

Intelligent Management of Virtualised Computer Based Workloads and Systems

Submitted for the Degree of

Doctor of Philosophy

At the University of Northampton

2020

James Daniel Oakes

Intelligent Management of Virtualised Computer Based Workloads and Systems

© James Oakes, 2020 2 | P a g e

© James Oakes 2020.

This thesis is copyright material and no quotation from it may be published without
proper acknowledgement.

Intelligent Management of Virtualised Computer Based Workloads and Systems

© James Oakes, 2020 3 | P a g e

Acknowledgements

I would like to acknowledge the support of my supervisory team, Dr Mark Johnson, Dr

James Xue and Dr Scott Turner for their invaluable advice and guidance throughout my

research degree. I dedicate this work to my three wonderful children, Joshua, Jacob and

Olivia.

Intelligent Management of Virtualised Computer Based Workloads and Systems

© James Oakes, 2020 4 | P a g e

Abstract

Managing the complexity within virtualised IT infrastructure platforms is a common

problem for many organisations today. Computer systems are often highly consolidated into

a relatively small physical footprint compared with previous decades prior to late 2000s, so

much thought, planning and control is necessary to effectively operate such systems within

the enterprise computing space. With the development of private, hybrid and public cloud

utility computing this has become even more relevant; this work examines how such cloud

systems are using virtualisation technology and embedded software to leverage advantages,

and it uses a fresh approach of developing and creating an Intelligent decision engine (expert

system). Its aim is to help reduce the complexity of managing virtualised computer-based

platforms, through tight integration, high-levels of automation to minimise human inputs,

errors, and enforce standards and consistency, in order to achieve better management and

control. The thesis investigates whether an expert system known as the Intelligent Decision

Engine (IDE) could aid the management of virtualised computer-based platforms. Through

conducting a series of mixed quantitative and qualitative experiments in the areas of research,

the initial findings and evaluation are presented in detail, using repeatable and observable

processes and provide detailed analysis on the recorded outputs. The results of the

investigation establish the advantages of using the IDE (expert system) to achieve the goal of

reducing the complexity of managing virtualised computer-based platforms. In each detailed

area examined, it is demonstrated how using a global management approach in combination

with VM provisioning, migration, failover, and system resource controls can create a powerful

autonomous system.

Intelligent Management of Virtualised Computer Based Workloads and Systems

© James Oakes, 2020 5 | P a g e

Abbreviations

AI Artificial Intelligence

AMI Amazon Machine Image

CLR Cognitive Load Rating

CLT Cognitive Load Theory

DaaS Database as a Service

DNS Domain Name Service

ESX Elastic Sky X (VMware hypervisor)

FC Fibre Channel

Gb Gigabits

GB Gigabytes

GHz Gigahertz

GNU Unix like operating system (free software foundation)

HA High Availability

HyperV Microsoft’s Hypervisor

ICMP Internet Control Message Protocol

I/O Input/Output

i86pc 8086 intel/AMD architecture

IaaS Infrastructure as a Service

IDE Intelligent Decision/Design Engine

IEEE Institute of Engineering Electrical and Electronics

IOPS Input/Output Operations per second

IoT Internet of Things

iSCSI Internet Small Computer Systems Interface

JSON JavaScript Object Notation

KBS Knowledge Based System

KVM Kernel-based Virtual Machine

Intelligent Management of Virtualised Computer Based Workloads and Systems

© James Oakes, 2020 6 | P a g e

LACP Link Aggregation Control Protocol defined by IEEE 802.1ax

LAMP Linux Apache MySQL PHP

LAN Local Area Network

LDOM Logical Domain

LOM Lights Out Management

LUN Logical Unit

Mb Megabits

MTBF Meantime Between Failure

NAS Network Attached Storage

NFS Network Filesystem

NGZ Non-Global Zone, Solaris container

N+1 Indicates a resilient backup component is available

OEM Oracle Enterprise Manager

OOC Oracle Ops Center, formally Sun Management Center

OS Operating System

OVM Oracle Virtual Machine Server

PaaS Platform as a Service

PXE Pre-boot Execution Environment

RAM Random Access Memory

RDBMS Relational Database Management System

RPM Redhat Package Manager

SaaS Software as a Service

SAIL Stanford Artificial Intelligence Language

SAMP Solaris Apache MySQL PHP

SAN Storage Area Network

SAS Serial Attached SCSI

SATA Serial AT Attachment

Intelligent Management of Virtualised Computer Based Workloads and Systems

© James Oakes, 2020 7 | P a g e

SCSI Small Computer Systems Interface

Solaris OS Sun Microsystems Solaris Operating System (now Oracle)

SPARC Scalable Processor Architecture

SPoF Single Point of Failure

SSH Secure Shell

sun4u SPARC-Enterprise SPARC V9 Unix Kernel

sun4v SPARCV9 Unix Kernel

SunOS UNIX System V, now known as Solaris

TCP/IP Transmission Control Protocol / Internet Protocol

VAX Computers manufactured by Digital Equipment Corporation

VirtualBox Innotek/Sun’s type II Hypervisor now owned by Oracle Corporation

VIP Virtual IP

VLAN Virtual LAN

VLAN Tagging VLAN encapsulation defined by IEEE 802.1Q

VM Virtual Machine

VMDK Virtual Machine Disk

vNAS Virtual Network Attached Storage

x86 Intel 8086 CPU Compatible Architectures

Xen Xen Hypervisor, Open-source virtualisation project

YAML YAML Ain't Markup Language

ZFS Zetabyte Filesystem

Zpool A ZFS dataset / pool

Intelligent Management of Virtualised Computer Based Workloads and Systems

© James Oakes, 2020 8 | P a g e

Nomenclature

Greek and Latin Script, Letters & Maths Symbols

• Relating to Cluster Quorum

𝜂 denotes a cluster node that is available or unavailable
𝜖 denotes a cluster node that is unavailable
Τ denotes the total number of cluster node votes possible
𝜐 denotes the number of cluster node votes currently available
𝜛 denotes the minimum number of votes needed to establish a quorum
𝜚 denotes the ability to establish a cluster quorum

• Relating to Cognitive Load Rating

 𝛽 denotes the Cognitive Load Rating (CLR) for one task
 ∆ denotes the Task Complexity
 ∅ denotes the Process Mechanism
 𝜆 denotes the CLR for a set (sum) of tasks
 n denotes the number of tasks
 t denotes the task identifier
 𝛫 denotes the CLR mean average for a set of tasks

• Relating to User Task Complexity

 R denotes the derived result
 𝜇 denotes user input
 s denotes a simple task
 m denotes a moderate task
 d denotes a difficult task
 x denotes a manual task
 y denotes a semi-automatic task
 z denotes an automatic task

• Relating to VM provisioning Timing

𝒯 denotes the total time to deploy a VM
n denotes the task number
t denotes the task identifier
𝜃 denotes the participant time taken to complete a task (in seconds)
𝜓 denotes the average (mean) participant time taken per task (in seconds)

Intelligent Management of Virtualised Computer Based Workloads and Systems

© James Oakes, 2020 9 | P a g e

Table of Contents

CHAPTER 1: INTRODUCTION .. 20

1.1 Background .. 20
1.1.1 Enterprise Computer Virtualisation .. 21
1.1.2 Type I Hypervisors: Advantages and Disadvantages .. 24
1.1.3 Type II Hypervisors: Advantages and Disadvantages ... 24
1.1.4 Cloud Computing (Public, Hybrid and Private) .. 24
1.1.5 Common Virtualisation Problems ... 28

1.2 Thesis Motivation and Aims ... 29

1.3 Thesis Benefits and Targeted Applications ... 30

1.4 Thesis Limitations .. 31

1.5 Thesis Summary ... 34

CHAPTER 2: EXPERT, CLOUD AND VIRTUALISED SYSTEMS .. 36

2.1 Introduction ... 36

2.2 Intelligent Organisation ... 37

2.3 The Origins of Artificial Intelligence ... 38

2.4 Expert System Applications .. 39
2.4.1 Introduction .. 39
2.4.2 R1/XCON ... 39
2.4.3 MYCIN ... 40
2.4.4 INTERNIST-I ... 41
2.4.5 DENDRAL (DENDritic ALgorithm) .. 41
2.4.6 HEARSAY I and II .. 42
2.4.7 MACSYMA (MAC’s SYmbolic MAnipulator) ... 42
2.4.8 PROSPECTOR ... 42
2.4.9 Expert Systems: Why Have They Been Considered?.. 43

2.5 Public Cloud Systems ... 43
2.5.1 Introduction .. 43
2.5.2 Case Study 1: Amazon EC2 ... 44
2.5.3 Case Study 2: Oracle Cloud .. 47
2.5.4 Cloud Computing: How it Has Created Utility Based Computing? .. 49

2.6 Current Virtualisation and Cloud Management Approaches .. 50
2.6.1 Introduction .. 50
2.6.2 Reviewed Approaches ... 50
2.6.3 Conclusions ... 56

Intelligent Management of Virtualised Computer Based Workloads and Systems

© James Oakes, 2020 10 | P a g e

2.7 Intelligent System Approaches ... 61
2.7.1 Introduction .. 61
2.7.2 Algorithms ... 61
2.7.3 Text Mining ... 62
2.7.4 Natural Language Analysis ... 63
2.7.5 Inference Engine (Forward Chaining) ... 64
2.7.6 Cognitive Load Theory ... 65

2.8 Summary.. 66
2.8.1 Introduction .. 66
2.8.2 Gap Analysis .. 67
2.8.3 Approach Challenges ... 68
2.8.4 Justifications .. 70

CHAPTER 3: METHODOLOGY AND EVALUATION STRATEGY .. 71

3.1 Methodology Introduction ... 71

3.2 Development Framework .. 72
3.2.1 Laboratory Setup ... 72
3.2.2 Software Configuration .. 74

3.3 Evaluation Strategy .. 74
3.3.1 Evaluation Approaches .. 74
3.3.2 Expert System Evaluation ... 75
3.3.3 Experiment Design ... 77

3.4 Qualitative Versus Quantitative Methods .. 78
3.4.1 Qualitative Evaluation .. 78
3.4.2 Quantitative Evaluation ... 80
3.4.3 Data Analysis ... 82

3.5 Evaluation of Comparative Systems ... 83
3.5.1 Investigation 1: Autonomous VM Deployment ... 83
3.5.2 Investigation 2: Cognitive Complexity System Evaluation.. 85
3.5.3 Investigation 3: Workload Migration and Evacuation of VMs .. 87
3.5.4 Investigation 4: Overload of VM Memory Usage, Detection Time, and Resolution Time 89
3.5.5 Investigation 5: Overload of VM CPU usage, Detection Time, and Resolution Time 89

3.6 Summary.. 90

CHAPTER 4: THE INTELLIGENT DECISION ENGINE ... 92

4.1 Introducing the Intelligent Decision Engine .. 92

4.2. IDE Characteristics .. 93
4.2.1 Data Organisation .. 93
4.2.2 Decision Making .. 94
4.2.3 System Learning .. 94
4.2.4 Algorithms and Procedures .. 94

Intelligent Management of Virtualised Computer Based Workloads and Systems

© James Oakes, 2020 11 | P a g e

4.3 IDE Components .. 103

4.4 Defining the IDE Model .. 108

4.5 Data-storage, Memory and Information Retrieval ... 109
4.5.1 Long Term Storage Strategy ... 109
4.5.2 Short and Medium Term Storage Strategy.. 109

4.6 Data Processing and Organisation .. 109
4.6.1 Data flows Between Systems ... 110
4.6.2 Creating the Inference Engine .. 111
4.6.3 System Self-management and Learning.. 111
4.6.4 System Real-time and Source Data ... 112

4.7 System Availability and Autonomy .. 114
4.7.1 Establishing a Quorum ... 115
4.7.2 Command Zone Concept .. 117
4.7.3 Keep Alive Critical Processes .. 119

4.8 IDE Rule-base and Inference Engine ... 120
4.8.1 IDE Trigger Events .. 120
4.8.2 Physical System Events .. 120
4.8.3 VM System Events ... 121
4.8.4 Text Analysis .. 124
4.8.5 Knowledge Rule Justifications .. 127

4.9 Summary.. 133

CHAPTER 5: SIMPLIFIED DEPLOYMENT OF VIRTUAL MACHINES .. 134

5.1 Introduction ... 134

5.2 Simplified VM Provisioning .. 135
5.2.1 Experiment Process ... 135

5.2.1.1 Task Complexity Definition ... 135
5.2.1.2 User Types .. 137
5.2.1.3 Task Types .. 137
5.2.1.4 Process Types and Complexity Value Weightings... 138
5.2.1.5 User Results: Mode Average of Task Complexity Description ... 139
5.2.1.6 VM Provisioning Process ... 140
5.2.1.7 Hardware Provisioning Platform ... 143
5.2.1.8 VM Sizing Methods ... 143

5.2.2 Experiment 1: VM Provisioning Timing Comparison.. 144
5.2.2.1 Formalisation ... 144
5.2.2.2 VM Provisioning Expert Users ... 145
5.2.2.3 VM Provisioning Experienced Users .. 145
5.2.2.4 VM Provisioning Novice Users ... 145
5.2.2.5 VM Provisioning Build Methods .. 146
5.2.2.6 Re-visiting the IDE Provisioning Experiment with Queued Pre-built System Images.................... 146

5.2.3 Experiment 2: Cognitive Evaluation Performance ... 146

Intelligent Management of Virtualised Computer Based Workloads and Systems

© James Oakes, 2020 12 | P a g e

5.2.3.1 Converting Qualitative Data into Quantitative Data: Is This Possible? .. 147
5.2.3.2 Cognitive Experimental Process .. 148
5.2.3.3 Cognitive Load Rating Formula .. 150
5.2.3.4 User Task Complexity Formula .. 151
5.2.3.5 Cognitive Load Rating Chart .. 152

5.3 Results ... 152
5.3.1 VM Provisioning Timed Results .. 152

5.3.1.1 Expert Users ... 153
5.3.1.2 Experienced Users .. 155
5.3.1.2 Novice Users... 156

5.3.2 Aggregated VM Provisioning Timed Results.. 158
5.3.2.1 Expert Users ... 158
5.3.2.2 Experienced Users .. 159
5.3.2.3 Novice Users... 161

5.3.3 Cognitive Load Rating Results .. 163
5.3.4 Overall Results ... 164

5.4 Summary.. 165

CHAPTER 6: IMPROVING WORKLOAD MIGRATION STRATEGIES ... 167

6.1 Introduction ... 167

6.2 Workload Migration Methods .. 167

6.3 Experiment Process .. 168

6.4 Experiment 3: Workload Migration and Evacuation of VMs ... 169
6.4.1 Experiment 3.1: IDE VM Migration/failover Process ... 170
6.4.2 Experiment 3.2: vMotion VM Migration/failover Process ... 172
6.4.3 Experiment 3.3: vMotion and XenMotion VM Migration/failover Process ... 173

6.5 Results ... 175

6.6 Summary.. 179

CHAPTER 7: OPTIMISING PERFORMANCE AND AVAILABILITY OF VIRTUAL MACHINES 180

7.1 Introduction ... 180

7.2 Experiment Process .. 183
7.2.1 IDE VM Performance Algorithm ... 183
7.2.2 VirtualBox Memory Balloon Driver ... 184
7.2.3 Simulate VM CPU and Memory Stress .. 185
7.2.4 Characteristics Compared Against Other Studies .. 186
7.2.5 IDE Global Resource Management ... 189
7.2.6 Comparative Methods Analysis .. 189

7.3 Optimisation of System Performance and Availability ... 193

Intelligent Management of Virtualised Computer Based Workloads and Systems

© James Oakes, 2020 13 | P a g e

7.3.1 x86-64-bit Architectures and Memory Ballooning .. 193
7.3.2 x86-64-bit Architectures with CPU Hotplug Features .. 193

7.4 Experiment 4: Overload of VM Memory Usage, Detection Time, and Resolution Time 194
7.4.1 IDE VM Memory Ballooning Process .. 194
7.4.2 Study 1 VM Memory Balloon Process ... 194
7.4.3 Study 2 VM Memory Balloon Process ... 196

7.5 Experiment 5: Overload of VM CPU usage, Detection Time, and Resolution Time 197
7.5.1 IDE CPU Hotplug Process ... 197
7.5.2 Study 1 VM CPU Hotplug Process ... 198
7.5.3 Study 2 VM CPU Hotplug Process ... 198

7.6 Results ... 198
7.6.1 IDE Characteristics (VirtualBox Balloon) ... 200
7.6.2 Study 1 Characteristics (XenBalloon) .. 203
7.6.3 Study 2 Characteristics (iBalloon) ... 205
7.6.4 Platform Characteristic Scores (IDE, Study 1, Study 2) .. 207
7.6.5 Binomial Scores (IDE, Study 1, Study 2) .. 208

7.7 Summary.. 209

CHAPTER 8: CONTRIBUTION, CONCLUSIONS AND FURTHER WORK 211

8.1 Thesis Contribution .. 211
8.1.1 Development of an Expert System Framework for Virtualised Computer Systems 211
8.1.2 Simplified VM Provisioning .. 212
8.1.3 CLR formula to Determine Task Complexity.. 213
8.1.4 Efficient VM Migration, Evacuation and Restart Routines ... 213
8.1.5 Global Scheduling Mechanism for CPU Hot-plug and Memory Resource Management 213
8.1.6 Summary ... 214

8.2 Overall Results and Conclusions ... 214
8.2.1 Simplified VM Deployment Experiment Conclusions... 214
8.2.2 Cognitive Evaluation Performance Experiment Conclusions .. 216
8.2.3 Workload Migration/Failover Experiment Conclusions ... 217
8.2.4 Performance and Availability (CPU & Memory Overload) Experiment Conclusions 217
8.2.5 Significance of Results.. 218

8.3 Future Work ... 222
8.3.1 Prebuilding and Queuing VMs .. 222
8.3.2 Development with Additional Operating Systems... 223
8.3.3 VirtualBox Teleport Development .. 223
8.3.4 Quorum Cluster Node Testing .. 223
8.3.5 Bootstrap Development ... 223
8.3.6 Knowledge Rules ... 224
8.3.7 Self-Learning ... 224
8.3.8 Data Sources and Trigger Events .. 224
8.3.9 Laboratory Build for VMware, KVM and Xen Clusters ... 224
8.3.10 Knowledge Rule Testing with SLAs ... 225

Intelligent Management of Virtualised Computer Based Workloads and Systems

© James Oakes, 2020 14 | P a g e

8.3.11 Global Resource Management ... 225
8.3.12 Terraform, AWS CloudFormation and AMIs .. 225

REFERENCES .. 226

APPENDIX .. 237

APPENDIX A – VM DEPLOYMENT PROCESS... 237

A.1 Expert Users Results .. 237
A.2 IDE Results ... 237
A.3 Oracle Results .. 237
A.4 AWS Results ... 237

A.5 Experienced Users Results ... 237
A.6 IDE Results ... 237
A.7 Oracle Results .. 238
A.8 AWS Results ... 238

A.9 Novice Users Results .. 238
A.10 IDE Results ... 238
A.11 Oracle Results .. 238
A.12 AWS Results ... 238

APPENDIX B – BLIND PEER REVIEW COMMENTS (PUBLISHED PAPERS) 239

B.1 Simplified Deployment of Virtual Machines Using an Intelligent Design Engine (Oakes et al, 2016) 239
B.2 Blind Review 1 .. 239
B.3 Blind Review 2 .. 240

B.4 Measuring and Reducing the Cognitive Load for End Users of Complex Systems (Oakes et al, 2019) 242
B.5 Blind Review 1 .. 242
B.6 Blind Review 2 .. 243

APPENDIX C - VM PLATFORM BUILD PROCESS ... 245

C.1 IDE Provisioning ... 245
C.2 VM Deployment Steps .. 245

C.3 Oracle Cloud Provisioning .. 251
C.4 VM Deployment Steps .. 251

C.5 AWS Cloud Provisioning ... 256
C.6 VM Deployment Steps .. 256

APPENDIX D – IDE BUILD PROCEDURES .. 266

Intelligent Management of Virtualised Computer Based Workloads and Systems

© James Oakes, 2020 15 | P a g e

D.1 Procedure 1 ... 266

D.2 Procedure 2 ... 266

D.3 Procedure 3 ... 267

D.4 Procedure 4 ... 267

D.5 Source of Knowledge Rules.. 268

APPENDIX E – VM FAILOVER & MIGRATION ... 269

E.1 IDE Results ... 269

APPENDIX F – VM CPU AND MEMORY ... 269

F.1 IDE Results ... 269

APPENDIX G – ORIGINAL PROPOSAL .. 270

G.1 Aims & Objectives ... 270

Intelligent Management of Virtualised Computer Based Workloads and Systems

© James Oakes, 2020 16 | P a g e

List of Figures

Figure 1.1 Example of Virtualisation of x86 hardware (public domain image) 22

Figure 1.2 Type I Hypervisor v Type II Hypervisors ... 23

Figure 1.3 Common Virtualisation Problems .. 29

Figure 2.1 Cloud Leaders Market Share (Source: Forbes, 2018) .. 44

Figure 2.2 Cloud Service Stack ... 49

Figure 2.3 The moSAIC Architecture .. 54

Figure 2.4 Machine Event Response Mechanism.. 63

Figure 2.5 Natural Learning Mechanism – Information Organisation .. 64

Figure 2.6 Machine Learning Mechanisms Event Response .. 65

Figure 3.1 Initial Laboratory Setup ... 73

Figure 3.2 Final Minimum Laboratory Setup .. 73

Figure 4.1 IDE Program Components ... 103

Figure 4.2 IDE Architecture Model ... 108

Figure 4.3 IDE Network Flows .. 110

Figure 4.4 IDE Trigger Events ... 120

Figure 4.5 IDE Example of Forward-chaining .. 123

Figure 5.1 Cognitive Load Rating Chart .. 152

Figure 5.2 IDE Timed VM Provisioning – Expert Users .. 153

Figure 5.3 Oracle Timed VM Provisioning – Expert Users ... 154

Figure 5.4 AWS Timed VM Provisioning – Expert Users .. 154

Figure 5.5 IDE Timed VM Provisioning – Experienced Users ... 155

Figure 5.6 Oracle Timed VM Provisioning – Experienced Users .. 155

Figure 5.7 AWS Timed VM Provisioning – Experienced Users ... 156

Figure 5.8 IDE Timed VM Provisioning – Novice Users .. 156

Figure 5.9 Oracle Timed VM Provisioning – Novice Users ... 157

Figure 5.10 AWS Timed VM Provisioning – Novice Users.. 157

Figure 5.11 IDE Aggregated Timed VM Provisioning – Expert Users .. 158

Figure 5.12 Oracle Aggregated Timed VM Provisioning – Expert Users ... 159

Figure 5.13 AWS Aggregated Timed VM Provisioning – Expert Users ... 159

Figure 5.14 IDE Aggregated Timed VM Provisioning – Experienced Users....................................... 160

Figure 5.15 Oracle Aggregated Timed VM Provisioning – Experienced Users 160

Figure 5.16 AWS Aggregated Timed VM Provisioning – Experienced Users 161

Figure 5.17 IDE Aggregated Timed VM Provisioning – Novice Users ... 161

Figure 5.18 Oracle Aggregated Timed VM Provisioning – Novice Users .. 162

Figure 5.19 AWS Aggregated Timed VM Provisioning – Novice Users ... 162

Figure 5.20 CLR VM Provisioning – Expert Users. ... 163

Figure 5.21 CLR VM Provisioning – Experienced Users. .. 163

Figure 5.22 CLR VM Provisioning – Novice Users. ... 164

Figure 6.1 Experiment 3.1 VM Failover Method (IDE) ... 171

Figure 6.2 Experiment 3.2 VM Failover Method (study 1) .. 172

Figure 6.3 Experiment 3.3 VM Failover Method study 2 (Feng et al, 2011) 174

Figure 6.4 IDE VM Failure Detection Time Experiment 3.1 (IDE) ... 176

Figure 6.5 IDE VM Failure Detection and Migration Time Experiment 3.1 (IDE) 176

Intelligent Management of Virtualised Computer Based Workloads and Systems

© James Oakes, 2020 17 | P a g e

Figure 6.6 Study 1 VM Failure Detection and Migration Time Experiment 3.2 (vMotion) 177

Figure 6.7 Study 2 VM Failure Detection and Migration Time Experiment 3.2 (vMotion) 177

Figure 6.8 Study 2 VM Failure Detection and Migration Time Experiment 3.2 (XenMotion)............ 178

Figure 6.9 Comparative Mean Average VM Migration Time for Experiments 3.1, 3.2 and 3.3 178

Figure 7.1 IDE VM Simulated Tests for Load Stress (using stress-ng)... 186

Figure 7.2 IDE Global Resource Management .. 193

Figure 7.3 IDE Performance Monitoring and Memory Ballooning Results 194

Figure 7.4 Study 1 Xen Balloon Process (Zhang et al, 2017) .. 195

Figure 7.5 Study 1 VM Memory Balloon Process (Zhang et al, 2017) .. 196

Figure 7.6 Study 2 iBalloon system overview (Zhang et al, 2016) .. 197

Figure 7.7 IDE Performance Monitoring and CPU Hot-plug Results .. 198

Figure 7.8 Binomial System Characteristic Results ... 208

Intelligent Management of Virtualised Computer Based Workloads and Systems

© James Oakes, 2020 18 | P a g e

List of Tables

Table 2.1 Comparing AWS features.. 47

Table 2.2 Comparing Oracle features ... 49

Table 2.3 Current Virtualisation/Cloud Management Findings ... 61

Table 2.4 Gap Analysis ... 68

Table 2.5 Approach Challenges .. 69

Table 2.6 Research Justifications ... 70

Table 3.1 Qualitative Experiment Methods .. 80

Table 3.2 Quantitative Experiment Methods ... 82

Table 3.3 VM Deployment Experiment .. 85

Table 3.4 VM Deployment Cognitive Load Experiment ... 87

Table 3.5 VM Evacuation, Workload Migration and Load Management Experiment 88

Table 3.6 VM Memory Overload, Detection and Resolution Experiment .. 89

Table 3.7 VM CPU Overload, Detection and Resolution Experiment ... 90

Table 4.1 Algorithm/Procedure 1: Remote System Discovery ... 95

Table 4.2 Algorithm/Procedure 2: Messaging Command Process ... 96

Table 4.3 Algorithm/Procedure 3: Text Mining .. 96

Table 4.4 Algorithm/Procedure 4: Data Organisation ... 97

Table 4.5 Algorithm/Procedure 5: Pattern Analysis and Learning ... 98

Table 4.6 Algorithm/Procedure 6: Forward Chaining.. 99

Table 4.7 Algorithm/Procedure 7: VM Deployment ... 100

Table 4.8 Algorithm/Procedure 8: Preliminary Performance Monitoring .. 100

Table 4.9 Algorithm/Procedure 9: Event Trigger and Decision Making ... 101

Table 4.10 Algorithm/Procedure 10: Self-Monitoring ... 102

Table 4.11 IDE Program Function Suite .. 107

Table 4.12 IDE Rule Matching Process ... 114

Table 4.13 IDE Cluster Resource Evacuation... 118

Table 4.14 Event Knowledge Rule: Physical host down .. 120

Table 4.15 Event Knowledge Rule: Physical Host Memory Capacity.. 121

Table 4.16 Event Knowledge Rule: Physical Host Memory CPU .. 121

Table 4.17 Event Knowledge Rule: Memory overload .. 122

Table 4.18 Event Knowledge Rule: CPU overload ... 122

Table 4.19 Event Knowledge Rule: VM Migration... 123

Table 4.20 Event Knowledge Rule: VM Unresponsive ... 124

Table 4.21 Event Knowledge Rule: VM Evacuate .. 124

Table 4.22 Example of Keyword Pattern Analysis ... 125

Table 4.23 Example of Pattern Keyword Matching ... 126

Table 4.24 Knowledge Rules Justifications ... 133

Table 5.1 Task Complexity Rating... 136

Table 5.2 End-User Types .. 137

Table 5.3 Process Mechanism Definition.. 138

Table 5.4 Process, Task, Sub-component Definitions .. 138

Table 5.5 VM Provisioning 10-Step Complexity (Mode Average) .. 140

Intelligent Management of Virtualised Computer Based Workloads and Systems

© James Oakes, 2020 19 | P a g e

Table 5.6 VM Provisioning Sequence ... 143

Table 5.7 Allocated VM Compute Resource ... 143

Table 5.8 Similar Cognitive Load Studies (PaaS et al, 2003) .. 149

Table 5.9 VM Provisioning Experiment Results... 164

Table 6.1 Simulated VM Failover/Migration IDE Preparation Steps .. 169

Table 6.2 Simulated VM Failover/Migration IDE Steps ... 169

Table 6.3 Experiment 3.1, Downtime and Total Migration Timed Results (IDE) 172

Table 6.4 Experiment 3.2, Downtime and Total Migration Results vMotion (Shirinbab et al, 2016) 173

Table 6.5 Experiment 3.3, Downtime and Total Migration Results vMotion (Feng et al, 2011)........ 175

Table 6.6 Experiment 3.3, Downtime and Total Migration Results XenMotion (Feng et al, 2011) ... 175

Table 7.1 IDE VM Extended Performance Resource Management Algorithm 184

Table 7.2 Binomial Comparative Resource Performance Features/Characteristics 187

Table 7.3 Experiment Balloon/Hotplug Drivers .. 189

Table 7.4 Comparative Performance Resource Management Studies... 192

Table 7.5 IDE Resource Management Evaluation ... 202

Table 7.6 Study 1 Resource Management Evaluation ... 205

Table 7.7 Study 2 Resource Management Evaluation ... 207

Table 7.8 Overall System Characteristic Scores % ... 208

Table 8.1 Thesis Contributions ... 214

Table 8.2 IDE versus AWS VM Provisioning Time .. 219

Table 8.3 IDE versus Oracle VM Provisioning Time ... 219

Table 8.4 IDE versus AWS CLR .. 219

Table 8.5 IDE versus Oracle CLR ... 220

Table 8.6 IDE v Paper1 (vMotion) Avg. (Mean)Failover/Migration Time ... 220

Table 8.7 IDE v Paper1 (vMotion) Best Failover/Migration Time .. 220

Table 8.8 IDE v Paper2 (vMotion, XenMotion) Avg. (Mean) Failover/Migration Time 221

Table 8.9 IDE v Paper2 (vMotion, XenMotion) Best Failover/Migration Time 221

Table 8.10 Platform Features, Availability and Capability Scores .. 222

Table 8.11 Platform Binomial Characteristic Assessment Scores .. 222

Intelligent Management of Virtualised Computer Based Workloads and Systems

© James Oakes, 2020 20 | P a g e

Chapter 1: Introduction

1.1 Background

In the 1960s it was IBM’s research Cambridge scientific centre (Massachusetts)

experiment with CP-40 that paved the way for the beginning of the full virtualisation of

computer systems (Pugh et al, 1991). Full virtualisation is defined as multiple operating system

instances sharing the same computer hardware resource. From there on developments have

continued on apace, and since the late 1990s onwards, there has been a shift in virtualising

computer systems on the more popular x86 system architectures (Rosenblum, 2004). This

progression has led to widespread use of virtualisation technology to consolidate computer

systems within the modern datacentre space. Ironically, while this event was something that

was deemed beneficial in the IT industry using virtualised systems to reduce the need for

physical system datacentre space, power consumption and cooling, there was one aspect that

many organisations failed to factor in and that was the overhead of increased complexity due

to the increased density ratios of VMs to physical (bare metal) systems (Rasmussen, 2009; Al-

Ou’n et al, 2015). Indeed, managing a set of physical computers with different hypervisors that

are for example hosting hundreds (or even thousands) of Virtual Machines (VMs) with

different operating systems is not a simple task, especially when you start considering inter-

dependencies (Su, K. et al, 2015). It is this challenge that leads to the possibility of using an

intelligent system to manage such a complex virtualised environment; ultimately, this leads to

the concept of machines managing machines, which is in part one of the motivations of the

author’s research discussed later on (Gazis, 2016).

The very idea of designing and building an intelligent system in order to simulate a human

expert administrator that has some level of autonomy, logic processing and functional self-

awareness is an exciting prospect in terms of what potential it has to improve VM systems

provisioning and management (Haugeland, 1989; Diao et al, 2009). Indeed, being able to

imitate human natural intelligence and behaviours closely allows the system to exhibit

synthetic intelligence when he or she interacts within the controlled environment (McCorduck

Intelligent Management of Virtualised Computer Based Workloads and Systems

© James Oakes, 2020 21 | P a g e

et al, 1977). The term ‘intelligent system’ can be described as having the means or ability to

be able to analyse information, understand or make sense of it in the context of a certain

knowledge area, and subsequently process and organise. Once organised, the information is

then made accessible and used to create methods to build system and environmental

interactions, which ultimately allows it to solve problems in an efficient or elegant way (Mei

et al, 2010). Humans have long strived to imitate and replicate the processes and systems that

exist in nature and in some way, transfer this expertise (expert knowledge) into machine like

systems. The challenge to devise an intelligent expert system to provide knowledge for solving

the complexity of managing enterprise virtualised systems is something that provides the

opportunity to create a unique solution approach (Callaos, 1994; Spangler, 1991).

The ability to extend the control of such intelligent systems is potentially further

enhanced by network technology advances, that have resulted in many end-user devices now

having an Internet Protocol (IP) address and connectivity to the internet; indeed, there are

now literally billions of devices which represent a modern paradigm now known as the

Internet of Things (IoT). Given this level of connectivity, either through data networks, mobile

telecommunications, wireless protocols and others, it follows that this can be used as an

advantage to control remote systems (Gazis, 2016; Jing, 2011).

1.1.1 Enterprise Computer Virtualisation

With the beginning of virtualisation on the x86 architectures, there has been a clear shift

towards the use of popular hypervisors like VMware, Xen and others (Scroggins, 2013; Oludele

et al, 2014); it was in the late 1990s that the first modern hypervisors began to make inroads

into the datacentre space (Rosenblum, 2004). Below is a diagram that shows how

virtualisation maps on to a physical host:

Intelligent Management of Virtualised Computer Based Workloads and Systems

© James Oakes, 2020 22 | P a g e

Figure 1.1 Example of Virtualisation of x86 hardware (public domain image)

To provide further details of the above virtualisation example, the diagram figure 1.1

shows a typical x86 computer. Such a system (like any) has a finite amount of CPU, memory,

network and disk capacity and performance. Given that most enterprise computers now have

a large amount of CPU cores, threads, physical RAM, multiple Network Interface Cards (NICs)

and disks, for most types of applications it makes sense to divide these resources amongst the

VMs that host them (Tsai, 2009). The hypervisor layer is the critical layer that manages the

hardware resources (synchronising, queuing and scheduling), typically presenting virtual CPU,

memory, network and disk devices (Lakshmi, 2010). These virtual devices are made available

to the local VM and are assigned to it as resources.

In the example figure 1.1 above, it is assumed there are three VMs that can divide the

total resources available, therefore sharing the complete resource pool of the physical host

computer. Each VM is often referred to as a guest of the physical host computer, in that it

resides as an entity on that particular host system. Typically, a guest VM has its own operating

system installed and configured. One of the advantages of virtualised systems is that each

Intelligent Management of Virtualised Computer Based Workloads and Systems

© James Oakes, 2020 23 | P a g e

guest may have a different operating system type, which can reside on the same physical host.

For example, one VM may have a Linux type OS, another a Windows type OS and another a

Solaris x86 type OS. In this way, virtualised systems provide a great deal of flexibility to the

end-user, in terms of increasing the number of configuration permutations available and

applications that can be installed, configured and supported (Wood, 2011).

At this stage, it is worth highlighting the difference between type one and type two

hypervisors. The figure below shows the fundamental differences:

Figure 1.2 Type I Hypervisor v Type II Hypervisors

As can be seen in figure 1.2, the fundamental difference is the fact that type one

hypervisors install direct on to the physical system, whereas, the type two hypervisor requires

a host operating system and then the addition of the type two hypervisor install on top

(Morabito et al, 2015). There are various commercial and opensource type one and two

hypervisors available for use. As an example, a popular commercial type I hypervisor would

be VMWare ESXi, and for an opensource type two hypervisor Oracle’s Virtualbox

(Bakhshayeshi, 2014).

Intelligent Management of Virtualised Computer Based Workloads and Systems

© James Oakes, 2020 24 | P a g e

1.1.2 Type I Hypervisors: Advantages and Disadvantages

• Hypervisor occupies less Random-Access Memory (RAM).

• Relatively fast to re-install hypervisor.

• Highly optimised for running virtual machines, which is the primary function.

• Reduced driver support; only certain hardware is supported.

1.1.3 Type II Hypervisors: Advantages and Disadvantages

• Takes advantage of any hardware the host OS has driver support for.

• Host OS allows greater potential to monitor and interact with (via client agents).

• Possible to create multiple virtual machines of the identical guest OS as the host

operating system, thus increasing performance and reducing overheads.

• Advantageous for developer type environments, where access to multiple guest

operating systems and their variants is required.

Thus, there are different types of scenarios where the type one and type two hypervisors

both have advantages and disadvantages. Either way, the type one or two hypervisor can

both be used successfully to achieve virtualised systems deployments (Pagare and Koli, 2014).

The next sections describe how this virtualisation technology has evolved into cloud-based

services and how this is generally being applied and used within the IT enterprise space.

1.1.4 Cloud Computing (Public, Hybrid and Private)

Cloud based computing is a relatively new term used to describe the use of internet

service-based computer resources. These cloud resources represent typical enterprise

Intelligent Management of Virtualised Computer Based Workloads and Systems

© James Oakes, 2020 25 | P a g e

datacentre systems, comprising of virtualised server hardware, network infrastructure, disk

storage, and applications. In the case on public clouds, being an internet-based service allows

organisations to acquire computer resources remotely at third-party hosted datacentres

(Bhise and Mali, 2013). Very often these cloud service datacentre locations are based around

different parts of the world and organised into functional operational regions (such as North

America, or Western Europe). This is to allow end-user groups to take advantage of the cloud

vendors distributed infrastructure and provide better resilience and availability of services

(Larumbe and Sanso, 2011).

Cloud based public services offer the advantage for organisations to setup their IT

infrastructure very quickly, without any significant investment of their own in terms of

purchasing computer hardware; the only minimal costs would be ensuring their own

organisation has internet connectivity and suitable end-user devices, such as employee

desktop or laptop computers. Nearly all public cloud infrastructure services offer a utility or

‘pay as you go’ type cost model, whereby, the end-user organisation is charged directly for the

use of compute resources based on how long (the amount of time) they need the type of

resources they request, such as the amount of VMs they build, the amount of storage

consumed, and the number of IPs required (Kokkinos et al, 2013).

Indeed, cloud providers minimally provide what is known as Infrastructure as a Service

(IaaS), as well as other service offerings that extend their capabilities beyond the base

infrastructure functionality, into further areas. These layers on top are known as Platform as

a Service (PaaS), which is essentially the mechanism responsible for configuring necessary

middleware and integration on top of the infrastructure stack. Finally, advanced cloud

providers have Software as a Service (SaaS), which provisions applications to enable a full end-

user interactive experience (Bojanova and Samba, 2011).

Typically, the cloud infrastructure organisations hide the complexity and management of

their infrastructures away from the end customer. This is advantageous, in that such

organisations can provision their cloud systems quickly, focus their efforts primarily on

development and their business needs. It should be noted, that while there are many

advantages, some disadvantages exist; these are often security related, in that the

Intelligent Management of Virtualised Computer Based Workloads and Systems

© James Oakes, 2020 26 | P a g e

organisation data is stored in the cloud infrastructure potentially at any geographical location

managed by the cloud vendor. Lack of awareness of the cloud pricing model may also be an

inhibitor, if the organisation cloud administrators are not aware of how the cost model works

and they do not follow strict housekeeping procedures (Imai et al, 2013). Maintenance

schedules and terms of service offered are very specific around system patching and overall

VM life-cycles. The aggressive maintenance schedules imposed mean that any organisation

embracing cloud services, needs to have an operating model that fits such terms imposed by

the service provider.

Hybrid models adopt a slightly different approach. These are often more commonly

found with established enterprise organisations who already have their own datacentres and

investment in computer hardware and associated infrastructure (Hwang, 2016). Given the

popularity of cloud computing, and the general strategic shift of many organisations to use

such platforms, it is not unusual for there to exist a hybrid model. Usually, there are two

fundamental drivers:

• Enabling quick provisioning of resources (in effect a burst type model), so that extra

computer resources can be acquired to support on-demand type services such as

online marketing campaigns.

• Migration and transformation from old deprecated (out of support) systems, into the

cloud; for example, moving an on premise (traditional) email system to a vendor cloud

service.

• Having a dual approach (private or cloud) allows IT security to decide what applications

and data may or may not be considered for migration to a public cloud service.

• Changes to organisational workforce; often companies are adopting different ways of

working and access via the internet to cloud type solutions offers easier ways of

working.

• Due to the nature of public cloud, it offers a convenient method to ensure continuity

of service in the event of a local disaster, whereby data can be securely transmitted via

the internet and service restored within that environment.

Intelligent Management of Virtualised Computer Based Workloads and Systems

© James Oakes, 2020 27 | P a g e

Hybrid models therefore offer great flexibility for organisations to slowly transition, using

a controlled approach, allowing them to decide to continue using their own private systems,

or alternatively migrate services to the public cloud (Fadel and Fayoumi, 2013).

Private cloud services follow the nature and build approach that a public cloud service

provider would follow, apart from the fact that there is no internet of public access. Rather,

the cloud service provides a private service to one or more specifically known organisations.

Often, this model is followed by larger entities who want to move away from the traditional

approach to building infrastructure systems, installing middleware and software applications.

Instead, they perceive that a cloud like service model provides a much more agile method of

satisfying their business IT requirements, while retaining full control and security. Therefore,

being able to utilise cloud services, although taking a significant amount of initial investment

enables organisations to acquire infrastructure resources in an efficient way.

Indeed, many large cloud service providers now effectively bring their own proven cloud

technology direct into their customer’s datacentres to enable them to leverage the delivery

methods already tested, tried and proven. As an example, this would include as a minimum

to support IaaS:

• VM provisioning: build of virtual guest machines of various OS types.

• Network provisioning: build of necessary network zones.

• Security provisioning: enabling the opening of firewall ports between network

zones.

• Storage provisioning: enabling appropriate storage to be made available via

network or Storage Area Network (SAN).

There are many options to provide further functional layers on top of this basic one

available, as discussed previously, PaaS, DaaS (Database as a Service), and finally SaaS (Jin,

2016).

Intelligent Management of Virtualised Computer Based Workloads and Systems

© James Oakes, 2020 28 | P a g e

1.1.5 Common Virtualisation Problems

The following figure 1.3 describes some of the problems encountered in virtualised

environments. For this study, an examination of the following three principal areas is

conducted:

• Over-utilisation of a VM (or set of VMs) – whereby a combination of one of more CPU,

Memory or I/O resources have become exhausted and the system has become very

slow or even unresponsive (example figure 1.3, workload 2)

• Under-utilisation of a VM (or set of VMs); this is where spare compute resource is not

being used effectively (example figure 1.3, workload 3). This could be considered

wasted resource.

• Maintaining effective n+1 failover and high-availability while the virtualised platform

is in operation (example figure 1.3, workload 4). A common issue, even on

architectures designed to run in such a fashion, is for human configuration errors to

be made, or systems to become overloaded accidently. On platforms with many

hundreds or even thousands of VMs, it is a problem an administrator may overlook,

resulting in a system that does not continue to function with its original objective of

providing high availability.

Intelligent Management of Virtualised Computer Based Workloads and Systems

© James Oakes, 2020 29 | P a g e

Figure 1.3 Common Virtualisation Problems

• Reducing the complexity of VM provisioning; many platforms use intricate processes

and can be confusing to end-users. The build procedure often requires advanced

technical skills to deploy systems (Scroggins, 2013).

