2{7-212deda3cdff Settings file: '/root
MNirtualBox ¥V Ms/saturn/saturn.vbox!'
0%...10%...20%...30%...40%...50%...60%...70%...80%...90%... 100% Disk
image created. UUID: Obe(d437-c324-4509-a78d-TeY0ed4575ee Waiting for
VM "saturn” to power on... VM "saturn” has been successfully started. end

creation.

Step 9 Kickstart configuration, build and install example:

saturn [Running] - Oracle VM VirtualBox (on server_21)

Machine WView Devices Help

kelcome to CentDS 6.6°

Install or upgrade an existing system
Install using a kickstart configuration
Install system with bazic wvideo driver
Rescue installed system

Boot from local drive

Memory test

Press [Tabl to edit options

Antomatic boot in 19 seconds. ..

CentOS 6

Community ENTerprise Operating System

© James Oakes, 2020

246 |Page

Intelligent Management of Virtualised Computer Based Workloads and Systems

E saturn [Running] - Oracle VM VirtualBox (on server_21)

Machine WView Devices Help
lJe lcome to Cent0S for i386

Dependency Check |

Checking dependencies in packages selected for installation

<{Tab>/<{Alt-Tab> between elements i <{3pace> selects i <F12> next screen
& & U] [&] Right Ctrl
saturn [Running] - Oracle VM VirtualBox (on server_21)

Machine View Devices Help
elcome to CentO0S for i386

Package Installation

Packages completed: 27 of 861

-
|

Installing scenery-backgrounds-6.8.8-1.elb6.noarch (27 MB
Scenery desktop backgrounds]

{Tab>s<Alt-Tab> between elements i <«Space> selects i «F1Z2> next screen

B & = @ (9 [=]Right Ctrl

© James Oakes, 2020 247 |Page

Intelligent Management of Virtualised Computer Based Workloads and Systems

saturn [Running] - Oracle VM VirtualBox (on server_21)

Machine View Devices Help
Welcome to Cent03 for i366

Complete |

Congratulations, your Cent03 installation is complete.

Please reboot to use the installed system. HNote that updates may
be available to ensure the proper functioning of your system and
installation of these updates is recommended after the reboot.

{Enter> to exit

B @ i [Z) Rignt ctn

© James Oakes, 2020 248 I P a g e

Intelligent Management of Virtualised Computer Based Workloads and Systems

Step 9: VM automatically created & running:

L Oracle VM VirtualBox Manager (on server_21) - 0O x

File Machine Help

T|-" —_—
x,_‘:i E:% ':9 ' ‘.{E}geta_ils | (&) Snapshots

New Settings Show Discard

= Wispidy EI
E Jupiter Video Memory: 8 MB
Powered O)
@ Remote Desktop Server. Disabled
a Video Capture: Disabled
Q Storage
Controller: SATA Controller
SATA Port O saturn.vdi (Normal, 10.00 GB)
Controller: IDE Controller —
IDE Primary Master: [CD/DWD] generic_centos_bootiso.iso (216.47
MB)
{8 Audio
Disabled
@ Network

Adapter 1. Intel PRC/1000 MT Desktop (Bridged Adapter, eth0)

& UsB

Disabled

[l Shared folders

Mone -

@ Description El

© James Oakes, 2020 249 I P a g e

Intelligent Management of Virtualised Computer Based Workloads and Systems

Step 10: Process for accessing the VM — automatic SSH access and secure RSA key installed:

E saturn [Running] - Oracle VM VirtualBox (on server_21)

Machine WView Devices Help

Cent0S release 6.6 (Final)
Kernel Z2.6.32-584.el6.i686 on an i686

localhost login: _

B @ = U] (€] right Ctri

Automatic key SSH RSA configuration and subsequent access:

Nl

© James Oakes, 2020 250|Page

Intelligent Management of Virtualised Computer Based Workloads and Systems

C.3 Oracle Cloud Provisioning

The following appendix details the process experiment steps for deploying as simply as
possible a VM in the Oracle Cloud; the know-how required to provision a VM is considerable
in terms of complexity.

C.4 VM Deployment Steps

e Step 1: Access Oracle Cloud:

(&
\!‘JJ (i) @ | https//login.us2.oraclecloud.com/oam/server/auth_cred_submit c ‘ Q, ora

| 1 BM (B Most Visited

&

The information you entered is incorrect. If you've forgotten
your password, click can't access your account.

Welcome UK change demsin @

james@oakes-consulting.com

Can'taccess your account?

e Step 2: Configure Role:

Manage Roles: James Oakes

Available Roles Selected Roles.

developer41952 Developer Service Administrator Identity Domain Administrator

developer41952 Developer Service User Role

javamb_Integration_SE Integration Service Based
Entitiement Administrator

javamb_Messaging_SE Messaging Service Based
Entitiement Administrator

Javamb_Process_SE Process Service Based
Entitlement Administrator

© James Oakes, 2020 251 I Page

Intelligent Management of Virtualised Computer Based Workloads and Systems

e Step 3: Select compute as the option for VM deployment:

Create Instance

(2> Database

O mysaL
&2 compute
C:,P Messaging

@ Java

(F,;P Application Container

e Step 4: Select the image you wish to use to install to the VM (OS version):
Image
Select an image (operating system and disk size) for your instance.
Oracle Images SN
Frivate Images OL_6.4_20GB_x11
O Descripfion: 153 6-20160812-194223 SITE
0s
Marketplace
OL_6.4_UEKR3_x86_64
Description: Oracle Linux 6.4 UEKR3
OS 0L_64_UEKR3_x86_64-16.36-20 v
o OLSAUVEKRLx 61
Description: Oracle Linux 6.4 UEKR4 SIEE
0s
OL_6.6_10GB_x11
Select
e Step 5: Select the VM CPU and Memory Parameters:

Site: US006_252 w | uk | james@oakes-consulting.com v
= ORACLE CLouD My Services Dashboard Users Notifications Monitoring
@ Compute
< Cancel O L] Review and Create >

Image shape Instance Storage Review
Shape
Select a shape (OCPU and memaory) for your instance.
Category Name OCPUs Memory
General Purpose oc3 1 7508
General Purpose oc4 2 15GB
General Purpose ocs 4 30 GB

© James Oakes, 2020 252 I Page

Intelligent Management of Virtualised Computer Based Workloads and Systems

e Step 6: Define VM Parameters:

< Cancel O Q []
Image Shape Instance Storage Review
Instance

Enter the required details to create your instance. Learn more

@0
© Pubiic

v
o Click here to select existing IP networks Create IP Network
ts Click here to select existing lists Create Security List
© SSHKSYS Ciicknere to select existing keys Add SSH Public Key
e Step 7: Define VM Storage:
@ Compute
< Cancel O o) O [] O Review and Create >
Image Shape Instance Storage Review

Storage

You can aftach existing storage volumes, or reate and attach a storage volume to the instance. A persistent bootvolume is created and used to boot your instance by default You can specify a different boot disk, or remove the persistent boot disk and boot from a
nonpersistent boot disk instead. You can also attach additional storage volumes to an instance after the instance is created

Attach Existing Volume Add New Volume

Name Disk # Size Tvpe Delete On Termination Boot Drive
Oracle_Solaris_11_3_20161107153632_slorage 1 34GB storage/default H
james_testo1 2 50 GB storage/default

© James Oakes, 2020 253 I Page

Intelligent Management of Virtualised Computer Based Workloads and Systems

e Step 8: Add SSH key, create a key and upload the pubic key:

Add SSH Public Key

Enter an S5H key name to reference this key for launching virtual machine instances. Copy your SSH

public key value and paste it here. Paste the key value exactly as it was generated. Don't append orinsert
any spaces, characters, or line breaks. Learn more.