1.2 Thesis Motivation and Aims

Within the enterprise computing space since the late 1990s, there has been a transition

and evolution from single physical computer systems, on architectures such as Intel x86, Sun

SPARC, HP PA-RISC, IBM POWER Series with a single OS instance. These have shifted towards

fully virtualised platforms, running Hypervisors such as Xen, VMWare, VirtualBox and many

Intelligent Management of Virtualised Computer Based Workloads and Systems

© James Oakes, 2020 30 | P a g e

more, with many types of guest OSs and applications embedded.

This development has been intriguing. Organisations generally have embraced the

modern technology, and the ability to consolidate systems into fewer, more powerful

machines. With the advent of cloud computing, it can be observed that commodity type x86

architectures have taken a predominate hold, with huge distributed computing resources

located around the world by various cloud vendors like Amazon, Rackspace, Google, IBM,

Oracle and many more.

In all this, it has been a continuous struggle to effectively manage such technologies in a

seamless way, without having on hand lots of technical able people to administrate and

control such platforms. Indeed, even maintaining build and configuration standards is an

almost impossible task, given the number of possible permutations to build virtualised

systems (Vrijders et al, 2016; Poghosyan et al, 2016).

It is this concept, which has led the author to be motivated to want to research this

particular field, in order to provide a better solution, method and process for managing and

controlling such platforms. While it is impossible for a single researcher (on his or her own) to

address every technology area that a cloud provider like Amazon Web Services or Oracle can,

there is opportunity to demonstrate by focusing on a few areas how improvements can be

realised. The author hopes that such an opportunity taken will provide some original and

useful additional research outputs in the following key areas:

• To develop a prototype system known as the Intelligent Decision Engine (IDE) to

provide domain knowledge expertise around computer virtualisation and

management.

• To provide a simplified VM provisioning process.

• To improve VM workload migration processes.

• To improve VM performance and availability.

1.3 Thesis Benefits and Targeted Applications

The project aims to deliver some benefits for various end-user organisation types, who

Intelligent Management of Virtualised Computer Based Workloads and Systems

© James Oakes, 2020 31 | P a g e

use computer technology and require very fast, automated deployment of IT resources.

Consider the example of an organisation that requires resources in a series of pre-engineered

blocks; effectively private based IaaS units that minimally provide a necessary IT hardware

footprint, with integrated networks, computer hardware, security, storage, software

management and control. There are many scenarios where this might be useful:

• Schools, universities, education – providing quick resources for classroom

students, colleges, or university researchers.

• Private and public sector industries (e.g. utilities and manufacturing), scientific

government and military, using fast deployment of resources at any physical

location, that may or may not be connected to the internet. Examples could be

telecommunication providers, national health services, pharmaceuticals, or

security, or military organisations that need to collect data and deploy IT based

systems quickly, because of an incident or event.

A specific example of this includes:

• Purunak (1996) shows that multi-agent systems are in demand in industry and

such rapid deployment of systems can provide benefits to organisations.

1.4 Thesis Limitations

As part of the undertaking of the project, there are several limitations that were

encountered, that are acknowledged as follows:

• The number of nodes in the IDE cluster was not tested beyond three nodes. This

could extend to much larger numbers (i.e. hundreds of nodes), however, it is

envisaged that that would be continued as future work. Consult section 4.7 for

more details on system availability and clustering.

• IDE Operating systems – Linux (CentOS) was the primary guest operating system

tested; the Windows OS is also supported, but has not been developed against

Intelligent Management of Virtualised Computer Based Workloads and Systems

© James Oakes, 2020 32 | P a g e

extensively; again, this is envisaged as future work.

• Physical computer, network and storage resources were limited to that

described in the Laboratory setup in section 3.2.1, primarily as a result of having

to keep financial costs within a constrained budget.

• System data sources only tested against Linux (CentOS) platform during

experiments. See section 4.6.4 for more details. Windows alerts/logs and events

are expected to be captured at a future point.

• The number of knowledge rules was purposefully limited to a relatively small

number of 8, as defined in section 4.8.1, 4.8.2 and 4.8.3. The project limited the

rules, in order to be able to test the fundamental functions (such as physical host

and VM failure) of the intelligent design engine, without creating many

additional rules at this stage, which could not be developed and tested fully at

this stage. Justifications for the knowledge rules and why these were selected

can be found in section 4.8.5. Of course, the system has been devised so

additional rules can be created/added as part of future development; see

section 8.3.6 future work for more details regarding this. As an example, the

current IDE system did not include a specific knowledge rule for ‘filesystem full’

(warning/critical), however, this could be added in a later development stage.

• The VM provisioning and cognitive load experiments in section 5.2.2 and 5.2.3

respectively were snapshot (point in time) experiments, and not tested for

repeatability (i.e. The user repetitively creating VMs); It would be

expected/predicted for example, that the end-users would quickly move from

the ‘novice’ group to ‘experienced’ should such future experiments be

conducted; however, the results would need to be collected and analysed in

detail to prove this hypothesis is either true, false or inconclusive.

• The number of end-users which made up the experimentation process in

chapter 5 was limited as defined in section 5.2.1.2. It is feasible that future work

could be completed to include larger numbers of end-users.

Intelligent Management of Virtualised Computer Based Workloads and Systems

© James Oakes, 2020 33 | P a g e

• The hardware components used in section 5.2.1.7 was as kept close as could be

made possible subject to physical costs. The IDE Platform used hardware of a

lower specification for the provisioning tests, to avoid the costs of replacing for

newer higher specification systems. Therefore, it is feasible that the results for

the IDE could yet be improved if repeated using the latest compute resource

type.

• VM provisioning experiments did not use the potential queuing idea described

in section 5.2.2.6; implementation and development of this idea could see large

potential reduction time in provisioning, and it is described further in section

8.3.1 future work.

• The papers used to compare failover/VM migration times for vMotion and

XenMotion were limited data sets of six iterations/tests; while the IDE could be

repeat tested extensively (limitlessly), for even more detailed comparisons, a

larger volume of repeat tests could be undertaken as described in further work

section 8.3.9 by building local VMWare, KVM and Xen test clusters.

• The IDE did not have a live migration facility yet developed (pending the use of

VirtualBox teleport see future work in section 8.3.3), so the studies that were

compared against were not functionally exact, however, the results from the IDE

– even in the full restart migration scenario are promising, in that that the overall

migration time was fast in comparison to the other studies described in chapter

6.

• The knowledge rules developed in section 4.8 and justified in section 4.8.5 could

not all be tested through direct experimentation due to the limitation of time

and resources to fully complete all the development and setup the appropriate

test and experimentation process. The knowledge rules not fully tested at this

stage are knowledge rule 1, 2, 3, and 8.

Intelligent Management of Virtualised Computer Based Workloads and Systems

© James Oakes, 2020 34 | P a g e

1.5 Thesis Summary

This thesis aims to research a unique approach into how an Inference Engine (the IDE) can

be used to leverage the use of expert domain knowledge to provide process and performance

improvements in specifically three areas:

• In chapter 2 an in-depth study of intelligent (expert) systems and virtualised

technologies is undertaken, along with an examination of two public cloud providers;

then a comparison of the features, quality and characteristics of the cloud vendors is

highlighted by focusing on the relevant features that exist.

• Chapter 3 considers the methodology and approach used to provide the platform and

system to be utilised to perform and support the necessary experimentation phase. To

compliment this, the formal metrics and expert user evaluation methods to be used

are defined, to measure the success and value of the research and experiments carried

out.

• Chapter 4 explores the development and characteristics necessary of an expert system

(the IDE) to aid and improve the way in which virtualised resources are effectively

managed and controlled.

• Chapter 5 specifically focuses on the core research outputs, including the following

areas; the simplification of deployment of VMs, by using the IDE expert knowledge

base, whereby the inference and logic engine are able to build and provision VMs with

absolutely minimal information from the end-user, using a ‘one-click’ method. Minimal

end-user inputs are required, such as hostname (or a reference to standards) and VM

size, and VM type. The IDE then completes the entire end-to-end provisioning process.

• Chapter 6 continues by describing the means for improving methods for workload

migration; it specifically targets new improved methods of event handling, resource

re-location and effective processes to migrate workloads.

• Chapter 7 examines ways to optimise VM performance and health, in the scenario of

physical hardware failures, software failures, and human errors.

Intelligent Management of Virtualised Computer Based Workloads and Systems

© James Oakes, 2020 35 | P a g e

• Finally, in chapter 8 a review is conducted on the thesis contribution, to draw overall

conclusions on each area of the work, by focusing on the results and their value to the

research field; additionally, consideration is given to what further work can be done to

enhance and continue the work already undertaken.

Intelligent Management of Virtualised Computer Based Workloads and Systems

© James Oakes, 2020 36 | P a g e

Chapter 2: Expert, Cloud and Virtualised Systems

2.1 Introduction

As part of the investigation into expert and intelligent systems within the field of

systems virtualisation, it is necessary to analyse existing methods and work in the subject area

to determine how best to approach the management of such compute platforms. This chapter

pulls together some key areas that the author believes to be most relevant to the study

undertaken. Firstly, the author examines in brief how the organisation of information is critical

to being able to imitate human intelligence, in terms of the key traits that can be expected to

be evident and observable. By ordering information and logically categorising it in such a way

that it can be easily referenced, effectively made sense of and essentially used in some

capacity to make decisions and reach an effective conclusion. Following this, a light overview

of the origins of Artificial Intelligence is presented to allow the author to set the context for

the reader, in particular around several key historical moments that have been fundamental

to the advancement of human knowledge in the field of work that is being considered.

The next area that is delved into in detail is that of expert systems; this type of system

is essential for review as the methods and applications in this subject demonstrate how expert

human domain knowledge can be applied to a variety of technology and scientific study areas.

This provides the platform for the author to consider what knowledge domains have already

had such applications made, such as in the medical field, along with the historical reported

outcomes of such projects. It thus enables a comparison into the techniques used and allows

for conclusions to be drawn to help provide insight into what techniques might be useful in

the context of management of virtualised computer systems. Therefore, by reflecting on the

lessons learnt from previous endeavours made in the field of expert systems, it makes

common sense to consider combining, adapting and enhancing the most successful methods

used (Crittenden, 1990). The next section examines two Public Cloud providers; one currently

holds the largest commercial market share, and the other is less predominate, although clearly

operating providing Enterprise Cloud services to global businesses. As Cloud computing is

Intelligent Management of Virtualised Computer Based Workloads and Systems

© James Oakes, 2020 37 | P a g e

considered to be leading the way in terms of automation and service-based delivery of IT, it is

critical to investigate the mechanisms that such cloud providers use, to allow the author to

compare those functional areas that correspond to the author’s study (Rokne, 2013).

Following the focused review of two Cloud based providers, the analysis continues by

considering other management approaches used by other researchers in the field of

automation and management of virtualised computer systems. This is particularly useful, as it

widens the overall view of what efforts are have already been made in this study area, along

with strengths, weaknesses of each approach and an overall gap analysis. Finally, based on the

gap analysis and weaknesses identified, we consider how the IDE could contribute to the field

in several key areas by combining new algorithms, pattern analysis methods, natural language

processing techniques, and an inference engine to improve the management of virtualised

computer systems. This is captured, and an explanation is provided to show the advantages

of using such a system in the overall context of existing works, systems and approaches.

2.2 Intelligent Organisation

The concept of Artificial Intelligence (AI), as opposed to natural occurring intelligence, is

to enable computer systems designed and built by humans to exhibit intelligent behaviours to

some degree or level (Callaos, 1994). In respect of this, part of the objective of this work

includes investigating the potential for a system to include some of the following

characteristics:

• The ability to keep itself functioning or rapidly replicate to survive.

• To be able to make small functional improvements to itself; this has to be initially

defined by its creator, with the possible potential to extend this function.

• To have the necessary function to make decisions based on available information.

• To have the function to be able to automatically invoke other programs as necessary,

based on its own decision-making process.

• To have the potential to change itself either by developing, analysing and modifying

Intelligent Management of Virtualised Computer Based Workloads and Systems

© James Oakes, 2020 38 | P a g e

its own routines and processes, or perhaps even introducing new processes and

procedures altogether based on an evolutionary, or self-analytical development

model.

• The ability to organise, store information appropriately and retrieve it as necessary.

The following sections will discuss in detail the critical areas for consideration in respect of

how a system could utilise AI to effectively manage virtual machines.

2.3 The Origins of Artificial Intelligence

Humans have long been fascinated by the concept of transferring natural intelligence to

their own mechanised creations. These ideas stretch back as far as writings recorded in Jewish

history via the Ten Commandments and events recorded in Greek mythology (McCorduck et

al, 1977). In more recent modern history, circa 1843, it was Charles Babbage and his colleague

Countess Lovelace, who created the first general purpose computers, such as the Analytical

Engine, which included an arithmetic unit and programs in the form of data punch cards,

concepts which are familiar in modern computing (Tanenbaum, 2006). More recent is the

achievement Alan Turing and his team made in breaking the German Enigma codes using the

famous Turing machine, during World War II (Haugeland, 1989).

As demonstrated above, it is feasible to therefore use computerised programmed systems

to help simulate or imitate human like natural intelligence, in such a way as to perform

complex tasks to help problem solve. The author of this research aspires that the work

undertaken will demonstrate benefits in the subject area of applying natural intelligence to

complex virtualised compute platforms using existing and potentially new AI techniques.

Intelligent Management of Virtualised Computer Based Workloads and Systems

© James Oakes, 2020 39 | P a g e

2.4 Expert System Applications

2.4.1 Introduction

The following sections consider real word examples of expert systems. The case

studies below are of importance, because despite being orientated towards other expert

knowledge domains, the principles and techniques used can be applied equally to any expert

system that uses a knowledge base and inference engine. In the cases below, this allows the

study of similar approaches undertaken by other projects, and assists focus on the strengths

and weaknesses of other systems to help overcome commonly encountered problems from

the past; each system covered lists the advantages and disadvantages based on the approach

taken by the creator.

2.4.2 R1/XCON

R1/XCON (Expert Configurator) was an expert system designed by Digital Equipment

Corporation (DEC) to be a system configurator for computer hardware. It was developed in

the 1970s to provide sales staff with expert domain knowledge around what components to

include in Virtual Address Extension (VAX) computer hardware sales. The system ensured that

systems were shipped complete with all necessary components and was a successful

commercial example of the application of expert systems within industry (Winston and

Prendergast, 1986).

The advantages from this example of an expert system are:

• It was a commercially successful application.

• Proven quality in the domain of expertise – VAX computer systems configuration.

• The closest example of how an expert system can be used in the field of computer

engineering to demonstrate how configuration knowledge can be used to assemble

Intelligent Management of Virtualised Computer Based Workloads and Systems

© James Oakes, 2020 40 | P a g e

the complex list of components for VAX computer systems. This is probably the

nearest comparative system to managing virtualised computer platforms.

The main disadvantage from this example:

• The R1/XCON system was very specific – its expert knowledge was narrow around the

VAX-11/870 (McDermott, 1982). Conversely, some may not consider this a

disadvantage at all, as being narrowly focused on a very small knowledge area could

allow for the potential to focus the expertise to a greater level.

2.4.3 MYCIN

MYCIN is an example of an expert system developed at Stanford University in the 1970s,

to support medical staff help diagnose bacterial infections and suggest an appropriate

antibiotic treatment using its inference engine and knowledge base. There are many positive

aspects from the system that was developed, primarily that its ability to correctly diagnose

and prescribe correctly, out-performed medical staff during the trials and experimentation

phase. Given the positive trials, MYCIN had only around six hundred rules, which given the

relative complexity and permutations within the field (there are well over one hundred

antibiotics types), leads us to the conclusion that it was in fact a successful expert system

concept (Alty and Coombs, 1984). It was only the fact that there were ethical challenges

presented, over who would be responsible for any mis-diagnosis, that inhibited its further

progress into mainstream medical practice. In that respect, using an expert system purely in a

computer management type environment (outside of medicine), reduces the risk of failure in

terms of improving its potential to be able to be applied into its particular field of expertise

(Musen et al, 2006).

The advantages from this example of an expert system are:

• Expert systems did provide improved diagnostics.

• A relatively simple rule set provides the necessary functions.

The main disadvantage from this example:

• Ethical challenges due to the complexity of understanding who would be responsible

Intelligent Management of Virtualised Computer Based Workloads and Systems

© James Oakes, 2020 41 | P a g e

for a misdiagnosis, potentially resulting in patient harm.

2.4.4 INTERNIST-I

INTERNIST-I is another interesting expert system developed at the University of

Pittsburgh, that captured the knowledge of just one medical expert Jack Meyers. Unlike other

systems, INTERNIST-1 used an advanced ranking algorithm to arrive at a diagnosis of a

disease. It excelled when only one disease was present, however, struggled to deal with more

complex scenarios, where two or more were evidenced in a patient. Additionally, using a

heuristic based problem-solving approach, it did not guarantee the best diagnosis method

and the system interface was slow to operate, resulting in poor uptake by those medical

professionals using it in the field (Miller et al, 1982; Ravindranath, 2015).

The advantages from this example of an expert system are:

• Powerful heuristic ranking system to provide most probable diagnostic.

The main disadvantages from this example:

• Narrow expert view – knowledge derived from one expert source only.

• Poor at dealing with multiple problems, for example, patients with two or more

illnesses.

• Overly time-consuming user interface, resulting in poor uptake and use of the system.

2.4.5 DENDRAL (DENDritic ALgorithm)

This was a very early expert system, developed at Stanford University in mid 1960s

(Feigenbaum and Buchanan, 1994). Its expert subject field was organic chemistry, with the

objective of performing an analysis of molecular structures using mass spectra. The primary

approach of the systems was to use a heuristic search/algorithm. The rule base was

successfully engineered using the LISP programming language, which resulted in advances in

Intelligent Management of Virtualised Computer Based Workloads and Systems

© James Oakes, 2020 42 | P a g e

knowledge engineering which were made available and published (Lindsay et al, 1993).

2.4.6 HEARSAY I and II

Another example of an early expert system is Hearsay, developed at Carnegie-Mellon

in the late 1960s (Reddy et al, 1976). The domain expertise was in the field natural speech

understanding for structured database queries. The primary approach used a blackboard type

problem solving method (a way of aggregating partial solutions to provide a complete one),

through recorded application of ongoing expertise, to reach a consensus on the hypotheses

using independent knowledge sources. The system was engineered using the Stanford

Artificial Intelligence Language (SAIL), however, it was not very successful, initially.

Nevertheless, it proved the feasibility of automated speech recognition and provided the

inspiration for the development of other expert systems.

2.4.7 MACSYMA (MAC’s SYmbolic MAnipulator)

The system was developed at MIT from 1968 onwards. Its expert subject was to

perform complex mathematical procedures (e.g. algebra), using a primary approach of brute

force encoded algorithms. It too was engineered using LISP, and was a widely used, powerful

system. It is available today as GNU freeware via Maxima (Fateman, 1989).

2.4.8 PROSPECTOR

Developed at SRI International, located at Menlo Park, California in late 1970s, with

its expert subject field in exploratory geology and evaluation of geological sites. The primary

approach of the control architecture involved the use of an inference network and a rule-

based judgmental reasoning system that evaluated the mineral potential of a site or region,

with respect to inference network models of specific classes of ore deposit. The system was

engineered using INTERLISP (a derivative of the LISP programming language). In one

Intelligent Management of Virtualised Computer Based Workloads and Systems

© James Oakes, 2020 43 | P a g e

controlled test, the expert system successfully identified a previously undiscovered site, thus

further demonstrating its commercial viability (McCammon, 1989).

2.4.9 Expert Systems: Why Have They Been Considered?

The introduction of this section alluded to the point that expert system principles are

a transferable feature across knowledge domains (Brooks and Heiser, 1979). Based on this

idea of transferability, it enables the investigation to proceed on the basis that such systems

can re-use, evaluate and improve previous methods undertaken. From the historical expert

systems investigated, it appears that the management of virtualised computer systems has

not previously been undertaken, or fully explored by other researchers; therefore, this can be

considered a new knowledge domain in relation to currently available expert systems. The

above examples of the application of expert systems show how such methods can be applied

to almost any field that requires human intelligence, demonstrated through problem solving

skills.

2.5 Public Cloud Systems

2.5.1 Introduction

Another area of investigation is public cloud service-based offerings, which have

become popular since 2006 and the advent of Amazon and their elastic cloud service. Figure

2.1 below provides a representation on the current market share figures for the various cloud

providers – currently led by Amazon and Microsoft:

Intelligent Management of Virtualised Computer Based Workloads and Systems

© James Oakes, 2020 44 | P a g e

Cloud Computing Services Market Leaders

Year 2017 2018

Organisation % Market Share

Amazon 40% 37%

Microsoft 29% 30%

Google 10% 10%

IBM 7% 8%

All others including Oracle Corporation 14% 15%

Figure 2.1 Cloud Leaders Market Share (Source: Forbes, 2018)

This is particularly of importance, because public cloud providers like Amazon and Microsoft

lead the way in commercial offerings. It is therefore necessary to explore how these providers

compare in certain key areas such as, expert systems and reasoning, systems (VM)

provisioning, VM migration strategies and performance monitoring.

2.5.2 Case Study 1: Amazon EC2

Amazon’s EC2 public service is available via the internet in the form of Amazon web

services. Like the following case study with Oracle’s Cloud, it is very useful to functionally

compare the cognitive load complexity and performance of their systems, against the research

areas addressed by this work (Plass et al, 2010). Amazon's Elastic Compute Cloud (EC2) offers

a web-service compute service offering to its end-users. The compute service works on the

basis of buying compute time, storage and network services based around a certain set of

parameters supplied by the end-user. This invokes a computerised in-house cost/billing model

based on the type of instance(s) configured and the amount of time the components runs for

in hours, minutes and seconds (system uptime). Typically, this would be configured based on

the machine type, operating system (OS), CPU processing, memory, storage and networks

requirements. Other factors that would affect cost would include any applications that may

be requested; for example, Oracle RDBMS, or Microsoft SQL server. Once configured, VMs are

Intelligent Management of Virtualised Computer Based Workloads and Systems

© James Oakes, 2020 45 | P a g e

then accessed remotely using standard access protocols, for example, secure shell (SSH).

Amazon's EC2 is a public cloud solution that is service based, whereby, the infrastructure

supporting the platform is largely transparent to the end-user (Amazon Web Services, 2015).

The levels of automation behind the Amazon EC2 cloud are advanced, in terms of the level of

automation, provisioning and resiliency achieved through their large-scale datacentre

infrastructure footprint (Bhise and Mali, 2014; Awal et al, 2014). One of the key differences of

the authors research project is to alleviate even further the inputs from the end-user, by

introducing an Intelligent Decision Engine (IDE), with the goal of vastly reducing the

complexity to an end-user via a one-click provisioning methodology, much the same way

Amazon allow purchasing of retail items on-line via their website (Amazon Web Services,

2015). Amazon's EC2 interface remains quite complex, aimed at developers and other

advanced end-user computing groups, such as scientific research teams, Information

Technology (IT) service businesses and IT departments (Akioka and Muraoka, 2010).

Leading providers of Cloud services such as Amazon EC2 have a web service that uses an

advanced/complex Browser User Interface (BUI); further to this, the end-user has the ability

to configure certain application (PaaS) offerings such as a MySQL database, or Apache web

server (amongst many other features). Below is a table which summarises the EC2 service

areas Amazon provides in respect to the similar areas of investigation for this work; the

specific target areas of the author’s study are highlighted to demonstrate the originality, which

contribute to alternative strategies in the overall field of work.

The following table summarises the AWS areas that are being analysed, compared and

evaluated against the IDE and Oracle platforms:

AWS Feature Description

Comparative Project
Investigation Area

Machine

Learning

Allows you to build ‘smart’ applications, such

as flagging fraudulent transactions and

predicting user activity. This is an area of

Investigation developed

further in chapter 4 of

this work under the

Intelligent Management of Virtualised Computer Based Workloads and Systems

© James Oakes, 2020 46 | P a g e

AWS Feature Description

Comparative Project
Investigation Area

interest which is being investigated as part of

the author’s research, however, the author is

conducting more research effort around

machine self-management, rather than smart

end-user applications (for example, smart

programs that analyse credit card spend

patterns and analyse, risk assess them for

suspicious activity).

section The Intelligent

Design engine (IDE).

AWS seeks to apply its

'machine learning'

around applications

rather than the

'infrastructure layer'

which is a perceived gap.

EC2 (Elastic

Compute)

This is Amazon's standard compute

provisioning platform. From here you can

launch Amazon EC2 instances which are

individual VMs made of CPU, Memory and

Disk. The high-level process flows are generally

understood; however, the actual detailed

provisioning process is unknown. This would

specifically be referring to the code, logic and

exact method (e.g. PXE boot, using image

templates (AMIs), kickstart, or VM image

snapshots). Most of this information is private

to the company; they would not want to

necessarily share their trade secrets. What is

known is that the deployment mechanism is

advanced and uses AMI (Amazon Machine

Images), which is a quick and efficient

provisioning method. This is an area of

interest, which is being investigated as part of

the author’s research work which undertakes

an alternative one-click VM deployment

VM Provisioning

mechanisms are

developed further in

chapter 5 of this work

under the section

Simplified Deployment

of Virtual Machines.

Intelligent Management of Virtualised Computer Based Workloads and Systems

© James Oakes, 2020 47 | P a g e

AWS Feature Description

Comparative Project
Investigation Area

strategy for small scale to large scale

Enterprises. It offers an advantage for end-

users who are potentially less familiar with

complex virtualised compute platforms and

adds in considerable expert knowledge in

order to provision VMs. This is to be compared

and contrasted against the Simplified

Deployment of Virtual Machines using an

Intelligent Design Engine, using the evaluation

strategy defined in section 3.3.

CloudWatch

(Area of

Research)

Monitoring for applications and resources –

alarms and auto-scaling features. This is an

area of interest, which is being investigated as

part of the author’s research.

These areas are

developed further in

chapter 6 and 7 of this

work under the sections

Improving Workload

Migration Strategies and

Optimising Performance

and Availability of

Virtual Machines.

Table 2.1 Comparing AWS features

2.5.3 Case Study 2: Oracle Cloud

Oracle’s Public Cloud service, while advanced, is regarded as lagging behind the market

leader cloud providers like Amazon and Microsoft (Serrano et al, 2015). However, it is

interesting to examine a smaller niche cloud providers approach, such as Oracle, given their

pedigree in the enterprise compute space (Finkle and Scoresby, 2012). Below, the table

describes the essence of the core investigation areas that are to be undertaken in respect to

Intelligent Management of Virtualised Computer Based Workloads and Systems

© James Oakes, 2020 48 | P a g e

the Oracle cloud and the IDE and AWS platforms:

Oracle Cloud
Feature

Description

Comparative Project Investigation
Area

Oracle

Advanced

Analytics

Oracle’s advanced analytics aims to

provide the ability to mine large

datasets that can predict customer

behaviour, estimate values, profiling

people or items, identify rare events

or anomalies and organise items into

baskets of co-occurring events.

Investigation developed further in

chapter 4 of this work under the

section The Intelligent Design

engine (IDE). As per AWS, this

provides further evidence that

most cloud providers are more

interested in the AI aspects with

regard to applications, rather than

features lower in the stack e.g.

infrastructure. This work

concentrates on applying this to

the lower down infrastructure

components.

Oracle Cloud

Machine

Provisioning, manage and maintain

the Cloud Machine IaaS resources

and PaaS infrastructure.

VM Provisioning mechanisms are

developed further in chapter 5 of

this work under the section

Simplified Deployment of Virtual

Machines.

Oracle

Management

Cloud

Oracle Cloud Management allows

customers to build, deploy, and

operate application environments

on-premise, in a private cloud

and/or on Oracle’s public cloud

infrastructure. It maximises visibility

and control over services and

These areas are developed further

in chapter 6 and 7 of this work

under the sections Improving

Workload Migration Strategies and

Optimising Performance and

Availability of Virtual Machines.

Intelligent Management of Virtualised Computer Based Workloads and Systems

© James Oakes, 2020 49 | P a g e

Oracle Cloud
Feature

Description

Comparative Project Investigation
Area

provides monitoring and reporting

solutions to ensure adherence to IT

standards and policies.

Table 2.2 Comparing Oracle features

2.5.4 Cloud Computing: How it Has Created Utility Based Computing?

Most public cloud systems are only visible to the end-user from an internet browser-

based interface. The complexity is hidden away purposefully, by design, and is presented as

a service, so end-users need not be concerned with the technology that powers and creates

VMs and containers (Biner, 2015). The typical cloud computing stack is represented as

follows:

Figure 2.2 Cloud Service Stack

As above in figure 2.2, the cloud stack begins with Infrastructure, and works its way

up to SaaS where end-user applications are made available directly to the user, such as a word

Intelligent Management of Virtualised Computer Based Workloads and Systems

© James Oakes, 2020 50 | P a g e

processing or email application. Public cloud systems use a variety of virtualisation technology

to achieve their goal of providing such services to their end-users (Bojanova and Samba,

2011). Therefore, it is of relevance that the interface and methods they use be compared

when considering how to improve aspects such as VM provisioning, performance monitoring,

and migration.

2.6 Current Virtualisation and Cloud Management Approaches

2.6.1 Introduction

Using expert systems in the medical field has been previously well developed,

understood and applied to the medical/clinical world; examples are MYCIN and INTERNIST-I

(see sections 2.4.3 and 2.4.4). They are particularly relevant in the case of the research,

because they identify the potential benefits that can be achieved by the application of expert

systems to problem solving within a knowledge domain, such as computer virtualisation, or

the clinical diagnosis of bacterial infections. The study now examines in detail some existing

methods and strategies employed by other research works to compare the strengths and

weaknesses of other similar works. These are examined in detail, and specific care is taken to

explain how this approach differs from those previously undertaken, by focusing on the

advantages and unique methodology and ideas of this research project.

2.6.2 Reviewed Approaches

Virtualisation now has many applications across all infrastructure components; not only

can computer hardware be virtualised, but so can other infrastructure components, such as

the network and storage devices. Given the potential to use this technology to save space,

power and consolidate systems, it makes sense for organisations to leverage this to their

advantage (Scroggins, 2013). The question of how organisations effectively manage these

complex environments forms the fundamental problem that this research work addresses;

with the IDE utilising AI features, the algorithms and methods employed help to reduce

complexity to end-user organisations, thus enabling the delivery of a fully virtualised compute

Intelligent Management of Virtualised Computer Based Workloads and Systems

© James Oakes, 2020 51 | P a g e

platform (Scroggins, 2013).

Given the various virtualised platforms now deployed in the field, attempts and

approaches have already been made to automate deployments of VMs and other such

hardware layers, for example, storage and network (Oludele et al, 2014). One interesting

approach described how resources can be automatically provisioned in virtualised

datacentres (Elprince, 2013). This study discusses how in the modern virtualised datacentre,

there is a requirement to automatically provision and manage resources effectively due to the

spiky nature of processing (i.e. a sudden shift upward in demand). One of the impacts of this

naturally occurring event is that breaches in Service Level Agreements (SLAs) can occur due

to VMs being impacted as they are under-resourced from a CPU, memory and storage point

of view. The proposal here to deal with such events was to create an autonomic resource

controller (Elprince, 2013). The system has two parts, a resource modeller (machine learning)

and a fuzzy tuner (fuzzy logic) that allows dynamic resource allocation (or changes) to VMs to

allow them to manage their computational load effectively. The resource controller also

attempted to ensure no SLA breaches were made. The first obstacle mentioned is dealing with

complexity of ensuring scalability (or elasticity) of virtualised systems. The system itself was

modelled using a data trace only, and not on a real interactive environment. While this

simulation provides real work-load patterns and opportunity to model different jobs,

scheduling, and priorities, it may not always provide a real-world complete data-set from all

relevant log files and system data. In this study, development and experiments are conducted

in a real lab-based environment to enable true testing against live systems. This provides

several advantages, the primary being that you can model the behaviour of intelligent systems

with a higher degree of certainty, in terms of being able to observe and record how things

operate and perform in a live situation (Elprince, 2013).

Nowadays, when you consider cloud services and their evolution and standard enterprise

model of delivery, there are a whole host of resources that require controlling such as

networks, servers, storage, applications and services (Bojanova and Samba, 2011). The

requirement for control is clear, in that all these hardware and software resources need

effectively managing, collectively and in harmony; one of the common disadvantages of

today's enterprise datacentres, is the silo approach taken by many organisations to their data

Intelligent Management of Virtualised Computer Based Workloads and Systems

© James Oakes, 2020 52 | P a g e

centre build and delivery mechanism. By adopting this old, non-agile model, they make it far

more difficult to automate delivery and manage the control of their systems, as

responsibilities across technology space, as described above are handled by separate teams.

This means it is advantageous to move away from diversified control mechanisms, and instead

use a single team or entity much like the IDE to achieve a centralised management approach

(Gren et al, 2014).

Another alternative approach was investigated to deploy VMs and applications using

OpenStack, which is an open source toolset designed to allow automatic cloud configurations

(Zhang and Shang, 2014). While some of the tasks were automated, there were several

additional add-ons that had to be configured such as:

• An algorithm to control the network IP addresses allocated.

• Having to convert ISO images to allow installation.

• Configuring Dynamic Host Configuration Protocol (DHCP), firewall, and SSH public key

infrastructure components.

• Shutting down the VM and registering in Glance (the OpenStack discovery and

registration module).

Based on the above, the devised system leaves many further opportunities for automation

and simplification of the VM deployment process and could be considered incomplete in its

development.

Interestingly, a recent investigation explored proactive management for cloud-based

architectures (Dong and Herbert, 2013). Rather than use a traditional method of reactive

management, they suggest that a far better management strategy is to be proactive rather

than to just react to occurring events. They programmed in certain intelligent traits, such as

suggestions for tasks to be carried out such as VM migration in the case of a set of criteria

being fulfilled. These suggestions are then evaluated in turn, to decide whether they should

be acted upon. The evaluation process used a manual cloud build methodology, using IBMs

SmartCloud, which was a noted problem, as the management system was not tightly

integrated into the VM provisioning process; inherently, not being tightly coupled, means the

Intelligent Management of Virtualised Computer Based Workloads and Systems

© James Oakes, 2020 53 | P a g e

intelligent system will struggle to manage the IaaS (Infrastructure as a Service). For the actual

management aspect, a private cloud simulator was used to allow this process to allow the

theoretical management of between 50-500 VMs.

Further systems examine how workload schedulers can be applied to heterogeneous

systems, which are able to run a combination of workload types (Kim et al, 2011). This

methodology and approach are interesting; however, it differs in principle from the work being

carried out by this project, with the key differential being one uses a controlled, tightly

integrated modular approach. On the other hand, the alternative aims to generically schedule

workloads across various cloud and computer resources an organisation may have available.

This approach used CometCloud, a grid computing tool, designed towards heterogeneous

compute environments. Other approaches to managing virtualised environments have solely

addressed a single compute entity, like CPU resource (Menasce and Bennani, 2006). Their

work demonstrates the ability to dynamically provision CPU shares to various VMs, depending

on overall systems priorities; however, this work presents opportunity to build further on

performance management aspects.

A Distributed Artificial Intelligence (DAI) system consists of multiple physically separated

processing machines, with each having at least one expert system or knowledge source. No

one node has the ability to entirely solve a problem. Instead, it must work together in a co-

operative manner in order to resolve a problem. Typically, such a multi-agent system

comprises of a number of components, described as a receiver and transmitter, meta-level

knowledge, planner, scheduler, blackboard, solver and multiple knowledge sources. The

components rely on interactions between themselves, with the receiver/transmitter using a

defined protocol and language set to communicate with other nodes. Meta level knowledge

allows for general node or environment awareness, so the problem once defined at a high

level can be addressed and resolved by the correct candidate node. Task planning allows a

specific problem to be broken down into a structured set of sub-tasks that can be addressed

in a logical order by one or multiple nodes. The scheduler’s goal is to decide upon the most

effective way of reaching an overall solution by prioritising and ordering sub-tasks. In order

to work effectively, the blackboard is used and accessed by each node as required, to allow

node-to-node communications, with information and data stored about plans, tasks and

Intelligent Management of Virtualised Computer Based Workloads and Systems

© James Oakes, 2020 54 | P a g e

results. Finally, the solver is responsible for reaching the end objective of a final solution by

tracking and determining the best path forward for all sub-tasks to complete (Yang et al,

1985).

An exciting work around the use of the mOSAIC framework has been completed to work

to provision an IaaS/PaaS environment with intelligent management to help manage

distributed cloud resources. The primary advantage of the tool is the fact it is geared towards

any cloud platform service and can be considered vendor agnostic. This provides a great deal

of flexibility, in that it can be applied and used and configured against various cloud platforms.

On the other hand, however, the main drawback is the complex configuration and setup of

the framework, along with the dependency for AI and automation that does not work by

default without a considerable amount of customisation (Sandru et al, 2012). The mOSAIC

product comprises of numerous modules shown in figure 2.3:

Figure 2.3 The moSAIC Architecture

Intelligent Management of Virtualised Computer Based Workloads and Systems

© James Oakes, 2020 55 | P a g e

The above architecture demonstrates the product is feature rich; however, the

framework requires a large amount of configuration, especially around specific vendor

agents. This leads to the conclusion that the architecture components require considerable

post-deployment activities to produce automated processes (such as VM deployment) for the

organisation that uses the framework.

It follows, that if a system can be created to hold expert human knowledge, it can be

applied to any field of human expertise. As part of the output of this work, the author

endeavours to apply AI strategies in a novel way to help manage virtualised compute

platforms more effectively. Indeed, at a very high level initially, this can be described as

follows. To develop and build an expert system (IDE) which uses the following techniques:

• Data text mining and analysis to extract (quick and slow methods) from the platform,

both real-time information and retrospective data analysis methods to help re-

evaluate rules and logic base; typically, this would involve the identification of critical

log and information files to allow the system to process and perform its own analytics.

In effect, this is a three-step phase, with 1) identification of critical files – the system

must be able to determine this and 2) real-time extractor – critical platform updates

3) retrospective extractor – thinking extractor and textual analyser.

• Performance and availability monitoring; the system needs to control all physical

infrastructure components, and virtualised systems (VMs, Storage and Network). This

includes application of SLAs and predictive failover for all VMs, with shadow instances

for critical VMs. Some of this capability already exists in market leading commercial

products; as an example, VMware are using similar systems with features such as

Distributed Resource Scheduling and High Availability (Shirinbab et al, 2016). The goal

is to improve the approach employed by using new techniques to enhance the overall

performance using dynamic resizing of resources and faster failure detection and

recovery times.

• Rule based and forward chaining decision making allows information to be extracted,

Intelligent Management of Virtualised Computer Based Workloads and Systems

© James Oakes, 2020 56 | P a g e

processed and applied to the virtualised platform. As an example, this would include

building a forward chain for new VMs based in information available in the knowledge

base.

2.6.3 Conclusions

The following table describes the conclusions drawn from the areas investigated, with

analysis of the strengths and weaknesses for each finding:

Author(s)/Date Summary of findings Strengths and Weaknesses

Oludele et al,

2014

Attempts to fully automate VM

deployments.

Requirement to build and improve

on this methodology, as

automation techniques are not

fully developed.

Elprince, 2013a Automatic provisioning of

resources in virtualised

datacentres.

A useful model which can be

improved upon in terms of adding

more automation steps.

Elprince, 2013b Creation of an autonomic

resource controller.

The idea of a resource controller is

novel; however, it is concentrated

mainly on prediction of the

resources in a certain application

may need in a VM container.

Elprince, 2013c Resource modeller/controller

uses (machine learning) and a

fuzzy tuner (fuzzy logic) that

allows dynamic resource

allocation.

The approach primarily uses Fuzzy

logic, which deals with partial

truths, as opposed to Boolean

values which are true or false only.

As part of this work, further

opportunities are available to

Intelligent Management of Virtualised Computer Based Workloads and Systems

© James Oakes, 2020 57 | P a g e

Author(s)/Date Summary of findings Strengths and Weaknesses

investigate and apply other AI

techniques to modelling and

control, such as natural language

processing, forward chaining and

text mining.

Bojanova and

Samba, 2011

Enterprise infrastructure delivery

models applied into the cloud.

Interesting discussion on cloud

architectures, which highlights how

important delivery models will be

in this particular field. Presents the

idea that this area of work will be

critical to shaping the future of

cloud/virtualised computing

environments.

Gren et al, 2014 Automate delivery and manage

the control of their systems by

using centralised management

systems.

Argues for centralised

management of distributed

systems. Centralised services must,

however, be resilient.

Zhang and

Shang, 2014

Investigation into deploying VMs

and applications using

OpenStack.

An interesting approach using

OpenStack. However, there is

limited effort into how AI

techniques may be applied to the

environment and numerous

manual steps listed, such as setting

up a cloud computing platform in

OpenStack. This in itself adds

considerable complexity to the

end-user.

Dong and Study into proactive Concentrates primarily on cloud

Intelligent Management of Virtualised Computer Based Workloads and Systems

© James Oakes, 2020 58 | P a g e

Author(s)/Date Summary of findings Strengths and Weaknesses

Herbert, 2013 management for cloud-based

architectures.

management; however, the

Operational Management Service

(OMS) requires the build of at least

5 virtual machines in order to

function, implying there are

multiple steps for the end-users to

effectively use the tool.

Kim et al, 2011 Feasibility of application of

workload schedulers to

heterogeneous systems.

This study focused on using a tool

call CometCloud which is a

framework for supporting

workloads across distributed

systems, such as Public cloud,

Private cloud, Private clusters and

so on. The ideas presented are

interesting; however, in the paper

the experiment phase describes a

large amount of manual build

steps, such as configuring and

building public cloud VMs. In other

words, automated VM and system

provisioning did not appear to

feature.

Menasce and

Bennani, 2006a

Work around the dynamic VM

allocation of resources.

Primarily deals with dynamic CPU

resource allocation only, leaving

potential for lots of other resource

controls such as memory, network

and disk I/O.

Intelligent Management of Virtualised Computer Based Workloads and Systems

© James Oakes, 2020 59 | P a g e

Author(s)/Date Summary of findings Strengths and Weaknesses

Yang et al, 1985 Distributed Artificial Intelligence

(DAI) system consists of multiple

physically separated processing

machines, with each having at

least one knowledge source.

An interesting approach using

distributed expert system

components, however, this model,

although effective at delegating

load and tasks across multiple

agents, presents the possibility of

have more single points of failure,

due to the single entities requiring

replication (such as the ‘solver’ or

‘scheduler’); further work is

needed to ensure each critical

component is highly available.

Questions also remain over the

ability of the system to perform

and effectively problem solve

when using the black-board to

communicate and share

information with other nodes.

Sandru et al,

2012

This paper discusses the use of

the mOSAIC framework to

provide IaaS and PaaS, which

attempt to use the tool to

deliver automated provisioning

of various cloud infrastructure

and middleware components;

for example, VMs, RabbitMQ,

and MySQL.

The cloud management approach

used is vendor agnostic, which can

be perceived as a strength, as this

allows the tool to be customised

against any cloud provisioning

service. However, this does leave

the complexity of having to create

the agents to support the

multitude of vendors. The AI

techniques are not fully explained,

Intelligent Management of Virtualised Computer Based Workloads and Systems

© James Oakes, 2020 60 | P a g e

Author(s)/Date Summary of findings Strengths and Weaknesses

with only minimal references

which allude to it being a

necessary component to manage

the complexity of the platform.

Ajila and

Bankole, 2013

This paper discusses in detail

three methods for predicting

cloud resource utilisation of web

applications using three machine

learning techniques. Firstly,

using a Neural Network,

secondly via Linear Regression,

and finally using Support Vector

Regression (SVR).

The prediction model is interesting

as the authors compare three

different machine learning

strategies. They determine

through their experimentation that

the SVR method is most effective

at resource prediction and

adaptation. However, little

information is made available on

how once the information is

collated, VMs in the cloud are

automatically modified should it

be determined they require more

or less compute resource.