AAAAB3NZACTyC2EAAAABIWAAAQ
EAtHCCoPOI0yUjo+/tXeblRgePQpQ

E3zZASsb

1ZMgETP2njol7EZIBMMgSQfCRIZD Select File
OtpVeOUb

IYfyiaEEaqOtE4wyge9lirhUZUEbGZ
E8gm3CMK5biwiZ+MEEZOhGvmY
33TyRASNXmcBKNXHWXQHThSTpf

Enabled

e Step 9: VM Creation process:

Sile:US006_752 w | uk | james@oakes-consufing.com ¥
= ORACLE CLOUD My Services
Y fluasnboara W7 Users @™ Notifications [l Monitoring
@ Compute Instances Network Storage Orchestrations Images.
| Instances 4 Summary
Instance Snapshots 1 1 7 5 5GB 84GB
instances ocPUs memory volume size in use
Instances

An Oracle Compute Cloud Senice instance is a virtual machine running a specific operating system, with the CPU and memory resources that you specify. Leam more.

©, | Category: Al v Show Al v

Create Instance (3
© Starting orchestration Oracle_Solaris_11_3_20161107162540_master. The instance will be created shortly once all the storage volumes come online. Additional status information available in the orchestrations tab.
Name Status OCPUS Memory Volumes

Public IP Private IP
E Oracle_Solaris_11_3_2016110715... Running 1 75GB
=

84 GB 129144 152 85 10.16.165.154

© James Oakes, 2020 254 I Page

Intelligent Management of Virtualised Computer Based Workloads and Systems

e Step 10: Process for accessing the VM via the internet:

10 Accessing an Oracle Solaris Instance Using SSH

In instances created by using any of the Oracle-provided Oracle Solaris images. a user named cpc is preconfigured. The opc user is assigned the System Administrator profile
and can perform basic administration tasks without entering a password by using pfexec.

Prerequisites

« Ensure that the SSH private key corresponding to the public key that you associaied with your instance while creating it is available on the host from which you want to ssn
to the instance.

= Ensure that the instance has a public IP address. To find out the public IP address of your instance, view the information on the Instances page. See Listing Instances.

Procedure
You can use SSH fo log in to your instance as the default user, opc, by using the following command:
ssh opc@ip address —i private key

+ [p_address is the public IP address of the instance.

If you've enabled a VPN tunnel to your Oracle Compute Cloud Service site, you can use the private IP address of your instance to connect to the instance. To set up a VPN
tunnel, see Connecting to Instances in a Dedicated Site Using VPN.

« private_key is the full path and name of the file that contains the privaie key corresponding to the public key associated with the instance that you want to access.
If an error occurs, see Can't connect to an instance using SSH.

When you're logged in as the opc user, you can use the pfexec command fo run administrative tasks.

© James Oakes, 2020 255 I Page

Intelligent Management of Virtualised Computer Based Workloads and Systems

C.5 AWS Cloud Provisioning

The following appendix details the process experiment steps for deploying as simply as
possible a VM in the AWS Cloud; the know-how required to provision a VM is considerable in
terms of complexity.

C.6 VM Deployment Steps

e Step 1and 2 - Login and obtain role/access:

amazon

webservices

Sign In or Create an AWS Account
What is your email (phone for mobile accounts)?
E-mail or mobile number:

james@oakes-consulting.com

I am a new user.

+» Iam areturning user
and my password is:

Keep me signed in. Details

LSlgn in USiNg our SecuUre server °_/I

© James Oakes, 2020 256 I P a g e

Intelligent Management of Virtualised Computer Based Workloads and Systems

e Step 3 — Select Compute & Quick Launch:

Build a solution

Get started with simple wizards and automated workflows.

@ Launch a virtual machine @ Build a web app
With EC2 With Elastic Beanstalk
~1 minutes ~6 minutes

E Host a static website Create a backend for your
mobile app

With 53, CloudFront, Route 53
~6 minutes ‘With Mobile Hub
~5 minutes

Deploy a serverless
microservice

With Lambda, API Gateway
~2 minutes

Reqgister a domain

With Route 53
~3 minutes

Quick Launch an EC2 Instance

Amazon EC2 provides virtual machines in the AWS cloud, known as EC2 instances.

This quick launch wizard lets you create an EC2 instance with AWS-recommended default
configuration. If you need more options or fine-grained control over instance parameters, please
use the advanced EC2 Launch Instance wizard.

© James Oakes, 2020

257 |Page

e Step 4,5,6 and 7 — Configure VM parameters, OS image and more:

Intelligent Management of Virtualised Computer Based Workloads and Systems

Quick Launch an EC2 Instance

Get started creating a General Purpose instance in the US West (Oregon) region that is powerful enough to run most web apps.

Name your EC2 instance

This is how you will identify your instance in AWS console. Choose a name that is easy for you to

remember.

Example: MyFirstinstance

Use this name

Cancel

Quick Launch an EC2 Instance

Get started creating a General Purpose instance in the US West (Oregon) region that is powerful enough to run most web apps.

© James Oakes, 2020

james-test

Select an Operating System

(109

5use

ag

Amazen Linux
AMI

rediia

Red Hat Linux
Enterprise 72

SUSE Linux
Enizronss Server 12
sM

2016034

Next

®

Ubuntu
Server1404LTS

Windows
‘Server 2012 A2 Gase

mare oplians

258 | Page

Intelligent Management of Virtualised Computer Based Workloads and Systems

Quick Launch an EC2 Instance

Get started creating a General Purpose instance in the US West (Oregon) region that is powerful enough to run most web apps.

James Oakes, 2020

james-test

Select an Operating System

g &= ® [
redfit suse LA
Amazen Linux Red Hat Linux SUSE Linux untu Windows
AMI Enterprise 7.2 Entzrpnss Server 12 Server 1404 LTS ‘Berver 2012 A2 Sase mare opfians

2015034 sM

Red Hat Enterprise Linux 7.2
Red Hat Enterprise Linux version 7.2 (HWVM), EBS General Purpose (S5D) Volume Type

Don't see the OS you are looking for? AWS offers additional options through the advanced ECZ Launch
Instance wizard or you can explore the AWS Marketplace.

Next

259 |Page

Intelligent Management of Virtualised Computer Based Workloads and Systems

Select an Operating System

Red Hat Linux

Select an instance type

mare apons

t2.micro
1 Core vCPU (up to 3.3 GHz), 1 GIB Memory RAM, 8 GB Storage

Need a different instance type? AWS offers additional options through the advanced EC2 Launch
Instance wizard.

© James Oakes, 2020 260 I Page

Intelligent Management of Virtualised Computer Based Workloads and Systems

Select an Operating System

Red Hat Linux

Select an instance type

t2.micro
1 Core VCPU (up to 3.3 GHz), 1 GIB Memory RAM. & GB Storage

Create a key pair

Amazon EC2 secures your instance using a key pair. In this step you will download the private key to
your computer.

Save it in a safe place and use it when you connect to your instance.

james-test

Cancel

James Oakes, 2020

261|Page

Intelligent Management of Virtualised Computer Based Workloads and Systems

e Step 8 — configure SSH key:

Create a key pair

Amazon EC2 secures your instance using a key pair. In this step you will download the private key to
your computer.

Save it in a safe place and use it when you connect to your instance.

james-test

AWS does not keep a copy of your private key and it cannot be recovered if lost. Please save it in
a safe place.

Okay! Start Download

Select an instance type

t2.micro
1 Core vCPU (up 10 2.3 GHz). 1 GIB Memory RAN, 8 GB Storage

Private Key

james-test
Generate a new key

262 |Page

James Oakes, 2020

Intelligent Management of Virtualised Computer Based Workloads and Systems

Create a key pair

Amazon EC2 secures your instance using a key pair. In this step you will download the private key to
your computer.