Tian et al, 2012 This work considers using a

Decision model for provisioning

VMs on Amazon EC2, in terms of

providing cost optimisation and

capacity planning.

An investigation into how to best

acquire Amazon EC2

resources/capacity based on three

different pricing models. Those

types are on-demand instances,

spot instances and reserved

instances. The idea was to reduce

the cost to a minimum for EC2

provisioning plans. The results

showed a promising strategy for

Intelligent Management of Virtualised Computer Based Workloads and Systems

© James Oakes, 2020 61 | P a g e

Author(s)/Date Summary of findings Strengths and Weaknesses

reducing overall cost, as well as

little advantage to using spot

pricing for short-term planning.

Lokshina and

Insinga, 2004

Discusses the feasibility of using

an expert system as a

replacement for a human system

administrator, acting in a

support function.

Looks at how an expert system can

use a combination of event driven

decision making, utilising forward-

chaining to reach conclusions on

how to problem solve in a

distributed and heterogeneous

computing environment.

Table 2.3 Current Virtualisation/Cloud Management Findings

2.7 Intelligent System Approaches

2.7.1 Introduction

Given the gaps and challenges identified, a further examination and consideration of

intelligent systems is undertaken in the areas of algorithms, pattern analysis, machine learning

and inference engine. These areas are explained in detail below:

2.7.2 Algorithms

An algorithm is a step of sequenced actions that can be made up of a combination of

reasoning, mathematical calculations and processing tasks (Huang et al, 2012). They link

intrinsically to expert systems methodologies described in the above examples in section 2.4,

which are essentially made up of a single or series of algorithms (Mülayim and Alaybeyoğlu,

2016; Wenbin et al, 2010; Ashouri and Savoji, 2004). Instead of being clinically based, the

knowledge domain of this investigation is focused on the application (knowledge engineering)

Intelligent Management of Virtualised Computer Based Workloads and Systems

© James Oakes, 2020 62 | P a g e

of those principles to virtualised computer systems. Indeed, the field of expert systems (and

associated algorithms) are equally applicable in helping to solve any type of problem that

requires a level of human natural intelligence to create a solution (Durkin, 1990; Beckman,

1990). Currently, this research field is wide and intensive as the studies examined

demonstrate. As examples, consider further that significant efforts are being made in:

• Autonomic virtualised environments; the concept of automatically assigning CPU

resources dynamically within a virtualised computational environment (Menasce and

Bennani, 2006).

• Autonomous resource provisioning; the idea here is to design an autonomic resource

controller capable of learning adaptively, by utilising Machine Learning techniques,

effectively being able to make resource changes to meet Service Level Agreements

(Elprince, 2013).

• Predicting cloud resource using support vector regression (Ajila and Bankole, 2013).

2.7.3 Text Mining

The IDE proposes using data text mining processes to analyse key data and log files (Wong

and Manickam, 2010). This enables quick extraction of key data to enable the platform to

make decisions and trigger key events. Examples of platform events specific to this work

include VM deployment, VM failure, VM migration, and intervention to improve VM

performance. Analysis of patterns is essential for the system to be able to perform two critical

activities:

• Event response (reactive) based on real-time data.

• Event prediction (proactive) based on historical analysis.

The first activity, event response, is a classical trait for an expert system to exhibit (Kulikowski,

1980; Lokshina and Insinga, 2004). Usually, a pattern of events is recognised, and a conclusion

reached through logically joining those identified patterns to match an event response using

Intelligent Management of Virtualised Computer Based Workloads and Systems

© James Oakes, 2020 63 | P a g e

a method such as forward chaining (Windriyani et al, 2013). Once matched and initiated, a

series (or even single) of actions are performed to provide a satisfactory system response;

once completed, the tasks carried out can be evaluated and measured as successful or non-

successful. Likewise, a further less common method is to use historical or collected data to

proactively perform a set of actions, again using a method such as forward chaining (Kwon,

2012). Figure 2.4 demonstrates the basic approach:

Figure 2.4 Machine Event Response Mechanism

For example, you may be able to predict busy system times, such as just before batch

processes start at 7pm on a Sunday evening. Therefore, it would be feasible to predict this

event due to pattern analysis of historical data and invoke a procedure to increase CPU and

memory available, to allow the system to perform more effectively. It is an objective for this

work to incorporate both methods to support the IDE function.

2.7.4 Natural Language Analysis

Natural language processing is used to understand and organise information (Lebowitz,

1983). The IDE aims to use a knowledge base, with a thesaurus, an English based lexicon,

along with grammatical rules to allow the system to make sense of all collected platform data

and thus classify and formulate appropriately (Gaikwad and Joshi, 2016). Through

organisation of information, the system will be able to use these resources to build a

sequence of reasoning steps. Figure 2.5 demonstrates the process:

Real-time /

Proactive Event

Observation

Rule Matching

Process

Aggregation of

Rule

Conclusions

Event Response

Intelligent Management of Virtualised Computer Based Workloads and Systems

© James Oakes, 2020 64 | P a g e

Figure 2.5 Natural Learning Mechanism – Information Organisation

2.7.5 Inference Engine (Forward Chaining)

Inference engine architectures can use backward and forward chains to logically create

rules or new facts about the knowledge domain they operate in. With forward chaining,

known facts are connected together to result in a new conclusion or fact. Conversely, with

backward chaining, a desired goal is stated, and the facts required to achieve this goal are

reverse engineered (Mettrey, 1991). Given the two approaches, initially an examination of

forward chaining to build reasoning and conclusions (facts) will be undertaken. This will result

in a suitable knowledge rule-based approach for managing complex procedures within the

virtualisation of computer systems context (Spangler, 1991). The platform will therefore be

expected to make data driven decisions, which are triggered primarily by real time events

from information collected from the various components, such as VMs, storage and network

devices. By utilising forwarding chaining of statements, this enables the system to reach a

conclusion and invoke necessary functions described above to satisfy event responses or

event predictions (Novaliendry et al, 2015). The premise at a simple level is presented as

follows:

Historical/real-

time event data

Lexicon /

Thesaurus

toanalyse data

Classification of

data (grammar

rules)

Organise data

into stores

Start

Intelligent Management of Virtualised Computer Based Workloads and Systems

© James Oakes, 2020 65 | P a g e

Figure 2.6 Machine Learning Mechanisms Event Response

2.7.6 Cognitive Load Theory

 Cognitive Load Theory (CLT) emerged in the late 1980s, as a branch of cognitive

science, with several key researchers involved in studies around how users are impacted by

mental load during problem solving exercises (Sweller et al, 1998; Paas et al, 2003). The key

idea introduced, was being able to measure and capture the amount of mental power, or

mental effort that is required to complete a certain task or set of tasks (process), in a

controlled experiment setting. According to Paas and his colleagues, CLT is concerned with

the design of instructional methods that efficiently use people’s limited cognitive processing

capacity to apply acquired knowledge and skills to new situations, for example the transfer of

knowledge (Paas et al, 1994).

Analytical methods are directed at estimating the mental load and collect subjective

data with techniques such as expert opinion and analytical data, with techniques such as

mathematical models and task analysis. Empirical methods, which are directed at estimating

the mental effort and the performance, gather subjective data using rating scales. The

application of rating scale techniques are based on the assumption that people are able to

introspect on their cognitive processes and to report the amount of mental effort expended.

Although self-ratings may appear questionable, it has been demonstrated that people are

quite capable of giving a numerical indication of their perceived mental burden (Gopher and

Braune, 1984).

Analysis against

existing event

possibilities

Systematic

comparison of

event data

Decision –

create new

event/rules

Create new

rule, conclusion

and event

response

Yes

No

Intelligent Management of Virtualised Computer Based Workloads and Systems

© James Oakes, 2020 66 | P a g e

2.8 Summary

2.8.1 Introduction

Throughout chapter 2, there is an overall review of the foundation, origins and

motivations around the historical work done around AI and its many branches. By alluding to

the origins and early success stories, we set the scene for further developments around expert

systems (of all types), by highlighting their suitability towards imitating the way humans

problem solve. Furthermore, an in-depth discussion of two well-known public cloud

organisations brings the study up to the most current recent technology advances made. This

allows for comparisons to be made in the areas being examined by this investigation.

Following this, a detailed analysis of current research initiatives in the field allows a

comprehensive view of what has been achieved to date, how this work fits into the existing

body of knowledge; additionally, discussion around the identified gaps and expected

challenges helps define and justify the future effort and work undertaken by this project. By

completing this, it allows us to finally review some of the identified AI techniques that are

deemed most likely to provide the best results for the intelligent management of virtualised

computer systems.

Intelligent Management of Virtualised Computer Based Workloads and Systems

© James Oakes, 2020 67 | P a g e

2.8.2 Gap Analysis

The following table describes and captures those areas that are deemed to form part of

the gap analysis from the literature reviewed in the field:

Subject Area Gap Analysis Conclusion

Expert systems

application to virtualised

computer management

platforms and cloud-

based systems.

The author believes the work to be unique, in that no existing

expert systems exist within the knowledge domain of

virtualised computer management (Duda and Shortliffe, 1983).

Event detection

combined with forward

chaining (inference) to

improve automated

system response.

Examining existing work in the field of virtualisation, suggests

little has been done around combining system event driven

response with forwarding chaining to allow an expert system to

evaluate and perform an automated reaction for example

cause, effect and response (Anicic et al, 2009; Lokshina and

Insinga, 2004).

Natural language

processing for text

analysis and advanced

trigger generation.

Work to integrate natural language processing techniques for

text-based analysis of the virtualised platform environment

data to improve trigger detection and effective event response

strategy (Gandhe et al, 2013).

Simplified one-click VM

deployment.

Investigation into the reduction of the cognitive load rating for

complex user activities like building and deploying VMs. From

analysis undertaken of literature so far, opportunity exists to

simplify processes and minimise required human interventions

(Oakes et al, 2016).

VM performance and

availability.

Builds on existing work completed around the dynamic

allocation of resources (like CPU, Memory and Disk) by utilising

the event driven processes and inference capability to drive

Intelligent Management of Virtualised Computer Based Workloads and Systems

© James Oakes, 2020 68 | P a g e

Subject Area Gap Analysis Conclusion

intelligent decision making on how best to increase or remove

resources, in conjunction with service level agreements

without the need for human intervention (Antonescu et al,

2013; Sarathy et al, 2010).

VM Migration. Work to improve existing methods around VM migration

between hosts and automated balancing workloads, by

examining how to reduce service outage time, without the

requirement for human intervention (Benet et al, 2016).

Table 2.4 Gap Analysis

2.8.3 Approach Challenges

The table below describes the challenges, analysis and conclusions that were reached

based on the options available for the project:

Challenges Analysis/Conclusion

Distributed versus

centralised

management approach.

As part of the solution approach, it is important to decide

which design is the better suited to solving the problem (Yang

et al, 1985).

Conclusion: Choose centralised management.

Functional capability

prioritisation.

Any solution provided requires an initial starting point.

Deciding on what functional capability is critical in managing

the project effectively. Rather than over-extend the initial

capability, it is deemed advantageous to focus on the most

critical functionality required and deliver the perceived

improvements.

Conclusion: Prioritised IDE functional capability areas as per

section 1.2 Motivation and Aims.

Intelligent Management of Virtualised Computer Based Workloads and Systems

© James Oakes, 2020 69 | P a g e

Challenges Analysis/Conclusion

Deciding which AI

strategies are the most

effective to utilise with

the IDE.

There are many AI strategies/approaches available, which could

be selected to support the IDE. Choosing the most appropriate

AI component is critical to the project. Current areas

considered:

• Fuzzy Logic - Partial v Absolute truth (Elprince, 2013)

• Support Vector Machines (Ajila and Bankole, 2013)

• Machine Learning (Arnaldo et al, 2015; Melekhova,

2013)

• Data/Text Mining (Prangchumpol et al, 2009)

• Natural Language Processing (Mei and Cheng, 2010)

• Forward and backward chaining (Anicic et al, 2009)

• Expert systems (Spanger, 1991; Lokshina and Insinga,

2004)

Conclusion: Choose expert systems, based on the analysis

completed in chapter 2 and section 2.4.

Overcoming on-premise

private and hybrid cloud

limitations.

Optimising on-premise private/hybrid cloud management

techniques (Dong and Herbert, 2013; Jin et al, 2016; Zhang et

al, 2014)

Conclusion: Choose a private cloud management approach to

explore tight integration, improved automation, better

controls, based on section 2.6.2 Reviewed Approaches.

Table 2.5 Approach Challenges

Intelligent Management of Virtualised Computer Based Workloads and Systems

© James Oakes, 2020 70 | P a g e

2.8.4 Justifications

The following table highlights the justifications for the decisions and choices made for

each of the proposed areas of investigation:

Justifications Analysis/Conclusion

Reducing Cognitive Load

for complex VM

provisioning and

management tasks.

Working to reduce complexity of VM provisioning and

management by developing high levels of automation, reduced

requirements for human inputs and improved automation

(Sweller, 1988).

Improved Automation. Working towards full automation and minimal human

intervention for any functional procedures, such as VM

provisioning, VM performance monitoring and migration (Benet

et al, 2016; Steinder et al, 2007).

Selection of most

appropriate AI

strategies.

Use of natural language process to aid understanding of

log/textual outputs, complimented by the selection of text-

based analysis for improved/automatic pattern recognition,

event processing and selection of forward chaining to reach facts

(Anicic, 2009; Mettrey, 1991).

Simplification of VM

deployment.

Minimisation of end-user inputs and full automation of

provisioning VMs (Oakes et al, 2016).

Table 2.6 Research Justifications

Based on the justifications described in table 2.6, it is feasible to move forward into

the methodology in chapter 3, which describes in more detail the experiment processes and

mechanisms used to evaluate the IDE and other comparative virtualised management

platforms.

Intelligent Management of Virtualised Computer Based Workloads and Systems

© James Oakes, 2020 71 | P a g e

Chapter 3: Methodology and Evaluation Strategy

3.1 Methodology Introduction

The methods used for the investigation work include the build and development of a

prototype laboratory environment to support the experimentation processes undertaken for

the IDE and associated functions. By using this platform, it enables functional testing of all the

infrastructure components in unison and allows development of program code, algorithms

and system interactions. It is envisaged that once the platform reaches a mature configuration

point, the build could be easily replicated using automatic system package type installation on

standard Linux type systems. This would enable the easy deployment of additional evaluation

systems that are effectively replicas of the initial primary system. In this way, the evaluation

processes can be carried out easily, without transporting excessive amounts of hardware and

system configuration data (from the development laboratory). Simply, this could be a set of

software components for:

• A software package to configure the IDE with the primary, secondary and tertiary

systems.

• A software package to configure the Network Attached Storage (NAS) appliance.

• A software package for all required local source/packaged repository software.

• A software package to allow platform internet access (direct, or via a proxy).

Using these software deployment packages, it should be feasible to easily replicate the

experimental development platform, assuming the standard hardware devices are physically

available:

• At least 3 x86 architecture computers (Compute, minimum: 8GB memory, 2 internal

disks, 2 CPU Cores at 2GHz or higher, 1 x 1Gb Network Interface).

• At least 1 Network Attached Storage Appliance (Storage, minimum: Dual 1Gb network,

4 disks, 7200RPM, SATA/SAS/FC).

Intelligent Management of Virtualised Computer Based Workloads and Systems

© James Oakes, 2020 72 | P a g e

• At least 2 Network Switches (Network, minimum: 16 x 1Gb ports).

• At least 1 x86 computer to act as a router/gateway for internet access (optional); this

must have at least 1 physical network interface and a wireless network interface.

(Network/Compute, minimum: 4GB memory, 1 internal disk, 2 CPU Cores at 2GHz or

higher, 1 x 1Gb Network Interface).

3.2 Development Framework

The development framework is very important for the project to progress; the aim is to

control code releases using the Redhat Hat Package (RPM) format and source control versions

appropriately. This method will allow control of four key RPM software bundles (listed above),

which will be version tested together and the results recorded, to build up a valid laboratory

set of working configurations. It can be summarised as follows:

• RPM – All software will be bundled into Package format for ease of installation

and distribution.

• Source code – all code will be version controlled in a system.

3.2.1 Laboratory Setup

The laboratory setup for the design, build and experimentation phase included setting

up an initially small scale set of systems; the approach taken was to build a single x86 IDE

server – the primary system which controls all aspects of the environment. In the final model

design, there will be a primary and secondary system to provide high availability. Further to

this, three other x86 systems are required to perform normal VM build, development and test

operations. This platform would allow for all activities to be carried out on a small scale, with

the view of acquiring more powerful systems further into the research process, for example,

when experiments demanded higher performing systems specifications. Below is a diagram

of the initial and final laboratory setup:

Intelligent Management of Virtualised Computer Based Workloads and Systems

© James Oakes, 2020 73 | P a g e

i) The initial simple configuration:

Figure 3.1 Initial Laboratory Setup

ii) The final configuration as a recommended minimum:

Figure 3.2 Final Minimum Laboratory Setup

Intelligent Management of Virtualised Computer Based Workloads and Systems

© James Oakes, 2020 74 | P a g e

3.2.2 Software Configuration

The software configuration of the IDE platform is fully automated; there exists a number

of software Redhat Packages (RPMs) that make up the core of the programs required for the

system to function. Please see Appendix B for full details.

3.3 Evaluation Strategy

3.3.1 Evaluation Approaches

There are several different approaches that can be used in evaluating complex expert

systems. In the case of the IDE and its associated functional components, a combination of

two approaches have been chosen to provide both empirical evidence comprising of

qualitative data based on user feedback, and formal performance metrics providing measured

outputs made up of quantitative data. It is the goal of this work to produce results output that

have a combination of qualitative and quantitative methods. Some effort has also been taken

to evaluate and test methods to convert qualitative feedback and accurately define and assign

numerical values to help better represent user feedback in charts and graph format. Carefully

constructed process and thought are placed into such a method to ensure fair, robust and

meaningful values are accurately gathered and presented. Section 5.2.3.1 explains this

approach in detail (Srnka and Koeszegi, 2007).

Therefore, the two combinations are summarised below:

• The first evaluation method will use qualitative methods collated by obtaining expert

user feedback via interviews. This will be obtained through live demonstrations similar

to the RAND (Research AND Development) framework methodology (Rothenburg et

al, 1987). Therefore, a collection of expert qualitative data will be created based on a

set of structured interview questions, through interviewing three independent groups

with a defined experience and capability rating in the field of computer-based

virtualisation (see section 5.2.1.2 for definitions).

Intelligent Management of Virtualised Computer Based Workloads and Systems

© James Oakes, 2020 75 | P a g e

• The second evaluation method will use several quantitative simulations with formal

metrics, that will specifically target key system functions in performance aspects, such

as deployment of virtual machines and migration of virtual machines (Chen and Suen,

1993).

The objective is to use a combination of complimentary methods. Thus, the desired

outcome is to create a richer and more robust evaluation methodology by using both

qualitative and quantitative data. Qualitative data that focuses and reflects on the

characteristics and capabilities of the system, rather than just its features alone, and

quantitative data that measures specific system functions. The following sections discuss

these two approaches in more detail.

3.3.2 Expert System Evaluation

In chapter 2, section 2.4 an examination of how real life examples of expert systems

can be used as a way to assist with automated complex decision making processes is

discussed. It was established that such systems have a broad application to problem solving,

and the examples included medical diagnosis assistance, and system configurators. Section

2.4.9 provided the basis and justification as to why expert systems had been considered as a

feasible way of utilising expert knowledge to manage complex systems and processes. A

variety of existing and known methods are used to evaluate the IDE and comparative systems,

using experimentation process; they are described further below:

• The expert system rules are fired and tested using a simple first-come first-

served approach, and are therefore ordered in priority. This avoids complex

conflict sets, whereby many rules may be valid to execute, and provides a clear

conflict resolution strategy (Mettrey, 1991; Alty and Coombs, 1984).

• Additionally, a mixture of evaluation methods is employed to test the IDE. This

includes, traditional qualitative and quantitative evaluation methods, as

described in section 3.4.1 and 3.4.2 respectively, as well as less well known

methods such as measuring the characteristics and features of expert systems

and their capability (Beckman, 1990; Rothenburg et al, 1987).

Intelligent Management of Virtualised Computer Based Workloads and Systems

© James Oakes, 2020 76 | P a g e

• Mixed quantitative and qualitative methods are used to measure VM and

cognitive load, and are used with the end-user participant groups to test the

IDE expert system. The experiments are devised in section 3.5.1 for

investigation 1, Autonomous VM Deployment, and in section 3.5.2

investigation 2, Cognitive Complexity System Evaluation (Massimiliano and

Tamburri, 2017).

• Quantitative methods are employed in section 3.5.3 for investigation 3,

Workload Migration and Evacuation of VMs to investigate the IDE performance

against comparative systems (Madarasz et al, 2014).

• For the performance management evaluation process, section 3.5.4 describes

investigation 4, the Overload of VM Memory, and section 3.5.5 investigation 5

the Overload of VM CPU. A series of simulated experiments are to be

conducted to evaluate how well the global resource manager for the IDE

performs in comparison to other similar studies. As an extension to testing the

effectiveness of all the resource management systems, a binomial evaluation

is used in chapter 7.6.5 to enrich and provide details on the features and

characteristics of the IDE and comparative systems (Conrath and Sharma,

1991).

As demonstrated above, the author is using a wide variety of standard evaluation

methods (qualitative or quantitative), which are well known, tried and tested. As alluded to,

there are several less well known approaches used by some researchers, however, for the

most part these have been avoided unless it was apparent additional methods were needed

or useful, as in the case where qualitative or quantitative methods would not suffice entirely;

for example determining the effectiveness and capability of the global resource management

features of a system like the IDE. Therefore, with the exception of some influences from

researchers such as Contrath and Sharma and their use of the binomial evaluation method,

and Rothenburg and his colleagues at the RAND institute, the methods remain standard where

possible.

As described earlier in section 3.3.1 the RAND work establishes some other useful

Intelligent Management of Virtualised Computer Based Workloads and Systems

© James Oakes, 2020 77 | P a g e

methods for evaluating expert systems, which have been partly considered and incorporated

(Rothenburg et al, 1987). One of the points suggested as providing additional value is

evaluating the expert system capabilities, and that is explored further as part of this work. In

chapter 7, section 7.6.1, 7.6.2 and 7.6.3, the IDE and comparative tools are analysed, scored,

and the results presented.

3.3.3 Experiment Design

The following points detail how and why the experiments were devised:

• Experiment 1 (section 3.5.1) and Experiment 2 (section 3.5.2): Autonomous VM

deployment, and Cognitive Complexity System Evaluation. This experiment was

created and based around the 10-step procedure to provision VMs. The author used

empirical observation methods to initially work through each of the key stages (10-

Steps), to determine what inputs are required and necessary for a system to create

and provision a VM, for example selecting the required CPU, memory, and disk

parameters. The process methods to achieve this is consistent for the IDE, AWS and

Oracle platforms, and hence repeatable for each (Massimiliano and Tamburri, 2017;

Bhise and Mali, 2013).

• Experiment 3 (section 3.5.3): Workload Migration and Evacuation of VMs. The author

realised early on at the proposal stage, that this area was a key element to

management. Similar studies have been done using other technologies, such as

VMWare vMotion and XenMotion. Migration, evacuation and failover of VMs are key

to maintaining availability, and therefore can be considered a fundamental process for

the intelligent management of virtualised platforms (Benet et al, 2016; Feng et al,

2011; Shirinbab et al, 2016; Toyoshima et al, 2010; Calzolari, 2006; Wood, 2011).

• Experiment 4 (section 3.5.4) and Experiment 5 (section 3.5.5): Overload of VM

Memory Usage, Detection Time and Resolution Time, and Overload of CPU Memory

Usage, Detection Time and Resolution Time. As with VM provisioning, and migration

Intelligent Management of Virtualised Computer Based Workloads and Systems

© James Oakes, 2020 78 | P a g e

and failover, this is another critical area for the effective control of virtual machines.

Utilising a global performance management strategy for the flexible consumption of

CPU and memory is regarded as important feature of an intelligent management

system (Flinta et al 2017; Imai et al 2013; Jeong and Lee 2012; Jing 2011).

3.4 Qualitative Versus Quantitative Methods

There was a desire to provide a mixture of both qualitative and quantitative studies to

enhance the overall data set, with the objective of providing a richer set of results for

evaluation. This is backed up by the concept of utilising mixed-methods. The aim of such

mixed-methods is to support the cause and effect claims (analysis and conclusion) by

combining multiple types of data, from various sources, to allow analyses that provide

software practitioners and academics a solid rationale, balanced and practical value to the

research results and conclusions reached (Massimiliano and Tamburri, 2017).

3.4.1 Qualitative Evaluation

For the five experiments, it was not deemed appropriate to use this method for all as

described by the following table, primarily because of the type of measurements that could

be taken require some form of human interaction:

Experiment
No

Experiment
Description

Qualitative
Evaluation
(Yes/No)

Justification of Method

1 Simplified VM

provisioning.

Yes Interactive systems such as the AWS,

Oracle and IDE public/private cloud

platforms allow for direct user interaction

and experience using the system interface,

Intelligent Management of Virtualised Computer Based Workloads and Systems

© James Oakes, 2020 79 | P a g e

Experiment
No

Experiment
Description

Qualitative
Evaluation
(Yes/No)

Justification of Method

albeit being automated for many of the

provisioning features. This therefore allows

opportunity for structured qualitative user

feedback.

Justification: Human Interactive.

2 VM Provisioning

cognitive

evaluation

performance.

Yes Using structured qualitative feedback from

the end-users of the system provides the

ability to create a model to collate the user

experiences and convert that data from

words to numbers. (Srnka and Koeszegi,

2007).

Justification: Human Interactive.

3 Workload

Migration and

Evacuation of

VMs.

No This feature within the tested platforms is

an automatic system event, whereby it

detects a full VM failure, and works to

evacuate and migrate the resource to a

remaining healthy host. This means such

an event/task can be easily observed and

quantified, but as it does not involve the

end-user experience as such, there is no

possibility to extract qualitative data.

Justification: Non-human Interactive.

4 Overload of VM

memory usage,

detection Time,

No This type of event is detected

automatically by the platform and steps

are taken to resolve. This experiment does

Intelligent Management of Virtualised Computer Based Workloads and Systems

© James Oakes, 2020 80 | P a g e

Experiment
No

Experiment
Description

Qualitative
Evaluation
(Yes/No)

Justification of Method

and resolution

time.

not involve the end-user and involves

observations of the platform behaviour

only.

Justification: Non-human Interactive.

5 Overload of VM

CPU usage,

detection time,

and resolution

time.

No This type of event is detected

automatically by the platform and steps

are taken to resolve. This experiment does

not involve the end-user and involves

observations of the platform behaviour

only.

Justification: Non-human Interactive.

Table 3.1 Qualitative Experiment Methods

3.4.2 Quantitative Evaluation

For the five experiments, it was appropriate to use this method for all as described by

the following table, primarily because for each, there was opportunity to collect meaningful

measurable data:

Experiment
No

Experiment
Description

Quantitative
Evaluation
(Yes/No)

Justification of Method

1 Simplified VM

provisioning.

Yes Data is collected from the provisioning

process for all platforms in respect to the

timings for each of the 10-steps identified.

Section 5.2.1 explains in further detail.

Intelligent Management of Virtualised Computer Based Workloads and Systems

© James Oakes, 2020 81 | P a g e

Experiment
No

Experiment
Description

Quantitative
Evaluation
(Yes/No)

Justification of Method

Justification: Measurable metrics available.

2 VM

provisioning

cognitive

evaluation

performance.

Yes Qualitative data is taken from the end-

users of the VM provisioning process and

converted into quantitative data, to

provide a mix-method analysis (Srnka and

Koeszegi, 2007;Massimiliano and Tamburri,

2017).

Justification: Measurable metrics available.

3 Workload

migration and

evacuation of

VMs

Yes This experiment phase will support the

detection process for a VM failure and

subsequent evacuation and migration to a

remaining healthy host. The timing related

data associated with this process will be

available.

Justification: Measurable metrics available.

4 Overload of

VM memory

usage,

detection time,

and resolution

time.

Yes This type of event is detected

automatically by the platform and steps

are taken to resolve. This experiment will

involve being able to time the observations

of the platform behaviour in respect to

how it can (dynamically) balloon a VMs

memory and resolve any resource issue.

Justification: Measurable metrics available.

5 Overload of

VM CPU usage,

Yes This type of event is detected

automatically by the platform and steps

Intelligent Management of Virtualised Computer Based Workloads and Systems

© James Oakes, 2020 82 | P a g e

Experiment
No

Experiment
Description

Quantitative
Evaluation
(Yes/No)

Justification of Method

detection time,

and resolution

time.

are taken to resolve. This experiment will

involve being able to time the observations

of the platform behaviour in respect to

how it can (dynamically) increase a VMs

CPU allocation and resolve any resource

issue.

Justification: Measurable metrics available.

Table 3.2 Quantitative Experiment Methods

3.4.3 Data Analysis

This will be conducted using well-known established methods (Xu and Liu, 2003;

Madarasz et al, 2014):

• Providing three user groups to represent a combined total of ninety-three users for

the IDE, AWS and Oracle platform experiments made up of, thirty-one novice users,

thirty-one experienced and thirty-one expert users. See section 5.2.2.2, 5.2.2.3 and

5.2.2.4 respectively for details on how these groups are defined. Having a

reasonable sized set of controlled end-user groups will provide a wider and richer

set of results for analysis, and improves the reliability of subsequent drawn

conclusions.

• Using observation techniques to record events, outcomes and timings during the

experiment process.

• Comparison of data against multiple similar academic studies using comparative

tools; for example, the IDE provisioning with AWS and Oracle cloud provisioning

techniques.

Intelligent Management of Virtualised Computer Based Workloads and Systems

© James Oakes, 2020 83 | P a g e

• Recording the data associated with timed experiments, to produce tables and

charts to allow for visual representation in graphical form.

• Interpretation of statistical data using mathematical methods, for example

determining sum or averages such as the mean, mode and median for

substantiating results, outcomes and conclusions.

3.5 Evaluation of Comparative Systems

The following five experiments capture the fundamental processes the IDE aims to

deliver against, as per the initial project proposal – see Appendix G for more details. They are

undertaken in a controlled way and use a simulated, step by step approach to record results.

3.5.1 Investigation 1: Autonomous VM Deployment

The following mechanism is designed to evaluate the deployment process of VMs. It

involves a study of the time taken to create a virtual machine compared to other case studies.

This would include the process time to evaluate cloud build questions/response against the

automation processes of the IDE.

Experiment Flow Process Description Methodology Result

Access the

provisioning

system.

The end-user must be

able to access the

provisioning platforms to

provide an interface to

produce the deployed

VMs.

Browser based

access via the

internet or private

cloud system via a

local network.

IDE v AWS v Oracle

Record the time

taken to perform

(e.g. gain access to

the system and

authenticate).

Configure role. The end-user must have

the relevant access

control and permission to

Observe and allow

the system to

configure

IDE v AWS v Oracle

Record the time

Intelligent Management of Virtualised Computer Based Workloads and Systems

© James Oakes, 2020 84 | P a g e

Experiment Flow Process Description Methodology Result

create VMs. appropriately. taken to perform

the configuration.

Select compute as

the option for VM

deployment.

Use the VM (Compute)

provisioning process via

the BUI.

The end-user must

be able to locate

the compute

provisioning

mechanism.

IDE v AWS v Oracle

- record the time

taken to access the

VM provisioning

tool.

Select the image

you wish to use to

install to the VM

(OS type/version).

There must be a data

source to install an OS

image.

The end-user must

be able to locate an

appropriate data

install source.

IDE v AWS v Oracle

- record the time

taken to access the

data source.

Select the VM

CPU, memory, and

disk parameters.

The VM must have

parameters associated

with its configuration.

The end-user must

specify appropriate

CPU, memory and

disk values.

IDE v AWS v Oracle

- record the time

taken to provide

the VM shell

parameters.

Define VM

parameters.

The VM requires IP

configuration, software

packages and OS release

version specified.

All the additional

parameters must

be provided to the

provisioning

system.

IDE v AWS v Oracle

- record the time

taken to provide

the additional

parameters.

Define VM

storage.

The VM requires at least

one virtual disk

associated.

All disk devices

must be defined for

the VM to use.

IDE v AWS v Oracle

- record the time

taken to provide

the disk

information

Intelligent Management of Virtualised Computer Based Workloads and Systems

© James Oakes, 2020 85 | P a g e

Experiment Flow Process Description Methodology Result

parameters.

Add SSH Key,

create a key and

upload the pubic

key.

To access the VM, an

appropriate secure key

mechanism must be in

place to allow the user to

access the VM post

deployment.

The public and

private key must be

deployed to the

system to allow

access.

IDE v AWS v Oracle

- record the time

taken to setup and

provide the key to

allow access.

VM creation

process.

This is the actual time

taken to install and

configure the VM using

the OS data source.

Observe the

installation process

mechanism.

IDE v AWS v Oracle

- record the time

taken to install the

OS and provision

the VM.

Process for

accessing the VM

via the internet, or

via network.

The VM must be

accessible via the

network/firewalls post

install. Therefore, it must

be available over the

network or internet.

All network access

protocols like SSH

must be working;

the end-user must

be able to login to

the VM.

IDE v AWS v Oracle

- record the time

taken to access

and login to the

VM.

Table 3.3 VM Deployment Experiment

3.5.2 Investigation 2: Cognitive Complexity System Evaluation

The steps below in table 3.4 will be followed to formally evaluate the VM provisioning

process using a structured feedback survey from the three groups, namely those characterised

into groups of novice, experienced and expert users:

Intelligent Management of Virtualised Computer Based Workloads and Systems

© James Oakes, 2020 86 | P a g e

Experiment Flow VM Data Parameter
Gathering

Methodology Result

Obtain VM

hostname and size

classification.

Data source method. Automatic or

manual

(description).

IDE v AWS v

Oracle - observe

the complexity for

each end-user and

record results.

Obtain VM size

parameters

(CPU/Memory/Disk).

Data source method. Automatic or

manual

(description).

IDE v AWS v

Oracle - observe

the complexity for

each end-user and

record results.

VM shell creation. Data source method. Automatic or

manual

(description).

IDE v AWS v

Oracle - observe

the complexity for

each end-user and

record results.

VM guest

installation.

Data source method. Automatic or

manual

(description).

IDE v AWS v

Oracle – observe

the complexity for

each end-user and

record results.

VM Post installation

methods.

Data source method. Automatic or

manual

(description).

IDE v AWS v

Oracle - observe

the complexity for

each end-user and

record results.

Intelligent Management of Virtualised Computer Based Workloads and Systems

© James Oakes, 2020 87 | P a g e

Experiment Flow VM Data Parameter
Gathering

Methodology Result

VM access method

and authentication.

Data source method. Automatic or

manual

(description).

IDE v AWS v

Oracle – observe

the complexity for

each end-user and

record results.

Table 3.4 VM Deployment Cognitive Load Experiment

3.5.3 Investigation 3: Workload Migration and Evacuation of VMs

This experiment set analyses the following three scenarios listed in table 3.5:

• When does a VM need to evacuate?

• Time policy, critical services weighting; for example, when moving a VM of least

importance (i.e. a VM hosting non critical applications).

• Scenario based evaluation of the IDE VM migration versus XenMotion and VMWare’s

vMotion.

• Utilisation strategy percentage use of resources, detection time, inference and

subsequent actions.

Experiment Flow Process Description Methodology Result

Evacuation

Scenario 1: VM

failure.

Simulation of VM

failure and

subsequent actions.

Simulate VM failure

event, ensure VM

fails, then observe

the resulting actions

to the event.

IDE versus XenMotion

and VMWare’s

vMotion.

Record the failure

time, VM failure time

and VM restored

Intelligent Management of Virtualised Computer Based Workloads and Systems

© James Oakes, 2020 88 | P a g e

Experiment Flow Process Description Methodology Result

time.

Evacuation

Scenario 2:

Physical Host

failure.

Simulation of

physical host failure

and subsequent

actions.

Simulate physical

host failure event,

ensure VM fails,

then observe the

resulting actions to

the event.

IDE versus XenMotion

and VMWare’s

vMotion.

Record the failure

time, VM failure time

and VM restored

time.

Evacuation

Scenario 3:

Redistribution and

equalisation of

platform VM load

based against

defined SLA.

Simulation of

platform resource

view with distributed

load with some

physicals overloaded

with VMs, with high

CPU/memory load,

and with some

physicals

underutilised. The

expectation is a

controlled

redistribution of

resources subject to

no impact to agreed

SLAs.

Simulate a platform

with three physical

hosts and a defined

number of VMs.

Create the scenario

of one overloaded

physical system, one

within normal

operating levels and

one under-utilised.

Demonstrate the

behaviour of each

platform under the

scenario-controlled

conditions.

IDE versus XenMotion

and VMWare’s

vMotion.

Record the start time

of the scenario,

create the situation

and the observe the

redistribution of load

and the platform

actions. Determine

the overall result for

each platform, in

terms of the final

configuration and

overall distributed

load (ideally evenly

loaded systems).

Table 3.5 VM Evacuation, Workload Migration and Load Management Experiment

Intelligent Management of Virtualised Computer Based Workloads and Systems

© James Oakes, 2020 89 | P a g e

3.5.4 Investigation 4: Overload of VM Memory Usage, Detection Time, and
Resolution Time

Simulate memory use to threshold (based on expert standards), detect, invoke actions:

Experiment Flow Process Description Methodology Result

Simulate VM

memory load over

a set period of

time (defined in

minutes).

Load simulator to

drive the memory

load of a single VM

to create overload

(for example over

75%, for a period >5

minutes).

Deploy a VM,

simulate the load on

the system against

memory, and

perform controlled

experiment.

IDE versus XenMotion

and VMWare’s

vMotion.

Record the overload

process experiment,

memory values, and

detection time of the

event occurring, and

resolution time –

these would be the

systems’ automatic

resolution steps.

Table 3.6 VM Memory Overload, Detection and Resolution Experiment

3.5.5 Investigation 5: Overload of VM CPU usage, Detection Time, and Resolution
Time

Simulate CPU clock time to threshold (based on expert standards), detect, and invoke actions:

Intelligent Management of Virtualised Computer Based Workloads and Systems

© James Oakes, 2020 90 | P a g e

Experiment Flow Process Description Methodology Result

Simulate VM CPU

load over a set

period of time

(defined in

minutes).

Load Simulator to

drive the CPU load

of a single VM to

create overload (for

example over 75%,

for a period >5

minutes).

Deploy a VM,

simulate the load on

the system against

CPU, and perform

controlled

experiment.

IDE versus XenMotion

and VMWare’s

vMotion.

Record the overload

process experiment,

CPU values, and

detection time of the

event occurring, and

resolution time –

these would be the

systems’ automatic

resolution steps.

Table 3.7 VM CPU Overload, Detection and Resolution Experiment

3.6 Summary

At the beginning of the chapter the development framework is introduced, as a means

for supporting the IDE system. It proposes a method for deploying a suitable laboratory setup

as well as software configuration, to enable the delivery of the IDE experimentation process.

A mixed approach is used for evaluating the systems under investigation, using empirical

evidence collected through observational data from end-users participants. The data sets

collected are to be analysed using quantitative and qualitative methods to ensure the output

results are as rich and diverse as possible, in terms of being able to analyse measurable

processes and interpret the cognitive end-user experience during system use. The work

comprises of five principle investigations, in the areas of autonomous VM deployments,

cognitive load analysis, workload migration and failover methods, and global resource

management of memory and CPU resources. The next chapter discusses the characteristics

Intelligent Management of Virtualised Computer Based Workloads and Systems

© James Oakes, 2020 91 | P a g e

and components of the IDE framework and the way in which it is used to enhance the

management of virtualised computer based systems and workloads.

Intelligent Management of Virtualised Computer Based Workloads and Systems

© James Oakes, 2020 92 | P a g e

Chapter 4: The Intelligent Decision Engine

4.1 Introducing the Intelligent Decision Engine

The potential for automated intelligent systems being able to interface into complex

computer infrastructures, poses an opportunity to vastly improve the control, management

and end-user experience of virtualised computing platforms. Having the ability to leverage an

Artificial Intelligence (AI) system to enable this is a possible way of accomplishing a primary

project objective (Appendix G). As part of this investigation, there has been an emphasis on

development work to create an Intelligent Decision Engine (IDE), to assist managing

virtualised computer systems; typically, this would include the control of:

1. Data-storage, memory and information retrieval.

2. Data processing and organisation.

3. Data flows between systems.

4. Creating intelligent rules and procedures.

5. System self-management and self-learning.

6. System real-time data processing and decision making.

7. System availability and autonomy (High Availability and recovery).

As part of the objectives of the proposal, this included a detailed analysis of other

intelligent computerised management systems available (see section 3.5). While the list of

systems is quite extensive, the author has concentrated on AWS to attempt to compare and

contrast the methods and processes, against the area of research being conducted within this

thesis.

For this research proposal it is not feasible to address all the areas Amazon Web Services

(AWS) currently span, or any other mainstream cloud-based provider, such as Oracle, IBM or

Rackspace (Finkle and Scoresby, 2012; Hwang, 2015; Ullah et al, 2016). While the investigative

work does cover some wider areas, by way of re-focusing, the author’s proposal includes three

specific areas of analysis and development.

Intelligent Management of Virtualised Computer Based Workloads and Systems

© James Oakes, 2020 93 | P a g e

• The IDE - Systems Intelligent Management; creating an intelligent method of deploying

and managing VMs, including the development of highly automated programmed

methods and algorithms, using different data storage strategies.

• Workload migration – the movement of virtualised computer resources based on

performance metrics and ensuring High Availability (HA) of VMs.

• Systems performance and health monitoring – establishing metrics around virtualised

resources and interpreting large amounts of real-time data, allowing it to feed into the

IDE for processing.

4.2. IDE Characteristics

The following sections examine fundamental areas of investigation, and the traits

developed for the IDE. A detailed explanation is provided below around the characteristics

that have been designed and inbuilt into the expert system to assist with the automatic

management of virtualised computer-based platforms.

4.2.1 Data Organisation

Organisation of information is critical for the effective management, storage, retrieval,

processing and intelligent machine decision making. The IDE uses the following combination

to organise data:

• A shared structured filesystem, with data files stored on a NAS system. This allows

instant access to data from any cluster node.

• A Relational database to maintain long-term information, knowledge rules,

metadata, and statistics.

Intelligent Management of Virtualised Computer Based Workloads and Systems

© James Oakes, 2020 94 | P a g e

4.2.2 Decision Making

The ability for the IDE to be able to perform decision making is critical. The methods for

processing and decision making are comprised around the forward-chaining method. This has

been selected primarily for the following fundamental reasons:

• The ability to be driven from events occurring.

• The ability to chain events together, to lead to a conclusion and consequent action.

• The ability to reason toward a goal, rather than from one (backward chaining).

• Backward chain reasoning something that is discussed further in section 8.3.6.

4.2.3 System Learning

The concept that the system can analyse patterns and learn from their available data set,

is a possibility for intelligent machines. Computerised systems are effective at handling large

amounts of I/O (Input and Output). Such systems invariably generate lots of information and

data. Being able to manage the data and store it in a meaningful way represents a challenge.

Indeed, many organisations are now investing in big data analytics using computer software

packages designed to make sense of vast amounts of data, such as log files, access lists, error

logs and many other types of stored information (Jin et al, 2016).

4.2.4 Algorithms and Procedures

The IDE uses the following algorithms, devised by the author, to enable the system to

make intelligent based decisions. These are inbuilt into the system to enable the

experimentation phase to compare against other systems and platforms selected (see section

3.5 Comparative Systems). The definition of an algorithm is “a set of mathematical

instructions or rules that, especially if given to a computer, will help to calculate an answer to

a problem” (Cambridge Advanced Learner's Dictionary, 2019). The IDE’s principle algorithms

and procedures are explained in detail below:

Intelligent Management of Virtualised Computer Based Workloads and Systems

© James Oakes, 2020 95 | P a g e

• Algorithm/Procedure 1: Remote system discovery mechanism, with system OS

fingerprint analysis and advanced OS system type detection. This algorithm allows for

the discovery of systems on the network, within managed subnet ranges, which can

be brought under IDE control. This does assume that the system hypervisor matches

those that the IDE presently understands, for example VirtualBox. Additionally, a

network scanner, such as nmap can be utilised with this algorithm to fingerprint the

remote system OS. Once a system is detected, scanned and a connection tested

successfully, the IDE can use an initial set of credentials to place its SSH public key

securely on the remote system to allow full control from that point forward.