Save it in a safe place and use it when you connect to your instance.

‘ james-test-key ‘

| Use Previous Key | Download New Key

Private Key

james-test-key
Generate a new key

Create this instance

263|Page

James Oakes, 2020

Intelligent Management of Virtualised Computer Based Workloads and Systems

e Step 9 & 10 — VM creation process:

Resource Groups v %

Services

Your Instance is Launching!

Amazon EC2 is launching your instance. This process should only take a few minutes.

You can proceed to the EC

‘onsole while this process takes place.

J

james-test

Status: In progress...

While you wait, learn more about...
Managing your Instance
You can manage your instance in the EC2 console.

Click on your instance and explore available options in
the console.

See your instance in EC2 console

Connecting to your Instance

You can connect to your instance with your client. In the
EC2 console, select your instance and click 'Connect'
for detailed instructions.

Proceed to EG2 console

Securing your Instance

To protect your instance, we've configured a security
group (a firewall) to only accept connections from your
current IP (86.141.102.172). To enable other
connections, such as HTTP, add rules to the security
group.

Configure security group

Services v Resource Groups ~

Your Instance is Launching!

Amazon EC2 is launching your instance. This process should only take a few minutes.

You can proceed to the

onsole while this process takes place.

V)

James-test

Status: Completed!

While you walit, learn more about...
Managing your Instance
You can manage your instance in the EC2 console.

Click on your instance and explore available options in
the console.

See your instance in EC2 console

© James Oakes, 2020

Connecting to your Instance

You can connect to your instance with your client. In the
EC2 console, select your instance and click 'Connect'
for detailed instructions.

Go to EC2 console

Proceed to EC2 console

Securing your Instance

To protect your instance, we've configured a security
group (a firewall) to only accept connections from your
current 1P (86.141.102.172). To enable other
connections, such as HTTP. add rules to the security
group.

Configure security group

264|Page

Intelligent Management of Virtualised Computer Based Workloads and Systems

Launch Instance Connect Actions v

L
Q| Name - james-test Add filter [~] 1to1of1
[} Name ~ Instance ID ~ Instance Type - Availability Zone - Instance State - Status Checks ~ Alarm Status Public DNS ~ PublicIP ~ Key Name b
B james-est i-048214b4dd811c Tef t2.micro us-west-2b @ running = Initializing None N ec2-35-164-244-66.us-.. 35.164.244.66 james-test-key

e Step 10 — Connect to your VM instance:

Connect To Your Instance X

I would like to connect with ® A standalone SSH client
W A Java SSH Client directly from my browser (Java required)
To access your instance:

1. Open an SSH client. (find out how to connect using PUTTY)

2. Locate your private key file (james-test-key.pem). The wizard automatically detects the key you used to
launch the instance.

3. Your key must not be publicly viewable for SSH to work. Use this command if needed:
chmod 480 james-test-key.pem
4. Connect to your instance using its Public DNS:
ec2-35-164-244-66.us-west-2. compute.amazonaws . com
Example:
ssh -i "james-test-key.pem” ec2-userflec2-35-164-244-66.us-west-2,compute.amazonaws.com

Please note that in most cases the username above will be correct, however please ensure that you

read your AMI usage instructions to ensure that the AMI owner has not changed the default AMI
username.

If you need any assistance connecting to your instance, please see our connection documentation .

© James Oakes, 2020 265 I Page

Intelligent Management of Virtualised Computer Based Workloads and Systems

Appendix D — IDE Build Procedures

D.1 Procedure 1

Procedure I: Deploy VM

DECLARE stringsv, p, 5, 0, ¢, h, b, n

DECLARE an integer z, m, u, v

DECLARE a Eoolean x

GET values for v,p,s,0,¢,h,b,n,z m,u,yx

A VM name, VM path, source media path, 05 name type,
A contreller ppe, VM disk path, boot crder, network npe

A hard dise size in MB, memeory m MB, CPU (threads), CPU
A execution cap percentage (Tero means none)

A pae (physical address extension) vue(1) or false(0)

PROCEDURE deployvm (vp,s,o0,c,hbnzmuyx)

FOR EACH component v,p,s,0,c,ih,z

build virtualm anagement component

END FOR EACH

FOR EACH modification b,z,m,u,m,yx

IF (x=00Ry=0) THEN
ignore modifcation
ELSE

m odify virtualm anagement com ponent

ENDIF
END FOR EACH
start virtualmachine v option headless
END PROCEDURE

D.2 Procedure 2

4 get values from IDE for system values
pass parameters through
process each component in order

register each compenent i the hypervisor

A medify VM configuration
& if pae false or execution cap zero
A ignove cr skip modification

A modify VM values

A start the VM in headless mode

Procedure 7. Configure BEespolke Sourmce

DECLARE stringsw, 5, o, b I, m, x

GET values for vso bl mx

PROCEDURE Buildsource
IF media 5 not mounted THEIN

VI name,

General source IS0 media path, ISG build directory,

unigque VIS ISO source identifier; isolinux source identifier,
#images source identifier, curre nt isolinw cfg

get values from IDE for srstem valwes

mount IS0 media using loopback

ENDIF

IF media targer o does not exist THEMN

create IS0 build directory
ENDIF

IF a modified version of x exists THEN

presere a copy of x
ENDIF

recursively copy over source | to target o

recursively copy over source m fo rarger o
IF a modified version of x was taken THEMN
restore a copy of x to target o

ENDIF

change to directory o

dynamically build customised image b
IF build of b exir zero THEN

restore a copy of x to target o

ELSE
report ervor
ENDIF
END PROCEDURE

© James Oakes, 2020

A check media is mvailable to exoract firom
Afereare the loopback mountpaine

#eheck the target ISO directory exists
Afereare the directory

4 protect existing configuration
Areale backup copy of ixolinme.cfg

A recursively copy of source isolinuwx direcoi
Arrecursively copy of the sourre images directory:
S checkif restore ir required

Afrestore conifguraton

#make current directory bespole ISO directory
A build customised mind IS0 wsing mkisofs

A check midsofs successful exit 2ers

A restore conifguration

#fTag an error — IDE decides further acton (5

266 |Page

Intelligent Management of Virtualised Computer Based Workloads and Systems

D.3 Procedure 3

Procedure 3: Export Shares

DECLARE astrings, p, q, 2

150 media filename, IS0 0§ meuntpoint, kickstart

eonfiguration directory, kickstart cenfiguration mountpoint

GET values for s,p,qz // get values from IDE for system values
PROCEDURE exportfs (s,p,q,z) # pass parameters through
create mountpoint q # eveate kickstart configuraten directory
create mountpoint p # ereate 05 directory
loop back mount file s to mounipoint p # create loopback mount for 0S from 150
bind directory q to mountpoint z # create bind mount for kickstart configuration
NES export mountpoint p readonly #/ NFS export for 05 data

NES export mountpoint z readonly
END PROCEDURE

D.4 Procedure 4

NFS export for install data

Procedure 4 Build Install Configuration

DECLARE an array type string ¢
DECLARE a string s
DECLARE integers b, e

GET values for c,s,b

backup original kickstart config
set b equal to array element size
set e to zero

FUNCTION writefile (x)
write value x to file 5
return

END FUNCTION

WHILE ¢ is less than or equal to b

A Arvay 5 to hold all kickstart data
A Kickstart ouput confiiguration file
A Array size definition, Arvay counter

A getvalues frem IDE for system values

A backup eriginal kickstart configuration
set variable equal 10 array dimension
A arvay counter

process all arvay values

Call FUNCTION writefile (array clelement e]) # repeat write values

increment e by one
END WHILE

© James Oakes, 2020

A increment array counter

267 |Page

Intelligent Management of Virtualised Computer Based Workloads and Systems

D.5 Source of Knowledge Rules

e Knowledge rules:
o Simple set of initial rules (expert heuristic knowledge, e.g. self-discovery)
o Avoid having redundant rules within the set (i.e. rules not used).

e Focus on doing things well (e.g. high utilisation/relevance of rules), with a structured
set of situations based on the subjects areas investigated.

e Source of knowledge rules is based on:
o The authors expert knowledge.

e Supporting common-sense of rules/actions from other experts in the same field of
study

e Avoidance of:
o Subsequent human modification.