// High level discovery and analysis algorithm

INPUT: network scan range, and all known hosts
OUTPUT: Return all remote host values, fingerprints and status

 FOR each network
 FOR each IP
 Scan IP address
 Use ICMP protocol stack to establish TCP/IP connectivity status
 Use network analyser to finger print analyse any unknown hosts
 Use SSH process to determine access status
 Establish access and control if able
 RETURN (return code)
 END FOR
END FOR

FOR each discovered host
 Use SSH process to determine access status
 Establish access and control if able
RETURN (return code)
END FOR

// End of algorithm

Table 4.1 Algorithm/Procedure 1: Remote System Discovery

• Algorithm/Procedure 2: Improved system communication strategy using SSH to build

a secure framework for remote host management and control groups. The SSH

framework allows for commands, code and scripts to be executed automatically using

key exchanges for authorisation across remotely controlled systems. Return codes are

received back to the IDE master to enable it to determine the outcome of executed

commands.

Intelligent Management of Virtualised Computer Based Workloads and Systems

© James Oakes, 2020 96 | P a g e

// High level command execution/messaging algorithm

INPUT: all known controlled hosts, or a subset of controlled hosts
OUTPUT: command status return codes

FOR each host
 Use SSH framework to execute remote command/script/code
 RETURN (return code)
 END FOR
// End of algorithm

Table 4.2 Algorithm/Procedure 2: Messaging Command Process

• Algorithm/Procedure 3: Improved data extraction and analysis methods to enable two

methods of a) quick response and b) slower background analysis of environment data,

to allow for reference knowledge data to be added and cleansed. This procedure

allows the IDE to probe all the remote managed system text files identified in section

4.8.4. The algorithm works through each identified knowledge source and will check

for certain known patterns and keywords. The relevant data is extracted locally, and

is sent back for centralised processing.

// High level text mining algorithm

INPUT: all known controlled hosts, or a subset of controlled hosts
OUTPUT: key message string(s), criticality

FOR each host
 Text mine for all IDE key phrases of interest against all files
 FOR each file
 Analyse IDE knowledge base (thesaurus, lexicon, and grammatical entities) against
 Key phrases
 Check each file status, check for text-based files of interest
 Auto process for key phrases
 Extract, compress and return data collection/information
 RETURN (return code)
 END FOR
 END FOR

// End of algorithm

Table 4.3 Algorithm/Procedure 3: Text Mining

Intelligent Management of Virtualised Computer Based Workloads and Systems

© James Oakes, 2020 97 | P a g e

• Algorithm/Procedure 4: Information and knowledge organisation to process and

create core and reference data, which affects how the forward chaining mechanisms

work when the IDE is decision making. The IDE makes specific use of two distinct data

store systems for unstructured, and for structured data. Each data store also retains a

filesystem cache for high speed data access to recently accessed or used data. Thus,

depending on the type of data, determines where it is stored and retained.

// High level data organisation algorithm

INPUT: datafile (structured/unstructured)
OUTPUT: process completed flag

FOR each datafile

 IF data is structured THEN
 Organise data into structured store
 Place in data cache for analysis
 ENDIF
 IF data is unstructured THEN
 Organise data into non-structured store
 Place in data cache for analysis
 ENDIF
 RETURN (return code)
 END FOR

// End of algorithm

Table 4.4 Algorithm/Procedure 4: Data Organisation

• Algorithm/Procedure 5: Pattern analysis and learning from data. The intention is to

use this mechanism to create new knowledge rules based on previously unidentified

triggers, that may not be initially dealt with effectively by the existing minimalist

ruleset. This particular algorithm is a precursor leading to the experimental process

required to develop the additional work identified in section 8.3.6, regarding the

invention and build of new knowledge rules.

Intelligent Management of Virtualised Computer Based Workloads and Systems

© James Oakes, 2020 98 | P a g e

// High level pattern analysis and learning algorithm

INPUT: data cache (structured/unstructured)
OUTPUT: process completed flag

FOR each data store
 WHILE data cache not empty

 IF data is structured THEN
 Review tables and data and match against known triggers

 IF new trigger required THEN
 Determine trigger type
 Create trigger
 ENDIF
 Review tables and data and match against known conditions
 IF new condition required THEN
 Create condition set (condition1) … (condition x)
 Link trigger event
 ENDIF
 ENDIF
 IF data is unstructured THEN
 Create new objects
 Create new tree structures
 ENDIF

RETURN (return code)
 END WHILE
 END FOR

 // End of algorithm

Table 4.5 Algorithm/Procedure 5: Pattern Analysis and Learning

• Algorithm/Procedure 6: Knowledge based forward chaining. This procedure creates

the framework for connecting either single or multiple system or platform events

together, and then enabling the evaluation of the appropriate conditions as listed in

section 4.8.1, then subsequently calling the necessary consequent to remediate the

condition.

Intelligent Management of Virtualised Computer Based Workloads and Systems

© James Oakes, 2020 99 | P a g e

// Forward chaining algorithm

INPUT: real time and trailing data feed
OUTPUT: forward chaining result

// Dynamic Forward Chaining
WHILE (conditions)

 Reference Known Conditions AND analyse for triggers
 IF (condition 1) and (condition 2) … (condition x) THEN
 Result (x) AND Execute trigger actions
 ENDIF
 RETURN (return code)
END WHILE

// End of algorithm

Table 4.6 Algorithm/Procedure 6: Forward Chaining

• Algorithm/Procedure 7: VM deployment mechanism used by the IDE builds forward

chained rules, to allow it to provision and deliver VMs. This procedure directly

automates the build and delivery of VMs, as described by section 5.2 Simplified VM

Provisioning (Oakes et al, 2016).

// VM shell deployment algorithm

INPUT: VM size parameter, VM type parameter
OUTPUT: Return configured/built VM

FOR each VM

 FUNCTION Lookup VM values (condition1, condition 2)
 IF VM (standard configuration)
 FOR each value

 Allocate VM parameter
 END FOR
 ELSE (custom)
 Allocate hard VM parameters
 END IF

 END FUNCTION

 FUNCTION Provision VM Shell (Hostname, CPU, Memory, OS Disk, Application Disk, Data Disk,
 CPU execution Cap)
 FOR each value
 Add shell value
 END FOR
 Write shell values
 Commit shell
 END FUNCTION

Intelligent Management of Virtualised Computer Based Workloads and Systems

© James Oakes, 2020 100 | P a g e

 FUNCTION Install VM
 Initialise VM shell
 Connect boot ISO to VM shell
 Network install VM
 END FUNCTION

 FUNCTION Post Configure VM
 Execution post install configuration
 Reboot VM
 Health Check VM
 END FUNCTION
 RETURN (return code)
 END FOR

// End of algorithm

Table 4.7 Algorithm/Procedure 7: VM Deployment

• Algorithm/Procedure 8: VM performance and monitoring management (preliminary).

This was the initial procedure defined to work generically with identified system

thresholds described in section 4.8. Chapter 7 builds on this, and creates an extended

or enhanced algorithm in section 7.2.1 for managing CPU and memory resource.

// VM performance and monitoring algorithm

INPUT: VM host
OUTPUT: VM performance and health status

FOR each VM
 IF VM down THEN
 Invoke recovery processes
 ENDIF
 IF VM performance > system alert thresholds THEN
 WHILE VM performance degraded
 Invoke analysis against knowledge base
 Invoke performance improvement processes
 check performance
 END WHILE
 ENDIF
 RETURN (return code)
END FOR

 // End of algorithm

Table 4.8 Algorithm/Procedure 8: Preliminary Performance Monitoring

Intelligent Management of Virtualised Computer Based Workloads and Systems

© James Oakes, 2020 101 | P a g e

• Algorithm/Procedure 9: Real-time platform event trigger, with decision processing-

based delivery event response. This algorithm addresses trigger alert events, which

are manifest through the search and evaluation process of live data sources as

described in section 4.6.4, and the text analysis for keywords and patterns listed in

section 4.8.4. By utilising these two techniques, the procedure below allows for rule

matching and forward-chaining functions to execute and fire knowledge rules as

appropriate.

// Platform event trigger algorithm

INPUT: Event trap
OUTPUT: Event response

 WHILE Trap events true
 FOR EACH Trap event
 Search and evaluate trap against knowledge base
 Match for trigger response
 IF match on trigger response THEN
 Perform platform response
 END IF
 RETURN (return code)
 END FOR
 END WHILE

 // End of algorithm

Table 4.9 Algorithm/Procedure 9: Event Trigger and Decision Making

• Algorithm/Procedure 10: Self-monitoring and high availability (HA) features. The IDE

system uses its own mechanism to maintain HA in the event that the primary IDE

service is interrupted for an unexpected reason, such as a hardware or software

failure. If this occurs the procedure below is invoked to bring services automatically

back online on an alternative node in the quickest way possible. This mechanism uses

the quorum algorithm defined in section 4.7.1, in order to establish a cluster majority,

to avoid and mitigate against any split brain type scenario from occurring.

Intelligent Management of Virtualised Computer Based Workloads and Systems

© James Oakes, 2020 102 | P a g e

// Platform self-monitoring algorithm

INPUT: Quorum vote count, health check
OUTPUT: IDE response

 IF IDE failure detected THEN
 IF (IDE primary down true AND Quorum votes >= Quorum value) THEN
 // when primary faults
 Failover from primary on to secondary
 Check Quorum, Failover and Primary server
 Alert response on failed component
 END IF
 IF (IDE primary up true AND IDE secondary failover up true AND Quorum votes >= Quorum value) THEN
 // when primary is repaired failback
 Check Quorum, Failover and Primary server
 Rebalance cluster and failover IDE from secondary to primary
 END IF
 IF (Quorum votes < Quorum value) THEN
 // more than a single failure has occurred (no quorum reached)
 Check Quorum, Failover and Primary server

 Report critical IDE error
 Alert Response
 Manual Intervention to recover

 END IF
 END IF
 RETURN (return code)

// End of algorithm

Table 4.10 Algorithm/Procedure 10: Self-Monitoring

Intelligent Management of Virtualised Computer Based Workloads and Systems

© James Oakes, 2020 103 | P a g e

4.3 IDE Components

The diagram below outlines the high-level components for the IDE:

Figure 4.1 IDE Program Components

Intelligent Management of Virtualised Computer Based Workloads and Systems

© James Oakes, 2020 104 | P a g e

The concept ideas presented in figure 4.1 provide the basis and opportunity to create

an IDE based on a set of functional computer programs. While intelligent programs can exist

in an isolated environment, equally, they can also exist in a distributed and interactive

environment; this in fact presents an opportunity to more closely mimic natural 'social

interaction' with other systems, by sharing information between entities (Callaos, 1994).

Table 4.11 below, discusses the elements captured in figure 4.1 above and discusses in

detail how these elements will interact with each component, and the envisaged benefits

based on the research conducted in the field leading to a desired IDE end state.

Program Element Description, Role and Envisaged Benefits

Decision Control Program. The Decision Control Program is at the very core of the IDE.

This particular program needs to be efficient and potentially

based on a typical Unix C like daemon program (Kwon, 2012).

This program will construct dynamic decision tables based on

data inputs and interacts with other programs defined in

figure 4.1. Its function must include:

• Build dynamic decision-making tables (as necessary).

• Suggest/Modify/Improve static decision tables

(background).

• Provision to process real-time data and interact with

other programs effectively.

• Analysis and rationale of old data from short and long

term sources.

• Use its compute facility effectively (scale up or down

thresholds).

• Handle interrupts, inputs and outputs.

Intelligent Management of Virtualised Computer Based Workloads and Systems

© James Oakes, 2020 105 | P a g e

Program Element Description, Role and Envisaged Benefits

VM Deploy Program. The VM Deploy program implements an advanced unique

one-click deploy mechanism (ref to paper), using a

combination of advanced deployment tools. The program

must allow:

• One-click web based VM provisioning.

• Fully automated VM deployment.

VM Workload Migration

Program.

The VM Migration program handles the movement of VM

resources, either to manage computer resources or as a

result of failure of systems. This facility must:

• Migrate VMs as a result of performance

issues/thresholds.

• Migrate VMs as a result of hardware failure detection.

• Migrate with minimal VM downtime.

• Migrate in a fully automated way.

Data in Processing Program. The Data in Processing program is responsible for collecting

and managing data inputs from the VM platform

environment, storing it in an appropriate data-store

(depending on defined criteria), either in:

• Short-term (NoSQL) / File-based.

• Long-term (relational/archive).

and in the background handle:

Intelligent Management of Virtualised Computer Based Workloads and Systems

© James Oakes, 2020 106 | P a g e

Program Element Description, Role and Envisaged Benefits

• Data transference.

• Data archive (big data management).

Learning and Analysis

Program.

The Learning and Analysis program is initially responsible for

developing small new components:

• Hints and tips based on data.

• Data rules for dynamic decision tables.

• VM analysis reports.

• New system functionality invention/development.

Note, this last initiative is quite ambitious. While it does not

make up a specific investigation for this project, it remains a

desirable characteristic for the system.

Remote Monitoring Program. The Remote Monitoring Program interacts with all VM

elements on the virtualised platform. The program is able to

continually and dynamically monitor all VM hosts and the

overall platform health. Monitoring would include:

• Network monitoring using base utilities such as ICMP

Ping.

• System kernel and OS monitoring.

• System log monitoring.

• Performance monitoring (CPU, Memory, I/O).

• Hypervisor health monitoring.

Self-Monitoring Program. Self-monitoring program is text interactive, includes a

console feed, Browser User Interface (BUI) and is has the

Intelligent Management of Virtualised Computer Based Workloads and Systems

© James Oakes, 2020 107 | P a g e

Program Element Description, Role and Envisaged Benefits

function of monitoring the health of the suite of programs

(Calzolari, 2006). Critically, there will always be at least three

components running; a master instance, and two shadow

instances, which must always run on separate physical hosts.

The purpose of this is to:

• Ensure no Single Point of Failure (SpoF) in existence in

the system.

• Ensure there is always one master instance running,

and two shadow instances.

Self-Healing Program. The Self-Healing Program reacts to the self-monitoring

program and takes corrective actions to ensure its continuing

operation in the face of failure of a single or any number of

components.

• Ensure there is a process defined to convert a shadow

to master instance (and vice versa).

• Ensure there is a facility to spawn new shadow.

instances where possible (for example in clusters

greater than 3 physical hosts).

Table 4.11 IDE Program Function Suite

Intelligent Management of Virtualised Computer Based Workloads and Systems

© James Oakes, 2020 108 | P a g e

4.4 Defining the IDE Model

Below is diagram figure 4.2 showing the process and interaction of the decision engine,

and its overall architecture and design:

Figure 4.2 IDE Architecture Model

Intelligent Management of Virtualised Computer Based Workloads and Systems

© James Oakes, 2020 109 | P a g e

4.5 Data-storage, Memory and Information Retrieval

As with any intelligent system, information must be stored, ordered and arranged in

such a way as to allow efficient location and retrieval (Cattell, 2010). Given the amount of

information required for storage, there are several ways this can be achieved. Typically, in an

intelligent system, there is usually a requirement for short-term (fast data access) and long-

term memory (archive/slow data access). This requirement can be potentially solved and

mapped within typical computing architectures to RAM (Random Access Memory) and disk

storage, for example SAS (Serial Attached SCSI) or another such like device. As in the example

of a human subject, short-term memory structures (frequently accessed) usually outperform

long-term (infrequently accessed) memory and likewise in a computer system, the same

principle holds true (Sanzo et al, 2012; Sweller, 1998).

4.5.1 Long Term Storage Strategy

The author proposes a relational database mechanism such as MySQL as a long-term

storage strategy (Martin et al, 2007). Section 4.2.1 provides additional details, along with

Appendix D.

4.5.2 Short and Medium Term Storage Strategy

The author proposes using a NoSQL, or bespoke file(s)-based solution using a

mechanism such as MongoDB as a short-medium storage strategy (Cattell, 2010). Section

4.2.1 provides additional details, along with Appendix D.

4.6 Data Processing and Organisation

The IDE stores and processes information continually and real-time. In order to

perform these types of activities it needs to handle and organise the data effectively, using

several mechanisms, depending on the type of task or activity the following methods are

employed:

Intelligent Management of Virtualised Computer Based Workloads and Systems

© James Oakes, 2020 110 | P a g e

• A Relational Database structure – designed for long term storage on information such

as cluster nodes, cluster configuration, IP and Network information, nodes

information, and critical log warning and alerts. Additional knowledge rules are also

stored here to enable reference.

• Custom File-based configuration and cache – designed to manage globally shared

lookup data for activities such as recording the quorum vote, cluster health status, and

acting as a general fast data cache. In memory structures are used in conjunction for

very fast response and low latency tasks.

4.6.1 Data flows Between Systems

The following diagram illustrates the data flows between the systems and explains in

detail how the IDE communicates with cluster nodes, and extracts information for processing

and sends commands to remote nodes, based on the expert rules employed to manage the

virtualised platform in an intelligent fashion. Below is a diagram showing the network protocol

flows between the IDE systems:

Figure 4.3 IDE Network Flows

Intelligent Management of Virtualised Computer Based Workloads and Systems

© James Oakes, 2020 111 | P a g e

4.6.2 Creating the Inference Engine

The inference engine is covered extensively in section 4.8. The purpose for the

inference engine is to enable the IDE system to be able to reason on the information it gathers

and then be able to infer and make decisions based on that data, to manage VMs and the

virtualised platform more effectively. The act of Inference is defined in the Cambridge

Dictionary as “a guess that you make or an opinion that you form based on the information

that you have” (Cambridge Advanced Learners Dictionary, 2019).

4.6.3 System Self-management and Learning

A critical part of the IDE is to have the concept of self-management; this specifically covers

these areas, as follows:

• High availability and being able to maintain the system and its services within the

cluster framework.

• Maintain data repositories, cleanse, order, and archive data as necessary and maintain

filesystem structure sizes to ensure they do not fill up.

• Text analysis from log files – using the data extracted and pattern matched against

trigger rules, to take necessary actions.

• Migration of VMs as necessary due to a complete failure scenario (i.e. crash and restart

VM and its services).

• Resizing (dynamically) of VMs as necessary to accommodate extra memory and CPU

increases.

• Learning from typical application sizing footprint, depending of the software deployed

for example, Apache, Apache Tomcat, MySQL and so on.

• The ability to learn and manage aggregation of application and database footprints for

VMs.

Intelligent Management of Virtualised Computer Based Workloads and Systems

© James Oakes, 2020 112 | P a g e

4.6.4 System Real-time and Source Data

For the system to manage virtualised systems effectively, it must be able to perform

the following two functions:

• Real-time data processing.

• Decision making capability, based around forward-chaining.

Forward chaining begins with the source data set that is made available to the decision

engine; for example, it uses knowledge rules to match against the relevant data from the end

user, or a system log file, until a decision, or interpretation can be made. This is reached by

analysing the available rules until a conditional match (or set of matched conditions) can be

satisfied, for example by using an if clause statement. If the conditions are true, then a

resulting action can be triggered, or invoked to perform a remedial task (or set of tasks) for

the managed systems, with the goal of resolving a certain issue (Martin et al, 2007). The

Inference engine will continue to iterate through this process until a goal is reached, upon

where it is executes its matching rule and then continues to iterate. In terms of real-time data

sources, the following generic log file data inputs are available on CentOS Linux systems (data

sources):

• /var/log/messages (generic system)

• /var/log/auth.log (security logs)

• /var/log/secure (security logs)

• /var/log/boot.log (boot up issues)

• /var/log/dmesg (system boot up console)

• /var/log/kern.log (kernel messages)

• /var/log/faillog (failed login attempts)

• /var/log/cron (cronjobs output)

• /var/log/yum.log (new packages)

Intelligent Management of Virtualised Computer Based Workloads and Systems

© James Oakes, 2020 113 | P a g e

• /var/log/mail.log (smtp log)

• /var/log/httpd (apache logs)

• /var/log/mysql.log (db logs)

Interface Rules, to search against the following defined condition types; see section 4.8.1 for

trigger events, and section 4.8.5 for more detail on the justifications:

1. Physical host down - evacuate all VMs (path to truth, rule match). This rule applies when a

physical host fails, typically as a result of a hardware failure. Such events are relatively

common depending on the amount of physical hardware deployed, and the mean-time

between failure rate. Should this event occur, all VMs should be evacuated and restarted on

alternative healthy nodes in order to maintain high hvailability (Tsai, 2009).

2. Physical host memory capacity hit - migrate VMs back within memory threshold (path to

truth, rule match). As with any physical system, there are always limits to memory resource.

Therefore, it is necessary to be able to migrate VMs and virtual resources to other physical

systems, in order to distribute the load across the platform as evenly as possible (Sarathy et

al, 2010).

3. Physical host CPU capacity hit - migrate VMs back within CPU threshold (path to truth, rule

match). This explanation is the same as rule 2 above, but for CPU rather than memory

resource.

4. VM memory overload - threshold hit, dynamically resize VM (path to truth, rule match). The

virtual machine’s allocated memory is at capacity, or underutilised, and requires resizing

(Antonescu et al, 2013; Dhiman, 2011).

5. VM CPU overload - threshold hit, dynamically resize VM (path to truth, rule match). This

explanation is the same as rule 4 above, but for CPU rather than memory resource.

6. VM Migration - system wide re-utilisation algorithm and no SLA impact - move resources

(path to truth, rule match). This rule allows for the movement of VMs within the managed

platform environment (Benet et al, 2016; Shirinbab and Lundberg, 2016).

Intelligent Management of Virtualised Computer Based Workloads and Systems

© James Oakes, 2020 114 | P a g e

7. VM unresponsive, hung-state or non-accessible - evacuate to new (path to truth, rule

match). Should a VM no longer be operational, a hard restart is required, or failing that an

evacuation to a new physical host (Shirinbab et al, 2016).

8. VM compulsory move - Unable to dynamically resize the VM for rule 2 or 3 due to physical

resource constraints, therefore, forced to move and relocate the VM to new a physical host

with sufficient spare capacity. (path to truth, rule match).

The matching process is described as follows:

WHILE true
DO
 FOR EACH host
 evaluate all real-time data sources text
 evaluate critical alerts text
 search through forward chains
 IF pattern match true
 invoke trigger (consequent)
 ENDIF
DONE

Table 4.12 IDE Rule Matching Process

4.7 System Availability and Autonomy

Traditional clusters often use a common standard deployment of two-nodes plus a

'quorum device' (Vogels et al, 1998). Such a device is normally configured to provide a 'third

vote' mechanism, such as race condition to place a SCSI reservation on disk. In days gone by

when hardware was relatively expensive, this was a good option; however, given the fact that

x86 commodity hardware is now so cheap comparatively, having a minimum of three nodes

in a cluster is a simple and optimal method to achieve high availability of systems, thus

eradicating Single Points of Failure (White et al, 2004). Therefore, to maintain simplicity, it is

instead proposed to use a simple formula defined below in section 4.7.1.

Intelligent Management of Virtualised Computer Based Workloads and Systems

© James Oakes, 2020 115 | P a g e

4.7.1 Establishing a Quorum

Quorum Definition: When a cluster node fails, or when a subset of nodes lose contact

with another subset, the surviving remnant of nodes need to verify that they now constitute

the majority of the cluster nodes that remain. If they cannot confirm that, they will go offline,

and cease to operate as a protective measure to mitigate against events that can happen such

as ‘split brain’, where a cluster partitions into two or more parts, which simultaneously believe

they have a majority quorum and attempt to run services. An event such as this can lead to

data corruption, which is a highly undesirable outcome. Therefore, the concept of a

majority only works If there more than 50% of cluster node votes available (rounded up) to

establish a quorum. For an IDE cluster, the minimum starting number of cluster nodes is three.

The mechanism is represented as below:

• Where 𝜂 denotes a cluster node that is available or unavailable

• Where 𝜖 denotes a cluster node that is unavailable

Where Τ denotes the total number of cluster node votes possible (each node has one vote)

𝑇 = ∑ 𝜂 (1)

Where 𝜐 denotes the number of cluster node votes currently available

𝜐 = Τ − 𝜖 (2)

Where 𝜛 is the minimum number of votes to establish a quorum, which is always an integer;

when a cluster has an even number of total cluster nodes step 3a is followed, or if an odd

number of cluster nodes exist, step 3b is followed. For example:

Intelligent Management of Virtualised Computer Based Workloads and Systems

© James Oakes, 2020 116 | P a g e

Where there are an even number of cluster nodes

𝑖𝑓 (Τ mod 2) = 0 then 𝜛 =
Τ

2
+ 1 (3a)

or where there are an odd number of cluster nodes

 𝑒𝑙𝑠𝑒 𝜛 = |
Τ

2
| (3b)

Where 𝜚 denotes the ability to establish a cluster quorum

𝑖𝑓 𝜐 ≥ 𝜛 then 𝜚 (4)

As an example scenario, take a 3-node healthy cluster.

• 𝜂 is the sum of current number of cluster nodes, available or not available, which is 3

(step 1)

• 𝜐 is the total number of active healthy node votes, so 3 minus 0 (step 2)

• 𝜛 is 3 divided by 2 rounded up (an integer), so 1.5 rounded up to 2 (step 3b)

• Therefore 𝜚 is possible as 2 is greater or equal to 2; therefore, the cluster can establish

a quorum (step 4)

As an alternative example, take a 3-node cluster with only 2 healthy nodes, assuming 1 has

failed.

• 𝜂 is the sum of current number of cluster nodes, available or not available, which is 3

(step 1)

• 𝜐 is the total number of active healthy node votes, so 3 minus 1, resulting in 2 (step 2)

• 𝜛 is 3 divided by 2 rounded up (an integer), so 1.5 rounded up to 2 (step 3b)

• Therefore 𝜚 is possible as 2 is greater or equal to 2; therefore, the cluster can establish

a quorum (step 4)

Intelligent Management of Virtualised Computer Based Workloads and Systems

© James Oakes, 2020 117 | P a g e

As a further example, take a 3-node cluster with only 1 healthy node, assuming 2 have failed.

• 𝜂 is the sum of current number of cluster nodes, available or not available, which is 3

(step 1)

• 𝜐 is the total number of active healthy node votes, so 3 minus 2, resulting in 1 (step 2)

• 𝜛 is 3 divided by 2 rounded up (an integer), so 1.5 rounded up to 2 (step 3b)

• Therefore 𝜚 is not possible as 1 is not greater or equal to 2; therefore, the cluster cannot

establish a quorum (step 4)

As a final example, take a 4-node cluster healthy cluster

• 𝜂 is the sum of current number of cluster nodes, available or not available, which is 4

(step 1)

• 𝜐 is the total number of active healthy node votes, so 4 minus 0, resulting in 4 (step 2)

• 𝜛 is 4 divided by 2, plus 1 resulting 3 (step 3a – remember this cluster has an even

number of cluster nodes)

• Therefore 𝜚 is possible as 4 is greater or equal to 3; therefore, the cluster can establish

a quorum (step 4)

Examples of valid cluster node configurations are any number of nodes three or more

(e.g. 3, 4, 5 and so on). This simplified method eradicates the need for adding a special vote,

such as a SCSI disk reservation, or a witness node.

4.7.2 Command Zone Concept

The command zone operates and hosts all the intelligence for the clustered systems.

It is essential that this always remains active, otherwise the cluster automatic intelligent

management will fail to continue to operate. Within the cluster, all machines are connected

to the core highly available network – this can be any pre-defined network address range with

static IP addresses assigned; for example, this could be an internal private IP address range

Intelligent Management of Virtualised Computer Based Workloads and Systems

© James Oakes, 2020 118 | P a g e

within an organisation, such as network 192.168.1.0 with a 24-bit netmask.

Every system connected in the cluster needs to be constantly aware of the other machine

statuses. There are only three possible results:

• Online with resource capability (i.e. compute resource available).

• Online but with no resource capability (i.e. compute resource exhausted).

• System down and unavailable.

As discussed previously, the minimum number of machines in the cluster must be three

(see section 4.7.1); the cluster may scale indefinitely, such is the design. Each machine within

the cluster probes the other systems systematically and reports the status output to a file

stored on a highly available NFS (Network Filesystem) share. Each system then routinely

interrogates the share to determine the status of the cluster. Where two independent

machines both identify another system is down and unavailable, and or the machine itself

reports it is isolated, the cluster will immediately seek to evacuate and establish the

unavailable systems workload on other available systems. This is demonstrated by the

procedure below:

INPUTS: cluster_node_list, cluster_resource_list, cluster_active_node_list, cluster_inactive_node_list
OUTPUTS: cluster_resource_evacuation_notification, cluster_resource_running_notification

WHILE true
DO
 FOR EACH cluster_resource
 IF cluster_resource failed AND on inactive_node THEN
 IF cluster_cpu+mem_space >= sum(cluster_resources_cpu+mem) THEN
 Evacuate cluster_resource and start on least loaded remaining node
 Send evacuation notice
 ELSE
 Unable to evacuate cluster_resource due to space constraint
 ENDIF
 ENDIF
DONE

Table 4.13 IDE Cluster Resource Evacuation

Intelligent Management of Virtualised Computer Based Workloads and Systems

© James Oakes, 2020 119 | P a g e

4.7.3 Keep Alive Critical Processes

There are four principles that are required to operate a cluster.

• The Command System (IDE) must always remain alive in the cluster, until such time as

a Quorum can no longer be achieved.

• A Quorum must be maintained to operate the cluster.

• Each node must be able to monitor the health of every other node in the cluster.

• The network the cluster operates on must be Highly Available (HA) with no SPoF.

The following processes are therefore deemed critical and must operate as follows:

• One or more slave node(s): [ide_slave_node]

• One master node: [ide_master_node]

• One shadow master node: [ide_shadow_node]

Intelligent Management of Virtualised Computer Based Workloads and Systems

© James Oakes, 2020 120 | P a g e

4.8 IDE Rule-base and Inference Engine

4.8.1 IDE Trigger Events

Below is a diagram showing the initial IDE Trigger event mechanism:

Figure 4.4 IDE Trigger Events

4.8.2 Physical System Events

System event number 1

System event description Physical host down.

Rule match Physical machine down AND all local (guest) VMs down.

Conclusion Evacuate all VMs to most appropriate remaining good

systems using most effective load-balancing strategy.

Event response Recovery of all VMs from failed physical host to other

remaining systems.

Table 4.14 Event Knowledge Rule: Physical host down

Intelligent Management of Virtualised Computer Based Workloads and Systems

© James Oakes, 2020 121 | P a g e

System event number 2

System event description Physical host memory capacity Exceeded AND time period >

15 minutes.

Rule match Physical machine physical memory > 80% AND no SLA

breach will be invoked because of migration.

Conclusion Migrate VMs to most appropriate remaining good systems

using most effective load-balancing strategy.

Event response Migrate VMs UNTIL physical memory within threshold.

Table 4.15 Event Knowledge Rule: Physical Host Memory Capacity

System event number 3

System event description Physical Host CPU capacity exceeded AND time period > 15

minutes.

Rule match Physical machine physical CPU > 80% AND no SLA breach will

be invoked because of migration.

Conclusion Migrate VMs to most appropriate remaining good systems

using most effective load-balancing strategy.

Event response Migrate VM(s) UNTIL physical CPU within threshold.

Table 4.16 Event Knowledge Rule: Physical Host Memory CPU

4.8.3 VM System Events

Sections 4.2.3 and 4.6.3 describe how the IDE intends to learn by continually self-

evaluating its own event possibility matrix, by creating new event types as necessary, with

appropriate rules and event responses. For example, event type 4 ‘VM system memory

overload’ could be an event that does not currently exist; therefore, it is created as an event.

The rule required to match that event could be system memory at utilisation of over 75% and

for a sustained time period of more than 5 minutes (see table 4.17). The conclusion is to

Intelligent Management of Virtualised Computer Based Workloads and Systems

© James Oakes, 2020 122 | P a g e

provide more memory and the event response is to dynamically re-size the VM by adding an

extra 25% memory. Table 4.17 describes the values:

System event number 4

System event description VM system memory overload.

Rule match System memory utilisation > 75% AND time period > 5

minutes.

Conclusion Provide additional memory to the VM.

Event response Invoke dynamic VM memory re-size +25% of original total.

Table 4.17 Event Knowledge Rule: Memory overload

Another example could be event type 5 ‘system CPU overload’ that follows a similar

approach to table 4.17 ‘VM system memory overload’. Table 4.18 describes the values:

System event number 5

System event description VM System CPU overload.

Rule match System CPU utilisation > 75% AND time period > 5 minutes.

Conclusion Provide additional CPU to the VM.

Event response Invoke dynamic VM CPU re-size +25% of original total, or by

a minimum of one CPU core, whichever is larger.

Table 4.18 Event Knowledge Rule: CPU overload

Based on the example certain events being successfully captured (or detected) as listed

in table 4.17 and 4.18 above, further development possibilities are considered particular

around forward-chaining (or forward-reasoning). To provide a little more context, figure 4.5

below provides an example of forward chaining in relation to how a CPU management alert

is handled:

Intelligent Management of Virtualised Computer Based Workloads and Systems

© James Oakes, 2020 123 | P a g e

Figure 4.5 IDE Example of Forward-chaining

Thus, we can consider that this is exactly the type of mechanism (forward-chaining) that

provides unique opportunity to use an inference engine to explore innovative ways of

effectively managing virtualised cloud-based systems.

System event number 6

System event description VM Migration.

Rule match No SLA breach AND system wide utilisation re-balance of

Resource (Performance Optimisation).

Conclusion Migrate the VM to a new Physical host.

Event response Invoke VM migration routine based on continuous VM load-

balancing strategy.

Table 4.19 Event Knowledge Rule: VM Migration

Intelligent Management of Virtualised Computer Based Workloads and Systems

© James Oakes, 2020 124 | P a g e

System event number 7

System event description VM Unresponsive.

Rule match VM does not respond within 10 seconds AND VM

inaccessible (1 attempt to access).

Conclusion Evacuate the VM to a new Physical host.

Event response Attempt one local restart of VM and then Invoke VM

migration routine to new appropriate physical host.

Table 4.20 Event Knowledge Rule: VM Unresponsive

System event number 8

System event description VM Evacuate.

Rule match Unable to increase CPU (Local physical limit) OR Memory

(Local physical limit) dynamically due to performance alert

AND SLA not breached by VM migration.

Conclusion Evacuate the VM to a new Physical host.

Event response Migrate VM to new most appropriate physical host.

Table 4.21 Event Knowledge Rule: VM Evacuate

4.8.4 Text Analysis

 In addition to section 4.6.4, which discusses the data sources that are used by the IDE,

it is necessary to perform continual analysis and pattern matching to extract useful

information from those files listed, to be able to invoke rule matches and complete forward-

chain type reasoning on event driven data sets acquired by the IDE and the aggregation of

useful data, to link events together (Anicic et al, 2009; Mei, L. and Cheng, 2010). The following

table provides examples of pattern keywords used by the IDE to help monitor trigger events

and through forward-chain reasoning potentially invoke one of its matching rules in its

knowledge base.

Intelligent Management of Virtualised Computer Based Workloads and Systems

© James Oakes, 2020 125 | P a g e

Pattern Keyword Data Type Information Priority Relevance

%error% varchar High

%warning% varchar Medium

%critical% varchar High

%full% varchar Medium

%lock% varchar Low

%failed% varchar High

%evacuate% varchar Medium

%invalid% varchar Low

%fatal% varchar High

%not found% varchar Medium

%missing% varchar Low

%invalid% varchar Low

%terminated% varchar Medium

%abort% varchar High

%execute% varchar Medium

%kernel% varchar High

%memory% varchar High

%cpu% varchar High

Table 4.22 Example of Keyword Pattern Analysis

 Typically, the information and data extracted using this process is extracted in a priority

order and then aggregated together to begin the rule matching and forward-chaining process,

or perhaps even the ability to predict where resources may be required (Flinta et al, 2017).

Intelligent Management of Virtualised Computer Based Workloads and Systems

© James Oakes, 2020 126 | P a g e

Upon successful matching of keyword patterns, analysis work is undertaken to ascertain if the

pattern and associated string is of relevance to the system. For example, the following table

provides sample pattern matches and their entire string. Being able to then determine the

status and value of the information is critical for the IDE to be able to decide whether to take

any further actions on an event driven forward chain event.

Pattern Keywords Associated Matched String (non-case sensitive)

%warning% /dev/mapper/vg_app12-lv_root: ********** WARNING:

Filesystem still has errors **********

%critical% passwd: Critical error - immediate abort

%full% ERROR cannot create datafile

/vol/data/standalone/journals/logfile-321497.db: filesystem

full

%error% ERROR cannot create datafile

/vol/data/standalone/journals/logfile-890354.db: filesystem full

%kernel% AND

%memory%

kernel: Out of memory: Kill process 8796 (mysqld) score 719 or

sacrifice child

Table 4.23 Example of Pattern Keyword Matching

In the table above we can see the last row as an example shows two keyword matches

for a single detected string from a data source discussed in section 4.6.4; typically this type of

message would be found in /var/log/messages data source. Intelligent information retrieval

is a key aspect for AI systems, and it is an excellent mechanism for the IDE to adopt, in order

to support the forward-chain reasoning methodology, discussed previously in section 4.8.3

and figure 4.5 (Mei and Cheng, 2010). By utilising such a retrieval method, the system can

correlate particular events happening in real-time on the system and wider platform, and

subsequently check to match those detected events to an appropriate knowledge rule and its

consequential action (Melekhova, 2013; Matthias, 2008).

Intelligent Management of Virtualised Computer Based Workloads and Systems

© James Oakes, 2020 127 | P a g e

4.8.5 Knowledge Rule Justifications

The following examines the knowledge rules defined in sections 4.8.1, 4.8.2 and 4.8.3

and defines and justifies the reasons why these rules are beneficial, worthy of inclusion and

useful for the IDE platform function.

Knowledge
Rule ID

Knowledge
Rule
Description

Knowledge Rule Justification

Testing Through
Direct
Experimentation

1 Physical host

down.

Justification: A physical computer

system fails as a result of either human

error, data corruption, or hardware

failure, such as a disk, memory, or CPU

fault.

Human error can occur at any time,

although the IDE aims through its

automation and AI/knowledge rules to

remove the need for human

intervention where possible because of

this risk, although it is vital to

understand that this access is not

restricted and is allowed. Human

interventions can be easily be mistaken

and often be inconsistent, as

administrators often perform their

duties based upon their personal

preference for completing a certain task

using certain method.

Data corruption can occur, when a

particular data set has its integrity

compromised, either through

Not fully tested,

see limitations in

section 1.4 and

future work in

sections 8.3.3

and 8.3.5 for

more detail.

Some work

simulating basic

host failure was

completed in

chapter 6 around

this, but more

can be done as

described in

future work.

Intelligent Management of Virtualised Computer Based Workloads and Systems

© James Oakes, 2020 128 | P a g e

Knowledge
Rule ID

Knowledge
Rule
Description

Knowledge Rule Justification

Testing Through
Direct
Experimentation

inconsistent writes, multiple data access

requests, where one is perhaps

unauthorised, unexpected or unknown.

The result is a data set that is no longer

trustworthy, inconsistent, incomplete,

inaccurate, and even possibly

unreadable.

Hardware failures are inevitable events,

that will occur to any computer system,

or set of systems. Typically, all systems

have a mean-time between failure

(MTBF) rate, which means that a

computer system may fail at any given

moment, due to power loss, or a CPU,

memory, system board, I/O adapter, or

disk fault.

2 Physical host

memory

capacity

exceeded.

Any guest systems (VMs) as defined in

figure 1.1 show that it is feasible for a

physical host to run short of memory,

through explained reasons, such as a

too highly consolidated VM (guest) to

physical (host) ratio, or unexplained

means, such as a hypervisor failing to

manage a memory leak or another

unexpected platform event. If this

becomes apparent over a sustained

period of time, actions are needed to

Not fully tested,

see limitations in

section 1.4 and

future work in

section 8.3 for

more detail.

Intelligent Management of Virtualised Computer Based Workloads and Systems

© James Oakes, 2020 129 | P a g e

Knowledge
Rule ID

Knowledge
Rule
Description

Knowledge Rule Justification

Testing Through
Direct
Experimentation

alleviate this situation. Hence, this

knowledge rule once its conditions are

met, will seek to alleviate the situation

automatically (Sanzo et al, 2012; Chen

et al, 2013).

3 Physical host

CPU capacity

Exceeded.

Any guest systems (VMs) as defined in

figure 1.1 show that it is feasible for a

physical host to run short of CPU,

through explained reasons, such as a

too highly consolidated VM (guest) to

physical (host) ratio, or unexplained

means, such as a hypervisor failing to

manage a shared CPU cores or another

unexpected platform event. If this

becomes apparent over a sustained

period of time, actions are needed to

alleviate this situation. Hence this

knowledge rule once its conditions are

met, will seek to resolve the error

condition automatically (Makridis et al,

2017; Ismail and Riasetiawan, 2016).

Not fully tested,

see limitations in

section 1.4 and

future work in

section 8.3 for

more detail.

4 VM System

memory

overload.

This rule deals directory with a guest

VM over utilising its allocated memory

for a sustained period of time. This rule

is essential to allow for a global

resource scheduling mechanism,

whereby the IDE can monitor all of its

Partially tested in

chapter 7.

Intelligent Management of Virtualised Computer Based Workloads and Systems

© James Oakes, 2020 130 | P a g e

Knowledge
Rule ID

Knowledge
Rule
Description

Knowledge Rule Justification

Testing Through
Direct
Experimentation

VMs across the platform and manage

the hypervisor layer effectively with

respect to memory management

(dynamic ballooning add/reduce and

resizing). Chapter 7 deals with this in

greater detail, as it highlights the

benefits of implementing this within the

platform (Zhang et al, 2017; Zhang et al,

2016).

5 VM System

CPU overload.

This rule deals directory with a guest

VM over utilising its allocated CPU cores

for a sustained period of time. This rule

is essential to allow for a global

resource scheduling mechanism,

whereby the IDE can monitor all of its

VMs across the platform and manage

the hypervisor layer effectively with

respect to CPU management (dynamic

Hotplug add/remove and resizing).

Chapter 7 deals with this in greater

detail, as it highlights the benefits of

implementing this within the platform

(Zhang et al, 2017; Zhang et al, 2016).

Partially tested in

Chapter 7.

6 VM

Migration.

Based on workload balancing strategy,

and sometimes the result the

invocation of high resource contention

within the IDE platform, it may be

Partially tested in

chapter 6.

Intelligent Management of Virtualised Computer Based Workloads and Systems

© James Oakes, 2020 131 | P a g e

Knowledge
Rule ID

Knowledge
Rule
Description

Knowledge Rule Justification

Testing Through
Direct
Experimentation

necessary to migrate VMs between

physical hosts, to better align VM

resource management, either to free up

memory, CPU or other physical

resources such as network or I/O.

Other reasons for migration, could

include running VMs across different

physical hosts (i.e. not collating them)

and introducing negative affinities in

order to ensure for example, that two

VM web-servers run on different hosts.

In the event of a hardware issue type

event where one fails for any reason,

the other VM web server will remain

online. Chapter 6 expands on how the

IDE makes use of work load

balancing/availability strategies

especially for unplanned failure type

events; note, that the limitations

section 1.4 discusses live migration for

planned migration events and the

future work section 8.3.3 goes into

additional detail on what work could be

considered (Feng et al, 2011; Shirinbab

and Lundberg, 2016).

7 VM

Unresponsive.

The IDE continually self-monitors the

platform it manages and checks all

Partially tested in

chapter 6.

Intelligent Management of Virtualised Computer Based Workloads and Systems

© James Oakes, 2020 132 | P a g e

Knowledge
Rule ID

Knowledge
Rule
Description

Knowledge Rule Justification

Testing Through
Direct
Experimentation

virtual resources for their availability.

Should a VM become unresponsive to

health check probes and the IDE is

unable to access the guest VM, steps

will be taken to restart the VM locally to

make it once again available, or if that

fails, an evacuation, failover and restart

will be completed. Chapter 6 provides

more detail with an example of a

simulated VM failure, and how the

system deals with and recovers from

this situation (Benet et al, 2016).

8 VM Evacuate. Occasionally on the IDE platform, it may

happen that an attempt to dynamically

add CPU or memory resources, or even

a hard resize/restart for a VM fails,

because there is simply not enough

resource remaining on the physical host

where the guest VM resides. In this

case, there is no option but to consider

an evacuation and migration of the VM

in question, or perhaps one of less

importance in terms of avoiding an SLA

breach, to another physical host. Should

an option be feasible the IDE system will

attempt to evacuate and move the

selected guest VM to an appropriate

Not fully tested,

see limitations in

section 1.4 and

future work in

section 8.3 for

more detail.

Intelligent Management of Virtualised Computer Based Workloads and Systems

© James Oakes, 2020 133 | P a g e

Knowledge
Rule ID

Knowledge
Rule
Description

Knowledge Rule Justification

Testing Through
Direct
Experimentation

physical host with suitable remaining

resources (Feng et al, 2016).

Table 4.24 Knowledge Rules Justifications

4.9 Summary

This chapter has described how the IDE is the key framework for extending control

and management over virtualised computer systems. The characteristics of the system allow

it to organise its data structures to store key information in relation to the managed systems.

Additionally, the embedded knowledge rules allow the IDE to take actions to improve VM

provisioning processes, failover or migrate VMs as required to restore services, or rebalance

resources across the platform, through interpretation of real-time data to allow the

invocation and execution of knowledge rules and its consequent. The appropriate algorithm

is then used to determine how to best recover, remediate or resolve the consequent; for

example, using the forward-chaining algorithm to knowledge rule match as required. The

next sections cover how the IDE interacts with its controlled components over the network,

and the data sources it uses as its real-time inputs, which are analysed for key text patterns

as well as the retention of that useful information, for example relating to VM or application

sizing. Next the way the IDE maintains its high availability is covered in detail, and data of the

knowledge rules are discussed, highlighting how they cover critical system events. Finally,

some justifications are provided as to why each of the knowledge rules were selected and

chosen for inclusion into the IDE system. The next chapter addresses the experiment

processes undertaken, the results gathered, and includes a summary view on the outputs.

Intelligent Management of Virtualised Computer Based Workloads and Systems

© James Oakes, 2020 134 | P a g e

Chapter 5: Simplified Deployment of Virtual Machines

5.1 Introduction

Developing the ideas from the motivation and aims listed in section 1.2 of this work,

experiments were conducted to help demonstrate that VMs could be provisioned in a

simplified way. There are two main areas that are covered by the experiment process; they

are based on the methodology approach defined in section 3.5.1 and 3.5.2 respectively:

• Real-time experiments to compare and measure how long it took the three end-

user group types defined in section 5.2.1 to provision a single VM across the

platforms described in section 5.2.2; this was a one-off experiment which took a

considerable amount of elapsed time, using the three platforms see Appendix A,

with data sourced from anonymous distributed users, who self-categorised

themselves based on the criteria described in section 5.2.1.2. Once the groups

reached 31 in total, they were then closed to new users; please see section 1.4

which discusses and identifies the limitations with respect to the number of

participants in the study.

• The participants in the study had the following characteristics:

o Population: A large selection of cloud administrators, including even those

not working professionally in IT.

o Target population technical ability: Mixed ability of novice, experienced,

expert users of cloud systems.

o Study population: Voluntary, 3 anonymous groups of 31 users, for a grand

total of 93 users, who have self-categorised their ability.

o Sample error for estimate: Low, as clearly defined steps 1 to 10, with the

goal to provision a VM, were provided to the participants.

o Studies related to problem discovery show that a user participant group

size of around 30 users will capture around 97-99% of all issues. Increasing

Intelligent Management of Virtualised Computer Based Workloads and Systems

© James Oakes, 2020 135 | P a g e

this to around 90 users, should capture nearly all problems, or around 98-

100% of issues; therefore, the numbers in the study provide a strong basis

to show that the participant numbers are viable for the experiments

conducted (Macefield, 2009; Faulkner, 2003).

• Additionally, following experiment 1, and the testing around VM provisioning

timing which yielded quantitative data, based on similar studies it was

determined that the experiment process could be widened to take advantage of

the qualitative data also obtained. By using the available results, it would be

beneficial to be able to measure the cognitive load complexity on the end-user

delivery of VMs (Oakes et al, 2019; Rothenburg et al, 1987). Therefore, significant

effort has been made as part of this research to investigate how to measure and

reduce the complexity of building virtual machines (Plass et al, 2010). Section

5.2.3 describes the experiment process and presents the findings in greater

detail.

5.2 Simplified VM Provisioning

5.2.1 Experiment Process

The process to evaluate the IDE simplified VM deployment mechanism is as follows,

using several experiment processes/parameters that are defined in the sections below.

5.2.1.1 Task Complexity Definition

Defining task complexity and associated subjective techniques more often than not

involve a set of questions containing one or many semantic differential scales, on which the

participant can indicate their personal experience, in respect to cognitive load during the

experiment process (Paas et al, 2003). Similar scales have been developed by researchers

previously, who based it on a measure of the perceived task difficulty (Borg et al, 1971; Gopher

and Braune, 1984). In Paas’s study, participants had to report their invested mental effort on

a symmetrical scale ranging from 1 (very, very low mental effort) to 9 (very, very high mental

effort) after each problem during training and testing. Using a similar method, the following

Intelligent Management of Virtualised Computer Based Workloads and Systems

© James Oakes, 2020 136 | P a g e

table describes the guide for process complexity for tasks defined in section 5.2.1.4. Note for

the 10-step VM provisioning process expanded in section 5.2.1.6, each step can be considered

as ‘task’ made up of ‘sub-tasks’.

Process Complexity Key Definition

Simple Intuitive, no training required. An example of a simple tasks

would be answering a question such as: “What is your age?”,

accessing a URL via a browser to load a website, or sending a

10-20 worded SMS (Short Message Service) message.

Moderate Basic training required, some experience and know-how

necessary to execute the task. An example of a moderate

complex tasks would be following a recipe with 3-4

ingredients to prepare and make a meal, writing a BASIC

computer program to calculate the Body Mass Index (BMI)

value of a human being, or being able to describe and use

Pythagoras theorem to calculate the length of the

hypotenuse.

Difficult Advanced training required, experience essential on how to

implement and complete the task. Examples of a difficult task

would be completing a residential home extension architectural

drawing to conform to local government planning and building

regulations, being able to write a computer program to

graphically draw a chessboard or being able to explain in a

classroom the full implementation of Internet Protocol version

4 (IPv4), providing examples of network classes, subnets and

network routing.

Table 5.1 Task Complexity Rating

Intelligent Management of Virtualised Computer Based Workloads and Systems

© James Oakes, 2020 137 | P a g e

5.2.1.2 User Types

As part of the experiment process, the volunteer user participants were able to

anonymously define themselves into one of three designated groups by self-determining

which group they belonged to as defined in each of the definitions:

End-User Type

Definition

Quantity of
Users in the
group

Novice User A user with little (less than a year) or no formal

training in computer science and no work

experience in computing disciplines.

31

Experienced User A user with some training in computing disciplines,

up to A-level standard, with some formal training

or 1-3 years’ work experience in the field.

31

Expert User A user with training in computing disciplines, with a

bachelor’s degree level or above, or with more

than 5 years’ work experience in the field.

31

Table 5.2 End-User Types

5.2.1.3 Task Types

Task types for the experiment are listed below. Importantly, each task type is based

on the requirement or non-requirement for human/end-user inputs.

Task Type Definition

Manual All sub-components of the task require manual user inputs.

Intelligent Management of Virtualised Computer Based Workloads and Systems

© James Oakes, 2020 138 | P a g e

Task Type Definition

Semi-Automated

Some of the sub-components of the task require manual user

inputs, some are automated.

Automated No sub-components of the task require any user inputs.

Table 5.3 Process Mechanism Definition

5.2.1.4 Process Types and Complexity Value Weightings

The table below features definitions of how the process analysis was broken down into

the tasks and sub-task components. For the purposes of this experiment and calculating the

user feedback, we acknowledge sub-components of tasks, but never ask the users to provide

their results at this level of granularity; instead, we take and record the qualitative result given

at the task level:

Process/Task/Sub-
components

Definition

Process

A set of tasks which make up a complete process flow; for example,

the steps/tasks required for the building of a virtual machine.

Task
An action, which is part of a process, such as creating an RSA public

and private key pair for a user and then deploying it.

Sub-Component

A task may be made up of sub-components, such as key generation,

key distribution, and setting key permissions, and testing the private

and public key handshake.

Table 5.4 Process, Task, Sub-component Definitions

Intelligent Management of Virtualised Computer Based Workloads and Systems

© James Oakes, 2020 139 | P a g e

5.2.1.5 User Results: Mode Average of Task Complexity Description

The following table allows for a reliable method of obtaining a mode average (most

frequent) of the end-users interpretation of the task complexity description: this is either

simple, moderate, or difficult. Therefore, as an example for step 8 (create and add SSH key),

Oracle cloud, the mode average, or most common description recorded was ‘difficult’.

User Type User
Numbers

Step
Number

Qualitative
Mode Average
Complexity
Description
(Oracle)

Qualitative
Mode Average
Complexity
Description
(AWS)

Qualitative
Mode Average
Complexity
Description
(IDE)

Novice,
Experienced,
and Expert

3 groups
of 1-31

1 Simple Simple Simple

Novice,
Experienced,
and Expert

3 groups
of 1-31

2 Simple Moderate Simple

Novice,
Experienced,
and Expert

3 groups
of 1-31

3 Simple Simple Simple

Novice,
Experienced,
and Expert

3 groups
of 1-31

4 Simple Moderate Simple

Novice,
Experienced,
and Expert

3 groups
of 1-31

5 Simple Moderate Simple

Novice,
Experienced,
and Expert

3 groups
of 1-31

6 Moderate Difficult Simple

Novice,
Experienced,
and Expert

3 groups
of 1-31

7 Moderate Moderate Simple

Novice,
Experienced,
and Expert

3 groups
of 1-31

8 Difficult Difficult Simple

Novice,
Experienced,
and Expert

3 groups
of 1-31

9 Simple Simple Simple

Intelligent Management of Virtualised Computer Based Workloads and Systems

© James Oakes, 2020 140 | P a g e

User Type User
Numbers

Step
Number

Qualitative
Mode Average
Complexity
Description
(Oracle)

Qualitative
Mode Average
Complexity
Description
(AWS)

Qualitative
Mode Average
Complexity
Description
(IDE)

Novice,
Experienced,
and Expert

3 groups
of 1-31

10 Moderate Difficult Simple

Table 5.5 VM Provisioning 10-Step Complexity (Mode Average)

5.2.1.6 VM Provisioning Process

During the evaluation and experiment process, there were 10 steps for VM

provisioning that were followed, using empirical testing methods, whereby users were

allowed to evaluate the IDE, AWS and Oracle VM provisioning platforms each in turn, while

under observation by a moderator who used an unobtrusive approach as a ‘fly on the wall’

(Seaman, 1999). The provisioning steps are defined as follows, based on the methodology

described in section 3.5.1, and using the complexity guide and mode values from the previous

section 5.2.1.5, which are incorporated in the table below:

Step
No

Description Process
Mechanism

Information
Input

M = Manual
A = Automatic
S = Semi-
Automatic

Complexity
Amazon
Web
Services
(Mode)

Complexity
Oracle
Cloud
(Mode)

Complex
ity IDE
Provisio
ning
(Mode)

O
ra

cl
e

A
W

S

ID
E

Step
1

Cloud
Provisioning
Access.

This is the
process
needed to
access and
authenticate
to use the
cloud

M M M Simple Simple Simple

Intelligent Management of Virtualised Computer Based Workloads and Systems

© James Oakes, 2020 141 | P a g e

Step
No

Description Process
Mechanism

Information
Input

M = Manual
A = Automatic
S = Semi-
Automatic

Complexity
Amazon
Web
Services
(Mode)

Complexity
Oracle
Cloud
(Mode)

Complex
ity IDE
Provisio
ning
(Mode)

O
ra

cl
e

A
W

S

ID
E

platform,
typically
username/
password.

Step
2

Configure
Role.

Setting up
role-based
access
controls, such
as
administrator.

S A A Simple Moderate Simple

Step
3

Select
compute as
the option
for VM
deployment

Public cloud
offerings
prefer to
allow manual
choices for
other
offerings such
as DaaS, PaaS
or SaaS. This
experiment
only deals
with IaaS.

S S S Simple Simple Simple

Step
4

Select the
image you
wish to use
to install to
the VM (OS
type/version
).

Typically, the
OS version
and software
packages,
add-on’s and
any other
supporting
application

S S A Simple Moderate Simple

Intelligent Management of Virtualised Computer Based Workloads and Systems

© James Oakes, 2020 142 | P a g e

Step
No

Description Process
Mechanism

Information
Input

M = Manual
A = Automatic
S = Semi-
Automatic

Complexity
Amazon
Web
Services
(Mode)

Complexity
Oracle
Cloud
(Mode)

Complex
ity IDE
Provisio
ning
(Mode)

O
ra

cl
e

A
W

S

ID
E

software.

Step
5

Select the
VM CPU,
memory,
and Disk
Parameters.

VM Shell
parameter
definition
phase.

S S S Simple Moderate Simple

Step
6

Define VM
Parameters.

Define, IP
addresses,
netmasks, OS
version,
packages and
other such
configurable
parameters.

S S A Moderate Difficult Simple

Step
7

Define VM
Storage.

Select type
and amount
of disk
storage to
use.

S A A Moderate Moderate Simple

Step
8

Add SSH
key, create a
key and
upload the
pubic key.

Generation of
an
appropriate
SSH
encryption
key to secure
communicatio
ns and
authenticatio
ns.

S S A Difficult Difficult Simple

Step
9

VM creation
process.

VM shell
creation,
install and
boot process.

A A A Simple Simple Simple

Intelligent Management of Virtualised Computer Based Workloads and Systems

© James Oakes, 2020 143 | P a g e

Step
No

Description Process
Mechanism

Information
Input

M = Manual
A = Automatic
S = Semi-
Automatic

Complexity
Amazon
Web
Services
(Mode)

Complexity
Oracle
Cloud
(Mode)

Complex
ity IDE
Provisio
ning
(Mode)

O
ra

cl
e

A
W

S

ID
E

Step
10

Process for
accessing
the VM via
the internet,
or via
network.

Typically
involves
opening up
Firewall ports
to access e.g.
TCP 22 SSH.

M M A Moderate Difficult

Simple

Table 5.6 VM Provisioning Sequence

5.2.1.7 Hardware Provisioning Platform

VM container parameters are defined as follows, using by default the smallest VM

component available for each platform for the initial testing/experimentation:

VM
Vendor
Type

CPU Cores Memory
(GB)

Disk (GB) Architecture Hypervisor

Oracle 1 (Intel Xeon processor
E5 Series, 3.3 GHz).

7.5GB 34GB x86 Oracle Cloud
(OVM).

AWS 1 (Intel Xeon processor
E5 Series, 3.3 GHz).

8GB 8GB x86 AWS (Xen).

IDE 1 (Intel Celeron
Processor 1017U, 1.6
GHz).

2GB 8GB x86 Oracle
VirtualBox.

Table 5.7 Allocated VM Compute Resource

5.2.1.8 VM Sizing Methods

This section examines allocation of CPU and Memory resource for VMs and the most

Intelligent Management of Virtualised Computer Based Workloads and Systems

© James Oakes, 2020 144 | P a g e

effective approach using a minimum recommended model, and a scale-up as required

methodology to help avoid over commitment of resources and potentially under-utilised

systems. The IDE approach to sizing consists of:

• Assigning minimal recommended memory and CPU for a particular OS flavour

supported. Research suggests that minimalisation is an optimal approach to use to

effectively utilise IaaS platforms (Stage et al, 2009). This immediately avoids waste, as

Piraghaj et al show in their research (2015, p. 33); therefore, this ensures VMs are

functioning at the minimal recommended level of resources, thus avoiding over-

allocating CPU and memory from the outset.

• Expand and balloon memory (grow/shrink) as required by the applications; note, most

support for memory ballooning requires 64-bit operating systems, that theoretically

allows support up to 264 bytes (~16 exabytes) for dynamic memory allocation/de-

allocation and garbage collection (Liu et al, 2015).

• Memory/CPU monitoring agents running via IDE will continually monitor the entire

environment, allowing for dynamic changes to occur as appropriate (i.e. shrink or

expand resources). This will support the continual resource re-assessment of VMs to

allow them to increase or reduce as needed.

5.2.2 Experiment 1: VM Provisioning Timing Comparison

5.2.2.1 Formalisation

Where 𝒯 is the total time to deploy a VM

Where n stands for the task number

Where t stands for the task identifier

Where 𝜃 is the participant time taken to complete a task (in seconds)

Where 𝜓 is the average (mean) participant time per task (in seconds)

To find the total time to complete the 10-Step VM provisioning process we use the following:

Intelligent Management of Virtualised Computer Based Workloads and Systems

© James Oakes, 2020 145 | P a g e

𝒯 = ∑ 𝜃
n

t=1

(1)

To find the average time per step for each user:

𝜓 =
∑ 𝜃n

t=1

10

(2)

5.2.2.2 VM Provisioning Expert Users

The following table records in Appendix A.1 the observed time in seconds (sec) taken

for each step, for a total of 31 expert users (see definition above); a time of zero represents

automatic processing, with no necessary end-user intervention.

5.2.2.3 VM Provisioning Experienced Users

The following table records in Appendix A.5 show the observed time in seconds (sec)

taken for each step, for a total of 31 experienced users (see definition above); a time of zero

represents automatic processing, with no necessary end-user intervention.

5.2.2.4 VM Provisioning Novice Users

The following table records in Appendix A.9 show the observed time in seconds (sec)

taken for each step, for a total of 31 novice users (see definition above); a time of zero

represents automatic processing, with no necessary end-user intervention. A time recorded

as 9999 represents a user who was unable to complete a task, due to having a lack of

knowledge, or understanding.

Intelligent Management of Virtualised Computer Based Workloads and Systems

© James Oakes, 2020 146 | P a g e

5.2.2.5 VM Provisioning Build Methods

The VM build methods are recorded in Appendix C; there is a sequence recorded for

each platform which are AWS, Oracle and the IDE respectively. Each user listed in section

5.2.1.2 accessed each platform in turn, to perform the 10-step provisioning steps listed in

section 5.2.1.6, and recorded their timings for each step. These results can be found in

Appendix A and graphed and presented in section 5.3.1.

5.2.2.6 Re-visiting the IDE Provisioning Experiment with Queued Pre-built System
Images

It was determined that step 9 (of the VM provisioning process) time could almost be

eliminated by adopting a new process, whereby, the IDE system pre-built VMs, which have

their system configuration put into a unconfigured status, for example, using the ‘sys-

unconfig’ (sys-unconfig, 2019) command will achieve this on Linux type systems, and allow re-

configuration. This approach makes system performance and time to build somewhat

irrelevant, due to the pre-build and dynamic reconfiguration process continually running in

the background, anticipating a future build. This method effectively allows the IDE to store

pre-built system (queued) images, which it can choose to keep in reserve to act as a future

build pipeline supply. This work is a possible future development, described further in section

8.3.1.

5.2.3 Experiment 2: Cognitive Evaluation Performance

Every task a person undertakes requires a certain amount of cognitive power, or

mental effort, in order to enact to conclusion (Sweller, 1998; Yang et al, 2017). As an example,

this could be from a singular simple task, such as clicking a mouse button, to a set of activities

that need to be carried out in a specific sequence in order to complete an overall task

successfully, such as cooking a meal using a set of ingredients and following a recipe. The

question that rises from this, is how can the complexity of a task or set of tasks be measured,

Intelligent Management of Virtualised Computer Based Workloads and Systems

© James Oakes, 2020 147 | P a g e

and is it possible to understand the cognitive load for a user or group of users? The evidence

from other studies and this work suggest it is feasible to understand this, and similar

experiments in controlled conditions have provided evidence and results that demonstrate

how to measure cognitive load (Pass et al, 1994; Pass et al, 2003; Kotova, 2016).

Within the field of work, this method of study is generally referred to as Cognitive Load

Theory (CLT) in relation to task orientated problem solving. One requirement for making this

feasible is because, like most processes, there is usually a start and an end, and a subsequent

number of tasks in-between that are usually performed in a certain sequence. Once the

process completes, this can result in a successful end and objective being met, or perhaps

even in a full or partial failure. Understanding the sum of all the tasks in process is therefore

essential to be able to measure the overall complexity load (Feinberg, 2000). Some processes

are simple, for example pressing a power on or off button on a Television (TV) remote control.

Consider that there are a few steps to this process, one locating the TV remote, two locating

the correct button (power), and three physically pressing this button, to achieve the desired

effect (e.g. switching the TV on/off). Conversely, other processes can be considered complex,

such as the creation of a Virtual Machine (VM), due to the number of steps and the inherent

know-how and technical expertise required to complete (Selvi et al, 2014).

5.2.3.1 Converting Qualitative Data into Quantitative Data: Is This Possible?

Further to existing studies, this paper examines how the cognitive load for a complex

process (set of tasks) can be measured using a unique formula and method, referred to as the

Complexity Load Rating (CLR). The work examines the feasibility and challenges around

recording qualitative feedback and results from end-users, and proposes a method to

translate this into numerical or quantitative data (Green, 2001; Srnka and Koeszegi, 2007;

Verdinelli, and Scagnoli, 2013; Franzosi, 2004). The results are then calculated for each group

of users and are then evaluated to present evidence on how a complex process (such as VM

provisioning) can be simplified as a result of the steps being developed with higher levels of

Intelligent Management of Virtualised Computer Based Workloads and Systems

© James Oakes, 2020 148 | P a g e

automation and the use of pre-coded system intelligence (Oakes et al, 2016; Lokshina and

Insinga, 2004; Menasce and Bennani, 2006).

5.2.3.2 Cognitive Experimental Process

How to measure the cognitive load of a task is based upon the following general

conditions, described by the qualitative (subjective) terms below:

1) The end-user interpretation of the task as either simple, moderate or difficult.

2) Is the task (or set of tasks) which make up the process automated, semi-automatic, or

manual.

It is important when collecting qualitative data, that not too many options are

presented for the end-user evaluation data outputs, based on their experience and the

experiment process undertaken. For example, allowing human test subjects to input

unstructured data such as free-text, or even handwritten text, makes the collation and

analysis of data somewhat more difficult to interpret, simply because of the number of

permutations and recognition of what the written data means (Rusu et al, 2013).

Therefore, in the context of this study, when we refer to task complexity, this is defined

or described (subjectively) by the end-user as simple, moderate or difficult. Furthermore,

each task undertaken has a process mechanism described as either automatic, semi-

automatic, or manual. Of the three process outcomes, if a task is automated it requires no

input, and is automatically set to simple; semi-automatic and manual task steps therefore

require partial or full end-user inputs and can receive a simple, moderate or difficult rating.

It is natural that humans prefer providing qualitative feedback for some activity they

personally take part in (Lui et al, 2017). Simple statements of whether something was good

or bad is often typical of how people prefer to relate their experiences (Austermann and

Yamada, 2008). By capturing all the tasks for a process, it is possible to begin to measure the

Intelligent Management of Virtualised Computer Based Workloads and Systems

© James Oakes, 2020 149 | P a g e

results from the experimentation method by converting qualitative data into quantitative

data, thus, in effect, performing a translation of words into numbers (Franzosi, 2004). This

leads us to the next phase of the experiment framework on how to use these sets of

parameter variables, for Task Complexity (Table 5.1) and Process Mechanism (Table 5.3), by

creating a unique method for measuring the Cognitive Load Rating (CLR) for a task or set of

tasks; in this study we examine the complete process, of how an end-user would deploy a VM

within a computer based cloud environment, as described in the 10-step provisioning process

in section 5.2.1.6. Note, that this exercise was completed as a one-off (snapshot) exercise,

and end-users were not able to repeat the experimental tests, either immediately following,

or at a later point in time; see limitations for more detail in section 1.4.

The cognitive experiment process invoked is very similar to other studies in the field,

as listed in section 2.7.6, although it does utilise its own scaling systems and devised formula

as described below in section 5.2.3.3. Similar previous studies for cognitive load are listed in

table 5.8 below:

Table 5.8 Similar Cognitive Load Studies (PaaS et al, 2003)

Intelligent Management of Virtualised Computer Based Workloads and Systems

© James Oakes, 2020 150 | P a g e

The CLR formula used below does not include monitoring any participant physiological

aspects, such as heart rate variability, or pupillary responses. The reason for this exclusion is

to avoid the collection of personal data relating to the study participants, to maintain

simplicity for the experiment using a Rating Scale (RS), and the known task automation

classification.

5.2.3.3 Cognitive Load Rating Formula

The proposed formula for measuring the complexity of a singular task is as follows:

Where the Cognitive Load Rating (CLR) for one task stands for 𝛽

Where Task Complexity stands for ∆

Where Process Mechanism stands for ∅

𝛽 =∆ x ∅ (1)

This general formula can be applied to any process type, or cumulatively to a set of processes,

and is not just applicable to the field of computer science and VM provisioning. In order to

apply this formula to a set of processes it is necessary to make this calculation able to measure

the sum complexity of a set of tasks, represented as follows:

Where 𝜆 stands for the CLR for a set (sum) of tasks

Where n stands for the number of tasks

Where t stands for the task identifier

𝜆 = ∑ (∆ x ∅)
n

t=1

 (2)

Intelligent Management of Virtualised Computer Based Workloads and Systems

© James Oakes, 2020 151 | P a g e

Additionally, the formula can then be adjusted to work out the mean average of a process’s

task complexity, by using the following method (divides by the total number of tasks

represented by n):

Where 𝛫 stands for the CLR mean average for a set of tasks

𝛫 =
∑ (∆ x ∅)n

t=1

n

 (3)

The CLR calculation for each user task results are derived in detail using the following formula

described in the next section.

5.2.3.4 User Task Complexity Formula

Where R is the derived result

Where 𝜇 is the user input

Where s is simple

Where m is moderate

Where d is difficult

Where x is manual

Where y is semi-automatic

Where z is automatic

R =

(𝜇 = (s ∧ x) → (1 × 10)) ∨ (𝜇 = (m ∧ x) → (3 × 10)) ∨
(𝜇 = (d ∧ x) → (5 × 10)) ∨ (𝜇 = (s ∧ y) → (1 × 5)) ∨
(𝜇 = (m ∧ y) → (3 × 5)) ∨ (𝜇 = (d ∧ y) → (5 × 5)) ∨
(𝜇 = (s ∧ z) → (1 × 1)) ∨ (𝜇 = (m ∧ z) → (3 × 1)) ∨

(𝜇 = (d ∧ z) → (5 × 1))

Intelligent Management of Virtualised Computer Based Workloads and Systems

© James Oakes, 2020 152 | P a g e

5.2.3.5 Cognitive Load Rating Chart

The following chart provides the CLR scale, on how difficult a set of tasks are for an

end-user; the guide below provides the information on how to rate each overall process, in

terms of the mental power requirement:

Figure 5.1 Cognitive Load Rating Chart

5.3 Results

5.3.1 VM Provisioning Timed Results

The following graphs represent the VM provisioning results from the Novice,

Experienced and Expert user groups for each of the 10-steps in the provisioning process; note

that the conclusions can be found in section 8.2.1:

Intelligent Management of Virtualised Computer Based Workloads and Systems

© James Oakes, 2020 153 | P a g e

5.3.1.1 Expert Users

 The charts below show the results for the ‘expert’ user group, who performed the VM

provisioning experiment on all platforms; the first graph of results presented is for the IDE

(expert users):

Figure 5.2 IDE Timed VM Provisioning – Expert Users

Intelligent Management of Virtualised Computer Based Workloads and Systems

© James Oakes, 2020 154 | P a g e

The second graph of results presented is for the Oracle cloud platform (expert users):

Figure 5.3 Oracle Timed VM Provisioning – Expert Users

The third graph of results presented is for the AWS cloud platform (expert users):

Figure 5.4 AWS Timed VM Provisioning – Expert Users

Intelligent Management of Virtualised Computer Based Workloads and Systems

© James Oakes, 2020 155 | P a g e

5.3.1.2 Experienced Users

The charts below show the results for the ‘experienced’ user group, who performed

the VM provisioning experiment on all platforms; the first graph of results presented is for the

IDE (experienced users):

Figure 5.5 IDE Timed VM Provisioning – Experienced Users

The second graph of results presented is for the Oracle cloud platform (experienced users):

Figure 5.6 Oracle Timed VM Provisioning – Experienced Users

Intelligent Management of Virtualised Computer Based Workloads and Systems

© James Oakes, 2020 156 | P a g e

The third graph of results presented is for the AWS cloud platform (experienced users):

Figure 5.7 AWS Timed VM Provisioning – Experienced Users

5.3.1.2 Novice Users

The charts below show the results for the ‘novice’ user group, who performed the VM

provisioning experiment on all platforms; the first graph of results presented is for the IDE

(Novice users):

Figure 5.8 IDE Timed VM Provisioning – Novice Users

Intelligent Management of Virtualised Computer Based Workloads and Systems

© James Oakes, 2020 157 | P a g e

The second graph of results presented is for the Oracle cloud platform (Novice users):

Figure 5.9 Oracle Timed VM Provisioning – Novice Users

The third graph of results presented is for the AWS cloud platform (Novice users):

Figure 5.10 AWS Timed VM Provisioning – Novice Users

Intelligent Management of Virtualised Computer Based Workloads and Systems

© James Oakes, 2020 158 | P a g e

5.3.2 Aggregated VM Provisioning Timed Results

The following graphs show the aggregated total timed VM provisioning results for

Expert, Experienced and Novice users; note that the conclusions can be found in section 8.2.1:

5.3.2.1 Expert Users

The charts below show the results for the ‘expert’ user group, who performed the VM

provisioning experiment on all platforms; the first graph of results presented are for the IDE

(expert):

Figure 5.11 IDE Aggregated Timed VM Provisioning – Expert Users

Intelligent Management of Virtualised Computer Based Workloads and Systems

© James Oakes, 2020 159 | P a g e

The second graph of results presented are the for the Oracle cloud platform (expert):

Figure 5.12 Oracle Aggregated Timed VM Provisioning – Expert Users

The third graph of results presented are the for the AWS cloud platform (expert):

Figure 5.13 AWS Aggregated Timed VM Provisioning – Expert Users

5.3.2.2 Experienced Users

The charts below show the results for the ‘experienced’ user group, who performed

Intelligent Management of Virtualised Computer Based Workloads and Systems

© James Oakes, 2020 160 | P a g e

the VM provisioning experiment on all platforms; the first graph of results presented are for

the IDE (experienced):

Figure 5.14 IDE Aggregated Timed VM Provisioning – Experienced Users

The second graph of results presented are the for the Oracle cloud platform (experienced):

Figure 5.15 Oracle Aggregated Timed VM Provisioning – Experienced Users

Intelligent Management of Virtualised Computer Based Workloads and Systems

© James Oakes, 2020 161 | P a g e

The third graph of results presented are the for the AWS cloud platform (experienced):

Figure 5.16 AWS Aggregated Timed VM Provisioning – Experienced Users

5.3.2.3 Novice Users

The charts below show the results for the ‘novice’ user group, who performed the VM

provisioning experiment on all platforms; the first graph of results presented are for the IDE

(Novice):

Figure 5.17 IDE Aggregated Timed VM Provisioning – Novice Users

Intelligent Management of Virtualised Computer Based Workloads and Systems

© James Oakes, 2020 162 | P a g e

The second graph of results presented are the for the Oracle cloud platform (Novice):

Figure 5.18 Oracle Aggregated Timed VM Provisioning – Novice Users

The third graph of results presented are the for the AWS cloud platform (Novice):

Figure 5.19 AWS Aggregated Timed VM Provisioning – Novice Users

Intelligent Management of Virtualised Computer Based Workloads and Systems

© James Oakes, 2020 163 | P a g e

5.3.3 Cognitive Load Rating Results

As part of the experiments undertaken, three principle sets of results for the end-user

demographic were collected. These include expert, experienced and novice user groups (as

defined previously in table 5.2 End-User Types). Each user was observed, and the result for

the 10-step VM Provisioning process are listed in table 5.6 VM provisioning sequence; the

results below provide the output for 3 sets of users listed in figure 5.20 (experts users), 5.21

(experienced users) and 5.22 (novice users) respectively, which describe the cognitive load

experienced by each group of users, as described by the CLR guide in section 5.2.3.5:

The charts below show the combined results for all three experimental platforms (IDE,

Oracle and AWS), who performed the cognitive evaluation performance; the first graph of

CLR results presented are the for the ‘expert’ user group:

Figure 5.20 CLR VM Provisioning – Expert Users.

The second graph of CLR results presented are the for the ‘experienced’ user group:

Figure 5.21 CLR VM Provisioning – Experienced Users.

Intelligent Management of Virtualised Computer Based Workloads and Systems

© James Oakes, 2020 164 | P a g e

The third graph of CLR results presented are the for the ‘novice’ user group:

Figure 5.22 CLR VM Provisioning – Novice Users.

Note that the conclusions for the experiment can be found in section 8.2.2.

5.3.4 Overall Results

Table 5.9 below summarises the results for VM provisioning times and the CLR for the

AWS, Oracle and IDE platforms respectively:

Tested Platform and User

Group

Mean Average VM

Provisioning Time (Sec)

Mean Average CLR

(Descriptor) - See CLR guide

chart in section 5.2.3.5

AWS Novice Users 9999* Medium

Oracle Novice Users 9999* Medium-High

IDE Novice Users 1578 Low

AWS Experienced Users 1464 Low-Medium

Oracle Experienced Users 3237 Medium-High

IDE Experienced Users 1372 Very-Low

AWS Expert Users 1382 Low-Medium

Oracle Expert Users 2362 Medium

IDE Expert Users 1231 Low

Table 5.9 VM Provisioning Experiment Results

* 9999 results are recorded where end user participant groups were unable to complete the VM provisioning process.

Intelligent Management of Virtualised Computer Based Workloads and Systems

© James Oakes, 2020 165 | P a g e

Note, the table provides an average VM provisioning time for each participant group,

with the appropriate CLR descriptor; the descriptors are an average of the entire sequence of

the provisioning 10-steps, therefore, this should be taken into account, even though for step

8 (SSH Key) the novice groups for AWS and Oracle platforms generally failed to load a public

key, and the majority described the cognitive load for this step as an ‘Exceptionally high

requirement’. The significance of the results are discussed in more detail for each platform in

Chapter 8.

5.4 Summary

This chapter is key in providing the details and results of two of the five experiment

processes conducted as part of this study. Firstly, the VM simplified deployment experiment

was described with the 10-step procedure for end-user participants, along with the controls

to provide definitions, user types, complexity value weightings and task types. The end-user

results are then captured, recorded and presented in graph format. Secondly, the end-user

experience data is captured to analyse the cognitive load and mental power requirement for

each of the respective systems, using the CLR formula to allow a comparison against the

cognitive load guide chart. As with the first experiment, the data is presented graphically. The

results generated for both experiments show a reduction in VM provisioning time for the IDE

and a lower mental power requirement, when compared to the other platforms, which are

AWS and Oracle respectively. The three key groups show a similar pattern, albeit with reduced

times for provisioning for ‘expert’ and ‘experienced’ level users. For the IDE, step 9

accumulates most of the VM build time, due to the fact most of the other steps are automatic,

or semi-automatic. In comparison, the standard AWS and Oracle end-user cloud provisioning

platform interface (see Appendix C) has a requirement for more manual user inputs, thus

adding more time to the aggregated VM provisioning time. Typically, we observe time

consuming manual inputs around step 8, the SSH-key load, and additionally for the Oracle

cloud, step 4 selecting the machine image and step 6 for defining the VM parameters. Novice

Intelligent Management of Virtualised Computer Based Workloads and Systems

© James Oakes, 2020 166 | P a g e

VM provisioning end-user results show that the SSH-key load at step 8 was for the most part,

too challenging to complete. Finally, we compare the cognitive load rating results for the

expert, experienced and novice end-user groups, to ascertain how mentally challenging the

participants found the experimental VM provisioning exercises. The next chapter discusses

experiment 3, which addresses VM workload, migration and failover strategies.

Intelligent Management of Virtualised Computer Based Workloads and Systems

© James Oakes, 2020 167 | P a g e

Chapter 6: Improving Workload Migration Strategies

6.1 Introduction

For most organisations, being able to maintain highly available (HA) systems is

essential to ensure their business operations continue to run effectively (Fernado et al, 2016).

As discussed previously in section 4.7, we examined in detail how the IDE maintains HA using

a cluster and quorum voting mechanism. Public cloud vendors like AWS and Oracle hide this

complexity from their customers and end-users, by using concepts such as regions, which are

physically distinct geographical locations, such as Western Europe London, or the US East

North Virginia; most regions have at least two physically separate datacentres to make them

resilient to local failures, and each datacentre has its own Reliability, Availability, and

Serviceable (RAS) features, such as redundant power, network switches, servers and so on.

Some of the users are therefore unaware of the engineering expertise, effort and cost

associated with creating this type of availability and resiliency, which is one of the reasons for

the commercial success of such platforms (Kokkinos et al, 2013). That being the case, because

many commercial cloud providers keep the complexity and know-how as intellectual property

secrets, this makes it harder for researchers to compare and study such technologies in lab-

based experimental conditions (Hataba and El-Mahdy, A, 2012). Therefore, as part of this

work, we analyse two well-known VM failover technologies called XenMotion and vMotion,

for which there are available comparative studies completed, to allow a detailed analysis and

comparison against the IDE failover/migration process (Feng et al, 2011; Shirinbab and

Lundberg, 2016).

6.2 Workload Migration Methods

There are several workload migration methods available, however, this study approach

initially begins with the ‘full restart’ VM scenario, although comparisons are made against ‘live

migration’ methodologies, and the results obtained therein (Feng et al, 2011; Shirinbab and

Intelligent Management of Virtualised Computer Based Workloads and Systems

© James Oakes, 2020 168 | P a g e

Lundberg, 2016). It was beyond the scope of this investigation to address the in-memory/disk

VM replication migration aspects described below (e.g. using VirtualBox teleport); please see

limitations section 1.4 which describe the constraints, and section 8.3.3 that describes the

further work to be completed in this area. The commonly available migration/failover

methods include the following techniques and methods:

• VM ‘full restart’ and migration scenario; VM OS is stopped abruptly, crashes, or

halts as a result of a physical host failure, typically an uncontrolled failure.

• Planned VM in-memory migration (VM migrates between two physical hosts, and

has its memory replicated and is restarted; typically used as a controlled failover);

this method being controlled, usually results in less actual downtime of the VM

and its associated services, especially when used in-conjunction with ‘live

migration’ techniques.

The next section provides details on the experiment process employed as part of the

experiment.

6.3 Experiment Process

The experiment process covered two principle components or stages, listed as follows:

• Detection of a simulated VM failure event via loss of the physical host machine,

measured in time taken (seconds).

• Migration and restart of the failed VM to the point it is restarted and operational

once more, again measured in time taken (seconds).

The details are described in the two tables below, firstly the preparation steps to ensure the

experiment is valid, and secondly the failover/migration process is implemented:

Intelligent Management of Virtualised Computer Based Workloads and Systems

© James Oakes, 2020 169 | P a g e

Step No Description Measurement/Observation

1 Ensure IDE Cluster is online and

operational – 3 node cluster.

Observation of cluster health.

2 Ensure VM test subject is up and

running and is also accessible (e.g.

using secure shell).

Observation/log into VM and

ensure working normally; note,

the physical host where the VM is

operational (resident).

Table 6.1 Simulated VM Failover/Migration IDE Preparation Steps

Step No Description Measurement/Observation

1 Invoke Simulated Failure event. Observation of physical host

failure event for guest VM.

2 IDE detection time of failure event. Observe and record the time taken

to complete the detection process.

3 IDE Failover/migration and restart VM

process.

Observe and record the time taken

to complete the detection process.

Table 6.2 Simulated VM Failover/Migration IDE Steps

6.4 Experiment 3: Workload Migration and Evacuation of VMs

The subsections below show the three experiments (3.1, 3.2 and 3.3) conducted

around the VM migration/failover processes for the IDE, vMotion (study 1), and vMotion and

XenMotion (study 2) respectively. Considerable effort has been made to ensure the

comparisons are as closely matched as possible; some of the experiment conditions vary

slightly, but this is noted by the study and highlighted to allow clear results, with

acknowledged (minor) differences. The key elements are described here:

Intelligent Management of Virtualised Computer Based Workloads and Systems

© James Oakes, 2020 170 | P a g e

• Network bandwidth; this is especially relevant for failover, where there is no

shared storage and the network is used to physically copy the VM container

devices, such as virtual disks e.g. Virtual Machine Disks (VMDKs). For the

experiments which used shared storage such as NAS, this is of little impact to

the experiment process in terms of adding time to the migration/failover

event.

• CPU/Memory; it is important that the base operating system has the

recommended hardware resources are available for CPU/Storage/Memory. For

VMs heavily laden with applications and databases, this can affect the

migration/failover time. To avoid this as a complication factor, VMs with the

base OS installed were used, and it was ensured that any applications had the

recommended memory/CPU available.

• VM Storage type; very significant if using shared cluster storage, such as NAS

or SAN. In cases, where there is no shared storage between cluster nodes, the

VM’s virtual disks (operating system, applications, and databases), need to be

copied to the target system as part of the process. This creates very intensive

network traffic (due to replication), and usually results in longer sustained

outages (Awal et al, 2014; Toyoshima et al, 2010).

• Operating system – Linux (Redhat 6x, or CentOS 6.x, ensuring that the OS

instance and applications have the recommended resources available (Redhat,

2019).

6.4.1 Experiment 3.1: IDE VM Migration/failover Process

It was expected that the invocation of IDE rule listed in section 4.8.2 and table 4.14

IDE knowledge rule, would take effect as part of the experiment process, to evacuate the

failed VM from the failure physical host for that particular guest VM. As part of the

experiment, this rule was observed to detect the failure event, and invoke its knowledge rule

Intelligent Management of Virtualised Computer Based Workloads and Systems

© James Oakes, 2020 171 | P a g e

and consequence, which was to perform a migration and failover to a new healthy cluster

node. The diagram below in figure 6.1 illustrates the process.

• Node CPU/Memory: 4 Core / 4 Threads / 1.6GHz / 8GB RAM

• Network Bandwidth: 1Gb

• Storage: Shared – NAS

• Hypervisor: VirtualBox 5.2

• Operating System: CentOS 6.2

Figure 6.1 Experiment 3.1 VM Failover Method (IDE)

Following the experiment, each test result iteration (Test ID) was recorded 1-6, and

had its VM downtime, with detection of the physical host/VM failure listed, along with the

notation of the available network bandwidth for potential consumption.