© James Oakes, 2020 268 I P a g e

Intelligent Management of Virtualised Computer Based Workloads and Systems

Appendix E - VM Failover & Migration

E.1 IDE Results

Fault Detection and VM Migration Process

Test1 Test2 Test3
IDE
IDE VM Migration/Restart 14.22 15.10 16.45
IDE VM Failure Detection 7.34 7.22 7.56

21.56 22.32 24.01

Study 2(vMotion)
Study2 (XenMotion)
Paper 2 A performance study of live VM migration technologies

vMotion (Seconds) - Bandwidth 150
XenMotion (Seconds) - Bandwidth 700
vMotion (Seconds) - Latency 30
XenMotion (Seconds) - Latency 150
vMotion (Seconds) - Packet loss 20
XenMotion (Seconds) - Packet loss 75

Study 1 (vMotion only)

90 50
400 200
120 700
175 300
100 300
125 200

Test4

Paper 1 Performance Implications of Resource OverAllocation during the Live Migration

vMotion (Seconds) 30

38 48

Appendix F - VM CPU and Memory

F.1 IDE Results

CPU and Memory Resource Issue Detection

IDE
IDE VM CPU Resource Issue Detection (Seconds)
IDE VM Memory Resource Detection (Seconds)

IDE VM CPU Resource addition (Seconds)
IDE VM Memory balloon addition (Seconds)

IDE average CPU util % over 300 (Seconds)
IDE average Mem util % over 300 (Seconds)

© James Oakes, 2020

Test1

300.00

300.00

5.32
5.51

81.13
83.01

Test 2

Test5 Test 6
15.30 15.21 14.96
7.13 7.21 7.19
22.43 22.42 22.15
40 30 20
120 100 80
800 900 1000
450 600 750
600 700 700
250 275 280
52 48 53
Test3 Test4
300.00 300.00 300.00
300.00 300.00 300.00
4.56 5.28 7.26
4.15 5.13 4.12
80.95 80.97 80.77
81.81 80.92 82.12

Test5

300.00
300.00

6.61
5.95

81.28
82.62

Migration Mean Avg (seconds)

Test6

300.00
300.00

7.43
4.94

80.84
82.84

15.21
7.28
22.48

63.33
266.67
591.67
404.17
403.33
200.83

Average Time

300.00
300.00

6.08
4.97

269 |Page

Intelligent Management of Virtualised Computer Based Workloads and Systems

Appendix G — Original Proposal

G.1 Aims & Objectives

1. Perform a detailed investigation and analysis of existing computer virtualisation and
intelligent management systems, in order to provide underpinnings and evidence of
originality of the project.

2. Design and develop a real-time system performance monitoring tool to provide
statistical data on CPU/Memory/I0 usage and health, enabling data to be gathered
reliably from all remote systems ready for processing by the planned intelligent
management system.

3. Investigate relevant Artificial Intelligence (Al) techniques for use within the
development of an Intelligent Decision Engine (IDE) to automatically manage
workloads and virtualised components.

4. Integrate the system performance monitoring tool with the IDE to enable it to process
real-time data inputs and make effective management decisions/actions based on the
data feeds/analysis.

5. Undertake a series of experimental trials to evaluate the performance monitoring tool
and the IDE, within a suitable development framework using formulated test scenarios

and data.

6. To undertake a live demonstration of the final working platform as a proof of concept
in operation.

© James Oakes, 2020 270 I P a g e