Intelligent Management of Virtualised Computer Based Workloads and Systems

© James Oakes, 2020 172 | P a g e

Test ID Downtime (sec) /
Maximum Detection Time (sec) /
Network Bandwidth Speed (Gb)

Storage Type Total Migration
Time (sec)

1 14.22 / 7.34 / 1Gb NAS 21.56

2 15.10 / 7.22 / 1Gb NAS 22.32

3 16.45 / 7.56 / 1Gb NAS 24.01

4 15.30 / 7.13 / 1Gb NAS 22.43

5 15.21 / 7.21 / 1Gb NAS 22.42

6 14.96 / 7.19 / 1Gb NAS 22.15
Table 6.3 Experiment 3.1, Downtime and Total Migration Timed Results (IDE)

6.4.2 Experiment 3.2: vMotion VM Migration/failover Process

The process below shows the details on the vMotion migration/failover process;

The methodology for the experiment is captured in detail with the diagram below:

• Node CPU/Memory: 12 Core / 24 Threads / 2GHz / 128GB RAM

• Network Bandwidth: 10Gb

• Storage: Shared - virtual NAS

• Hypervisor: ESXi 5.5

• Operating System: Redhat 6.2

Figure 6.2 Experiment 3.2 VM Failover Method (study 1)

Intelligent Management of Virtualised Computer Based Workloads and Systems

© James Oakes, 2020 173 | P a g e

Comparative study 1 (Shirinbab and Lundberg, 2016) shows that several experiment

tests were completed with a maximum down-time and overall total migration time listed in

table 6.4 below; note the value for Downtime and Maximum Response Time are combined in

this experiment:

Test ID Downtime &
Maximum Response Time (sec) /
Network Bandwidth Speed (Gb)

Storage Type

Total Migration
Time (sec)

1 2.21 / 10Gb vNAS 30

2 4.01 / 10Gb vNAS 38

3 2.17 / 10Gb vNAS 48

4 4.94 / 10Gb vNAS 52

5 2.92 / 10Gb vNAS 48

6 4.48 / 10Gb vNAS 53
Table 6.4 Experiment 3.2, Downtime and Total Migration Results vMotion (Shirinbab et al, 2016)

It should be highlighted that the network bandwidth available for the experiment was

10Gb, which exceeded the other experiments; however, it can be discounted as a large

advantage, as the process utilised shared storage (vNAS) for the VM’s virtual disks (Aladyshev

et al, 2018). Therefore, this avoided the requirement for virtual disk replication, which would

incur high network I/O.

6.4.3 Experiment 3.3: vMotion and XenMotion VM Migration/failover Process

For comparative study 2 (Feng et al, 2011), the process below shows the details on the

vMotion and XenMotion migration/failover mechanism:

Intelligent Management of Virtualised Computer Based Workloads and Systems

© James Oakes, 2020 174 | P a g e

• Node CPU/Memory: 12 Core / 24 Threads / 2.66 GHz / 24GB RAM

• Network Bandwidth: from 100Mb to 1Gb (sliding upwards)

• Storage: SAN (Shared - Storage Area Network)

• Hypervisor: ESXi 4.1 & Citrix XenServer 5.6

• Operating System: not specified

Figure 6.3 Experiment 3.3 VM Failover Method study 2 (Feng et al, 2011)

Note, in this experiment, we observe a sliding scale in time (listed in tables 6.5 and

6.6), representing the difference in available bandwidth for the VM migration/failover event

to consume. The study initially throttles the bandwidth heavily at only 100Mb; for each test

the bandwidth is increased (doubled initially, then by 200Mb) and the results (1-6) are

compiled based on a network bandwidth speed rate from 100Mb-1000Mb (scaled up

bandwidth with each integration). This still provides interesting comparative results;

however, as discussed, the experiment utilises shared SAN storage, and the IDE and previous

study 1 both operate their platforms using 1000Mb (or 1Gb) network speeds, which is

equivalent for at least the last test – number/ID 6. It can be observed that there are vastly

reducing total migration times in the results complied in tables 6.5 and 6.6. Note, this study

has two sets of results available, one for vMotion, and the other for XenMotion, which is

useful in terms of being able to analyse two alternative hypervisor technologies against the

IDE.

The following table has the vMotion results for study 2:

Intelligent Management of Virtualised Computer Based Workloads and Systems

© James Oakes, 2020 175 | P a g e

Test ID Downtime &
Maximum Response Time (sec) /
Network Bandwidth Speed

Storage Type Total Migration
Time (sec)

1 Not recorded / 100Mb SAN 150

2 Not recorded / 200Mb SAN 90

3 Not recorded / 400Mb SAN 50

4 Not recorded / 600Mb SAN 40

5 Not recorded / 800Mb SAN 30

6 Not recorded / 1Gb SAN 20
 Table 6.5 Experiment 3.3, Downtime and Total Migration Results vMotion (Feng et al, 2011)

The following table has the XenMotion results for study 2:

Test ID Downtime /
Maximum Response Time (sec) /
Network Bandwidth Speed

Storage Type Total Migration
Time (sec)

1 Not recorded / 100Mb SAN 700

2 Not recorded / 200Mb SAN 400

3 Not recorded / 400Mb SAN 200

4 Not recorded / 600Mb SAN 120

5 Not recorded / 800Mb SAN 100

6 Not recorded / 1Gb SAN 80
 Table 6.6 Experiment 3.3, Downtime and Total Migration Results XenMotion (Feng et al, 2011)

6.5 Results

The charts below show the event VM failure detection time for the IDE, based on

system becoming aware of the failure event described earlier in section 6.4.1. Note that the

conclusions from the experiment can be found in section 8.2.3, along with notes in the further

work section 8.3.9 , which provide more information on a detailed laboratory analysis and

study opportunity, focused on a vMotion and XenMotion configuration and build, to enable

the exact same tests for all three platforms investigated during experiments 3.1, 3.2 and 3.3.

Intelligent Management of Virtualised Computer Based Workloads and Systems

© James Oakes, 2020 176 | P a g e

The following chart show the IDE failure detection time for a VM failure event (VM

down):

Figure 6.4 IDE VM Failure Detection Time Experiment 3.1 (IDE)

Additionally, the migration time is included in the chart below to show the overall time to

complete the end-to-end event detection, migration and failover process:

Figure 6.5 IDE VM Failure Detection and Migration Time Experiment 3.1 (IDE)

Intelligent Management of Virtualised Computer Based Workloads and Systems

© James Oakes, 2020 177 | P a g e

The graph below shows study 1 results for VM migration and full restart:

Figure 6.6 Study 1 VM Failure Detection and Migration Time Experiment 3.2 (vMotion)

The graph below shows study 2 results for VM migration and full restart for part a (vMotion):

Figure 6.7 Study 2 VM Failure Detection and Migration Time Experiment 3.2 (vMotion)

Intelligent Management of Virtualised Computer Based Workloads and Systems

© James Oakes, 2020 178 | P a g e

The graph below shows study 2 results for VM migration and full restart for part b

(XenMotion):

Figure 6.8 Study 2 VM Failure Detection and Migration Time Experiment 3.2 (XenMotion)

The graph below shows the IDE, study1, and study 2 results (part a and b) and the mean

average time in seconds for VM migration and full restart:

Figure 6.9 Comparative Mean Average VM Migration Time for Experiments 3.1, 3.2 and 3.3

Intelligent Management of Virtualised Computer Based Workloads and Systems

© James Oakes, 2020 179 | P a g e

6.6 Summary

This chapter provides the detail for experiment three, which is concerned with VM

migration/failover strategies to improve availability of virtualised systems and resources. Two

approaches are considered, firstly around full VM restart and secondly around live VM

migration. This experiment deals with the full restart scenario following a physical or virtual

system failure event. During the experiment, a simulated failure is invoked to allow the IDE

to take the necessary intervention steps to recover the VM and associated resources. The

experiment captures the amount of time the IDE takes to migrate and failover the VM and its

resources, to the point where it has been successfully restarted. The IDE results are then

compared against two independent papers, which utilise two well-known products vMotion

and XenMotion to demonstrate similar VM migration and failover processes. The IDE

performs well when compared with its lower average failure detection and migration VM

failover time. The following chapter discusses the final two experiments on the topic of global

resource management of virtualised computer systems.

Intelligent Management of Virtualised Computer Based Workloads and Systems

© James Oakes, 2020 180 | P a g e

Chapter 7: Optimising Performance and Availability of
Virtual Machines

7.1 Introduction

In this chapter we examine the concept of managing VM resources online using direct

invention of a system to change resource parameter settings, such as CPU and memory, with

the desired goal of being able to dynamically change these values without interruption to

service, while the system is live and in a running state. It important at this point to define the

difference between global and local resource management; the definitions are given below

for the purposes of this study:

• A local resource management strategy features the resource controls (e.g. for

CPU/memory) being applied to a single physical host and its associated local guest

VMs. The control never extends to other physical hosts, and there is no overall

global view of a pool of physical hosts clustered, either locally or in a

remote/distributed fashion.

• A global resource management strategy features resource controls (e.g. for

CPU/memory and I/O) being extended across an entire cluster of physical systems

and their associated VMs. The resource scheduler is able to continually work and

control the overall global capacity/performance across all physical hosts.

There are two resource management scenarios that the IDE can currently work with

based on its rule-base, which are as follows:

• A scenario 1 whereby a physical host in the cluster (globally managed) is running

short on memory or CPU resource, and it needs to start evacuating guest VMs (in

least important order to service) to another physical host in the cluster to free up

resources. Please see section 4.8.2 physical system events for more details.

Intelligent Management of Virtualised Computer Based Workloads and Systems

© James Oakes, 2020 181 | P a g e

• A scenario 2 where a single VM has CPU and/or memory resource issues, and it

needs to be given more in order to keep itself processing and functioning

effectively. The IDE system will attempt to dynamically resize the VM accordingly

based on the physical resources remaining within the cluster in the most effective

way possible. Please see section 4.8.3 VM system events for more details.

As part of this study we examine scenario 2 in detail, while comparing the IDE function

and capability to two similar studies on memory and CPU resource management techniques

in virtualised environments (Zhang et al, 2017; Zhang et al, 2016). The first study looks at

automated memory management on a physical system with VMs using the Xen Balloon driver;

the second uses an iBalloon driver to help dynamically manage and optimise physical systems

with VMs, initially using the KVM (Kernel-based Virtual Machine) driver. The aim is to work

on the IDE’s rules to test and ensure they are invoking correctly as described earlier by section

4.8.3 VM System events, tables 4.17 (Memory overload) and 4.18 (CPU overload). They

describe the automatic intervention being taken against a VM during a sustained 5-minute

interval where the CPU and/or memory is utilised above a 75% threshold for either total, as

reported by the system performance measurement tools; for example, Linux OS monitoring

tools such as vmstat, iostat, and top (Lui et al, 2015).

More details on the knowledge rules and justifications for those figures can be found

in section 4.8.5 where we explore in depth in the reasons for certain thresholds (such of VM

memory utilisation). Consequently, the questions that arise from this potentially complex

resource management process are:

• How long should the intelligent systems wait in terms of time (seconds) before

taking direct intervention? (Song et al, 2013; Ismail and Riasetiawan, 2016)

• How often (frequency) should the VM performance statistics be sampled? This

would include taking a resource snapshot samples at point in time intervals to

record CPU and memory usage on the VM (Jeong and Lee, 2012).

• Should VM’s resources only ever grow, rather than grow and shrink? What is the

most effective method for the virtualised platform, for example a grow only policy,

Intelligent Management of Virtualised Computer Based Workloads and Systems

© James Oakes, 2020 182 | P a g e

or a grow and shrink policy (Makridis et al, 2017)

• By what amount should CPU and/or memory be increased, and should there be

safety thresholds? For example, the ‘intelligent system’ may add an arbitrary figure

of 25% additional CPU and/or memory resource for a VM which has passed its

thresholds for a sustained period of time. However, if there were a process on the

system that had become rogue (Joy et al, 2014), and it continued to consume

resources, a never-ending pattern of adding additional resource could potentially

be used to exhaust all resources, and even starve the physical host, if safety

features are not built in to the intelligent system (Hwang et al, 2010; Chen et al,

2013).

• What comparative features and methods are used by each of the systems, and

what are the most effective? For example, examination of the key areas would

include:

o VM resource measurement poll interval.

o VM resource grow and/or shrink policy.

o VM resource increase strategy.

o VM sustained time threshold trigger (for CPU and memory).

o Overall time taken to resolve a resource issue affecting a VM.

The answers to these questions, are not necessarily easy to identify, as there can be a

number of events that compound to cause single or multiple effects, such as a number of

rogue processes consuming CPU resource, or a process with a memory leak so consuming all

memory (RAM). Killing off these processes, and restarting could potentially resolve the issue;

however, as a complication, once restarted, they could begin to malfunction again, thus

creating a repeat problem. Therefore, being able to spot and identify a re-occurring pattern

is a useful technique for CPU and memory resource management function. As part of the

discovery process, in terms of being able to test and observe and compare similar methods,

further experiments are conducted based on the rules created to enhance system utilisation

and better manage VMs within the virtualised environments.

Intelligent Management of Virtualised Computer Based Workloads and Systems

© James Oakes, 2020 183 | P a g e

7.2 Experiment Process

The experiment process looks to take advantage of existing hypervisor memory

balloon drivers, as well as CPU hot-plug drivers (VirtualBox Memory, 2019; VirtualBox CPU

2019). Table 7.3 identifies the drivers used by each unique study. This is critical, as the

performance strategy for each approach must use that type of hypervisor technology driver

to enable dynamic resource controls and implement the most effective performance

management approach. In addition to the preliminary VM performance algorithm found in

table 4.8 ’Preliminary Performance Monitoring’, the capability is extended further in table 7.1,

by moving from an initial preliminary performance algorithm, which explains at a high level

how the IDE manages generic resource controls, to how, in this instance, it specifically controls

CPU and memory resource. This extended algorithm builds on the preliminary idea by

extracting the specific knowledge performance rules found at tables 4.17 and 4.18, and

introduces controls and processes around CPU and memory resource; for example, by setting

threshold alert values, the interval sampling rate, overall monitoring period and the resulting

specific consequent actions to be invoked:

7.2.1 IDE VM Performance Algorithm

// IDE VM Performance Algorithm

INPUT: VM Knowledge CPU/Memory Performance Rules
OUTPUT: Return performance metrics, and invoke CPU / Memory resource management if needed

WHILE True
 SSH-to ${host} & Run Local Perf Script
 Capture 75% values for Total CPU & Memory respectively (thresholds)
 FOR each second up to 300
 Sleep 1
 Use local perf tools to capture stats
 Let Total CPU%+=CPU Performance Increment Value
 Let Total Memory%+=Memory Performance increment Value
 END FOR
 Evaluate ∑ (Total CPU%) / 300
 Evaluate ∑ (Total Memory%) / 300

 IF (Average Total CPU% >= 75% average) THEN
 Invoke VM CPU HOT PLUG + 25% or+1 CPU Core
 END IF

Intelligent Management of Virtualised Computer Based Workloads and Systems

© James Oakes, 2020 184 | P a g e

 IF (Average Total Memory% >= 75% average) THEN
 Invoke VM Memory Balloon + 25%
 IF VM Memory Balloon Exhausted THEN
 Invoke VM Restart/Memory Resize
 END IF
 END IF
DONE

// End of algorithm

Table 7.1 IDE VM Extended Performance Resource Management Algorithm

7.2.2 VirtualBox Memory Balloon Driver

It should be noted that the VirtualBox balloon driver works by overcommitting

memory to the VM or set of VMs during its initial configuration. The memory remains in a

committed state within a managed reserve pool by the hypervisor. Therefore, a strategy is

needed to develop a memory reserve pool to allow the VM to flex upwards or downloads as

necessary for example by 25%. The only way to currently manage and resize the VM

CPU/memory maximums is to power it off and the physically alter the VM parameters as

needed, and then restart. Therefore, this means that if the ‘over-commit memory’ value is not

sufficient (or high enough) in size, the only option is to then perform a controlled stop of the

VM and then resize and power on and restart the VM (Zhang et al, 2016).

With the build of the VM we allow an overcommit of 25% of the total memory

allocated for the VM, to provide dynamic memory ballooning potential. The upfront over

commitment later enables the IDE global resource scheduler to flex the memory up to a 25%

increase at a given point in time. The exact amount of overcommitment is one of the critical

questions, as there is a trade-off, in that it is reserved upfront by the hypervisor and may not

be used outside that framework easily, and it can result in an under-utilisation of the overall

system memory resources. Therefore, providing some potential for dynamic memory

allocation/ballooning is useful, without diminishing the overall memory utilisation too

excessively (Chen et al, 2013).

Intelligent Management of Virtualised Computer Based Workloads and Systems

© James Oakes, 2020 185 | P a g e

7.2.3 Simulate VM CPU and Memory Stress

To perform the experiment and create the correct simulation for constrained CPU and

memory resource we use the stress utility to perform this process (Ismail and Riasetiawan,

2016). As part of the author’s experiment process described in section 7.4 and 7.5, the

following stress-ng command is used to simulate systems resource stress on CPU and memory

respectively.

Where x is equal to the number of CPU cores the VM has:

• stress-ng --vm 4 –vm-bytes 85% --timeout 300s -v

The above command runs a simulated stress event against the memory resource for VM and

will consume up to 85% of the overall resource available and then cease after 300 seconds.

• stress-ng --c [x] -l 85 –timeout 300s -v

The above command runs a simulated stress event against the CPU resource for VM and will

consume up to 85% of the overall resource available and then cease after 300 seconds.

The following graph at figure 7.1 shows the simulated stressed VM under load for 300

seconds (a 5-minute period), while experiencing a high (but expected) sustained CPU and

memory load, as a result of the above commands. As can be observed, the CPU and memory

load average are ~80-83% during the monitoring period for each critical resource, as is the

intention for the experiment process. This is performed in order to observe the IDE knowledge

rules invoke and trigger a response, as defined in the VM System events and tables 4.17

(Memory overload) and 4.18 (CPU overload):

Intelligent Management of Virtualised Computer Based Workloads and Systems

© James Oakes, 2020 186 | P a g e

Figure 7.1 IDE VM Simulated Tests for Load Stress (using stress-ng)

7.2.4 Characteristics Compared Against Other Studies

The following table describes the characteristics (binomial yes-no) and controls that

could be potentially applied to a dynamic resource manager/scheduler for virtualised systems.

This is useful, because it shows the overall capability being provided by each of the studies

experimental approach. Having more characteristics available potentially allows for improved

resource management for VMs, due to it being feature rich and having less requirement for

any manual human/administrator type interventions (Rothenberg et al, 2017; Chen and Suen,

1993; Conrath and Sharma, 1991).

Intelligent Management of Virtualised Computer Based Workloads and Systems

© James Oakes, 2020 187 | P a g e

Reference
no

Available Features IDE
(VirtualBox
Driver)

Study1
(Xen
Balloon,
Zhang et al,
2017)

Study2
(iBalloon,
Zhang et
al, 2016)

1 Dynamic CPU increase. Yes No No

2 Dynamic memory increase. Yes Yes Yes

3 Dynamic I/O increase (Network,
Storage).

No No No

4 Automatic resource issue
detection.

Yes Yes Yes

5 Dynamic CPU reduction. Yes No No

6 Dynamic memory reduction. Yes Yes Yes

7 Dynamic I/O reduction. No No No

8 x64-bit architectures support
(Balloon Driver).

Yes Yes Yes

9 x32-bit architectures support
(Balloon Driver).

No Yes No

10 Manual administrator
intervention required to increase
(Balloon) Memory.

No No Yes

11 Manual administrator
intervention required to increase
(Hot-plug) CPUs.

No No No

12 Manual administrator
configuration and setup of
resource management utility.

No Yes Yes

13 Is the solution a global resource
scheduler?

Yes Yes Yes

14 Is the global scheduler part of an
Integrated System?

Yes No No

Table 7.2 Binomial Comparative Resource Performance Features/Characteristics

It is necessary at this point, to provide some additional detail regarding the

characteristics and properties of the features listed in table 7.2. Reference points, 1, 2, 3, 5, 6

Intelligent Management of Virtualised Computer Based Workloads and Systems

© James Oakes, 2020 188 | P a g e

and 7 are parameters that can be potentially altered, that have a direct effect the resource

capability for a VM. In this case, the ability to add or reduce CPU, memory or I/O resource for

a VM. I/O resource could include adding or removing network capability such as virtual

network interfaces (vNICs), storage devices or fibre channel host-bus adapters. All such

functions involve direct communication and manipulation of the hypervisor layer of the

system, in this case either VirtualBox, Xen or KVM. Reference points 4 and 13 are quite closely

linked, although subtly different. Point 4 includes automatic detection of resource issues could

be either a local or global function; in other words, it could run locally on a single physical

host, or be globally managed across an entire suite of systems. This leads us to reference point

13, global scheduling, which is the ability for a system to monitor and control resources across

the entire collection of machines it administers. For example, you may have a local scheduler,

running on a single machine, where the context is management of just that local system,

irrespective of the wider view of the entire cluster of managed systems. A global resource

scheduler on the other hand, has an entire view of the cluster and uses algorithms to control

resources across the entire pool it manages.

This is advantageous because it potentially allows for the more flexible use of

resources, whereby a system which is not as busy for a time can lend its resources back into a

collective pool, to be consumed and used by a system demanding more resource. This ability

to variate resource controls across a group of systems is therefore is an attractive feature.

Reference points 8 and 9 are interesting, as they revolve around support for 32-bit and 64-bit

architectures respectively. 32-bit support is available for the legacy architectures, however,

the practical use of this is somewhat limited by the fact that 32-bit systems have a maximum

of 4096MB (4GiB) of addressable memory (Adl-Tabatabai et al, 2004). This hard limit is

compared to 64-bit systems, which can manage up to 16 exabytes of memory (Mohammad

and Ramananjaneyulu, 2012). The final point 14, critically records if the system has been

integrated as part of an overall controlled system. This is very important as it means the

resource (global) scheduler feature can contribute to a list of compounded benefits for a

systems overall management capability; in other words, build a critical mass of useful

characteristics that can be argued as substantiating the features of an ‘intelligent system’

(Guerlain et al, 2000). The following balloon drivers were used by each comparative study:

Intelligent Management of Virtualised Computer Based Workloads and Systems

© James Oakes, 2020 189 | P a g e

Study/Engine Hypervisor Driver

IDE VirtualBox Balloon Driver / CPU Hotplug
Driver

Study 1 – Xen Balloon (Zhang et al, 2017) Xen Balloon Driver

Study 2 – iBalloon Service (Zhang et al,
2016)

KVM (Kernel-based VM) Balloon Driver

Table 7.3 Experiment Balloon/Hotplug Drivers

7.2.5 IDE Global Resource Management

The diagram below in figure 7.2 explains how the IDE addresses global resource

management in the following ways:

• Using an SSH probe monitor to remotely access and measure performance

against all platform physical hosts and guest VMs to enable the retrieval and

analysis of all performance data and metrics.

• Where appropriate using local VM CPU hotplug and memory ballooning

techniques to increase or reduce resources.

• Where appropriate re-balancing and moving guest VMs to alternative physical

hosts.

7.2.6 Comparative Methods Analysis

The following table highlights the three methods undertaken by each study with

respect to the global performance resource management of virtualised computer systems; it

includes the author’s IDE solution, and comparative work completed in study 1’s XenBalloon,

and study 2’s iBalloon investigation (Zhang et al, 2017;Zhang et al, 2016). A critical analysis

Intelligent Management of Virtualised Computer Based Workloads and Systems

© James Oakes, 2020 190 | P a g e

for each platform is provided, and a review of the strengths and weaknesses for each method

is highlighted:

Platform Name / General Features Strengths Weaknesses

Intelligent Decision Engine (IDE) /

The IDE uses a global management

system utilising an SSH control

algorithm for remote hosts.

Additionally, it makes use of its

expert system knowledge rules to

apply them consistently across the

entire platform. It is able to

dynamically control the reduction

and increase of memory and CPU

for VMs, which includes reduction

down to a minimum of 1 CPU core

per VM.

I. Global HA

management

technique for

remote hosts.

II. Expert

Knowledge rules

for the

application of

consistent

platform

behaviour, and

for adaptive

rules.

III. Dynamic

Reduction of

Memory.

IV. Dynamic increase

of Memory.

V. Dynamic

Reduction of CPU

cores to a

minimum of 1.

VI. Dynamic increase

of CPU cores.

I. Only supports

the VirtualBox

Balloon driver,

and hot-plug

features.

II. The IDE is highly

integrated,

meaning it can

only be deployed

as a whole entity,

or not at all.

Intelligent Management of Virtualised Computer Based Workloads and Systems

© James Oakes, 2020 191 | P a g e

Platform Name / General Features Strengths Weaknesses

Study 1 (Xen Balloon, Zhang et al,
2017) /

Study 1 uses an automatic memory

control process for guest VMs on

physical hosts. It uses a global

resource scheduling mechanism,

with a resulting toolkit which is

opensource. The system runs a VM

called domain 0, which has

privileges to perform hypervisor

operations across the platform. It

uses linear equations to determine

target VM memory, and uses a

memory overcommitment

ballooning technique. It can

increase or lower memory

allocation and is able to balance

memory across the managed

platform.

I. Global

management

technique for

remote hosts

II. Opensource

software;

potentially easy

to install as an

add-on, as it has

been built as a

toolkit.

III. Dynamic

Reduction of

Memory.

IV. Dynamic increase

of Memory.

I. Only supports

the XenBalloon

driver.

II. Does not support

dynamic

reduction of CPU

cores.

III. Does not support

dynamic increase

of CPU cores.

IV. Has no

documented HA

features.

Intelligent Management of Virtualised Computer Based Workloads and Systems

© James Oakes, 2020 192 | P a g e

Platform Name / General Features Strengths Weaknesses

Study 2 (iBalloon, Zhang et al,
2016) /

Study 2 has adopted the following

process for its memory

management of VMs. It runs two

principle user processes, or

programs to simultaneously

manage the platform. The first, is a

VM monitor daemon that

continually analyses the memory

resources. In conjunction, a

balancer process daemon is able to

change the memory resource

parameters for VMs, by interfacing

with the remote hosts KVM balloon

driver to dynamically change

values.

I. Global

management

technique for

remote hosts

II. Dynamic

Reduction of

Memory.

III. Dynamic increase

of Memory.

I. Only supports

the KVM Balloon

driver.

II. Does not support

dynamic

reduction of CPU

cores.

III. Does not support

dynamic increase

of CPU cores.

IV. Has no

documented HA

features, and

two independent

daemons which

must both be

available.

Table 7.4 Comparative Performance Resource Management Studies

Intelligent Management of Virtualised Computer Based Workloads and Systems

© James Oakes, 2020 193 | P a g e

Figure 7.2 IDE Global Resource Management

7.3 Optimisation of System Performance and Availability

7.3.1 x86-64-bit Architectures and Memory Ballooning

Most architectures do not support the memory ballooning function for 32-bit OS

systems which have a maximum of 4096MB addressable memory, compared to more modern

64-bit OS systems which can address ~16 exabytes.

7.3.2 x86-64-bit Architectures with CPU Hotplug Features

Most 64-bit architectures support CPU hot-plug features. In the case of VMs, this

allows the hypervisor to provision extra CPUs up to the maximum allowed or reduce them to

a minimum of one (usually listed as CPU 0).

Intelligent Management of Virtualised Computer Based Workloads and Systems

© James Oakes, 2020 194 | P a g e

7.4 Experiment 4: Overload of VM Memory Usage, Detection Time, and
Resolution Time

7.4.1 IDE VM Memory Ballooning Process

In figure 7.3 below, we observe the results of the IDE VM memory ballooning process

while under a simulated memory stress event, as described in section 7.2.3 to enable the

demonstration of the ballooning process. As VMs within the IDE platform have an over-

commitment of memory by 25%, this therefore allows the monitoring period of 300 seconds

(5 minutes) to evaluate the VM memory capacity and utilisation state. Once the knowledge

rule is validated, the forward-chain reasoning process is initiated, and steps taken to provide

the VM with addition memory resource using the balloon driver technique.

Figure 7.3 IDE Performance Monitoring and Memory Ballooning Results

7.4.2 Study 1 VM Memory Balloon Process

Study 1 utilised the following mechanisms to deliver a memory management system:

• Automatic memory control for physical/guest VMs.

Intelligent Management of Virtualised Computer Based Workloads and Systems

© James Oakes, 2020 195 | P a g e

• A global resource scheduling mechanism.

• Runs a VM called domain 0 which has privileges to perform hypervisor operations.

• Uses linear equations to determine target VM memory.

• Uses memory overcommitment.

• Can increase or lower memory allocation.

• Can balance memory across the managed platform.

The diagram in figure 7.4 shows how the Xen Balloon driver manages memory

between VMs (Guest OS’s). This method for memory ballooning is utilised by the author of

study 1.

Figure 7.4 Study 1 Xen Balloon Process (Zhang et al, 2017)

The diagram in figure 7.5 below shows study 1’s global resource management process

using Domain-0 as the control system, to manage memory resources through the ballooning

process.

Intelligent Management of Virtualised Computer Based Workloads and Systems

© James Oakes, 2020 196 | P a g e

Figure 7.5 Study 1 VM Memory Balloon Process (Zhang et al, 2017)

7.4.3 Study 2 VM Memory Balloon Process

Study 2 (iBalloon) adopted the following mechanism for its memory management approach:

• Runs two principle daemons/user processes simultaneously to manage the platform.

• A VM monitor daemon to continually analyse the memory resource.

• A balancer process daemon which changes the memory resource parameters by

interfacing into the KVM balloon driver.

 The diagram below at figure 7.6 shows the iBalloon memory management process.

Notice the different levels of separation (granularity) between the hypervisor (guest levels)

and the physical host (Host levels).

Intelligent Management of Virtualised Computer Based Workloads and Systems

© James Oakes, 2020 197 | P a g e

Figure 7.6 Study 2 iBalloon system overview (Zhang et al, 2016)

7.5 Experiment 5: Overload of VM CPU usage, Detection Time, and Resolution
Time

7.5.1 IDE CPU Hotplug Process

The IDE uses (as it does with memory management) a standard five-minute poll

interval with a sample per second taken. As with the memory stress simulation listed in section

7.2.3, in this case the CPU is driven above the threshold alert over the monitoring period. This

is turn allows us to demonstrate that the IDE can dynamically increase (hot-plug) spare CPU

cores and makes the additional compute power available to the VM in around 5-7 seconds.

Figure 7.7 shows the detail for detection and the actual CPU hot-plug process time taken:

Intelligent Management of Virtualised Computer Based Workloads and Systems

© James Oakes, 2020 198 | P a g e

Figure 7.7 IDE Performance Monitoring and CPU Hot-plug Results

7.5.2 Study 1 VM CPU Hotplug Process

Study 1 (Xen Balloon) does not feature a CPU hot-plug process, nor a global CPU

resource scheduling system.

7.5.3 Study 2 VM CPU Hotplug Process

Study 2 (iBalloon) does not feature a CPU hot-plug process, nor a global CPU resource

scheduling system.

7.6 Results

Based on the characteristics of the features enabled by all the studies listed in section

7.2.4 and table 7.2, it is possible to perform an evaluation on the results by examining and

comparing the overall capabilities for each experiment, which includes the IDE, study 1 (Xen

Balloon) and Study 2 (iBalloon). As discussed earlier, the resource management of VMs is a

complex matter, and a certain process for handling events is not necessarily something that

can be described as “the best”, simply by being the quickest to perform a dynamic memory

increase (ballooning) for a VM, which for example, has had a short memory spike up to 90%

Intelligent Management of Virtualised Computer Based Workloads and Systems

© James Oakes, 2020 199 | P a g e

for 1 minute, or by adding (hot-plugging) a CPU to a VM which has had its CPU peak at 85%

for 20 seconds.

There were several questions raised at the beginning of this chapter which alluded to

how, why and what method and approach is the best. The answers are not immediately clear;

however, we can evaluate the characteristics, features and scheduling mechanism to

determine the overall effectiveness of intelligently managing virtualised resources, in a similar

fashion adopted by Rothenberg and his fellow researchers (Rothenberg et al, 2017; Conrath

and Sharma, 1991). Based similarly on these approaches (of expert system evaluation), the

table below summarises each of those initial questions and provides a mixture of qualitative

and quantitative feedback on the three different approaches to the process for the IDE, study

1 and study 2. Scoring is performed using the following method; for feature availability:

• If there is feature is available a score of 3 is allocated.

• If the feature is emerging and partially developed, then it receives a score of 2.

• If the feature has been designed, but not evaluated or experimented against at

all, then it receives a score of 1.

• If there is no feature, then a score of 0 is allocated.

For feature capability:

• If the feature worked effectively during experimentation, then a score of 3 is

allocated.

• If the feature worked with mixed results during experimentation, then a score

of 2 is allocated.

• If the feature worked, but fails to deliver any perceived benefits, then a score

of 1 is allocated.

• If there is no feature, then a score of 0 is allocated.

Intelligent Management of Virtualised Computer Based Workloads and Systems

© James Oakes, 2020 200 | P a g e

7.6.1 IDE Characteristics (VirtualBox Balloon)

Study
Reference

Question System
Characteristic

Feature
Available

(Yes/No/
Unknown)

Feature
Availability
(Av) and
Capability (Cp)

Result

Score
[Av/Cp]

1 (IDE) How long a

period

should a VM

be

monitored

for, before

taking

intervention?

VM poll interval,

and performance

result processing.

Yes 5-minute poll

interval, data

collected each

second.

Results

evaluated by

IDE after each

5-minute

sample period

against

knowledge

rules as per

section 7.2.1.

3 / 3

1 (IDE) How often

should be

performance

stats be

sampled

during the

poll interval?

IDE Performance

Sampling frequency

for each VM.

Yes CPU and

memory stats

collected

every second,

as per section

7.2.1

3 / 3

1 (IDE) Can CPU

resource be

increased

Ability to hotplug

CPUs.

Yes As per section

7.5.1.

3 / 3

Intelligent Management of Virtualised Computer Based Workloads and Systems

© James Oakes, 2020 201 | P a g e

Study
Reference

Question System
Characteristic

Feature
Available

(Yes/No/
Unknown)

Feature
Availability
(Av) and
Capability (Cp)

Result

Score
[Av/Cp]

and

decreased?

1 (IDE) Can memory

resource be

increased

and

decreased?

Ability to balloon

memory.

Yes As per section

7.4.1.

3 / 3

1 (IDE) Can I/O

resource be

increased

and

decreased?

Ability to increase

or reduce I/O for

network or disk.

No Not available. 0 / 0

1 (IDE) How well do

the

ballooning

and CPU

hotplug

features

safeguard

and protect

the

Hosts/Guest

VMs?

Proactive

monitoring and

reaction to

resource shortage

or observed waste

events.

Yes As per section

7.2.1.

2 / 2

1 (IDE) How The ability for the Yes As per section 2 / 2

Intelligent Management of Virtualised Computer Based Workloads and Systems

© James Oakes, 2020 202 | P a g e

Study
Reference

Question System
Characteristic

Feature
Available

(Yes/No/
Unknown)

Feature
Availability
(Av) and
Capability (Cp)

Result

Score
[Av/Cp]

advanced are

the overall

platform

management

features and

can the

system

globally

resource

manage?

management

control system to

communicate/issue

commands to other

hosts under its

control.

7.2.1, 7.4.1

and 7.5.1.

Further testing

and

experiments

can be

conducted as

per section

8.3.11.

Table 7.5 IDE Resource Management Evaluation

Intelligent Management of Virtualised Computer Based Workloads and Systems

© James Oakes, 2020 203 | P a g e

7.6.2 Study 1 Characteristics (XenBalloon)

Study
reference

Question System
Characteristic

Feature
Available

(Yes/No/
Unknown)

Feature
Availability (Av)
and Capability
(Cp)

Result
Score
[Av/Cp]

Study 1

VM

Memory

Balloon

Process

(Zhang et

al, 2017)

How long a

period should

a VM be

monitored

for, before

taking

intervention?

VM poll interval,

and

performance

result

processing.

Unknown Implied feature,

as per sections

7.2.4, 7.4.2 and

7.5.2.

1 / 1

Study 1 How often

should be

performance

stats be

sampled

during the

poll interval?

Performance

sampling

frequency for

each VM.

Unknown Implied feature,

as per sections

7.2.4, 7.4.2 and

7.5.2.

1 / 1

Study 1 Can CPU

resource be

increased

and

decreased?

Ability to

hotplug CPUs.

No Not available. 0 / 0

Study 1 Can memory

resource be

increased

and

Ability to

balloon

memory.

Yes Feature

available, as per

sections 7.2.4

3 / 3

Intelligent Management of Virtualised Computer Based Workloads and Systems

© James Oakes, 2020 204 | P a g e

Study
reference

Question System
Characteristic

Feature
Available

(Yes/No/
Unknown)

Feature
Availability (Av)
and Capability
(Cp)

Result
Score
[Av/Cp]

decreased? and 7.4.2.

Study 1 Can I/O

resource be

increased

and

decreased?

Ability to

increase or

reduce I/O for

network or disk.

No Not available. 0 / 0

Study 1 How well do

the

ballooning

and CPU

hotplug

features

safeguard

and protect

the

Hosts/Guest

VMs?

Proactive

monitoring and

reaction to

resource

shortage or

observed waste

events.

Yes Feature

available, as per

sections 7.2.4,

7.4.2 and 7.5.2.

Note, the ability

is implied as

tested against

10 VMs,

however, not

available for

CPU hotplug.

2 / 2

Study 1 How

advanced are

the overall

platform

management

features and

can the

system

The ability for

the

management

control system

to

communicate/

issue commands

Yes Feature

available, as per

sections 7.2.4,

7.4.2 and 7.5.2.

Note, the

feature is

implied as

tested against

2 / 2

Intelligent Management of Virtualised Computer Based Workloads and Systems

© James Oakes, 2020 205 | P a g e

Study
reference

Question System
Characteristic

Feature
Available

(Yes/No/
Unknown)

Feature
Availability (Av)
and Capability
(Cp)

Result
Score
[Av/Cp]

globally

resource

manage?

to other hosts

under its

control.

10 VMs.

Table 7.6 Study 1 Resource Management Evaluation

7.6.3 Study 2 Characteristics (iBalloon)

Study
Reference

Question System
Characteristic

Feature
Available

(Yes/No/
Unknown)

Feature
Availability
(Av) and
Capability
(Cp)

Result
Score
[Av/Cp]

Study 2

iBalloon

system

overview

(Zhang et

al, 2016)

How long a

period should

a VM be

monitored

for, before

taking

intervention?

VM poll interval,

and performance

result processing.

Yes Feature

present, as

per sections

7.2.4, 7.4.3

and 7.5.3.

2 / 2

Study 2 How often

should be

performance

stats be

sampled

Performance

sampling frequency

for each VM.

Yes Varying

interval

frequency

with

min/max, as

2 / 2

Intelligent Management of Virtualised Computer Based Workloads and Systems

© James Oakes, 2020 206 | P a g e

Study
Reference

Question System
Characteristic

Feature
Available

(Yes/No/
Unknown)

Feature
Availability
(Av) and
Capability
(Cp)

Result
Score
[Av/Cp]

during the

poll interval?

per sections

7.2.4, 7.4.3

and 7.5.3.

Study 2 Can CPU

resource be

increased

and

decreased?

Ability to hotplug

CPUs.

No Not available. 0 / 0

Study 2 Can memory

resource be

increased

and

decreased?

Ability to balloon

memory.

Yes Feature

available, as

per sections

7.2.4 and

7.4.3.

3 / 3

Study 2 Can I/O

resource be

increased

and

decreased?

Ability to increase

or reduce I/O for

network or disk.

No Not available. 0 / 0

Study 2 How well do

the

ballooning

and CPU

hotplug

features

Proactive

monitoring and

reaction to

resource shortage

or observed waste

events.

Yes Feature

available, as

per sections

7.2.4, 7.4.3

and 7.5.3.

Note, the

2 / 2

Intelligent Management of Virtualised Computer Based Workloads and Systems

© James Oakes, 2020 207 | P a g e

Study
Reference

Question System
Characteristic

Feature
Available

(Yes/No/
Unknown)

Feature
Availability
(Av) and
Capability
(Cp)

Result
Score
[Av/Cp]

safeguard

and protect

the

Hosts/Guest

VMs?

ability is

implied as

tested against

4 VMs.

However, not

available for

CPU hotplug.

Study 2 How

advanced are

the overall

platform

management

features and

can the

system

globally

resource

manage?

The ability for the

management

control system to

communicate/issue

commands to other

hosts under its

control.

 Feature

available, as

per sections

7.2.4, 7.4.3

and 7.5.3.

Note, the

feature is

implied as

tested against

4 VMs.

2 / 2

Table 7.7 Study 2 Resource Management Evaluation

7.6.4 Platform Characteristic Scores (IDE, Study 1, Study 2)

The following table provides indicative score values (%) for the identified features and

characteristics for the IDE, Study 1 (XenBalloon) and Study 2 (iBalloon). The score values are

able to reflect the feature availability and capability that the 3 systems have to offer, in terms

of ‘intelligent management’ of virtualised platforms, with the higher value indicating such.

Intelligent Management of Virtualised Computer Based Workloads and Systems

© James Oakes, 2020 208 | P a g e

 IDE Study 1 (XenBalloon) Study 2 (iBalloon)

Total Characteristic

Score (%)

30 out of a possible

42 (71%).

18 out of a possible

42 (43%).

22 out of a possible

42 (52%).

Table 7.8 Overall System Characteristic Scores %

As table 7.8 only provides indicative results, as at this stage, it would be necessary to

rebuild the platforms in study 1 and study 2, to perform a detailed re-test and comparison.

Section 8.3.9 deals with the opportunities to develop this work further.

7.6.5 Binomial Scores (IDE, Study 1, Study 2)

The following chart figure 7.8 displays the binomial results from table 7.2, which again

provides an indication of the capability and feature richness, within each investigated

platform.

Figure 7.8 Binomial System Characteristic Results

Intelligent Management of Virtualised Computer Based Workloads and Systems

© James Oakes, 2020 209 | P a g e

The greater the number of features that work together in combination, the more

potential that the system can be regarded as ‘being intelligent’ (see section 2.6.2 on reviewed

approaches, and section 4.2 for details on the traits for intelligent systems). Note that the

conclusions for this chapter can be found in section 8.2.4 for memory overload and 8.2.5 for

CPU overload experiments.

7.7 Summary

The final two experiments covered in this chapter discuss global resource

management, in particular around CPU hotplug and memory ballooning features. The IDE

utilises its extended performance algorithm to manage CPU and memory resource across its

controlled physical hosts and their virtualised system components. This allows for ballooning

using the VirtualBox driver to facilitate the over allocation of memory resource to enable

system memory to be dynamically increased or reduced as desired, to match the VMs

requirement for performance. The system characteristics and features are compared, and

additionally include global management capabilities for each comparative platform as

highlighted in table 7.2. The IDE is again contrast against two alternative similar papers which

present their results on their resource management processes. The first study utilises a pure

global memory management system using the XenBalloon driver, and the second study uses

a custom iBalloon system, which is a control system built on top of the underlying KVM

memory balloon driver. An analysis and simple scoring mechanism are used to measure each

of the capabilities and features of the system. By using this scoring approach, it is possible to

calculate overall results for each system, and determine how effective the overall

performance management is for the IDE, study 1 and study 2 respectively. In addition, a

simple binomial procedure is used to represent all platform characteristics that are available,

thus allowing additional comparisons to be made on the richness and depth of each global

resource management system. The last chapter discusses the contribution of the thesis,

converges the results for all five experiments undertaken, and provides a suitable conclusion

Intelligent Management of Virtualised Computer Based Workloads and Systems

© James Oakes, 2020 210 | P a g e

for each area of investigation. Finally, each potential area for further work is considered with

a view to providing an introduction into a new research area, topic or sub-topic.

Intelligent Management of Virtualised Computer Based Workloads and Systems

© James Oakes, 2020 211 | P a g e

 Chapter 8: Contribution, Conclusions and

Further Work

8.1 Thesis Contribution

The following sections summarise the main contribution of this work to the field of

virtualised computer management:

8.1.1 Development of an Expert System Framework for Virtualised Computer
Systems

The work proposed and developed the use of an expert system (IDE) framework to

enhance the management of virtualised computer-based systems, and enable fast real-time

decision making within a complex virtualised computer environment, with the purpose of

having control of VMs, workloads and other virtualised components. The decision engine

controlled several core functions, described by chapters 5 (VM provisioning), 6 (VM

migration/failover) and 7 (VM resource management), which were investigated through

experimentation. The IDE itself remains open to be developed further, as its functionality can

be extended through the development and addition of knowledge rules and their associated

automation code routines. The following areas were investigated as part of the IDE

framework:

• Remote system discovery mechanism, with system OS fingerprint analysis and

advanced OS system type detection; see algorithm/procedure 1, table 4.1.

• Improved system communication strategy using SSH to build a secure

framework for remote host management and control; see

algorithm/procedure 2, table 4.2.

• Improved data extraction and analysis approach to enable two methods of 1)

quick response and 2) slower background analysis of environment data to allow

for reference knowledge information to be added and cleansed; see

Intelligent Management of Virtualised Computer Based Workloads and Systems

© James Oakes, 2020 212 | P a g e

algorithm/procedure 3, table 4.3.

• Information and knowledge organisation to process and create reference data

structures, which affects how the forward chaining mechanisms work when

the IDE is decision making; see algorithm/procedure 4, table 4.4.

• Improved pattern analysis and learning from data; see algorithm/procedure 5,

table 4.5.

• Construction of a knowledge based forward chained events algorithm; see

algorithm/procedure 6, table 4.6.

• Development of an advanced VM deployment/provisioning mechanism; see

algorithm/procedure 7, table 4.7.

• Creation of a preliminary and extended VM performance and monitoring

management mechanism; see algorithm/procedure 8, table 4.8 for the

preliminary, and table 7.1 for the extended.

• Real-time platform event trigger with a decision processing-based delivery

event response; see algorithm/procedure 9, table 4.9.

• Improved self-monitoring and high availability features; see

algorithm/procedure 10, table 4.10.

Consult chapter 4 ‘The intelligent Decision Engine’ for further information.

8.1.2 Simplified VM Provisioning

Based on the findings in chapter 5, a simplified VM provisioning methodology was

provided, along with improved delivery times through automation and intelligent decision-

making utilising the IDE processes. This included the ability to deploy VMs using a web

browser interface utilising a ‘1 click’ VM deployment mechanism, and the simplification of VM

provisioning for end-users through higher levels of automation. This resulted in an overall

Intelligent Management of Virtualised Computer Based Workloads and Systems

© James Oakes, 2020 213 | P a g e

end-user VM provision time reduction (i.e. an aggregated user experience build-time

reduction for VMs). Consult chapter 5 and section 5.2.2 ‘Experiment 1: VM Provisioning

Timing Comparison’ for more information on the outcomes.

8.1.3 CLR formula to Determine Task Complexity

An algorithm was devised for the analysis of a Cognitive Load Rating (CLR) for human

interactions, using a computer system and its interface, such as a VM provisioning mechanism.

This provided a method for conversion of qualitative data into quantitative data (i.e. words to

numbers); please see section 3.4.1 for more information. This method and approach could be

used against any type of system, where user survey feedback is acquired and processed.

Consult section 5.2.3 ‘Experiment 2: Cognitive Evaluation Performance‘ for addition

information.

8.1.4 Efficient VM Migration, Evacuation and Restart Routines

It was demonstrated how VMs can be migrated and evacuated more effectively using

the IDE in a ‘full-restart’ scenario, compared to other studies using alternative technologies

such as vMotion and XenMotion. This included improving VM failover patterns utilising the

IDE to perform VM relocation as necessary, and faster average VM fault detection and failover

processes. Please refer to chapter 6 for further in-depth analysis and discussion, along with

the details described in section 6.4 ‘Experiment 3: Workload Migration and Evacuation of

VMs’.

8.1.5 Global Scheduling Mechanism for CPU Hot-plug and Memory Resource
Management

Evidence was provided to show how VMs can be protected even more effectively from

an overload of CPU and/or memory consumption, when compared to other research papers

Intelligent Management of Virtualised Computer Based Workloads and Systems

© James Oakes, 2020 214 | P a g e

on vMotion and XenMotion. This included the faster detection of VM CPU and memory

performance issues, dynamic VM CPU and memory resource resizing, and faster VM recovery

should full failure events occur. This is described further in section 7.4 ‘Experiment 4: Overload

of VM Memory Usage, Detection Time, and Resolution Time’ and 7.5 ‘Experiment 5: Overload

of VM CPU usage, Detection Time, and Resolution Time’.

8.1.6 Summary

The knowledge areas this thesis contributes towards are summarised in the table below:

• Creation of the Intelligent Decision Engine (IDE). Then the subsequent utilisation of
this framework to contribute to the following topics:

i. The simplification of the VM deployment mechanism.

ii. The reduction of the CLR for the VM provisioning process.

iii. Improvement of the IDE VM migration/failover average time.

iv. Enhancement of the IDE global performance and availability
management capability.

Table 8.1 Thesis Contributions

8.2 Overall Results and Conclusions

The next sections provide details on the conclusions reached, based on the data and

results recorded in each of the experiment sections.

8.2.1 Simplified VM Deployment Experiment Conclusions

The results for the conclusions reached are recorded in section 5.3. They are focused

on the provisioning aspect of VMs, in terms of being able to prove that the IDE could

efficiently deliver new VMs in the least amount of time, using the 10-step technique described

by section 5.2.1.6 ‘VM Provisioning Process’. This was completed anonymously by 3 groups

of users classified as, expert, experienced, and novice. Results for each group of 31 users were

Intelligent Management of Virtualised Computer Based Workloads and Systems

© James Oakes, 2020 215 | P a g e

recorded in turn, while using each different platform (IDE, AWS and Oracle) and graphed for

each of the 10-steps. Each end-user was therefore able to provision a VM in a certain amount

of time, summarised as follows:

• For the IDE platform, ‘Expert’, ‘Experienced’ and ‘Novice’ users averaged 1231,

1372 and 1578 seconds respectively to provision a VM.

• For the AWS platform, ‘Expert’ and ‘Experienced’ users averaged 1382 and

1464 seconds respectively, to provision a VM. Unfortunately, for ‘Novice’ users,

all but one of the 31 users were unable to complete the provisioning process.

• For the Oracle platform, ‘Expert’ and ‘Experienced’ users averaged 2362 and

3237 seconds respectively, to provision a VM. Unfortunately, for ‘Novice’ users,

all but one of the 31 users were unable to complete the provisioning process.

The reason for the IDE outperforming the other two platforms during provisioning was

primarily as a result of the extra level of automation for the 10-steps. This is especially true

for step 8, which includes the mechanism to copy over the SSH keys to ensure the user can

access the VM. As this was automated for the IDE provisioning process, the users did not need

to manually perform this step. It is true, that once a step has been automated, it becomes a

simple step irrespective of its actual complexity, because the code created takes this mental

effort away from the end-user. In other words, the complexity is hidden by the automatically

executed code, which performs the necessary tasks on behalf of the user. Again, the results

backup the fact that for each platform there were the following step mechanisms listed:

• For the IDE provisioning platform, there were 7 automatic, 2 semi-automatic

and 1 manual step recorded.

• For the AWS provisioning platform, there were 3 automatic steps, 5 semi-

automatic and 2 manual steps recorded.

• For the Oracle provisioning platform, there were 1 automatic, 7 semi-

automatic and 2 manual steps recorded.

Intelligent Management of Virtualised Computer Based Workloads and Systems

© James Oakes, 2020 216 | P a g e

Therefore, it can be concluded from the results, that as the number of steps that are

automated increases, the more fast, efficient, consistent, and reliable the VM provisioning

process is. For example, even when using the AWS platform and AMIs for the provisioning

process, time is lost, by having steps which require human administrative intervention. End

to end automation eradicates these negative aspects, and results in an overall reduction in

VM delivery time.

8.2.2 Cognitive Evaluation Performance Experiment Conclusions

In addition to the VM provisioning experiment, it was possible to extract some

qualitative feedback using a process to convert ‘words to numbers’ as previously discussed in

sections 3.4.1 and 5.2.3.1. This data provided an alternative set of results presented in section

5.3.3 and were intended to provide a complimentary viewpoint. For each of the 3 user groups,

feedback was provided based on the ‘cognitive load’ experience for each end-user, described

in section 5.2.3. For the ‘expert’, ‘experienced’ and ‘novice’ groups, we have the overall

following conclusions, based on section 5.2.3.5 the ‘Cognitive Load Rating’ chart:

• ‘Expert’, ‘Experienced’ and ‘Novice’ users using the IDE platform had an

average CLR result of 6.77, 5.38, and 7.89, which according to the CLR chart

guide indicates they found the cognitive load to have a mental power

requirement of ‘Low’, ‘Very-Low’ and ‘Low’ respectively.

• ‘Expert’, ‘Experienced’ and ‘Novice’ users using the AWS platform had an

average CLR result of 13.3, 13.72 and 17.69, which according to the CLR chart

guide indicates they found the cognitive load to have a mental power

requirement of ‘Low-Medium’, ‘Low-Medium’ and ‘Medium’ respectively.

• ‘Expert’, ‘Experienced’ and ‘Novice’ users using the Oracle platform had an

average CLR result of 20.42, 22.46 and 25.45, which according to the CLR chart

guide indicates they found the cognitive load to have a mental power

Intelligent Management of Virtualised Computer Based Workloads and Systems

© James Oakes, 2020 217 | P a g e

requirement of ‘Medium’, ‘Medium-High’ and ‘Medium-High’ respectively.

8.2.3 Workload Migration/Failover Experiment Conclusions

As part of the IDE’s control mechanism over potentially large numbers is was crucial to

be able to test how effective it is as managing the migration, failover or evacuation of VMs

under certain conditions, such as a physical host failure. Sections 6.4, 6.4.1, 6.4.2 and 6.4.3

examine the experiment process, and section 6.5 confirms the results:

• The IDE was able to achieve an average migration/failover time for a VM in a

time of 22.48 seconds, with a best time of 21.56 seconds.

• Study 1 (vMotion) was able to achieve an average migration/failover time for a

VM in a time of 44.83 seconds, with a best time of 30 seconds.

• Study 2 (vMotion) was able to achieve an average migration/failover time for a

VM in a time of 63.33 seconds, with a best time of 20 seconds.

• Study 2 (XenMotion) was able to achieve an average migration/failover time

for a VM in a time of 266.67 seconds, with a best time of 80 seconds.

From the findings, we can observe that the IDE had the best average migration/failover

time, but not the best individual time, which was for a study 2 (vMotion) failover experiment,

where the network bandwidth peaked at 1Gb/s. Based on this, further work can be completed

to try to improve the IDE, using the ‘teleport’ feature as described in section 8.3.3.

8.2.4 Performance and Availability (CPU & Memory Overload) Experiment
Conclusions

The Performance and availability experiments described in section 7.2 provide a view

Intelligent Management of Virtualised Computer Based Workloads and Systems

© James Oakes, 2020 218 | P a g e

into the resource management capability for the IDE platform, study 1 (XenBalloon) and study

2 (iBalloon). The results are presented in section 7.6, and are focused around the capability,

features and richness of the functionality offered by each respective system, rather than the

speed to complete a particular task, such as increasing (ballooning) the memory in a VM. The

indicative results and findings are presented below, based on tables 7.5, 7.6 and 7.7. Note,

the higher percentage indicates a better result, and the possible 42 is calculated as 7 primary

characteristic areas, each with a potential score of 6:

• The IDE had a ‘feature availability and capability’ score of 30 out of a possible

42 (71%).

• Study 1 (XenBalloon) had a ‘feature availability and capability’ score of 18 out

of a possible 42 (43%).

• Study 2 (iBalloon) has a ‘feature availability and capability’ score of 22 out of a

possible 42 (52%).

Further to this, a binomial evaluation based in figure 7.8 containing detailed

features/characteristics, which are summarised as below:

• The IDE had a binomial ‘characteristic’ score of 11 out of a possible 14 (79%).

• Study 1 (XenBalloon) had a binomial ‘characteristic’ score of 7 out of a possible

14 (50%).

• Study 2 (iBalloon) has a binomial ‘characteristic’ score of 5 out of a possible 14

(36%).

8.2.5 Significance of Results

The following section takes the results obtained and shows the significance of the IDE

versus the alternative systems involved in the experimentation process; namely, the AWS and

Intelligent Management of Virtualised Computer Based Workloads and Systems

© James Oakes, 2020 219 | P a g e

Oracle platforms for experiment 1 and 2, then the alternative study papers compared against

for experiments 3, 4 and 5. Firstly, the results are shown in the following tables for experiment

1 – VM provisioning time:

End-User

group

IDE (sec) / AWS (sec)

Provisioning time

Platform, Percentage (%) Faster Provisioning

Expert 1231 / 1382 IDE / 12.27% faster provisioning time

Experienced 1372 / 1464 IDE / 6.71% faster provisioning time

Novice 1578 / N/A* IDE / unable to present comparative data*

Table 8.2 IDE versus AWS VM Provisioning Time

* Novice users in the experiment failed to complete the VM provisioning process.

End-User

group

IDE (sec) / Oracle (sec) Platform / Percentage (%) Faster Provisioning

Expert 1231 / 2362 IDE / 91.88% faster provisioning time

Experienced 1372 / 3237 IDE / 135.93% faster provisioning time

Novice 1578 / N/A* IDE / unable to present comparative data*

Table 8.3 IDE versus Oracle VM Provisioning Time

* Novice users in the experiment failed to complete the VM provisioning process.

Secondly, the following tables for experiment 2 VM provisioning are shown, which

highlight the improvement in the CLR for the IDE platform (see section 5.2.3.5 for the CLR

guide chart):

End-User

group

IDE (CLR) / AWS (CLR) Platform / Percentage (%) Improved CLR

Expert 6.77 / 13.30 IDE / 96.45% improved CLR

Experienced 5.38 / 13.72 IDE / 155.02% improved CLR

Novice 7.89 / 17.69 IDE / 124.21% improved CLR

Table 8.4 IDE versus AWS CLR

Intelligent Management of Virtualised Computer Based Workloads and Systems

© James Oakes, 2020 220 | P a g e

End-User

group

IDE (CLR) / Oracle (CLR) Platform / Percentage (%) Improved CLR

Expert 6.77 / 20.42 IDE / 201.62% improved CLR

Experienced 5.38 / 22.46 IDE / 317.47% improved CLR

Novice 7.89 / 25.45 IDE / 222.56% improved CLR

Table 8.5 IDE versus Oracle CLR

Thirdly, the following tables for experiment 3 – VM Failover/migration between

physical host timings are shown:

IDE Average

Failover/Migration

Time (Sec)

 Paper 1 (vMotion)

Mean Average

Failover/Migration Time

(Sec)

Platform / Percentage (%) Improved

for Mean Average Failover/Migration

Time

22.48 44.83 IDE / 99.42% improved

Failover/Migration time

Table 8.6 IDE v Paper1 (vMotion) Avg. (Mean)Failover/Migration Time

IDE Best

Failover/Migration

Time (Sec)

 Paper 1 (vMotion) Best

Failover/Migration Time

(Sec)

Platform / Percentage (%) Improved

Best Failover/Migration Time

21.56 30.00 IDE / 39.15% improved

Failover/Migration time

Table 8.7 IDE v Paper1 (vMotion) Best Failover/Migration Time

Intelligent Management of Virtualised Computer Based Workloads and Systems

© James Oakes, 2020 221 | P a g e

IDE Average

Failover/Migration

Time (Sec)

 Paper 2 (vMotion)

Mean Average

Failover/Migration Time

(Sec)

Platform / Percentage (%) Improved

for Mean Average Failover/Migration

Time

22.48 63.33 IDE, 181.72% improved

Failover/Migration time

IDE Average

Failover/Migration

Time (Sec)

 Paper 2 (XenMotion)

Mean Average

Failover/Migration Time

(Sec)

Platform / Percentage (%) Improved

for Mean Average

Failover/Migration Time

22.48 266.67 IDE, 1086.25% improved

Failover/Migration time

Table 8.8 IDE v Paper2 (vMotion, XenMotion) Avg. (Mean) Failover/Migration Time

IDE Best

Failover/Migration

Time (Sec)

 Paper 2 (vMotion) Best

Failover/Migration Time

(Sec)

Platform / Percentage (%) Improved

Best Failover/Migration Time

21.56 20.00 vMotion, 7.8% improved

Failover/Migration time

IDE Best

Failover/Migration

Time (Sec)

 Paper 2 (XenMotion)

Best Failover/Migration

Time (Sec)

Platform / Percentage (%) Improved

Best Failover/Migration Time

21.56 80.00 IDE, 271.06% improved

Failover/Migration time

Table 8.9 IDE v Paper2 (vMotion, XenMotion) Best Failover/Migration Time

Intelligent Management of Virtualised Computer Based Workloads and Systems

© James Oakes, 2020 222 | P a g e

Experiments 4 and 5 are related to the global performance management of the

platforms, in relation to resource controls over consumables such as CPU and memory. The

results are presented for the characteristics and feature richness (based on tables 7.5, 7.6 and

7.7), and additionally, for the binomial system analysis (see figure 7.8):

Platform Percentage (%) Feature Availability and Capability Score

(Note: A higher % indicates a stronger capability)

IDE 71%

Study1 (XenBalloon) 43%

Study2 (iBalloon) 53%

Table 8.10 Platform Features, Availability and Capability Scores

Platform Percentage (%) Binomial Characteristic Assessment Score

(Note: A higher % indicates a stronger platform characteristic

richness)

IDE 79%

Study1 (XenBalloon) 50%

Study2 (iBalloon) 36%

Table 8.11 Platform Binomial Characteristic Assessment Scores

8.3 Future Work

Following the work conducted as part of this research project, there is opportunity for

a considerable amount of future work to continue, to build on the work completed so far;

some of the areas identified are as follows:

8.3.1 Prebuilding and Queuing VMs

To develop and add in a prebuilt VM build for each OS type, which is queued and

Intelligent Management of Virtualised Computer Based Workloads and Systems

© James Oakes, 2020 223 | P a g e

waiting for deployment. It would be feasible to build many VMs for each OS type and have a

queuing pipeline system in place; section 5.2.2.6 developed this idea initially, however, it is

beyond the scope of this thesis to fully develop this to fruition. It is anticipated, pending

further experimentation and result outcomes, that this would reduce VM provisioning time

even further.

8.3.2 Development with Additional Operating Systems

The majority of the development was completed against the Linux CentOS operating

system; therefore, further work and experiments are required against other operating system

types, including Windows, AIX and Solaris.

8.3.3 VirtualBox Teleport Development

Memory VM replication and migration/failover so far has concentrated on VM ‘failed

state’ and ‘full restart’ scenarios – see section 6.2 and 6.3 for more details. Further work is

needed to utilise the VirtualBox ‘teleport’ function to develop advanced ‘live migration’

techniques further for the IDE (VirtualBox, 2019).

8.3.4 Quorum Cluster Node Testing

The IDE was developed and tested using 3-node clusters. It is desirable to test a larger

cluster node configuration > 3 IDE nodes, as per section 4.7.

8.3.5 Bootstrap Development

It would be beneficial for the IDE to be able to self-replicate its core functions. Each

IDE cluster should be able to create (generate) another. Further to section 3.2, the idea would

be to increase the IDE to use larger scale systems, by additional testing of the

integrated/engineered hardware components; for example, being able to deploy repeatable

IDE ‘building blocks’, comprising of the same CPU, memory and storage stack. The goal would

be for the re-creation of the IDE from a standard bare metal hardware configuration (e.g. a

Intelligent Management of Virtualised Computer Based Workloads and Systems

© James Oakes, 2020 224 | P a g e

boot-strap type function with access to a global code repository source - always on).

8.3.6 Knowledge Rules

There is opportunity to increase the number of knowledge rules for additional expert

system functionality, e.g. filesystem capacity, or storage devices that are at full capacity (or

nearing full) are good examples that could be considered. Additionally, backward chain

reasoning could be considered, whereby the system works to achieve a set of goals; this could

be very useful for proactive type initiatives, such as reducing the number of known security

vulnerabilities a system has.

8.3.7 Self-Learning

Self-development of knowledge rules – internal introspection and a self-learning

function could be added to create new rules. This would include understanding its learning

requirements, developing its learning goals and how to achieve them, identifying the

resources needed to support the learning process, and evaluating the outcomes. A validation

and scoring system could also work to rank each knowledge rule, to ensure they are

functioning as purposed.

8.3.8 Data Sources and Trigger Events

Development and testing of additional data sources for trigger events to those defined

in sections 4.8.1 and 4.8.4. Additional exploration into the virtual platform, to determine what

other data sources could be useful, as well as the identification of new trigger events.

8.3.9 Laboratory Build for VMware, KVM and Xen Clusters

A VMWare, KVM and Xen cluster build using the same hardware as the IDE stack, to

enable direct experimental ‘failover testing’ and ‘resource management’ testing with real

Intelligent Management of Virtualised Computer Based Workloads and Systems

© James Oakes, 2020 225 | P a g e

VMWare, KVM and Xen systems, to allow for better comparisons against each in a laboratory

setting. This would build additional data on top of the similar studies examined in chapter 6

and chapter 7.

8.3.10 Knowledge Rule Testing with SLAs

Further experimental testing of the IDE knowledge rules listed in section 4.8 and 4.8.5.

Extra validation and checks to be conducted on the existing rule set with a Service Level

Agreement (SLA) in place; to be investigated as to how this would impact the consequent(s)

for invoked knowledge rules.

8.3.11 Global Resource Management

Further global platform management as discussed in section 7.2.5 is required to

ensure other areas are built on, including the continual reduction of resource waste.

Investigation to continue on how to make the global resource management process even

more effective and efficient.

8.3.12 Terraform, AWS CloudFormation and AMIs

Perform an analysis on the IDE against Terraform and AWS CloudFormation with AMIs

(A common DevOps AWS approach) in a laboratory type exercise. This work would produce

interesting results, as AWS CloudFormation and Terraform provide ‘infrastructure as code’

provisioning modules, which would first need to be developed using notation such as YAML

or JSON.

Intelligent Management of Virtualised Computer Based Workloads and Systems

© James Oakes, 2020 226 | P a g e

References

Adl-Tabatabai, A., Bharadwaj, J., Cierniak, M., Eng, M., Fang, J., Lewis, B., Murphy, B. and Stichnoth J. (2004).
Improving 64-Bit Java IPF Performance by Compressing Heap References, Proceedings of the International
Symposium on Code Generation and Optimization

Aladyshev, O., Baranov, A., Ionin, R., Kiselev, E., and Shabanov, B. (2018). Variants of Deployment the High-
Performance Computing in Clouds, IEEE Conference of Russian Young Researchers in Electrical and Electronic
Engineering (EIConRus)

Al-Ou’n, A., Kiran, M., and Kouvatsos, D. (2015). Using Agent-based VM Placement Policy, IEEE 3rd

International Conference on Future Internet of Things and Cloud

Alty, J. L., and Coombs, M. J., (1984). Expert systems: concepts and examples, John Wiley and Sons, Inc., New

York, NY

Ajila, S. and Bankole, A., (2013). Cloud Client Prediction Models Using Machine Learning Techniques. IEEE 37th
Annual Computer Software and Applications Conference

Akioka, S. and Muraoka, Y., (2010). HPC benchmarks on Amazon EC2. IEEE 24th International Conference on
Advanced Information Networking and Applications Workshops

Anicic, D., Fodor, P., Stuhmer R., and Stojanovic N., (2009). Event-driven Approach for Logic-based Complex
Event Processing, International Conference on Computational Science and Engineering

Antonescu, A., Oprescu, A., Demchenko, Y., Laat C. D., Braun T., (2013). Dynamic Optimization of SLA-Based
Services Scaling Rules, IEEE International Conference on Cloud Computing Technology and Science

Amazon Web Services, (2015). Amazon Elastic Compute Cloud - User Guide for Linux API Version. Amazon Web
Services

Arnaldo, I., Veeramachaneni, K., Song, A. and O’Reilly, U., (2015). Bring Your Own Learner! A Cloud-Based,
Data-Parallel Commons for Machine Learning. IEEE Computational intelligence magazine

Ashouri K., and Savoji, M.H, (2004). Automatic and Accurate Pitch Marking of Speech Signal using an Expert
System Based on Logical Combinations of Different Algorithms Outputs, 12th European Signal Processing
Conference

Austermann A., and Yamada, S. (2008). “Good Robot”, “Bad Robot” – Analyzing Users’ Feedback in a Human-
Robot Teaching Task, Proceedings of the 17th IEEE International Symposium on Robot and Human Interactive
Communication, Technische Universität München, Munich, Germany, August 1-3

Awal, A., Shoeb, M., Hasan, R., Haque, M. and Hu, M., (2014). A Comparative Study on I/O Performance
between Compute and Storage Optimized Instances of Amazon EC2. IEEE International Conference on Cloud
Computing

Bakhshayeshi, R., (2014). Performance Analysis of Virtualized Environments using HPC Challenge Benchmark

Suite and Analytical, Iranian Conference on Intelligent Systems (ICIS)

Beckman, T., J. (1990). Methods for Selecting Promising Expert System Applications, Proceedings, The Fifth

Annual AI Systems in Government Conference, IEEE

Intelligent Management of Virtualised Computer Based Workloads and Systems

© James Oakes, 2020 227 | P a g e

Benet C. H., Noghani K. A., and Kassler, A. J. (2016). Minimizing Live VM Migration Downtime Using OpenFlow

based Resiliency Mechanisms, 5th IEEE International Conference on Cloud Networking

Bhise, V. and Mali, A., (2013). Cloud Resource Provisioning for Amazon EC2. IEEE - 31661, 4th ICCCNT July 4-6,
Tiruchengode, India

Biner M. (2015). Cloud Computing and Management Processes, DOI: 10.1109/ECAI.2015.7301151, ECAI,
Bucharest

Bojanova, I. and Samba, A., (2011). Analysis of Cloud Computing Delivery Architecture Models. Workshops of
International Conference on Advanced Information Networking and Applications

Borg, G., Bratfisch, O., and Dornic, S. (1971). On the problems of perceived difficulty. Scandinavian Journal of
Psychology, 12(4), 249–260

Brooks R. E. and Heiser, J., F., (1979). Transferability of a Rule-Based Control Structure to a New Knowledge

Domain, AMIA Annual Symposium Proceedings

Callaos, B., (1994). Artificial Organizational Intelligence. Expert Systems for Development, Proceedings of
International Conference of The World Congress on Expert Systems

Calzolari, F., (2006). High Availability Using Virtualisation, University of Pisa

Cambridge Advanced Learner's Dictionary (2019), [online]. Available from:
https://dictionary.cambridge.org/dictionary/english/algorithm Cambridge: Cambridge University Press
[06/07/2019]

Cambridge Advanced Learner's Dictionary (2019), [online]. Available from:
https://dictionary.cambridge.org/dictionary/english/inference Cambridge: Cambridge University Press
[06/07/2019]

Cattell, R. (2010). Scalable SQL and NoSQL Data Stores, ACM SIGMOD Record archive Volume 39 Issue 4,
December, Pages 12-27

Chen, X., Chen, W., Long, P., Lu, Z., and Wang Z. (2013) SEMMA: Secure Efficient Memory Management
Approach in Virtual Environment, International Conference on Advanced Cloud and Big Data

Chen, Z. and Suen, C.Y., (1993). Evaluating Expert Systems by Formal Metrics. Proceedings of Canadian
Conference on Electrical and Computer Engineering

Conde, C. and Narin, A., (2012). Development and Test on Amazon Web Services. Amazon Web Services

Conrath D. and Sharma, R. (1991). Evaluating Expert Systems Using A Multiple-Criteria, Multiple-Stakeholder
Approach, Proceedings of the IEEE/ACM International Conference on Developing and Managing Expert System
Programs

Crittenden, R., (1990). Building on success-lessons learned (expert systems). Proceedings IEEE Conference on
Managing Expert System Programs and Projects

Dhiman, G., (2011). Dynamic Workload Characterization for Energy Efficient Computing, University of
California, San Diego

https://dictionary.cambridge.org/dictionary/english/algorithm
https://dictionary.cambridge.org/dictionary/english/inference

Intelligent Management of Virtualised Computer Based Workloads and Systems

© James Oakes, 2020 228 | P a g e

Diao, L., Zuo, M. and Liu, Q., (2009). The Artificial Intelligence in Personal Knowledge Management. Second
International Symposium on Knowledge Acquisition and Modeling

Dong D., and Herbert J., (2013). A Proactive Cloud Management Architecture for Private Clouds, IEEE Sixth
International Conference on Cloud Computing

Duda, R. O., and Shortliffe, E., (1983). Expert System Research. Science (New York, N.Y.). 220. 261-8.
10.1126/science.6340198.

Durkin, J., (1990). Research Review: Application of Expert Systems in the Sciences, The Ohio Journal of Science,
v90, n5, 171-179

Elprince, N., (2013). Autonomous Resource Provision in Virtual Data Centers, 2013 IFIP/IEEE International
Symposium on Integrated Network Management

Fateman R. J., (1989). A Review of Macsyma, IEEE Transactions on Knowledge and Data Engineering, Vol. I, No.
I, March 1989

Fadel, A. S., Fayoumi, A. G., (2013). 14th ACIS Cloud Resource Provisioning and Bursting Approaches.

International Conference on Software Engineering, Artificial Intelligence, Networking and Parallel/Distributed

Computing

Faulkner, L. (2003). Beyond the five-user assumption: Benefits of increased sample sizes in usability testing.
Behavior Research Methods, Instruments and Computers, 35(3), 379-383.

Feigenbaum E. A., and Buchanan B. G, (1994). DENDRAL and Meta-DENDRAL: roots of knowledge systems and

expert system applications. Artificial intelligence in perspective, Pages 233-240, MIT Press Cambridge, MA, USA

Feinberg, S. and Murphy, M. (2000). Applying Cognitive Load Theory to the Design of Web-Based Instruction,
18th Annual Conference on Computer Documentation Technology and Teamwork Proceedings

Feng, X., Tang, J., Luo, X., and Jin, Y. (2011) A Performance Study of Live VM migration Technologies: vMotion

vs XenMotion, SPIE-OSA-IEEE/Vol. 8310 831018-2, Asia Communications and Photonics

Ferraris, F., Franceschelli, D., Gioiosa, M., Lucia, D., Ardagna, D., Di Nitto, E. and Sharif, T., (2012). Evaluating
the Auto Scaling Performance of Flexiscale and Amazon EC2 Clouds. 14th International Symposium on Symbolic
and Numeric Algorithms for Scientific Computing

Fernando, D., Bagdi, H., Hu, Y., Yang, P., Gopalan, K., Kamhoua, C., and Kwiat, K. (2016). Quick Eviction of
Virtual Machines Through Proactive Live Snapshots, IEEE/ACM 9th International Conference on Utility and
Cloud Computing

Finkle, T. A., and Scoresby, R. B., (2012). Larry Ellison and Oracle Corporation, Journal of the International

Academy for Case Studies, Volume 18, Number 7

Flinta, C. Johnsson, A., Ahmed, J., Moradi, F., Pasquini, R., and Stadler, R. (2017). Real-Time Resource Prediction

Engine for Cloud Management, IFIP/IEEE International Symposium on Integrated Network Management

Franzosi, R. (2004). From Words to Numbers: Narrative, data, and social science, Cambridge University Press

Forbes (2018), [online]. Available from: https://www.forbes.com/sites/louiscolumbus/2018/09/23/roundup-
of-cloud-computing-forecasts-and-market-estimates-2018/#29474389507b Forbes: [1/04/2020]

https://www.forbes.com/sites/louiscolumbus/2018/09/23/roundup-of-cloud-computing-forecasts-and-market-estimates-2018/#29474389507b
https://www.forbes.com/sites/louiscolumbus/2018/09/23/roundup-of-cloud-computing-forecasts-and-market-estimates-2018/#29474389507b

Intelligent Management of Virtualised Computer Based Workloads and Systems

© James Oakes, 2020 229 | P a g e

Gandhe, A., Qin, L., Metze, F., Rudnicky, A., Lane I., and Eck, M. (2013) Using Web Text to Improve Keyword

Spotting in Speech, 2013 IEEE Workshop on Automatic Speech Recognition and Understanding, IEEE Workshop

on Automatic Speech Recognition and Understanding

Gazis, V., (2016). A Survey of Standards for Machine-to-Machine and the Internet of Things, IEEE
Communications Surveys & Tutorials

Gaikwad G., Joshi D. J., (2016). Multiclass Mood Classification on Twitter using Lexicon Dictionary and Machine
Learning Algorithms, International Conference on Inventive Computation Technologies (ICICT)

Gopher, D. and Braune, R. (1984). On the Psychophysics of Workload: Why Bother with Subjective Measures?
Human Factors: The Journal of the Human Factors and Ergonomics Society, Volume: 26 issue: 5, pages: 519-532

Green E. C., (2001). Can Qualitative Research Produce Reliable Quantitative Findings? Field Methods, Vol. 13,
No. 1, February 2001 3–19, Sage Publications, Inc.

Gren L., Torkar R., Feldt R. (2014). Work Motivational Challenges Regarding the Interface Between Agile Teams
and a Non-Agile Surrounding Organization: A Case Study. 978-0-7695-5222-4/14 IEEE DOI
10.1109/AGILE.2014.13

Guerlain, S., Brown, D. and Mastrangelo, C. (2000). Intelligent Decision Support Systems, IEEE International
Conference on Systems, Man and Cybernetics. 'Cybernetics Evolving to Systems, Humans, Organizations, and
Their Complex Interactions

Hataba, M. and El-Mahdy, A. (2012). Cloud Protection by Obfuscation: Techniques and Metrics, Seventh
International Conference on P2P, Parallel, Grid, Cloud and Internet Computing

Haugeland, J., (1989). Artificial Intelligence: The very Idea. pp. 124, MIT Press, Cambridge, MA

Hill, Z. and Humphrey, M., (2009). A Quantitative Analysis of High Performance Computing with Amazon’s EC2
Infrastructure: The Death of the Local Cluster? Grid Computing, 10th IEEE/ACM International Conference on
Grid Computing

Hwang J., (2015). Computing Resource Transformation, Consolidation, and Decomposition in Hybrid Clouds,
IBM T.J. Watson Research Center, 978-3-901882-77-7 IFIP

Hwang, J., (2016). Toward Beneficial Transformation of Enterprise Workloads to Hybrid Clouds. IEEE

Transactions on Network and Service Management, Vol. 13, No. 2, June 2016

Hwang, W., Roh, Y., Park, Y., Park, K., and Park K. H. (2010). HyperDealer: Reference-pattern-aware Instant
Memory Balancing for Consolidated Virtual Machines, IEEE 3rd International Conference on Cloud Computing

Huang, L., Milne, D., Frank, E., Witten, I. H., (2012). Learning a Concept-based Document Similarity Measure,

Journal of the American Society for Information Science and Technology banner, Volume 63, Issue8, August

2012, Pages 1593-1608

Imai, S., Chestna, T. and Varela, C., (2013). Accurate Resource Prediction for Hybrid IaaS Clouds Using
Workload-Tailored Elastic Compute Units. IEEE/ACM 6th International Conference on Utility and Cloud
Computing

Ismail H. and Riasetiawan M. (2016). CPU and Memory Performance Analysis on Dynamic and Dedicated
Resource Allocation using XenServer in Data Center Environment, 2nd International Conference on Science and
Technology-Computer (ICST), Yogyakarta, Indonesia

Intelligent Management of Virtualised Computer Based Workloads and Systems

© James Oakes, 2020 230 | P a g e

Jeong, H. and Lee, S. (2012). Dynamic CPU Resource Allocation for Multicore CE Devices Running Multiple
Operating Systems, IEEE International Conference on Consumer Electronics (ICCE)

Jin, H., Kai, Z., Zhijun, W., and Jinzhou, Y., (2016). PaaS Construction of Large Scale Enterprise. IEEE

International Conference on Cloud Computing and Big Data Analysis Discussion on Private Cloud

Jing, X., (2011). Autonomic application and resource management in virtualized Distributed Computing
Systems, University of Florida

Jing-xue Lui, J. and Fei, Q., (2005). The Arithmetic Research of Intelligence Retrieval Based on Commanding
Decision-Making. Proceedings of the Fourth International Conference on Machine Learning and Cybernetics,
Guangzhou, 18-21 August

Joy, M., Mueller, W., and Rammig, F. (2014). Source Code Annotated Memory Leak Detection for Soft Real Time
Embedded Systems with Resource Constraints, IEEE 12th International Conference on Dependable, Autonomic
and Secure Computing

Katz, J., Papadopoulos, P. and Bruno, G., (2002). Leveraging Standard Core Technologies to Pragmatically Build
Linux Cluster Appliances, Proceeding of the IEEE International Conference on Cluster Computer

Kotova, E., (2016). Intellectual Support of the Learning Content Planning Considering the Cognitive Load, XIX
IEEE International Conference on Soft Computing and Measurements.

Kim, H., El-Khamra, Y., Rodero, I., Jha, S. and Parashar, M., (2011). Autonomic Management of Application
Workflows on Hybrid Computing Infrastructure. Scientific Programming 19, pg. 75–89, IOS Press

Kokkinos, P., Varvarigou, T., kretsis, A., Soumplis, P. and Varvarigos, E., (2013). Cost and Utilization
Optimization of Amazon EC2 instances. IEEE Sixth International Conference on Cloud Computing

Kulikowski, C., A., (1980). Artificial Intelligence Methods and Systems for Medical Consultation, IEEE
Transactions on Pattern Analysis and Machine Intelligence, Vol. Pami-2, No. 5

Kwon K., (2012). Forward Reasoning via Sequential Queries in Logic Programming, ISSN 1392–124X

Information Technology and Control, Vol. 41

Lakshmi, J., (2010). System Virtualization in the Multi-core Era - a QoS Perspective, Supercomputer Education
and Research Center Indian Institute of Science

Lokshina, I. and Insinga, R. (2004), Expert System Supporting System Administrators Managing in a Distributed,
Heterogeneous Environment, Joint IST Workshop on Mobile Future and the Symposium on Trends in
Communications

Larumbe, F., Sanso B., (2012). Optimal Location of Data Centers and Software Components in Cloud Computing

Network Design, 2012 12th IEEE/ACM International Symposium on Cluster, Cloud and Grid Computing

Lindsay R. K., Buchanan B. G., Feigenbaum, E. A., Lederberg, J. (1993) DENDRAL: A Case Study of the First

Expert System for Scientific Hypothesis Formation, Artificial Intelligence, Volume 61, Issue 2, June 1993, Pages

209-261

Lebowitz, M., (1983). Generalization from Natural Language Text, Cognitive Science, Volume 7, Issue 1 January

1983, Pages 1–40

Intelligent Management of Virtualised Computer Based Workloads and Systems

© James Oakes, 2020 231 | P a g e

Liu, H., Jin, H., Liao, X., Deng, W., He, B., and Xu, C. (2015) IEEE Hotplug or Ballooning: A Comparative Study on

Dynamic Memory Management Techniques for Virtual Machines, IEEE Transactions on Parallel and Distributed

Systems, Vol. 26, No. 5

Lui, X., Zeng, S., Guo J. and Zhou, G. (2017). Human Workload Monitoring Method Considering Qualitative and

Quantitative Data Fusion, Second International Conference on Reliability Systems Engineering, IEEE

Macefield, R. (2009). How to Specify the Participant Group Size for Usability Studies: A Practitioner’s Guide,

Journal of Usability Studies, Vol. 5, Issue 1, November 2009, pp. 34-45

Madarasz, L., Lazar, T., Gaspar V., and Andoga, R. (2014). Perspectives in Evaluating Quality of Complex

Technical Systems, IEEE International Symposium on Intelligent Control (ISIC), IEEE Multi-conference on

Systems and Control, October 8-10. Antibes, France

Makridis, E., Deliparaschos, K., Kalyvianakiy, E. and Charalambous, T. (2017). Dynamic CPU Resource

Provisioning in Virtualized Servers using Maximum Correntropy Criterion Kalman Filters, 22nd IEEE

International Conference on Emerging Technologies and Factory Automation (ETFA)

Martin, T., Azvine, B. and Shen, Y., (2007). Computational Intelligence Support for Smart Queries and Adaptive
Data. IEEE Symposium on Computational Intelligence in Security and Defense Applications

Massimiliano, P. D. and Tamburri, D. A. (2017). Combining Quantitative and Qualitative Studies in Empirical
Software Engineering Research, IEEE/ACM 39th IEEE International Conference on Software Engineering
Companion

Matthias, K., (2008). Towards autonomic management in system administration, University of Oslo
Department of Informatics

McCammon R. B., (1989). Prospector II Expert System, Prospector II U.S. Geological Survey, VA 22092

McCorduck, P., Minsky, M., Selfridge, O.G., Beranek, B. and Simon, H.A., (1977). History of Artificial
Intelligence. International Joint Conference on Artificial Intelligence, pp. 951-952, 953

McDermott, J., (1982). Artificial Intelligence, R1: A Rule-Based Configure of Computer Systems, Volume 19,

Issue 1, September 1982, Pages 39-88, Elsevier

Melekhova, A., (2013). Machine Learning in Virtualization: Estimate A Virtual Machine’s Working Set Size, IEEE

Sixth International Conference on Cloud Computing

Mei, L. and Cheng, F., (2010). The Use of Artificial Intelligence in the Information Retrieval System Epoch-
making Changes in Information Retrieval System. Information Management and Engineering (ICIME), The 2nd
IEEE International Conference

Menasce, D. and Bennani, M., (2006). International Conference on Autonomic and Autonomous Systems
ICAS06, Volume: 00, Issue: C, IEEE

Mettrey, W. (1991). A Comparative Evaluation of Expert System Tools, Computer, Volume: 24, Issue: 2

Miller R. A., Pople H. E., Myers J. D., (1982). Internist-1, An Experimental Computer Based Diagnostic

Consultant for General Internal Medicine. New England Journal of Medicine, 307(8), 468-476

http://www.sciencedirect.com/science/journal/00043702/19/1
http://www.sciencedirect.com/science/journal/00043702/19/1

Intelligent Management of Virtualised Computer Based Workloads and Systems

© James Oakes, 2020 232 | P a g e

Mohammad, I., and Ramananjaneyulu K. (2012). FPGA Implementation of a 64-Bit RISC Processor Using VHDL,

International Journal of Engineering Research and Applications (IJERA), Vol. 2, Issue 3, May-Jun 2012, pp.2544-

2549

Morabito, R., Kjällman, J., and Komu, M., (2015). Hypervisors vs. Lightweight Virtualization: A Performance

Comparison, 2015 IEEE International Conference on Cloud Engineering

Mülayim, N. and Alaybeyoğlu, A., (2016). Designing of an expert system based on firefly algorithm for diagnosis
of Heart Disease, 20th National Biomedical Engineering Meeting (BIYOMUT), 1-4

Musen M.A., Shahar Y., Shortliffe E.H. (2006) Clinical Decision-Support Systems. In: Shortliffe E.H., Cimino J.J.
(eds) Biomedical Informatics. Health Informatics. Springer, New York, NY

Nath, A., Das, S. and Chakrabarti, A., (2010). Data Hiding and Retrieval. International Conference on
Computational Intelligence and Communication Networks

Novaliendry P. D., Yang C., Labukti, A.D.G., (2015). The Expert System Application for Diagnosing Human
Vitamin Deficiency Through Forward Chaining Method, International Conference on Information and
Communication Technology Convergence (ICTC)

Oakes, J., Johnson, M., Xue, J. and Turner, S., (2016). Simplified Deployment of Virtual Machines using an
Intelligent Design Engine. SAI Computing Conference 2016 July 13-15, London, UK

Oakes, J., Johnson, M., Xue, J., and Turner, S. (2020) Measuring and Reducing the Cognitive Load for the End
Users of Complex Systems. In: Bi Y., Bhatia R., Kapoor S. (eds) Intelligent Systems and Applications. IntelliSys
2019. Advances in Intelligent Systems and Computing, vol 1037. Springer.

Oludele, A., Ogu E., C., Shade, K., Chinecherem, U., (2014). On the evolution of virtualization and Cloud
Computing: A review. Journal of Computer Sciences and Applications, Volume 2, Issue 3, Pages 40-43

Padala, P., (2010). Automated Management of Virtualized Data Centers, University of Michigan

Pagare, J. and Koli, N., (2014). A technical review on comparison of Xen and KVM hypervisors: An analysis of

virtualization technologies. International Journal of Advanced Research in Computer and Communication

Engineering Vol. 3, Issue 12, December 2014

Prangchumpol, D., Sanguansintukul, S. and Tantasanawong, P. (2009). Server Virtualization by User Behaviour
Model using a Data Mining Technique – A Preliminary Study. International Conference for Internet Technology
and Secured Transactions: ICITST

Parunak H., V., D., (1996). “Go to the Ant”: Engineering Principles from Natural Multi-Agent Systems, Annals of

Operations Research, Special Issue on Artificial Intelligence and Management Science

Piraghaj, S. F., Dastjerdi, A. V, Calheiros, R. N., and Buyya, R. (2015). Efficient Virtual Machine Sizing for Hosting

Containers as a Service, 2015 IEEE World Congress on Services

Paas, F., Merrienboer, J., (1994). Measurement of Cognitive Load in Instructional Research, Perceptual and

Motor Skills, p79, 419-430.

Paas, F., Tuovinen, J., Tabbers, H., and Gerven, P. (2003). Cognitive Load Measurement as a Means to Advance

Cognitive Load Theory, Educational Psychologist, p.63–71, Lawrence Erlbaum Associates, Inc.

Plass, J. L., Moreno, R., & Brünken, R. (2010). Cognitive Load Theory. Cambridge: Cambridge University Press

Intelligent Management of Virtualised Computer Based Workloads and Systems

© James Oakes, 2020 233 | P a g e

Prathibha, D., Latha, B. and Sumathi, G., (2014). Efficient Scheduling of Workflow in Cloud Environment Using
Billing Model Aware Task Clustering. Journal of Theoretical and Applied Information Technology 31st July 2014,
Vol. 65 (No.3)

Prodan, R., Sperk, M. and Ostermann, S., (2012). Evaluating High-Performance Computing on Google App
Engine. IEEE SOFTWARE

Poghosyan A., V., Harutyunyan, A., N., Grigoryan, N., M., (2016). Managing Cloud Infrastructures by a Multi-
layer Data Analytics, IEEE International Conference on Autonomic Computing (ICAC)

Pugh, Emerson W.; Johnson, Lyle R.; Palmer, John H., (1991). IBM's 360 and Early 370 Systems. Cambridge MA:
MIT Press

Ranjan, R. and Zhao, L., (2013). Peer-to-peer service provisioning in cloud computing environments. Journal

Supercomputing (2013) 65:154–184 DOI 10.1007/s11227-011-0710-5

Rasmussen E. R., (2009). Reducing IT Costs and Increasing IT Efficiency by Integrating Platform Virtualization in

the Enterprise, University of Oregon

Ravindranath, K. R., (2015). Clinical decision Support System for Heart Diseases Using Extended Sub Tree,

International Conference on Pervasive Computing (ICPC)

Reddy D. R., Erman L. D., Fennell R. D., and Neely R. B., (1976). The Hearsay-I Speech Understanding System: An

Example of the Recognition Process, IEEE Transactions on Computers, Vol. C-25, No. 4, April 1976

Redhat (2019). [online]. Available from: https://access.redhat.com/documentation/en-
us/red_hat_enterprise_linux/6/html/virtualization_host_configuration_and_guest_installation_guide/chap-
virtualization_host_configuration_and_guest_installation_guide-system_requirements, Redhat: Redhat
Incorporated, wholly owned by IBM Corporation [13/10/2019]

Rokne, J., (2013). Computing: Transforming Information Technology. IEEE Computer Society, Cloud Computing

Rosenblum M., (2004). The Reincarnation of Virtual Machines, Stanford University and VMWare

Rothenburg, J., Paul, J., Kameny, I., Kipps, J. and Swenson, M., (1987). Evaluation Expert Systems: A Framework

and Methodology, Defense Advanced Research Projects Agency

Rusu, O., Halcu, I., Grigoriu, O., Neculoiu, G., Sandulescu, V., Marinescu, M., and Marinescu V. (2013).
Converting Unstructured and Semi-structured Data into Knowledge, 11th RoEduNet International Conference,
IEEE

Sandru, C., Petcu D., Munteanu V. I., (2012). Building an Open-Source Platform-as-a-Service with Intelligent

Management of Multiple Cloud Resources, IEEE/ACM Fifth International Conference on Utility and Cloud

Computing

Sanzo, P., Rughetti, D., Ciciani, B. and Quaglia, F., (2012). Auto-tuning of Cloud-based In-memory Transactional
Data Grids via Machine Learning. IEEE Second Symposium on Network Cloud Computing and Applications

Sarathy, V., Narayan, P. and Mikkilineni, R., (2010). Next Generation Cloud Computing Architecture Enabling

Real-time Dynamism for Shared Distributed Physical Infrastructure, Workshops on Enabling Technologies:

Infrastructure for Collaborative Enterprises

Schiller, K., (2011). Amazon EC2 Outage Highlights Risks. Volume 28, Number 6, www.infotoday.com

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/6/html/virtualization_host_configuration_and_guest_installation_guide/chap-virtualization_host_configuration_and_guest_installation_guide-system_requirements
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/6/html/virtualization_host_configuration_and_guest_installation_guide/chap-virtualization_host_configuration_and_guest_installation_guide-system_requirements
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/6/html/virtualization_host_configuration_and_guest_installation_guide/chap-virtualization_host_configuration_and_guest_installation_guide-system_requirements
http://www.infotoday.com/

Intelligent Management of Virtualised Computer Based Workloads and Systems

© James Oakes, 2020 234 | P a g e

Scroggins, R., (2013). Virtualization Technology Literature Review. Vol 13, Global Journal of Computer Science
and Technology

Seaman, C. B., (1999). Qualitative methods in empirical studies of software engineering, IEEE Transactions on
Software Engineering, vol. 25, no. 4, pp. 557-572, July-Aug. 1999

Selvi, S., Valliyammai, C., and Dhatchayani, V., (2014) Resource Allocation Issues and Challenges in Cloud
Computing, International Conference on Recent Trends in Information Technology

Serrano N., Gallardo G., Hernantes J., (2015). Infrastructure as a Service and Cloud Technologies, IEEE Software

32 (2), 30-36

Shirinbab S. and Lundberg L. (2016). Performance Implications of Resource Over-Allocation during the Live

Migration, IEEE 8th International Conference on Cloud Computing Technology and Science

Shirinbab, S., Lundberg, L. and Håkansson J. (2016). Comparing Automatic Load Balancing using VMware DRS

with a Human Expert, IEEE International Conference on Cloud Engineering Workshop

Song, Y., Sun, Y., and Shi W. (2013). A Two-Tiered On-Demand Resource Allocation Mechanism for VM-Based

Data Centers, IEEE Transactions on Services Computing, Vol. 6, No. 1, January-March

Spangler, W.E., (1991). The Role of Artificial Intelligence in Understanding the Strategic Decision-Making
Process. IEEE Transactions on Knowledge and Data Engineering, Vol. 3, No. 2

SPARC International Inc, V., (1992). The SPARC Architecture Manual v8. Version 8 ed. SPARC International.

Srnka K. J. and Koeszegi, S. T. (2007). From Words to Numbers: How to Transform Qualitative Data into
Meaningful Quantitative Results, Schmalenbach Business Review, Vol. 59

Stage, A., Setzer, T., and Bichler, M. (2009). Automated Capacity Management and Selection of Infrastructure-
as-a-Service Providers, IFIP/IEEE Intl. Symposium on Integrated Network Management — Workshops

Steinder, M., Whalley I., Carrerat D., Gawedat I. and Chess D. (2007). Server Virtualization in Autonomic
Management of Heterogeneous Workloads, 1-4244-0799-0/07, IEEE

Su, K., (2015). Affinity and Conflict-Aware Placement of Virtual Machines in Heterogeneous Data Centers, IEEE
Twelfth International Symposium on Autonomous Decentralized Systems

Sweller, J. (1988). Cognitive Load During Problem Solving: Effects on Learning, Cognitive Science 12, p.257-285

Tanenbaum, A.S., ed, (2006). Structured Computer Organization. 5th ed. Prentice Hall

Tian, C., Wang, Y., Qi, F. and Yin, B., (2012). Decision Model for Provisioning Virtual Resources in Amazon EC2.
2012 8th International Conference on Network and Service Management (CNSM 2012): Short Paper

Toyoshima, S., Yamaguchi, S. and Oguchi, M., (2010). Storage Access Optimization with Virtual Machine
Migration and Basic Performance Analysis of Amazon EC2. IEEE 24th International Conference on Advanced
Information Networking and Applications Workshops

Tsai, C., (2009). System Architectures with Virtualized Resources in a Large-Scale Computing Infrastructure, The
University of Michigan

Intelligent Management of Virtualised Computer Based Workloads and Systems

© James Oakes, 2020 235 | P a g e

Ullah S., Awan, M., Khiyal, S (2016). A Price-Performance Analysis of EC2, Google Compute and Rackspace
Cloud Providers for Scientific Computing, Journal of Mathematics and Computer Science 16, p. 178–192

Unix.com (2019), [online]. Available from: https://www.unix.com/man-page/centos/8/SYS-UNCONFIG/
Unix.com: Free Unix Support [10/09/2019]

Vanmechelen, K., De Munck, S. and Broeckhove, J., (2013). Simulation Modelling Practice and Theory.
Simulation Modelling Practice and Theory 34 (2013)126–143

Vanmechelen, K., De Munck, S. and Broeckhove, J., (2012). Conservative Distributed Discrete Event Simulation
on Amazon EC2. 2012 12th IEEE/ACM International Symposium on Cluster, Cloud and Grid Computing

Verdinelli, S., and Scagnoli, N., (2013) Data Display in Qualitative Research, International Journal of Qualitative
Methods

Virtualbox.org (2019), [online]. Available from: https://www.virtualbox.org/manual/ch04.html#guestadd-
balloon VirtualBox: virtualbox.org [17/11/2019]

Virtualbox.org (2019), [online]. Available from: https://www.virtualbox.org/manual/ch09.html#cpuhotplug
VirtualBox: virtualbox.org [17/11/2019]

Virtualbox.org (2019), [online]. Available from: https://www.virtualbox.org/manual/ch07.html#teleporting

VirtualBox: virtualbox.org [21/11/2019]

Vogels, W., Dumitriu, D., Birman K., Gamache R., Massa M., Short R., Vert J., Barrera J., and Gray J. (1998). The
Design and Architecture of the Microsoft Cluster Service-a Practical Approach to High-Availability and
Scalability, Digest of Papers. Twenty-Eighth Annual International Symposium on Fault-Tolerant Computing
(Cat. No.98CB36224), IEEE

Vrijders, S., Maffione, V., Staessens, D., Salvestrini, F., Biancani, M., Grasa, E., Colle, D., Pickavet, M., Barron, J.,
and Day, J., (2016). Reducing the Complexity of Virtual Machine Networking, IEEE Communications Magazine,
p.152-158

Wang, G. and Ng, T., (2010). The Impact of Virtualization on Network Performance of Amazon EC2 Data Center.
IEEE Infocom 2010 proceedings

Wenbin, C., Xiaoling, L., Yijun, L. and Yu, F., (2010). A Machine Learning Algorithm for Expert System Based on
MYCIN Model. 2nd International Conference on Computer Engineering and Technology

White S.R., Hanson J.E., Whalley I., Chess D.M. and Kephart J.O. (2004) An Architectural Approach to
Autonomic Computing, International Conference on Autonomic Computing, Proceedings.

Wikimedia.org (2019), [online]. Available from: wikimedia.org Wikimedia: wikimedia.org [21/12/2019]

Windriyani, P., & Kom, S., Wiharto, W., and Widya S., S. (2013). Expert System for Detecting Mental Disorder

with Forward Chaining Method. 10.1109/ICTSS.2013.6588068.

Winston P., and Prendergast K. (1986). XCON: An Expert Configuration System at Digital Equipment

Corporation, MIT Press

Wong, D. and Manickam, S., (2010). Intelligent Expertise Classification Approach: An Innovative Artificial
Intelligence Approach to Accelerate Network Data Visualization. 2010 3rd International Conference on
Advanced Computer Theory and Engineering (ICACTE)

https://www.unix.com/man-page/centos/8/SYS-UNCONFIG/
https://www.virtualbox.org/manual/ch04.html#guestadd-balloon
https://www.virtualbox.org/manual/ch04.html#guestadd-balloon
https://www.virtualbox.org/manual/ch09.html#cpuhotplug
https://www.virtualbox.org/manual/ch07.html#teleporting
https://commons.wikimedia.org/wiki/File:Hardware_Virtualization.JPG

Intelligent Management of Virtualised Computer Based Workloads and Systems

© James Oakes, 2020 236 | P a g e

Wood, T., (2011). Improving Data Center Resource Management Deployment and Availability with
Virtualization, University of Massachusetts

Wright, F.L. and Gdowski, S., (1987) An Artificial Intelligence Schema to Perform Automatic Santization of Data.
Monarch Systems Inc, Beverly Hills, California

Xiong, P., (2012). Dynamic Monitoring Modeling and Management of Performance and Resources For
Applications In The Cloud, Georgia Institute of Technology

Xu W. and Liu, X. (2003). Research on Evaluating Methods of Projects for Complex Systems, Proceedings of the
Second International Conference on Machine Learning and Cybernetics, Xa'an, 2-5 November

Xue, J., (2009). Performance Evaluation and Resource Management in Enterprise Systems, University of
Warwick

Yang J. D., Huhns M. N., and Stephens, L. M., (1985). An Architecture for Control and Communications in
Distributed Artificial Intelligence Systems, IEEE transactions on Systems, Man, and cybernetics, Vol. SMC-15,
No. 3

Yang, R., Wei, W., and Cummins, M. (2017). Application of Cognitive Load Theory to the Design and Evaluation

of Usability Study of mHealth applications: Opportunities and challenges IEEE International Conference on

Healthcare Informatics

Zhang, R. and Shang, Y., (2014). An Automatic Deployment Mechanism on Cloud Computing Platform. Cloud
Computing Technology and Science (CloudCom), 2014 IEEE 6th International Conference

Zhang, W., Xie, H. and Hsu, C. (2017). Automatic Memory Control of Multiple Virtual Machines on a
Consolidated Server, IEEE Transactions on Cloud Computing, Vol. 5, NO. 1, January-March

Zhang, Q., Liu, L., Ren, J., Su, G., and Iyengar, A. (2016). iBalloon: Efficient VM Memory Balancing as a Service,
IEEE International Conference on Web Services

Intelligent Management of Virtualised Computer Based Workloads and Systems

© James Oakes, 2020 237 | P a g e

Appendix

Appendix A – VM Deployment Process

A.1 Expert Users Results

A.2 IDE Results

A.3 Oracle Results

A.4 AWS Results

A.5 Experienced Users Results

A.6 IDE Results

Step

Number
IDE Provisioning (sec)

user 1 user 2 user 3 user 4 user 5 user 6 user 7 user 8 user 9 user 10 user 11 user 12 user 13 user 14 user 15 user 16 user 17 user 18 user 19 user 20 user 21 user 22 user 23 user 24 user 25 user 26 user 27 user 28 user 29 user 30 user 31

1 18 25 21 17 19 14 19 24 23 25 21 13 18 22 23 13 27 12 17 25 16 19 20 21 22 27 19 21 18 16 13

2 0

3 0

4 0

5 11 14 7 12 19 21 12 15 8 4 18 19 12 13 9 10 16 19 18 14 6 11 18 27 28 12 11 6 10 13 16

6 0

7 0

8 0

9 1214 1212 1190 1156 1176 1123 1214 1212 1190 1156 1176 1311 1113 1361 1221 1231 1225 1123 1155 1119 1191 1232 1172 1143 1166 1274 1282 1180 1127 1198 1286

10 0

Total Time 1243 1251 1218 1185 1214 1158 1245 1251 1221 1185 1215 1343 1143 1396 1253 1254 1268 1154 1190 1158 1213 1262 1210 1191 1216 1313 1312 1207 1155 1227 1315

Oracle Cloud (sec)

user 1 user 2 user 3 user 4 user 5 user 6 user 7 user 8 user 9 user 10 user 11 user 12 user 13 user 14 user 15 user 16 user 17 user 18 user 19 user 20 user 21 user 22 user 23 user 24 user 25 user 26 user 27 user 28 user 29 user 30 user 31

20 25 21 19 22 20 22 21 19 23 20 25 21 19 24 20 27 21 19 13 20 19 21 18 21 20 17 21 19 29 20

124 133 110 99 156 122 134 101 99 143 113 133 109 99 142 115 133 97 99 101 165 129 110 99 164 131 133 110 99 147 123

10 12 14 9 17 9 8 14 9 12 13 15 14 8 10 15 9 13 8 17 9 12 19 9 11 15 16 14 9 17 21

153 120 112 175 194 153 174 120 195 192 152 137 112 170 176 179 183 199 112 158 176 137 155 145 187 196 122 160 143 126 114

63 59 44 67 79 93 57 85 70 83 56 78 62 72 59 65 71 69 76 73 79 68 80 62 91 58 94 82 65 75 88

265 250 350 267 385 305 240 380 299 346 274 247 267 380 242 246 285 230 385 269 296 275 291 358 243 241 382 386 286 275 263

69 55 45 25 56 53 28 25 51 47 57 36 46 60 37 39 63 44 31 70 50 71 59 38 36 25 48 49 29 64 25

631 659 704 840 622 856 673 680 875 695 712 709 683 684 842 791 803 818 648 646 828 711 607 697 784 663 737 852 865 609 776

35 129 65 79 46 122 70 111 91 37 119 70 45 66 123 98 117 94 110 56 98 37 39 47 84 107 35 90 119 81 108

984 912 801 704 913 782 906 935 791 835 815 692 857 705 938 728 761 893 691 773 928 791 751 919 681 919 777 940 841 681 839

2354 2354 2266 2284 2490 2515 2312 2472 2499 2413 2331 2142 2216 2263 2593 2296 2452 2478 2179 2176 2649 2250 2132 2392 2302 2375 2361 2704 2475 2104 2377

AWS (sec)

user 1 user 2 user 3 user 4 user 5 user 6 user 7 user 8 user 9 user 10 user 11 user 12 user 13 user 14 user 15 user 16 user 17 user 18 user 19 user 20 user 21 user 22 user 23 user 24 user 25 user 26 user 27 user 28 user 29 user 30 user 31

16 18 15 12 17 20 15 15 15 17 15 15 16 18 16 20 15 19 15 16 20 19 15 20 20 22 20 18 17 16 19

0 0

0 0

0 0

15 20 30 21 28 19 17 15 24 11 26 28 16 35 22 26 23 29 27 20 35 21 26 19 28 24 25 28 23 33 29

14 25 35 18 25 23 21 19 41 32 41 21 33 29 23 16 21 39 25 11 15 25 33 36 35 33 21 42 39 28 35

0 0

650 451 489 598 755 610 697 432 521 751 750 457 541 615 539 541 656 662 709 604 677 744 702 480 736 533 686 493 445 570 473

122 129 111 118 144 113 103 141 141 112 153 121 109 144 106 133 103 102 113 121 153 123 143 113 134 126 152 112 105 104 137

601 622 587 499 659 683 552 570 584 595 504 624 644 645 485 693 692 642 661 606 490 684 587 545 480 503 601 588 532 608 535

1418 1265 1267 1266 1628 1468 1405 1192 1326 1518 1489 1266 1359 1486 1191 1429 1510 1493 1550 1378 1390 1616 1506 1213 1433 1241 1505 1281 1161 1359 1228

Step Number IDE Provisioning (sec)

user 1 user 2 user 3 user 4 user 5 user 6 user 7 user 8 user 9 user 10 user 11 user 12 user 13 user 14 user 15 user 16 user 17 user 18 user 19 user 20 user 21 user 22 user 23 user 24 user 25 user 26 user 27 user 28 user 29 user 30 user 31

1 20 23 34 17 37 38 25 23 23 30 24 29 36 34 33 21 24 22 19 31 32 45 44 19 37 25 38 41 42 27 38

2 0

3 0

4 0

5 12 15 5 15 13 16 13 12 13 19 19 18 13 13 11 16 16 11 13 18 15 13 16 11 14 12 12 14 19 17 18

6 0

7 0

8 0

9 1233 1323 1421 1321 1466 1282 1181 1530 1519 1160 1190 1289 1415 1332 1120 1472 1537 1545 1421 1383 1443 1205 1224 1114 1209 1248 1395 1435 1275 1344 1118

10 0

Total Time 1265 1361 1460 1353 1516 1336 1219 1565 1555 1209 1233 1336 1464 1379 1164 1509 1577 1578 1453 1432 1490 1263 1284 1144 1260 1285 1445 1490 1336 1388 1174

Intelligent Management of Virtualised Computer Based Workloads and Systems

© James Oakes, 2020 238 | P a g e

A.7 Oracle Results

A.8 AWS Results

A.9 Novice Users Results

A.10 IDE Results

A.11 Oracle Results

A.12 AWS Results

Oracle Cloud (sec)

user 1 user 2 user 3 user 4 user 5 user 6 user 7 user 8 user 9 user 10 user 11 user 12 user 13 user 14 user 15 user 16 user 17 user 18 user 19 user 20 user 21 user 22 user 23 user 24 user 25 user 26 user 27 user 28 user 29 user 30 user 31

24 33 53 24 63 49 32 69 30 34 40 33 60 39 65 45 50 29 27 61 64 25 58 27 34 71 25 63 52 60 40

125 144 164 142 113 115 134 155 116 153 141 138 168 165 165 162 118 127 123 160 148 101 119 122 120 162 148 139 146 133 136

11 15 14 8 24 12 16 8 26 14 26 23 19 19 28 28 17 30 22 19 11 26 17 26 15 31 23 18 28 17 10

145 123 111 153 156 151 110 169 114 118 150 134 176 150 172 171 149 168 157 125 117 115 144 165 112 154 140 179 134 177 117

55 45 65 35 80 73 83 58 86 52 52 78 63 87 76 95 92 45 71 45 53 69 83 85 58 52 46 50 47 77 48

301 360 404 360 502 369 434 373 294 315 416 471 285 443 292 335 421 516 389 308 359 400 390 515 464 476 480 512 339 284 451

76 43 47 55 43 48 62 86 70 68 48 60 40 68 49 71 63 67 86 61 52 88 57 78 67 53 58 61 67 83 64

1024 1040 1264 1405 1399 980 1298 1072 1221 1449 1254 1126 1068 1226 1105 1083 1394 1033 1458 1167 1116 1018 1023 1178 1051 1385 1014 1416 1289 1328 1472

32 45 68 42 49 57 49 58 46 32 26 43 61 52 66 67 30 37 49 31 55 61 51 69 58 38 53 41 43 38 47

1321 1710 1211 1040 1198 880 1155 1245 1312 1365 762 1254 1109 1382 771 783 839 754 1342 1247 1273 958 1138 810 1375 940 1154 996 1291 1087 866

3114 3558 3401 3264 3627 2734 3373 3293 3315 3600 2915 3360 3049 3631 2789 2840 3173 2806 3724 3224 3248 2861 3080 3075 3354 3362 3141 3475 3436 3284 3251

AWS (sec)

user 1 user 2 user 3 user 4 user 5 user 6 user 7 user 8 user 9 user 10 user 11 user 12 user 13 user 14 user 15 user 16 user 17 user 18 user 19 user 20 user 21 user 22 user 23 user 24 user 25 user 26 user 27 user 28 user 29 user 30 user 31

14 11 19 21 14 21 27 18 19 27 21 14 19 31 29 13 10 20 31 10 29 31 13 24 20 18 24 23 28 17 30

0 0

0 0

0 0

16 21 45 43 22 41 32 24 19 25 36 40 40 14 15 34 17 13 36 23 32 46 17 31 15 24 26 29 26 49 22

15 21 41 41 21 34 36 27 29 49 36 43 46 40 40 31 20 12 20 20 35 36 38 14 30 31 45 21 33 39 42

0 0

724 532 865 489 713 713 771 536 681 762 715 484 506 804 630 554 475 514 804 534 770 489 704 808 693 768 722 498 692 527 521

142 127 121 126 123 129 129 117 129 132 153 146 132 151 152 120 122 138 140 120 125 126 132 147 146 132 154 122 133 142 151

587 601 543 511 690 586 547 572 632 515 489 627 566 573 599 679 662 640 612 680 686 604 567 554 571 695 652 640 553 617 677

1498 1313 1634 1231 1583 1524 1542 1294 1509 1510 1450 1354 1309 1613 1465 1431 1306 1337 1643 1387 1677 1332 1471 1578 1475 1668 1623 1333 1465 1391 1443

Step

Number
IDE Provisioning (sec)

user 1 user 2 user 3 user 4 user 5 user 6 user 7 user 8 user 9 user 10 user 11 user 12 user 13 user 14 user 15 user 16 user 17 user 18 user 19 user 20 user 21 user 22 user 23 user 24 user 25 user 26 user 27 user 28 user 29 user 30 user 31

1 109 54 209 27 321 231 80 154 344 178 313 255 112 112 319 150 256 126 190 164 220 177 235 159 282 289 95 206 206 63 63

2 0

3 0

4 0

5 35 61 31 12 34 40 76 35 31 71 24 17 18 44 29 22 45 66 76 51 73 53 57 78 34 44 28 20 68 17 28

6 0

7 0

8 0

9 1321 1218 1423 1219 1336 1325 1247 1325 1493 1236 1365 1290 1500 1423 1433 1319 1341 1384 1318 1222 1345 1365 1333 1366 1428 1270 1315 1394 1471 1413 1472

10 0

Total Time1465 1333 1663 1258 1691 1596 1403 1514 1868 1485 1702 1562 1630 1579 1781 1491 1642 1576 1584 1437 1638 1595 1625 1603 1744 1603 1438 1620 1745 1493 1563

Oracle Cloud (sec)

user 1 user 2 user 3 user 4 user 5 user 6 user 7 user 8 user 9 user 10 user 11 user 12 user 13 user 14 user 15 user 16 user 17 user 18 user 19 user 20 user 21 user 22 user 23 user 24 user 25 user 26 user 27 user 28 user 29 user 30 user 31

129 35 194 24 311 297 299 144 203 185 237 246 330 106 59 112 106 340 242 287 310 136 153 315 194 346 116 277 149 304 199

309 645 260 654 345 546 395 642 594 419 576 382 268 537 254 412 498 460 553 624 664 463 314 534 527 524 319 500 636 348 596

43 34 23 9 32 38 41 35 30 48 43 37 30 44 48 34 38 47 47 41 38 37 38 38 44 50 45 30 32 49 35

236 312 345 176 342 218 219 349 327 301 275 239 292 230 221 226 259 226 353 233 230 346 257 335 248 300 307 265 339 348 289

134 197 98 142 164 135 142 184 139 173 119 213 150 168 166 213 126 130 175 192 151 172 210 209 159 149 95 201 106 169 144

2135 2567 1987 1943 2798 2542 2408 2151 2453 2519 2352 1802 2612 2222 2464 2153 2216 2863 2109 2854 2121 2772 2843 2412 2830 1889 1870 2584 2036 2803 2077

49 54 75 35 79 63 41 69 58 65 75 69 79 67 67 61 41 52 70 76 81 69 62 81 62 51 47 53 45 61 80

9999 9999 9999 9999 9999 9999 9999 9999 9999 1199 9999

9999 9999 9999 9999 9999 9999 9999 9999 9999 97 9999

9999 9999 9999 9999 9999 9999 9999 9999 9999 1456 9999

33032 33841 32979 32980 34068 33836 33542 33571 33801 6462 33674 32985 33758 33371 33276 33208 33281 34115 33546 34304 33592 33992 33874 33921 34061 33306 32796 33907 33340 34079 33417

AWS (sec)

user 1 user 2 user 3 user 4 user 5 user 6 user 7 user 8 user 9 user 10 user 11 user 12 user 13 user 14 user 15 user 16 user 17 user 18 user 19 user 20 user 21 user 22 user 23 user 24 user 25 user 26 user 27 user 28 user 29 user 30 user 31

136 43 132 29 294 166 131 170 207 50 155 151 231 145 119 294 100 129 256 177 95 152 30 115 77 166 205 102 72 208 84

0 0

0 0

0 0

16 21 45 43 22 18 44 49 23 42 15 45 45 16 30 33 27 24 41 18 29 22 34 45 47 33 32 29 46 33 22

15 21 41 41 21 36 36 49 50 25 30 28 16 36 40 47 37 19 28 28 36 35 34 34 15 50 22 45 28 48 22

0 0

9999 9999 9999 9999 9999 9999 9999 9999 9999 987 9999

9999 9999 9999 9999 9999 9999 9999 9999 9999 92 9999

9999 9999 9999 9999 9999 9999 9999 9999 9999 1216 9999

30164 30082 30215 30110 30334 30217 30208 30265 30277 2412 30197 30221 30289 30194 30186 30371 30161 30169 30322 30220 30157 30206 30095 30191 30136 30246 30256 30173 30143 30286 30125

Intelligent Management of Virtualised Computer Based Workloads and Systems

© James Oakes, 2020 239 | P a g e

Appendix B – Blind Peer Review Comments (Published Papers)

B.1 Simplified Deployment of Virtual Machines Using an Intelligent Design Engine
(Oakes et al, 2016)

B.2 Blind Review 1

Review Questions:

Detailed Comments The paper presents and interesting mechanism to
enable simplified deployment of VMs.

It is mainly focused on the implementation details rather
on the mechanism advantages, comparisons and
motivation.

The presentation should be improved. E.g. the quality of
figure 2 is very bad, and the procedures should be
declared as such, not as figures.

The related work should be improved, and the position
of the proposal should be made more clear.

Please rate your satisfaction
with the basic sections
(introduction, conclusion,
works cited, etc.)?

Fair.

The material is ordered in a
way that is logical, clear, and
easy to follow?

Good.

The writer adequately
summarizes and discusses the
topic?

Good.

The writer makes some
contribution of thought to the
paper or merely summarizes
data or publications?

Good.

The writer introduces and
documents sources adequately
and appropriately?

Fair.

The formatting of the
manuscript is in accordance to
the prescribed paper format?

Fair.

Intelligent Management of Virtualised Computer Based Workloads and Systems

© James Oakes, 2020 240 | P a g e

The paragraphs and sentences
are cohesive (flow together
smoothly without disruption in
the train of thought)?

Fair.

Potential interest to research
community

Acceptable.

Originality of the work Acceptable.

Significance of the main idea(s) Acceptable.

Technical quality of the paper Acceptable.

Author response No concerns with review comments raised.

B.3 Blind Review 2

Detailed Comments This paper proposes an alternative solution for the
deployment of an intelligent private or public cloud
compute platform, built around a set of predefined rule-
based parameters with the purpose of providing a
simplified process for provisioning VMs.

The paper reads more like a technical project report
than a research paper. The main problem with this
paper is that it does not clearly identify how it is
different and better than previous work in this area.

The presentation and writing of the paper should also be
improved. The paper's writing and organization need
significant improvement in order for it to be readable
and technically clear.

The main weakness of the paper lies in its lack of
originality and novelty; without any performance
evaluation and comparison with other implementations
to show its advantages or uniqueness.

Please rate your satisfaction
with the basic sections
(introduction, conclusion,
works cited, etc.)?

Fair.

The material is ordered in a
way that is logical, clear, and
easy to follow?

Fair.

Intelligent Management of Virtualised Computer Based Workloads and Systems

© James Oakes, 2020 241 | P a g e

The writer adequately
summarizes and discusses the
topic?

Poor.

The writer makes some
contribution of thought to the
paper or merely summarizes
data or publications?

Poor.

The writer introduces and
documents sources adequately
and appropriately?

Poor.

The formatting of the
manuscript is in accordance to
the prescribed paper format?

Fair.

The paragraphs and sentences
are cohesive (flow together
smoothly without disruption in
the train of thought)?

Fair.

Potential interest to research
community

Unattractive.

Originality of the work Unattractive.

Significance of the main idea(s) Unattractive.

Technical quality of the paper Unattractive.

Author response At the time the paper was written only the provisioning
mechanism, IDE engine, and preliminary evaluation
results were available. There has since been significant
work completed to provide further evidence that the
simplified VM deployment approach does reduce the
time to create and access VMs, reduce human errors,
and improve build consistency. The additional details
can be found in section 5.2 ‘Simplified VM Provisioning’,
section 5.3.1 ‘VM Provisioning Timed Results’ and
section 5.3.2 ‘Aggregated VM Provisioning Results’.

Intelligent Management of Virtualised Computer Based Workloads and Systems

© James Oakes, 2020 242 | P a g e

B.4 Measuring and Reducing the Cognitive Load for End Users of Complex Systems
(Oakes et al, 2019)

B.5 Blind Review 1

Detailed Comments This paper examines a method and approach to
measure how complex a system is to use, and how to
reduce the complexity of such systems by minimising
the requirement for human inputs as much as possible,
in order to reduce the cognitive load for that user, or
group of users.

This paper addresses a study completed around using
virtualised computer management systems interfaces of
two well-known products AWS, Oracle Cloud, and
compares the complexity of the steps and interface for
end users to a private cloud less well-known system
called the IDE.

This paper is very well written. I have just one
suggestion. The virtualised computer management
systems introduced in this paper are very powerful.
They can be potentially applicable to the study of social
opinion evolution.

See the seminal paper 'Hybrid consensus for averager-
copier-voter networks with non-rational agents'. This
future direction can be mentioned in the conclusion
section to further guide the readers and establish a new
connection to a wider audience.

Please rate your satisfaction
with the basic sections
(introduction, conclusion,
works cited, etc.)?

Good.

The material is ordered in a
way that is logical, clear, and
easy to follow?

Very Good.

The writer adequately
summarizes and discusses the
topic?

Good.

Intelligent Management of Virtualised Computer Based Workloads and Systems

© James Oakes, 2020 243 | P a g e

The writer makes some
contribution of thought to the
paper or merely summarizes
data or publications?

Good.

The writer introduces and
documents sources adequately
and appropriately?

Very Good.

The formatting of the
manuscript is in accordance to
the prescribed paper format?

Very Good.

The paragraphs and sentences
are cohesive (flow together
smoothly without disruption in
the train of thought)?

Very Good.

Are there any grammar,
punctuation, or spelling
errors?

Little error.

Author Response No concerns with review comments raised.

B.6 Blind Review 2

Detailed Comments

The paper lacks crucial parts: related work, evaluation.

Limitation of the study must be highlighted.

Add portion of discussion to share your thoughts.

Future work is not explained / more analysis of results is
needed. More conclusions and recommendations, also.

References must be recent; references older than five
years should only be cited if necessary.

Please rate your satisfaction
with the basic sections
(introduction, conclusion,
works cited, etc.)?

Fair.

The material is ordered in a
way that is logical, clear, and
easy to follow?

Fair.

Intelligent Management of Virtualised Computer Based Workloads and Systems

© James Oakes, 2020 244 | P a g e

The writer adequately
summarizes and discusses the
topic?

Fair.

The writer makes some
contribution of thought to the
paper or merely summarizes
data or publications?

Fair.

The writer introduces and
documents sources adequately
and appropriately?

Fair.

The formatting of the
manuscript is in accordance to
the prescribed paper format?

Fair.

The paragraphs and sentences
are cohesive (flow together
smoothly without disruption in
the train of thought)?

Fair.

Are there any grammar,
punctuation, or spelling
errors?

No.

Author response No concerns with review comments raised.

Intelligent Management of Virtualised Computer Based Workloads and Systems

© James Oakes, 2020 245 | P a g e

Appendix C - VM Platform Build Process

C.1 IDE Provisioning

The following appendix details the process experiment steps for deploying as simply
as possible a VM using the IDE.

C.2 VM Deployment Steps

Step 1 &2: IDE access internally web-based on private network:

Step 3, 4, 5, 6, 7, and 8: Select one click deploy VM – web browser output:

Intelligent Management of Virtualised Computer Based Workloads and Systems

© James Oakes, 2020 246 | P a g e

Step 9 Kickstart configuration, build and install example:

Intelligent Management of Virtualised Computer Based Workloads and Systems

© James Oakes, 2020 247 | P a g e

Intelligent Management of Virtualised Computer Based Workloads and Systems

© James Oakes, 2020 248 | P a g e

Intelligent Management of Virtualised Computer Based Workloads and Systems

© James Oakes, 2020 249 | P a g e

Step 9: VM automatically created & running:

Intelligent Management of Virtualised Computer Based Workloads and Systems

© James Oakes, 2020 250 | P a g e

Step 10: Process for accessing the VM – automatic SSH access and secure RSA key installed:

Automatic key SSH RSA configuration and subsequent access:

Intelligent Management of Virtualised Computer Based Workloads and Systems

© James Oakes, 2020 251 | P a g e

C.3 Oracle Cloud Provisioning

The following appendix details the process experiment steps for deploying as simply as
possible a VM in the Oracle Cloud; the know-how required to provision a VM is considerable
in terms of complexity.

C.4 VM Deployment Steps

• Step 1: Access Oracle Cloud:

• Step 2: Configure Role:

Intelligent Management of Virtualised Computer Based Workloads and Systems

© James Oakes, 2020 252 | P a g e

• Step 3: Select compute as the option for VM deployment:

• Step 4: Select the image you wish to use to install to the VM (OS version):

• Step 5: Select the VM CPU and Memory Parameters:

Intelligent Management of Virtualised Computer Based Workloads and Systems

© James Oakes, 2020 253 | P a g e

• Step 6: Define VM Parameters:

• Step 7: Define VM Storage:

Intelligent Management of Virtualised Computer Based Workloads and Systems

© James Oakes, 2020 254 | P a g e

• Step 8: Add SSH key, create a key and upload the pubic key:

• Step 9: VM Creation process:

Intelligent Management of Virtualised Computer Based Workloads and Systems

© James Oakes, 2020 255 | P a g e

• Step 10: Process for accessing the VM via the internet:

Intelligent Management of Virtualised Computer Based Workloads and Systems

© James Oakes, 2020 256 | P a g e

C.5 AWS Cloud Provisioning

The following appendix details the process experiment steps for deploying as simply as
possible a VM in the AWS Cloud; the know-how required to provision a VM is considerable in
terms of complexity.

C.6 VM Deployment Steps

• Step 1 and 2 – Login and obtain role/access:

Intelligent Management of Virtualised Computer Based Workloads and Systems

© James Oakes, 2020 257 | P a g e

• Step 3 – Select Compute & Quick Launch:

Intelligent Management of Virtualised Computer Based Workloads and Systems

© James Oakes, 2020 258 | P a g e

• Step 4,5,6 and 7 – Configure VM parameters, OS image and more:

Intelligent Management of Virtualised Computer Based Workloads and Systems

© James Oakes, 2020 259 | P a g e

Intelligent Management of Virtualised Computer Based Workloads and Systems

© James Oakes, 2020 260 | P a g e

Intelligent Management of Virtualised Computer Based Workloads and Systems

© James Oakes, 2020 261 | P a g e

Intelligent Management of Virtualised Computer Based Workloads and Systems

© James Oakes, 2020 262 | P a g e

• Step 8 – configure SSH key:

Intelligent Management of Virtualised Computer Based Workloads and Systems

© James Oakes, 2020 263 | P a g e

Intelligent Management of Virtualised Computer Based Workloads and Systems

© James Oakes, 2020 264 | P a g e

• Step 9 & 10 – VM creation process:

Intelligent Management of Virtualised Computer Based Workloads and Systems

© James Oakes, 2020 265 | P a g e

• Step 10 – Connect to your VM instance:

Intelligent Management of Virtualised Computer Based Workloads and Systems

© James Oakes, 2020 266 | P a g e

Appendix D – IDE Build Procedures

D.1 Procedure 1

D.2 Procedure 2

Intelligent Management of Virtualised Computer Based Workloads and Systems

© James Oakes, 2020 267 | P a g e

D.3 Procedure 3

D.4 Procedure 4

Intelligent Management of Virtualised Computer Based Workloads and Systems

© James Oakes, 2020 268 | P a g e

D.5 Source of Knowledge Rules

• Knowledge rules:
o Simple set of initial rules (expert heuristic knowledge, e.g. self-discovery)
o Avoid having redundant rules within the set (i.e. rules not used).

• Focus on doing things well (e.g. high utilisation/relevance of rules), with a structured
set of situations based on the subjects areas investigated.

• Source of knowledge rules is based on:
o The authors expert knowledge.

• Supporting common-sense of rules/actions from other experts in the same field of
study

• Avoidance of:
o Subsequent human modification.

Intelligent Management of Virtualised Computer Based Workloads and Systems

© James Oakes, 2020 269 | P a g e

Appendix E – VM Failover & Migration

E.1 IDE Results

Appendix F – VM CPU and Memory

F.1 IDE Results

Fault Detection and VM Migration Process

Test 1 Test 2 Test 3 Test 4 Test 5 Test 6 Migration Mean Avg (seconds)

IDE

IDE VM Migration/Restart 14.22 15.10 16.45 15.30 15.21 14.96 15.21

IDE VM Failure Detection 7.34 7.22 7.56 7.13 7.21 7.19 7.28

21.56 22.32 24.01 22.43 22.42 22.15 22.48

Study 2(vMotion)

Study2 (XenMotion)

Paper 2 A performance study of live VM migration technologies

vMotion (Seconds) - Bandwidth 150 90 50 40 30 20 63.33

XenMotion (Seconds) - Bandwidth 700 400 200 120 100 80 266.67

vMotion (Seconds) - Latency 30 120 700 800 900 1000 591.67

XenMotion (Seconds) - Latency 150 175 300 450 600 750 404.17

vMotion (Seconds) - Packet loss 20 100 300 600 700 700 403.33

XenMotion (Seconds) - Packet loss 75 125 200 250 275 280 200.83

Study 1 (vMotion only)

Paper 1 Performance Implications of Resource OverAllocation during the Live Migration

vMotion (Seconds) 30 38 48 52 48 53 44.83

CPU and Memory Resource Issue Detection

Test 1 Test 2 Test 3 Test 4 Test 5 Test 6 Average Time

IDE

IDE VM CPU Resource Issue Detection (Seconds) 300.00 300.00 300.00 300.00 300.00 300.00 300.00

IDE VM Memory Resource Detection (Seconds) 300.00 300.00 300.00 300.00 300.00 300.00 300.00

IDE VM CPU Resource addition (Seconds) 5.32 4.56 5.28 7.26 6.61 7.43 6.08

IDE VM Memory balloon addition (Seconds) 5.51 4.15 5.13 4.12 5.95 4.94 4.97

IDE average CPU util % over 300 (Seconds) 81.13 80.95 80.97 80.77 81.28 80.84

IDE average Mem util % over 300 (Seconds) 83.01 81.81 80.92 82.12 82.62 82.84

Intelligent Management of Virtualised Computer Based Workloads and Systems

© James Oakes, 2020 270 | P a g e

Appendix G – Original Proposal

G.1 Aims & Objectives

1. Perform a detailed investigation and analysis of existing computer virtualisation and
intelligent management systems, in order to provide underpinnings and evidence of
originality of the project.

2. Design and develop a real-time system performance monitoring tool to provide

statistical data on CPU/Memory/IO usage and health, enabling data to be gathered
reliably from all remote systems ready for processing by the planned intelligent
management system.

3. Investigate relevant Artificial Intelligence (AI) techniques for use within the

development of an Intelligent Decision Engine (IDE) to automatically manage
workloads and virtualised components.

4. Integrate the system performance monitoring tool with the IDE to enable it to process

real-time data inputs and make effective management decisions/actions based on the
data feeds/analysis.

5. Undertake a series of experimental trials to evaluate the performance monitoring tool

and the IDE, within a suitable development framework using formulated test scenarios
and data.

6. To undertake a live demonstration of the final working platform as a proof of concept

in operation.

